den Hertog, Alice L.; Visser, Dennis W.; Ingham, Colin J.; Fey, Frank H. A. G.; Klatser, Paul R.; Anthony, Richard M.
2010-01-01
Background Even with the advent of nucleic acid (NA) amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS), as opposed to traditional culture on solid media or automated liquid culture, has shown potential to both speed up and increase the provision of mycobacterial culture in high burden settings. Methods Here we explore the growth of Mycobacterial tuberculosis microcolonies, imaged by automated digital microscopy, cultured on a porous aluminium oxide (PAO) supports. Repeated imaging during colony growth greatly simplifies “computer vision” and presumptive identification of microcolonies was achieved here using existing publically available algorithms. Our system thus allows the growth of individual microcolonies to be monitored and critically, also to change the media during the growth phase without disrupting the microcolonies. Transfer of identified microcolonies onto selective media allowed us, within 1-2 bacterial generations, to rapidly detect the drug susceptibility of individual microcolonies, eliminating the need for time consuming subculturing or the inoculation of multiple parallel cultures. Significance Monitoring the phenotype of individual microcolonies as they grow has immense potential for research, screening, and ultimately M. tuberculosis diagnostic applications. The method described is particularly appealing with respect to speed and automation. PMID:20544033
Three-dimensional characterization of bacterial microcolonies on solid agar-based culture media.
Drazek, Laurent; Tournoud, Maud; Derepas, Frédéric; Guicherd, Maryse; Mahé, Pierre; Pinston, Frédéric; Veyrieras, Jean-Baptiste; Chatellier, Sonia
2015-02-01
For the last century, in vitro diagnostic process in microbiology has mainly relied on the growth of bacteria on the surface of a solid agar medium. Nevertheless, few studies focused in the past on the dynamics of microcolonies growth on agar surface before 8 to 10h of incubation. In this article, chromatic confocal microscopy has been applied to characterize the early development of a bacterial colony. This technology relies on a differential focusing depth of the white light. It allows one to fully measure the tridimensional shape of microcolonies more quickly than classical confocal microscopy but with the same spatial resolution. Placing the device in an incubator, the method was able to individually track colonies growing on an agar plate, and to follow the evolution of their surface or volume. Using an appropriate statistical modeling framework, for a given microorganism, the doubling time has been estimated for each individual colony, as well as its variability between colonies, both within and between agar plates. A proof of concept led on four bacterial strains of four distinct species demonstrated the feasibility and the interest of the approach. It showed in particular that doubling times derived from early tri-dimensional measurements on microcolonies differed from classical measurements in micro-dilutions based on optical diffusion. Such a precise characterization of the tri-dimensional shape of microcolonies in their late-lag to early-exponential phase could be beneficial in terms of in vitro diagnostics. Indeed, real-time monitoring of the biomass available in a colony could allow to run well established microbial identification workflows like, for instance, MALDI-TOF mass-spectrometry, as soon as a sufficient quantity of material is available, thereby reducing the time needed to provide a diagnostic. Moreover, as done for pre-identification of macro-colonies, morphological indicators such as three-dimensional growth profiles derived from microcolonies could be used to perform a first pre-identification step, but in a shorten time. Copyright © 2014 Elsevier B.V. All rights reserved.
Ferrari, Belinda C.; Tujula, Niina; Stoner, Kate; Kjelleberg, Staffan
2006-01-01
Advances in the growth of hitherto unculturable soil bacteria have emphasized the requirement for rapid bacterial identification methods. Due to the slow-growing strategy of microcolony-forming soil bacteria, successful fluorescence in situ hybridization (FISH) requires an rRNA enrichment step for visualization. In this study, catalyzed reporter deposition (CARD)-FISH was employed as an alternative method to rRNA enhancement and was found to be superior to conventional FISH for the detection of microcolonies that are cultivated by using the soil substrate membrane system. CARD-FISH enabled real-time identification of oligophilic microcolony-forming soil bacteria without the requirement for enrichment on complex media and the associated shifts in community composition. PMID:16391135
NASA Astrophysics Data System (ADS)
Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Sun, Victor; Aviles-Reyes, Alejandro; Kajfasz, Jessica K.; Lemos, Jose A.; Koo, Hyun
2016-09-01
Biofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear. Here, we simultaneously analyzed in situ pH and gene expression within intact biofilms and measured the impact of damage to the surrounding EPS-matrix. The spatiotemporal changes of these properties were characterized at a single-microcolony level following incubation in neutral-pH buffer. The middle and bottom-regions as well as inner-section within the microcolony 3D structure were resistant to neutralization (vs. upper and peripheral-region), forming an acidic core. Concomitantly, we used a green fluorescent protein (GFP) reporter to monitor expression of the pH-responsive atpB (PatpB::gfp) by S. mutans within microcolonies. The atpB expression was induced in the acidic core, but sharply decreased at peripheral/upper microcolony regions, congruent with local pH microenvironment. Enzymatic digestion of the surrounding matrix resulted in nearly complete neutralization of microcolony interior and down-regulation of atpB. Altogether, our data reveal that biofilm matrix facilitates formation of an acidic core within microcolonies which in turn activates S. mutans acid-stress response, mediating both the local environment and bacterial activity in situ.
Pedersen, Gitte A; Jensen, Helene H; Schelde, Anne-Sofie B; Toft, Charlotte; Pedersen, Hans N; Ulrichsen, Maj; Login, Frédéric H; Amieva, Manuel R; Nejsum, Lene N
2017-01-01
Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that trafficking of vesicles destined for the basolateral membrane are redirected to the apical site of microcolony growth. Thus, in addition to disrupting host cell fence function, local host cell plasma membrane protein composition is changed by altered protein trafficking and recruitment of basolateral proteins to the apical microcolony. This may aid EPEC attachment and subsequent microcolony growth.
Pedersen, Gitte A.; Jensen, Helene H.; Schelde, Anne-Sofie B.; Toft, Charlotte; Pedersen, Hans N.; Ulrichsen, Maj; Login, Frédéric H.; Amieva, Manuel R.
2017-01-01
Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that trafficking of vesicles destined for the basolateral membrane are redirected to the apical site of microcolony growth. Thus, in addition to disrupting host cell fence function, local host cell plasma membrane protein composition is changed by altered protein trafficking and recruitment of basolateral proteins to the apical microcolony. This may aid EPEC attachment and subsequent microcolony growth. PMID:28636623
Larsen, R H; Bruland, O S; Hoff, P; Alstad, J; Rofstad, E K
1994-06-01
Microcolonies were obtained by culturing cells of two human osteosarcoma lines (OHS and KPDX) and one human melanoma line (WIX-c) for either 24 or 72 h. The microcolonies were treated with either alpha-particle radiation emitted by the 211At-labelled monoclonal antibody (MAb) TP-3 or external beam X-rays. Survival of microcolonies was assayed by colony formation. Therapeutic gain factor (TGF) values were calculated for two survival levels, 50% and 20% microcolony regeneration (i.e. at least one cell in 50% or 20% of the colonies survived the treatments). The TGF values were affected by the specific activity of the 211At-MAb conjugate, the antigen expression of the cells and the size and growth pattern of the microcolonies. Treatment with 211At-TP-3 gave TGF values that varied from 1.3 +/- 0.4 to 4.5 +/- 0.7 (mean +/- s.e.). The antigen-rich OHS cell line had on average 1.6 times higher TGF than the antigen-poor KPDX cell line. The TGF increased significantly with colony size for the densely packed colonies of the KPDX cell line but not for the OHS cell line, which had colonies with cells growing in a more scattered pattern. Control experiments with the two non-specific 211At forms, free 211At and 211At-labelled bovine serum albumin, gave TGF values from 0.6 +/- 0.1 to 1.0 +/- 0.3. This study suggests that in vivo evaluation of 211At-MAbs using relevant tumour models is desirable.
Larsen, R. H.; Bruland, O. S.; Hoff, P.; Alstad, J.; Rofstad, E. K.
1994-01-01
Microcolonies were obtained by culturing cells of two human osteosarcoma lines (OHS and KPDX) and one human melanoma line (WIX-c) for either 24 or 72 h. The microcolonies were treated with either alpha-particle radiation emitted by the 211At-labelled monoclonal antibody (MAb) TP-3 or external beam X-rays. Survival of microcolonies was assayed by colony formation. Therapeutic gain factor (TGF) values were calculated for two survival levels, 50% and 20% microcolony regeneration (i.e. at least one cell in 50% or 20% of the colonies survived the treatments). The TGF values were affected by the specific activity of the 211At-MAb conjugate, the antigen expression of the cells and the size and growth pattern of the microcolonies. Treatment with 211At-TP-3 gave TGF values that varied from 1.3 +/- 0.4 to 4.5 +/- 0.7 (mean +/- s.e.). The antigen-rich OHS cell line had on average 1.6 times higher TGF than the antigen-poor KPDX cell line. The TGF increased significantly with colony size for the densely packed colonies of the KPDX cell line but not for the OHS cell line, which had colonies with cells growing in a more scattered pattern. Control experiments with the two non-specific 211At forms, free 211At and 211At-labelled bovine serum albumin, gave TGF values from 0.6 +/- 0.1 to 1.0 +/- 0.3. This study suggests that in vivo evaluation of 211At-MAbs using relevant tumour models is desirable. PMID:8198960
Real-time bacterial microcolony counting using on-chip microscopy
NASA Astrophysics Data System (ADS)
Jung, Jae Hee; Lee, Jung Eun
2016-02-01
Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery.
Real-time bacterial microcolony counting using on-chip microscopy
Jung, Jae Hee; Lee, Jung Eun
2016-01-01
Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery. PMID:26902822
Viability of 3h grown bacterial micro-colonies after direct Raman identification.
Mathey, R; Dupoy, M; Espagnon, I; Leroux, D; Mallard, F; Novelli-Rousseau, A
2015-02-01
Clinical diagnostics in routine microbiology still mostly relies on bacterial growth, a time-consuming process that prevents test results to be used directly as key decision-making elements for therapeutic decisions. There is some evidence that Raman micro-spectroscopy provides clinically relevant information from a limited amount of bacterial cells, thus holding the promise of reduced growth times and accelerated result delivery. Indeed, bacterial identification at the species level directly from micro-colonies at an early time of growth (6h) directly on their growth medium has been demonstrated. However, such analysis is suspected to be partly destructive and could prevent the further growth of the colony needed for other tests, e.g. antibiotic susceptibility testing (AST). In the present study, we evaluated the effect of the powerful laser excitation used for Raman identification on micro-colonies probed after very short growth times. We show here, using envelope integrity markers (Syto 9 and Propidium Iodide) directly on ultra-small micro-colonies of a few tens of Escherichia coli and Staphylococcus epidermidis cells (3h growth time), that only the cells that are directly impacted by the laser lose their membrane integrity. Growth kinetics experiments show that the non-probed surrounding cells are sometimes also affected but that the micro-colonies keep their ability to grow, resulting in normal aspect and size of colonies after 15h of growth. Thus, Raman spectroscopy could be used for very early (<3h) identification of grown micro-organisms without impairing further antibiotics susceptibility characterization steps. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization and identification of microorganisms by FT-IR microspectrometry
NASA Astrophysics Data System (ADS)
Ngo-Thi, N. A.; Kirschner, C.; Naumann, D.
2003-12-01
We report on a novel FT-IR approach for microbial characterization/identification based on a light microscope coupled to an infrared spectrometer which offers the possibility to acquire IR-spectra of microcolonies containing only few hundred cells. Microcolony samples suitable for FT-IR microspectroscopic measurements were obtained by a replica technique with a stamping device that transfers spatially accurate cells of microcolonies growing on solid culture plates to a special, IR-transparent or reflecting stamping plate. High quality spectra could be recorded either by applying the transmission/absorbance or the reflectance/absorbance mode of the infrared microscope. Signal to noise ratios higher than 1000 were obtained for microcolonies as small as 40 μm in diameter. Reproducibility levels were established that allowed species and strain identification. The differentiation and classification capacity of the FT-IR microscopic technique was tested for different selected microorganisms. Cluster and factor analysis methods were used to evaluate the complex spectral data. Excellent discrimination between bacteria and yeasts, and at the same time Gram-negative and Gram-positive bacterial strains was obtained. Twenty-two selected strains of different species within the genus Staphylococcus were repetitively measured and could be grouped into correct species cluster. Moreover, the results indicated that the method allows also identifications at the subspecies level. Additionally, the new approach allowed spectral mapping analysis of single colonies which provided spatially resolved characterization of growth heterogeneity within complex microbial populations such as colonies.
Shapiro, J A
1992-01-01
A mini-Tn10 insertion in the polA cistron (polA2099) was isolated in a search for mutations that affect patterned Mudlac replication in colonies. The polA2099 mutation had a dramatic effect on cell morphogenesis during the first few hours of microcolony development. Abnormal microcolonies containing filamentous cells were produced as a result of SOS induction. Despite gross abnormalities in early microcolonies, mature polA2099 colonies after 2 to 4 days were morphologically indistinguishable from Pol+ colonies, and 44-h polA2099 colonies displayed a cell size distribution very similar to that of Pol+ colonies. These results suggested the involvement of a protective factor produced during colony growth that compensated for the polA deficiency. The action of a diffusible substance that stimulates growth of polA2099 microcolonies was shown by spotting dilute polA2099 cultures next to established colonies. Differential transcription of polA during colony development was visualized by growing colonies containing polA-lacZ fusions on beta-galactosidase indicator agar. When polA-lacZ colonies were inoculated next to established colonies, a diffusible factor was seen to inhibit polA transcription during the earliest stages of colony development. These results show that a basic housekeeping function, DNA polymerase I, is subject to multicellular control by the changing conditions which the bacteria create as they proliferate on agar. Images PMID:1331025
Ferrari, Belinda C.; Binnerup, Svend J.; Gillings, Michael
2005-01-01
Traditional microbiological methods of cultivation recover less than 1% of the total bacterial species, and the culturable portion of bacteria is not representative of the total phylogenetic diversity. Classical cultivation strategies are now known to supply excessive nutrients to a system and therefore select for fast-growing bacteria that are capable of colony or biofilm formation. New approaches to the cultivation of bacteria which rely on growth in dilute nutrient media or simulated environments are beginning to address this problem of selection. Here we describe a novel microcultivation method for soil bacteria that mimics natural conditions. Our soil slurry membrane system combines a polycarbonate membrane as a growth support and soil extract as the substrate. The result is abundant growth of uncharacterized bacteria as microcolonies. By combining microcultivation with fluorescent in situ hybridization, previously “unculturable” organisms belonging to cultivated and noncultivated divisions, including candidate division TM7, can be identified by fluorescence microscopy. Successful growth of soil bacteria as microcolonies confirmed that the missing culturable majority may have a growth strategy that is not observed when traditional cultivation indicators are used. PMID:16332866
Structural Analysis of Biofilm Formation by Rapidly and Slowly Growing Nontuberculous Mycobacteria▿
Williams, Margaret M.; Yakrus, Mitchell A.; Arduino, Matthew J.; Cooksey, Robert C.; Crane, Christina B.; Banerjee, Shailen N.; Hilborn, Elizabeth D.; Donlan, Rodney M.
2009-01-01
Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae, and M. fortuitum, implicated in health care-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understand factors that influence growth in their environmental source, clinical RGM and slowly growing MAC isolates were grown as biofilm in a laboratory batch system. High and low nutrient levels were compared, as well as stainless steel and polycarbonate surfaces. Biofilm growth was measured after 72 h of incubation by enumeration of bacteria from disrupted biofilms and by direct quantitative image analysis of biofilm microcolony structure. RGM biofilm development was influenced more by nutrient level than by substrate material, though both affected biofilm growth for most of the isolates tested. Microcolony structure revealed that RGM develop several different biofilm structures under high-nutrient growth conditions, including pillars of various shapes (M. abscessus and M. fortuitum) and extensive cording (M. abscessus and M. chelonae). Although it is a slowly growing species in the laboratory, a clinical isolate of M. avium developed more culturable biofilm in potable water in 72 h than any of the 10 RGM examined. This indicates that M. avium is better adapted for growth in potable water systems than in laboratory incubation conditions and suggests some advantage that MAC has over RGM in low-nutrient environments. PMID:19201956
NASA Astrophysics Data System (ADS)
Bai, Nan
A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.
Bodelón, Gustavo; Montes-García, Verónica; López-Puente, Vanesa; Hill, Eric H.; Hamon, Cyrille; Sanz-Ortiz, Marta N.; Rodal-Cedeira, Sergio; Costas, Celina; Celiksoy, Sirin; Pérez-Juste, Ignacio; Scarabelli, Leonardo; Porta, Andrea La; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel
2016-01-01
Most bacteria in nature exist as biofilms, which support intercellular signaling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. Because QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in-situ, label-free detection of a QS signaling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals. PMID:27500808
Wang, Xiaodan; Yamaguchi, Nobuyasu; Someya, Takashi; Nasu, Masao
2007-10-01
The micro-colony method was used to enumerate viable bacteria in composts. Cells were vacuum-filtered onto polycarbonate filters and incubated for 18 h on LB medium at 37 degrees C. Bacteria on the filters were stained with SYBR Green II, and enumerated using a newly developed micro-colony auto counting system which can automatically count micro-colonies on half the area of the filter within 90 s. A large number of bacteria in samples retained physiological activity and formed micro-colonies within 18 h, whereas most could not form large colonies on conventional media within 1 week. The results showed that this convenient technique can enumerate viable bacteria in compost rapidly for its efficient quality control.
Quantification of biofilm structures by the novel computer program COMSTAT.
Heydorn, A; Nielsen, A T; Hentzer, M; Sternberg, C; Givskov, M; Ersbøll, B K; Molin, S
2000-10-01
The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, Pseudomonas: putida, P. aureofaciens, P. fluorescens and P. aeruginosa, tagged with the green fluorescent protein (GFP) were grown in flow chambers with a defined minimal medium as substrate. Analysis by the COMSTAT program of four variables describing biofilm structure - mean thickness, roughness, substratum coverage and surface to volume ratio - showed that the four Pseudomonas: strains represent different modes of biofilm growth. P. putida had a unique developmental pattern starting with single cells on the substratum growing into micro-colonies, which were eventually succeeded by long filaments and elongated cell clusters. P. aeruginosa colonized the entire substratum, and formed flat, uniform biofilms. P. aureofaciens resembled P. aeruginosa, but had a stronger tendency to form micro-colonies. Finally, the biofilm structures of P. fluorescens had a phenotype intermediate between those of P. putida and P. aureofaciens. Analysis of biofilms of P. aureofaciens growing on 0.03 mM, 0.1 mM or 0.5 mM citrate minimal media showed that mean biofilm thickness increased with increasing citrate concentration. Moreover, biofilm roughness increased with lower citrate concentrations, whereas surface to volume ratio increased with higher citrate concentrations.
Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia
2014-01-01
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.
Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia
2014-01-01
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains. PMID:24465669
Ootsubo, M; Shimizu, T; Tanaka, R; Sawabe, T; Tajima, K; Ezura, Y
2003-01-01
A fluorescent in situ hybridization (FISH) technique using an Enterobacteriaceae-specific probe (probe D) to target 16S rRNA was improved in order to enumerate, within a single working day, Enterobacteriaceae present in food and environmental water samples. In order to minimize the time required for the FISH procedure, each step of FISH with probe D was re-evaluated using cultured Escherichia coli. Five minutes of ethanol treatment for cell fixation and hybridization were sufficient to visualize cultured E. coli, and FISH could be performed within 1 h. Because of the difficulties in detecting low levels of bacterial cells by FISH without cultivation, a FISH technique for detecting microcolonies on membrane filters was investigated to improve the bacterial detection limit. FISH with probe D following 6 h of cultivation to grow microcolonies on a 13 mm diameter membrane filter was performed, and whole Enterobacteriaceae microcolonies on the filter were then detected and enumerated by manual epifluorescence microscopic scanning at magnification of x100 in ca 5 min. The total time for FISH with probe D following cultivation (FISHFC) was reduced to within 7 h. FISHFC can be applied to enumerate cultivable Enterobacteriaceae in food (above 100 cells g-1) and environmental water samples (above 1 cell ml-1). Cultivable Enterobacteriaceae in food and water samples were enumerated accurately within 7 h using the FISHFC method. A FISHFC method capable of evaluating Enterobacteriaceae contamination in food and environmental water within a single working day was developed.
Tagel, Mari; Tavita, Kairi; Hõrak, Rita; Kivisaar, Maia; Ilves, Heili
2016-08-01
Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P. putida. Screening ∼27,000 transposon mutants for increased mutation frequency allowed us to identify 34 repeatedly targeted genes. In addition to genes involved in DNA replication and repair, we identified genes participating in metabolism and transport of secondary metabolites, cell motility, and cell wall synthesis. The highest effect on mutant frequency was observed when truA (tRNA pseudouridine synthase), mpl (UDP-N-acetylmuramate-alanine ligase) or gacS (multi-sensor hybrid histidine kinase) were inactivated. Inactivation of truA elevated the mutant frequency only in growing cells, while the deficiency of gacS affected mainly stationary-phase mutagenesis. Thus, our results demonstrate the feasibility of the assay for isolating mutants with elevated mutagenesis in growing as well as stationary-phase bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations
Farrell, Fred D.
2017-01-01
Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant ‘surfs’ at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance. PMID:28592660
Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations.
Farrell, Fred D; Gralka, Matti; Hallatschek, Oskar; Waclaw, Bartlomiej
2017-06-01
Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant 'surfs' at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance. © 2017 The Author(s).
van Veluw, G.J.; Teertstra, W.R.; de Bekker, C.; Vinck, A.; van Beek, N.; Muller, W.H.; Arentshorst, M.; van der Mei, H.C.; Ram, A.F.J.; Dijksterhuis, J.; Wösten, H.A.B.
2013-01-01
Black pigmented conidia of Aspergillus niger give rise to micro-colonies when incubated in liquid shaken medium. These micro-colonies are heterogeneous with respect to gene expression and size. We here studied the biophysical properties of the conidia of a control strain and of strains in which the fwnA, olvA or brnA gene is inactivated. These strains form fawn-, olive-, and brown-coloured conidia, respectively. The ΔolvA strain produced larger conidia (3.8 μm) when compared to the other strains (3.2–3.3 μm). Moreover, the conidia of the ΔolvA strain were highly hydrophilic, whereas those of the other strains were hydrophobic. The zeta potential of the ΔolvA conidia in medium was also more negative when compared to the control strain. This was accompanied by the near absence of a rodlet layer of hydrophobins. Using the Complex Object Parametric Analyzer and Sorter it was shown that the ratio of individual hyphae and micro-colonies in liquid shaken cultures of the deletion strains was lower when compared to the control strain. The average size of the micro-colonies of the control strain was also smaller (628 μm) than that of the deletion strains (790–858 μm). The size distribution of the micro-colonies of the ΔfwnA strain was normally distributed, while that of the other strains could be explained by assuming a population of small and a population of large micro-colonies. In the last set of experiments it was shown that relative expression levels of gpdA, and AmyR and XlnR regulated genes correlate in individual hyphae at the periphery of micro-colonies. This indicates the existence of transcriptionally and translationally highly active and lowly active hyphae as was previously shown in macro-colonies. However, the existence of distinct populations of hyphae with high and low transcriptional and translational activity seems to be less robust when compared to macro-colonies grown on solid medium. PMID:23449476
Microbial Nanoculture as an Artificial Microniche
NASA Astrophysics Data System (ADS)
Niepa, Tagbo H. R.; Hou, Likai; Jiang, Hongyuan; Goulian, Mark; Koo, Hyun; Stebe, Kathleen J.; Lee, Daeyeon
2016-08-01
Microbes self-organize in microcolonies while transitioning to a sessile form within a protective biofilm matrix. To enable the detailed study of microbial dynamics within these microcolonies, new sessile culture systems are needed that sequester cells and mimic their complex growth conditions and interactions. We present a new nanoliter-scale sessile culture system that is easily implemented via microfluidics-enabled fabrication. Hundreds of thousands of these nanocultures can be easily generated and imaged using conventional or confocal microscopy. Each nanoculture begins as a several nanoliter droplet of suspended cells, encapsulated by a polydimethylsiloxane (PDMS) membrane. The PDMS shell provides long-lasting mechanical support, enabling long term study, and is selectively permeable to small molecules including antibiotics, signaling molecules and functional fluorescent probes. Thus, as microcolonies mature within the nanocultures, they can be stressed or interrogated using selected probes to characterize cell physiological properties, antibiotic susceptibilities, and antagonistic interactions. We demonstrate this platform by investigating broad ranges of microcolony dynamics, including direct and indirect bacterial-fungal interactions. This versatile new tool has broad potential for addressing biological questions associated with drug resistance, chronic infections, microbiome dynamics, and antibiotic discovery.
Microbial Nanoculture as an Artificial Microniche
Niepa, Tagbo H. R.; Hou, Likai; Jiang, Hongyuan; Goulian, Mark; Koo, Hyun; Stebe, Kathleen J.; Lee, Daeyeon
2016-01-01
Microbes self-organize in microcolonies while transitioning to a sessile form within a protective biofilm matrix. To enable the detailed study of microbial dynamics within these microcolonies, new sessile culture systems are needed that sequester cells and mimic their complex growth conditions and interactions. We present a new nanoliter-scale sessile culture system that is easily implemented via microfluidics-enabled fabrication. Hundreds of thousands of these nanocultures can be easily generated and imaged using conventional or confocal microscopy. Each nanoculture begins as a several nanoliter droplet of suspended cells, encapsulated by a polydimethylsiloxane (PDMS) membrane. The PDMS shell provides long-lasting mechanical support, enabling long term study, and is selectively permeable to small molecules including antibiotics, signaling molecules and functional fluorescent probes. Thus, as microcolonies mature within the nanocultures, they can be stressed or interrogated using selected probes to characterize cell physiological properties, antibiotic susceptibilities, and antagonistic interactions. We demonstrate this platform by investigating broad ranges of microcolony dynamics, including direct and indirect bacterial-fungal interactions. This versatile new tool has broad potential for addressing biological questions associated with drug resistance, chronic infections, microbiome dynamics, and antibiotic discovery. PMID:27476816
Microbial Nanoculture as an Artificial Microniche.
Niepa, Tagbo H R; Hou, Likai; Jiang, Hongyuan; Goulian, Mark; Koo, Hyun; Stebe, Kathleen J; Lee, Daeyeon
2016-08-01
Microbes self-organize in microcolonies while transitioning to a sessile form within a protective biofilm matrix. To enable the detailed study of microbial dynamics within these microcolonies, new sessile culture systems are needed that sequester cells and mimic their complex growth conditions and interactions. We present a new nanoliter-scale sessile culture system that is easily implemented via microfluidics-enabled fabrication. Hundreds of thousands of these nanocultures can be easily generated and imaged using conventional or confocal microscopy. Each nanoculture begins as a several nanoliter droplet of suspended cells, encapsulated by a polydimethylsiloxane (PDMS) membrane. The PDMS shell provides long-lasting mechanical support, enabling long term study, and is selectively permeable to small molecules including antibiotics, signaling molecules and functional fluorescent probes. Thus, as microcolonies mature within the nanocultures, they can be stressed or interrogated using selected probes to characterize cell physiological properties, antibiotic susceptibilities, and antagonistic interactions. We demonstrate this platform by investigating broad ranges of microcolony dynamics, including direct and indirect bacterial-fungal interactions. This versatile new tool has broad potential for addressing biological questions associated with drug resistance, chronic infections, microbiome dynamics, and antibiotic discovery.
Dance, C; Botías, C; Goulson, D
2017-05-01
There is a pressing need to better understand the factors contributing to declines of wild pollinators such as bumblebees. Many different contributors have been postulated including: loss of flower-rich habitats and nesting sites; monotonous diets; impacts of invasive pathogens; exposure to pesticides such as neonicotinoids. Past research has tended to investigate the impacts of these stressors in isolation, despite the increasing recognition that bees are simultaneously exposed to a combination of stressors, with potentially additive or synergistic effects. No studies to date have investigated the combined effects of a monotonous diet and exposure to pesticides. Using queenless micro-colonies of Bombus terrestris audax, we examined this interaction by providing bees with monofloral or polyfloral pollen that was either contaminated with field-realistic levels of thiamethoxam, a commonly used neonicotinoid, or not contaminated. Both treatments were found to have a significant effect on various parameters relating to micro-colony performance. Specifically, both pesticide-treated micro-colonies and those fed monofloral pollen grew more slowly than those given polyfloral pollen or pollen without pesticides. The two factors appeared to act additively. Micro-colonies given monofloral pollens also exhibited lower reproductive efforts and produced smaller drones. Although further research is needed to examine whether similar effects are found in whole colonies, these findings increase our understanding of the likely effects of multiple stressors associated with agricultural intensification on bee declines. Copyright © 2017 Elsevier Inc. All rights reserved.
Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms.
Schaefer, L M; Brözel, V S; Venter, S N
2013-12-01
Investigations were carried out to evaluate and quantify colonization of laboratory-scale drinking water biofilms by a chromosomally green fluorescent protein (gfp)-tagged strain of Salmonella Typhimurium. Gfp encodes the green fluorescent protein and thus allows in situ detection of undisturbed cells and is ideally suited for monitoring Salmonella in biofilms. The fate and persistence of non-typhoidal Salmonella in simulated drinking water biofilms was investigated. The ability of Salmonella to form biofilms in monoculture and the fate and persistence of Salmonella in a mixed aquatic biofilm was examined. In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24 hours, forming micro-colonies within the biofilm. S. Typhimurium was also released at high levels from the drinking water-associated biofilm into the water passing through the system. This indicated that Salmonella could enter into, survive and grow within, and be released from a drinking water biofilm. The ability of Salmonella to survive and persist in a drinking water biofilm, and be released at high levels into the flow for recolonization elsewhere, indicates the potential for a persistent health risk to consumers once a network becomes contaminated with this bacterium.
Baudart, J; Guillaume, C; Mercier, A; Lebaron, P; Binet, M
2015-05-01
To develop a rapid and sensitive method to quantify viable Legionella spp. in cooling tower water samples. A rapid, culture-based method capable of quantifying as few as 600 Legionella microcolonies per litre within 2 days in industrial waters was developed. The method combines a short cultivation step of microcolonies on GVPC agar plate, specific detection of Legionella cells by a fluorescent in situ hybridization (FISH) approach, and a sensitive enumeration using a solid-phase cytometer. Following optimization of the cultivation conditions, the qualitative and quantitative performance of the method was assessed and the method was applied to 262 nuclear power plant cooling water samples. The performance of this method was in accordance with the culture method (NF-T 90-431) for Legionella enumeration. The rapid detection of viable Legionella in water is a major concern to the effective monitoring of this pathogenic bacterium in the main water sources involved in the transmission of legionellosis infection (Legionnaires' disease). The new method proposed here appears to be a robust, efficient and innovative means for rapidly quantifying cultivable Legionella in cooling tower water samples within 48 h. © 2015 The Society for Applied Microbiology.
A novel denitrifying methanotroph of the NC10 phylum and its microcolony
He, Zhanfei; Cai, Chaoyang; Wang, Jiaqi; Xu, Xinhua; Zheng, Ping; Jetten, Mike S. M.; Hu, Baolan
2016-01-01
The NC10 phylum is a candidate phylum of prokaryotes and is considered important in biogeochemical cycles and evolutionary history. NC10 members are as-yet-uncultured and are difficult to enrich, and our knowledge regarding this phylum is largely limited to the first species ‘Candidatus Methylomirabilis oxyfera’ (M. oxyfera). Here, we enriched NC10 members from paddy soil and obtained a novel species of the NC10 phylum that mediates the anaerobic oxidation of methane (AOM) coupled to nitrite reduction. By comparing the new 16S rRNA gene sequences with those already in the database, this new species was found to be widely distributed in various habitats in China. Therefore, we tentatively named it ‘Candidatus Methylomirabilis sinica’ (M. sinica). Cells of M. sinica are roughly coccus-shaped (0.7–1.2 μm), distinct from M. oxyfera (rod-shaped; 0.25–0.5 × 0.8–1.1 μm). Notably, microscopic inspections revealed that M. sinica grew in honeycomb-shaped microcolonies, which was the first discovery of microcolony of the NC10 phylum. This finding opens the possibility to isolate NC10 members using microcolony-dependent isolation strategies. PMID:27582299
Osono, Eiichi; Kobayashi, Eiko; Inoue, Yuki; Honda, Kazumi; Kumagai, Takuya; Negishi, Hideki; Okamatsu, Kentaro; Ichimura, Kyoko; Kamano, Chisako; Suzuki, Fumi; Norose, Yoshihiko; Takahashi, Megumi; Takaku, Shun; Fujioka, Noriaki; Hayama, Naoaki; Takizawa, Hideaki
2014-01-01
A chemiluminescence system, Milliflex Quantum (MFQ), to detect microcolonies, has been used in the pharmaceutical field. In this study, we investigated aquatic bacteria in hemodialysis solutions sampled from bioburden areas in 4 dialysis faculties. Using MFQ, microcolonies could be detected after a short incubation period. The colony count detected with MFQ after a 48-hour incubation was 92% ± 39%, compared to that after the conventionally used 7-14-day incubation period; in addition, the results also showed a linear correlation. Moreover, MFQ-based analysis allowed the visualization of damaged cells and of the high density due to the excessive amount of bacteria. These results suggested that MFQ had adequate sensitivity to detect microbacteria in dialysis solutions, and it was useful for validating the conditions of conventional culture methods.
NASA Astrophysics Data System (ADS)
Pasanen, A.-L.; Heinonen-Tanski, H.; Kalliokoski, P.; Jantunen, M. J.
In the subarctic winter, fungal spores are found in indoor air even when outdoor spore levels are very low. The results of this study support an explanation that some indoor airborne fungal spores are derived from unnoticeable fungal microcolonies, which may develop on temporarily wet surfaces. Laboratory experiments on Penicillium verrucosum indicated that the fungus germinated on new wallpaper very quickly (about half an hour) under moist conditions. Hyphal growth and sporulation of the fungus on moist wallpaper occured within one day of incubation. In gravity-settling tape samples from occasionally wet surfaces in a suburban home, large spore aggregates, hyphal fragments with some spores and spores in the germination stage were found, indicating fungal growth. These experiments showed that fungal microcolonies can develop within a week on occasionally wet indoor surfaces.
Infrared and NIR Raman spectroscopy in medical microbiology
NASA Astrophysics Data System (ADS)
Naumann, Dieter
1998-04-01
FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.
Hügler, Michael; Böckle, Karin; Eberhagen, Ingrid; Thelen, Karin; Beimfohr, Claudia; Hambsch, Beate
2011-01-01
Monitoring of microbiological contaminants in water supplies requires fast and sensitive methods for the specific detection of indicator organisms or pathogens. We developed a protocol for the simultaneous detection of E. coli and coliform bacteria based on the Fluorescence in situ Hybridization (FISH) technology. This protocol consists of two approaches. The first allows the direct detection of single E. coli and coliform bacterial cells on the filter membranes. The second approach includes incubation of the filter membranes on a nutrient agar plate and subsequent detection of the grown micro-colonies. Both approaches were validated using drinking water samples spiked with pure cultures and naturally contaminated water samples. The effects of heat, chlorine and UV disinfection were also investigated. The micro-colony approach yielded very good results for all samples and conditions tested, and thus can be thoroughly recommended for usage as an alternative method to detect E. coli and coliform bacteria in water samples. However, during this study, some limitations became visible for the single cell approach. The method cannot be applied for water samples which have been disinfected by UV irradiation. In addition, our results indicated that green fluorescent dyes are not suitable to be used with chlorine disinfected samples.
Guggenberger, Christoph; Wolz, Christiane; Morrissey, Julie A.; Heesemann, Jürgen
2012-01-01
Staphylococcus aureus is a pyogenic abscess-forming facultative pathogenic microorganism expressing a large set of virulence-associated factors. Among these, secreted proteins with binding capacity to plasma proteins (e.g. fibrinogen binding proteins Eap and Emp) and prothrombin activators such as Coagulase (Coa) and vWbp are involved in abscess formation. By using a three-dimensional collagen gel (3D-CoG) supplemented with fibrinogen (Fib) we studied the growth behavior of S. aureus strain Newman and a set of mutants as well as their interaction with mouse neutrophils by real-time confocal microscopy. In 3D-CoG/Fib, S. aureus forms microcolonies which are surrounded by an inner pseudocapsule and an extended outer dense microcolony-associated meshwork (MAM) containing fibrin. Coa is involved in formation of the pseudocapsule whereas MAM formation depends on vWbp. Moreover, agr-dependent dispersal of late stage microcolonies could be observed. Furthermore, we demonstrate that the pseudocapsule and the MAM act as mechanical barriers against neutrophils attracted to the microcolony. The thrombin inhibitor argatroban is able to prevent formation of both pseudocapsule and MAM and supports access of neutrophils to staphylococci. Taken together, this model can simulate specific stages of S. aureus abscess formation by temporal dissection of bacterial growth and recruitment of immune cells. It can complement established animal infection models in the development of new treatment options. PMID:22253592
Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface.
Tan, Shumin; Noto, Jennifer M; Romero-Gallo, Judith; Peek, Richard M; Amieva, Manuel R
2011-05-01
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.
Helicobacter pylori Perturbs Iron Trafficking in the Epithelium to Grow on the Cell Surface
Tan, Shumin; Noto, Jennifer M.; Romero-Gallo, Judith; Peek, Richard M.; Amieva, Manuel R.
2011-01-01
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche. PMID:21589900
Duarte, José M; Barbier, Içvara; Schaerli, Yolanda
2017-11-17
Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.
Gao, Weimin; Navarroli, Dena; Naimark, Jared; Zhang, Weiwen; Chao, Shih-Hui; Meldrum, Deirdre R
2013-01-09
The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications. We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis. MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.
Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy
Young, Jonathan W; Locke, James C W; Altinok, Alphan; Rosenfeld, Nitzan; Bacarian, Tigran; Swain, Peter S; Mjolsness, Eric; Elowitz, Michael B
2014-01-01
Quantitative single-cell time-lapse microscopy is a powerful method for analyzing gene circuit dynamics and heterogeneous cell behavior. We describe the application of this method to imaging bacteria by using an automated microscopy system. This protocol has been used to analyze sporulation and competence differentiation in Bacillus subtilis, and to quantify gene regulation and its fluctuations in individual Escherichia coli cells. The protocol involves seeding and growing bacteria on small agarose pads and imaging the resulting microcolonies. Images are then reviewed and analyzed using our laboratory's custom MATLAB analysis code, which segments and tracks cells in a frame-to-frame method. This process yields quantitative expression data on cell lineages, which can illustrate dynamic expression profiles and facilitate mathematical models of gene circuits. With fast-growing bacteria, such as E. coli or B. subtilis, image acquisition can be completed in 1 d, with an additional 1–2 d for progressing through the analysis procedure. PMID:22179594
Granule Formation Mechanisms within an Aerobic Wastewater System for Phosphorus Removal▿ †
Barr, Jeremy J.; Cook, Andrew E.; Bond, Phillip L.
2010-01-01
Granular sludge is a novel alternative for the treatment of wastewater and offers numerous operational and economic advantages over conventional floccular-sludge systems. The majority of research on granular sludge has focused on optimization of engineering aspects relating to reactor operation with little emphasis on the fundamental microbiology. In this study, we hypothesize two novel mechanisms for granule formation as observed in three laboratory scale sequencing batch reactors operating for biological phosphorus removal and treating two different types of wastewater. During the initial stages of granulation, two distinct granule types (white and yellow) were distinguished within the mixed microbial population. White granules appeared as compact, smooth, dense aggregates dominated by 97.5% “Candidatus Accumulibacter phosphatis,” and yellow granules appeared as loose, rough, irregular aggregates with a mixed microbial population of 12.3% “Candidatus Accumulibacter phosphatis” and 57.9% “Candidatus Competibacter phosphatis,” among other bacteria. Microscopy showed white granules as homogeneous microbial aggregates and yellow granules as segregated, microcolony-like aggregates, with phylogenetic analysis suggesting that the granule types are likely not a result of strain-associated differences. The microbial community composition and arrangement suggest different formation mechanisms occur for each granule type. White granules are hypothesized to form by outgrowth from a single microcolony into a granule dominated by one bacterial type, while yellow granules are hypothesized to form via multiple microcolony aggregation into a microcolony-segregated granule with a mixed microbial population. Further understanding and application of these mechanisms and the associated microbial ecology may provide conceptual information benefiting start-up procedures for full-scale granular-sludge reactors. PMID:20851963
Quantitative optical coherence microscopy for the in situ investigation of the biofilm
NASA Astrophysics Data System (ADS)
Meleppat, Ratheesh Kumar; Shearwood, Christopher; Keey, Seah Leong; Matham, Murukeshan Vadakke
2016-12-01
This paper explores the potential of optical coherence microscopy (OCM) for the in situ monitoring of biofilm growth. The quantitative imaging of the early developmental biology of a representative biofilm, Klebsiella pneumonia (KP-1), was performed using a swept source-based Fourier domain OCM system. The growth dynamics of the KP-1 biofilms and their transient response under perturbation was investigated using the enface visualization of microcolonies and their spatial localization. Furthermore, the optical density (OD) and planar density of the biofilms are calculated using an OCM technique and compared with OD and colony forming units measured using standard procedures via the sampling of the flow-cell effluent.
Chamber for Growing and Observing Fungi
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Molina, Thomas C.
2005-01-01
A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.
Satti, L; Abbasi, S; Faiz, U
2012-07-01
We evaluated nutrient agar using the microcolony detection method for the recovery of Mycobacterium tuberculosis on 37 acid-fast bacilli (AFB) positive sputum specimens, and compared it with conventional Löwenstein-Jensen (LJ) medium. Nutrient agar detected 35 isolates compared to 34 on LJ medium. The mean time to detection of mycobacteria on nutrient agar and LJ medium was respectively 9.6 and 21.4 days. The contamination rate on nutrient agar and LJ medium was respectively 5.4% and 2.7%. Nutrient agar detects M. tuberculosis more rapidly than LJ medium, and could be an economical, rapid culture method in resource-poor settings, provided our findings are confirmed by further studies.
Abedon, Stephen T.
2012-01-01
The ability of bacteria to survive and propagate can be dramatically reduced upon exposure to lytic bacteriophages. Study of this impact, from a bacterium’s perspective, tends to focus on phage-bacterial interactions that are governed by mass action, such as can be observed within continuous flow or similarly planktonic ecosystems. Alternatively, bacterial molecular properties can be examined, such as specific phage‑resistance adaptations. In this study I address instead how limitations on bacterial movement, resulting in the formation of cellular arrangements, microcolonies, or biofilms, could increase the vulnerability of bacteria to phages. Principally: (1) Physically associated clonal groupings of bacteria can represent larger targets for phage adsorption than individual bacteria; and (2), due to a combination of proximity and similar phage susceptibility, individual bacteria should be especially vulnerable to phages infecting within the same clonal, bacterial grouping. Consistent with particle transport theory—the physics of movement within fluids—these considerations are suggestive that formation into arrangements, microcolonies, or biofilms could be either less profitable to bacteria when phage predation pressure is high or require more effective phage-resistance mechanisms than seen among bacteria not living within clonal clusters. I consider these ideas of bacterial ‘spatial vulnerability’ in part within a phage therapy context. PMID:22754643
Rao, Dhana; Webb, Jeremy S; Kjelleberg, Staffan
2005-04-01
Pseudoalteromonas tunicata is a biofilm-forming marine bacterium that is often found in association with the surface of eukaryotic organisms. It produces a range of extracellular inhibitory compounds, including an antibacterial protein (AlpP) thought to be beneficial for P. tunicata during competition for space and nutrients on surfaces. As part of our studies on the interactions between P. tunicata and the epiphytic bacterial community on the marine plant Ulva lactuca, we investigated the hypothesis that P. tunicata is a superior competitor compared with other bacteria isolated from the plant. A number of U. lactuca bacterial isolates were (i) identified by 16S rRNA gene sequencing, (ii) characterized for the production of or sensitivity to extracellular antibacterial proteins, and (iii) labeled with a fluorescent color tag (either the red fluorescent protein DsRed or green fluorescent protein). We then grew single- and mixed-species bacterial biofilms containing P. tunicata in glass flow cell reactors. In pure culture, all the marine isolates formed biofilms containing microcolony structures within 72 h. However, in mixed-species biofilms, P. tunicata removed the competing strain unless its competitor was relatively insensitive to AlpP (Pseudoalteromonas gracilis) or produced strong inhibitory activity against P. tunicata (Roseobacter gallaeciensis). Moreover, biofilm studies conducted with an AlpP- mutant of P. tunicata indicated that the mutant was less competitive when it was introduced into preestablished biofilms, suggesting that AlpP has a role during competitive biofilm formation. When single-species biofilms were allowed to form microcolonies before the introduction of a competitor, these microcolonies coexisted with P. tunicata for extended periods of time before they were removed. Two marine bacteria (R. gallaeciensis and P. tunicata) were superior competitors in this study. Our data suggest that this dominance can be attributed to the ability of these organisms to rapidly form microcolonies and their ability to produce extracellular antibacterial compounds.
