Assessing human rights impacts in corporate development projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salcito, Kendyl, E-mail: kendyl.salcito@unibas.ch; University of Basel, P.O. Box, CH-4003 Basel; NomoGaia, 1900 Wazee Street, Suite 303, Denver, CO 80202
Human rights impact assessment (HRIA) is a process for systematically identifying, predicting and responding to the potential impact on human rights of a business operation, capital project, government policy or trade agreement. Traditionally, it has been conducted as a desktop exercise to predict the effects of trade agreements and government policies on individuals and communities. In line with a growing call for multinational corporations to ensure they do not violate human rights in their activities, HRIA is increasingly incorporated into the standard suite of corporate development project impact assessments. In this context, the policy world's non-structured, desk-based approaches to HRIAmore » are insufficient. Although a number of corporations have commissioned and conducted HRIA, no broadly accepted and validated assessment tool is currently available. The lack of standardisation has complicated efforts to evaluate the effectiveness of HRIA as a risk mitigation tool, and has caused confusion in the corporate world regarding company duties. Hence, clarification is needed. The objectives of this paper are (i) to describe an HRIA methodology, (ii) to provide a rationale for its components and design, and (iii) to illustrate implementation of HRIA using the methodology in two selected corporate development projects—a uranium mine in Malawi and a tree farm in Tanzania. We found that as a prognostic tool, HRIA could examine potential positive and negative human rights impacts and provide effective recommendations for mitigation. However, longer-term monitoring revealed that recommendations were unevenly implemented, dependent on market conditions and personnel movements. This instability in the approach to human rights suggests a need for on-going monitoring and surveillance. -- Highlights: • We developed a novel methodology for corporate human rights impact assessment. • We piloted the methodology on two corporate projects—a mine and a plantation. • Human rights impact assessment exposed impacts not foreseen in ESIA. • Corporations adopted the majority of findings, but not necessarily immediately. • Methodological advancements are expected for monitoring processes.« less
What Should We Monitor? Indicators of Human Disturbance and Ecological Impact
Ecological indicators are physical, chemical, and biological measures of environmental condition that change predictably with levels of human disturbance. Historically, indicators have been used to monitor and assess the status and trends of coastal waters and to diagnose the ma...
Idaho National Laboratory Cultural Resource Monitoring Report for 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Julie B.
2013-10-01
This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resourcemore » recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.« less
INEL Geothermal Environmental Program. Final environmental report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurow, T.L.; Cahn, L.S.
1982-09-01
An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs aremore » summarized.« less
ON THE IMPACT OF THE HUMAN (CHILD) MICROCLIMATE ON PASSIVE AEROSOL MONITOR PERFORMANCE
Research into the wind microclimate and its effect on the accuracy and effectiveness of passive aerosol monitors is expanding as the importance of personal monitoring versus regional monitoring increases. The important phenomena for investigation include thermal and dynamic eff...
MONITORING THE RESPONSE TO CHANGING MERCURY DEPOSITION
There is a crucial need to document the impact and effectiveness of regulation of anthropogenic mercury (Hg) emissions on human, wildlife and ecosystem health to ascertain the need for further controls. The impact of elevated methylmercury (MeHg) levels in fish on human and wildl...
Monitoring environmental change with color slides
Arthur W. Magill
1989-01-01
Monitoring human impact on outdoor recreation sites and view landscapes is necessary to evaluate influences which may require corrective action and to determine if management is achieving desired goals. An inexpensive method to monitor environmental change is to establish camera points and use repeat color slides. Successful monitoring from slides requires the observer...
The US Environmental Protection Agency’s (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) has provided extensive data on human exposures to a wide variety of air pollutants and their impact on human health. Previous analyses in the DEARS revealed select cardiovascul...
Volcanoes: observations and impact
Thurber, Clifford; Prejean, Stephanie G.
2012-01-01
Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.
45 CFR 1174.40 - Monitoring and reporting program performance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOUNDATION ON THE ARTS AND THE HUMANITIES NATIONAL ENDOWMENT FOR THE HUMANITIES UNIFORM ADMINISTRATIVE... developments. Events may occur between the scheduled performance reporting dates which have significant impact...