Rao, Dhana; Webb, Jeremy S.; Kjelleberg, Staffan
2005-01-01
Pseudoalteromonas tunicata is a biofilm-forming marine bacterium that is often found in association with the surface of eukaryotic organisms. It produces a range of extracellular inhibitory compounds, including an antibacterial protein (AlpP) thought to be beneficial for P. tunicata during competition for space and nutrients on surfaces. As part of our studies on the interactions between P. tunicata and the epiphytic bacterial community on the marine plant Ulva lactuca, we investigated the hypothesis that P. tunicata is a superior competitor compared with other bacteria isolated from the plant. A number of U. lactuca bacterial isolates were (i) identified by 16S rRNA gene sequencing, (ii) characterized for the production of or sensitivity to extracellular antibacterial proteins, and (iii) labeled with a fluorescent color tag (either the red fluorescent protein DsRed or green fluorescent protein). We then grew single- and mixed-species bacterial biofilms containing P. tunicata in glass flow cell reactors. In pure culture, all the marine isolates formed biofilms containing microcolony structures within 72 h. However, in mixed-species biofilms, P. tunicata removed the competing strain unless its competitor was relatively insensitive to AlpP (Pseudoalteromonas gracilis) or produced strong inhibitory activity against P. tunicata (Roseobacter gallaeciensis). Moreover, biofilm studies conducted with an AlpP− mutant of P. tunicata indicated that the mutant was less competitive when it was introduced into preestablished biofilms, suggesting that AlpP has a role during competitive biofilm formation. When single-species biofilms were allowed to form microcolonies before the introduction of a competitor, these microcolonies coexisted with P. tunicata for extended periods of time before they were removed. Two marine bacteria (R. gallaeciensis and P. tunicata) were superior competitors in this study. Our data suggest that this dominance can be attributed to the ability of these organisms to rapidly form microcolonies and their ability to produce extracellular antibacterial compounds. PMID:15811995
NASA Astrophysics Data System (ADS)
Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily
2017-01-01
Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.
Kreft, Jan-Ulrich
2004-08-01
The origin of altruism is a fundamental problem in evolution, and the maintenance of biodiversity is a fundamental problem in ecology. These two problems combine with the fundamental microbiological question of whether it is always advantageous for a unicellular organism to grow as fast as possible. The common basis for these three themes is a trade-off between growth rate and growth yield, which in turn is based on irreversible thermodynamics. The trade-off creates an evolutionary alternative between two strategies: high growth yield at low growth rate versus high growth rate at low growth yield. High growth yield at low growth rate is a case of an altruistic strategy because it increases the fitness of the group by using resources economically at the cost of decreased fitness, or growth rate, of the individual. The group-beneficial behaviour is advantageous in the long term, whereas the high growth rate strategy is advantageous in the short term. Coexistence of species requires differences between their niches, and niche space is typically divided into four 'axes' (time, space, resources, predators). This neglects survival strategies based on cooperation, which extend the possibilities of coexistence, arguing for the inclusion of cooperation as the fifth 'axis'. Here, individual-based model simulations show that spatial structure, as in, for example, biofilms, is necessary for the origin and maintenance of this 'primitive' altruistic strategy and that the common belief that growth rate but not yield decides the outcome of competition is based on chemostat models and experiments. This evolutionary perspective on life in biofilms can explain long-known biofilm characteristics, such as the structural organization into microcolonies, the often-observed lack of mixing among microcolonies, and the shedding of single cells, as promoting the origin and maintenance of the altruistic strategy. Whereas biofilms enrich altruists, enrichment cultures, microbiology's paradigm for isolating bacteria into pure culture, select for highest growth rate.
Xiao, Jin; Hara, Anderson T; Kim, Dongyeop; Zero, Domenick T; Koo, Hyun; Hwang, Geelsu
2017-01-01
To investigate how the biofilm three-dimensional (3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters (microcolonies). Acidic regions (pH<5.5) were found only in the interior of microcolonies, which impedes rapid neutralization (taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization (white spots), rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions (white spot like) on teeth. PMID:28452377
Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D
2017-03-01
The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.
Gomoiu, Ioana; Chatzitheodoridis, Elias; Vadrucci, Sonia; Walther, Isabelle
2013-01-01
The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS) and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions. PMID:23637980
Fungi and bacteria involved in desert varnish formation
NASA Technical Reports Server (NTRS)
Taylor-George, S.; Palmer, F.; Staley, J. T.; Curtiss, B.; Adams, J. B.; Borns, D. J.
1983-01-01
Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.
CYTOPATHIC EFFECT OF THE ATYPICAL PNEUMONIA ORGANISM IN CULTURES OF HUMAN TISSUE
Eaton, Monroe D.; Farnham, Ann E.; Levinthal, Jeana D.; Scala, Anthony R.
1962-01-01
Eaton, Monroe D. (Harvard Medical School, Boston, Mass.), Ann E. Farnham, Jeana D. Levinthal, and Anthony R. Scala. Cytopathic effect of the atypical pneumonia organism in cultures of human tissue. J. Bacteriol. 84:1330–1337. 1962.—Three strains of the atypical pneumonia agent were adapted to grow in continuous cell cultures of human amnion or human embryonic lung, with production of initial increased acidity followed by destruction of the cells. Evidence is presented that cytopathic effects of the organism were associated with intracellular growth and formation of microcolonies. Clumps of organisms stained specifically with fluorescein-labeled antibody, and showed distinctive tinctorial reactions with the May Grünwald-Giemsa stain. The cytopathic effect was prevented by fresh serum from a rabbit immunized with an egg-passage strain of the atypical pneumonia agent. Heating the immune serum to 56 C for 30 min abolished the neutralizing effect. The significance of heat-labile serum constituents in killing or inhibition of mycoplasma is discussed. Images PMID:16561984
Age-Dependent Enterocyte Invasion and Microcolony Formation by Salmonella
Zhang, Kaiyi; Dupont, Aline; Torow, Natalia; Gohde, Fredrik; Leschner, Sara; Lienenklaus, Stefan; Weiss, Siegfried; Brinkmann, Melanie M.; Kühnel, Mark; Hensel, Michael; Fulde, Marcus; Hornef, Mathias W.
2014-01-01
The coordinated action of a variety of virulence factors allows Salmonella enterica to invade epithelial cells and penetrate the mucosal barrier. The influence of the age-dependent maturation of the mucosal barrier for microbial pathogenesis has not been investigated. Here, we analyzed Salmonella infection of neonate mice after oral administration. In contrast to the situation in adult animals, we observed spontaneous colonization, massive invasion of enteroabsorptive cells, intraepithelial proliferation and the formation of large intraepithelial microcolonies. Mucosal translocation was dependent on enterocyte invasion in neonates in the absence of microfold (M) cells. It further resulted in potent innate immune stimulation in the absence of pronounced neutrophil-dominated pathology. Our results identify factors of age-dependent host susceptibility and provide important insight in the early steps of Salmonella infection in vivo. We also present a new small animal model amenable to genetic manipulation of the host for the analysis of the Salmonella enterocyte interaction in vivo. PMID:25210785
Torres, Alfredo G.; Giron, Jorge A.; Perna, Nicole T.; Burland, Valerie; Blattner, Fred R.; Avelino-Flores, Fabiola; Kaper, James B.
2002-01-01
The mechanisms underlying the adherence of Escherichia coli O157:H7 and other enterohemorrhagic E. coli (EHEC) strains to intestinal epithelial cells are poorly understood. We have identified a chromosomal region (designated lpfABCC′DE) in EHEC O157:H7 containing six putative open reading frames that was found to be closely related to the long polar (LP) fimbria operon (lpf) of Salmonella enterica serovar Typhimurium, both in gene order and in conservation of the deduced amino acid sequences. We show that lpfABCC′DE is organized as an operon and that its expression is induced during the exponential growth phase. The lpf genes from EHEC strain EDL933 were introduced into a nonfimbriated (Fim−) E. coli K-12 strain, and the transformed strain produced fimbriae as visualized by electron microscopy and adhered to tissue culture cells. Anti-LpfA antiserum recognized a ca. 16-kDa LpfA protein when expressed under regulation of the T7 promoter system. The antiserum also cross-reacted with the LP fimbriae in immunogold electron microscopy and Western blot experiments. Isogenic E. coli O157:H7 lpf mutants derived from strains 86-24 and AGT300 showed slight reductions in adherence to tissue culture cells and formed fewer microcolonies compared with their wild-type parent strains. The adherence and microcolony formation phenotypes were restored when the lpf operon was introduced on a plasmid. We propose that LP fimbriae participate in the interaction of E. coli O157:H7 with eukaryotic cells by assisting in microcolony formation. PMID:12228266
Laycock, Ian; Cotterell, Katie C; O'Shea-Wheller, Thomas A; Cresswell, James E
2014-02-01
Neonicotinoid pesticides are currently implicated in the decline of wild bee populations. Bumble bees, Bombus spp., are important wild pollinators that are detrimentally affected by ingestion of neonicotinoid residues. To date, imidacloprid has been the major focus of study into the effects of neonicotinoids on bumble bee health, but wild populations are increasingly exposed to alternative neonicotinoids such as thiamethoxam. To investigate whether environmentally realistic levels of thiamethoxam affect bumble bee performance over a realistic exposure period, we exposed queenless microcolonies of Bombus terrestris L. workers to a wide range of dosages up to 98 μgkg(-1) in dietary syrup for 17 days. Results showed that bumble bee workers survived fewer days when presented with syrup dosed at 98 μg thiamethoxamkg(-1), while production of brood (eggs and larvae) and consumption of syrup and pollen in microcolonies were significantly reduced by thiamethoxam only at the two highest concentrations (39, 98 μgkg(-1)). In contrast, we found no detectable effect of thiamethoxam at levels typically found in the nectars of treated crops (between 1 and 11 μgkg(-1)). By comparison with published data, we demonstrate that during an exposure to field-realistic concentrations lasting approximately two weeks, brood production in worker bumble bees is more sensitive to imidacloprid than thiamethoxam. We speculate that differential sensitivity arises because imidacloprid produces a stronger repression of feeding in bumble bees than thiamethoxam, which imposes a greater nutrient limitation on production of brood. © 2013 Published by Elsevier Inc.
Ralstonia insidiosa induces cell aggregation by Listeria monocytogenes
USDA-ARS?s Scientific Manuscript database
Biofilm formation is an important strategy for foodborne bacterial pathogens to survive in stressful environments such as fresh produce processing facilities. Bacterial cell aggregation strongly promotes the initiation of microcolonies and the formation of biofilms on abiological surfaces. We previ...
Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix
Ma, Luyan; Conover, Matthew; Lu, Haiping; Parsek, Matthew R.; Bayles, Kenneth; Wozniak, Daniel J.
2009-01-01
Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications. PMID:19325879
Assembly and development of the Pseudomonas aeruginosa biofilm matrix.
Ma, Luyan; Conover, Matthew; Lu, Haiping; Parsek, Matthew R; Bayles, Kenneth; Wozniak, Daniel J
2009-03-01
Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.
NASA Astrophysics Data System (ADS)
Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.
2014-09-01
We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...
2016-11-16
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
USDA-ARS?s Scientific Manuscript database
An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...
USDA-ARS?s Scientific Manuscript database
Optical method with hyperspectral microscope imaging (HMI) has potential for identification of foodborne pathogenic bacteria from microcolonies rapidly with a cell level. A HMI system that provides both spatial and spectral information could be an effective tool for analyzing spectral characteristic...
Janowicz, Diane M; Cooney, Sean A; Walsh, Jessica; Baker, Beth; Katz, Barry P; Fortney, Kate R; Zwickl, Beth W; Ellinger, Sheila; Munson, Robert S
2011-09-22
Haemophilus ducreyi, the causative agent of the sexually transmitted disease chancroid, contains a flp (fimbria like protein) operon that encodes proteins predicted to contribute to adherence and pathogenesis. H. ducreyi mutants that lack expression of Flp1 and Flp2 or TadA, which has homology to NTPases of type IV secretion systems, have decreased abilities to attach to and form microcolonies on human foreskin fibroblasts (HFF). A tadA mutant is attenuated in its ability to cause disease in human volunteers and in the temperature dependent rabbit model, but a flp1flp2 mutant is virulent in rabbits. Whether a flp deletion mutant would cause disease in humans is not clear. We constructed 35000HPΔflp1-3, a deletion mutant that lacks expression of all three Flp proteins but has an intact tad secretion system. 35000HPΔflp1-3 was impaired in its ability to form microcolonies and to attach to HFF in vitro when compared to its parent (35000HP). Complementation of the mutant with flp1-3 in trans restored the parental phenotype. To test whether expression of Flp1-3 was necessary for virulence in humans, ten healthy adult volunteers were experimentally infected with a fixed dose of 35000HP (ranging from 54 to 67 CFU) on one arm and three doses of 35000HPΔflp1-3 (ranging from 63 to 961 CFU) on the other arm. The overall papule formation rate for the parent was 80% (95% confidence interval, CI, 55.2%-99.9%) and for the mutant was 70.0% (95% CI, 50.5%-89.5%) (P = 0.52). Mutant papules were significantly smaller (mean, 11.2 mm2) than were parent papules (21.8 mm2) 24 h after inoculation (P = 0.018). The overall pustule formation rates were 46.7% (95% CI 23.7-69.7%) at 30 parent sites and 6.7% (95% CI, 0.1-19.1%) at 30 mutant sites (P = 0.001). These data suggest that production and secretion of the Flp proteins contributes to microcolony formation and attachment to HFF cells in vitro. Expression of flp1-3 is also necessary for H. ducreyi to initiate disease and progress to pustule formation in humans. Future studies will focus on how Flp proteins contribute to microcolony formation and attachment in vivo. © 2011 Janowicz et al; licensee BioMed Central Ltd.
NASA Astrophysics Data System (ADS)
Bisht, Konark; Klumpp, Stefan; Banerjee, Varsha; Marathe, Rahul
2017-11-01
A human pathogen, Neisseria gonorrhoeae (NG), moves on surfaces by attaching and retracting polymeric structures called Type IV pili. The tug-of-war between the pili results in a two-dimensional stochastic motion called twitching motility. In this paper, with the help of real-time NG trajectories, we develop coarse-grained models for their description. The fractal properties of these trajectories are determined and their influence on first passage time and formation of bacterial microcolonies is studied. Our main observations are as follows: (i) NG performs a fast ballistic walk on small time scales and a slow diffusive walk over long time scales with a long crossover region; (ii) there exists a characteristic persistent length lp*, which yields the fastest growth of bacterial aggregates or biofilms. Our simulations reveal that lp*˜L0.6 , where L ×L is the surface on which the bacteria move; (iii) the morphologies have distinct fractal characteristics as a consequence of the ballistic and diffusive motion of the constituting bacteria.
Microcolonial fungi: survival potential of terrestrial vegetative structures.
Gorbushina, Anna
2003-01-01
So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.
Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M
2018-01-12
Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are respectively regulated by the 3D morphology and the population of micro-colonies. Copyright © 2018 American Society for Microbiology.
How Does Pollen Chemistry Impact Development and Feeding Behaviour of Polylectic Bees?
Rasmont, Pierre; Lognay, Georges; Wathelet, Bernard; Wattiez, Ruddy; Michez, Denis
2014-01-01
Larvae and imagos of bees rely exclusively on floral rewards as a food source but host-plant range can vary greatly among bee species. While oligolectic species forage on pollen from a single family of host plants, polylectic bees, such as bumblebees, collect pollen from many families of plants. These polylectic species contend with interspecific variability in essential nutrients of their host-plants but we have only a limited understanding of the way in which chemicals and chemical combinations influence bee development and feeding behaviour. In this paper, we investigated five different pollen diets (Calluna vulgaris, Cistus sp., Cytisus scoparius, Salix caprea and Sorbus aucuparia) to determine how their chemical content affected bumblebee colony development and pollen/syrup collection. Three compounds were used to characterise pollen content: polypeptides, amino acids and sterols. Several parameters were used to determine the impact of diet on micro-colonies: (i) Number and weight of larvae (total and mean weight of larvae), (ii) weight of pollen collected, (iii) pollen efficacy (total weight of larvae divided by weight of the pollen collected) and (iv) syrup collection. Our results show that pollen collection is similar regardless of chemical variation in pollen diet while syrup collection is variable. Micro-colonies fed on S. aucuparia and C. scoparius pollen produced larger larvae (i.e. better mates and winter survivors) and fed less on nectar compared to the other diets. Pollen from both of these species contains 24-methylenecholesterol and high concentrations of polypeptides/total amino acids. This pollen nutritional “theme” seems therefore to promote worker reproduction in B. terrestris micro-colonies and could be linked to high fitness for queenright colonies. As workers are able to selectively forage on pollen of high chemical quality, plants may be evolutionarily selected for their pollen content, which might attract and increase the degree of fidelity of generalist pollinators, such as bumblebees. PMID:24465963
Encapsulated Bacillus anthracis interacts closely with liver endothelium.
Piris-Gimenez, Alejandro; Corre, Jean-Philippe; Jouvion, Gregory; Candela, Thomas; Khun, Huot; Goossens, Pierre L
2009-11-01
The Bacillus anthracis poly-gamma-D-glutamate capsule is essential for virulence. It impedes phagocytosis and protects bacilli from the immune system, thus promoting systemic dissemination. To further define the virulence mechanisms brought into play by the capsule, we characterized the interactions between encapsulated nontoxinogenic B. anthracis and its host in vivo through histological analysis, perfusion, and competition experiments with purified capsule. Clearance of encapsulated bacilli from the blood was rapid (>90% clearance within 5 min), with 75% of the bacteria being trapped in the liver. Competition experiments with purified capsule polyglutamate inhibited this interaction. At the septicemic phase of cutaneous infection with spores, the encapsulated bacilli were trapped in the vascular spaces of the liver and interacted closely with the liver endothelium in the sinusoids and terminal and portal veins. They often grow as microcolonies containing capsular material shed by the bacteria. We show that, in addition to its inhibitory effect on the interaction with the immune system, the capsule surrounding B. anthracis plays an active role in mediating the trapping of the bacteria within the liver and may thus contribute to anthrax pathogenesis. Because other microorganisms produce polyglutamate, it may also represent a general mechanism of virulence or in vivo survival.
Assessment of dental plaque by optoelectronic methods
NASA Astrophysics Data System (ADS)
Negrutiu, Meda-Lavinia; Sinescu, Cosmin; Bortun, Cristina Maria; Levai, Mihaela-Codrina; Topala, Florin Ionel; Crǎciunescu, Emanuela Lidia; Cojocariu, Andreea Codruta; Duma, Virgil Florin; Podoleanu, Adrian Gh.
2016-03-01
The formation of dental biofilm follows specific mechanisms of initial colonization on the surface, microcolony formation, development of organized three dimensional community structures, and detachment from the surface. The structure of the plaque biofilm might restrict the penetration of antimicrobial agents, while bacteria on a surface grow slowly and display a novel phenotype; the consequence of the latter is a reduced sensitivity to inhibitors. The aim of this study was to evaluate with different optoelectronic methods the morphological characteristics of the dental biofilm. The study was performed on samples from 25 patients aged between 18 and 35 years. The methods used in this study were Spectral Domain Optical Coherence Tomography (SD-OCT) working at 870 nm for in vivo evaluations and Scanning Electron Microscopy (SEM) for validations. For each patient a sample of dental biofilm was obtained directly from the vestibular surface of the teeth's. SD-OCT produced C- and B-scans that were used to generate three dimensional (3D) reconstructions of the sample. The results were compared with SEM evaluations. The biofilm network was dramatically destroyed after the professional dental cleaning. OCT noninvasive methods can act as a valuable tool for the 3D characterization of dental biofilms.
Bacterial Colony from Two-Dimensional Division to Three-Dimensional Development
Su, Pin-Tzu; Liao, Chih-Tang; Roan, Jiunn-Ren; Wang, Shao-Hung; Chiou, Arthur; Syu, Wan-Jr
2012-01-01
On agar surface, bacterial daughter cells form a 4-cell array after the first two rounds of division, and this phenomenon has been previously attributed to a balancing of interactions among the daughter bacteria and the underneath agar. We studied further the organization and development of colony after additional generations. By confocal laser scanning microscopy and real-time imaging, we observed that bacterial cells were able to self-organize and resulted in a near circular micro-colony consisting of monolayer cells. After continuous dividing, bacteria transited from two-dimensional expansion into three-dimensional growth and formed two to multi-layers in the center but retained a monolayer in the outer ring of the circular colony. The transverse width of this outer ring appeared to be approximately constant once the micro-colony reached a certain age. This observation supports the notion that balanced interplays of the forces involved lead to a gross morphology as the bacteria divide into offspring on agar surface. In this case, the result is due to a balance between the expansion force of the dividing bacteria, the non-covalent force among bacterial offspring and that between bacteria and substratum. PMID:23155376
Plant regeneration from cell suspension-derived protoplasts of Phalaenopsis.
Shrestha, B R; Tokuhara, K; Mii, M
2007-06-01
Protoplasts isolated from cell suspension culture of Phalaenopsis "Wataboushi" were cultured by (a) embedding in gellan gum-solidified hormone-free 1/2 New Dogashima medium (1/2 NDM) containing 0.44 M sorbitol, 0.06 M sucrose and 0.1 g/l L-glutamine (standard method) and (b) beads method using beads of gellan gum or sodium alginate as the gelling agents which were surrounded by liquid NDM. Although, the two beads methods gave less frequency of initial protoplast division than the standard method, the former finally resulted in higher frequency of microcolony formation than the latter. The highest frequency of microcolony formation (23%) was obtained when protoplasts were embedded in 1% Ca-alginate beads and subcultured every two weeks by replacing the surrounding liquid culture medium with a decrease in sorbitol concentration by 0.1 M. Colonies visible to the naked eyes were observed within 2 months of culture and the regenerated calluses were transferred onto hormone-free NDM supplemented with 10 g/l maltose and 0.3% (w/v) gellan gum, on which PLBs were formed and proliferated profusely. The PLBs were regenerated into plantlets after changing the carbon source to 10 g/l sorbitol and successfully acclimatized to greenhouse conditions.
Maeda, Yoshiaki; Dobashi, Hironori; Sugiyama, Yui; Saeki, Tatsuya; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Yoshino, Tomoko
2017-01-01
Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10–500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas. PMID:28369067
Nguyen, Minh Hong; Ojima, Yoshihiro; Sakka, Makiko; Sakka, Kazuo; Taya, Masahito
2014-10-01
Polysaccharides are major structural constituents to develop the three-dimensional architecture of Escherichia coli biofilms. In this study, confocal laser scanning microscopy was applied in combination with a fluorescent probe to analyze the location and arrangement of exopolysaccharide (EPSh) in microcolonies of E. coli K-12 derived strains, formed as biofilms on solid surfaces and flocs in the liquid phase. For this purpose, a novel fluorescent probe was constructed by conjugating a carbohydrate-binding module 3, from Paenibacillus curdlanolyticus, with the green fluorescence protein (GFP-CBM3). The GFP-CBM3 fused protein exhibited strong affinity to microcrystalline cellulose. Moreover, GFP-CBM3 specifically bound to cell-dense microcolonies in the E. coli biofilms, and to their flocs induced by bcsB overexpression. Therefore, the fused protein presents as a novel marker for EPSh produced by E. coli cells. Overexpression of bcsB was associated with abundant EPSh production and enhanced E. coli biofilm formation, which was similarly detectable by GFP-CBM3 probing. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Dichosa, Armand E. K.; Davenport, Karen W.; Li, Po-E; ...
2015-03-19
In this study, we report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species.
NASA Astrophysics Data System (ADS)
Huang, Qing; Zhou, Qing-bo; Zhang, Li
2009-07-01
China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.
Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.
Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi
2017-12-21
High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.
Biofilm formation enhances Helicobacter pylori survivability in vegetables.
Ng, Chow Goon; Loke, Mun Fai; Goh, Khean Lee; Vadivelu, Jamuna; Ho, Bow
2017-04-01
To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Autoradiographic assay of mutants resistant to diphtheria toxin in mammalian cells in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronen, A.; Gingerich, J.D.; Duncan, A.M.V.
1984-10-01
Diptheria toxin kills mammalian cells by ribosylating elongation factor 2, a protein factor necessary for protein synthesis. The frequency of cells able to form colonies in the presence of the toxin can be used as an assay for mutation to diphtheria toxin resistance. Resistance to diphtheria toxin can also be detected autoradiographically in cells exposed to (/sup 3/H)leucine after treatment with the toxin. In cultures of Chinese hamster ovary cells, the frequency of such resistant cells is increased by exposure of the cells to ..gamma..-rays, ultraviolet light, ethylnitrosourea, mitomycin c, ethidium bromide, and 5-bromo-2'-deoxyuridine in a dose- and time-dependent manner.more » The resistant cells form discrete microcolonies if they are allowed to divide several times before intoxication which indicates that they are genuine mutants. The assay is potentially adaptable to any cell population that can be intoxicated with diphtheria toxin and labeled with (/sup 3/H)leucine, whether or not the cells can form colonies. It may be useful, therefore, for measuring mutation rates in slowly growing or nondividing cell populations such as breast, brain, and liver, as well as in cells that do divide but cannot be readily cloned, such as the colonic epithelium. 23 references, 6 figures.« less
The value of cultures to modern microbiology.
Austin, Brian
2017-10-01
Since the late nineteenth century, pure cultures have been regarded as the cornerstone of bacteriology. However, not all bacteria will multiply sufficiently to produce visible colonies on solid media; some cells will produce micro-colonies that are invisible to the naked eye. Moreover, the proportion of culturable cells that produce visible growth will vary according to the species and the state of the cells-are they actively growing or comparatively inactive? The latter have a poorer rate of recovery in terms of cultivability. It is unclear whether or not an individual colony is always derived from a single cell; it is possible that organisms in close proximity to each other may multiply and come together to produce single colonies. Then, the resultant growth will most certainly be derived from more than one initial cell. Although it is generally assumed that streaking and re-streaking on fresh media will purify any culture, there is evidence for microbial consortia interacting to form what appear to be single pure cultures. As so-called pure cultures underpin traditional microbiology, it is relevant to understand that the culture does not necessarily contain clones of identical bacteria, but that there may be variation in the genetic potential of the component cells, i.e. the cells are not homogeneous. Certainly, many bacteria change rapidly upon culturing, with some becoming bigger and less active. It is difficult to be sure if these changes reflect a loss or change of DNA or whether standard culturing methods select faster growing cells that are effectively not representative of the environment from which they were derived. These concepts are reviewed with an emphasis on bacterial fish pathogens.
Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.
Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan
2014-08-05
Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical and industrial settings. One of the defining features of a biofilm is its extracellular matrix. The matrix has a heterogeneous structure and is formed from a secretion of various biopolymers, including proteins, extracellular DNA, and polysaccharides. It is generally known to interact with biofilm cells, thus affecting cell physiology and cell-cell communication. Despite the fact that the matrix may comprise up to 90% of the biofilm dry weight, how the matrix properties affect biofilm structure, maturation, and interspecies interactions remain largely unexplored. This study reveals that bacteria can use specific extracellular polymers to modulate the physical properties of their microenvironment. This in turn impacts biofilm structure, differentiation, and interspecies interactions. Copyright © 2014 Chew et al.
Fay, J P; Cheng, K J; Hanna, M R; Howarth, R E; Costerton, J W
1981-04-01
A newly developed technique using ruthenium red to detect foci of bacterial digestion in mounts of whole leaflets that had been incubated with rumen bacteria was used to compare the digestion of alfalfa, a bloat-causing legume, and sainfoin, a bloat-safe legume. When whole leaflets were suspended in an artificial rumen medium and inoculated with rumen bacteria, massive bacterial adhesion and proliferation were noted at the stomata of alfalfa leaflets after 6 h of incubation, whereas only a few isolated bacteria adhered near the stomata of sainfoin leaflets After 22 h of incubation, the epidermal layers of alfalfa leaflets had peeled away in many areas, revealing an extensive bacterial invasion of the underlying mesophyll tissue in which large bacterial microcolonies had formed in intercellular spaces, and in intracellular spaces in several areas where plant cell walls had broken down. After 22 h of incubation, the surface of sainfoin leaflets resembled that of alfalfa leaflets at 6 h, with bacterial microcolonies adhering to the area surrounding the stomata, but without sloughing of the epidermis. Uninoculated control leaflets of both species showed no surface alteration but part of their normal bacterial flora had proliferated to form microcolonies on the surface after 22 h incubation. Dry matter loss due to leaching or bacterial digestion when whole leaflets of legumes were suspended in an artificial rumen medium, alone or with rumen bacteria, was significantly higher in the bloat-causing group. Values of leaching and of bacterial digestion were positively correlated. We conclude that reported differences in plant anatomy, and in cell wall chemistry, produce distinct rates or organic nutrient release from legume leaflets, and that these same differences produce an equally distinct susceptibility of leaflets to bacterial invasion, plant cell rupture, and the consequent release of intracellular plant components. The rate of release of organic nutrients from legume leaflets may be important in the etiology of foamy pasture bloat. This technique of in vitro digestion of whole leaflets followed by ruthenium red staining shows some promise of providing a rapid and qualitative test to distinguish, within a species, cultivars that may differ in their bloat-related characteristics.
Hansen, Gorm Mørk; Belstrøm, Daniel; Nilsson, Martin; Helqvist, Steffen; Nielsen, Claus Henrik; Holmstrup, Palle; Tolker-Nielsen, Tim; Givskov, Michael; Hansen, Peter Riis
2016-01-01
Chronic infection is associated with an increased risk of atherothrombotic disease and direct bacterial infection of arteries has been suggested to contribute to the development of unstable atherosclerotic plaques. In this study, we examined coronary thrombi obtained in vivo from patients with ST-segment elevation myocardial infarction (STEMI) for the presence of bacterial DNA and bacteria. Aspirated coronary thrombi from 22 patients with STEMI were collected during primary percutaneous coronary intervention and arterial blood control samples were drawn from radial or femoral artery sheaths. Analyses were performed using 16S polymerase chain reaction and with next-generation sequencing to determine bacterial taxonomic classification. In selected thrombi with the highest relative abundance of Pseudomonas aeruginosa DNA, peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) with universal and species specific probes was performed to visualize bacteria within thrombi. From the taxonomic analysis we identified a total of 55 different bacterial species. DNA from Pseudomonas aeruginosa represented the only species that was significantly associated with either thrombi or blood and was >30 times more abundant in thrombi than in arterial blood (p<0.0001). Whole and intact bacteria present as biofilm microcolonies were detected in selected thrombi using universal and P. aeruginosa-specific PNA-FISH probes. P. aeruginosa and vascular biofilm infection in culprit lesions may play a role in STEMI, but causal relationships remain to be determined. PMID:28030624
Saraswathi, Padmanabhan; Beuerman, Roger W
2015-10-01
Microbial biofilms commonly comprise part of the infectious scenario, complicating the therapeutic approach. The purpose of this study was to determine in a mouse model of corneal infection if mature biofilms formed and to visualize the stages of biofilm formation. A bacterial keratitis model was established using Pseudomonas aeruginosa ATCC 9027 (1 × 10(8) CFU/ml) to infect the cornea of C57BL/6 black mouse. Eyes were examined post-infection (PI) on days 1, 2, 3, 5, and 7, and imaged by slit lamp microscopy, and light, confocal, and electron microscopy to identify the stages of biofilm formation and the time of appearance. On PI day 1, Gram staining showed rod-shaped bacteria adherent on the corneal surface. On PI days 2 and 3, bacteria were seen within webs of extracellular polymeric substance (EPS) and glycocalyx secretion, imaged by confocal microscopy. Scanning electron microscopy demonstrated microcolonies of active infectious cells bound with thick fibrous material. Transmission electron microscopy substantiated the formation of classical biofilm architecture with P. aeruginosa densely packed within the extracellular polymeric substances on PI days 5 and 7. Direct visual evidence showed that biofilms routinely developed on the biotic surface of the mouse cornea. The mouse model can be used to develop new approaches to deal therapeutically with biofilms in corneal infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kinetic development of biofilm on NF membranes at the Méry-sur-Oise plant, France.
Houari, Ahmed; Seyer, Damien; Kecili, Karima; Heim, Véronique; Martino, Patrick Di
2013-01-01
The kinetic formation of biofilms developing on nanofiltration (NF) membranes was studied for 2 years in the water production unit of Méry-sur-Oise, France. New membranes were set up in a pilot train integrated to the plant and autopsied after operation for 7, 80, 475 and 717 days. The biofouling layer was studied by confocal laser scanning microscope after 4',6-diamidino-2-phenyindole dihydrochloride and lectin staining, and by attenuated total reflectance-Fourier transform infrared spectroscopy and rheology experiments. Three stages of biofilm growth were discriminated: (1) the presence of sessile microcolonies embedded in an exopolymeric matrix (after filtration for seven days); (2) membrane coverage expansion through microcolony development and biofilm growth in three dimensions (up to 80 days filtration); and (3) biofilm maturation by densification (after filtration for 80-717 days). Biofilm maturation resulted in total coverage of the membrane surface and matrix residue diversification, development of the polysaccharide network, and the strengthening of matrix cohesion through viscosity and elasticity increases. The wettability and permeability of the fouled NF membranes decreased quickly and continuously throughout the biofilm development process. The longitudinal pressure drop (LPD) increased only after the biofilm reached a quantitative threshold. The decline in membrane permeability may be the result of contributions from many fouling mechanisms but the LPD was more substantially influenced by biofilm development.
Gold, Ben; Roberts, Julia; Ling, Yan; Lopez Quezada, Landys; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Nathan, Carl
2016-12-14
There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic.
Zuroff, Trevor R; Gu, Weimin; Fore, Rachel L; Leschine, Susan B; Curtis, Wayne R
2014-06-01
Biofilm formation is a critical component to the lifestyle of many naturally occurring cellulose-degrading microbes. In this work, cellular aggregation and biofilm formation of Clostridium phytofermentans, a cellulolytic anaerobic bacterium, was investigated using a combination of microscopy and analytical techniques. Aggregates included thread-like linkages and a DNA/protein-rich extracellular matrix when grown on soluble cellobiose. Similar dense biofilms formed on the surface of the model cellulosic substrate Whatman no. 1 filter paper. Following initially dispersed attachment, microcolonies of ~500 µm diameter formed on the filter paper after 6 days. Enzymic treatment of both the biofilm and cellular aggregates with DNase and proteinase resulted in significant loss of rigidity, pointing to the key role of extracellular DNA and proteins in the biofilm structure. A high-throughput biofilm assay was adapted for studying potential regulators of biofilm formation. Various media manipulations were shown to greatly impact biofilm formation, including repression in the presence of glucose but not the β(1→4)-linked disaccharide cellobiose, implicating a balance of hydrolytic activity and assimilation to maintain biofilm integrity. Using the microtitre plate biofilm assay, DNase and proteinase dispersed ~60 and 30 % of mature biofilms, respectively, whilst RNase had no impact. This work suggests that Clostridium phytofermentans has evolved a DNA/protein-rich biofilm matrix complementing its cellulolytic nature. These insights add to our current understanding of natural ecosystems as well as strategies for efficient bioprocess design. © 2014 The Authors.
De Jonghe, Roland; Michez, Denis; Vanderplanck, Maryse
2016-01-01
Bumblebees (i.e. Bombus genus) are major pollinators of flowering wild plants and crops. Although many species are currently in decline, a number of them remain stable or are even expanding. One factor potentially driving changes in bumblebee distribution is the suitability of plant communities. Actually, bees probably have specific nutritional requirements that could shape their floral choices and constraint them in the current context of global change. However, most studies primarily focus on one bumblebee species at a time, making comparative studies scarce. Herein we performed comparative bioassays on three bumblebee species (i.e. Bombus hypnorum, B. pratorum and B. terrestris) fed on three different pollen diets with distinct nutritive content (Cistus, Erica and Salix pollen diets). Micro-colony performance was compared through different developmental and resource collection parameters for understanding the impact of change in pollen diet on different bumblebee species. The evidence suggests that B. terrestris is by far the most competitive species because of its performance compared to the other species, regardless of pollen diet. Our results also highlight a Bombus species effect as pollen diet impacts the micro-colonies in different ways according to the actual bumblebee species. Such interspecific variation in Bombus performance in response to a dietetic change underlines the importance of considering different bumblebee species in mitigation strategies. Such comparative studies are good advice for developing appropriate suites of plant species that can benefit threatened species while supporting stable or expanding ones. PMID:28005943
Fungal-Induced Deterioration of Mural Paintings: In Situ and Mock-Model Microscopy Analyses.
Unković, Nikola; Grbić, Milica Ljaljević; Stupar, Miloš; Savković, Željko; Jelikić, Aleksa; Stanojević, Dragan; Vukojević, Jelena
2016-04-01
Fungal deterioration of frescoes was studied in situ on a selected Serbian church, and on a laboratory model, utilizing standard and newly implemented microscopy techniques. Scanning electron microscopy (SEM) with energy-dispersive X-ray confirmed the limestone components of the plaster. Pigments used were identified as carbon black, green earth, iron oxide, ocher, and an ocher/cinnabar mixture. In situ microscopy, applied via a portable microscope ShuttlePix P-400R, proved very useful for detection of invisible micro-impairments and hidden, symptomless, microbial growth. SEM and optical microscopy established that observed deterioration symptoms, predominantly discoloration and pulverization of painted layers, were due to bacterial filaments and fungal hyphal penetration, and formation of a wide range of fungal structures (i.e., melanized hyphae, chlamydospores, microcolonial clusters, Cladosporium-like conidia, and Chaetomium perithecia and ascospores). The all year-round monitoring of spontaneous and induced fungal colonization of a "mock painting" in controlled laboratory conditions confirmed the decisive role of humidity level (70.18±6.91% RH) in efficient colonization of painted surfaces, as well as demonstrated increased bioreceptivity of painted surfaces to fungal colonization when plant-based adhesives (ilinocopie, murdent), compared with organic adhesives of animal origin (bone glue, egg white), are used for pigment sizing.
Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides
Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R. C.; Yang, Liang; Rice, Scott A.; Doyle, Patrick
2014-01-01
ABSTRACT Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. PMID:25096883
Ingham, Colin J; Sprenkels, Ad; Bomer, Johan; Molenaar, Douwe; van den Berg, Albert; van Hylckama Vlieg, Johan E T; de Vos, Willem M
2007-11-13
A miniaturized, disposable microbial culture chip has been fabricated by microengineering a highly porous ceramic sheet with up to one million growth compartments. This versatile culture format, with discrete compartments as small as 7 x 7 mum, allowed the growth of segregated microbial samples at an unprecedented density. The chip has been used for four complementary applications in microbiology. (i) As a fast viable counting system that showed a dynamic range of over 10,000, a low degree of bias, and a high culturing efficiency. (ii) In high-throughput screening, with the recovery of 1 fluorescent microcolony in 10,000. (iii) In screening for an enzyme-based, nondominant phenotype by the targeted recovery of Escherichia coli transformed with the plasmid pUC18, based on expression of the lacZ reporter gene without antibiotic-resistance selection. The ease of rapid, successive changes in the environment of the organisms on the chip, needed for detection of beta-galactosidase activity, highlights an advantageous feature that was also used to screen a metagenomic library for the same activity. (iv) In high-throughput screening of >200,000 isolates from Rhine water based on metabolism of a fluorogenic organophosphate compound, resulting in the recovery of 22 microcolonies with the desired phenotype. These isolates were predicted, on the basis of rRNA sequence, to include six new species. These four applications suggest that the potential for such simple, readily manufactured chips to impact microbial culture is extensive and may facilitate the full automation and multiplexing of microbial culturing, screening, counting, and selection.
Alp, Sehnaz; Sancak, Banu; Hascelik, Gulsen; Arikan, Sevtap
2010-11-01
We investigated the incidence of trailing growth with fluconazole in 101 clinical Candida isolates (49 C. albicans and 52 C. tropicalis) and tried to establish the convenient susceptibility testing method and medium for fluconazole minimum inhibitory concentration (MIC) determination. MICs were determined by CLSI M27-A2 broth microdilution (BMD) and Etest methods on RPMI-1640 agar supplemented with 2% glucose (RPG) and on Mueller-Hinton agar supplemented with 2% glucose and 0.5 μg ml(-1) methylene blue (GMB). BMD and Etest MICs were read at 24 and 48 h, and susceptibility categories were compared. All isolates were determined as susceptible with BMD, Etest-RPG and Etest-GMB at 24 h. While all isolates were interpreted as susceptible at 48 h on Etest-RPG and Etest-GMB, one C. albicans isolate was interpreted as susceptible-dose dependent (S-DD) and two C. tropicalis isolates were interpreted as resistant with BMD. On Etest-RPG, trailing growth caused widespread microcolonies within the inhibition zone and resulted in confusion in MIC determination. On Etest-GMB, because of the nearly absence of microcolonies within the zone of inhibition, MICs were evaluated more easily. We conclude that, for the determination of fluconazole MICs of trailing Candida isolates, the Etest method has an advantage over BMD and can be used along with this reference method. Moreover, GMB appears more beneficial than RPG for the fluconazole Etest. © 2009 Blackwell Verlag GmbH.
Srinandan, Chakravarthy S; Elango, Monalisha; Gnanadhas, Divya P; Chakravortty, Dipshikha
2015-01-01
Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the EPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. EPS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non-producing cells benefit from the EPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non-producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of EPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.
Functional Relationship between Sucrose and a Cariogenic Biofilm Formation
Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu
2016-01-01
Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603
[Biofilm: set-up and organization of a bacterial community].
Filloux, Alain; Vallet, Isabelle
2003-01-01
Bacterial attachment on various surfaces mostly takes place in the form of specialised bacterial communities, referred to as biofilm. The biofilm is formed through series of interactions between cells and adherence to surface, resulting in an organised structure. In this review we have been using Pseudomonas aeruginosa as a model microorganism to describe the series of events that occurred during this developmental process. P. aeruginosa is an opportunistic pathogen that has a wide variety of hosts and infectious sites. In addition to biofilm formation in certain tissues, inert surfaces, such as catheters, are also target for bacterial biofilm development. The use of convenient genetic screens has made possible the identification of numerous biofilm-defective mutants, which have been characterised further. These studies have allowed the proposal for a global model, in which key events are described for the different stages of biofilm formation. Briefly, flagellar mobility is crucial for approaching the surface, whereas type IV pili motility is preponderant for surface colonisation and microcolonies formation. These microcolonies are finally packed together and buried in an exopolysaccharide matrix to form the differentiated bio-film. It is obvious that the different stages of biofilm formation also involved perception of environmental stimuli. These stimuli, and their associated complex regulatory networks, have still to be fully characterised to understand the bacterial strategy, which initiates biofilm formation. One such regulatory system, called Quorum sensing, is one of the key player in the initial differentiation of biofilm. Finally, a better understanding, at the molecular level, of biofilm establishment and persistence should help for the design of antimicrobials that prevent bacterial infections.
García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E
2016-05-05
We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Grünberger, Alexander; Paczia, Nicole; Probst, Christopher; Schendzielorz, Georg; Eggeling, Lothar; Noack, Stephan; Wiechert, Wolfgang; Kohlheyer, Dietrich
2012-05-08
In the continuously growing field of industrial biotechnology the scale-up from lab to industrial scale is still a major hurdle to develop competitive bioprocesses. During scale-up the productivity of single cells might be affected by bioreactor inhomogeneity and population heterogeneity. Currently, these complex interactions are difficult to investigate. In this report, design, fabrication and operation of a disposable picolitre cultivation system is described, in which environmental conditions can be well controlled on a short time scale and bacterial microcolony growth experiments can be observed by time-lapse microscopy. Three exemplary investigations will be discussed emphasizing the applicability and versatility of the device. Growth and analysis of industrially relevant bacteria with single cell resolution (in particular Escherichia coli and Corynebacterium glutamicum) starting from one single mother cell to densely packed cultures is demonstrated. Applying the picolitre bioreactor, 1.5-fold increased growth rates of C. glutamicum wild type cells were observed compared to typical 1 litre lab-scale batch cultivation. Moreover, the device was used to analyse and quantify the morphological changes of an industrially relevant l-lysine producer C. glutamicum after artificially inducing starvation conditions. Instead of a one week lab-scale experiment, only 1 h was sufficient to reveal the same information. Furthermore, time lapse microscopy during 24 h picolitre cultivation of an arginine producing strain containing a genetically encoded fluorescence sensor disclosed time dependent single cell productivity and growth, which was not possible with conventional methods.
Insights into Vibrio cholerae Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria
Millet, Yves A.; Alvarez, David; Ringgaard, Simon; von Andrian, Ulrich H.; Davis, Brigid M.; Waldor, Matthew K.
2014-01-01
Vibrio cholerae, the agent of cholera, is a motile non-invasive pathogen that colonizes the small intestine (SI). Most of our knowledge of the processes required for V. cholerae intestinal colonization is derived from enumeration of wt and mutant V. cholerae recovered from orogastrically infected infant mice. There is limited knowledge of the distribution of V. cholerae within the SI, particularly its localization along the villous axis, or of the bacterial and host factors that account for this distribution. Here, using confocal and intravital two-photon microscopy to monitor the localization of fluorescently tagged V. cholerae strains, we uncovered unexpected and previously unrecognized features of V. cholerae intestinal colonization. Direct visualization of the pathogen within the intestine revealed that the majority of V. cholerae microcolonies attached to the intestinal epithelium arise from single cells, and that there are notable regiospecific aspects to V. cholerae localization and factors required for colonization. In the proximal SI, V. cholerae reside exclusively within the developing intestinal crypts, but they are not restricted to the crypts in the more distal SI. Unexpectedly, V. cholerae motility proved to be a regiospecific colonization factor that is critical for colonization of the proximal, but not the distal, SI. Furthermore, neither motility nor chemotaxis were required for proper V. cholerae distribution along the villous axis or in crypts, suggesting that yet undefined processes enable the pathogen to find its niches outside the intestinal lumen. Finally, our observations suggest that host mucins are a key factor limiting V. cholerae intestinal colonization, particularly in the proximal SI where there appears to be a more abundant mucus layer. Collectively, our findings demonstrate the potent capacity of direct pathogen visualization during infection to deepen our understanding of host pathogen interactions. PMID:25275396
Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor
NASA Astrophysics Data System (ADS)
Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.
2017-12-01
An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.
Advanced Computing Methods for Knowledge Discovery and Prognosis in Acoustic Emission Monitoring
ERIC Educational Resources Information Center
Mejia, Felipe
2012-01-01
Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…
Palmer, Jr., Robert J.; Gordon, Sharon M.; Cisar, John O.; Kolenbrander, Paul E.
2003-01-01
Streptococci and actinomyces that initiate colonization of the tooth surface frequently coaggregate with each other as well as with other oral bacteria. These observations have led to the hypothesis that interbacterial adhesion influences spatiotemporal development of plaque. To assess the role of such interactions in oral biofilm formation in vivo, antibodies directed against bacterial surface components that mediate coaggregation interactions were used as direct immunofluorescent probes in conjunction with laser confocal microscopy to determine the distribution and spatial arrangement of bacteria within intact human plaque formed on retrievable enamel chips. In intrageneric coaggregation, streptococci such as Streptococcus gordonii DL1 recognize receptor polysaccharides (RPS) borne on other streptococci such as Streptococcus oralis 34. To define potentially interactive subsets of streptococci in the developing plaque, an antibody against RPS (anti-RPS) was used together with an antibody against S. gordonii DL1 (anti-DL1). These antibodies reacted primarily with single cells in 4-h-old plaque and with mixed-species microcolonies in 8-h-old plaque. Anti-RPS-reactive bacteria frequently formed microcolonies with anti-DL1-reactive bacteria and with other bacteria distinguished by general nucleic acid stains. In intergeneric coaggregation between streptococci and actinomyces, type 2 fimbriae of actinomyces recognize RPS on the streptococci. Cells reactive with antibody against type 2 fimbriae of Actinomyces naeslundii T14V (anti-type-2) were much less frequent than either subset of streptococci. However, bacteria reactive with anti-type-2 were seen in intimate association with anti-RPS-reactive cells. These results are the first direct demonstration of coaggregation-mediated interactions during initial plaque accumulation in vivo. Further, these results demonstrate the spatiotemporal development and prevalence of mixed-species communities in early dental plaque. PMID:12754239
Impact of pollen resources drift on common bumblebees in NW Europe.
Roger, Nathalie; Moerman, Romain; Carvalheiro, Luísa Gigante; Aguirre-Guitiérrez, Jesús; Jacquemart, Anne-Laure; Kleijn, David; Lognay, Georges; Moquet, Laura; Quinet, Muriel; Rasmont, Pierre; Richel, Aurore; Vanderplanck, Maryse; Michez, Denis
2017-01-01
Several bee species are experiencing significant population declines. As bees exclusively rely on pollen for development and survival, such declines could be partly related to changes in their host plant abundance and quality. Here, we investigate whether generalist bumblebee species, with stable population trends over the past years, adapted their diets in response to changes in the distribution and chemical quality of their pollen resources. We selected five common species of bumblebee in NW Europe for which we had a precise description of their pollen diet through two time periods ('prior to 1950' and '2004-2005'). For each species, we assessed whether the shift in their pollen diet was related with the changes in the suitable area of their pollen resources. Concurrently, we evaluated whether the chemical composition of pollen resources changed over time and experimentally tested the impact of new major pollen species on the development of B. terrestris microcolonies. Only one species (i.e. B. lapidarius) significantly included more pollen from resources whose suitable area expanded. This opportunist pattern could partly explain the expansion of B. lapidarius in Europe. Regarding the temporal variation in the chemical composition of the pollen diet, total and essential amino acid contents did not differ significantly between the two time periods while we found significant differences among plant species. This result is driven by the great diversity of resources used by bumblebee species in both periods. Our bioassay revealed that the shift to new major pollen resources allowed microcolonies to develop, bringing new evidence on the opportunist feature of bumblebee in their diets. Overall, this study shows that the response to pollen resource drift varies among closely related pollinators, and a species-rich plant community ensures generalist species to select a nutrient-rich pollen diet. © 2016 John Wiley & Sons Ltd.
Walker, Louise A.; Lee, Keunsook K.; Munro, Carol A.
2015-01-01
Treatment of Aspergillus fumigatus with echinocandins such as caspofungin inhibits the synthesis of cell wall β-1,3-glucan, which triggers a compensatory stimulation of chitin synthesis. Activation of chitin synthesis can occur in response to sub-MICs of caspofungin and to CaCl2 and calcofluor white (CFW), agonists of the protein kinase C (PKC), and Ca2+-calcineurin signaling pathways. A. fumigatus mutants with the chs gene (encoding chitin synthase) deleted (ΔAfchs) were tested for their response to these agonists to determine the chitin synthase enzymes that were required for the compensatory upregulation of chitin synthesis. Only the ΔAfchsG mutant was hypersensitive to caspofungin, and all other ΔAfchs mutants tested remained capable of increasing their chitin content in response to treatment with CaCl2 and CFW and caspofungin. The resulting increase in cell wall chitin content correlated with reduced susceptibility to caspofungin in the wild type and all ΔAfchs mutants tested, with the exception of the ΔAfchsG mutant, which remained sensitive to caspofungin. In vitro exposure to the chitin synthase inhibitor, nikkomycin Z, along with caspofungin demonstrated synergistic efficacy that was again AfChsG dependent. Dynamic imaging using microfluidic perfusion chambers demonstrated that treatment with sub-MIC caspofungin resulted initially in hyphal tip lysis. However, thickened hyphae emerged that formed aberrant microcolonies in the continued presence of caspofungin. In addition, intrahyphal hyphae were formed in response to echinocandin treatment. These in vitro data demonstrate that A. fumigatus has the potential to survive echinocandin treatment in vivo by AfChsG-dependent upregulation of chitin synthesis. Chitin-rich cells may, therefore, persist in human tissues and act as the focus for breakthrough infections. PMID:26169407
Fink, Doran L; Buscher, Amy Z; Green, Bruce; Fernsten, Phillip; St Geme, Joseph W
2003-03-01
The pathogenesis of non-typable Haemophilus influenzae disease begins with colonization of the nasopharynx and is facilitated by bacterial adherence to respiratory mucosa. The H. influenzae Hap autotransporter is a non-pilus adhesin that promotes adherence to epithelial cells and selected extracellular matrix proteins and mediates bacterial aggregation and microcolony formation. In addition, Hap has serine protease activity. Hap contains a 110 kDa internal passenger domain called HapS and a 45 kDa C-terminal translocator domain called Hapbeta. In the present study, we sought to define the structural basis for Hap adhesive activities. Based on experiments using a panel of monoclonal antibodies against HapS, a deletion derivative lacking most of HapS and a purified fragment of HapS, we established that adherence to epithelial cells is mediated by sequences within the C-terminal 311 residues of HapS. In additional experiments, we discovered that bacterial aggregation is also mediated by sequences within the C-terminal 311 residues of HapS and occurs via HapS-HapS interaction between molecules on neighbouring organisms. Finally, we found that adherence to fibronectin, laminin and collagen IV is mediated in part by sequences within the C-terminal 311 residues of HapS and in full by sequences within the C-terminal 511 residues of HapS. Taken together, these results demonstrate that all Hap adhesive activities reside in the C-terminal portion of HapS. Coupled with earlier observations, the current results establish that HapS adhesive activities and HapS protease activity are contained in separate modules of the protein.
Kaminaga, Kiichi; Noguchi, Miho; Narita, Ayumi; Hattori, Yuya; Usami, Noriko; Yokoya, Akinari
2016-11-01
To establish a new experimental technique to explore the photoelectric and subsequent Auger effects on the cell cycles of soft X-ray microbeam-irradiated cells and unirradiated bystander cells in a single colony. Several cells located in the center of a microcolony of HeLa-Fucci cells consisting of 20-80 cells were irradiated with soft X-ray (5.35 keV) microbeam using synchrotron radiation as a light source. All cells in the colony were tracked for 72 h by time-lapse microscopy imaging. Cell cycle progression, division, and death of each cell in the movies obtained were analyzed by pedigree assay. The number of cell divisions in the microcolony was also determined. The fates of these cells were clarified by tracking both irradiated and unirradiated bystander cells. Irradiated cells showed significant cell cycle retardation, explosive cell death, or cell fusion after a few divisions. These serious effects were also observed in 15 and 26% of the bystander cells for 10 and 20 Gy irradiation, respectively, and frequently appeared in at least two daughter or granddaughter cells from a single-parent cell. We successfully tracked the fates of microbeam-irradiated cells and unirradiated bystander cells with live cell recordings, which have revealed the dynamics of soft X-ray irradiated and unirradiated bystander cells for the first time. Notably, cell deaths or cell cycle arrests frequently arose in closely related cells. These details would not have been revealed by a conventional immunostaining imaging method. Our approach promises to reveal the dynamic cellular effects of soft X-ray microbeam irradiation and subsequent Auger processes from various endpoints in future studies.
Vectorial Entry and Release of Hepatitis A Virus in Polarized Human Hepatocytes ▿
Snooks, Michelle J.; Bhat, Purnima; Mackenzie, Jason; Counihan, Natalie A.; Vaughan, Nicola; Anderson, David A.
2008-01-01
Hepatitis A virus (HAV) is an enterically transmitted virus that replicates predominantly in hepatocytes within the liver before excretion via bile through feces. Hepatocytes are polarized epithelial cells, and it has been assumed that the virus load in bile results from direct export of HAV via the apical domain of polarized hepatocytes. We have developed a subclone of hepatocyte-derived HepG2 cells (clone N6) that maintains functional characteristics of polarized hepatocytes but displays morphology typical of columnar epithelial cells, rather than the complex morphology that is typical of hepatocytes. N6 cells form microcolonies of polarized cells when grown on glass and confluent monolayers of polarized cells on semipermeable membranes. When N6 microcolonies were exposed to HAV, infection was restricted to peripheral cells of polarized colonies, whereas all cells could be infected in colonies of nonpolarized HepG2 cells (clone C11) or following disruption of tight junctions in N6 colonies with EGTA. This suggests that viral entry occurs predominantly via the basolateral plasma membrane, consistent with uptake of virus from the bloodstream after enteric exposure, as expected. Viral export was also found to be markedly vectorial in N6 but not C11 cells. However, rather than being exported from the apical domain as expected, more than 95% of HAV was exported via the basolateral domain of N6 cells, suggesting that virus is first excreted from infected hepatocytes into the bloodstream rather than to the biliary tree. Enteric excretion of HAV may therefore rely on reuptake and transcytosis of progeny HAV across hepatocytes into the bile. These studies provide the first example of the interactions between viruses and polarized hepatocytes. PMID:18579610
Dynamics of biofilm formation during anaerobic digestion of organic waste.
Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian
2014-10-01
Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa
2012-05-01
The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.
Microcolony culture techniques for tuberculosis diagnosis: a systematic review.
Leung, E; Minion, J; Benedetti, A; Pai, M; Menzies, D
2012-01-01
There is considerable demand for quicker and more affordable yet accurate diagnostic tools for tuberculosis (TB). The microscopic observation drug susceptibility (MODS) assay and the thin-layer agar (TLA) assay are inexpensive, rapid microcolony-based culture methods. A systematic review and meta-analysis was performed to assess the accuracy and other test characteristics of MODS and TLA compared to a reference standard of traditional solid or liquid culture. Pooled estimates of sensitivity and specificity and their 95% confidence intervals were estimated with an exact binomial likelihood random effects meta-analysis. A total of 21 eligible studies were identified, 12 that evaluated MODS, seven that evaluated TLA and two that evaluated both. The overall pooled sensitivity and specificity of MODS were respectively 92% (95%CI 87-97) and 96% (90-100), and for TLA they were respectively 87% (95%CI 79-94) and 98% (95%CI 94-100), although there was considerable heterogeneity of results. When the studies were restricted to those assessing accuracy of MODS in sputum samples only, the sensitivity was 96% (95%CI 94-98) and the specificity 96% (95%CI 89-100). The mean intervals from reception of specimens to results were 9.2 days with MODS and 11.5 days with TLA; contamination rates averaged 6.6% with MODS and 12.3% with TLA; materials and supplies costs averaged US$1.48 for MODS and US$2.42 for TLA. MODS and TLA appear to be accurate and rapid yet inexpensive diagnostic tools for active TB. However, this review did not find sufficient evidence on the feasibility and costs of implementation of these tests, nor on the impact of these tests on patient outcomes.
Iftikhar, Irim; Irfan, Seema; Farooqi, Joveria; Azizullah, Zahida; Hasan, Rumina
2017-01-01
With the rise in multidrug-resistant tuberculosis, there is a search for newer techniques that will rapidly detect drug-resistant Mycobacterium tuberculosis. Although molecular techniques can detect resistance, culture is still considered gold standard, especially in resource-limited settings where quick, cheap, and easy techniques are needed. The aim of the study was to evaluate microcolony method thin layer agar (TLA) for quick detection of resistance against the first- and second-line antituberculous drugs in clinical isolates. This was a cross-sectional study performed at Aga Khan University Hospital. A total of 87 Z-N stain smear-positive pulmonary samples were received and indirect drug susceptibility test (ID-DST) was performed using Lowenstein-Jensen and mycobacteria growth indicator tube. Direct DST was performed using TLA on 7H10 agar. TLA was observed twice weekly under microscope for 4 weeks. Sensitivity, specificity, and accuracy were calculated for TLA using indirect susceptibility method as the gold standard. Level of agreement was calculated using Kappa score. TLA showed sensitivity of 89% and 95.2% for isoniazid and rifampicin, while for ethionamide, ofloxacin, and injectable aminoglycosides, it was 96.6%, 92.1%, and 100%, respectively. Specificity for the first-line drugs was >95% while second-line drugs ranged from 70% to 100%. Mean time to positivity was 10.2 days by TLA as compared to 43.1 days by ID-DST. TLA is a quick and reliable method in identifying resistance, especially in resource-limited settings. However, additional liquid culture can be set up as backup, especially in patients on therapy to avoid false negative results.
Kleta, Sylvia; Nordhoff, Marcel; Tedin, Karsten; Wieler, Lothar H; Kolenda, Rafal; Oswald, Sibylle; Oelschlaeger, Tobias A; Bleiss, Wilfried; Schierack, Peter
2014-05-01
Enteropathogenic Escherichia coli (EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probiotic E. coli strain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While both in vitro and in vivo studies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenic E. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenic E. coli (aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.
1987-05-01
Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of /sup 51/Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cellsmore » (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of /sup 51/Cr release from radiolabeled monolayers.« less
Optical elastic scattering for early label-free identification of clinical pathogens
NASA Astrophysics Data System (ADS)
Genuer, Valentin; Gal, Olivier; Méteau, Jérémy; Marcoux, Pierre; Schultz, Emmanuelle; Lacot, Éric; Maurin, Max; Dinten, Jean-Marc
2016-03-01
We report here on the ability of elastic light scattering in discriminating Gram+, Gram- and yeasts at an early stage of growth (6h). Our technique is non-invasive, low cost and does require neither skilled operators nor reagents. Therefore it is compatible with automation. It is based on the analysis of the scattering pattern (scatterogram) generated by a bacterial microcolony growing on agar, when placed in the path of a laser beam. Measurements are directly performed on closed Petri dishes. The characteristic features of a given scatterogram are first computed by projecting the pattern onto the Zernike orthogonal basis. Then the obtained data are compared to a database so that machine learning can yield identification result. A 10-fold cross-validation was performed on a database over 8 species (15 strains, 1906 scatterograms), at 6h of incubation. It yielded a 94% correct classification rate between Gram+, Gram- and yeasts. Results can be improved by using a more relevant function basis for projections, such as Fourier-Bessel functions. A fully integrated instrument has been installed at the Grenoble hospital's laboratory of bacteriology and a validation campaign has been started for the early screening of MSSA and MRSA (Staphylococcus aureus, methicillin-resistant S. aureus) carriers. Up to now, all the published studies about elastic scattering were performed in a forward mode, which is restricted to transparent media. However, in clinical diagnostics, most of media are opaque, such as blood-supplemented agar. That is why we propose a novel scheme capable of collecting back-scattered light which provides comparable results.
Multicellular Self-Organization of P. aeruginosa due to Interactions with Secreted Trails.
Gelimson, Anatolij; Zhao, Kun; Lee, Calvin K; Kranz, W Till; Wong, Gerard C L; Golestanian, Ramin
2016-10-21
Guided movement in response to slowly diffusing polymeric trails provides a unique mechanism for self-organization of some microorganisms. To elucidate how this signaling route leads to microcolony formation, we experimentally probe the trajectory and orientation of Pseudomonas aeruginosa that propel themselves on a surface using type IV pili motility appendages, which preferentially attach to deposited exopolysaccharides. We construct a stochastic model by analyzing single-bacterium trajectories and show that the resulting theoretical prediction for the many-body behavior of the bacteria is in quantitative agreement with our experimental characterization of how cells explore the surface via a power-law strategy.
Segers, Frank J J; van Laarhoven, Karel A; Huinink, Hendrik P; Adan, Olaf C G; Wösten, Han A B; Dijksterhuis, Jan
2016-09-01
Indoor fungi cause damage in houses and are a potential threat to human health. Indoor fungal growth requires water, for which the terms water activity (aw) and relative humidity (RH) are used. The ability of the fungi Aspergillus niger, Cladosporium halotolerans, and Penicillium rubens at different developmental stages to survive changes in aw dynamics was studied. Fungi grown on media with high aw were transferred to a controlled environment with low RH and incubated for 1 week. Growth of all developmental stages was halted during incubation at RHs below 75%, while growth continued at 84% RH. Swollen conidia, germlings, and microcolonies of A. niger and P. rubens could not reinitiate growth when retransferred from an RH below 75% to a medium with high aw All developmental stages of C. halotolerans showed growth after retransfer from 75% RH. Dormant conidia survived retransfer to medium with high aw in all cases. In addition, retransfer from 84% RH to medium with high aw resulted in burst hyphal tips for Aspergillus and Penicillium Cell damage of hyphae of these fungi after incubation at 75% RH was already visible after 2 h, as observed by staining with the fluorescent dye TOTO-1. Thus, C. halotolerans is more resistant to aw dynamics than A. niger and P. rubens, despite its limited growth compared to that of these fungi at a lowered steady-state aw The survival strategy of this phylloplane fungus in response to the dynamics of aw is discussed in relation to its morphology as studied by cryo-scanning electron microscopy (cryo-SEM). Indoor fungi cause structural and cosmetic damage in houses and are a potential threat to human health. Growth depends on water, which is available only at certain periods of the day (e.g., during cooking or showering). Knowing why fungi can or cannot survive indoors is important for finding novel ways of prevention. Until now, the ability of fungi to grow on media with little available water at steady state (unchanging conditions) has been important for evaluating whether a fungus can grow indoors. In the present study, we found that the fungus Cladosporium halotolerans, a common indoor fungus, is more resistant to changes in available water than the fungi Aspergillus niger and Penicillium rubens, despite the fact that the latter fungi can grow on media with low water availability. We concluded that the ability of fungi to deal with changes in humidity is at least as important as the ability to grow on low-water media. Copyright © 2016 Segers et al.
Cell division in Escherichia coli cultures monitored at single cell resolution
Roostalu, Johanna; Jõers, Arvi; Luidalepp, Hannes; Kaldalu, Niilo; Tenson, Tanel
2008-01-01
Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP) upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular organisms other than E. coli. PMID:18430255
Biofilm architecture of Phanerozoic cryptic carbonate marine veneers
NASA Astrophysics Data System (ADS)
Riding, Robert
2002-01-01
Thin (<150 μm) micritic veneers lining crypts in Paleozoic and Mesozoic reef, microbial, and bioclastic carbonates have the dimensions and architecture of modern uncalcified bacterial biofilm. Morphologic attributes include rounded aggregate nanofabric, internal channels, external towers, mushrooms, and plumes. All can be interpreted as characteristics of attached bacterial communities, i.e., aggregates as microcolonies, originally embedded in a matrix of extracellular polymeric substances; channels as water conduits and/or uncolonized nutrient-poor spaces; external protuberances as localized growths; and plumes as surface streamers. Cryptic habitat favored pristine biofilm preservation by precluding disturbance and overgrowth, and suggests aphotic and anoxic conditions. These examples provide diagnostic morphologic criteria for wider recognition of biofilm in Phanerozoic and older carbonates.
Determination of Spring Onset and Growing Season Duration using Satellite Measurements
NASA Technical Reports Server (NTRS)
Min, Q.; Lin, Bing
2006-01-01
An integrated approach to retrieve microwave emissivity difference vegetation index (EDVI) over land regions has been developed from combined multi-platform/multi-sensor satellite measurements, including SSM/I measurements. A possible relationship of the remotely sensed EDVI and the leaf physiology of canopy is exploited at the Harvard Forest site for two growing seasons. This study finds that the EDVI is sensitive to leaf development through vegetation water content of the crown layer of the forest canopy, and has demonstrated that the spring onset and growing season duration can be determined accurately from the time series of satellite estimated EDVI within uncertainties about 3 and 7 days for spring onsets and growing season duration, respectively, compared to in-situ observations. The leaf growing stage may also be quantitatively monitored by a normalized EDVI. Since EDVI retrievals from satellite are generally possible during both daytime and nighttime under non-rain conditions, the EDVI technique studied here may provide higher temporal resolution observations for monitoring the onset of spring and the duration of growing season compared to currently operational satellite methods.
Zijlstra, Carolien; Lund, Ivar; Justesen, Annemarie F; Nicolaisen, Mogens; Jensen, Peter Kryger; Bianciotto, Valeria; Posta, Katalin; Balestrini, Raffaella; Przetakiewicz, Anna; Czembor, Elzbieta; van de Zande, Jan
2011-06-01
The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the presence of relevant pests, diseases and weeds online, and will be location specific. The system will offer prevention, monitoring, interpretation and action which will be performed in a continuous way. The monitoring is divided into several parts. Planting material, seeds and soil should be monitored for prevention purposes before the growing period to avoid, for example, the introduction of disease into the field and to ensure optimal growth conditions. Data from previous growing seasons, such as the location of weeds and previous diseases, should also be included. During the growing season, the crop will be monitored at a macroscale level until a location that needs special attention is identified. If relevant, this area will be monitored more intensively at a microscale level. A decision engine will analyse the data and offer advice on how to control the detected diseases, pests and weeds, using precision spray techniques or alternative measures. The goal is to provide tools that are able to produce high-quality products with the minimal use of conventional plant protection products. This review describes the technologies that can be used or that need further development in order to achieve this goal. Copyright © 2011 Society of Chemical Industry.
Lead - nutritional considerations
... and brains are growing rapidly. Many federal agencies study and monitor lead exposure. The Food and Drug Administration (FDA) monitors lead in food, beverages, food containers, and tableware. The Environmental Protection Agency ( ...
[The yeast biofilm in human medicine].
Růzicka, Filip; Holá, Veronika; Votava, Miroslav
2007-08-01
In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to aseptic techniques when manipulating with implants and their correct maintenance.
Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data
The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...
Segers, F J J; Wösten, H A B; Dijksterhuis, J
2018-03-01
Aspergillus niger forms conidia that contain melanin in their cell wall. This black pigment has been shown to protect fungi against UV radiation, and experimental evidence has indicated that it also protects against drought and high salt concentrations. In this study, growth of A. niger was evaluated at low water activity (a w ) and after changes in relative humidity (RH). In addition, deletion strains of A. niger affected in the melanin synthesis pathway were compared. Germination of conidia of the wild-type and deletion strains was observed at 0·81 a w and germ tubes continued growth at a w ≥ 0·83. Conidia and microcolonies of the different strains were incubated for 1 week at lowered RH (33-84%). Conidia of all strains germinated and formed colonies after exposure to RH ≥33% when transferred back to malt extract medium at a w 0·98. Conidia germinated and showed limited growth at 84% RH. Microcolonies of all strains did not survive an incubation of 1 week at RH ≤75%, but continued growth after exposure to 84% RH. Together, this is the first genetic evidence that melanin does not play a role during germination and radial extension of fungi at low water conditions. Aspergillus niger, a cosmopolitan fungus with melanized conidia, is used here as a model system for fungal growth at low water activity (a w ) and humidity dynamics. From this study it becomes clear that melanin, contrary to what has been suggested before, is not a key factor in survival and growth during situations that mimic indoor conditions. Indoor fungal growth can lead to cosmetic damage to building materials and health problems. This knowledge makes clear that novel ways to limit indoor fungal growth have to be based on interference with other cellular traits of fungi. © 2018 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Dafflon, Baptiste; Oktem, Rusen; Peterson, John; Ulrich, Craig; Tran, Anh Phuong; Romanovsky, Vladimir; Hubbard, Susan S.
2017-06-01
Coincident monitoring of the spatiotemporal distribution of and interactions between land, soil, and permafrost properties is important for advancing our understanding of ecosystem dynamics. In this study, a novel monitoring strategy was developed to quantify complex Arctic ecosystem responses to the seasonal freeze-thaw-growing season conditions. The strategy exploited autonomous measurements obtained through electrical resistivity tomography to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness, and soil dielectric permittivity. The spatially and temporally dense monitoring data sets revealed several insights about tundra system behavior at a site located near Barrow, AK. In the active layer, the soil electrical conductivity (a proxy for soil water content) indicated an increasing positive correlation with the green chromatic coordinate (a proxy for vegetation vigor) over the growing season, with the strongest correlation (R = 0.89) near the typical peak of the growing season. Soil conductivity and green chromatic coordinate also showed significant positive correlations with thaw depth, which is influenced by soil and surface properties. In the permafrost, soil electrical conductivity revealed annual variations in solute concentration and unfrozen water content, even at temperatures well below 0°C in saline permafrost. These conditions may contribute to an acceleration of long-term thaw in Coastal permafrost regions. Demonstration of this first aboveground and belowground geophysical monitoring approach within an Arctic ecosystem illustrates its significant potential to remotely "visualize" permafrost, soil, and vegetation ecosystem codynamics in high resolution over field relevant scales.
Ray, Andrew M.; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra; Thoma, David; Al-Chokhachy, Robert K.; Litt, Andrea R.
2015-01-01
In the Greater Yellowstone Ecosystem (GYE), changes in the drying cycles of wetlands have been documented. Wetlands are areas where the water table is at or near the land surface and standing shallow water is present for much or all of the growing season. We discuss how monitoring data can be used to document variation in annual flooding and drying patterns of wetlands monitored across Yellowstone and Grand Teton national parks, investigate how these patterns are related to a changing climate, and explore how drying of wetlands may impact amphibians. The documented declines of some amphibian species are of growing concern to scientists and land managers alike, in part because disappearances have occurred in some of the most protected places. These disappearances are a recognized component of what is being described as Earth’s sixth mass extinction.
The effect of hyperthermia on the radiation response of crypt cells in mouse jejunum
NASA Technical Reports Server (NTRS)
Wilson, J. D.
1978-01-01
The effect of hyperthermia and/or gamma-radiation on the survival of intestinal crypt cells was studied in BDF sub 1 mice using a microcolony assay. Hyperthermia treatments, which in themselves caused no detectable cell lethality, inhibited the capacity of crypt cells to repair sublethal radiation damage. In addition, heat applied either before or after single radiation exposures potentiated lethal damage to crypt cells; the degree of enhancement was dependent on the time interval between treatments. At the levels of heating employed, DNA synthesis in the intestinal epithelium was significantly reduced immediately following exposure, but returned rapidly to normal levels. No further disturbances in cellular kinetics were observed for up to 10 days after heating.
Early formation of dental plaque on platic films. 1. Light microscopic observations.
Rönström, A; Attström, R; Egelberg, J
1975-02-01
In human subjects with healthy gingiva thin transparent plastic films were applied to the buccal surfaces of premolars in the upper and lower jaws. The films were left in place for peiods of 15, 30, 60, 120 and 240 minutes. The presence of coccoid bacteria, leukocytes and epithelial cells was investigated in an area adjacent to the gingival margin. The results showed that by 15 minutes coccoid bacteria had become attached to the artificial tooth surface. The number of microorganisms gradually increased during the time of the study. Large numbers of cocci and the formation of micro-colonies were observed after 120 and 240 minutes. Increasing numbers of leukocytes and epithelial cells were also found during the period of observation.
Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data
NASA Astrophysics Data System (ADS)
Robin, Jessica; Dubayah, Ralph; Sparrow, Elena; Levine, Elissa
2008-03-01
This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region. Six quadratic regression models with NDVI as a function of accumulated growing degree days (AGDD) were developed from 2001 through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land covers. Model parameters determined NDVI values for start of the observational period as well as peak and length of the growing season. NDVI values for start of the growing season were determined from the model equations and field observations of SOS made by GLOBE students and researchers at University of Alaska Fairbanks. AGDD was computed from daily air temperature. AVHRR and MODIS models were significantly different from one another with differences in the start of the observational season as well as start, peak, and length of the growing season. Furthermore, AGDD for SOS was significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect this change. There are limitations with using NDVI to monitor phenological changes in these regions because of snow, the large extent of conifers, and clouds, which restrict the composite period. In addition, differing processing and spectral characteristics restrict continuity between AVHRR and MODIS NDVI data sets.
Remote sensing: A tool for resistance monitoring in Bt crops
Corn forecasts anticipated significant increases in transgenic corn plantings in the United States for the 2007 growing season and foreseeable future. Driven by biofuel demand, significant increases in GM corn acreage for the 2007 growing season were expected with future planted...
Dolinšek, Jan; Lagkouvardos, Ilias; Wanek, Wolfgang; Wagner, Michael
2013-01-01
Chemolithoautotrophic nitrifying bacteria release soluble organic compounds, which can be substrates for heterotrophic microorganisms. The identities of these heterotrophs and the specificities of their interactions with nitrifiers are largely unknown. In this study, we incubated nitrifying activated sludge with 13C-labeled bicarbonate and used stable isotope probing of 16S rRNA to monitor the flow of carbon from uncultured nitrifiers to heterotrophs. To facilitate the identification of heterotrophs, the abundant 16S rRNA molecules from nitrifiers were depleted by catalytic oligonucleotides containing locked nucleic acids (LNAzymes), which specifically cut the 16S rRNA of defined target organisms. Among the 13C-labeled heterotrophs were organisms remotely related to Micavibrio, a microbial predator of Gram-negative bacteria. Fluorescence in situ hybridization revealed a close spatial association of these organisms with microcolonies of nitrite-oxidizing sublineage I Nitrospira in sludge flocs. The high specificity of this interaction was confirmed by confocal microscopy and a novel image analysis method to quantify the localization patterns of biofilm microorganisms in three-dimensional (3-D) space. Other isotope-labeled bacteria, which were affiliated with Thermomonas, colocalized less frequently with nitrifiers and thus were commensals or saprophytes rather than specific symbionts or predators. These results suggest that Nitrospira spp. are subject to bacterial predation, which may influence the abundance and diversity of these nitrite oxidizers and the stability of nitrification in engineered and natural ecosystems. In silico screening of published next-generation sequencing data sets revealed a broad environmental distribution of the uncultured Micavibrio-like lineage. PMID:23335755
How is FIA helping other countries monitor their forests?
Charles T. Scott
2012-01-01
The demand for forest monitoring is growing rapidly with emphasis on carbon dynamics, due in part by incentives being negotiated under the United Nation's Reducing Emissions from Deforestation and Forest Degradation (REDO+) process. While much of the temperate and boreal forest in developed countries is being monitored as part of national forest inventories,...
ERIC Educational Resources Information Center
Padilla-Walker, Laura M.; Coyne, Sarah M.; Fraser, Ashley M.; Dyer, W. Justin; Yorgason, Jeremy B.
2012-01-01
The current study examined how parents' use of restrictive and active monitoring and deference changed over three years, and examined both adolescent and parent characteristics as predictors of initial levels of media monitoring, as well as change in media monitoring. Participants included 276 mother-child dyads (M age of child = 12.08, SD = 0.63,…
Applying next-generation DNA sequencing technology to aquatic bioassessment
The growing challenges for environmental monitoring and assessment have pushed standard techniques to the limits of their application. Current biological monitoring programs often require considerable time and workload to provide environmental condition assessments. New molecular...
Brinkhoff, James; Hornbuckle, John; Dowling, Thomas
2017-12-26
Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.
Stormwater and Wastewater Infrastructure Monitoring Test Bed
The growing application of stormwater and wastewater management in urban and urbanizing environments is increasing the demand for monitoring technologies and systems that can provide reliable performance data, in real-time or near real-time, for operation and maintenance decision...
FIBER OPTIC SENSORS FOR ENVIRONMENTAL MONITORING
Due to decades of neglect as well as ever-increasing industrial activity, environmental monitoring has become an important issue. Given the expense and time constraints associated with classical laboratory analysis, there exists a growing interest in cost-effective and real-time ...
Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores.
Warda, Alicja K; den Besten, Heidy M W; Sha, Na; Abee, Tjakko; Nierop Groot, Masja N
2015-05-18
Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments are widely used by food producing industries to reduce the microbial spore loads. However consumers prefer mildly processed products that have less impact on its quality and this trend steers industry towards milder preservation treatments. Such treatments may result in damaged instead of inactivated spores, and these spores may germinate, repair, and grow out, possibly leading to quality and safety issues. The ability to repair and grow out is influenced by the properties of the food matrix. In the current communication we studied the outgrowth from heat damaged Bacillus cereus ATCC 14579 spores on Anopore membrane, which allowed following outgrowth heterogeneity of individual spores on broccoli and rice-based media as well as standard and mildly acidified (pH 5.5) meat-based BHI. Rice, broccoli and BHI pH 5.5 media resulted in delayed outgrowth from untreated spores, and increased heterogeneity compared to BHI pH 7.4, with the most pronounced effect in rice media. Exposure to wet heat for 1 min at 95 °C caused 2 log inactivation and approximately 95% of the spores in the surviving fraction were damaged resulting in substantial delay in outgrowth based on the time required to reach a maximum microcolony size of 256 cells. The delay was most pronounced for heat-treated spores on broccoli medium followed by spores on rice media (both untreated and treated). Interestingly, the increase in outgrowth heterogeneity of heat treated spores on BHI pH 7.4 was more pronounced than on rice, broccoli and BHI pH 5.5 conceivably reflecting that conditions in BHI pH 7.4 better support spore damage repair. This study compares the effects of three main factors, namely heat treatment, pH of BHI and the effect of food matrix highlighting the impact of different (model) food recovery media on outgrowth efficiency and heterogeneity of non-heat-treated and heat-damaged B. cereus spores. Copyright © 2015. Published by Elsevier B.V.
Overview of the National Inventory and Monitoring Applications Center (NIMAC)
Charles T. Scott
2009-01-01
The National Inventory and Monitoring Applications Center (NIMAC) was created by the Forest Inventory and Analysis (FIA) program in 2006. NIMAC addresses a growing need, expressed by FIA partners, for technical assistance in designing and implementing monitoring plans for forests at scales finer than that provided by the FIA standard inventory. NIMAC's goal is to...
Atmospheric Mercury Deposition Monitoring – National Atmospheric Deposition Program (NADP)
The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America – the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many ...
USDA-ARS?s Scientific Manuscript database
Seasonal changes in aboveground primary production (i.e. phenology) are influenced by environmental conditions with implications for land-atmosphere interactions, carbon cycling, and agricultural production. Monitoring phenology and quantifying seasonal patterns across spatially extensive grasslands...
Budde, Michael E.; Rowland, James; Funk, Christopher C.
2010-01-01
For one-sixth of the world’s population - roughly 1 billion children, women and men - growing, buying or receiving adequate, affordable food to eat is a daily uncertainty. The World Monetary Fund reports that food prices worldwide increased 43 percent in 2007-2008, and unpredictable growing conditions make subsistence farming, on which many depend, a risky business. Scientists with the U.S. Geological Survey (USGS) are part of a network of both private and government institutions that monitor food security in many of the poorest nations in the world.
DESIGN AND IMPLEMENTATION OF EFFECTIVE MONITORING PROGRAMS FOR DREDGING CONTAMINATED SEDIMENT
Currently, there is a growing national debate about dredging contaminated sediments, including risks to human health and the environment as well as the overall effectiveness of remedial activities. Presently, monitoring methods are available to address both concerns. This present...
Bioassay- versus analytically-derived estrogen equivalents: Ramifications for monitoring
Due to concern for possible endocrine-related effects on aquatic vertebrates, environmental estrogens (EEs) are a growing focus of surface water contaminant monitoring programs. Some efforts utilize measurement of a targeted set of chemicals known to act as estrogen receptor (ER)...
Understanding Social Entrepreneurship
ERIC Educational Resources Information Center
Harding, Rebecca
2007-01-01
The importance of social entrepreneurship in social, cultural and economic terms is increasingly acknowledged. Drawing on data from the second Social Entrepreneurship Monitor report published by the Global Entrepreneurship Monitor (GEM) UK project, this article focuses on the social entrepreneurs who may grow the social enterprises of the future.…
Inferences from growing trees backwards
David W. Green; Kent A. McDonald
1997-01-01
The objective of this paper is to illustrate how longitudinal stress wave techniques can be useful in tracking the future quality of a growing tree. Monitoring the quality of selected trees in a plantation forest could provide early input to decisions on the effectiveness of management practices, or future utilization options, for trees in a plantation. There will...
Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.
Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes
2015-07-21
With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.
Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media
Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Normandeau, Charles-O.; Viens, Jeff; Lamhamedi, Mohammed S.; Gosselin, Benoit; Messaddeq, Younes
2015-01-01
With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322
Bergstrom, Kirk S. B.; Kissoon-Singh, Vanessa; Gibson, Deanna L.; Ma, Caixia; Montero, Marinieve; Sham, Ho Pan; Ryz, Natasha; Huang, Tina; Velcich, Anna; Finlay, B. Brett; Chadee, Kris; Vallance, Bruce A.
2010-01-01
Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium. PMID:20485566
Context-dependent medicinal effects of anabasine and infection-dependent toxicity in bumble bees
Hogeboom, Alison; Kaye, Alexander J.; Andicoechea, Jonathan; Connon, Sara June; Weston, Ian; Skyrm, Kimberly; Irwin, Rebecca E.; Adler, Lynn S.
2017-01-01
Background Floral phytochemicals are ubiquitous in nature, and can function both as antimicrobials and as insecticides. Although many phytochemicals act as toxins and deterrents to consumers, the same chemicals may counteract disease and be preferred by infected individuals. The roles of nectar and pollen phytochemicals in pollinator ecology and conservation are complex, with evidence for both toxicity and medicinal effects against parasites. However, it remains unclear how consistent the effects of phytochemicals are across different parasite lineages and environmental conditions, and whether pollinators actively self-medicate with these compounds when infected. Approach Here, we test effects of the nectar alkaloid anabasine, found in Nicotiana, on infection intensity, dietary preference, and survival and performance of bumble bees (Bombus impatiens). We examined variation in the effects of anabasine on infection with different lineages of the intestinal parasite Crithidia under pollen-fed and pollen-starved conditions. Results We found that anabasine did not reduce infection intensity in individual bees infected with any of four Crithidia lineages that were tested in parallel, nor did anabasine reduce infection intensity in microcolonies of queenless workers. In addition, neither anabasine nor its isomer, nicotine, was preferred by infected bees in choice experiments, and infected bees consumed less anabasine than did uninfected bees under no-choice conditions. Furthermore, anabasine exacerbated the negative effects of infection on bee survival and microcolony performance. Anabasine reduced infection in only one experiment, in which bees were deprived of pollen and post-pupal contact with nestmates. In this experiment, anabasine had antiparasitic effects in bees from only two of four colonies, and infected bees exhibited reduced—rather than increased—phytochemical consumption relative to uninfected bees. Conclusions Variation in the effect of anabasine on infection suggests potential modulation of tritrophic interactions by both host genotype and environmental variables. Overall, our results demonstrate that Bombus impatiens prefer diets without nicotine and anabasine, and suggest that the medicinal effects and toxicity of anabasine may be context dependent. Future research should identify the specific environmental and genotypic factors that determine whether nectar phytochemicals have medicinal or deleterious effects on pollinators. PMID:28832668
Jones, Christopher J.; Newsom, David; Kelly, Benjamin; Irie, Yasuhiko; Jennings, Laura K.; Xu, Binjie; Limoli, Dominique H.; Harrison, Joe J.; Parsek, Matthew R.; White, Peter; Wozniak, Daniel J.
2014-01-01
The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity. PMID:24603766
Context-dependent medicinal effects of anabasine and infection-dependent toxicity in bumble bees.