Modeling of human movement monitoring using Bluetooth Low Energy technology.
Mokhtari, G; Zhang, Q; Karunanithi, M
2015-01-01
Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.
Alexander Clark; James W. McMinn
2002-01-01
This paper describes a study established to monitor the implications of ecosystem management choices on natural loblolly and shortleaf pine stands on the Oconee National Forests in the Piedmont of Georgia. The impact of partial harvests, group selection cuts, seed tree cuts and no human disturbance on growth, mortality, species composition, and regeneration were...
Heidi Asbjornsen; Alex S. Mayer; Kelly W. Jones; Theresa Selfa; Leonardo Saenz; Randall K. Kolka; Kathleen E. Halvorsen
2015-01-01
Payments for watershed services (PWS) as a policy tool for enhancing water quality and supply have gained momentum in recent years, but their ability to lead to sustainable watershed outcomes is uncertain. Consequently, the demand for effective monitoring and evaluation (M&E) of PWS impacts on coupled human and natural systems (CHANS) and their implications for...
Fedy, Bradley C.; O'Donnell, Michael; Bowen, Zachary H.
2015-01-01
Human impacts on wildlife populations are widespread and prolific and understanding wildlife responses to human impacts is a fundamental component of wildlife management. The first step to understanding wildlife responses is the documentation of changes in wildlife population parameters, such as population size. Meaningful assessment of population changes in potentially impacted sites requires the establishment of monitoring at similar, nonimpacted, control sites. However, it is often difficult to identify appropriate control sites in wildlife populations. We demonstrated use of Geographic Information System (GIS) data across large spatial scales to select biologically relevant control sites for population monitoring. Greater sage-grouse (Centrocercus urophasianus; hearafter, sage-grouse) are negatively affected by energy development, and monitoring of sage-grouse population within energy development areas is necessary to detect population-level responses. Weused population data (1995–2012) from an energy development area in Wyoming, USA, the Atlantic Rim Project Area (ARPA), and GIS data to identify control sites that were not impacted by energy development for population monitoring. Control sites were surrounded by similar habitat and were within similar climate areas to the ARPA. We developed nonlinear trend models for both the ARPA and control sites and compared long-term trends from the 2 areas. We found little difference between the ARPA and control sites trends over time. This research demonstrated an approach for control site selection across large landscapes and can be used as a template for similar impact-monitoring studies. It is important to note that identification of changes in population parameters between control and treatment sites is only the first step in understanding the mechanisms that underlie those changes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Amplifying human ability through autonomics and machine learning in IMPACT
NASA Astrophysics Data System (ADS)
Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.
2017-05-01
Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.
Final Regulatory Impact Analysis (RIA) for the NO2 National Ambient Air Quality Standards (NAAQS)
This RIA provides illustrative estimates, as of January 2010, of the incremental costs and monetized human health benefits of attaining the revised NO2 NAAQS within the the existing community-wide monitoring network of 409 monitors.
Energy monitoring based on human activity in the workplace
NASA Astrophysics Data System (ADS)
Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.
2014-04-01
Human behavior is the most important factor in order to manage energy usage. Nowadays, smart house technology offers a better quality of life by introducing automated appliance control and assistive services. However, human behaviors will contribute to the efficiency of the system. This paper will focus on monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior atb the workplace. Then, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy in efficient ways based on human behaviours. This scenario will lead to the positive impact in order to achieve the energy saving in the building and support the green environment.
Monitoring trail conditions: New methodological considerations
Marion, Jeffrey L.; Leung, Yu-Fai; Nepal, Sanjay K.