Palmer-Young, Evan C; Hogeboom, Alison; Kaye, Alexander J; Donnelly, Dash; Andicoechea, Jonathan; Connon, Sara June; Weston, Ian; Skyrm, Kimberly; Irwin, Rebecca E; Adler, Lynn S
2017-01-01
Floral phytochemicals are ubiquitous in nature, and can function both as antimicrobials and as insecticides. Although many phytochemicals act as toxins and deterrents to consumers, the same chemicals may counteract disease and be preferred by infected individuals. The roles of nectar and pollen phytochemicals in pollinator ecology and conservation are complex, with evidence for both toxicity and medicinal effects against parasites. However, it remains unclear how consistent the effects of phytochemicals are across different parasite lineages and environmental conditions, and whether pollinators actively self-medicate with these compounds when infected. Here, we test effects of the nectar alkaloid anabasine, found in Nicotiana, on infection intensity, dietary preference, and survival and performance of bumble bees (Bombus impatiens). We examined variation in the effects of anabasine on infection with different lineages of the intestinal parasite Crithidia under pollen-fed and pollen-starved conditions. We found that anabasine did not reduce infection intensity in individual bees infected with any of four Crithidia lineages that were tested in parallel, nor did anabasine reduce infection intensity in microcolonies of queenless workers. In addition, neither anabasine nor its isomer, nicotine, was preferred by infected bees in choice experiments, and infected bees consumed less anabasine than did uninfected bees under no-choice conditions. Furthermore, anabasine exacerbated the negative effects of infection on bee survival and microcolony performance. Anabasine reduced infection in only one experiment, in which bees were deprived of pollen and post-pupal contact with nestmates. In this experiment, anabasine had antiparasitic effects in bees from only two of four colonies, and infected bees exhibited reduced-rather than increased-phytochemical consumption relative to uninfected bees. Variation in the effect of anabasine on infection suggests potential modulation of tritrophic interactions by both host genotype and environmental variables. Overall, our results demonstrate that Bombus impatiens prefer diets without nicotine and anabasine, and suggest that the medicinal effects and toxicity of anabasine may be context dependent. Future research should identify the specific environmental and genotypic factors that determine whether nectar phytochemicals have medicinal or deleterious effects on pollinators.
Uncertainty Comparison of Visual Sensing in Adverse Weather Conditions†
Lo, Shi-Wei; Wu, Jyh-Horng; Chen, Lun-Chi; Tseng, Chien-Hao; Lin, Fang-Pang; Hsu, Ching-Han
2016-01-01
This paper focuses on flood-region detection using monitoring images. However, adverse weather affects the outcome of image segmentation methods. In this paper, we present an experimental comparison of an outdoor visual sensing system using region-growing methods with two different growing rules—namely, GrowCut and RegGro. For each growing rule, several tests on adverse weather and lens-stained scenes were performed, taking into account and analyzing different weather conditions with the outdoor visual sensing system. The influence of several weather conditions was analyzed, highlighting their effect on the outdoor visual sensing system with different growing rules. Furthermore, experimental errors and uncertainties obtained with the growing rules were compared. The segmentation accuracy of flood regions yielded by the GrowCut, RegGro, and hybrid methods was 75%, 85%, and 87.7%, respectively. PMID:27447642
Smart, Matthew; Otto, Clint R.; Cornman, Robert S.; Iwanowicz, Deborah
2018-01-01
Colony monitoring devices used to track and assess the health status of honey bees are becoming more widely available and used by both beekeepers and researchers. These devices monitor parameters relevant to colony health at frequent intervals, often approximating real time. The fine-scale record of hive condition can be further related to static or dynamic features of the landscape, such as weather, climate, colony density, land use, pesticide use, vegetation class, and forage quality. In this study, we fit commercial honey bee colonies in two apiaries with pollen traps and digital scales to monitor floral resource use, pollen quality, and honey production. One apiary was situated in low-intensity agriculture; the other in high-intensity agriculture. Pollen traps were open for 72 h every two weeks while scales recorded weight every 15 min throughout the growing season. From collected pollen, we determined forage quantity per day, species identity using DNA sequencing, pesticide residues, amino acid content, and total protein content. From scales, we determined the accumulated hive weight change over the growing season, relating to honey production and final colony weight going into winter. Hive scales may also be used to identify the occurrence of environmental pollen and nectar dearth, and track phenological changes in plant communities. We provide comparisons of device-derived data between two apiaries over the growing season and discuss the potential for employing apiary monitoring devices to infer colony health in the context of divergent agricultural land use conditions.
Monitoring, safety systems for LNG and LPG operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
True, W.R.
Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.
Following decades of ecologic and economic impacts from a growing list of invasive species, government and management entities are investing in systematic early- detection monitoring (EDM), which has reinvigorated investment in and evaluation of the science underpinning such moni...
The Mercury Monitoring Workshop was developed because mercury contamination, both nationally and internationally, has long been recognized as a growing problem for both humans and ecosystems. Mercury is released to the environment from a variety of human (anthropogenic) sources i...
Evaluation of a depth sensor for weights estimation of growing and finishing pigs
USDA-ARS?s Scientific Manuscript database
A method of continuously monitoring animal weight would aid producers by ensuring all pigs are gaining weight and would increase the precision of marketing pigs. Electronically monitoring weight without moving the pigs to the scale would eliminate a source of stress. Therefore, the development of me...
Epidemiology and control of rusts of wheat and barley
USDA-ARS?s Scientific Manuscript database
Rusts of wheat and barley were monitored throughout the Pacific Northwest (PNW) using trap plots and through field surveys during the 2008 growing season. Through collaborators in other states, stripe rusts of wheat and barley were monitored throughout the US. In 2008, stripe rust occurred in 18 st...
National Guard Counterdrug Programs
2001-02-14
comparisons to locate indoor Marijuana grows, outdoor infrastructure - Monitor activity at known sites - Meth labs, stash houses, marijuana grows - Real...Identifies key signatures of structures for indoor growth of cannabis - Vehiclelvessel surveillance * Video capabilities for evidence e Global Positioning...System Navigational Equipment - Identify marijuana locations for ground recovery Contact Information Voice (703) 607-5665 DSN Voice 327-5665 FAX (703
Rumen bacteria: interaction with particulate dietary components and response to dietary variation.
Cheng, K J; Akin, D E; Costerton, J W
1977-02-01
The bovine rumen resembles many other ecosystems in that its component bacterial cells are universally surrounded and protected by extracellular structures. The most common form of these structures is a fibrous carbohydrate slime that extends away from the cell and may mediate the attachment of the bacterium to a surface. This attachment is relatively specific and it may occur at the surface of the rumen epithelium or on the cell walls of a specific tissue within the plant-derived food of the animal. The production of the extracellular slime is under nutritional control and slime may be overproduced when soluble carbohydrates are available in high concentration. This overproduction results in cell-cell adhesion among the rumen bacteria with the eventual formation of slime-enclosed microcolonies and, in extreme cases, the generation of sufficient viscosity to cause feedlot bloat.
Monitoring corn and soybean crop development by remote sensing techniques
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III
1978-01-01
A system for spectrally monitoring the stages of crop development for corn and soybeans based upon red and photographic infrared spectral radiances is proposed. The red and photographic infrared spectral radiance, highly correlated with the green leaf area index or green leaf biomass, enable nondestructive monitoring of the crop canopy throughout the growing season. Five distinct periods are apparent which are related to crop development for corn and soybeans.
Medical smart textiles based on fiber optic technology: an overview.
Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano
2015-04-13
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.
Medical Smart Textiles Based on Fiber Optic Technology: An Overview
Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano
2015-01-01
The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010
Barahona, Sergio; Dorador, Cristina; Zhang, Ruiyong; Aguilar, Pablo; Sand, Wolfgang; Vera, Mario; Remonsellez, Francisco
2014-11-01
Microorganisms are used to aid the extraction of valuable metals from low-grade sulfide ores in mines worldwide, but relatively little is known about this process in cold environments. This study comprises a preliminary analysis of the bacterial diversity of the polyextremophilic acid River Aroma located in the Chilean Altiplano, and revealed that Betaproteobacteria was the most dominant bacterial group (Gallionella-like and Thiobacillus-like). Taxa characteristic of leaching environments, such Acidithiobacillus and Leptospirillum, were detected at low abundances. Also, bacteria not associated with extremely acidic, metal-rich environments were found. After enrichment in iron- and sulfur-oxidizing media, we isolated and identified a novel psychrotolerant Acidithiobacillus ferrivorans strain ACH. This strain can grow using ferrous iron, sulfur, thiosulfate, tetrathionate and pyrite, as energy sources. Optimal growth was observed in the presence of pyrite, where cultures reached a cell number of 6.5 · 10(7) cells mL(-1). Planktonic cells grown with pyrite showed the presence of extracellular polymeric substances (10 °C and 28 °C), and a high density of cells attached to pyrite grains were observed at 10 °C by electron microscopy. The attachment of cells to pyrite coupons and the presence of capsular polysaccharides were visualized by using epifluorescence microscopy, through nucleic acid and lectin staining with Syto(®)9 and TRITC-Con A, respectively. Interestingly, we observed high cell adhesion including the formation of microcolonies within 21 days of incubation at 4 °C, which was correlated with a clear induction of capsular polysaccharides production. Our data suggests that attachment to pyrite is not temperature-dependent in At. ferrivorans ACH. The results of this study highlight the potential of this novel psychrotolerant strain in oxidation and attachment to minerals under low-temperature conditions. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Budde, M. E.; Rowland, J.; Anthony, M.; Palka, S.; Martinez, J.; Hussain, R.
2017-12-01
The U.S. Geological Survey (USGS) supports the use of Earth observation data for food security monitoring through its role as an implementing partner of the Famine Early Warning Systems Network (FEWS NET). The USGS Earth Resources Observation and Science (EROS) Center has developed tools designed to aid food security analysts in developing assumptions of agro-climatological outcomes. There are four primary steps to developing agro-climatology assumptions; including: 1) understanding the climatology, 2) evaluating current climate modes, 3) interpretation of forecast information, and 4) incorporation of monitoring data. Analysts routinely forecast outcomes well in advance of the growing season, which relies on knowledge of climatology. A few months prior to the growing season, analysts can assess large-scale climate modes that might influence seasonal outcomes. Within two months of the growing season, analysts can evaluate seasonal forecast information as indicators. Once the growing season begins, monitoring data, based on remote sensing and field information, can characterize the start of season and remain integral monitoring tools throughout the duration of the season. Each subsequent step in the process can lead to modifications of the original climatology assumption. To support such analyses, we have created an agro-climatology analysis tool that characterizes each step in the assumption building process. Satellite-based rainfall and normalized difference vegetation index (NDVI)-based products support both the climatology and monitoring steps, sea-surface temperature data and knowledge of the global climate system inform the climate modes, and precipitation forecasts at multiple scales support the interpretation of forecast information. Organizing these data for a user-specified area provides a valuable tool for food security analysts to better formulate agro-climatology assumptions that feed into food security assessments. We have also developed a knowledge base for over 80 countries that provide rainfall and NDVI-based products, including annual and seasonal summaries, historical anomalies, coefficient of variation, and number of years below 70% of annual or seasonal averages. These products provide a quick look for analysts to assess the agro-climatology of a country.
Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data
Jessica Robin; Ralph Dubayah; Elena Sparrow; Elissa Levine
2008-01-01
This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region....
ERIC Educational Resources Information Center
Mooney, Paul; Lastrapes, Renée E.
2016-01-01
The amount of research evaluating the technical merits of general outcome measures of science and social studies achievement is growing. This study targeted criterion validity for critical content monitoring. Questions addressed the concurrent criterion validity of alternate presentation formats of critical content monitoring and the measure's…
There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe r...
Estes, Tammara L; Pai, Naresh; Winchell, Michael F
2016-06-01
A key factor in the human health risk assessment process for the registration of pesticides by the US Environmental Protection Agency (EPA) is an estimate of pesticide concentrations in groundwater used for drinking water. From 1997 to 2011, these estimates were obtained from the EPA empirical model SCI-GROW. Since 2012, these estimates have been obtained from the EPA deterministic model PRZM-GW, which has resulted in a significant increase in estimated groundwater concentrations for many pesticides. Historical groundwater monitoring data from the National Ambient Water Quality Assessment (NAWQA) Program (1991-2014) were compared with predicted groundwater concentrations from both SCI-GROW (v.2.3) and PRZM-GW (v.1.07) for 66 different pesticides of varying environmental fate properties. The pesticide environmental fate parameters associated with over- and underprediction of groundwater concentrations by the two models were evaluated. In general, SCI-GROW2.3 predicted groundwater concentrations were close to maximum historically observed groundwater concentrations. However, for pesticides with soil organic carbon content values below 1000 L kg(-1) and no simulated hydrolysis, PRZM-GW overpredicted, often by greater than 100 ppb. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Humfredo Marcano-Vega; Andrew Lister; Kevin Megown; Charles Scott
2016-01-01
There is a growing need within the insular Caribbean for technical assistance in planning forest-monitoring projects and data analysis. This paper gives an overview of software tools developed by the USDA Forest Serviceâs National Inventory and Monitoring Applications Center and the Remote Sensing Applications Center. We discuss their applicability in the efficient...
Young students, satellites aid understanding of climate-biosphere link
NASA Astrophysics Data System (ADS)
White, Michael A.; Schwartz, Mark D.; Running, Steven W.
Data collected by young students from kindergarten through high school are being combined with satellite data to develop a more consistent understanding of the intimate connection between climate dynamics and the terrestrial biosphere. Comparison of the two sets of data involving the onset of budburst among trees and other vegetation has been extremely encouraging.Surface-atmosphere interactions involving exchanges of carbon, water, and energy are strongly affected by interannual variability in the timing and length of the vegetation growing season, and satellite remote sensing has the unique ability to consistently monitor global spatiotemporal variability in growing season dynamics. But without a clear picture of how satellite information (Figure 1) relates to ground conditions, the application of satellite growing season estimates for monitoring of climate-vegetation interactions, calculation of energy budgets, and large-scale ecological modeling is extremely limited.The integrated phenological analysis of field data, satellite observations, and climate advocated by Schwartz [1998], for example, has been primarily limited by the lack of geographically extensive and consistently measured phenology databases.
Bater, Christopher W; Coops, Nicholas C; Wulder, Michael A; Hilker, Thomas; Nielsen, Scott E; McDermid, Greg; Stenhouse, Gordon B
2011-09-01
Critical to habitat management is the understanding of not only the location of animal food resources, but also the timing of their availability. Grizzly bear (Ursus arctos) diets, for example, shift seasonally as different vegetation species enter key phenological phases. In this paper, we describe the use of a network of seven ground-based digital camera systems to monitor understorey and overstorey vegetation within species-specific regions of interest. Established across an elevation gradient in western Alberta, Canada, the cameras collected true-colour (RGB) images daily from 13 April 2009 to 27 October 2009. Fourth-order polynomials were fit to an RGB-derived index, which was then compared to field-based observations of phenological phases. Using linear regression to statistically relate the camera and field data, results indicated that 61% (r (2) = 0.61, df = 1, F = 14.3, p = 0.0043) of the variance observed in the field phenological phase data is captured by the cameras for the start of the growing season and 72% (r (2) = 0.72, df = 1, F = 23.09, p = 0.0009) of the variance in length of growing season. Based on the linear regression models, the mean absolute differences in residuals between predicted and observed start of growing season and length of growing season were 4 and 6 days, respectively. This work extends upon previous research by demonstrating that specific understorey and overstorey species can be targeted for phenological monitoring in a forested environment, using readily available digital camera technology and RGB-based vegetation indices.
Plant Growth Module (PGM) conceptual design
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Rasmussen, Daryl
1987-01-01
The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.
J. M. Schmid; S. A. Mata; R. A. Schmidt
1991-01-01
Bark temperatures on the north and south sides of five ponderosa pines (Pinus ponderosa Laws.) in each of four growing stock levels in two areas in the Black Hills of South Dakota were monitored periodically from May through August 1989. Temperatures were significantly different among growing stock levels and between sides of the tree. The magnitude of differences...
USDA-ARS?s Scientific Manuscript database
The effect of stable flies on growing calves was examined using modified fly cages attached to the animals. Dry matter intake and digestibility as well as behavioral responses of the animals were monitored. Nine Holstein calves, individually housed in 3 x 3 m pens, were exposed to three levels of st...
Ultrasonic Structural Health Monitoring to Assess the Integrity of Spinal Growing Rods In Vitro.
Oetgen, Matthew E; Goodley, Addison; Yoo, Byungseok; Pines, Darryll J; Hsieh, Adam H
2016-01-01
Rod fracture is a common complication of growing rods and can result in loss of correction, patient discomfort, and unplanned revision surgery. The ability to quantitate rod integrity at each lengthening would be advantageous to avoid this complication. We investigate the feasibility of applying structural health monitoring to evaluate the integrity of growing rods in vitro. Single-rod titanium 4.5-mm growing rod constructs (n = 9), one screw proximally and one distally connected by in-line connectors, were assembled with pedicle screws fixed in polyethylene blocks. Proximal and distal ends were loaded and constructs subjected to cyclic axial compression (0-100 N at 1 Hz), with incrementally increasing maximum compressive loads of 10 N every 9k cycles until failure. Four piezoceramic transducers (PZTs) were mounted along the length the constructs to interrogate the integrity of the rods with an ultrasonic, guided lamb wave approach. Every 9k cycles, an 80 V excitatory voltage was applied to a PZT to generate high-frequency vibrations, which, after propagating through the construct, was detected by the remaining PZTs. Amplitude differences between pre- and postload waveform signals were calculated until rod failure. Average construct lifetime was 88,991 ± 13,398 cycles. All constructs failed due to rod fracture within 21 mm (mean = 15 ± 4.5 mm) of a screw or connector. Amplitude differences between pre- and postload increased in a stepwise fashion as constructs were cycled. Compared to baseline, we found a 1.8 ± 0.6-fold increase in amplitude 18k cycles before failure, a 2.2 ± 1.0-fold increase in amplitude 9k cycles before failure, and a 2.75 ± 1.5-fold increase in amplitude immediately before rod fracture. We describe a potential method for assessing the structural integrity of growing rods using ultrasonic structural health monitoring. These preliminary data demonstrate the ability of periodic rod assessment to detect structural changes in cycled growing rods, which appear to correspond to subclinical rod fatigue before rod fracture. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Corporation for Public Broadcasting, Washington, DC.
In 1996, membership or subscription contributions provided 23% of public broadcasting's $1.9 billion income. Detailed information about the contributing audience can help managers maintain and grow member support. As part of the annual Yankelovich Monitor survey, the Corporation for Public Broadcasting gathered extensive demographic, attitudinal,…
USDA-ARS?s Scientific Manuscript database
California’s Central Valley grows a significant fraction of grapes used for wine production in the United States. With increasing vineyard acreage, reduced water availability in much of California, and competing water use interests, it is critical to be able to monitor regional water use, or evapotr...
ERIC Educational Resources Information Center
Witmer, Sara E.; Nasamran, Amy; Parikh, Purvi J.; Schmitt, Heather A.; Clinton, Marianne C.
2015-01-01
Despite growing knowledge of the effectiveness of various interventions for children with autism spectrum disorders (ASD), it is never clear whether a particular intervention will be effective for a specific child with ASD. Careful monitoring of an individual child's progress is necessary to know whether an intervention is effective. In this…
USDA-ARS?s Scientific Manuscript database
Airborne imagery has been successfully used for mapping cotton root rot within cotton fields toward the end of the growing season. To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusio...
4.0 Measuring and monitoring forest carbon stocks and fluxes
Jennifer C. Jenkins; Peter S. Murdoch; Richard A. Birdsey; John L. Hom
2008-01-01
Measuring and monitoring forest productivity and carbon (C) is of growing concern for natural resource managers and policymakers. With the Delaware River Basin (DRB) as a pilot region, this subproject of the CEMRI sought to: improve the ability of the ground-based Forest Inventory and Analysis (FIA) networks to more completely assess forest C stocks and fluxes,...
Improved Flotation Technique for Microscopy of In Situ Soil and Sediment Microorganisms
Bone, T. L.; Balkwill, D. L.
1986-01-01
An improved flotation method for microscopy of in situ soil and sediment microorganisms was developed. Microbial cells were released into gellike flotation films that were stripped from soil and sediment aggregates as these aggregates were submerged in 0.5% solutions of polyvinylpyrrolidone. The use of polyvinylpyrrolidone solutions instead of water facilitated the release of films from saturated samples such as aquifer sediments as well as from typical surface soils. In situ microbial morphological characteristics could then be surveyed rapidly by light microscopy of films stained with acridine orange. This method effectively determined the ranges of morphological diversity in a variety of sample types. It also detected microcolonies and other spatial relationships among microbial cells. Only a small fraction (3.4 to 10.1%) of the microflora was released into the flotation films, but plating and direct evaluations by microscopy showed that this fraction was representative of the total population. Images PMID:16347005
Pili-taxis: Clustering of Neisseria gonorrhoeae bacteria
NASA Astrophysics Data System (ADS)
Taktikos, Johannes; Zaburdaev, Vasily; Biais, Nicolas; Stark, Holger; Weitz, David A.
2012-02-01
The first step of colonization of Neisseria gonorrhoeae bacteria, the etiological agent of gonorrhea, is the attachment to human epithelial cells. The attachment of N. gonorrhoeae bacteria to surfaces or other cells is primarily mediated by filamentous appendages, called type IV pili (Tfp). Cycles of elongation and retraction of Tfp are responsible for a common bacterial motility called twitching motility which allows the bacteria to crawl over surfaces. Experimentally, N. gonorrhoeae cells initially dispersed over a surface agglomerate into round microcolonies within hours. It is so far not known whether this clustering is driven entirely by the Tfp dynamics or if chemotactic interactions are needed. Thus, we investigate whether the agglomeration may stem solely from the pili-mediated attraction between cells. By developing a statistical model for pili-taxis, we try to explain the experimental measurements of the time evolution of the mean cluster size, number of clusters, and area fraction covered by the cells.
Protein patterns of black fungi under simulated Mars-like conditions
NASA Astrophysics Data System (ADS)
Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja
2014-05-01
Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.
Protein patterns of black fungi under simulated Mars-like conditions
Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja
2014-01-01
Two species of microcolonial fungi – Cryomyces antarcticus and Knufia perforans - and a species of black yeasts–Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure. PMID:24870977
Early and late mammalian responses to heavy charged particles
NASA Technical Reports Server (NTRS)
Ainsworth, E. J.
1986-01-01
This overview summarizes murine results on acute lethality responses, inactivation of marrow CFU-S and intestinal microcolonies, testes weight loss, life span shortening, and posterior lens opacification in mice irradiated with heavy charged particles. RBE-LET relationships for these mammalian responses are compared with results from in vitro studies. The trend is that the maximum RBE for in vivo responses tends to be lower and occurs at a lower LET than for inactivation of V79 and T-1 cells in culture. Based on inactivation cross sections, the response of CFU-S in vivo conforms to expectations from earlier studies with prokaryotic systems and mammalian cells in culture. Effects of heavy ions are compared with fission spectrum neutrons, and the results are consistent with the interpretation that RBEs are lower than for fission neutrons at about the same LET, probably due to differences in track structure.
Protein patterns of black fungi under simulated Mars-like conditions.
Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja
2014-05-29
Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.
Ikram, Aamer; Coban, Ahmet Yilmaz; Martin, Anandi
2012-01-01
In this study, we evaluated the performance of blood agar (by macroscopic growth) and nutrient agar (by a microcolony detection method) for drug susceptibility testing of Mycobacterium tuberculosis against rifampin (RIF) and isoniazid (INH), using 67 smear-positive sputum specimens. The direct proportion method on Lowenstein-Jensen (LJ) medium was used as the “gold standard.” Compared with LJ medium, results for both media were in 100% agreement for RIF, while for INH the agreement levels for blood agar and nutrient agar were 98% and 95%, respectively. Within 2 weeks, 100% of specimens yielded results on blood agar, while 96.8% of specimens yielded results on nutrient agar. Our study showed that blood agar and nutrient agar can be used as alternative media for direct susceptibility testing of RIF and INH, especially in resource-poor settings. PMID:22357498
Satti, Luqman; Ikram, Aamer; Coban, Ahmet Yilmaz; Martin, Anandi
2012-05-01
In this study, we evaluated the performance of blood agar (by macroscopic growth) and nutrient agar (by a microcolony detection method) for drug susceptibility testing of Mycobacterium tuberculosis against rifampin (RIF) and isoniazid (INH), using 67 smear-positive sputum specimens. The direct proportion method on Lowenstein-Jensen (LJ) medium was used as the "gold standard." Compared with LJ medium, results for both media were in 100% agreement for RIF, while for INH the agreement levels for blood agar and nutrient agar were 98% and 95%, respectively. Within 2 weeks, 100% of specimens yielded results on blood agar, while 96.8% of specimens yielded results on nutrient agar. Our study showed that blood agar and nutrient agar can be used as alternative media for direct susceptibility testing of RIF and INH, especially in resource-poor settings.
Raymond, Arthur; Mercade-Loubière, Myriam; Salvador-Cartier, Christel; Ringot, Bélinda; Léonard, Renaud; Fourquaux, Isabelle; Ait-Belgnaoui, Afifa; Loubière, Pascal; Théodorou, Vassilia; Mercier-Bonin, Muriel
2015-01-01
The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2. PMID:26367538
Da Silva, Stéphanie; Robbe-Masselot, Catherine; Raymond, Arthur; Mercade-Loubière, Myriam; Salvador-Cartier, Christel; Ringot, Bélinda; Léonard, Renaud; Fourquaux, Isabelle; Ait-Belgnaoui, Afifa; Loubière, Pascal; Théodorou, Vassilia; Mercier-Bonin, Muriel
2015-01-01
The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2.
Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy
Choe, Regine; Durduran, Turgut
2012-01-01
Recent advances in the use of diffuse optical techniques for monitoring the hemodynamic, metabolic and physiological signatures of the neoadjuvant breast cancer therapy effectiveness is critically reviewed. An extensive discussion of the state-of-theart diffuse optical mammography is presented alongside a discussion of the current approaches to breast cancer therapies. Overall, the diffuse optics field is growing rapidly with a great deal of promise to fill an important niche in the current approaches to monitor, predict and personalize neoadjuvant breast cancer therapies. PMID:23243386
2013-03-01
Business Engineering, Liu et al. (2010) presented research demonstrating that businesses are increasingly over tasked to manage the growing equipment...Android, and Research in Motion’s BlackBerry ). Monitoring mission-critical applications for updates and compatibility is crucial to ensure...private sector has seen the CIO’s role increase into C- level leadership, growing from initial responsibilities of overseeing data processing, then 31
Browse evaluation of tall shrubs based on the direct measurement of a management objective
Richard B. Keigley; Michael R. Frisina
2008-01-01
The monitoring of Geyer willow was based on the following management objective: Browsing will prevent fewer than 50 percent of Geyer willow shrubs from growing taller than 3 m. Three questions were addressed: (1) Is browsing a potential factor? (2) If so, can young plants grow taller than 3 meters? (3) If not, is browsing the dominant factor? All shrubs were intensely...
Updating the southern nonnative plant watch list: the future of NNIP Monitoring in the south
Christopher M. Oswalt; Sonja N. Oswalt; Lewis Zimmerman
2012-01-01
The Southern Research Station (SRS) Forest Inventory and Analysis (FIA) Program began monitoring nonnative invasive plant (NNIP) species in 2001 in response to a growing desire to track potential forest health threats on United States forest land. The SRS-FIA NNIP program has produced significant results and contributed considerably to the understanding of the...
Design of an ecological monitoring strategy for the Forest Plan in the Pacific Northwest
Paul L. Ringold; Barry Mulder; Jim Alegria; Raymond L. Czaplewski; Tim Tolle; Kelly Burnett
2003-01-01
The growing literature on ecosystem management describes an adaptive system in which monitoring measures progress toward goals, increases our knowledge, and improves our plans (e.g., Holling 1978; Walters 1986; Duffus III 1994; Everett et al. 1994; Grumbine 1994; Bormann et al. 1995; Gunderson et al. 1995; Interagency Ecosystem Management Task Force 1995; Montgomery et...
Fourteen years of forage monitoring on the California Central Coast shows tremendous variation
Royce Larsen; Karl Striby; Marc Horney
2015-01-01
To better understand forage production (above ground biomass) and precipitation patterns in the Central Coast region of California, the first in a growing network of primary production monitoring sites were established in 2001. The California Central Coast has a Mediterranean climate with cool, moist winters and hot, dry summers, and is dominated by annual grasslands...
Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery
NASA Astrophysics Data System (ADS)
Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang
2015-01-01
Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.
Hockenberry, Alyson M; Hutchens, Danielle M; Agellon, Al; So, Magdalene
2016-12-06
Retraction of the type IV pilus (Tfp) mediates DNA uptake, motility, and social and infection behavior in a wide variety of prokaryotes. To date, investigations into Tfp retraction-dependent activities have used a mutant deleted of PilT, the ATPase motor protein that causes the pilus fiber to retract. ΔpilT cells are nontransformable, nonmotile, and cannot aggregate into microcolonies. We tested the hypothesis that these retraction-dependent activities are sensitive to the strength of PilT enzymatic activity by using the pathogen Neisseria gonorrhoeae as a model. We constructed an N. gonorrhoeae mutant with an amino acid substitution in the PilT Walker B box (a substitution of cysteine for leucine at position 201, encoded by pilT L201C ). Purified PilT L201C forms a native hexamer, but mutant hexamers hydrolyze ATP at half the maximal rate. N. gonorrhoeae pilT L201C cells produce Tfp fibers, crawl at the same speed as the wild-type (wt) parent, and are equally transformable. However, the social behavior of pilT L201C cells is intermediate between the behaviors of wt and ΔpilT cells. The infection behavior of pilT L201C is also defective, due to its failure to activate the epidermal growth factor receptor (EGFR)-heparin-binding EGF-like growth factor (HB-EGF) pathway. Our study indicates that pilus retraction, per se, is not sufficient for N. gonorrhoeae microcolony formation or infectivity; rather, these activities are sensitive to the strength of PilT enzymatic activity. We discuss the implications of these findings for Neisseria pathogenesis in the context of mechanobiology. Type IV pili are fibers expressed on the surface of many bacteria. Neisseria gonorrhoeae cells crawl, take up DNA, and communicate with each other and with human cells by retracting these fibers. Here, we show that an N. gonorrhoeae mutant expressing an enzymatically weakened type IV pilus retraction motor still crawls and takes up DNA normally. However, mutant cells exhibit abnormal social behavior, and they are less infective because they fail to activate the epidermal growth factor receptor. Our study shows that N. gonorrhoeae social and infection behaviors are sensitive to the strength of the retraction motor enzyme. Copyright © 2016 Hockenberry et al.
NASA Astrophysics Data System (ADS)
Becker-Reshef, I.; Justice, C. O.
2012-12-01
Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through leveraging advances in the research domain and in satellite technologies, and integrating these into the existing operational monitoring systems.
An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions
NASA Astrophysics Data System (ADS)
Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.
2014-12-01
Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.
Ozone Gardens for the Citizen Scientist
NASA Technical Reports Server (NTRS)
Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily
2016-01-01
NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.
NASA Astrophysics Data System (ADS)
Weber, Hans J.
1995-07-01
Nondestructive evaluation has been used in civil aviation for 50 years. Until the arrival of the jet era it was mostly applied to component inspection. Since the damage-tolerant design philosophy was introduced by mandate for large transport aircraft, it has become an integral part of their design and maintenance. In the near future its role in the maintenance of aging small transport aircraft is expected to grow significantly. The most important factor contributing to the growing importance of NDE is the fact that the industry has been operating its aircraft much longer than originally envisioned, making it necessary to carefully monitor their structural condition to assure their airworthiness. NDE is helping making it economically feasible to operate aircraft for extended life times. Another major factor is the increased use of advanced materials, such as composites. Again, monitoring has to assure integrity. More recently, in an industry which has become highly competitive, NDE is becoming an important tool in the quest for reducing maintenance costs. The importance of NDE is expected to grow further.
Ono, Hiroshi; Nishio, Shoko; Tsurii, Jun; Kawamoto, Tetsuhiro; Sonomoto, Kenji; Nakayama, Jiro
2014-11-01
Nukadoko is a fermented rice bran mash traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko depends on natural fermentation without using starter cultures. Here, we monitored chemical and microbiological changes in the initial batch fermentation of nukadoko. Nukadoko samples were prepared by spontaneous fermentation of four different brands of rice bran, and microbiome dynamics were analyzed for 2 months. In the first week, non-Lactobacillales lactic acid bacteria (LAB) species, which differed among the samples, grew proportionally to pH decrease and lactate increase. Thereafter, Lactobacillus plantarum started growing and consumed residual sugars, causing further lactate increase in nukadoko. Finally, microbial communities in all tested nukadoko samples were dominated by L. plantarum. Taken together, our results suggest that the mixture of the fast-growing LAB species and slow-growing L. plantarum may be used as a suitable starter culture to promote the initial fermentation of nukadoko. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
1992-09-01
deformations in underground mines has been developed in Canada in cooperation with the Canada Centre for Mineral and Energy Technology ( CANMET ). The... technological developments in both geodetic and geotechnical instrumentation, at a cost one may achieve almost any, practically needed, instrumental...Due to the ever growing technological progress in all fields of engineering and, connected with it, the growing demand for higher accuracy, efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.
2011-09-30
Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guidedmore » wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.« less
Stream Clustering of Growing Objects
NASA Astrophysics Data System (ADS)
Siddiqui, Zaigham Faraz; Spiliopoulou, Myra
We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of
Engine health monitoring: An advanced system
NASA Technical Reports Server (NTRS)
Dyson, R. J. E.
1981-01-01
The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.
Intraoperative cranial nerve monitoring.
Harper, C Michel
2004-03-01
The purpose of intraoperative monitoring is to preserve function and prevent injury to the nervous system at a time when clinical examination is not possible. Cranial nerves are delicate structures and are susceptible to damage by mechanical trauma or ischemia during intracranial and extracranial surgery. A number of reliable electrodiagnostic techniques, including nerve conduction studies, electromyography, and the recording of evoked potentials have been adapted to the study of cranial nerve function during surgery. A growing body of evidence supports the utility of intraoperative monitoring of cranial nerve nerves during selected surgical procedures.
Optimized Temporal Monitors for SystemC
NASA Technical Reports Server (NTRS)
Tabakov, Deian; Rozier, Kristin Y.; Vardi, Moshe Y.
2012-01-01
SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead.
Liu, Qingfang; Wang, Rui; Li, Rujian; Hu, Yaxian; Guo, Shengli
2016-01-01
Nitrogen (N) fertilization has a considerable effect on food production and carbon cycling in agro-ecosystems. However, the impacts of N fertilization rates on the temperature sensitivity of soil respiration (Q10) were controversial. Five N rates (N0, N45, N90, N135, and N180) were applied to a continuous winter wheat (Triticum aestivum L.) crop on the semi-arid Loess Plateau, and the in situ soil respiration was monitored during five consecutive years from 2008 to 2013. During the growing season, the mean soil respiration rates increased with increasing N fertilization rates, peaking at 1.53 μmol m−2s−1 in the N135 treatment. A similar dynamic pattern was observed during the non-growing season, yet on average with 7.3% greater soil respiration rates than the growing season. In general for all the N fertilization treatments, the mean Q10 value during the non-growing season was significantly greater than that during the growing season. As N fertilization rates increased, the Q10 values did not change significantly in the growing season but significantly decreased in the non-growing season. Overall, N fertilization markedly influenced soil respirations and Q10 values, in particular posing distinct effects on the Q10 values between the growing and non-growing seasons. PMID:27992576
1998-12-01
Test engineers, TK Pedergrass and Dave McIntosh, are growing multiple dendrites in an undercooled melt of ultra pure succinonitrile (SCN). Images and temperature measurements will give Dr. Christoph Beckerman, the EDSE Principal Investigator, information on the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically. This benchmark data will be used to test and develop equiaxed dendritic solidification models. The monitors show both the 4 stinger and 2 stinger chambers that are placed in the isothermal bath for testing.
Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review.
Wang, Hong; Bédard, Emilie; Prévost, Michèle; Camper, Anne K; Hill, Vincent R; Pruden, Amy
2017-06-15
Opportunistic premise (i.e., building) plumbing pathogens (OPPPs, e.g., Legionella pneumophila, Mycobacterium avium complex, Pseudomonas aeruginosa, Acanthamoeba, and Naegleria fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a major challenge to standard drinking water monitoring practices. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating an impediment to their parallel detection. The aim of this critical review is to evaluate the state of the science of monitoring OPPPs and identify a path forward for their parallel detection and quantification in a manner commensurate with the need for reliable data that is informative to risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs towards standardized approaches are identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing
NASA Astrophysics Data System (ADS)
Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.
2017-01-01
Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.
Satellite-based monitoring of cotton evapotranspiration
NASA Astrophysics Data System (ADS)
Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria
2016-04-01
Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.
Methodological Approaches for Monitoring Opportunistic Pathogens in Premise Plumbing: A Review
Wang, Hong; Bedard, Emilie; Prevost, Michele; Camper, Anne K.; Hill, Vincent R.; Pruden, Amy
2017-01-01
Opportunistic pathogens inhabiting premise (i.e., building) plumbing (OPPPs, e.g., L. pneumophila, M. avium complex, P. aeruginosa, Acanthamoeba, and N. fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a significant challenge to common and effective monitoring strategies. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating a significant impediment to their parallel detection. The aim of this critical review is to synthesize the state of the science of monitoring OPPPs and to identify a path forward for their simultaneous detection and quantification in a manner commensurate with the need for reliable data to inform risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs are identified. PMID:28390237
Monitoring food safety violation reports from internet forums.
Kate, Kiran; Negi, Sumit; Kalagnanam, Jayant
2014-01-01
Food-borne illness is a growing public health concern in the world. Government bodies, which regulate and monitor the state of food safety, solicit citizen feedback about food hygiene practices followed by food establishments. They use traditional channels like call center, e-mail for such feedback collection. With the growing popularity of Web 2.0 and social media, citizens often post such feedback on internet forums, message boards etc. The system proposed in this paper applies text mining techniques to identify and mine such food safety complaints posted by citizens on web data sources thereby enabling the government agencies to gather more information about the state of food safety. In this paper, we discuss the architecture of our system and the text mining methods used. We also present results which demonstrate the effectiveness of this system in a real-world deployment.
A soil water based index as a suitable agricultural drought indicator
NASA Astrophysics Data System (ADS)
Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.
2015-03-01
Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.
Long-term residual dry matter mapping for monitoring California hardwood rangelands
Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen
2002-01-01
Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous seasonâs use and can be used to describe the health...
Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data
NASA Astrophysics Data System (ADS)
Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.
Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions
NASA Astrophysics Data System (ADS)
Fusilli, Lorenzo; Cavalli, Rosa Maria; Laneve, Giovanni; Pignatti, Stefano; Santilli, Giancarlo; Santini, Federico
2010-05-01
Remote sensing allows multi-temporal mapping and monitoring of large water bodies. The importance of remote sensing for wetland and inland water inventory and monitoring at all scales was emphasized several times by the Ramsar Convention on Wetlands and from EU projects like SALMON and ROSALMA, e.g. by (Finlayson et al., 1999) and (Lowry and Finlayson, 2004). This paper aims at assessing the capability of time series of satellite imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the macrophytes growing in order to support the monitor and management of the lake Victoria water resources. The lake Victoria coastal areas are facing a number of challenges related to water resource management which include growing population, water scarcity, climate variability and water resource degradation, invasive species, water pollution. The proliferation of invasive plants and aquatic weeds, is of growing concern. In particular, let us recall some of the problems caused by the aquatic weeds growing: Ø interference with human activities such as fishing, and boating; Ø inhibition or interference with a balanced fish population; Ø fish killing due to removal of too much oxygen from the water; Ø production of quiet water areas that are ideal for mosquito breeding. In this context, an integrated use of medium/high resolution images from sensors like MODIS, ASTER, LANDSAT/TM and whenever available CHRIS offers the possibility of creating a congruent time series allowing the analysis of the floating vegetation dynamic on an extended temporal basis. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution, further its spatial resolution can results not always adequate to map the extension of floating plants. Therefore, the integrated use of sensors with different spatial resolution, were used to map across seasons the evolution of the phenomena. The integrated use of satellite resources allowed the estimate of the temporal variability of physical parameters that were used to i) sample the spatio-temporal distribution of the whole floating vegetation (i.e. native vegetation and weed) and ii) assess the seasonal recurrence of the abnormal weeds grow, as well as, their possible relation with the hydrological regimes of the rivers. The paper describes how the 2000 - 2009 MODIS images time series, were analysed (navigated and processed) to derive i) the map the floating vegetation on the test area and ii) identify the areas more interested by the growing iii) to discriminate, whenever possible, according to the spectral and spatial resolution of the sensor applied (i.e. LANDSAT, ASTER, CHRIS), the different vegetation species in order to discriminate the weeds from the floating vegetation. The spectral identification of the different species was performed by exploiting the results of a field campaign performed in the past along the Kenyan coastal areas devoted to define a data base of spectral signatures of the main species. Spectral information was treated to define indexes and spectral analysis procedure customized to multispectral high resolution satellite data. Moreover, the results of the images time series has been analysed to identify a possible definition of the temporal occurrence of the floating vegetation growing considering both the natural phenomenological cycles and the conditions related to the abnormal growing. These results, whenever related to ancillary hydrological information (e.g. the amount of rain), they have shown that the synergy of MODIS images time series with lower temporal frequency time series imagery is a powerful tool to monitor the lake Victoria ecosystem and to follow the floating vegetation extension and even to foresee the possibility to set up a model for the abnormal vegetation growing.
Establishing a national biological laboratory safety and security monitoring program.
Blaine, James W
2012-12-01
The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.
Elbing, Karen; Brent, Roger
2002-08-01
The procedure for inoculating overnight (starter) cultures of E. coli from a single colony is described along with considerations for growing larger cultures. Also included are two methods for monitoring cell growth using a spectrophotometer or a hemacytometer.
Browse evaluation of tall shrubs based on direct measurement of a management objective
Keigley, R.B.; Frisina, M.R.; Kitchen, Stanley G.; Pendleton, Rosemary L.; Monaco, Thomas A.; Vernon, Jason
2008-01-01
The monitoring of Geyer willow was based on the following management objective: Browsing will prevent fewer than 50 percent of Geyer willow shrubs from growing taller than 3 m . Three questions were addressed: (1) Is browsing a potential factor? (2) If so, can young plants grow taller than 3 meters? (3) If not, is browsing the dominant factor? All shrubs were intensely browsed. With a post-browsing growth rate of 5.0 cm per yr, no shrub could grow 3 m tall. Analyses of stem growth rate excluded dominant roles for climate and plant vigor. Browsing and stem age were the dominant factors that limited growth to 3 m tall.
Using Landsat digital data to detect moisture stress in corn-soybean growing regions
NASA Technical Reports Server (NTRS)
Thompson, D. R.; Wehmanen, O. A.
1980-01-01
As a part of a follow-on study to the moisture stress detection effort conducted in the Large Area Crop Inventory Experiment (LACIE), a technique utilizing transformed Landsat digital data was evaluated for detecting moisture stress in humid growing regions using sample segments from Iowa, Illinois, and Indiana. At known growth stages of corn and soybeans, segments were classified as undergoing moisture stress or not undergoing stress. The remote-sensing-based information was compared to a weekly ground-based index (Crop Moisture Index). This comparison demonstrated that the remote sensing technique could be used to monitor the growing conditions within a region where corn and soybeans are the major crop.
Design of wearable health monitoring device
NASA Astrophysics Data System (ADS)
Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy
2018-02-01
Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.
Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.
Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W
2016-05-04
It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change.
Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review
Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W
2016-01-01
Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). Conclusions There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change. PMID:27145905
Pathogen detection using evanescent-wave fiber optic biosensor
NASA Astrophysics Data System (ADS)
Ferreira, Aldo P.; Werneck, Marcelo M.; Ribeiro, R. M.; Lins, U. G.
1999-07-01
This paper describes a real time optical biosensor that utilizes the evanescent field technique for monitoring microorganisms in hospital environment. The biosensor monitors interactions between the analytic (bacteria) and the evanescent field of an optical fiber passing through the culture media where the bacteria grows. The objective is to monitor atmospheres in hospital areas for the Staphylococcus aureus and Streptococcus pneumonia. The results lead us the conclusion that this kind of sensor presents quick response, good performance, easy of construction and low cost. We expect that the sensor will be of great help in controlling the hospital environment.