2006-01-01
The U.S. National Park Service (NPS) accommodates nearly 300 million visitors per year, visitation that has the potential to produce negative effects on fragile natural and cultural resources. The policy guidance from the NPS Management Policies recognizes the legitimacy of providing opportunities for public enjoyment of parks while acknowledging the need for managers to “seek ways to avoid, or to minimize to the greatest degree practicable, adverse impacts on park resources and values” (NPS 2001). Thus, relative to visitor use, park managers must evaluate the types and extents of resource impacts associated with recreational activities, and determine to what extent they are unacceptable and constitute impairment. Visitor impact monitoring programs can assist managers in making objective evaluations of impact acceptability and impairment and in selecting effective impact management practices by providing quantitative documentation of the types and extent of recreationrelated impacts on natural resources. Monitoring programs are explicitly authorized in Section 4.1 of the Management Policies: Natural systems in the national park system, and the human influences upon them, will be monitored to detect change. The Service will use the results of monitoring and research to understand the detected change and to develop appropriate management actions.
Understanding and monitoring the consequences of human impacts on intraspecific variation.
Mimura, Makiko; Yahara, Tetsukazu; Faith, Daniel P; Vázquez-Domínguez, Ella; Colautti, Robert I; Araki, Hitoshi; Javadi, Firouzeh; Núñez-Farfán, Juan; Mori, Akira S; Zhou, Shiliang; Hollingsworth, Peter M; Neaves, Linda E; Fukano, Yuya; Smith, Gideon F; Sato, Yo-Ichiro; Tachida, Hidenori; Hendry, Andrew P
2017-02-01
Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation.
Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Hollie Kae; Holmer, Marie Pilkington; Olson, Christina Liegh
This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2016. Overall monitoring included surveillance of the following 23 individual cultural resource localities: two locations with human remains, one of which is also a cave; seven additional caves; six prehistoric archaeological sites; four historic archaeological sites; one historic trail; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located at EBR-I; and one Arco Naval Proving Ground (NPG) property, CF-633 and related objects and structures. Several INL work processes and projects weremore » also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On one occasion, ground disturbing activities within the boundaries of the Critical Infrastructure Test Range Complex (CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Additionally, the CRM office was notified during two Trespass Investigations conducted by INL Security. Most of the cultural resources monitored in FY 2016 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted five times. Three previously reported Type 2 impacts were once again documented at the EBR-I National Historic Landmark, including spalling and deterioration of bricks due to inadequate drainage, minimal maintenance, and rodent infestation. The ANP engines and locomotive on display at the EBR-I Visitors Center also exhibited impacts related to long term exposure. Finally, most of the Arco NPG properties monitored at Central Facilities Area exhibited problems with lack of timely and appropriate maintenance as well as inadequate drainage. No new Type 3 or Type 4 impacts that adversely affected significant cultural resources and threatened National Register eligibility were documented in FY 2016.« less
This Regulatory Impact Analysis (RIA) provides estimates of the incremental costs and monetized human health benefits of attaining a revised short‐term Sulfur Dioxide (SO2) NAAQS within the current monitoring network.
Integration of Air Quality Modeling and Monitoring Data for Enhanced Health Exposure Assessment
In order to assess the environmental impact of air pollution on human health it is necessary to establish the concentrations to which the population is exposed. The obvious way to determine this is to measure these quantities. However, given the limited number of monitoring sta...
Integration of Air Quality Modeling and Monitoring Data for Enhanced Health Exposure Assessment
In order to assess the environmental impact of air pollution on human health it is necessary to establish the concentrations to which the population is exposed. The obvious way to determine this is to measure these quantities. However, given the limited number of monitoring stati...
UTILITY OF GENETIC INDICATORS FOR MONITORING ECOLOGICAL CONDITION
It is evident that Earth's ecosystems have been steadily deteriorating due to relatively recent human activities. Since quality of life depends upon the ecosystem services, the impacts of deterioration of ecosystems on human health and on wild life populations has been amply de...