The influence of bacteria on struvite crystal habit and its importance in urinary stone formation
NASA Astrophysics Data System (ADS)
Clapham, L.; McLean, R. J. C.; Nickel, J. C.; Downey, J.; Costerton, J. W.
1990-07-01
Infection-induced urinary stones form as a result of a urinary tract infection by urease-producing bacteria. These stones are not totally crystalline in nature but rather consist of an agglomeration of bacteria, organic matrix, and crystal of struvite (MgNH 4PO 4· 6H 2O). Crystal formation is related to the ability of the bacteria to effect an increase in the urine pH. Another equally important bacterial role lies in their formation of a 'biofilm' which later becomes the organic matrix constituent of the stone. Results of the present in vitro study indicate that crystals are formed more readily if produced within the bacterial biofilm than in the surrounding urine. It is proposed that supersaturation, due in part to a bacterial-induced pH increase and in part to the metal binding tendency of the biofilm, leads to crystal formation via a gel growth mechanism within the biofilm itself. In time further bacterial cell division, microcolony.
Effect of retinol on the hyperthermal response of normal tissue in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, M.A.; Marigold, J.C.L.; Hume, S.P.
The effect of prior administration of retinol, a membrane labilizer, on the in vivo hyperthermal response of lysosomes was investigated in the mouse spleen using a quantitative histochemical assay for the lysosomal enzyme acid phosphatase. A dose of retinol which had no effect when given alone enhanced the thermal response of the lysosome, causing an increase in lysosomal membrane permeability. In contrast, the same dose of retinol had no effect on the gross hyperthermal response of mouse intestine; a tissue which is relatively susceptible to hyperthermia. Thermal damage to intestine was assayed directly by crypt loss 1 day after treatmentmore » or assessed as thermal enhancement of x-ray damage by counting crypt microcolonies 4 days after a combined heat and x-ray treatment. Thus, although the hyperthermal response of the lysosome could be enhanced by the administration of retinol, thermal damage at a gross tissue level appeared to be unaffected, suggesting that lysosomal membrane injury is unlikely to be a primary event in hyperthermal cell killing.« less
Slowdown of surface diffusion during early stages of bacterial colonization
NASA Astrophysics Data System (ADS)
Vourc'h, T.; Peerhossaini, H.; Léopoldès, J.; Méjean, A.; Chauvat, F.; Cassier-Chauvat, C.
2018-03-01
We study the surface diffusion of the model cyanobacterium Synechocystis sp. PCC6803 during the incipient stages of cell contact with a glass surface in the dilute regime. We observe a twitching motility with alternating immobile tumble and mobile run periods, resulting in a normal diffusion described by a continuous-time random walk with a coefficient of diffusion D . Surprisingly, D is found to decrease with time down to a plateau. This is observed only when the cyanobacterial cells are able to produce released extracellular polysaccharides, as shown by a comparative study between the wild-type strain and various polysaccharides-depleted mutants. The analysis of the trajectories taken by the bacterial cells shows that the temporal characteristics of their intermittent motion depend on the instantaneous fraction of visited sites during diffusion. This describes quantitatively the time dependence of D , related to the progressive surface coverage by the polysaccharides. The observed slowdown of the surface diffusion may constitute a basic precursor mechanism for microcolony formation and provides clues for controlling biofilm formation.
Ju, Jong Il; Ko, Jung-Moon; Kim, So Hyeon; Baek, Ju Yeoul; Cha, Hyeon-Cheol; Lee, Sang Hoon
2006-08-01
In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 microm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.
Parasite infection accelerates age polyethism in young honey bees
Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.
2016-01-01
Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310
The physical boundaries of public goods cooperation between surface-attached bacterial cells
Weigert, Michael; Kümmerli, Rolf
2017-01-01
Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. Here, we address this issue by studying the sharing of iron-scavenging siderophores between surface-attached microcolonies of the bacterium Pseudomonas aeruginosa. Using single-cell fluorescent microscopy, we show that siderophores, secreted by producers, quickly reach non-producers within a range of 100 µm, and significantly boost their fitness. Producers in turn respond to variation in sharing efficiency by adjusting their pyoverdine investment levels. These social effects wane with larger cell-to-cell distances and on hard surfaces. Thus, our findings reveal the boundaries of compound sharing, and show that sharing is particularly relevant between nearby yet physically separated bacteria on soft surfaces, matching realistic natural conditions such as those encountered in soft tissue infections. PMID:28701557
Parasite infection accelerates age polyethism in young honey bees.
Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C
2016-02-25
Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.
Tuning cancer fate: the unremitting role of host immunity
Molon, B.; Viola, A.
2017-01-01
Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers. PMID:28404796
Is non-host pollen suitable for generalist bumblebees?
Vanderplanck, Maryse; Decleves, Sylvain; Roger, Nathalie; Decroo, Corentin; Caulier, Guillaume; Glauser, Gaetan; Gerbaux, Pascal; Lognay, Georges; Richel, Aurore; Escaravage, Nathalie; Michez, Denis
2018-04-01
Current evidence suggests that pollen is both chemically and structurally protected. Despite increasing interest in studying bee-flower networks, the constraints for bee development related to pollen nutritional content, toxicity and digestibility as well as their role in the shaping of bee-flower interactions have been poorly studied. In this study we combined bioassays of the generalist bee Bombus terrestris on pollen of Cirsium, Trifolium, Salix, and Cistus genera with an assessment of nutritional content, toxicity, and digestibility of pollen. Microcolonies showed significant differences in their development, non-host pollen of Cirsium being the most unfavorable. This pollen was characterized by the presence of quite rare δ7-sterols and a low digestibility. Cirsium consumption seemed increase syrup collection, which is probably related to a detoxification mixing behavior. These results strongly suggest that pollen traits may act as drivers of plant selection by bees and partly explain why Asteraceae pollen is rare in bee generalist diet. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Raman spectroscopic studies on bacteria
NASA Astrophysics Data System (ADS)
Maquelin, Kees; Choo-Smith, Lin-P'ing; Endtz, Hubert P.; Bruining, Hajo A.; Puppels, Gerwin J.
2000-11-01
Routine clinical microbiological identification of pathogenic micro-organisms is largely based on nutritional and biochemical tests. Laboratory results can be presented to a clinician after 2 - 3 days for most clinically relevant micro- organisms. Most of this time is required to obtain pure cultures and enough biomass for the tests to be performed. In the case of severely ill patients, this unavoidable time delay associated with such identification procedures can be fatal. A novel identification method based on confocal Raman microspectroscopy will be presented. With this method it is possible to obtain Raman spectra directly from microbial microcolonies on the solid culture medium, which have developed after only 6 hours of culturing for most commonly encountered organisms. Not only does this technique enable rapid (same day) identifications, but also preserves the sample allowing it to be double-checked with traditional tests. This, combined with the speed and minimal sample handling indicate that confocal Raman microspectroscopy has much potential as a powerful new tool in clinical diagnostic microbiology.
Becherelli, Marco; Manetti, Andrea G O; Buccato, Scilla; Viciani, Elisa; Ciucchi, Laura; Mollica, Giulia; Grandi, Guido; Margarit, Imma
2012-01-01
Summary Gram-positive pili are known to play a role in bacterial adhesion to epithelial cells and in the formation of biofilm microbial communities. In the present study we undertook the functional characterization of the pilus ancillary protein 1 (AP1_M6) from Streptococcus pyogenes isolates expressing the FCT-1 pilus variant, known to be strong biofilm formers. Cell binding and biofilm formation assays using S. pyogenes in-frame deletion mutants, Lactococcus expressing heterologous FCT-1 pili and purified recombinant AP1_M6, indicated that this pilin is a strong cell adhesin that is also involved in bacterial biofilm formation. Moreover, we show that AP1_M6 establishes homophilic interactions that mediate inter-bacterial contact, possibly promoting bacterial colonization of target epithelial cells in the form of three-dimensional microcolonies. Finally, AP1_M6 knockout mutants were less virulent in mice, indicating that this protein is also implicated in GAS systemic infection. PMID:22320452
High-throughput automated microfluidic sample preparation for accurate microbial genomics
Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B.; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P.; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C.
2017-01-01
Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications. PMID:28128213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Paul G.
A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major studymore » published in March 2012 by the US National Academy of Sciences.« less
Quantitative sensing of bridges, railways, and tunnels with autonomous unmanned aerial vehicles.
DOT National Transportation Integrated Search
2017-05-04
Managing a growing population of deteriorated transportation infrastructure : systems (i.e. bridges, railways, tunnels) is one of biggest challenges faced by the nation. : Traditional inspection and monitoring techniques (e.g., visual inspection, mec...
Soil conservation applications with C-band SAR
NASA Technical Reports Server (NTRS)
Brisco, B.; Brown, R. J.; Naunheimer, J.; Bedard, D.
1992-01-01
Soil conservation programs are becoming more important as the growing human population exerts greater pressure on this non-renewable resource. Indeed, soil degradation affects approximately 10 percent of Canada's agricultural land with an estimated loss of 6,000 hectares of topsoil annually from Ontario farmland alone. Soil loss not only affects agricultural productivity but also decreases water quality and can lead to siltation problems. Thus, there is a growing demand for soil conservation programs and a need to develop an effective monitoring system. Topography and soil type information can easily be handled within a geographic information system (GIS). Information about vegetative cover type and surface roughness, which both experience considerable temporal change, can be obtained from remote sensing techniques. For further development of the technology to produce an operational soil conservation monitoring system, an experiment was conducted in Oxford County, Ontario which investigated the separability of fall surface cover type using C-band Synthetic Aperture Radar (SAR) data.
Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index
NASA Technical Reports Server (NTRS)
Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga
2011-01-01
A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.
NASA Technical Reports Server (NTRS)
Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.
2015-01-01
In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.
Developmental plasticity of bacterial colonies and consortia in germ-free and gnotobiotic settings
2012-01-01
Background Bacteria grown on semi-solid media can build two types of multicellular structures, depending on the circumstances. Bodies (colonies) arise when a single clone is grown axenically (germ-free), whereas multispecies chimeric consortia contain monoclonal microcolonies of participants. Growth of an axenic colony, mutual interactions of colonies, and negotiation of the morphospace in consortial ecosystems are results of intricate regulatory and metabolic networks. Multicellular structures developed by Serratia sp. are characteristically shaped and colored, forming patterns that reflect their growth conditions (in particular medium composition and the presence of other bacteria). Results Building on our previous work, we developed a model system for studying ontogeny of multicellular bacterial structures formed by five Serratia sp. morphotypes of two species grown in either "germ-free" or "gnotobiotic" settings (i.e. in the presence of bacteria of other conspecific morphotype, other Serratia species, or E. coli). Monoclonal bodies show regular and reproducible macroscopic appearance of the colony, as well as microscopic pattern of its growing margin. Standard development can be modified in a characteristic and reproducible manner in close vicinity of other bacterial structures (or in the presence of their products). Encounters of colonies with neighbors of a different morphotype or species reveal relationships of dominance, cooperation, or submission; multiple interactions can be summarized in "rock – paper – scissors" network of interrelationships. Chimerical (mixed) plantings consisting of two morphotypes usually produced a “consortium” whose structure is consistent with the model derived from interaction patterns observed in colonies. Conclusions Our results suggest that development of a bacterial colony can be considered analogous to embryogenesis in animals, plants, or fungi: to proceed, early stages require thorough insulation from the rest of the biosphere. Only later, the newly developing body gets connected to the ecological interactions in the biosphere. Mixed “anlagen” cannot accomplish the first, germ-free phase of development; hence, they will result in the consortium of small colonies. To map early development and subsequent interactions with the rest of the biospheric web, simplified gnotobiotic systems described here may turn to be of general use, complementing similar studies on developing multicellular eukaryots under germ-free or gnotobiotic conditions. PMID:22894147
Hoenicke, Rainer; Oros, Daniel R; Oram, John J; Taberski, Karen M
2007-09-01
While over seven million organic and inorganic compounds that have been indexed by the American Chemical Society's Chemical Abstracts Service in their CAS Registry are commercially available, most pollution monitoring programs focus only on those chemical stressors for which regulatory benchmarks exist, and have been traditionally considered responsible for the most significant human and environmental health risks. Until the late 1990s, the San Francisco Estuary Regional Monitoring Program was no exception in that regard. After a thorough external review, the monitoring program responded to the need for developing a pro-active surveillance approach for emerging pollutants in recognition of the fact that the potential for the growing list of widely used chemical compounds to alter the integrity of water is high. We describe (1) the scientific and analytical bases underlying a new surveillance monitoring approach; (2) summarize approaches used and results obtained from a forensic retrospective; (3) present the growing data set on emerging pollutants from surveillance monitoring and related efforts in the San Francisco Bay Area to characterize newly targeted compounds in wastewater streams, sediment, storm water runoff, and biota; and (4) suggest next steps in monitoring program development and applied research that could move beyond traditional approaches of pollutant characterization. Based on the forensic analysis of archived chromatograms and chemical and toxicological properties of candidate compounds, we quantified a variety of synthetic organic compounds which had previously not been targeted for analysis. Flame retardant compounds, pesticides and insecticide synergists, insect repellents, pharmaceuticals, personal care product ingredients, plasticizers, non-ionic surfactants, and other manufacturing ingredients were detected in water, sediment, and/or biological tissue samples. Several of these compounds, especially polybrominated diphenyl ether flame retardants, exhibited concentrations of environmental concern. We also describe environmental management challenges associated with emerging pollutants and how pro-active surveillance monitoring might assist in implementing a more holistic approach to pollution prevention and control before emerging pollutants become a burden on future generations.
Dendrometer studies in urban and rural environments in Stockholm, Sweden
NASA Astrophysics Data System (ADS)
Rocha, Eva; Holzkämper, Steffen
2017-04-01
With this study we investigate growth performances of Pinus sylvestris growing under the influence of the Urban Heat Island of the city of Stockholm, Sweden, and trees growing in the rural surrounding of the city. The aims of this investigation are to see whether and how much the growth performances differ, and which climatic parameters control the tree growth at the respective locations. Stockholm holds one of the world's longest observational climate records, reaching back to AD 1756. Since climate data are collected at a location which today is well within the Urban Heat Island, it is relevant to quantify the correlation differences between climate and tree growth data from trees which actually grow under the same climate conditions and trees growing under natural, rural climate conditions. Applied methods include Remote Sensing and GIS for identification and characterization of the Urban Heat Island, monitoring of tree growth at 30 min-resolution with point dendrometers (Ecomatik) and monitoring of local climate directly at the tree sites. First results indicate emphasized growth differences between the urban and the rural sites, with distinctively higher daily diameter change amplitudes at the urban sites compared to the rural sites, which can be explained by differences in relative humidity and temperature ranges between the sites. We will present and discuss results from 1 year of measurements, focusing on correlation analysis between climate and tree growth data from urban and rural sites, as well as practical issues with dendrometer measurements.
Yildiz, Selin; Doker, Mehmet Fatih
2016-07-01
Assessing the spatial land use and land cover (LULC) information is essential for decision making and management of landscapes. In fact, LULC information has been changed dramatically in fast-growing cities. This results in wrong land use problems due to unplanned and uncontrolled urbanization. The planning and evaluating of limited natural resources under the pressure of a growing population can be possible when a precise land use management plan is established. Therefore, it is imperative to monitor continuous LULC changes for future planning. Remote sensing (RS) technique is used for determining changes in LULC in urban areas. In this study, we have focused on Izmit, which is one of a growing number of metropolitan cities where the impact of the spatial growing period on LULC has been assessed over the past 30 years by using RS data. We have utilized the segmentation process and supervised classification of Landsat satellite images for four different dates (1985, 1995, 2005, and 2015). The outcome of this research can be summarized by significant changes in the shares of urban areas and farmland LULC classes. The overall observed increase in urban area class is up to 2177 ha between 1985 and 2015 period and this dramatic change has resulted in the decline of 1211 ha of farmland. Another conclusion is that the new residential areas have been created to the north, south and east of Izmit during this period.
NASA Astrophysics Data System (ADS)
Angeluccetti, Irene; Perez, Francesca; Cámaro, Walther; Demarchi, Alessandro
2015-04-01
Early Warning Systems (EWS) for drought are currently underdeveloped compared to those related to other natural hazards. Both forecasting and monitoring of drought events are still posing challenges to the scientific community. In fact, the multifaceted nature of drought (i.e. hydrological, meteorological, and agricultural) is source of coexistence for different ways to measure this phenomenon and its effects. Similarly, drought impacts are various and complex thus difficult to be univocally measured. In the present study an approach for monitoring drought in near-real time and for estimating its impacts is presented. The EWS developed runs on a global extent and is mainly based on the early detection and monitoring of vegetation stress. On the one hand the monitoring of vegetation phenological parameters, whose extraction is based on the analysis of the MODIS-derived NDVI function, allows the fortnightly assessment of the vegetation productivity which could be expected at the end of the growing season. On the other hand, the Standardized Precipitation Index (SPI), calculated adapting TRMM-derived precipitation data in a selected distribution is used, before the growing season start, in order to early detect meteorological conditions which could give rise to vegetation stress events. During the growing season the SPI is used as check information for vegetation conditions. The relationships between rainfall and vegetation dynamics have been statistically analyzed considering different types of vegetation, in order to identify the most suitable rainfall cumulating interval to be used for the proposed monitoring procedures in different areas. A simplified vulnerability model, coupled with the above-mentioned hazard data, returns food security conditions, i.e. the estimated impacts over an investigated area. The model includes a set of agricultural indicators that accounts for the diversity of cultivated crops, the percentage of irrigated area and the suitability of soils. In addition the people's strategy to supply food is mapped through the use of gravity spatial choice models. This leads to the definition of hazard-specific risk zones, upon which to base the allocation of the calculated alerts. The performances of the proposed EWS were evaluated, for a selection of national case studies, with comparable ground-truth data derived from local food security assessments. The system is deployed on a WebGIS platform for its use by the widest possible audience.
Analyzing vegetation dynamics of land systems with satellite data
Eidenshink, Jeffery C.; Haas, Robert H.
1992-01-01
Large area assessment of vegetation conditions is a major requirement for understanding the impact of weather on food, fiber, and forage production. The distribution of vegetation is largely associated with climate, terrain characteristics, and human activity. The interpretation of vegetation dynamics from satellite data can be improved by stratifying the land surface into ecoregions. The Soil Conservation Service, U.S. Department of Agriculture, has developed a system for mapping major land resource areas (MLRA) that groups land areas in the United States on the basis of climate, physiography, land use, and land cover characteristics.In 1989, the U.S. Geological Survey used National Oceanic and Atmospheric Administration weather satellite data to conduct a biweekly assessment of vegetation conditions in 17 western states. Advanced Very High Resolution Radiometer data were acquired daily, and were geographically registered, and the normalized difference vegetation index (NDVI) was computed for the Western United States during the 1989 growing season. Fifteen biweekly NDVI data sets were used to evaluate MLRA's as an appropriate stratification for monitoring and interpreting vegetation conditions in the study area.The results demonstrate the feasibility of using MLRA's to stratify areas for monitoring phenological development and vegetation condition assessment within the growing season. Assessments of the NDVI at biweekly intervals are adequate for monitoring seasonal growth patterns on MLRA's where rangelands, forests, or cultivated agriculture are the primary resource type. Descriptive statistics are indicators of the uniformity or diversity of land use and land cover within an MLRA. Growing season profiles of the NDVI are characterized by the seasonal effects of climate on various land use and land cover classes.
Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland
2017-06-20
Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.
Nußbeck, Gunnar; Gök, Murat
2013-01-01
This review gives a comprehensive overview on the technical perspective of personal health monitoring. It is designed to build a mutual basis for the project partners of the PHM-Ethics project. A literature search was conducted to screen pertinent literature databases for relevant publications. All review papers that were retrieved were analyzed. The increasing number of publications that are published per year shows that the field of personal health monitoring is of growing interest in the research community. Most publications deal with telemonitoring, thus forming the core technology of personal health monitoring. Measured parameters, fields of application, participants and stakeholders are described. Moreover an outlook on information and communication technology that foster the integration possibilities of personal health monitoring into decision making and remote monitoring of individual people's health is provided. The removal of the technological barriers opens new perspectives in health and health care delivery using home monitoring applications.
Hunter Ball, B; Pitães, Margarida; Brewer, Gene A
2018-02-07
Output monitoring refers to memory for one's previously completed actions. In the context of prospective memory (PM) (e.g., remembering to take medication), failures of output monitoring can result in repetitions and omissions of planned actions (e.g., over- or under-medication). To be successful in output monitoring paradigms, participants must flexibly control attention to detect PM cues as well as engage controlled retrieval of previous actions whenever a particular cue is encountered. The current study examined individual differences in output monitoring abilities in a group of younger adults differing in attention control (AC) and episodic memory (EM) abilities. The results showed that AC ability uniquely predicted successful cue detection on the first presentation, whereas EM ability uniquely predicted successful output monitoring on the second presentation. The current study highlights the importance of examining external correlates of PM abilities and contributes to the growing body of research on individual differences in PM.
DOT National Transportation Integrated Search
2001-11-01
For concrete rehabilitation, application of fiber reinforced polymer composites continues to grow in popularity. However, performance and expected lifetime of such rehabilitation measures are greatly depending on quality of workmanship and are jeopar...
MONITORING FOR METHYLOBACTERIUM IN WATER SYSTEMS - Letter to the Editor
Methylobacteria are slow growing pink-pigmented organisms that have been reported to be opportunistic pathogens in immunocompromised patients. Methylthylobacterium mesophilicum and M. zatmanii have been the two most commonly reported species isolated in clinical samples. Tap wate...
Alternative approaches to condition monitoring in freeway management systems.
DOT National Transportation Integrated Search
2002-01-01
In response to growing concerns over traffic congestion, traffic management systems have been built in large urban areas in an effort to improve the efficiency and safety of the transportation network. This research effort developed an automated cond...
NASA Astrophysics Data System (ADS)
Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain
2017-10-01
Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these already endangered forest ecosystems and should be further monitored using both ground and satellite approaches.
Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System
NASA Technical Reports Server (NTRS)
Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.
1998-01-01
Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.
González Barrios, Andrés F; Zuo, Rongjun; Hashimoto, Yoshifumi; Yang, Li; Bentley, William E; Wood, Thomas K
2006-01-01
The cross-species bacterial communication signal autoinducer 2 (AI-2), produced by the purified enzymes Pfs (nucleosidase) and LuxS (terminal synthase) from S-adenosylhomocysteine, directly increased Escherichia coli biofilm mass 30-fold. Continuous-flow cells coupled with confocal microscopy corroborated these results by showing the addition of AI-2 significantly increased both biofilm mass and thickness and reduced the interstitial space between microcolonies. As expected, the addition of AI-2 to cells which lack the ability to transport AI-2 (lsr null mutant) failed to stimulate biofilm formation. Since the addition of AI-2 increased cell motility through enhanced transcription of five motility genes, we propose that AI-2 stimulates biofilm formation and alters its architecture by stimulating flagellar motion and motility. It was also found that the uncharacterized protein B3022 regulates this AI-2-mediated motility and biofilm phenotype through the two-component motility regulatory system QseBC. Deletion of b3022 abolished motility, which was restored by expressing b3022 in trans. Deletion of b3022 also decreased biofilm formation significantly, relative to the wild-type strain in three media (46 to 74%) in 96-well plates, as well as decreased biomass (8-fold) and substratum coverage (19-fold) in continuous-flow cells with minimal medium (growth rate not altered and biofilm restored by expressing b3022 in trans). Deleting b3022 changed the wild-type biofilm architecture from a thick (54-mum) complex structure to one that contained only a few microcolonies. B3022 positively regulates expression of qseBC, flhD, fliA, and motA, since deleting b3022 decreased their transcription by 61-, 25-, 2.4-, and 18-fold, respectively. Transcriptome analysis also revealed that B3022 induces crl (26-fold) and flhCD (8- to 27-fold). Adding AI-2 (6.4 muM) increased biofilm formation of wild-type K-12 MG1655 but not that of the isogenic b3022, qseBC, fliA, and motA mutants. Adding AI-2 also increased motA transcription for the wild-type strain but did not stimulate motA transcription for the b3022 and qseB mutants. Together, these results indicate AI-2 induces biofilm formation in E. coli through B3022, which then regulates QseBC and motility; hence, b3022 has been renamed the motility quorum-sensing regulator gene (the mqsR gene).
Mobile Phone Based System Opportunities to Home-based Managing of Chemotherapy Side Effects.
Davoodi, Somayeh; Mohammadzadeh, Zeinab; Safdari, Reza
2016-06-01
Applying mobile base systems in cancer care especially in chemotherapy management have remarkable growing in recent decades. Because chemotherapy side effects have significant influences on patient's lives, therefore it is necessary to take ways to control them. This research has studied some experiences of using mobile phone based systems to home-based monitor of chemotherapy side effects in cancer. In this literature review study, search was conducted with keywords like cancer, chemotherapy, mobile phone, information technology, side effects and self managing, in Science Direct, Google Scholar and Pub Med databases since 2005. Today, because of the growing trend of the cancer, we need methods and innovations such as information technology to manage and control it. Mobile phone based systems are the solutions that help to provide quick access to monitor chemotherapy side effects for cancer patients at home. Investigated studies demonstrate that using of mobile phones in chemotherapy management have positive results and led to patients and clinicians satisfactions. This study shows that the mobile phone system for home-based monitoring chemotherapy side effects works well. In result, knowledge of cancer self-management and the rate of patient's effective participation in care process improved.
Security and privacy issues in wireless sensor networks for healthcare applications.
Al Ameen, Moshaddique; Liu, Jingwei; Kwak, Kyungsup
2012-02-01
The use of wireless sensor networks (WSN) in healthcare applications is growing in a fast pace. Numerous applications such as heart rate monitor, blood pressure monitor and endoscopic capsule are already in use. To address the growing use of sensor technology in this area, a new field known as wireless body area networks (WBAN or simply BAN) has emerged. As most devices and their applications are wireless in nature, security and privacy concerns are among major areas of concern. Due to direct involvement of humans also increases the sensitivity. Whether the data gathered from patients or individuals are obtained with the consent of the person or without it due to the need by the system, misuse or privacy concerns may restrict people from taking advantage of the full benefits from the system. People may not see these devices safe for daily use. There may also possibility of serious social unrest due to the fear that such devices may be used for monitoring and tracking individuals by government agencies or other private organizations. In this paper we discuss these issues and analyze in detail the problems and their possible measures.
Ecosystem performance monitoring of rangelands by integrating modeling and remote sensing
Wylie, Bruce K.; Boyte, Stephen P.; Major, Donald J.
2012-01-01
Monitoring rangeland ecosystem dynamics, production, and performance is valuable for researchers and land managers. However, ecosystem monitoring studies can be difficult to interpret and apply appropriately if management decisions and disturbances are inseparable from the ecosystem's climate signal. This study separates seasonal weather influences from influences caused by disturbances and management decisions, making interannual time-series analysis more consistent and interpretable. We compared the actual ecosystem performance (AEP) of five rangeland vegetation types in the Owyhee Uplands for 9 yr to their expected ecosystem performance (EEP). Integrated growing season Normalized Difference Vegetation Index data for each of the nine growing seasons served as a proxy for annual AEP. Regression-tree models used long-term site potential, seasonal weather, and land cover data sets to generate annual EEP, an estimate of ecosystem performance incorporating annual weather variations. The difference between AEP and EEP provided a performance measure for each pixel in the study area. Ecosystem performance anomalies occurred when the ecosystem performed significantly better or worse than the model predicted. About 14% of the Owyhee Uplands showed a trend of significant underperformance or overperformance (P<0.10). Land managers can use results from weather-based rangeland ecosystem performance models to help support adaptive management strategies.
Krishnamoorthy, Archana
2015-01-01
Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases. PMID:26162874
Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN
NASA Astrophysics Data System (ADS)
Kim, M. S.; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J. W.; Kang, M.; Kwon, J. H.; Lee, K. S.; Lee, S. K.; Park, S. K.; Pant, L. M.; Mohanty, A. K.; Chudasama, R.; Singh, J. B.; Bhatnagar, V.; Mehta, A.; Kumar, R.; Cauwenbergh, S.; Costantini, S.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Ocampo, A.; Poyraz, D.; Salva, S.; Thyssen, F.; Tytgat, M.; Zaganidis, N.; Doninck, W. V.; Cabrera, A.; Chaparro, L.; Gomez, J. P.; Gomez, B.; Sanabria, J. C.; Avila, C.; Ahmad, A.; Muhammad, S.; Shoaib, M.; Hoorani, H.; Awan, I.; Ali, I.; Ahmed, W.; Asghar, M. I.; Shahzad, H.; Sayed, A.; Ibrahim, A.; Aly, S.; Assran, Y.; Radi, A.; Elkafrawy, T.; Sharma, A.; Colafranceschi, S.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Nuzzo, S.; Pugliese, G.; Radogna, R.; Venditti, R.; Verwilligen, P.; Benussi, L.; Bianco, S.; Piccolo, D.; Paolucci, P.; Buontempo, S.; Cavallo, N.; Merola, M.; Fabozzi, F.; Iorio, O. M.; Braghieri, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Vai, I.; Magnani, A.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Sultanov, G.; Vutova, M.; Stoykova, S.; Hadjiiska, R.; Ibargüen, H. S.; Morales, M. I. P.; Bernardino, S. C.; Bagaturia, I.; Tsamalaidze, Z.; Crotty, I.
2014-10-01
The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time.
WLCG Monitoring Consolidation and further evolution
NASA Astrophysics Data System (ADS)
Saiz, P.; Aimar, A.; Andreeva, J.; Babik, M.; Cons, L.; Dzhunov, I.; Forti, A.; di Girolamo, A.; Karavakis, E.; Litmaath, M.; Magini, N.; Magnoni, L.; de los Rios, H. Martin; Roiser, S.; Sciaba, A.; Schulz, M.; Tarragon, J.; Tuckett, D.
2015-12-01
The WLCG monitoring system solves a challenging task of keeping track of the LHC computing activities on the WLCG infrastructure, ensuring health and performance of the distributed services at more than 170 sites. The challenge consists of decreasing the effort needed to operate the monitoring service and to satisfy the constantly growing requirements for its scalability and performance. This contribution describes the recent consolidation work aimed to reduce the complexity of the system, and to ensure more effective operations, support and service management. This was done by unifying where possible the implementation of the monitoring components. The contribution also covers further steps like the evaluation of the new technologies for data storage, processing and visualization and migration to a new technology stack.
Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss
NASA Astrophysics Data System (ADS)
Anweiler, Stanisław; Piwowarski, Dawid; Ulbrich, Roman
2017-10-01
This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.
Mlosek, R K; Woźniak, W; Malinowska, S; Lewandowski, M; Nowicki, A
2012-06-01
Cellulite affects nearly 85% of the female population. Given the size of the phenomenon, we are continuously looking for effective ways to reduce cellulite. Reliable monitoring of anticellulite treatment remains a problem. The main aim of the study was to evaluate the effectiveness of anticellulite treatment carried out using radiofrequency (RF), which was monitored by classical and high-frequency ultrasound. Twenty-eight women underwent anticellulite treatment using RF, 17 women were in the placebo group. The therapy was monitored by classical and high-frequency ultrasound. The examinations evaluated the thickness of the epidermal echo, dermis thickness, dermis echogenicity, the length of the subcutaneous tissue bands growing into the dermis, the presence or absence of oedema, the thickness of subcutaneous tissue as well as thigh circumference and the stage of cellulite (according to the Nürnberger-Müller scale). Cellulite was reduced in 89.286% of the women who underwent RF treatment. After the therapy, the following observations were made: a decrease in the thickness of the dermis and subcutaneous tissue, an increase in echogenicity reflecting on the increase in the number of collagen fibres, decreased subcutaneous tissue growing into bands in the dermis, and the reduction of oedema. In the placebo group, no statistically significant changes of the above parameters were observed. Radiofrequency enables cellulite reduction. A crucial aspect is proper monitoring of the progress of such therapy, which ultrasound allows. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.
Perfluorinated Alkyl Compounds: Challenges To Develop Robust And Reliable Methods
An increasing number of studies have been conducted to investigate the environmental distribution of perfluorinated alkyl compounds (PFCs), some of which are known to be toxic in laboratory studies. Despite growing public concerns, environmental monitoring data are still limited...
Low-Cost Sensor POD Design Considerations
Public concern about air quality is growing in communities around the globe as citizens learn more about the potential health effects of the air they breathe. Air quality monitoring has often been restricted to organizations administering Federal Reference Method (FRM) or Federal...
Low-Cost Sensor POD Design Considerations
Public concern about air quality is growing in communities around the globe as citizens learn more about the potential health effects of the air they breathe.1 Air quality monitoring has often been restricted to organizations administering Federal Reference Method (FRM) or Federa...
Dual use of distributed remote sensing satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
1992-12-02
Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.
Dual use of distributed remote sensing satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
1993-03-01
Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.
Dual use of distributed remote sensing satellites
NASA Astrophysics Data System (ADS)
Canavan, G. H.
1992-12-01
Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.
Forecasting the demand for privatized transport : what economic regulators should know and why
DOT National Transportation Integrated Search
2001-09-01
While public-private partnerships in the delivery of transport infrastructures and services is expanding, there is also growing evidence of the lack of appreciation of the importance of demand forecasting in preparing and monitoring these partnership...
In 1970, President Richard Nixon and Congress established the U.S. EPA in response to the growing public demand for cleaner water, air, and land. EPA was tasked with monitoring, standard-setting ,and enforcement activities to help protect our environment and to help Americans mak...
NASA Technical Reports Server (NTRS)
Zimmermann, R.; Oren, R.; Billings, S.; Muller-Ezards, C.; Schaaff, C.; Strohmeier, P.; Obermaier, E.
1994-01-01
Five semi-deciduous broadleaf forest types growing over tropical karst in Belize, Central America, were monitored for three years to study diurnal and seasonal changes of transpiration and micro-meteorologic conditions.
Efforts Toward an Early Warning Crop Monitor for Countries at Risk
NASA Astrophysics Data System (ADS)
Budde, M. E.; Verdin, J. P.; Barker, B.; Humber, M. L.; Becker-Reshef, I.; Justice, C. O.; Magadzire, T.; Galu, G.; Rodriguez, M.; Jayanthi, H.
2015-12-01
Assessing crop growing conditions is a crucial aspect of monitoring food security in the developing world. One of the core components of the Group on Earth Observations - Global Agricultural Monitoring (GEOGLAM) targets monitoring Countries at Risk (component 3). The Famine Early Warning Systems Network (FEWS NET) has a long history of utilizing remote sensing and crop modeling to address food security threats in the form of drought, floods, pest infestation, and climate change in some of the world's most at risk countries. FEWS NET scientists at the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center and the University of Maryland Department of Geography have undertaken efforts to address component 3, by promoting the development of a collaborative Early Warning Crop Monitor (EWCM) that would specifically address Countries at Risk. A number of organizations utilize combinations of satellite earth observations, field campaigns, network partner inputs, and crop modeling techniques to monitor crop conditions throughout the world. Agencies such as the Food and Agriculture Organization of the United Nations (FAO), United Nations World Food Programme (WFP), and the European Commission's Joint Research Centre (JRC) provide agricultural monitoring information and reporting across a broad number of areas at risk and in many cases, organizations routinely report on the same countries. The latter offers an opportunity for collaboration on crop growing conditions among agencies. The reduction of uncertainty and achievement of consensus will help strengthen confidence in decisions to commit resources for mitigation of acute food insecurity and support for resilience and development programs. In addition, the development of a collaborative global EWCM will provide each of the partner agencies with the ability to quickly gather crop condition information for areas where they may not typically work or have access to local networks. Using a framework developed by GEOGLAM for monitoring crop conditions in support of the Agricultural Market Information System, we developed an EWCM system for countries at risk. We present the current status of that implementation and highlight achievements to date along with future plans to support the needs of the global agricultural monitoring community.
[Some peculiar features of liquid supply to the root medium of plants growing in microgravity
NASA Technical Reports Server (NTRS)
Podol'skii, I. G.; Sychev, V. N.; Levinskikh, M. A.; Strugov, O. M.; Bingham, G. E.; Salisbury, F. B. (Principal Investigator)
1998-01-01
Sixteen point probes monitored moisture level in the root medium of the wheat plants grown in greenhouse SVET on the MIR/NASA space science program. The article outlines types of water migration in the absence of gravity. Hydrophysical characteristics of perspective root media have been explored. Results of the water supply monitoring and control in the course of experiment are reported. The authors put forward porous root media to facilitate water migration and aeration.
2009-09-01
whether Muslim girls should wear the hijab at school is a premium example to which they refer to as a deprivation of their religious freedom. The...ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11...countries, combined with the fact that a growing number of young Muslims have become members of terrorist networks, constitutes a security threat to
Zhang, Tian; Li, Jun-de; Cheng, Meng; Li, Ying; Lin, Zhong-Bin; Shen, Yi-Hua; Huang, Lu-Qi
2017-11-01
The dynamic monitoring data of traditional Chinese medicine resources is one of the important tasks of the dynamic monitoring system of Chinese medicine resources,the system has formed a periodic monitoring data reporting mechanism. Data authenticity and accuracy are the basis for the sustainable and healthy development of Chinese medicine resources dynamic monitoring,information technology is an effective means to improve the efficiency of data reporting, reporting quality. Data production based on dynamic monitoring is of great significance for grasp the trend of change and development of Chinese medicine resources. In order to achieve the real-time control of changes to the national Chinese medicine resources, we build the Chinese medicine resources dynamic monitoring system. In order to solve the problems in practice, we have upgraded the fill system by using the data of GIS. In order to achieve the multidimensional, improve safety, practicality and standardization of the data, which laid a foundation for subsequent processing of data. The system can collect the information of the cultivation of Chinese herbal medicines,production and sales of daily reporting data, provide the Chinese herbal medicine market,fast growing industry environment such as positioning center. In this paper, the design and implementation of the system are expounded.According to the business requirements, we designed 12 forms, 98 collection indicators to meet the needs of dynamic monitoring of traditional Chinese medicine resources. This paper will introduce the development content, design and implementation, main function characteristics and application effect of the national Chinese medicine resources fill System. To explain the role that GIS technology plays in the system and how to realize the cultivation of Chinese herbal medicines, production and sales of daily reporting data, provide the Chinese herbal medicine market,fast growing industry environment such as positioning center,and information collecting. Copyright© by the Chinese Pharmaceutical Association.
THE SIGNIFICANCE OF ENTERIC VIRUSES AND WATERBORNE ILLNESS
With growing concern over drinking water safety, considerable attention has been directed towards microbial pathogens in source waters, and the adequacy of current methods used to detect, monitor and treat for these pathogens. The focus has been on bacterial and protozoan pathog...
DOT National Transportation Integrated Search
2011-01-28
The recent collapse of the I-35W Mississippi River Bridge in Minneapolis has spawned a growing : interest in the development of reliable techniques for evaluating the structural integrity of civil : infrastructure. Current inspection techniques tailo...
Meniscus Imaging for Crystal-Growth Control
NASA Technical Reports Server (NTRS)
Sachs, E. M.
1983-01-01
Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.
ERIC Educational Resources Information Center
Scheideman, Dale; Dufresne, Ray
2001-01-01
Nevada's Clark County, the fastest growing school district in the nation, uses a life-cycle facilities management approach that monitors the individual components of each building on a database. The district's 10-year building program is addressing facilities infrastructure renewal, deferred maintenance, replacement, and new school construction.…
U.S National cropland soil moisture monitoring using SMAP
USDA-ARS?s Scientific Manuscript database
Crop condition information is critical for public and private sector decision making that concerns agricultural policy, food production, food security, and food commodity prices. Crop conditions change quickly due to various growing condition events, such as temperature extremes, soil moisture defic...
DOT National Transportation Integrated Search
2017-07-01
One of the growing number of preventive bridge maintenance activities conducted by the Kentucky Transportation Cabinet (KYTC) is washing and applying thin film protective coatings to bridge abutments and piers. Previous work conducted by Kentucky Tra...
NASA Astrophysics Data System (ADS)
Mubako, S. T.; Hargrove, W. L.; Heyman, J. M.; Reyes, C. S.
2016-12-01
Urbanization is an area of growing interest in assessing the impact of human activities on water resources in arid regions. Remote sensing techniques provide an opportunity to analyze land cover change over time, and are useful in monitoring areas undergoing rapid urban growth. This case study for the water-scarce Upper Rio Grande River Basin uses a supervised classification algorithm to quantify the rate and evaluate the pattern of urban sprawl. A focus is made on the fast growing El-Paso-Juarez metropolitan area on the US-Mexico border and the City of Las Cruces in New Mexico, areas where environmental challenges and loss of agricultural and native land to urban development are major concerns. Preliminary results show that the land cover is dominantly native with some significant agriculture along the Rio Grande River valley. Urban development across the whole study area expanded from just under 3 percent in 1990, to more than 11 percent in 2015. The urban expansion is occurring mainly around the major urban areas of El Paso, Ciudad Juarez, and Las Cruces, although there is visible growth of smaller urban settlements scattered along the Rio Grande River valley during the same analysis period. The proportion of native land cover fluctuates slightly depending on how much land is under crops each analysis year, but there is a decreasing agricultural land cover trend suggesting that land from this sector is being lost to urban development. This analysis can be useful in planning to protect the environment, preparing for growth in infrastructure such as schools, increased traffic demands, and monitoring availability of resources such as groundwater as the urban population grows.
Gao, Meiling; Cao, Junji; Seto, Edmund
2015-04-01
Fine particulate matter (PM2.5) is a growing public health concern especially in industrializing countries but existing monitoring networks are unable to properly characterize human exposures due to low resolution spatiotemporal data. Low-cost portable monitors can supplement existing networks in both developed and industrializing regions to increase density of sites and data. This study tests the performance of a low-cost sensor in high concentration urban environments. Seven Portable University of Washington Particle (PUWP) monitors were calibrated with optical and gravimetric PM2.5 reference monitors in Xi'an, China in December 2013. Pairwise correlations between the raw PUWP and the reference monitors were high (R(2) = 0.86-0.89). PUWP monitors were also simultaneously deployed at eight sites across Xi'an alongside gravimetric PM2.5 monitors (R(2) = 0.53). The PUWP monitors were able to identify the High-technology Zone site as a potential PM2.5 hotspot with sustained high concentrations compared to the city average throughout the day. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Research on the ride comfort of elevator monitoring using smartphone
NASA Astrophysics Data System (ADS)
Zhang, Yang; Sun, Xiaowei; Xie, Zhao; Su, Wensheng; Xue, Zhigang; Zhao, Xuefeng
2017-04-01
With the rapid development of high-rise buildings, the requirement of the elevator's speed is growing higher. And the vibration amplitude of elevator will also increasing with the improvement of running speed. The vibration problems of elevator have become the important factors that affect the comfort feeling of elevator. At the same time, the strong vibration will affect the normal work of elevator, and even cause accidents. So it's necessary to study the vibration characteristics of the elevator. In recent years, smartphone has developed rapidly, with a variety of sophisticated sensors; it has the powerful data processing and transmission capacity. In this paper, the author has presented an elevator comfort monitoring method based on smartphone. This method using Monitoring App can monitor the acceleration and inclination information using MEMS sensors embedded in smartphone. Then a confirmatory test for an elevator was designed, experimental results show that elevator comfort monitoring method based on smartphone is stable and reliable.
GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments
NASA Astrophysics Data System (ADS)
McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.
2014-12-01
The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.
NASA Astrophysics Data System (ADS)
Haas, A.; El-Zibdah, M.; Wild, C.