An arm wearable haptic interface for impact sensing on unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Choi, Yunshil; Hong, Seung-Chan; Lee, Jung-Ryul
2017-04-01
In this paper, an impact monitoring system using fiber Bragg grating (FBG) sensors and vibro-haptic actuators has been introduced. The system is suggested for structural health monitoring (SHM) for unmanned aerial vehicles (UAVs), by making a decision with human-robot interaction. The system is composed with two major subsystems; an on-board system equipped on UAV and an arm-wearable interface for ground pilot. The on-board system acquires impact-induced wavelength changes and performs localization process, which was developed based on arrival time calculation. The arm-wearable interface helps ground pilots to make decision about impact location themselves by stimulating their tactile-sense with motor vibration.
Environmental and Landscape Remote Sensing Using Free and Open Source Image Processing Tools
As global climate change and human activities impact the environment, there is a growing need for scientific tools to monitor and measure environmental conditions that support human and ecological health. Remotely sensed imagery from satellite and airborne platforms provides a g...
Monitoring Ecological Impacts of Environmental Surface Waters using Cell-based Metabolomics
Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cel...
Olaguer, Eduardo P; Erickson, Matthew; Wijesinghe, Asanga; Neish, Brad; Williams, Jeff; Colvin, John
2016-02-01
An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions. Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.
Sowah, Robert A; Habteselassie, Mussie Y; Radcliffe, David E; Bauske, Ellen; Risse, Mark
2017-01-01
The presence of multiple sources of fecal pollution at the watershed level presents challenges to efforts aimed at identifying the influence of septic systems. In this study multiple approaches including targeted sampling and monitoring of host-specific Bacteroidales markers were used to identify the impact of septic systems on microbial water quality. Twenty four watersheds with septic density ranging from 8 to 373 septic units/km 2 were monitored for water quality under baseflow conditions over a 3-year period. The levels of the human-associated HF183 marker, as well as total and ruminant Bacteroidales, were quantified using quantitative polymerase chain reaction. Human-associated Bacteroidales yield was significantly higher in high density watersheds compared to low density areas and was negatively correlated (r = -0.64) with the average distance of septic systems to streams in the spring season. The human marker was also positively correlated with the total Bacteroidales marker, suggesting that the human source input was a significant contributor to total fecal pollution in the study area. Multivariable regression analysis indicates that septic systems, along with forest cover, impervious area and specific conductance could explain up to 74% of the variation in human fecal pollution in the spring season. The results suggest septic system impact through contributions to groundwater recharge during baseflow or failing septic system input, especially in areas with >87 septic units/km 2 . This study supports the use of microbial source tracking approaches along with traditional fecal indicator bacteria monitoring and land use characterization in a tiered approach to isolate the influence of septic systems on water quality in mixed-use watersheds. Copyright © 2016 Elsevier Ltd. All rights reserved.
2010-01-01
application of these metrics to patient monitoring must take into account the impact of other external stimuli, such as pain, anxiety and activity status...in short-term HRV analysis. Biomed Tech 2006; 51: 190–193. 45. Hayano J, Taylor JA, Yamada A, et al. Continuous assessment of hemodynamic control by
Metagenomic Frameworks for Monitoring Antibiotic Resistance in Aquatic Environments
Port, Jesse A.; Cullen, Alison C.; Wallace, James C.; Smith, Marissa N.
2013-01-01
Background: High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. Objectives: We used a metagenomic epidemiology–based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. Methods: We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. Results: We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Conclusions: Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Citation: Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp.1307009 PMID:24334622
Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments.
Port, Jesse A; Cullen, Alison C; Wallace, James C; Smith, Marissa N; Faustman, Elaine M
2014-03-01
High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. We used a metagenomic epidemiology-based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp.1307009
NASA Astrophysics Data System (ADS)
Kido, Michael H.; Mundt, Carsten W.; Montgomery, Kevin N.; Asquith, Adam; Goodale, David W.; Kaneshiro, Kenneth Y.
2008-10-01
Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.
Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y
2008-10-01
Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.
[Gender, human rights and socioeconomic impact of AIDS in Brazil].
de Oliveira, Rosa Maria Rodrigues
2006-04-01
The paper critically analyzes, from the gender standpoint, official results presented in the Brazilian government report to the Joint United Nations Programme on HIV/AIDS (UNAIDS). Specifically, the fulfillment of 2003 targets set forth in the United Nations Declaration of Commitment on HIV/AIDS, under the category of Human Rights and Reduction of the Economic and Social Impact of AIDS, are evaluated. Key concepts are highlighted, including indicators and strategies that may help civilian society better monitor these targets until 2010.
Spatial and temporal changes in cumulative human impacts on the world's ocean.
Halpern, Benjamin S; Frazier, Melanie; Potapenko, John; Casey, Kenneth S; Koenig, Kellee; Longo, Catherine; Lowndes, Julia Stewart; Rockwood, R Cotton; Selig, Elizabeth R; Selkoe, Kimberly A; Walbridge, Shaun
2015-07-14
Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.
Spatial and temporal changes in cumulative human impacts on the world's ocean
Halpern, Benjamin S.; Frazier, Melanie; Potapenko, John; Casey, Kenneth S.; Koenig, Kellee; Longo, Catherine; Lowndes, Julia Stewart; Rockwood, R. Cotton; Selig, Elizabeth R.; Selkoe, Kimberly A.; Walbridge, Shaun
2015-01-01
Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems. PMID:26172980
45 CFR 1157.40 - Monitoring and reporting program performance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOUNDATION ON THE ARTS AND THE HUMANITIES NATIONAL ENDOWMENT FOR THE ARTS UNIFORM ADMINISTRATIVE REQUIREMENTS... developments. Events may occur between the scheduled performance reporting dates which have significant impact...
Long-term monitoring of coral reef fish assemblages in the Western central pacific.
Heenan, Adel; Williams, Ivor D; Acoba, Tomoko; DesRochers, Annette; Kosaki, Randall K; Kanemura, Troy; Nadon, Marc O; Brainard, Russell E
2017-12-05
Throughout the tropics, coral reef ecosystems, which are critically important to people, have been greatly altered by humans. Differentiating human impacts from natural drivers of ecosystem state is essential to effective management. Here we present a dataset from a large-scale monitoring program that surveys coral reef fish assemblages and habitats encompassing the bulk of the US-affiliated tropical Pacific, and spanning wide gradients in both natural drivers and human impact. Currently, this includes >5,500 surveys from 39 islands and atolls in Hawaii (including the main and Northwestern Hawaiian Islands) and affiliated geo-political regions of American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the Pacific Remote Islands Areas. The dataset spans 2010-2017, during which time, each region was visited at least every three years, and ~500-1,000 surveys performed annually. This standardised dataset is a powerful resource that can be used to understand how human, environmental and oceanographic conditions influence coral reef fish community structure and function, providing a basis for research to support effective management outcomes.
Long-term monitoring of coral reef fish assemblages in the Western central pacific
Heenan, Adel; Williams, Ivor D.; Acoba, Tomoko; DesRochers, Annette; Kosaki, Randall K.; Kanemura, Troy; Nadon, Marc O.; Brainard, Russell E.
2017-01-01
Throughout the tropics, coral reef ecosystems, which are critically important to people, have been greatly altered by humans. Differentiating human impacts from natural drivers of ecosystem state is essential to effective management. Here we present a dataset from a large-scale monitoring program that surveys coral reef fish assemblages and habitats encompassing the bulk of the US-affiliated tropical Pacific, and spanning wide gradients in both natural drivers and human impact. Currently, this includes >5,500 surveys from 39 islands and atolls in Hawaii (including the main and Northwestern Hawaiian Islands) and affiliated geo-political regions of American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the Pacific Remote Islands Areas. The dataset spans 2010–2017, during which time, each region was visited at least every three years, and ~500–1,000 surveys performed annually. This standardised dataset is a powerful resource that can be used to understand how human, environmental and oceanographic conditions influence coral reef fish community structure and function, providing a basis for research to support effective management outcomes. PMID:29206219
NASA Astrophysics Data System (ADS)
Nieuwkerk, D.; Ulrich, R. M.; Paul, J. H.; Hubbard, K.; Kirkpatrick, B. A.; Fanara, T. A.; Bruzek, S.; Hoeglund, A.