2010-03-01
This paper presents seasonal in situ monitoring data on benthic coverage and coral -algae interactions in high-latitude fringing reefs of the Northern Red Sea over a period of 19 months. More than 30% of all hermatypic corals were involved in interaction with benthic reef algae during winter compared to 17% during summer, but significant correlation between the occurrence of coral -algae interactions and monitored environmental factors such as temperature and inorganic nutrient availability was not detected. Between 5 and 10-m water depth, the macroalgae Caulerpa serrulata, Peyssonnelia capensis and filamentous turf algae represented almost 100% of the benthic algae involved in interaction with corals. Turf algae were most frequently (between 77 and 90% of all interactions) involved in interactions with hermatypic corals and caused most tissue damage to them. Maximum coral tissue loss of 0.75% day-1 was observed for Acropora-turf algae interaction during fall, while an equilibrium between both groups of organisms appeared during summer. Slow-growing massive corals were more resistant against negative algal influence than fast-growing branching corals. Branching corals of the genus Acropora partly exhibited a newly observed phenotypic plasticity mechanism, by development of a bulge towards the competing organism, when in interaction with algae. These findings may contribute to understand the dynamics of phase shifts in coral reefs by providing seasonally resolved in situ monitoring data on the abundance and the competitive dynamic of coral -algae interactions.
NASA Astrophysics Data System (ADS)
Anderson, B. T.; Zhang, P.; Myneni, R.
2008-12-01
Drought, through its impact on food scarcity and crop prices, can have significant economic, social, and environmental impacts - presently, up to 36 countries and 73 million people are facing food crises around the globe. Because of these adverse affects, there has been a drive to develop drought and vegetation- monitoring metrics that can quantify and predict human vulnerability/susceptibility to drought at high- resolution spatial scales over the entire globe. Here we introduce a new vegetation-monitoring index utilizing data derived from satellite-based instruments (the Moderate Resolution Imaging Spectroradiometer - MODIS) designed to identify the vulnerability of vegetation in a particular region to climate variability during the growing season. In addition, the index can quantify the percentage of annual grid-point vegetation production either gained or lost due to climatic variability in a given month. When integrated over the growing season, this index is shown to be better correlated with end-of-season crop yields than traditional remotely-sensed or meteorological indices. In addition, in-season estimates of the index, which are available in near real-time, provide yield forecasts comparable to concurrent in situ objective yield surveys, which are only available in limited regions of the world. Overall, the cost effectiveness and repetitive, near-global view of earth's surface provided by this satellite-based vegetation monitoring index can potentially improve our ability to mitigate human vulnerability/susceptibility to drought and its impacts upon vegetation and agriculture.
ERIC Educational Resources Information Center
National Institutes of Health (DHEW), Bethesda, MD.
The discussion of genetic and environmental factors in the growth of children from infancy to adolescence focuses on intrauterine life, the effects of nutrition, hormones, illness, and emotion in the childhood years, and obesity and puberty in adolescents. Described are processes, such as amniocentesis, for monitoring the physiology chemistry of…
Monitoring Organic Contaminant Fluxes Following Dam Removal Utilizing Passive Sampler Technology
Restoration of riverine habitats and their associated ecosystems is a growing priority for government agencies (e.g., USEPA, NOAA, USDA), as well as non-profit conservation organizations (e.g., American Rivers). Dam removal is a major component of many restoration projects credi...
Monitoring Changes in Contaminant Fluxes Resulting from Dam Removal in an Urbanized River.
Restoration of rivers and their associated ecosystems is a growing priority for government agencies (e.g., NOAA, USEPA), as well as conservation organizations. Dam removal is a major component of many restoration projects credited with reintroducing fish species, improving water...
This presentation provides a review of numerous drinking water and geochemical investigations and recent studies of pipe deposits and water treatment materials. This analysis shows that there is growing evidence that many regulated drinking water constituents are not conservativ...
Growth in liquid or solid media.
Elbing, K L; Brent, R
2001-05-01
This appendix presents basic procedures for growing overnight (and larger) cultures, monitoring growth, and titering and isolating bacterial cultures by serial dilution. In addition, protocols are provided for isolating single colonies by streaking and spreading a plate. Replica plating and strain storage/retrieval is also detailed.
Measuring and monitoring evapotranspiration over vineyards
USDA-ARS?s Scientific Manuscript database
Water is already a scarce resource in many parts of the world. As the global population continues to grow, the competing demands for fresh water by urban, industrial, and agricultural user will also increase. To ensure there is sufficient water to meet these demands, policymakers, resource managers,...
Moxley, Jerry H.; Bogomolni, Andrea; Hammill, Mike O.; Moore, Kathleen M. T.; Polito, Michael J.; Sette, Lisa; Sharp, W. Brian; Waring, Gordon T.; Gilbert, James R.; Halpin, Patrick N.; Johnston, David W.
2017-01-01
Abstract As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances. PMID:29599542
Monitoring water phase dynamics in winter clouds
NASA Astrophysics Data System (ADS)
Campos, Edwin F.; Ware, Randolph; Joe, Paul; Hudak, David
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener-Bergeron-Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central High Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and nowcasting the evolution of supercooled droplets in winter clouds.
The Need Of A Phenological Spectral Library Of Submersed Macrophytes For Lake Monitoring
NASA Astrophysics Data System (ADS)
Wolf, Patrick; Robler, Sebastian; Schneider, Thomas; Melzer, Arnulf
2013-12-01
Submersed macrophytes are bio-indicators for water quality. For plant monitoring by remote sensing, in-situ reflectance measurements are necessary. Hence, systematic measurements were carried out at Lake Starnberg and Lake Tegernsee (Germany) in the year 2011. Besides two wide-spread species (Chara spp. and Potamogeton perfoliatus), the invasive species Elodea nuttallii and Najas marina were investigated. Remote sensing reflectances were calculated from downwelling irradiance and upwelling radiance. Those were collected with RAMSES spectroradiometers (320nm-950nm, 3.3nm step). As data collection took place several times, changes in the spectral responses within the growing season were detected and could be linked to population density, growing height, biomass and pigmentation. Additionally, a stable sampling method and a processing chain for the in-situ reflectance measurements were developed. Part of the processing was a water column correction, including WASI (water colour simulator). Principal component analysis showed separability of sediment from vegetation and species differentiation.
Moxley, Jerry H; Bogomolni, Andrea; Hammill, Mike O; Moore, Kathleen M T; Polito, Michael J; Sette, Lisa; Sharp, W Brian; Waring, Gordon T; Gilbert, James R; Halpin, Patrick N; Johnston, David W
2017-08-01
As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.
Monitoring water phase dynamics in winter clouds
Campos, Edwin F.; Ware, Randolph; Joe, Paul; ...
2014-10-01
This work presents observations of water phase dynamics that demonstrate the theoretical Wegener–Bergeron–Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central Highmore » Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and now casting the evolution of supercooled droplets in winter clouds.« less
Land Cover Monitoring for Water Resources Management in Angola
NASA Astrophysics Data System (ADS)
Miguel, Irina; Navarro, Ana; Rolim, Joao; Catalao, Joao; Silva, Joel; Painho, Marco; Vekerdy, Zoltan
2016-08-01
The aim of this paper is to assess the impact of improved temporal resolution and multi-source satellite data (SAR and optical) on land cover mapping and monitoring for efficient water resources management. For that purpose, we developed an integrated approach based on image classification and on NDVI and SAR backscattering (VV and VH) time series for land cover mapping and crop's irrigation requirements computation. We analysed 28 SPOT-5 Take-5 images with high temporal revisiting time (5 days), 9 Sentinel-1 dual polarization GRD images and in-situ data acquired during the crop growing season. Results show that the combination of images from different sources provides the best information to map agricultural areas. The increase of the images temporal resolution allows the improvement of the estimation of the crop parameters, and then, to calculate of the crop's irrigation requirements. However, this aspect was not fully exploited due to the lack of EO data for the complete growing season.
Developing a Long-term Monitoring Program with Undergraduate Students in Marine Sciences
NASA Astrophysics Data System (ADS)
Anders, T. M.; Boryta, M. D.
2015-12-01
A goal of our growing marine geoscience program at Mt. San Antonio College is to involve our students in all stages of developing and running an undergraduate research project. During the initial planning phase, students develop and test their proposals. Instructor-set parameters were chosen carefully to help guide students toward manageable projects but to not limit their creativity. Projects should focus on long-term monitoring of a coastal area in southern California. During the second phase, incoming students will critique the initial proposals, modify as necessary and continue to develop the project. We intend for data collection opportunities to grow from geological and oceanographic bases to eventually include other STEM topics in biology, chemistry, math and GIS. Questions we will address include: What makes this a good research project for a community college? What are the costs and time commitments involved? How will the project benefit students and society? Additionally we will share our initial results, challenges, and unexpected pitfalls and benefits.
A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System
Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun
2010-01-01
Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system. PMID:22163543
Development of a thick film PZT foil sensor for use in structural health monitoring applications.
Pickwell, Andrew J; Dorey, Robert A; Mba, David
2013-02-01
Acoustic emission (AE) monitoring is a technique of growing interest in the field of nondestructive testing (NDT). The use of AE devices to monitor the health of structural components is currently limited by the cost of AE equipment, which prohibits the permanent placement of AE devices on structures for the purposes of continuous monitoring and the monitoring of areas with limited access. Micro electromechanical systems (MEMS) can provide solutions to these problems. We present the manufacture of a 4.4-μm-thick lead zirconate titanate (PZT) film on a 110-μm-thick titanium foil substrate for use as an AE sensor. The thick-film sensor is benchmarked against commercially available AE sensors in static and dynamic monitoring applications. The thick-film AE device is found to perform well in the detection of AE in static applications. A low signal-to-noise ratio is found to prohibit the detection of AE in a dynamic application.
An approach for using AVHRR data to monitor U.S. great plains grasslands
Reed, B.C.; Loveland, Thomas R.; Tieszen, L.L.
1996-01-01
Environmental monitoring requires regular observations regarding the status of the landscape- The concept behind most monitoring efforts using satellite data involve deriving normalized difference vegetation index (NDVI) values or accumulating the NDVI over a specified time period. These efforts attempt to estimate the continuous growth of green biomass by using continuous additions of NDVI as a surrogate measure. To build upon this concept, this study proposes three refinements; 1) use an objective definition of the current growing season to adjust the time window during which the NDVI is accumulated, 2) accumulate only the NDVI values which are affected by green vegetation, and 3) base monitoring units upon land cover type. These refinements improve the sensitivity of detecting interannual vegetation variability, reduce the need for extensive and detailed knowledge of ground conditions and crop calendars, provide a framework in which several types of monitoring can take place over diverse land cover types, and provide an objective time frame during which monitoring takes place.
Physical habitat monitoring strategy (PHAMS) for reach-scale restoration effectiveness monitoring
Jones, Krista L.; O'Daniel, Scott J.; Beechie, Tim J.; Zakrajsek, John; Webster, John G.
2015-04-14
Habitat restoration efforts by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) have shifted from the site scale (1-10 meters) to the reach scale (100-1,000 meters). This shift was in response to the growing scientific emphasis on process-based restoration and to support from the 2007 Accords Agreement with the Bonneville Power Administration. With the increased size of restoration projects, the CTUIR and other agencies are in need of applicable monitoring methods for assessing large-scale changes in river and floodplain habitats following restoration. The goal of the Physical Habitat Monitoring Strategy is to outline methods that are useful for capturing reach-scale changes in surface and groundwater hydrology, geomorphology, hydrologic connectivity, and riparian vegetation at restoration projects. The Physical Habitat Monitoring Strategy aims to avoid duplication with existing regional effectiveness monitoring protocols by identifying complimentary reach-scale metrics and methods that may improve the ability of CTUIR and others to detect instream and riparian changes at large restoration projects.
Utility and Value of Satellite-Based Frost Forecasting for Kenya's Tea Farming Sector
NASA Astrophysics Data System (ADS)
Morrison, I.
2016-12-01
Frost damage regularly inflicts millions of dollars of crop losses in the tea-growing highlands of western Kenya, a problem that the USAID/NASA Regional Visualization and Monitoring System (SERVIR) program is working to mitigate through a frost monitoring and forecasting product that uses satellite-based temperature and soil moisture data to generate up to three days of advanced warning before frost events. This paper presents the findings of a value of information (VOI) study assessing the value of this product based on Kenyan tea farmers' experiences with frost and frost-damage mitigation. Value was calculated based on historic trends of frost frequency, severity, and extent; likelihood of warning receipt and response; and subsequent frost-related crop-loss aversion. Quantification of these factors was derived through inferential analysis of survey data from 400 tea-farming households across the tea-growing regions of Kericho and Nandi, supplemented with key informant interviews with decision-makers at large estate tea plantations, historical frost incident and crop-loss data from estate tea plantations and agricultural insurance companies, and publicly available demographic and economic data. At this time, the product provides a forecasting window of up to three days, and no other frost-prediction methods are used by the large or small-scale farmers of Kenya's tea sector. This represents a significant opportunity for preemptive loss-reduction via Earth observation data. However, the tea-growing community has only two realistic options for frost-damage mitigation: preemptive harvest of available tea leaves to minimize losses, or skiving (light pruning) to facilitate fast recovery from frost damage. Both options are labor-intensive and require a minimum of three days of warning to be viable. As a result, the frost forecasting system has a very narrow margin of usefulness, making its value highly dependent on rapid access to the warning messages and flexible access to harvesting labor for mitigation activities. These findings show that the Frost monitoring product has the potential for real monetary benefit to members of the frost-vulnerable tea growing community but realization of that value needs direct collaboration with the tea-farming community to ensure effective product utilization.
Development of a Green Roof Environmental Monitoring and Meteorological Network in New York City
Gaffin, Stuart R.; Khanbilvardi, Reza; Rosenzweig, Cynthia
2009-01-01
Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations. PMID:22574037
Development of a green roof environmental monitoring and meteorological network in new york city.
Gaffin, Stuart R; Khanbilvardi, Reza; Rosenzweig, Cynthia
2009-01-01
Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations.
Multifrequency method for dielectric monitoring of cold-preserved organs.
Raicu, V; Saibara, T; Irimajiri, A
2000-05-01
To answer a growing need for non-invasive monitoring of biological organs, we have developed an automated system capable of repeated dielectric measurements over the frequency range 10 kHz-100 MHz. Further, we propose a novel method of data analysis that may convert the acquired, individual dispersion curves into a diagram of the time course of specific phenomenological parameters, such as the characteristic frequency. By using this new procedure, unattended, long-term monitoring of temporal changes in the dielectric behaviour of excised liver lobes stored at 4 degrees C was successfully realized. The 'multifrequency' method presented here was definitely superior to the conventional 'fixed-frequency' method in providing reliable results.
Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal
2016-08-23
Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the first time that the BioLector has been used to track lipid production in real time and to monitor the growth of Y. lipolytica. The present study also showed the efficacy of the BioLector in screening growing conditions and engineered strains prior to scale-up. The method described here could be applied to other oleaginous microorganisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Tang, Jianwu; Mustard, John F.
Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less
Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario
2016-11-01
Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Xi; Tang, Jianwu; Mustard, John F.; ...
2016-04-02
Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less
Financial Management: A Growing Concern for Child Nutrition Program Administrators.
ERIC Educational Resources Information Center
Cater, Jerry B.; Mann, Nadine; Conklin, Martha
1999-01-01
A study of revenue-generation and cost-control measures currently employed at four school districts operating financially successful child-nutrition programs disclosed the importance of student participation to each program's financial integrity. Financial reports, productivity monitoring, and procurement plans to curb food costs were also…
WATER QUALITY MONITORING OF PHARMACEUTICALS AND PERSONAL CARE PRODUCTS USING PASSIVE SAMPLERS
The demand on freshwater to sustain the needs of the growing population is of worldwide concern. Often this water is used, treated, and released for reuse by other communities. The anthropogenic contaminants present in this water may include complex mixtures of pesticides, prescr...
Environmental and Landscape Remote Sensing Using Free and Open Source Image Processing Tools
As global climate change and human activities impact the environment, there is a growing need for scientific tools to monitor and measure environmental conditions that support human and ecological health. Remotely sensed imagery from satellite and airborne platforms provides a g...
Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...
Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...
Tectonic fault monitoring at open pit mine at Zarnitsa Kimberlite Pipe
NASA Astrophysics Data System (ADS)
Vostrikov, VI; Polotnyanko, NS; Trofimov, AS; Potaka, AA
2018-03-01
The article describes application of Karier instrumentation designed at the Institute of Mining to study fracture formation in rocks. The instrumentation composed of three sensors was used to control widening of a tectonic fault intersecting an open pit mine at Zarnitsa Kimberlite Pipe in Yakutia. The monitoring between 28 November and 28 December in 2016 recorded convergence of the fault walls from one side of the open pit mine and widening from the other side. After production blasts, the fault first grows in width and then recovers.
1986-08-01
sensitivity to software or hardware failures (bit transformation, register perversion, interface failures, etc .) which could cause the system to operate in a...of systems . She pointed to the need for 40 safety concerns in a continually growing number of computer applications (e.g., monitor and/or control of...informal, definition. Finally, the definition is based on the SMoLCS (Structured Monitored Linear Concurrent Systems ) methodology, an approach to the
The use of an image registration technique in the urban growth monitoring
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Foresti, C.; Deoliveira, M. D. L. N.; Niero, M.; Parreira, E. M. D. M. F.
1984-01-01
The use of an image registration program in the studies of urban growth is described. This program permits a quick identification of growing areas with the overlap of the same scene in different periods, and with the use of adequate filters. The city of Brasilia, Brazil, is selected for the test area. The dynamics of Brasilia urban growth are analyzed with the overlap of scenes dated June 1973, 1978 and 1983. The results showed the utilization of the image registration technique for the monitoring of dynamic urban growth.
Community-based water-quality monitoring in the Yukon River Basin and the Kuskokwim Watershed
Herman-Mercer, Nicole M.
2013-01-01
The unique partnership between the USGS and the YRITWC provides mutual benefits by fostering outreach efforts that have been essential for community empowerment and by generating scientific data for prohibitively large and remote regions that would be challenging for USGS scientists to sample as robustly alone. The addition of a new partnership with the KRWC to create a community-based monitoring program will only increase these benefits by growing the spatial extent of data collection and empowering more people to take charge of important science in their own backyard.
Correlation analysis on real-time tab-delimited network monitoring data
Pan, Aditya; Majumdar, Jahin; Bansal, Abhay; ...
2016-01-01
End-End performance monitoring in the Internet, also called PingER is a part of SLAC National Accelerator Laboratory’s research project. It was created to answer the growing need to monitor network both to analyze current performance and to designate resources to optimize execution between research centers, and the universities and institutes co-operating on present and future operations. The monitoring support reflects the broad geographical area of the collaborations and requires a comprehensive number of research and financial channels. The data architecture retrieval and methodology of the interpretation have emerged over numerous years. Analyzing this data is the main challenge due tomore » its high volume. Finally, by using correlation analysis, we can make crucial conclusions about how the network data affects the performance of the hosts and how it depends from countries to countries.« less
The effect of retinol on the hyperthermal response of normal tissue in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, M.A.; Marigold, J.C.; Hume, S.P.
The effect of prior administration of retinol, a membrane labilizer, on the in vivo hyperthermal response of lysosomes was investigated in the mouse spleen using a quantitative histochemical assay for the lysosomal enzyme acid phosphatase. A dose of retinol which had no effect when given alone enhanced the thermal response of the lysosome, causing an increase in lysosomal membrane permeability. In contrast, the same dose of retinol had no effect on the gross hyperthermal response of mouse intestine; a tissue which is relatively susceptible to hyperthermia. Thermal damage to intestine was assayed directly by crypt loss 1 day after treatmentmore » or assessed as thermal enhancement of X-ray damage by counting crypt microcolonies 4 days after a combined heat and X-ray treatment. Thus, although the hyperthermal response of the lysosome could be enhanced by the administration of retinol, thermal damage at a gross tissue level appeared to be unaffected, suggesting that lysosomal membrane injury is unlikely to be a primary event in hyperthermal cell killing.« less
Hunting for cultivable Micromonospora strains in soils of the Atacama Desert.
Carro, Lorena; Razmilic, Valeria; Nouioui, Imen; Richardson, Lee; Pan, Che; Golinska, Patrycja; Asenjo, Juan A; Bull, Alan T; Klenk, Hans-Peter; Goodfellow, Michael
2018-02-26
Innovative procedures were used to selectively isolate small numbers of Micromonospora strains from extreme hyper-arid and high altitude Atacama Desert soils. Micromonosporae were recognised on isolation plates by their ability to produce filamentous microcolonies that were strongly attached to the agar. Most of the isolates formed characteristic orange colonies that lacked aerial hyphae and turned black on spore formation, whereas those from the high altitude soil were dry, blue-green and covered by white aerial hyphae. The isolates were assigned to seven multi- and eleven single-membered groups based on BOX-PCR profiles. Representatives of the groups were assigned to either multi-membered clades that also contained marker strains or formed distinct phyletic lines in the Micromonospora 16S rRNA gene tree; many of the isolates were considered to be putatively novel species of Micromonospora. Most of the isolates from the high altitude soils showed activity against wild type strains of Bacillus subtilis and Pseudomonas fluorescens while those from the rhizosphere of Parastrephia quadrangulares and from the Lomas Bayas hyper-arid soil showed resistance to UV radiation.
Strategies to determine diversity, growth, and activity of ammonia-oxidizing archaea in soil.
Nicol, Graeme W; Prosser, James I
2011-01-01
Ecological studies of soil microorganisms require reliable techniques for assessment of microbial community composition, abundance, growth, and activity. Soil structure and physicochemical properties seriously limit the applicability and value of methods involving direct observation, and ecological studies have focused on communities and populations, rather than single cells or microcolonies. Although ammonia-oxidizing archaea were discovered 5 years ago, there are still no cultured representatives from soil and there remains a lack of knowledge regarding their genomic composition, physiology, or functional diversity. Despite these limitations, however, significant insights into their distribution, growth characteristics, and metabolism have been made through the use of a range of molecular methodologies. As well as the analysis of taxonomic markers such as 16S rRNA genes, the development of PCR primers based on a limited number of (mostly marine) sequences has enabled the analysis of homologues encoding proteins involved in energy and carbon metabolism. This chapter will highlight the range of molecular methodologies available for examining the diversity, growth, and activity of ammonia-oxidizing archaea in the soil environment. Copyright © 2011 Elsevier Inc. All rights reserved.
BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING.
Fernández-Delgado, Milagro; Rojas, Héctor; Duque, Zoilabet; Suárez, Paula; Contreras, Monica; García-Amado, M Alexandra; Alciaturi, Carlos
2016-01-01
Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.
Copolymers enhance selective bacterial community colonization for potential root zone applications.
Pham, Vy T H; Murugaraj, Pandiyan; Mathes, Falko; Tan, Boon K; Truong, Vi Khanh; Murphy, Daniel V; Mainwaring, David E
2017-11-21
Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.
van Vliet, Simon; Dal Co, Alma; Winkler, Annina R; Spriewald, Stefanie; Stecher, Bärbel; Ackermann, Martin
2018-04-25
Gene expression levels in clonal bacterial groups have been found to be spatially correlated. These correlations can partly be explained by the shared lineage history of nearby cells, although they could also arise from local cell-cell interactions. Here, we present a quantitative framework that allows us to disentangle the contributions of lineage history, long-range spatial gradients, and local cell-cell interactions to spatial correlations in gene expression. We study pathways involved in toxin production, SOS stress response, and metabolism in Escherichia coli microcolonies and find for all pathways that shared lineage history is the main cause of spatial correlations in gene expression levels. However, long-range spatial gradients and local cell-cell interactions also contributed to spatial correlations in SOS response, amino acid biosynthesis, and overall metabolic activity. Together, our data show that the phenotype of a cell is influenced by its lineage history and population context, raising the question of whether bacteria can arrange their activities in space to perform functions they cannot achieve alone. Copyright © 2018 Elsevier Inc. All rights reserved.
A user-friendly, open-source tool to project impact and cost of diagnostic tests for tuberculosis
Dowdy, David W; Andrews, Jason R; Dodd, Peter J; Gilman, Robert H
2014-01-01
Most models of infectious diseases, including tuberculosis (TB), do not provide results customized to local conditions. We created a dynamic transmission model to project TB incidence, TB mortality, multidrug-resistant (MDR) TB prevalence, and incremental costs over 5 years after scale-up of nine alternative diagnostic strategies. A corresponding web-based interface allows users to specify local costs and epidemiology. In settings with little capacity for up-front investment, same-day microscopy had the greatest impact on TB incidence and became cost-saving within 5 years if delivered at $10/test. With greater initial investment, population-level scale-up of Xpert MTB/RIF or microcolony-based culture often averted 10 times more TB cases than narrowly-targeted strategies, at minimal incremental long-term cost. Xpert for smear-positive TB had reasonable impact on MDR-TB incidence, but at substantial price and little impact on overall TB incidence and mortality. This user-friendly modeling framework improves decision-makers' ability to evaluate the local impact of TB diagnostic strategies. DOI: http://dx.doi.org/10.7554/eLife.02565.001 PMID:24898755
Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I
2017-10-01
Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.
Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.
Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo
2012-11-21
To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.
Bacteria associated with granular activated carbon particles in drinking water.
Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A
1986-01-01
A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356
Gradish, Angela E; Scott-Dupree, Cynthia D; Shipp, Les; Harris, C Ron; Ferguson, Gillian
2010-02-01
Bumble bees [Bombus impatiens (Cresson)] are widely used for supplemental pollination of greenhouse vegetables and are at risk of pesticide exposure while foraging. The objective of this study was to determine the lethal and sub-lethal effects of four insecticides (imidacloprid, abamectin, metaflumizone and chlorantraniliprole) and three fungicides (myclobutanil, potassium bicarbonate and cyprodinil + fludioxonil) used or with potential for use in Ontario greenhouse vegetable production to B. impatiens. Imidacloprid, abamectin, and metaflumizone were harmful to worker bees following direct contact, while chlorantraniliprole and all fungicides tested were harmless. Worker bees fed imidacloprid-contaminated pollen had shortened life spans and were unable to produce brood. Worker bees consumed less pollen contaminated with abamectin. Metaflumizone, chlorantraniliprole and all fungicides tested caused no sub-lethal effects in bumble bee micro-colonies. We conclude that the new reduced risk insecticides metaflumizone and chlorantraniliprole and the fungicides myclobutanil, potassium bicarbonate and cyprodinil + fludioxonil are safe for greenhouse use in the presence of bumble bees. This information can be used preserve greenhouse pollination programs while maintaining acceptable pest management.
Raygoza-Anaya, M; Bondarenko, V M; Mora-Galindo, H; González-Robles, A
1991-08-01
This study has revealed that helical bacteria inhabiting the mucous membrane of the cecum of guinea pigs are localized in the parietal zone of the epithelium and can be detected as biological film consisting of many microcolonies. Helical bacteria are attached to the epithelium by insertion of one of the ends of an eukaryotic cell into the space between microvilli without damaging epithelial cells and their microvilli. Helical bacteria have been found to use the "anchor" type of attachment to the epithelium, which ensures the stability of their high population level in the biotope. These microorganisms appear on the mucous membrane of the epithelium, starting from day 15 of the life of guinea pigs. At the period of the transition of suckling guinea pigs to independent nourishment the population of helical bacteria is partially suppressed due to the appearance of bacillary and filamentous forms of bacteria, but later, after the adaptation of the animals to their diet, helical bacteria become normal resident microflora which forms biofilm covering large areas of the mucous membrane and the entrances of crypts of Lieberkühn.
Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.
2018-01-01
Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780
Use of phytoremediated sediments dredged in maritime port as plant nursery growing media.
Mattei, Paola; D'Acqui, Luigi P; Nicese, Francesco P; Lazzerini, Giulio; Masciandaro, Grazia; Macci, Cristina; Doni, Serena; Sarteschi, Francesco; Giagnoni, Laura; Renella, Giancarlo
2017-01-15
We evaluated the potential of a phytoremediated sediment (TR) dredged from maritime port as peat-free growth substrate for seven ornamental plants, in comparison with an untreated sediment (NT), in a greenhouse experiment. The studied plants were Quercus ilex, Photinia x fraseri, Viburnum tinus, Cistus albidus, Raphiolepis indica, Westringia fruticosa and Teucrium fruticans. Plant growth was monitored for ten months, and the changes in the physico-chemical properties, toxicity, microbial biomass and enzyme activities involved in the C, P and N cycles were also monitored during the plant growth period. The results showed that the studied ornamental plants could grow on both NT and TR sediments, but that the growth was higher on TR sediment. The plant growth induced changes in the sediment chemical functional groups, with clear separation between NT and TR sediments for each of the studied plant. Microbial biomass and enzyme activities significantly increased during the plant growth, more in TR than in NT sediment. Toxicity was detected in NT sediments during the plant growth whereas it was not observed in NT sediments during the whole growth period. We concluded that phytoremediation converted the dredged maritime sediments into suitable substrates for growing ornamental plants, and that the re-use by plant nursery industry can be a sustainable management and valorization for remediated sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lean, G R; Vizard, A L; Ware, J K
1997-10-01
To estimate the changes in productivity and profitability in a group of wool-growing farms as they adopted major recommendations from agricultural and veterinary studies. FARMS: Four wool-growing farms in south western Victoria were selected from the clients of the Mackinnon Project, a farm consultancy service run from the University of Melbourne. Each farm had closely followed recommended procedures, kept comprehensive financial and physical records and had been clients for at least 5 years. The comparison group was the South Western Victoria Monitor Farm Project (SWVMFP), about 45 farms in the same region as the study farms that were monitored annually by Agriculture Victoria. For a 7-year period, the financial and physical performance of both groups of farms was estimated. Stocking rate, wool production, gross farm income, farm operating costs, net farm income and return on assets were compared. Mean gross farm income of the four study farms steadily rose from 86% of the average SWVMFP farm before the adoption of recommendations to an average of 155%. During the same period, net farm income rose from 70% to 207% of the average of the SWVMFP. Return on asset of the four farms rose irregularly from 26% to 145% of the average of the SWVMFP. Farm operating costs on the four farms were higher than for the SWVMFP group, but the ratio of costs remained relatively constant. The adoption of proven research results was associated with large increases in net farm income. An increase in gross income, rather than a reduction in costs was the main reason for this. Research results offer a way to increase the financial viability of wool-growing farmers, many of whom are currently unable to maintain their lifestyle, resources and infrastructure.
Odor and odorous chemical emissions from animal buildings: Part 6.Odor activity value
USDA-ARS?s Scientific Manuscript database
There is a growing concern with air and odor emissions from agricultural facilities. A supplementary research project was conducted to complement the U.S. National Air Emissions Monitoring Study (NAEMS). The overall goal of the project was to establish odor and chemical emission factors for animal...
Youth and parent feelings about type 1 diabetes (T1D) management technologies
USDA-ARS?s Scientific Manuscript database
Use of T1D management technologies, including insulin pumps and continuous glucose monitors, is rapidly growing. However, research has only recently begun to evaluate youth and parent feelings about and experiences with using these technologies and the relationship with health-related quality of lif...
Understanding Resilience in Educational Trajectories: Implications for Protective Possibilities
ERIC Educational Resources Information Center
Morrison, Gale M.; Brown, Megan; D'Incau, Barbara; O'Farrell, Stacy Larson; Furlong, Michael J.
2006-01-01
A growing body of literature on risk and resilience, school engagement, and positive psychology offers school psychologists new perspectives with which to consider students' progress through school. This literature emphasizes the importance of monitoring student internal and external assets. In this article, a framework is reviewed that highlights…
USDA-ARS?s Scientific Manuscript database
Working grassland systems provide important habitat for native biodiversity and forage for livestock, with proper livestock grazing playing an important role for sustainable ecosystem function. Traditional in-field techniques to monitor the effects of grazing on vegetation are costly and limited to ...
Public Debates Shaping Forestry's Future: An Analysis.
David Fan; David Bengston
1997-01-01
The job of forest managers and policy makers is growing increasingly complex because of rapid change in the social, political, economic, and scientific environments in which forest management is carried out. Managing public lands in ways that are responsive to changing social conditions requires continuous monitoring and assessment. But traditional methods for...
Evidence-Based Practice and Evaluation: From Insight to Impact
ERIC Educational Resources Information Center
Dunsmuir, Sandra; Brown, Emma; Iyadurai, Suzi; Monsen, Jeremy
2009-01-01
With the growing emphasis on accountability and evidence-based practice, evaluation has become increasingly important in the contexts in which educational psychologists (EPs) practice. This paper describes a Target Monitoring and Evaluation (TME) system, derived from Goal Attainment Scaling (GAS) which was developed to evaluate outcomes of a wide…
High School Reform. Policy Brief #1
ERIC Educational Resources Information Center
Philadelphia Youth Network, 2007
2007-01-01
Historically, many mayors have had direct authority over the education system in their cities. Until recently, however, they have largely deferred to boards and superintendents to lead and monitor the work of schools. Now, with increased federal accountability, growing awareness of how education impacts economic growth and related issues like…
Fire Monitoring: Effects of Scorch in Louisiana's Pine Forests
James D. Haywood; Mary Anne Sword; Finis L. Harris
2004-01-01
Frequent growing-season burning is essential for restoring longleaf pine (Pinus palustris Mill.) plant communities to open parklike landscapes. However, fire can be a destructive force, reducing productivity and causing mortality among overstory longleaf pine trees. On two central Louisiana sites, severe crown scorch reduced longleaf pine diameter...
ERIC Educational Resources Information Center
Groen, Jovan F.
2017-01-01
Stemming from increased levels of participation and diversity of the student base and from growing scrutiny on the quality of university degrees, governments have begun establishing mechanisms to monitor and support quality in higher education. Faced with administrative quality assurance structures, academics often complain that little is…
Pistillate flower abortion in three species of oak
R.A. Cecich; G.L. Brown; B.K. Piotter
1991-01-01
Pistillate fiower survival was monitored at weekly intervals in three species of oak (Quercus rubra L., Q. velutina Lam., and Q. alba L.) during the 1989 and 1990 growing seasons in central Missouri. Pollen was shed between late April and early May in both years. However, in 1989 only Q. velutina...
The Missing Measure? Academic Identity and the Induction Process
ERIC Educational Resources Information Center
Billot, Jennie; King, Virginia
2017-01-01
The effectiveness of academic induction is under-monitored by higher education institutions (HEIs) despite growing evidence that some academics, facing increased expectations and rising accountability within higher education (HE), perceive a lack of support from their institution. In this paper, we argue that HEIs should follow the example of…
Over the past decade, there has been a growing awareness of the contribution of abiotic processes to the natural degradation of chlorinated organic contaminants in aquifer material. These abiotic processes contribute to risk management of the contaminants through monitored natur...
A FASTER METHOD OF MEASURING RECREATIONAL WATER QUALITY FOR BETTER PROTECTION OF SWIMMER'S HEALTH
Introduction
Fecal indicator bacteria (FIB) are used to monitor recreational water quality worldwide. Current methods of measuring FIB require at least 24-hours for visible bacterial colonies to grow. We previously reported that a faster method (< 2 hours) of measuring FI...
A flexible, low-cost cart for proximal sensing
USDA-ARS?s Scientific Manuscript database
Agricultural researchers increasingly use diverse types of electronic sensors to monitor how crops grow and respond to problems such as drought and low soil fertility. In order to take measurements on large numbers of plots in an experiment, there is a need to for simple, high-clearance vehicles tha...
Comparing three different passive RFID systems for behaviour monitoring in grow-finish pigs
USDA-ARS?s Scientific Manuscript database
Animal facilities are increasing in size making it difficult for animal caretakers to ensure the health and well-being of all animals under their care. Radio Frequency Identification (RFID) systems have been successfully used in animal facilities and research has identified potential applications in...
Perceived Exertion: An Old Exercise Tool Finds New Applications.
ERIC Educational Resources Information Center
Monahan, Terry
1988-01-01
Perceived exertion scales, based on subjective perception of energy output, are gaining respect as prescribing and monitoring tools for individual exercise programs. A review of recent literature indicates growing research interest in applications for individuals who are elderly, inactive, or subject to medical conditions such as angina. (IAH)
ADVANCES IN THE APPLICATION OF REMOTE SENSING TO PLANT INCORPORATED PROTECTANT CROP MONITORING
Current forecasts call for significant increases to the plantings of transgenic corn in the United States for the 2007 growing season and beyond. Transgenic acreage approaching 80% of the total corn plantings could be realized by 2009. These conditions call for a new approach to ...
Use of spectral imaging for insect resistance monitoring: EPA research on stewardship of Bt crops
A significant increase in genetically modified corn planting driven by biofuel demand is expected for future growing seasons. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to increase. As part of the FIFRA regist...
Monitoring Rangeland Ecosystems with Remote Sensing: An example from Kazakhstan
USDA-ARS?s Scientific Manuscript database
This paper introduces the problem of desertification in Kazakhstan in both a historical and modern context. The vegetation of Kazakhstan is dominated by shrubs and grasses, many of which are adapted to saline or sandy soils, with a very limited growing season. A model of vegetation production under ...
Estimating maize water stress by standard deviation of canopy temperature in thermal imagery
USDA-ARS?s Scientific Manuscript database
A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...
Spatial Distribution of Circadian Clock Phase in Aging Cultures of Neurospora crassa1
Dharmananda, Subhuti; Feldman, Jerry F.
1979-01-01
Neurospora crassa has been utilized extensively in the study of circadian clocks. Previously, the clock in this organism has been monitored by observing the morphological and biochemical changes occurring at the growing front of cultures grown on solid medium. A method has been developed for assaying the clock in regions of the culture behind the growing front, where no apparent morphological changes occur during the circadian cycle. Using this assay with Petri dish cultures that were 2 to 7 days old, the presence of a functional circadian clock not only at the growing front but in all other regions of the culture as well was demonstrated. Furthermore, the entire culture is not in the same phase, but shows a gradient of phases which is a function of the length of time the clock in a given part of the culture has been free-running. This gradient may be the result of a somewhat longer period of the oscillator behind the growing front compared to that at the growing front. The phase differences within a single culture of interconnected mycelium demonstrate the absence of total internal synchronization between adjacent regions of the hyphae under these conditions. PMID:16660855
General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations
NASA Technical Reports Server (NTRS)
Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark
2010-01-01
Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.
Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water.
Stoler, Justin
2012-12-01
The advent and rapid spread of sachet drinking water in West Africa presents a new challenge for providing sustainable access to global safe water. Sachet water has expanded drinking water access and is often of sufficient quality to serve as an improved water source for Millennium Development Goals (MDG) monitoring purposes, yet sachets are an unsustainable water delivery vehicle due to their overwhelming plastic waste burden. Monitoring of primary drinking water sources in West Africa generally ignores sachet water, despite its growing ubiquity. Sub-Saharan Africa as a region is unlikely to meet the MDG Target for drinking water provision, and post-2015 monitoring activities may depend upon rapid adaptability to local drinking water trends. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve
2013-01-01
U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.
Current methods of monitoring radiation exposure from CT.
Talati, Ronak K; Dunkin, Jared; Parikh, Shrujal; Moore, William H
2013-09-01
Increased public and regulatory scrutiny of imaging-related radiation exposure requires familiarity with current dose-monitoring techniques and best practices. CT-related ionizing radiation exposure has been cited as the largest and fastest growing source of population-wide iatrogenic ionizing radiation exposure. Upcoming federal regulations require imaging centers to familiarize themselves with available dose-monitoring techniques and implement comprehensive strategies to track patient dose, with particular emphasis on CT. Because of institution-specific and vendor-specific technologies, there are significant barriers to adoption and implementation. In this article, the authors outline the core components of a universal dose-monitoring strategy and detail a few of the many available commercial platforms. In addition, the authors introduce a cloud-based hybrid model dose-tracking system with the goal of rapid implementation, multicenter scalability, real-time dose feedback for technologists, cumulative dose monitoring, and optional dose communication to patients and into the record; doing so results in improved patient loyalty, referring physician satisfaction, and opportunity for repeat business. Copyright © 2013 American College of Radiology. All rights reserved.
Coastwide Reference Monitoring System (CRMS)
2010-01-01
In 1990, the U.S. Congress enacted the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in response to growing awareness of a land loss crisis in Louisiana. Projects funded by CWPPRA require monitoring and evaluation of project effectiveness, and there is also a need to assess the cumulative effects of all projects to achieve a sustainable coastal environment. In 2003, the Louisiana Office of Coastal Protection and Restoration (OCPR) and the U.S. Geological Survey (USGS) received approval from the CWPPRA Task Force to implement the Coastwide Reference Monitoring System (CRMS) as a mechanism to monitor and evaluate the effectiveness of CWPPRA projects at the project, region, and coastwide levels. The CRMS design implements a multiple reference approach by using aspects of hydrogeomorphic functional assessments and probabilistic sampling. The CRMS program is as dynamic as the coastal habitats it monitors. The program is currently funded through CWPPRA and provides data for a variety of user groups, including resource managers, academics, landowners, and researchers.
Argonne scientist Cristina Negri talks about phytoremediation
Negri, Cristina
2018-01-08
Phytoremediation is the use of plants and trees to remove or neutralize contaminants in polluted soil or water. Argonne scientist M. Cristina Negri leads the phytotechnologies R&D activities at Argonne. Phytotechnologies encompass the treatment of environmental problems through the use of plants. She was the scientific lead in the deployment and monitoring of multi-acre field scale phytoremediation installations and for the development of a phyto- and bio-remediation researcha nd development project in Russia. Her interests also focus on input-efficient approaches to growing energy crops, water efficiency in growing biofuel crops, and on the advanced treatment and reuse of wastewater and other impaired water.
Cancer Survivors: The Success Story That's Straining Health Care.
Allen, Summer E
2017-01-01
Since President Richard Nixon declared a "War on Cancer" in 1971, the number of cancer survivors in the United States has quadrupled [1] and is still rising. Thanks to advance in cancer detection and treatment, the almost 15 million cancer survivors in the United States today could grow to some 19 million by 2024 [2]. Increasing survival rates have resulted in a shift: cancer is often treated as a chronic illness rather than a death sentence. However, having so many cancer survivors to monitor, track, and treat has led to growing pains for healthcare providers-forcing them to develop new ways to treat this increasing yet still vulnerable population.
Argonne scientist Cristina Negri talks about phytoremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negri, Cristina
Phytoremediation is the use of plants and trees to remove or neutralize contaminants in polluted soil or water. Argonne scientist M. Cristina Negri leads the phytotechnologies R&D activities at Argonne. Phytotechnologies encompass the treatment of environmental problems through the use of plants. She was the scientific lead in the deployment and monitoring of multi-acre field scale phytoremediation installations and for the development of a phyto- and bio-remediation researcha nd development project in Russia. Her interests also focus on input-efficient approaches to growing energy crops, water efficiency in growing biofuel crops, and on the advanced treatment and reuse of wastewater andmore » other impaired water.« less
Remote Safety Monitoring for Elderly Persons Based on Omni-Vision Analysis
Xiang, Yun; Tang, Yi-ping; Ma, Bao-qing; Yan, Hang-chen; Jiang, Jun; Tian, Xu-yuan
2015-01-01
Remote monitoring service for elderly persons is important as the aged populations in most developed countries continue growing. To monitor the safety and health of the elderly population, we propose a novel omni-directional vision sensor based system, which can detect and track object motion, recognize human posture, and analyze human behavior automatically. In this work, we have made the following contributions: (1) we develop a remote safety monitoring system which can provide real-time and automatic health care for the elderly persons and (2) we design a novel motion history or energy images based algorithm for motion object tracking. Our system can accurately and efficiently collect, analyze, and transfer elderly activity information and provide health care in real-time. Experimental results show that our technique can improve the data analysis efficiency by 58.5% for object tracking. Moreover, for the human posture recognition application, the success rate can reach 98.6% on average. PMID:25978761
L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Sackschewsky, Michael R.
2009-09-29
Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimummore » number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.« less
Object-oriented model-driven control
NASA Technical Reports Server (NTRS)
Drysdale, A.; Mcroberts, M.; Sager, J.; Wheeler, R.
1994-01-01
A monitoring and control subsystem architecture has been developed that capitalizes on the use of modeldriven monitoring and predictive control, knowledge-based data representation, and artificial reasoning in an operator support mode. We have developed an object-oriented model of a Controlled Ecological Life Support System (CELSS). The model based on the NASA Kennedy Space Center CELSS breadboard data, tracks carbon, hydrogen, and oxygen, carbodioxide, and water. It estimates and tracks resorce-related parameters such as mass, energy, and manpower measurements such as growing area required for balance. We are developing an interface with the breadboard systems that is compatible with artificial reasoning. Initial work is being done on use of expert systems and user interface development. This paper presents an approach to defining universally applicable CELSS monitor and control issues, and implementing appropriate monitor and control capability for a particular instance: the KSC CELSS Breadboard Facility.