2016-02-01
Harmful algal blooms of the dinoflagellate Karenia brevis can cause massive fish-kills and marine mammal mortalities, as well as impact human health via the consumption of brevetoxin-contaminated shellfish and the inhalation of aerosolized toxins. There is a strong effort to predict human health impacts by monitoring the bloom stages of K. brevis, and to prevent health impacts by closing shellfish beds when K. brevis cell concentrations reach toxic levels. The current standard method for quantifying K. brevis is by microscopic enumeration, which requires taxonomic expertise to discern K. brevis cells from other Karenia species as well as a long turnover time to generate data, which limits the number of water samples that can be processed. This EPA-funded study compared a variety of technologies against the current standard (microscopic counts) to quantify the number of K. brevis cells per liter in the water column. Results of this study showed a strong correlation between Real Time Nucleic Acid Sequence-Based Amplification (RT-NASBA) and enumeration by microscopy performed by members of the Florida Fish and Wildlife Research Institute, who are responsible for such monitoring. We are adapting the bench-top RT-NASBA assay to the AmpliFire platform (a handheld sensor that can be used in the field), for point of need K. brevis detection. These handheld sensors will be used by a trained volunteer network and government agencies (FWC, NOAA, and Mote Marine Lab.) to quantify K. brevis cells in the water column of core Gulf of Mexico sites; the results from these sensors will be reported back to the GCOOS observation systems to provide real-time monitoring of K. brevis counts. The real-time information will allow agencies to better monitor fishery closures and predict human health impacts of harmful algal blooms, because a larger number of samples can be processed each week, as the NASBA process removes the rate-limiting step of microscope time.
Cao, Shi-Jie; Kong, Xiang-Ri; Li, Linyan; Zhang, Weirong; Ye, Zi-Ping; Deng, Yelin
2017-05-24
This study measured the particle concentrations with an aerodynamic diameter smaller than 2.5 μm (PM 2.5 ), nitrogen dioxide (NO 2 ), and relative humidity (RH) at five metro subway stations in Suzhou's subway system (Lines 1 and 2). The real-time monitoring campaign was conducted from March 30 th to April 10 th and August 4 th to August 21 st , 2015. The monitoring practice was carried out during rush (7:00-9:00 AM and 17:00-19:00 PM) and regular hours (other times) at the ground and underground levels under different weather conditions with a purpose of obtaining representative data. The monitored results show that the concentrations of PM 2.5 in the train carriages were lower than the concentrations at the underground platforms during both spring and summer. The mean PM 2.5 concentrations at all the underground platforms in all the sub-stations monitored were significantly higher than those at the ground level. The human health impact was calculated to be 6300 annual DALYs (or 375 deaths) due to exposure to the subway system in Suzhou according to the UNEP-SETAC toxicity (USEtox) model. Linear regression models were applied to evaluate the relationships between the PM 2.5 , NO 2 concentrations, and RH. We found that a 10% increment in RH from the current average level of 50-60% can lead to a 9.8 μg m -3 concentration decrease in PM 2.5 . This further results in the total human health impact being reduced to 2451 DALYs (150-4753 DALYs), representing a 20% decrease (1.2-38%).
Development and Review of monitoring methods and risk assessment models for biosolids land application impacts on air and land
Ronald F Herrmann (NRMRL), Mike Broder (NCEA), and Mike Ware (NERL)
Science Questions .
MYP Science Question: What additional model...