[Design of Smart Care Tele-Monitoring System for Mother and Fetus].
Xi, Haiyan; Gan, Guanghui; Zhang, Huilian; Chen, Chaomin
2015-03-01
To study and design a maternal and fetal monitoring system based on the cloud computing and internet of things, which can monitor and take smart care of the mother and fetus in 24 h. Using a new kind of wireless fetal monitoring detector and a mobile phone, thus the doctor can keep touch with hospital through internet. The mobile terminal was developed on the Android system, which accepted the data of fetal heart rate and uterine contraction transmitted from the wireless detector, exchange information with the server and display the monitoring data and the doctor's advice in real-time. The mobile phone displayed the fetal heart rate line and uterine contraction line in real-time, recorded the fetus' grow process. It implemented the real-time communication between the doctor and the user, through wireless communication technology. The system removes the constraint of traditional telephone cable for users, while the users can get remote monitoring from the medical institutions at home or in the nearest community at any time, providing health and safety guarantee for mother and fetus.
Doswell, W M; Vandestienne, G
1996-01-01
This article presents the findings of four focus groups aimed at discovering the concerns a group of 9- to 12-year-old African American and Hispanic girls (N = 38) had about puberty, the transition to adolescence, and growing up. Among the factors these girls liked about growing up were increasing independence from parents, widening social relations with same- and opposite-sex friends, and an increase in decision making regarding clothes and activities. What they reported as not liking about growing up were an increase in peer pressure, high parental expectations, and more responsibility for their actions in home, school, and recreational activities. Health care for this group must include systematic monitoring of pubertal development and concerns in order to aggressively educate preadolescents to negotiate this period smoothly and to avoid high-risk behaviors that could have negative health and social sequelae during adolescence and adulthood.
Cell wall integrity signaling in plants: "To grow or not to grow that's the question".
Voxeur, Aline; Höfte, Herman
2016-09-01
Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Interest in human milk research and monitoring for environmental chemicals is growing, and as studies of chemicals in human milk are initiated, it is of the utmost importance that these studies be conducted using harmonized methods. Due to numerous limitations in previous studies...
USDA-ARS?s Scientific Manuscript database
Citrus canker is caused by the bacterial pathogen Xanthomonas axonopodis pv citri (Xac) and infects several citrus species in wet tropical and subtropical citrus growing regions. Accurate, precise and reproducible disease assessment is needed for monitoring epidemics and disease response in breeding...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
..., scientific data or information relied on to support the adequacy of water treatment methods, treatment monitoring results, water testing results, and scientific data or information relied on to support any... recommendations in the Sprout Guides to test spent irrigation water; several comments supported expanded testing...
Take the Test: Sample Questions from OECD's PISA Assessments
ERIC Educational Resources Information Center
Salz, Susanne, Comp.; Figueroa, Diana Toledo, Comp.
2009-01-01
Parents, students, teachers, school leaders, governments and the general public need good information on how well their education systems prepare students for life. A growing commitment by governments to monitor the outcomes of education systems in terms of student achievement on a regular basis and within an internationally agreed framework led…
Computer-Mediated Social Support for Physical Activity: A Content Analysis
ERIC Educational Resources Information Center
Stragier, Jeroen; Mechant, Peter; De Marez, Lieven; Cardon, Greet
2018-01-01
Purpose: Online fitness communities are a recent phenomenon experiencing growing user bases. They can be considered as online social networks in which recording, monitoring, and sharing of physical activity (PA) are the most prevalent practices. They have added a new dimension to the social experience of PA in which online peers function as…
USDA-ARS?s Scientific Manuscript database
Salmonella is a human pathogen that can accompany live broilers to the slaughter plant contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practices. The first step in ...
Product Description:Evaluation of the potential effects of complex mixtures of chemicals in the environment is challenged by the lack of extensive toxicity data for many chemicals. However, there are growing sources of online information that curate and compile literature reports...
ERIC Educational Resources Information Center
Whitney, Edward N.; And Others
In studies conducted in the Baltimore City Public Schools by the Office of Pupil and Program Monitoring and Appraisal (OPPMA), pre-kindergarten pupils were found to be "growing scholastically". A program, Early School Admissions Program (ESAP) was based on nine objectives established to prepare pre-schoolers for "reading…
Interest in human milk research and monitoring for environmental chemicals is growing, and as studies of chemicals in human milk are initiated, it is of the utmost importance that these studies be conducted using harmonized methods. Due to numerous limitations in previous studies...
7.0 Monitoring the status and impacts of forest fragmentation and urbanization
Rachel Riemann; Karen Riva-Murray; Peter S. Murdoch
2008-01-01
The geographic expansion of urban and suburban development and the influx of residential and recreational development into previously forested areas are growing concerns for natural resource managers. This project sought to: identify and characterize urbanization and forest fragmentation over large areas with the detail and accuracy required for studies of wildlife...
Acorn Size as a Factor in Early Seedling Growth of Blue Oaks
Jerry Tecklin; Douglas D. McCreary
1991-01-01
Field performance was evaluated for blue oak (Quercus douglasii Hook. & Am.) acorns of different size classes (weights) and from different trees which produced predominantly small, medium, or large acorns. Emergence, height, and survival were monitored for two growing seasons. A parallel evaluation, mainly of root characteristics, was conducted...
There's an App for that: Smartphone Use in Health and Physical Education
ERIC Educational Resources Information Center
Cummiskey, Matthew
2011-01-01
Smartphone use in the United States is growing rapidly and focuses mainly on sedentary activities, such as texting, gaming, and web browsing. Therefore, it is important that educators teach students the positive health-enhancing possibilities of smartphones. Apps exist for monitoring food consumption, planning meals, calculating BMI, and recording…
Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol
2015-03-01
This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree. Copyright © 2014 Elsevier Ltd. All rights reserved.
Monitoring crop gross primary productivity using Landsat data (Invited)
NASA Astrophysics Data System (ADS)
Gitelson, A. A.; Peng, Y.; Keydan, G. P.; Masek, J.; Rundquist, D. C.; Verma, S. B.; Suyker, A. E.
2009-12-01
There is a growing interest in monitoring the gross primary productivity (GPP) of crops due mostly to their carbon sequestration potential. We presented a new technique for GPP estimation in irrigated and rainfed maize and soybeans based on the close and consistent relationship between GPP and crop chlorophyll content, and entirely on remotely sensed data. A recently proposed Green Chlorophyll Index (Green CI), which employs the green and the NIR spectral bands, was used to retrieve daytime GPP from Landsat ETM+ data. Due to its high spatial resolution (i.e., 30x30m/pixel), this satellite system is particularly appropriate for detecting not only between but also within field GPP variability during the growing season. The Green CI obtained using atmospherically corrected Landsat ETM+ data was found to be linearly related with crop GPP explaining about 90% of GPP variation. Green CI constitutes an accurate surrogate measure for GPP estimation. For comparison purposes, other vegetation indices were also tested. These results open new possibilities for analyzing the spatio-temporal variation of the GPP of crops using the extensive archive of Landsat imagery acquired since the early 1980s.
NASA Astrophysics Data System (ADS)
Fuertes, David; Toledano, Carlos; González, Ramiro; Berjón, Alberto; Torres, Benjamín; Cachorro, Victoria E.; de Frutos, Ángel M.
2018-02-01
Given the importance of the atmospheric aerosol, the number of instruments and measurement networks which focus on its characterization are growing. Many challenges are derived from standardization of protocols, monitoring of the instrument status to evaluate the network data quality and manipulation and distribution of large volume of data (raw and processed). CÆLIS is a software system which aims at simplifying the management of a network, providing tools by monitoring the instruments, processing the data in real time and offering the scientific community a new tool to work with the data. Since 2008 CÆLIS has been successfully applied to the photometer calibration facility managed by the University of Valladolid, Spain, in the framework of Aerosol Robotic Network (AERONET). Thanks to the use of advanced tools, this facility has been able to analyze a growing number of stations and data in real time, which greatly benefits the network management and data quality control. The present work describes the system architecture of CÆLIS and some examples of applications and data processing.
Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.
1992-12-15
A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.
Hand-held radiometer red and photographic infrared spectral measurements of agricultural crops
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Fan, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III
1978-01-01
Red and photographic infrared radiance data, collected under a variety of conditions at weekly intervals throughout the growing season using a hand-held radiometer, were used to monitor crop growth and development. The vegetation index transformation was used to effectively compensate for the different irradiational conditions encountered during the study period. These data, plotted against time, compared the different crops measured by comparing their green leaf biomass dynamics. This approach, based entirely upon spectral inputs, closely monitors crop growth and development and indicates the promise of ground-based hand-held radiometer measurements of crops.
Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.
1992-01-01
A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.
Macauley, Molly; Palmer, Karen; Shih, Jhih-Shyang
2003-05-01
The importance of information technology to the world economy has brought about a surge in demand for electronic equipment. With rapid technological change, a growing fraction of the increasing stock of many types of electronics becomes obsolete each year. We model the costs and benefits of policies to manage 'e-waste' by focusing on a large component of the electronic waste stream-computer monitors-and the environmental concerns associated with disposal of the lead embodied in cathode ray tubes (CRTs) used in most monitors. We find that the benefits of avoiding health effects associated with CRT disposal appear far outweighed by the costs for a wide range of policies. For the stock of monitors disposed of in the United States in 1998, we find that policies restricting or banning some popular disposal options would increase disposal costs from about US dollar 1 per monitor to between US dollars 3 and US dollars 20 per monitor. Policies to promote a modest amount of recycling of monitor parts, including lead, can be less expensive. In all cases, however, the costs of the policies exceed the value of the avoided health effects of CRT disposal.
NASA Astrophysics Data System (ADS)
Watson, T.; Sullivan, T.
2013-05-01
The levels of CO2 in the atmosphere have been growing since the beginning of the industrial revolution. The current level is 391 ppm. If there are no efforts to mitigate CO2 emissions, the levels will rise to 750 ppm by 2100. Geologic carbon sequestration is one strategy that may be used to begin to reduce emissions. Sequestration will not be effective unless reservoir leak rates are significantly less than 1%. There must be rigorous monitoring protocols in place to ensure sequestration projects meet regulatory and environmental goals. Monitoring for CO2 leakage directly is difficult because of the large background levels and variability of CO2 in the atmosphere. Using tracers to tag the sequestered CO2 can mitigate some of the difficulties of direct measurement but a tracer monitoring network and the levels of tagging need to be carefully designed. Simple diffusion and dispersion models are used to predict the surface and atmospheric concentrations that would be seen by a network monitoring a sequestration site. Levels of tracer necessary to detect leaks from 0.01 to 1% are presented and suggestions for effective monitoring and protection of global tracer utility are presented.
Induced seismicity in a salt mine environment evaluated by a coupled continuum-discrete modelling.
NASA Astrophysics Data System (ADS)
Mercerat, E.; Souley, M.; Driad, L.; Bernard, P.
2005-12-01
Within the framework of a research project launched to assess the feasibility of seismic monitoring of underground growing cavities, this specific work focus on two main complementary axis: the validation of seismic monitoring techniques in salt mine environments, and the numerical modelling of deformation and failure mechanisms with their associated acoustic emissions, the induced microseismicity. The underground cavity under monitoring is located at Cerville (Lorraine, France) within a salt layer 180 m deep and it presents a rather regular cylindrical shape of 100 m diameter. Typically, the overburden is characterized by the presence of two competent layers with elasto-brittle behaviour and located 50 m above the salt layer. When the salt exploitation restarts, the cavity will progressively grow causing irreversible damage of the upper layers until its final collapse at a time scale of the order of one year. Numerical modelling of such a complex process requires a large scale model which takes into account both the growing cavity within the salt layer and the mechanical behaviour of the overburden where high deformation and fracturing is expected. To keep the elasto-brittle behaviour of the competent layers where most seismic damage is expected, we use the PFC code (Itasca Cons). To approach the other layers (mainly composed of marls and salt) which present more ductile and/or viscoplastic behaviour, a continuum approach based on the FLAC code (Itasca Cons) is employed. Numerous calibration process were needed to estimate the microproperties used in PFC to reproduce the macroscopic behaviour from laboratory tests performed on samples extracted from the competent layers. As long as the size of the PFC inclusion representing the brittle material is much higher than the core sample sizes, the scale effect of microproperties is examined. The next stage is to perform calculations on the basis of previous macroscopic and microproperties calibration results, and compare them with the observed microseismicity in the rock mass.
NASA Astrophysics Data System (ADS)
Volpi, Iride; Bosco, Simona; Triana, Federico; Di Nasso, Nicoletta Nassi o.; Laville, Patricia; Virgili, Giorgio; Bonari, Enrico
2016-04-01
Evaluating the magnitude and the key factors affecting N2O emissions from agriculture has a scientific and practical relevance, in fact emissions from agricultural and natural soils account for 56-70% of all global N2O sources (Syakila and Kroeze, 2011). Moreover, the necessity to increase the food production rate minimizing greenhouse gas emissions require a deeper understanding of the effect of the agricultural practices on direct soil emissions. Therefore, the aim of this work is to assess the effect of tillage intensity and nitrogen rate on soil N2O emissions on durum wheat. A two years monitoring campaign was carried out using a high-sensibility transportable instrument developed within the LIFE+ "Improved flux Prototypes for N2O emission from Agriculture" IPNOA project (Bosco et al., 2015; Laville et al., 2015). The project aims at improving the measurement technique of N2O flux directly in field using the flow-through non-steady state chamber technique. The monitoring campaign on durum wheat lasted for two growing seasons and two fallow periods (2013-14 and 2014-15). Treatment on the main plot was tillage intensity with two levels, ploughing and minimum tillage, and three different nitrogen rates were distributed to the subplots (N0: 0 kg ha-1, N1: 110 kg ha-1, N2: 170 kg ha-1). Ancillary measurements concerned meteorological data, soil temperature and moisture, NO3-, NH4+ soil concentration. Main results of the two years highlighted N rate as the main driver for both N2O daily flux and cumulative emissions during the growing season, while in the fallow period treatments did not affect the emission magnitude. Tillage intensity was not a key factor for N2O emissions. N2O emissions were significantly different in the two years. In particular, cumulative emissions of 2013-14 were about five times higher than in 2014-15, respectively on average 2885±260 g N-N2O ha-1 and 534±53 g N-N2O ha-1 for a similar monitoring period of about 300 days. Differences could be partially attributed to a huge difference in the rainfall amount during the two growing seasons, equal to 810 mm in the 2013-14 growing season and 441 mm in 2014-15. Emission factors for each N rate was calculated through the whole monitoring period and resulted to be in the range of 0.5-0.9% in 2013-14, while between 0.2-0.3% in 2014-15, considerably lower than the IPCC Tier 1 EF (1%). References: Bosco S., Volpi I., Nassi o Di Nasso N., Triana F., Roncucci N., Tozzini C., Villani R., Laville P., Mattei F., Virgili G., Nuvoli S., Fabbrini L., Bonari E., 2015. LIFE+IPNOA mobile prototype for the monitoring of soil N2O emissions from arable crops: first year results on durum wheat. Italian Journal of Agronomy Vol 10:669, pp 124-131. Laville P., Neri S., Continanza D., Ferrante Vero L., Bosco S., Virgili G., 2015. Cross-Validation of a mobile N2O flux prototype (IPNOA) using Micrometeorological and Chamber methods. Journal of Energy and Power Engineering 9 (2015) 375-385. Syakila A, Kroeze C., 2011. The global nitrogen budget revisited. Greenhouse Gas Meas. Manage. 1, 17-26.
NASA Astrophysics Data System (ADS)
Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo
2016-04-01
Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand, to identify existing plant communities, high resolution images are needed due fragmented nature of tundra vegetation communities. Temporal differences in the phenology among different plant functional types may also obscure the image interpretations when using spatially low resolution images in heterogeneous landscapes. Phenological features of plant communities should be acknowledged, when plant functional or community type based classifications are used in models to estimate global greenhouse gas emissions and when monitoring changes in vegetation are monitored, for example to indicate permafrost thawing or changes in growing season lengths.
Laser techniques in conservation in Europe
NASA Astrophysics Data System (ADS)
Salimbeni, Renzo
2005-06-01
The state of the art of laser techniques employed in conservation of cultural heritage is continuously growing in Europe. Many research projects organised at the European level have contributed to this achievement, being complementary to the development carried out at national level. The COST Action G7 is playing its unique role since the year 2000 in promoting the experimentation, comparing the experiences and disseminating best practices. This role has been particularly effective for monitoring of the results of many short-term research projects completed along the G7 Action lifetime. After that several laser cleaning techniques have been followed and evaluated it appears now clear an evolution of the systems, a specialization of the cleaning task, the achievement of side-effect free procedures. The validation of these advanced cleaning techniques has been extensive and diffused in many European countries, especially for stone and metals. Laser-based diagnostics have also specialised their tasks toward material analysis, defects detection and multidimensional documentation. Laser and optical methods successfully monitor deterioration effects. In many European countries interdisciplinary networks are managing the experimentation of these techniques giving them a sound scientific approach, but also a technology transfer to end-users. So doing the appreciation for these techniques is growing in all the conservation institutions involved at national level, disseminating a positive evaluation about the benefits provided by laser techniques in conservation. Several laser systems became products for the activity of professional restorers and their increasing sales demonstrate a growing utilisation throughout all Europe.
Ji, Lei; Peters, Albert J.
2003-01-01
The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used to monitor moisture-related vegetation condition. The relationship between vegetation vigor and moisture availability, however, is complex and has not been adequately studied with satellite sensor data. To better understand this relationship, an analysis was conducted on time series of monthly NDVI (1989–2000) during the growing season in the north and central U.S. Great Plains. The NDVI was correlated to the Standardized Precipitation Index (SPI), a multiple-time scale meteorological-drought index based on precipitation. The 3-month SPI was found to have the best correlation with the NDVI, indicating lag and cumulative effects of precipitation on vegetation, but the correlation between NDVI and SPI varies significantly between months. The highest correlations occurred during the middle of the growing season, and lower correlations were noted at the beginning and end of the growing season in most of the area. A regression model with seasonal dummy variables reveals that the relationship between the NDVI and SPI is significant in both grasslands and croplands, if this seasonal effect is taken into account. Spatially, the best NDVI–SPI relationship occurred in areas with low soil water-holding capacity. Our most important finding is that NDVI is an effective indicator of vegetation-moisture condition, but seasonal timing should be taken into consideration when monitoring drought with the NDVI.
Proposal of optical farming: development of several optical sensing instruments for agricultural use
NASA Astrophysics Data System (ADS)
Saito, Y.; Kobayashi, K.
2013-05-01
We propose the use of "Optical Farming," which is the leading application of all types of optical technologies, in agriculture and agriculture-related industries. This paper focuses on the optical sensing instruments named "Agriserver," "Agrigadget" and "LIFS Monitor" developed in our laboratory. They are considered major factors in utilizing Optical Farming. Agriserver is a sensor network system that uses the Internet to collect information on agricultural products growing in fields. Agrigadget contains several optical devices, such as a smartphone-based spectroscopic device and a hand framing camera. LIFS Monitor is an advanced monitoring instrument that makes it possible to obtain physiological information of living plants. They are strongly associated with information communication technology. Their field and data usage performance in agricultural industries are reported.
Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment
Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran
2013-01-01
Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation’s electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516
Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.
Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran
2014-07-01
Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments.
Chien, A; Xu, M; Yokota, H; Scalzo, F; Morimoto, E; Salamon, N
2018-01-25
Recent studies have strongly associated intracranial aneurysm growth with increased risk of rupture. Identifying aneurysms that are likely to grow would be beneficial to plan more effective monitoring and intervention strategies. Our hypothesis is that for unruptured intracranial aneurysms of similar size, morphologic characteristics differ between aneurysms that continue to grow and those that do not. From aneurysms in our medical center with follow-up imaging dates in 2015, ninety-three intracranial aneurysms (23 growing, 70 stable) were selected. All CTA images for the aneurysm diagnosis and follow-up were collected, a total of 348 3D imaging studies. Aneurysm 3D geometry for each imaging study was reconstructed, and morphologic characteristics, including volume, surface area, nonsphericity index, aspect ratio, and size ratio were calculated. Morphologic characteristics were found to differ between growing and stable groups. For aneurysms of <3 mm, nonsphericity index ( P < .001); 3-5 mm, nonsphericity index ( P < .001); 5-7 mm, size ratio ( P = .003); >7 mm, volume ( P < .001); surface area ( P < .001); and nonsphericity index ( P = .002) were significant. Within the anterior communicating artery, the nonsphericity index ( P = .008) and, within the posterior communicating artery, size ratio ( P = .004) were significant. The nonsphericity index receiver operating characteristic area under the curve was 0.721 for discriminating growing and stable cases on the basis of initial images. Among aneurysms with similar sizes, morphologic characteristics appear to differ between those that are growing and those that are stable. The nonsphericity index, in particular, was found to be higher among growing aneurysms. The size ratio was found to be the second most significant parameter associated with growth. © 2018 by American Journal of Neuroradiology.
Po’e, Eli K.; Heerman, William J.; Mistry, Rishi S.; Barkin, Shari L.
2013-01-01
Growing Right Onto Wellness (GROW) is a randomized controlled trial that tests the efficacy of a family-centered, community-based, behavioral intervention to prevent childhood obesity among preschool-aged children. Focusing on parent-child pairs, GROW utilizes a multi-level framework, which accounts for macro (i.e., built-environment) and micro (i.e., genetics) level systems that contribute to the childhood obesity epidemic. Six hundred parent-child pairs will be randomized to a 3-year healthy lifestyle intervention or a 3-year school readiness program. Eligible children are enrolled between ages 3 and 5, are from minority communities, and are not obese. The principal site for the GROW intervention is local community recreation centers and libraries. The primary outcome is childhood Body Mass Index (BMI) trajectory at the end of the three-year study period. In addition to other anthropometric measurements, mediators and moderators of growth are considered, including genetics, accelerometry, and diet recall. GROW is a staged intensity intervention, consisting of intensive, maintenance, and sustainability phases. Throughout the study, parents build skills in nutrition, physical activity, and parenting, concurrently forming new social networks. Participants are taught goal-setting, self-monitoring, and problem solving techniques to facilitate sustainable behavior change. The GROW curriculum uses low health literacy communication and social media to communicate key health messages. The control arm is administered to both control and intervention participants. By conducting this trial in public community centers, and by implementing a family-centered approach to sustainable healthy childhood growth, we aim to develop an exportable community-based intervention to address the expanding public health crisis of pediatric obesity. PMID:24012890
Allocating monitoring effort in the face of unknown unknowns
Wintle, B.A.; Runge, M.C.; Bekessy, S.A.
2010-01-01
There is a growing view that to make efficient use of resources, ecological monitoring should be hypothesis-driven and targeted to address specific management questions. 'Targeted' monitoring has been contrasted with other approaches in which a range of quantities are monitored in case they exhibit an alarming trend or provide ad hoc ecological insights. The second form of monitoring, described as surveillance, has been criticized because it does not usually aim to discern between competing hypotheses, and its benefits are harder to identify a priori. The alternative view is that the existence of surveillance data may enable rapid corroboration of emerging hypotheses or help to detect important 'unknown unknowns' that, if undetected, could lead to catastrophic outcomes or missed opportunities. We derive a model to evaluate and compare the efficiency of investments in surveillance and targeted monitoring. We find that a decision to invest in surveillance monitoring may be defensible if: (1) the surveillance design is more likely to discover or corroborate previously unknown phenomena than a targeted design and (2) the expected benefits (or avoided costs) arising from discovery are substantially higher than those arising from a well-planned targeted design. Our examination highlights the importance of being explicit about the objectives, costs and expected benefits of monitoring in a decision analytic framework. ?? 2010 Blackwell Publishing Ltd/CNRS.
Sorwar, Golam; Ali, Mortuza; Islam, Md Kamrul; Miah, Mohammad Selim
2016-01-01
Modern healthcare systems are undergoing a paradigm shift from in-hospital care to in-home monitoring, leveraging the emerging technologies in the area of bio-sensing, wireless communication, mobile computing, and artificial intelligence. In-home monitoring promises to significantly reduce healthcare spending by preventing unnecessary hospital admissions and visits to healthcare professionals. Most of the in-home monitoring systems, proposed in the literature, focus on monitoring a set of specific vital signs. However, from the perspective of caregivers it is infeasible to maintain a collection of specialized monitoring systems. In this paper, we view the problem of in-home monitoring from the perspective of caregivers and present a framework that supports various monitoring capabilities while making the complexity transparent to the end users. The essential idea of the framework is to define a 'general purpose architecture' where the system specifies a particular protocol for communication and makes it public. Then any bio-sensing system can communicate with the system as long as it conforms to the protocol. We then argue that as the system grows in terms of number of patients and bio-sensing systems, artificial intelligence technologies need to be employed for patients' risk assessment, prioritization, and recommendation. Finally, we present an initial prototype of the system designed according to the proposed framework.
Improving predictive capabilities of environmental change with GLOBE data
NASA Astrophysics Data System (ADS)
Robin, Jessica Hill
This dissertation addresses two applications of Normalized Difference Vegetation Index (NDVI) essential for predicting environmental changes. The first study focuses on whether NDVI can improve model simulations of evapotranspiration for temperate Northern (>35°) regions. The second study focuses on whether NDVI can detect phenological changes in start of season (SOS) for high Northern (>60°) environments. The overall objectives of this research were to (1) develop a methodology for utilizing GLOBE data in NDVI research; and (2) provide a critical analysis of NDVI as a long-term monitoring tool for environmental change. GLOBE is an international partnership network of K-12 students, teachers, and scientists working together to study and understand the global environment. The first study utilized data collected by one GLOBE school in Greenville, Pennsylvania and the second utilized phenology observations made by GLOBE students in Alaska. Results from the first study showed NDVI could predict transpiration periods for environments like Greenville, Pennsylvania. In phenological terms, these environments have three distinct periods (QI, QII, and QIII). QI reflects onset of the growing season (mid March--mid May) when vegetation is greening up (NDVI < 0.60) and transpiration is less than 2mm/day. QII reflects end of the growing season (mid September--October) when vegetation is greening down and transpiration is decreasing. QIII reflects height of the growing season (mid May--mid September) when transpiration rates average between 2 and 5 mm per day and NDVI is at its maximum (>0.60). Results from the second study showed that a climate threshold of 153 +/- 22 growing degree days was a better predictor of SOS for Fairbanks than a NDVI threshold applied to temporal AVHRR and MODIS datasets. Accumulated growing degree days captured the interannual variability of SOS better than the NDVI threshold and most closely resembled actual SOS observations made by GLOBE students. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska. Both studies did show that GLOBE data provides an important source of input and validation information for NDVI research.
NASA Astrophysics Data System (ADS)
Renninger, H. J.; Hornslein, N.; Siegert, C. M.
2017-12-01
Depending on the type of disturbance, the mortality process of an individual tree may occur over an extended period leading to changes in tree and ecosystem functioning throughout this time period and before ultimate tree death is evident. Therefore, the goals of this research were to quantify physiological changes occurring in loblolly pine (Pinus taeda L.) during an extended mortality event. In July 2015, ten trees were girdled to simulate a Southern pine beetle disturbance and trees were monitored until their eventual mortality which occurred from Aug. to Dec. of 2016. Sapflow rates and litterfall were monitored throughout the mortality process and photosynthetic rates and leaf nitrogen concentrations were measured at the height of the 2016 growing season. Girdled pines had significantly higher sapflow compared with control pines in the first month following girdling, then sapflow did not differ significantly for the remainder of the 2015 growing season. From Dec. 2015 to Dec. 2016, control trees had about 25% higher sapflow compared with girdled pines, but both groups maintained a similar relationship between sapflow and soil moisture. Extensive litterfall occurred throughout the 2016 growing season and litter had 50% higher N concentration than the prior growing season. N concentration of fresh leaves collected in 2016 did not differ in girdled vs. control pines but control pines had 64% higher maximum Rubisco-limited carboxylation rates (Vcmax) and 68% higher electron transport-limited carboxylation rates (Jmax) compared to girdled pines. Control pines also had 66% higher foliage densities and 44% larger growth ring widths than girdled pines at the end of the 2016 growing season. Taken together, these results highlight the physiological changes that occur in pines undergoing mortality before needles completely discolor and drop. Compared with control pines, girdled pines exhibited greater changes in carbon and nitrogen compared with water use suggesting that sapflow per unit leaf area was increased to compensate for the losses in total leaf area. These data highlight the importance of physiological measurements taken throughout a mortality event to more accurately quantify the changes in ecosystem-scale water, nitrogen and carbon balance occurring during disturbance episodes.
Monitoring height and greenness of non-woody floodplain vegetation with UAV time series
NASA Astrophysics Data System (ADS)
van Iersel, Wimala; Straatsma, Menno; Addink, Elisabeth; Middelkoop, Hans
2018-07-01
Vegetation in river floodplains has important functions for biodiversity, but can also have a negative influence on flood safety. Floodplain vegetation is becoming increasingly heterogeneous in space and time as a result of river restoration projects. To document the spatio-temporal patterns of the floodplain vegetation, the need arises for efficient monitoring techniques. Monitoring is commonly performed by mapping floodplains based on single-epoch remote sensing data, thereby not considering seasonal dynamics of vegetation. The rising availability of unmanned airborne vehicles (UAV) increases monitoring frequency potential. Therefore, we aimed to evaluate the performance of multi-temporal high-spatial-resolution imagery, collected with a UAV, to record the dynamics in floodplain vegetation height and greenness over a growing season. Since the classification accuracy of current airborne surveys remains insufficient for low vegetation types, we focussed on seasonal variation of herbaceous and grassy vegetation with a height up to 3 m. Field reference data on vegetation height were collected six times during one year in 28 field plots within a single floodplain along the Waal River, the main distributary of the Rhine River in the Netherlands. Simultaneously with each field survey, we recorded UAV true-colour and false-colour imagery from which normalized digital surface models (nDSMs) and a consumer-grade camera vegetation index (CGCVI) were calculated. We observed that: (1) the accuracy of a UAV-derived digital terrain model (DTM) varies over the growing season and is most accurate during winter when the vegetation is dormant, (2) vegetation height can be determined from the nDSMs in leaf-on conditions via linear regression (RSME = 0.17-0.33 m), (3) the multitemporal nDSMs yielded meaningful temporal profiles of greenness and vegetation height and (4) herbaceous vegetation shows hysteresis for greenness and vegetation height, but no clear hysteresis was observed for grassland vegetation. These results show the high potential of using UAV-borne sensors for increasing the classification accuracy of low floodplain vegetation within the framework of floodplain monitoring.
Matthews, K M; Bowyer, T W; Saey, P R J; Payne, R F
2012-08-01
Radiopharmaceuticals make contributions of inestimable value to medical practice. With growing demand new technologies are being developed and applied worldwide. Most diagnostic procedures rely on (99m)Tc and the use of uranium targets in reactors is currently the favored method of production, with 95% of the necessary (99)Mo parent currently being produced by four major global suppliers. Coincidentally there are growing concerns for nuclear security and proliferation. New disarmament treaties such as the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are coming into effect and treaty compliance-verification monitoring is gaining momentum. Radioxenon emissions (isotopes Xe-131, 133, 133m and 135) from radiopharmaceutical production facilities are of concern in this context because radioxenon is a highly sensitive tracer for detecting nuclear explosions. There exists, therefore, a potential for confusing source attribution, with emissions from radiopharmaceutical-production facilities regularly being detected in treaty compliance-verification networks. The CTBT radioxenon network currently under installation is highly sensitive with detection limits approaching 0.1 mBq/m³ and, depending on transport conditions and background, able to detect industrial release signatures from sites thousands of kilometers away. The method currently employed to distinguish between industrial and military radioxenon sources involves plots of isotope ratios (133m)Xe/(131m)Xe versus (135)Xe/(133)Xe, but source attribution can be ambiguous. Through the WOSMIP Workshop the environmental monitoring community is gaining a better understanding of the complexities of the processes at production facilities, and the production community is recognizing the impact their operations have on monitoring systems and their goal of nuclear non-proliferation. Further collaboration and discussion are needed, together with advances in Xe trapping technology and monitoring systems. Such initiatives will help in addressing the dichotomy which exists between expanding production and improving monitoring sensitivity, with the ultimate aim of enabling unambiguous distinction between different nuclide signatures. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Filippa, Gianluca; Cremonese, Edoardo; Galvagno, Marta; Migliavacca, Mirco; Morra di Cella, Umberto; Petey, Martina; Siniscalco, Consolata
2015-12-01
The increasingly important effect of climate change and extremes on alpine phenology highlights the need to establish accurate monitoring methods to track inter-annual variation (IAV) and long-term trends in plant phenology. We evaluated four different indices of phenological development (two for plant productivity, i.e., green biomass and leaf area index; two for plant greenness, i.e., greenness from visual inspection and from digital images) from a 5-year monitoring of ecosystem phenology, here defined as the seasonal development of the grassland canopy, in a subalpine grassland site (NW Alps). Our aim was to establish an effective observation strategy that enables the detection of shifts in grassland phenology in response to climate trends and meteorological extremes. The seasonal development of the vegetation at this site appears strongly controlled by snowmelt mostly in its first stages and to a lesser extent in the overall development trajectory. All indices were able to detect an anomalous beginning of the growing season in 2011 due to an exceptionally early snowmelt, whereas only some of them revealed a later beginning of the growing season in 2013 due to a late snowmelt. A method is developed to derive the number of samples that maximise the trade-off between sampling effort and accuracy in IAV detection in the context of long-term phenology monitoring programmes. Results show that spring phenology requires a smaller number of samples than autumn phenology to track a given target of IAV. Additionally, productivity indices (leaf area index and green biomass) have a higher sampling requirement than greenness derived from visual estimation and from the analysis of digital images. Of the latter two, the analysis of digital images stands out as the more effective, rapid and objective method to detect IAV in vegetation development.
Filippa, Gianluca; Cremonese, Edoardo; Galvagno, Marta; Migliavacca, Mirco; Morra di Cella, Umberto; Petey, Martina; Siniscalco, Consolata
2015-12-01
The increasingly important effect of climate change and extremes on alpine phenology highlights the need to establish accurate monitoring methods to track inter-annual variation (IAV) and long-term trends in plant phenology. We evaluated four different indices of phenological development (two for plant productivity, i.e., green biomass and leaf area index; two for plant greenness, i.e., greenness from visual inspection and from digital images) from a 5-year monitoring of ecosystem phenology, here defined as the seasonal development of the grassland canopy, in a subalpine grassland site (NW Alps). Our aim was to establish an effective observation strategy that enables the detection of shifts in grassland phenology in response to climate trends and meteorological extremes. The seasonal development of the vegetation at this site appears strongly controlled by snowmelt mostly in its first stages and to a lesser extent in the overall development trajectory. All indices were able to detect an anomalous beginning of the growing season in 2011 due to an exceptionally early snowmelt, whereas only some of them revealed a later beginning of the growing season in 2013 due to a late snowmelt. A method is developed to derive the number of samples that maximise the trade-off between sampling effort and accuracy in IAV detection in the context of long-term phenology monitoring programmes. Results show that spring phenology requires a smaller number of samples than autumn phenology to track a given target of IAV. Additionally, productivity indices (leaf area index and green biomass) have a higher sampling requirement than greenness derived from visual estimation and from the analysis of digital images. Of the latter two, the analysis of digital images stands out as the more effective, rapid and objective method to detect IAV in vegetation development.
Routine screening of harmful microorganisms in beach sands: implications to public health
Sabino, Raquel; Rodrigues, R.; Costa, I.; Carneiro, Carlos; Cunha, M.; Duarte, A.; Faria, N.; Ferriera, F.C.; Gargate, M.J.; Julio, C.; Martins, M.L.; Nevers, Meredith; Oleastro, M.; Solo-Gabriele, H.; Verissimo, C.; Viegas, C.; Whitman, Richard L.; Brandao, J.
2014-01-01
Beaches worldwide provide recreational opportunities to hundreds of millions of people and serve as important components of coastal economies. Beach water is often monitored for microbiological quality to detect the presence of indicators of human sewage contamination so as to prevent public health outbreaks associated with water contact. However, growing evidence suggests that beach sand can harbor microbes harmful to human health, often in concentrations greater than the beach water. Currently, there are no standards for monitoring, sampling, analyzing, or managing beach sand quality. In addition to indicator microbes, growing evidence has identified pathogenic bacteria, viruses, and fungi in a variety of beach sands worldwide. The public health threat associated with these populations through direct and indirect contact is unknown because so little research has been conducted relating to health outcomes associated with sand quality. In this manuscript, we present the consensus findings of a workshop of experts convened in Lisbon, Portugal to discuss the current state of knowledge on beach sand microbiological quality and to develop suggestions for standardizing the evaluation of sand at coastal beaches. The expert group at the “Microareias 2012” workshop recommends that 1) beach sand should be screened for a variety of pathogens harmful to human health, and sand monitoring should then be initiated alongside regular water monitoring; 2) sampling and analysis protocols should be standardized to allow proper comparisons among beach locations; and 3) further studies are needed to estimate human health risk with exposure to contaminated beach sand. Much of the manuscript is focused on research specific to Portugal, but similar results have been found elsewhere, and the findings have worldwide implications.
Jiang, Mingcen; Wang, Yeyao; Yang, Qi; Meng, Fansheng; Yao, Zhipeng; Cheng, Peixuan
2018-03-30
The analysis of a large number of multidimensional surface water monitoring data for extracting potential information plays an important role in water quality management. In this study, growing hierarchical self-organizing map (GHSOM) was applied to a water quality assessment of the Songhua River Basin in China using 22 water quality parameters monitored monthly from 13 monitoring sites from 2011 to 2015 (14,782 observations). The spatial and temporal features and correlation between the water quality parameters were explored, and the major contaminants were identified. The results showed that the downstream of the Second Songhua River had the worst water quality of the Songhua River Basin. The upstream and midstream of Nenjiang River and the Second Songhua River had the best. The major contaminants of the Songhua River were chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), total phosphorus (TP), and fecal coliform (FC). In the Songhua River, the water pollution at downstream has been gradually eased in years. However, FC and biochemical oxygen demand (BOD 5 ) showed growth over time. The component planes showed that three sets of parameters had positive correlations with each other. GHSOM was found to have advantages over self-organizing maps and hierarchical clustering analysis as follows: (1) automatically generating the necessary neurons, (2) intuitively exhibiting the hierarchical inheritance relationship between the original data, and (3) depicting the boundaries of the classification much more clearly. Therefore, the application of GHSOM in water quality assessments, especially with large amounts of monitoring data, enables the extraction of more information and provides strong support for water quality management.
Tracy S Hawkins; Daniel A Skojac; Nathan M. Schiff; Theodor Leininger
2010-01-01
Lindera melissifolia is a federally endangered shrub endemic to the southeastern United States. Hydrologic regime and floristic composition within individual L. melissifolia colonies in three disjunct populations in Mississippi were monitored for three years. Sixty-nine vascular plant species were identified growing within L. melissifolia colonies. Although number of...
ERIC Educational Resources Information Center
Griffin, Kenneth W.; Samuolis, Jessica; Williams, Christopher
2011-01-01
A growing body of literature suggests that parenting practices characterized by careful monitoring, firm and consistent limit setting, and nurturing communication patterns with children are protective against adolescent substance use and other problem behaviors. Family-based prevention programs that promote these behaviors can be an effective way…
Prescribed Winter Burns Can Reduce the Growth of Nine-Year-Old Loblolly Pines
Michael D. Cain
1985-01-01
Prescribed winter burning was done in a precommercially thinned, 9-year-old, natural stand of loblolly and shortleaf pines (Pinus taeda L. and P. echinata Mill.). Growth and survival of 174 loblolly pines were monitored one growing season after this burning. Mortality was highest for pines with less than 2 inches groundline...
Testing a Landsat-based approach for mapping disturbance causality in U.S. forests
Todd A. Schroeder; Karen G. Schleeweis; Gretchen G. Moisen; Chris Toney; Warren B. Cohen; Elizabeth A. Freeman; Zhiqiang Yang; Chengquan Huang
2017-01-01
In light of Earth's changing climate and growing human population, there is an urgent need to improve monitoring of natural and anthropogenic disturbanceswhich effect forests' ability to sequester carbon and provide other ecosystem services. In this study, a two-step modeling approach was used to map the type and timing of forest disturbances occurring...
OAEditor--A Framework for Editing Adaptive Learning Objects
ERIC Educational Resources Information Center
Pereira, Joao Carlos Rodrigues; Cabral, Lucidio dos Anjos Formiga; Oiveira, Ronei dos Santos; Bezerra, Lucimar Leandro; de Melo, Nisston Moraes Tavares
2012-01-01
Distance Learning supported by the WEB is a reality which is growing fast and, like any technological or empirical innovation, it reveals positive and negative aspects. An important aspect is in relation to the monitoring of the activities done by the students since an accurate online assessment of the knowledge acquired is an open and, therefore,…
Context Becomes Content: Sensor Data for Computer-Supported Reflective Learning
ERIC Educational Resources Information Center
Muller, Lars; Divitini, Monica; Mora, Simone; Rivera-Pelayo, Veronica; Stork, Wilhelm
2015-01-01
Wearable devices and ambient sensors can monitor a growing number of aspects of daily life and work. We propose to use this context data as content for learning applications in workplace settings to enable employees to reflect on experiences from their work. Learning by reflection is essential for today's dynamic work environments, as employees…
Evaluating Rater Responses to an Online Training Program for L2 Writing Assessment
ERIC Educational Resources Information Center
Elder, Catherine; Barkhuizen, Gary; Knoch, Ute; von Randow, Janet
2007-01-01
The use of online rater self-training is growing in popularity and has obvious practical benefits, facilitating access to training materials and rating samples and allowing raters to reorient themselves to the rating scale and self monitor their behaviour at their own convenience. However there has thus far been little research into rater…
ERIC Educational Resources Information Center
Blitz, Cynthia L.
2013-01-01
Professional learning communities (PLCs)--teams of educators who get together regularly to exchange ideas--have sprung up to meet school districts' growing interest in promoting professional development that engages teachers and administrators. PLCs meet to develop lesson plans, monitor student progress, assess instructional effectiveness, and…
Peter Rice
2000-01-01
Invasive alien weeds established themselves on the Sawmill Creek Research Natural Area, harming elk feeding grounds and threatening the integrity of the native plant community. Management enacted herbicide control over several growing seasons, resulting in greater elk winter forage on study plots. Monitoring the long-term effects of herbicide as a restoration tool...
Preferences and Attitudes toward Progress Reporting Methods of Parents from Diverse Backgrounds
ERIC Educational Resources Information Center
Sousa, Darlene Anastacia; Luze, Gayle; Hughes-Belding, Kere
2014-01-01
There is a growing movement in education toward data-based decision-making requiring frequent monitoring of student progress. However, the literature fails to provide direction as to the best means of communicating information about a child's progress with his or her parents. Given the increasing number of immigrant families being served, it…
There is a growing body of evidence that toxic organotins are making their way into humans and other mammals (terrestrial and marine). One possible route of environmental exposure in the U.S. to organotins (specifically dibutyltin and triphenyltin) is via fresh surface waters, an...
Updating national forest inventory estimates of growing stock volume using hybrid inference
Sonia Condés; Ronald E. McRoberts
2017-01-01
International organizations increasingly require estimates of forest parameters to monitor the state of and changes in forest resources, the sustainability of forest practices and the role of forests in the carbon cycle. Most countries rely on data from their national forest inventories (NFI) to produce these estimates. However, because NFI survey years may not match...
Outlook on forest service lands
H. Ken Cordell; Floyd Thompson
2002-01-01
In the world, and in the United States there is growing concern about the future of natural land and water, including forests. A part of this concern is to assure a continued source of opportunity for outdoor recreation and forest-based tourism. In 1994, 12 countries assembled to conceptualize a set of indicators for monitoring the conservation and sustainable...
Alabama, 2010 forest inventory and analysis factsheet
Andrew J. Hartsell
2011-01-01
FIA was initially established to monitor the Nationâs timber supply and the amount of commercially available resources. These early surveys were not concerned with the forests, species, and tree sizes that were not considered commercially viable. Early FIA reported only on growing-stock trees on timberlands, i.e., commercially important tree species and sizes on...
Bryan W. Wender; Sharon M. Hood; David W. Smith; Shepard M. Zedaker; David L. Loftis
1999-01-01
A long-term study has been established to monitor the effects of seven silvicultural prescriptions on vascular flora community attributes. Treatments include a control, understory vegetation control, group selection, two levels of shelterwoods, leave-tree, and clearcut. Second growing season. post-treatment results are compared to pre-harvest values for residual~...
Examining the Evidence from TIMSS: Gender Differences in Year 8 Science Achievement in Australia
ERIC Educational Resources Information Center
Thomson, Sue
2008-01-01
Australia's continuing participation in international science studies such as TIMSS provides a useful lens through which to monitor achievement in science over time. Gender differences in science were not evident in the early years of TIMSS but appear to be growing. This article examines gender differences in science achievement in early secondary…
Trends in Media Criticism and Accountability in Western Europe: Growing Pressure from Consumers.
ERIC Educational Resources Information Center
Thurston, Carol M.
This paper examines efforts in Western Europe to monitor and guide the performance of the mass media. The evidence indicates that consumers are increasing their efforts to let the media know their wants and needs; these efforts include complaints to national press councils and action in special-interest groups. Local and federal governments have…
ERIC Educational Resources Information Center
McCluskey, Gillean
2017-01-01
While mainstream schools have seen an increasing focus on performance and attainment in recent years, this focus has often been resisted by special and alternative educational provision in the United Kingdom. However, concern is now growing about the low levels of achievement for children and young people educated outside mainstream schools. This…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... the portion of talus (a sloping mass of loose rocks) covered by vegetation or leaf litter at an... available to estimate population size for this species, and due to the species' rupicolous (living or growing among rocks) nature, mark-recapture monitoring techniques used to estimate population size would...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... Environment Monitoring System for Food (GEMS/Food), Global Early Warning Systems for Animal Diseases Including... leafy vegetables and herbs also acknowledged the success of the FIVE KEYS to safe food as it reviewed..., working together with FDA, developed FIVE KEYS to Growing Safer Fruits and Vegetables: Promoting Health by...
The increase of harmful algal blooms (HABs) in freshwater estuaries, especially in the Great Lakes and Florida, is a source of growing concern. The presence of high concentrations of harmful cyanotoxins from HABs in drinking water supplies is a serious threat to human and envi...
USDA-ARS?s Scientific Manuscript database
The growing incidence of chronic wounds in the world population has prompted increased interest in chronic wound dressings with protease-modulating activity and protease point of care sensors to treat and enable monitoring of elevated protease-based wound pathology. However, the overall design featu...
USDA-ARS?s Scientific Manuscript database
Climate warming over the past half century has led to observable changes in vegetation phenology and growing season length; which can be measured globally using remote sensing derived vegetation indices. Previous studies in mid- and high northern latitude systems show temperature driven earlier spri...
Capacitance Based Moisture Sensing for Microgravity Plant Modules: Sensor Design and Considerations
NASA Technical Reports Server (NTRS)
Schaber, Chad L.; Nurge, Mark; Monje, Oscar
2011-01-01
Life support systems for growing plants in microgravity should strive for providing optimal growing conditions and increased automation. Accurately tracking soil moisture content can forward both of these aims, so an attempt was made to instrument a microgravity growth module currently in development, the VEGGIE rooting pillow, in order to monitor moisture levels. Two electrode systems for a capacitance-based moisture sensor were tested. Trials with both types of electrodes showed a linear correlation between observed capacitance and water content over certain ranges of moisture within the pillows. Overall, both types of the electrodes and the capacitance-based moisture sensor are promising candidates for tracking water levels for microgravity plant growth systems.
Muftić, Lisa R; Payne, Brian K; Maljević, Almir
2015-06-01
The use of community corrections continues to grow across the globe as alternatives to incarceration are sought. Little research attention, however, has been directed at correctional alternatives from a global orientation. The purpose of this research study is to compare the way that a sample of criminal justice students from the United States (n = 118) and Bosnia and Herzegovina (n = 133) perceive electronic monitoring. Because electronic monitoring is a newer sentencing alternative and it is used differently in Bosnia and Herzegovina than it is in the United States, it is predicted that Bosnian students will view electronic monitoring differently than will students from the United States. This study finds that while students are largely supportive of electronic monitoring sentences, support is affected by offender type and student nationality. For example, Bosnian students are more supportive of electronic monitoring sentences for drug offenders while American students are more supportive of electronic monitoring sentences for juvenile offenders. Differences were also found across student groups when attitudes toward electronic monitoring and the costs and pains associated with electronic monitoring were assessed. Specifically, American students were less likely to view electronic monitoring as meeting the goals of rehabilitation and more likely to view the conditions and restrictions associated with electronic monitoring as being punitive than Bosnian students were. Implications from these findings, as well as limitations and suggestions for further research are discussed. © The Author(s) 2013.
Environmental performance, profitability, asset utilization, debt monitoring and firm value
NASA Astrophysics Data System (ADS)
Bukit, R. Br; Haryanto, B.; Ginting, P.
2018-02-01
The growing issue on firm value shows that firm value is not only determined by the firm ability to increase financial profit, but also by the company's concern in maintaining the environmental condition. The industrial development produces waste that pollutes the environment that has potential to serious impact on the next life. In addition to provide financial benefits, companies are increasingly facing pressure to be socially responsible for the survival of the company. However, past findings demonstrate that the effect of environmental performance, profitability, and asset utilization to the firm’s value are still unclear. This study aims to test whether environmental performance, firm profitability and asset utilization can effectively enhance firm value in two different conditions: intensive debt monitoring and less intensive debt monitoring. Sample of companies is taken from the list of Indonesia Stock Exchange during the period of 2013 to 2015. Using multiple regression analysis, discloses that: in intensive monitoring, managers tend to have high firm value when company has high environmental performance and or high profitability and high asset utilization. Monitoring system needs to be intensified especially for companies with the above characteristics.
Real-time Web GIS to monitor marine water quality using wave glider
NASA Astrophysics Data System (ADS)
Maneesa Amiruddin, Siti
2016-06-01
In the past decade, Malaysia has experienced unprecedented economic development and associated socioeconomic changes. As environmentalists anticipate these changes could have negative impacts on the marine and coastal environment, a comprehensive, continuous and long term marine water quality monitoring programme needs to be strengthened to reflect the government's aggressive mind-set of enhancing its authority in protection, preservation, management and enrichment of vast resources of the ocean. Wave Glider, an autonomous, unmanned marine vehicle provides continuous ocean monitoring at all times and is durable in any weather condition. Geographic Information System (GIS) technology is ideally suited as a tool for the presentation of data derived from continuous monitoring of locations, and used to support and deliver information to environmental managers and the public. Combined with GeoEvent Processor, an extension from ArcGIS for Server, it extends the Web GIS capabilities in providing real-time data from the monitoring activities. Therefore, there is a growing need of Web GIS for easy and fast dissemination, sharing, displaying and processing of spatial information which in turn helps in decision making for various natural resources based applications.
Multivariate Analysis for Quantification of Plutonium(IV) in Nitric Acid Based on Absorption Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Adami, Susan R.; Sinkov, Sergey I.
Development of more effective, reliable, and fast methods for monitoring process streams is a growing opportunity for analytical applications. Many fields can benefit from on-line monitoring, including the nuclear fuel cycle where improved methods for monitoring radioactive materials will facilitate maintenance of proper safeguards and ensure safe and efficient processing of materials. On-line process monitoring with a focus on optical spectroscopy can provide a fast, non-destructive method for monitoring chemical species. However, identification and quantification of species can be hindered by the complexity of the solutions if bands overlap or show condition-dependent spectral features. Plutonium (IV) is one example ofmore » a species which displays significant spectral variation with changing nitric acid concentration. Single variate analysis (i.e. Beer’s Law) is difficult to apply to the quantification of Pu(IV) unless the nitric acid concentration is known and separate calibration curves have been made for all possible acid strengths. Multivariate, or chemometric, analysis is an approach that allows for the accurate quantification of Pu(IV) without a priori knowledge of nitric acid concentration.« less
Application of Remote Sensing for Forest Management in Nepal
NASA Astrophysics Data System (ADS)
Bajracharya, B.; Matin, M. A.
2016-12-01
Large area of the Hindu Kush Himalayan (HKH) region is covered by forest that is playing a vital role to address the challenges of climate change and livelihood options for a growing population. Effective management of forest cover needs establishment of regular monitoring system for forest. Supporting REDD assessment needs reliable baseline assessment of forest biomass and its monitoring at multiple scale. Adaptation of forest to climate change needs understanding vulnerability of forests and dependence of local communities on these forest. We present here different forest monitoring products developed under the SERVIR-Himalaya programme to address these issues. Landsat 30 meter images were used for decadal land cover change assessment and annual forest change hotspot monitoring. Methodology developed for biomass estimation at national and sub-national level biomass estimation. Decision support system was developed for analysis of forest vulnerability and dependence and selection of adaptation options based on resource availability. These products are forming the basis for development of an integrated system that will be very useful for comprehensive forest monitoring and long term strategy development for sustainable forest management.
Acoustical Detection Of Leakage In A Combustor
NASA Technical Reports Server (NTRS)
Puster, Richard L.; Petty, Jeffrey L.
1993-01-01
Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.
Designing and Testing Energy Harvesters Suitable for Renewable Power Sources
NASA Astrophysics Data System (ADS)
Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.
2016-01-01
Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.
NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring
NASA Technical Reports Server (NTRS)
Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.
1989-01-01
NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.
Nanosensors and nanomaterials for monitoring glucose in diabetes
Cash, Kevin J.; Clark, Heather A.
2010-01-01
Worldwide, diabetes is a rapidly growing problem that is managed at the individual level by monitoring and controlling blood glucose levels to minimize the negative effects of the disease. Because of limitations in diagnostic methods, significant research efforts are focused on developing improved methods to measure glucose. Nanotechnology has impacted these efforts by increasing the surface area of sensors, improving the catalytic properties of electrodes and providing nanoscale sensors. Herein, we discuss developments in the past several years on both nanosensors that directly measure glucose as well as nanomaterials that improve glucose sensor function. Finally, we discuss challenges that must be overcome to apply these developments in the clinic. PMID:20869318
Reliability of the nerve conduction monitor in repeated measures of median and ulnar nerve latencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington, I A
According to the Bureau of Labor Statistics, carpal tunnel syndrome (CTS), one of the most rapidly growing work-related injuries, cost American businesses up to $10 billion dollars in medical costs each year (1992). Because conservative therapy can be implemented and CTS is more reversible in it early stages, early detection will not only save industry unnecessary health care costs, but also prevent employees from experiencing debilitating pain and unnecessary surgery. In response to the growing number of cases of CTS, many companies have introduced screening tools to detect early stages of carpal tunnel syndrome. Neurotron Medical (New Jersey) has designedmore » a portable nerve conduction monitor (Nervepace S-200) which measures motor and sensory nerve latencies. The slowing of these latencies is one diagnostic indicator of carpal tunnel syndrome. In this study, we determined the reliability of the Nervepace Monitor in measure ulnar and median nerve latencies during repeated testing. The testing was performed on 28 normal subjects between the ages of 20 and 35 who had no prior symptoms of CTS. They were tested at the same time each day for three consecutive days. Nerve latencies between different ethnic groups and genders were compared. Results show that there was no significant daily variation of the median motor and lunar sensory latencies or the median sensory latencies. No significant differences of latencies was observed among ethnic groups; however, a significant difference of latencies between male and female subjects was observed (p<0.05).« less
Qin, Wei; Chi, Baoliang; Oenema, Oene
2013-01-01
Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0–200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m3. Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE. PMID:24302987
The ecological significance of biofilm formation by plant-associated bacteria.
Morris, Cindy E; Monier, Jean-Michel
2003-01-01
Bacteria associated with plants have been observed frequently to form assemblages referred to as aggregates, microcolonies, symplasmata, or biofilms on leaves and on root surfaces and within intercellular spaces of plant tissues. In a wide range of habitats, biofilms are purported to be microniches of conditions markedly different from those of the ambient environment and drive microbial cells to effect functions not possible alone or outside of biofilms. This review constructs a portrait of how biofilms associated with leaves, roots and within intercellular spaces influence the ecology of the bacteria they harbor and the relationship of bacteria with plants. We also consider how biofilms may enhance airborne dissemination, ubiquity and diversification of plant-associated bacteria and may influence strategies for biological control of plant disease and for assuring food safety. Trapped by a nexus, coordinates uncertain Ever expanding or contracting Cannibalistic and scavenging sorties Excavations through signs of past alliances Consensus signals sound revelry Then time warped by viscosity Genomes showing codependence A virtual microbial beach party With no curfew and no time-out A few estranged cells seeking exit options, Looking for another menagerie. David Sands, Montana State University, Bozeman, February 2003
Angius, Fabrizio; Madeddu, Maria Antonietta; Pompei, Raffaello
2015-04-01
The bacterial species Streptococcus mutans is known as the main cause of dental caries in humans. Therefore, much effort has focused on preventing oral colonization by this strain or clearing it from oral tissues. The oral cavity is colonized by several bacterial species that constitute the commensal oral flora, but none of these is able to interfere with the cariogenic properties of S. mutans. This paper describes the interfering ability of some nutritionally variant streptococcal strains (NVS) with S. mutans adhesion to glass surfaces and also to hydroxylapatite. In mixed cultures, NVS induce a complete inhibition of S. mutans microcolony formation on cover glass slides. NVS can also block the adherence of radiolabeled S. mutans to hydroxylapatite in the presence of both saliva and sucrose. The analysis of the action mechanism of NVS demonstrated that NVS are more hydrophobic than S. mutans and adhere tightly to hard surfaces. In addition, a cell-free culture filtrate of NVS was also able to interfere with S. mutans adhesion to hydroxylapatite. Since NVS are known to secrete some important bacteriolytic enzymes, we conclude that NVS can be a natural antagonist to the cariogenic properties of S. mutans.
Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere.
Odham, G; Tunlid, A; Valeur, A; Sundin, P; White, D C
1986-01-01
An autoclavable all-glass system for studying microbial dynamics at permeable surfaces is described. Standard hydrophobic or hydrophilic membranes (46-mm diameter) of various pore sizes were supported on a glass frit through which nutrient solutions were pumped by a peristaltic pump. The pump provided a precisely controlled flow at speeds of 0.5 to 500 ml of defined or natural cell exudates per h, which passed through the membrane into a receiving vessel. The construction allowed a choice of membranes, which could be modified. The system was tested with a bacterium, isolated from rape plant roots (Brassica napus L.), that was inoculated on a hydrophilic membrane filter and allowed to develop into a biofilm. A defined medium with a composition resembling that of natural rape root exudate was pumped through the membrane at 0.5 ml/h. Scanning electron microscopic examinations indicated that the inoculum formed microcolonies embedded in exopolymers evenly distributed over the membrane surface. The lipid composition and content of poly-beta-hydroxybutyrate in free-living and adhered cells were determined by gas chromatography. The bacterial consumption of amino acids in the exudate was also studied. Images PMID:11536565
Bacterial amelioration of bauxite residue waste of industrial alumina plants.
Hamdy, M K; Williams, F S
2001-10-01
The high alkali content of bauxite residue deposits from alumina production plants in industrial nations poses a challenge to reestablish flora and fauna at the deposit sites. The present study demonstrated that low levels of injured bacterial cells in the bauxite residue actively grew using various added nutrients and/or hay. The organisms grew from less than 10 to more than 10(9) cells g(-1) bauxite residue and formed organic acids that lowered the pH from 13 to about 7.0. A total of 150 cultures was isolated from treated bauxite residue and included species of Bacillus, Lactobacillus, Leuconostoc, Micrococcus, Staphylococcus, Pseudomonas, Flavobacterium and Enterobacter. Scanning electron micrographs demonstrated that untreated particles (control) of the bauxite residue were clumped together, and in treated bauxite residue these particles were highly dispersed with microcolonial structures. Furthermore, the treated bauxite residue supported growth of several plants and earthworms that survived for over 300 days. In a test plot bioremediation on a residue deposit at Alcoa Point Comfort, TX, the Bermuda grass hay used was effective mulch material and encouraged water filtration, leading to establishment and growth of salt-tolerant vegetative species.
Knickerbocker, C.; Nordstrom, D. Kirk; Southam, G.
2000-01-01
Brimstone Basin, in southeastern Yellowstone National Park, Wyoming is an ancient hydrothermal area containing solfataric alteration. Drainage waters flowing from Brimstone Basin had pH values as low as 1.23 and contained up to 1.7×106 MPN/ml acidophilic sulfur-oxidizing bacteria. Thiobacillus thiooxidans was the dominant sulfur-oxidizing bacterium recovered from an enrichment culture and was used in a structural examination of bacterial sulfur oxidation. Growth in these sulfur cultures occurred in two phases with cells in association with the macroscopic sulfur grains and in suspension above these grains. Colonization of sulfur grains by individual cells and microcolonies was facilitated by organic material that appeared to be responsible for bacterial adhesion. Transmission electron microscopy of negatively stained (2% [wt./vol.] uranyl acetate), sulfur-grown T. thiooxidans revealed extensive membrane blebbing (sloughing of outer membrane vesicles) and the presence of approximately 100 nm sized sulfur particles adsorbed to membrane material surrounding individual bacteria. Sulfite-grown bacteria did not possess membrane blebs. The amphipathic nature of these outer membrane vesicles appear to be responsible for overcoming the hydrophobic barrier necessary for the growth of T. thiooxidans on elemental sulfur.
A Little Vacation on Mars: Mars Simulation Microbial Challenge Experiments
NASA Astrophysics Data System (ADS)
Boston, P.; Todd, P.; Van De Camp, J.; Northup, D.; Spilde, M.
2008-06-01
Communities of microbial organisms isolated from a variety of extreme environments were subjected to 1 to 5 weeks of simulated Martian environmental conditions using the Mars Environment Simulation Chamber at the Techshot, Inc. facility in Greenville, Indiana. The goal of the overall experiment program was to assess survival of test Earth organisms under Mars full spectrum sunlight, low-latitude daily temperature profile and various Mars-atmosphere pressures (~50 mbar to 500 mbar, 100% CO2) and low moisture content. Organisms surviving after 5 weeks at 100 mbar included those from gypsum surface fracture communities in a Permian aged evaporite basin, desert varnish on andesite lavas around a manganese mine, and iron and manganese oxidizing organisms isolated from two caves in Mew Mexico. Phylogenetic DNA analysis revealed strains of cyanobacteria, bacterial genera (present in all surviving communities) Asticacaulis, Achromobacter, Comamonas, Pantoea, Verrucomicrobium, Bacillus, Gemmatimonas, Actinomyces, and others. At least one microcolonial fungal strain from a desert varnish community and at least one strain from Utah survived simulations. Strains related to the unusual cave bacterial group Bacteroidetes are present in survivor communities that resist isolation into pure culture implying that their consortial relationships may be critical to their survival.
NASA Astrophysics Data System (ADS)
Thomsen, Hanna; James, Jeemol; Farewell, Anne; Ericson, Marica B.
2018-02-01
Antimicrobial resistance is a serious global threat fueling an accelerated field of research aimed at developing novel antimicrobial therapies. A particular challenge is the treatment of microbial biofilms formed upon bacterial growth and often associated with chronic infections. Biofilms comprise bacteria that have adhered to a surface and formed 3D microcolonies, and demonstrate significantly increased antimicrobial resistance compared to the planktonic counterpart. A challenge in developing novel strategies for fighting these chronic infections is a lack of mechanistic understanding of what primarily contributes to enhanced drug resistance. Tools for noninvasive study of live biofilms are necessary to begin to understand these mechanisms on both a single cell and 3D level. Herein, a method by which multiphoton microscopy is implemented to study a biofilm model of Staphylococcus epidermidis to noninvasively visualize and measure penetration of compounds in 3D biofilm structure and two photon excitation was exploited for spatially confined photoinactivation and microscopy optimized for evaluation of microbiological viability at a microscopic level. Future studies are aimed at future development of the proposed techniques for detailed studies of, e.g., quorum sensing and mechanisms contributing to antimicrobial resistance.
Fluorescence lifetime imaging of oxygen in dental biofilm
NASA Astrophysics Data System (ADS)
Gerritsen, Hans C.; de Grauw, Cees J.
2000-12-01
Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.
Resilience of bacterial quorum sensing against fluid flow
NASA Astrophysics Data System (ADS)
Emge, Philippe; Moeller, Jens; Jang, Hongchul; Rusconi, Roberto; Yawata, Yutaka; Stocker, Roman; Vogel, Viola
2016-09-01
Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems.
Meng, Guoyu; Spahich, Nicole; Kenjale, Roma; Waksman, Gabriel; St Geme, Joseph W
2011-01-01
Bacterial biofilms are complex microbial communities that are common in nature and are being recognized increasingly as an important determinant of bacterial virulence. However, the structural determinants of bacterial aggregation and eventual biofilm formation have been poorly defined. In Gram-negative bacteria, a major subgroup of extracellular proteins called self-associating autotransporters (SAATs) can mediate cell–cell adhesion and facilitate biofilm formation. In this study, we used the Haemophilus influenzae Hap autotransporter as a prototype SAAT to understand how bacteria associate with each other. The crystal structure of the H. influenzae HapS passenger domain (harbouring the SAAT domain) was determined to 2.2 Å by X-ray crystallography, revealing an unprecedented intercellular oligomerization mechanism for cell–cell interaction. The C-terminal SAAT domain folds into a triangular-prism-like structure that can mediate Hap–Hap dimerization and higher degrees of multimerization through its F1–F2 edge and F2 face. The intercellular multimerization can give rise to massive buried surfaces that are required for overcoming the repulsive force between cells, leading to bacterial cell–cell interaction and formation of complex microcolonies. PMID:21841773
Mousa, Walaa K; Shearer, Charles; Limay-Rios, Victor; Ettinger, Cassie L; Eisen, Jonathan A; Raizada, Manish N
2016-09-26
The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.
Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere
NASA Technical Reports Server (NTRS)
Odham, G.; Tunlid, A.; Valeur, A.; Sundin, P.; White, D. C.
1986-01-01
An autoclavable all-glass system for studying microbial dynamics at permeable surfaces is described. Standard hydrophobic or hydrophilic membranes (46-mm diameter) of various pore sizes were supported on a glass frit through which nutrient solutions were pumped by a peristaltic pump. The pump provided a precisely controlled flow at speeds of 0.5 to 500 ml of defined or natural cell exudates per h, which passed through the membrane into a receiving vessel. The construction allowed a choice of membranes, which could be modified. The system was tested with a bacterium, isolated from rape plant roots (Brassica napus L.), that was inoculated on a hydrophilic membrane filter and allowed to develop into a biofilm. A defined medium with a composition resembling that of natural rape root exudate was pumped through the membrane at 0.5 ml/h. Scanning electron microscopic examinations indicated that the inoculum formed microcolonies embedded in exopolymers evenly distributed over the membrane surface. The lipid composition and content of poly-beta-hydroxybutyrate in free-living and adhered cells were determined by gas chromatography. The bacterial consumption of amino acids in the exudate was also studied.
Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N
2018-06-19
Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.
SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.
Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A
2016-11-01
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution. © 2016 John Wiley & Sons Ltd.
Ramírez-Aldaba, Hugo; Vázquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Trejo-Córdoba, Gabriel; Escobedo-Bretado, Miguel A; Lartundo-Rojas, Luis; Ponce-Peña, Patricia; Lara, René H
2018-06-01
Chemical and surface analyses are carried out using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS) and extracellular surface protein quantification to thoroughly investigate the effect of supplementary As(V) during biooxidation of arsenopyrite by Acidithiobacillus thiooxidans. It is revealed that arsenic can enhance bacterial reactions during bioleaching, which can strongly influence its mobility. Biofilms occur as compact-flattened microcolonies, being progressively covered by a significant amount of secondary compounds (S n 2- , S 0 , pyrite-like). Biooxidation mechanism is modified in the presence of supplementary As(V), as indicated by spectroscopic and microscopic studies. GDS confirms significant variations between abiotic control and biooxidized arsenopyrite in terms of surface reactivity and amount of secondary compounds with and without As(V) (i.e. 6 μm depth). CLSM and protein analyses indicate a rapid modification in biofilm from hydrophilic to hydrophobic character (i.e. 1-12 h), in spite of the decrease in extracellular surface proteins in the presence of supplementary As(V) (i.e. stressed biofilms).
Fourier-Transform Infrared Microspectroscopy, a Novel and Rapid Tool for Identification of Yeasts
Wenning, Mareike; Seiler, Herbert; Scherer, Siegfried
2002-01-01
Fourier-transform infrared (FT-IR) microspectroscopy was used in this study to identify yeasts. Cells were grown to microcolonies of 70 to 250 μm in diameter and transferred from the agar plate by replica stamping to an IR-transparent ZnSe carrier. IR spectra of the replicas on the carrier were recorded using an IR microscope coupled to an IR spectrometer, and identification was performed by comparison to reference spectra. The method was tested by using small model libraries comprising reference spectra of 45 strains from 9 genera and 13 species, recorded with both FT-IR microspectroscopy and FT-IR macrospectroscopy. The results show that identification by FT-IR microspectroscopy is equivalent to that achieved by FT-IR macrospectroscopy but the time-consuming isolation of the organisms prior to identification is not necessary. Therefore, this method also provides a rapid tool to analyze mixed populations. Furthermore, identification of 21 Debaryomyces hansenii and 9 Saccharomyces cerevisiae strains resulted in 92% correct identification at the strain level for S. cerevisiae and 91% for D. hansenii, which demonstrates that the resolution power of FT-IR microspectroscopy may also be used for yeast typing at the strain level. PMID:12324312
Secondary metabolites in floral nectar reduce parasite infections in bumblebees.
Richardson, Leif L; Adler, Lynn S; Leonard, Anne S; Andicoechea, Jonathan; Regan, Karly H; Anthony, Winston E; Manson, Jessamyn S; Irwin, Rebecca E
2015-03-22
The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Secondary metabolites in floral nectar reduce parasite infections in bumblebees
Richardson, Leif L.; Adler, Lynn S.; Leonard, Anne S.; Andicoechea, Jonathan; Regan, Karly H.; Anthony, Winston E.; Manson, Jessamyn S.; Irwin, Rebecca E.
2015-01-01
The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities. PMID:25694627
Use of timesat to estimate phenological parameters in Northwestern Patagonia
NASA Astrophysics Data System (ADS)
Oddi, Facundo; Minotti, Priscilla; Ghermandi, Luciana; Lasaponara, Rosa
2015-04-01
Under a global change context, ecosystems are receiving high pressure and the ecology science play a key role for monitoring and assessment of natural resources. To achieve an effective resources management to develop an ecosystem functioning knowledge based on spatio-temporal perspective is useful. Satellite imagery periodically capture the spectral response of the earth and remote sensing have been widely utilized as classification and change detection tool making possible evaluate the intra and inter-annual plant dynamics. Vegetation spectral indices (e.g., NDVI) are particularly suitable to study spatio-temporal processes related to plant phenology and remote sensing specific software, such as TIMESAT, has been developed to carry out time series analysis of spectral indexes. We used TIMESAT software applied to series of 25 years of NDVI bi-monthly composites (240 images covering the period 1982-2006) from the NOAA-AVHRR sensor (8 x 8 km) to assessment plant pheonology over 900000 ha of shrubby-grasslands in the Northwestern of Patagonia, Argentina. The study area corresponds to a Mediterranean environment and is part of a gradient defined by a sharp drop west-east in the precipitation regime (600 mm to 280 mm). We fitted the temporal series of NDVI data to double logistic functions by least-squares methods evaluating three seasonality parameters: a) start of growing season, b) growing season length, c) NDVI seasonal integral. According to fitted models by TIMESAT, start average of growing season was the second half of September (± 10 days) with beginnings latest in the east (dryer areas). The average growing season length was 180 days (± 15 days) without a clear spatial trend. The NDVI seasonal integral showed a clear trend of decrease in west-east direction following the precipitation gradient. The temporal and spatial information allows revealing important patterns of ecological interest, which can be of great importance to environmental monitoring. In this work we also show as utilizing TIMESAT to characterize the plant phenology at regional scale.
Advanced image based methods for structural integrity monitoring: Review and prospects
NASA Astrophysics Data System (ADS)
Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.
2018-02-01
There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Nelson, Gilbert L.; Casella, Amanda J.
Microfluidic devices are a growing field with significant potential for application to small scale processing of solutions. Much like large scale processing, fast, reliable, and cost effective means of monitoring the streams during processing are needed. Here we apply a novel Micro-Raman probe to the on-line monitoring of streams within a microfluidic device. For either macro or micro scale process monitoring via spectroscopic response, there is the danger of interfering or confounded bands obfuscating results. By utilizing chemometric analysis, a form of multivariate analysis, species can be accurately quantified in solution despite the presence of overlapping or confounded spectroscopic bands.more » This is demonstrated on solutions of HNO 3 and NaNO 3 within micro-flow and microfluidic devices.« less
NASA Astrophysics Data System (ADS)
Sunnquist, Ben
2018-06-01
Throughout the lifetime of WFC3, a growing number of 'blobs' (small, circular regions with slightly decreased sensitivity) have appeared in WFC3/IR images. In this report, we present the current workflow used for identifying, characterizing and flagging new IR blobs. We also describe the methods currently used to monitor the repeatability of the channel select mechanism (CSM) movements as a way to ensure that the CSM is still operating normally as these new blobs form. A full listing of all known blobs, which incorporates the work from past blob monitoring efforts, is presented in the Appendix as well as all of the IR bad pixel tables generated to include the strongest of these blobs. These tables, along with all of the other relevant figures and tables in this report, will be continuously updated as new blobs form.
NASA Astrophysics Data System (ADS)
van Geer, Frans C.; Kronvang, Brian; Broers, Hans Peter
2016-09-01
Four sessions on "Monitoring Strategies: temporal trends in groundwater and surface water quality and quantity" at the EGU conferences in 2012, 2013, 2014, and 2015 and a special issue of HESS form the background for this overview of the current state of high-resolution monitoring of nutrients. The overview includes a summary of technologies applied in high-frequency monitoring of nutrients in the special issue. Moreover, we present a new assessment of the objectives behind high-frequency monitoring as classified into three main groups: (i) improved understanding of the underlying hydrological, chemical, and biological processes (PU); (ii) quantification of true nutrient concentrations and loads (Q); and (iii) operational management, including evaluation of the effects of mitigation measures (M). The contributions in the special issue focus on the implementation of high-frequency monitoring within the broader context of policy making and management of water in Europe for support of EU directives such as the Water Framework Directive, the Groundwater Directive, and the Nitrates Directive. The overview presented enabled us to highlight the typical objectives encountered in the application of high-frequency monitoring and to reflect on future developments and research needs in this growing field of expertise.
Torous, John; Chan, Steven Richard; Yee-Marie Tan, Shih; Behrens, Jacob; Mathew, Ian; Conrad, Erich J; Hinton, Ladson; Yellowlees, Peter; Keshavan, Matcheri
2014-01-01
Despite growing interest in mobile mental health and utilization of smartphone technology to monitor psychiatric symptoms, there remains a lack of knowledge both regarding patient ownership of smartphones and their interest in using such to monitor their mental health. To provide data on psychiatric outpatients' prevalence of smartphone ownership and interest in using their smartphones to run applications to monitor their mental health. We surveyed 320 psychiatric outpatients from four clinics around the United States in order to capture a geographically and socioeconomically diverse patient population. These comprised a state clinic in Massachusetts (n=108), a county clinic in California (n=56), a hybrid public and private clinic in Louisiana (n=50), and a private/university clinic in Wisconsin (n=106). Smartphone ownership and interest in utilizing such to monitor mental health varied by both clinic type and age with overall ownership of 62.5% (200/320), which is slightly higher than the average United States' rate of ownership of 58% in January 2014. Overall patient interest in utilizing smartphones to monitor symptoms was 70.6% (226/320). These results suggest that psychiatric outpatients are interested in using their smartphones to monitor their mental health and own the smartphones capable of running mental healthcare related mobile applications.
Suggested Best Practice for seismic monitoring and characterization of non-conventional reservoirs
NASA Astrophysics Data System (ADS)
Malin, P. E.; Bohnhoff, M.; terHeege, J. H.; Deflandre, J. P.; Sicking, C.
2017-12-01
High rates of induced seismicity and gas leakage in non-conventional production have become a growing issue of public concern. It has resulted in calls for independent monitoring before, during and after reservoir production. To date no uniform practice for it exists and few reservoirs are locally monitored at all. Nonetheless, local seismic monitoring is a pre-requisite for detecting small earthquakes, increases of which can foreshadow damaging ones and indicate gas leaks. Appropriately designed networks, including seismic reflection studies, can be used to collect these and Seismic Emission Tomography (SET) data, the latter significantly helping reservoir characterization and exploitation. We suggest a Step-by-Step procedure for implementing such networks. We describe various field kits, installations, and workflows, all aimed at avoiding damaging seismicity, as indicators of well stability, and improving reservoir exploitation. In Step 1, a single downhole seismograph is recommended for establishing baseline seismicity before development. Subsequent Steps are used to decide cost-effective ways of monitoring treatments, production, and abandonment. We include suggestions for monitoring of disposal and underground storage. We also describe how repeated SET observations improve reservoir management as well as regulatory monitoring. Moreover, SET acquisition can be included at incremental cost in active surveys or temporary passive deployments.
[Importance of ambulatory blood pressure monitoring in adolescent hypertension].
Páll, Dénes; Juhász, Mária; Katona, Eva; Lengyel, Szabolcs; Komonyi, Eva; Fülesdi, Béla; Paragh, György
2009-12-06
The prevalence of adolescent hypertension is increasing. The national epidemiological study found 2.5% prevalence, while it is 4.5% according to the newest international survey. Repeated casual blood pressure measurements, but not ambulatory blood pressure monitoring is needed for the diagnosis of adolescent hypertension on the basis of the presently available European guideline. At the last decade growing evidence came into light for ambulatory blood pressure monitoring in adolescence. These data show better correlation with end-organ damages than casual measurements. In patients with hypertension diagnosed based on repeated casual blood pressure measurements, 24-hour monitoring showed normal blood pressure in 21-47%, so this is the rate of white coat hypertension. Masked hypertension can also be diagnosed with the help of this method, which has a prevalence of 7-11%. We can also get useful data for secondary forms of hypertension. Until the appearance of the new European guidelines, more frequent use of ambulatory blood pressure monitoring is affordable. The confirmation of the diagnosis based on elevated casual blood pressure data is important. Ambulatory blood pressure monitoring is suggested in cases suspicious for white coat or masked hypertension, in cases of target organ damages or therapy resistant hypertension. Before administration of pharmaceutical therapy in adolescence hypertension - according to author's opinion - ambulatory blood pressure monitoring is absolutely necessary.
Glyph-based generic network visualization
NASA Astrophysics Data System (ADS)
Erbacher, Robert F.
2002-03-01
Network managers and system administrators have an enormous task set before them in this day of growing network usage. This is particularly true of e-commerce companies and others dependent on a computer network for their livelihood. Network managers and system administrators must monitor activity for intrusions and misuse while at the same time monitoring performance of the network. In this paper, we describe our visualization techniques for assisting in the monitoring of networks for both of these tasks. The goal of these visualization techniques is to integrate the visual representation of both network performance/usage as well as data relevant to intrusion detection. The main difficulties arise from the difference in the intrinsic data and layout needs of each of these tasks. Glyph based techniques are additionally used to indicate the representative values of the necessary data parameters over time. Additionally, our techniques are geared towards providing an environment that can be used continuously for constant real-time monitoring of the network environment.
Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun
2012-04-28
Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia.
Budd, Kristen M; Mancini, Christina
2017-09-01
In the United States, electronic monitoring (EM) and global positioning systems (GPS) are new applications that are used to extensively monitor and track convicted sex offenders. What is unclear though are public perceptions of this strategy. This research examines public perceptions of a national sample of Americans on the use of GPS/EM with convicted sex offenders as a method to reduce their sexual recidivism. Using a multinomial regression model, we analyze the effects of sex offender myths and parental status on public perceptions that sex offender GPS/EM is very effective in reducing sexual recidivism. Findings suggest that public perceptions of effectiveness are partially driven by myths and also that parents are unsure of this strategy. The analysis contributes to the growing body of knowledge on public perceptions of GPS/EM to manage sex offenders in communities. Implications of the study and areas for future research are discussed in light of the findings.
Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank F. Roberto
2008-08-01
Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means ofmore » rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.« less
The role of ctDNA detection and the potential of the liquid biopsy for breast cancer monitoring.
Openshaw, Mark Robert; Page, Karen; Fernandez-Garcia, Daniel; Guttery, David; Shaw, Jacqueline Amanda
2016-07-01
Recent advances in deep amplicon sequencing have enabled rapid assessment of somatic mutations and structural changes in multiple cancer genes in DNA isolated from tumour tissues and circulating cell-free DNA (cfDNA). This cfDNA is under investigation as a 'liquid biopsy' for the real time monitoring of patients with cancer in a growing number of research studies and clinical trials. Here we will provide a brief overview of the potential clinical utility of cfDNA profiling for detection and monitoring of patients with breast cancer. The review was conducted in English using PubMed and search terms including 'breast cancer', 'plasma DNA', 'circulating cell free DNA' and 'circulating tumour DNA'. Expert commentary: Liquid biopsies through circulating tumor DNA (ctDNA) enable monitoring of patients with breast cancer. The challenge ahead will be to incorporate cfDNA mutation profiling into routine clinical practice to provide patients with the most appropriate and timely treatment.
In vivo photoacoustic monitoring of anti-obesity photothermal lipolysis
NASA Astrophysics Data System (ADS)
Lee, Donghyun; Lee, Jung Ho; Hahn, Sei Kwang; Kim, Chulhong
2018-02-01
Obesity with a body mass index is greater than 30 kg/m2 is one of the rapidly growing diseases in advanced societies and can lead to stroke, type 2 diabetes, and heart failure. Common methods of removing subcutaneous adipose tissues are liposuction and laser treatment. In this study, we used photoacoustic imaging to monitor the anti-obesity photothermal degradation process. To improve the photothermal lipid degradation efficiency without any invasive methods, we synthesized hyaluronic acid hollow hold nanosphere adipocyte targeting sequence peptide (HA-HAuNS-ATS) conjugates. The conjugate enhanced the skin penetration ability and biodegradability of the nanoparticles using hyaluronate and enhanced the targeting effect on adipose tissue with adipocyte targeting sequence peptide. Thus, the conjugate can be delivered to the adipose tissue by simply spreading the conjugate on the skin without any invasive method. Then, the photothermal lipolysis and delivery of the conjugate were photoacoustically monitored in vivo. These results demonstrate the potential for photoacoustic method to be applied for photothermal lipolysis monitoring.
Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun
2012-01-01
Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia. PMID:22980239
Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J
2018-02-01
The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.
Tadesse, Tsegaye; Champagne, Catherine; Wardlow, Brian D.; Hadwen, Trevor A.; Brown, Jesslyn; Demisse, Getachew B.; Bayissa, Yared A.; Davidson, Andrew M.
2017-01-01
Drought is a natural climatic phenomenon that occurs throughout the world and impacts many sectors of society. To help decision-makers reduce the impacts of drought, it is important to improve monitoring tools that provide relevant and timely information in support of drought mitigation decisions. Given that drought is a complex natural hazard that manifests in different forms, monitoring can be improved by integrating various types of information (e.g., remote sensing and climate) that is timely and region specific to identify where and when droughts are occurring. The Vegetation Drought Response Index for Canada (VegDRI-Canada) is a recently developed drought monitoring tool for Canada. VegDRI-Canada extends the initial VegDRI concept developed for the conterminous United States to a broader transnational coverage across North America. VegDRI-Canada models are similar to those developed for the United States, integrating satellite observations of vegetation status, climate data, and biophysical information on land use and land cover, soil characteristics, and other environmental factors. Collectively, these different types of data are integrated into the hybrid VegDRI-Canada to isolate the effects of drought on vegetation. Twenty-three weekly VegDRI-Canada models were built for the growing season (April–September) through the weekly analysis of these data using a regression tree-based data mining approach. A 15-year time series of VegDRI-Canada results (s to 2014) was produced using these models and the output was validated by randomly selecting 20% of the historical data, as well as holdout year (15% unseen data) across the growing season that the Pearson’s correlation ranged from 0.6 to 0.77. A case study was also conducted to evaluate the VegDRI-Canada results over the prairie region of Canada for two drought years and one non-drought year for three weekly periods of the growing season (i.e., early-, mid-, and late season). The comparison of the VegDRI-Canada map with the Canadian Drought Monitor (CDM), an independent drought indicator, showed that the VegDRI-Canada maps depicted key spatial drought severity patterns during the two targeted drought years consistent with the CDM. In addition, VegDRI-Canada was compared with canola yields in the Prairie Provinces at the regional scale for a period from 2000 to 2014 to evaluate the indices’ applicability for monitoring drought impacts on crop production. The result showed that VegDRI-Canada values had a relatively higher correlation (i.e., r > 0.5) with canola yield for nonirrigated croplands in the Canadian Prairies region in areas where drought is typically a limiting factor on crop growth, but showed a negative relationship in the southeastern Prairie region, where water availability is less of a limiting factor and in some cases a hindrance to crop growth when waterlogging occurs. These initial results demonstrate VegDRI-Canada’s utility for monitoring drought-related vegetation conditions, particularly in drought prone areas. In general, the results indicated that the VegDRI-Canada models showed sensitivity to known agricultural drought events in Canada over the 15-year period mainly for nonirrigated areas.
ERIC Educational Resources Information Center
Inzlicht, Michael; Al-Khindi, Timour
2012-01-01
Performance monitoring in the anterior cingulate cortex (ACC) has largely been viewed as a cognitive, computational process devoid of emotion. A growing body of research, however, suggests that performance is moderated by motivational engagement and that a signal generated by the ACC, the error-related negativity (ERN), may partially reflect a…
ERIC Educational Resources Information Center
Smith, Fiona; Martinho-Truswell, Emma; Rice, Oliver; Weereratne, Jessica
2017-01-01
As more children are growing up in cities than ever before, cities are investigating new ways to become more child-friendly, and to measure their progress towards this goal. Data dashboards are one tool that can help a city set policy priorities, monitor progress, encourage collaboration, inform decisions, increase accountability, and strengthen…
Chris A. Maier; R.O. Teskey
1992-01-01
Leaf gas exchange and water relations were monitored in the upper canopy of two 25 m tall eastern white pine (Pinus strobus L.) trees over two consecutive growing seasons (1986 and 1987). Examination of the seasonal and diurnal patterns of net photosynthesis and leaf conductance showed that both internal and external (environmental) factors were...
Phenology and recruitment of Ohio buckeye and sugar maple in Illinois forest stands
Michelle Henderson; Jeffery O. Dawson; Evan H. DeLucia
1993-01-01
Phenological patterns, light conditions, and photosynthetic activity of Ohio buckeye and sugar maple foliage on trees in the forest understory were monitored and compared over two growing seasons in two mesophytic upland woodlands in central Illinois. Ohio buckeye began leaf expansion three to four weeks earlier than sugar maple, started leaf senescence and shedding in...
Implications of land-use change on forest carbon stocks in the eastern United States
Joshua Puhlick; Christopher Woodall; Aaron Weiskittel
2017-01-01
Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest...
High spatial resolution spectral unmixing for mapping ash species across a complex urban environment
Jennifer Pontius; Ryan P. Hanavan; Richard A. Hallett; Bruce D. Cook; Lawrence A. Corp
2017-01-01
Ash (Fraxinus L.) species are currently threatened by the emerald ash borer (EAB; Agrilus planipennis Fairmaire) across a growing area in the eastern US. Accurate mapping of ash species is required to monitor the host resource, predict EAB spread and better understand the short- and long-term effects of EAB on the ash resource...