INL Cultural Resource Monitoring Report for FY 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Brenda Ringe; Olson, Christina Liegh; Gilbert, Hollie Kae
This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2015. Throughout the year, 67 total monitoring visits were completed, with several especially sensitive resources visited on more than one occasion. Overall, FY 2015 monitoring included surveillance of the following 49 individual cultural resource localities: three locations with human remains, one of which is also a cave; nine additional caves; twenty prehistoric archaeological sites; five historic archaeological sites; two historic trails; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located atmore » EBR-I; and eight Arco Naval Proving Ground (NPG) property types. Several INL work processes and projects were also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On two occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Finally, the current location housing INL Archives and Special Collections was evaluated once. Most of the cultural resources monitored in FY 2015 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted 13 times. In one case, a portion of a historic trail was graded without prior review or coordination with the INL CRM Office, resulting in impacts to the surface of the trail and one archaeological site. Evidence of unauthorized artifact collection/ looting was also documented at three archaeological sites located along INL powerlines. Federal agents concluded a FY 2012 investigation by filing civil charges and levying fine under the Archaeological Resource Protection Act against one INL employee for this kind of illegal removal of artifacts from INL lands. Goodale‘s Cutoff of the Oregon Trail showed evidence of heavy use associated with grazing. A number of previously reported Type 2 impacts were also once again documented at the EBR-I National Historic Landmark, including spalling and deterioration of bricks due to inadequate drainage, minimal maintenance, and rodent infestation. The ANP engines and locomotive on display at the EBR-I Visitors Center also exhibited impacts related to long term exposure. Finally, most of the Arco NPG properties monitored at Central Facilities Area exhibited problems with lack of timely and appropriate maintenance as well as inadequate drainage. No new Type 3 or Type 4 impacts that adversely affected significant cultural resources and threatened National Register eligibility were documented in FY 2015.« less
2011-01-01
The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental. PMID:21645342
Changes in water quality along the course of a river - Classic monitoring versus patrol monitoring
NASA Astrophysics Data System (ADS)
Absalon, Damian; Kryszczuk, Paweł; Rutkiewicz, Paweł
2017-11-01
Monitoring of water quality is a tool necessary to assess the condition of waterbodies in order to properly formulate water management plans. The paper presents the results of patrol monitoring of a 40-kilometre stretch of the Oder between Racibórz and Koźle. It has been established that patrol monitoring is a good tool for verifying the distribution of points of classic stationary monitoring, particularly in areas subject to varied human impact, where tributaries of the main river are very diversified as regards hydrochemistry. For this reason the results of operational monitoring carried out once every few years may not be reliable and the presented condition of the monitored waterbodies may be far from reality.
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Naumenko, A. P.
2017-08-01
The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under control - not more than 0.027. In case when only pump and compressor units are under control, the failure skipping risk is not more than 0.022, when the probability of error in operator's action is not more than 0.011. The work output shows that on the basis of the researches results an assessment of operators' reliability can be made in terms of almost any kind of production, but considering only technological capabilities, since operators' psychological and general training considerable vary in different production industries. Using latest technologies of engineering psychology and design of data support systems, situation assessment systems, decision-making and responding system, as well as achievement in condition monitoring in various production industries one can evaluate hazardous condition skipping risk probability considering static, dynamic errors and human factor.
Lemming, Gitte; Chambon, Julie C; Binning, Philip J; Bjerg, Poul L
2012-12-15
A comparative life cycle assessment is presented for four different management options for a trichloroethene-contaminated site with a contaminant source zone located in a fractured clay till. The compared options are (i) long-term monitoring (ii) in-situ enhanced reductive dechlorination (ERD), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic impacts due to contaminant leaching into groundwater that is used for drinking water, whereas the secondary environmental impacts are related to remediation activities such as monitoring, drilling and construction of wells and use of remedial amendments. The primary impacts for the compared scenarios were determined by a numerical risk assessment and remedial performance model, which predicted the contaminant mass discharge over time at a point of compliance in the aquifer and at the waterworks. The combined assessment of risk reduction and life cycle impacts showed that all management options result in higher environmental impacts than they remediate, in terms of person equivalents and assuming equal weighting of all impacts. The ERD and long-term monitoring were the scenarios with the lowest secondary life cycle impacts and are therefore the preferred alternatives. However, if activated carbon treatment at the waterworks is required in the long-term monitoring scenario, then it becomes unfavorable because of large secondary impacts. ERD is favorable due to its low secondary impacts, but only if leaching of vinyl chloride to the groundwater aquifer can be avoided. Remediation with ISCO caused the highest secondary impacts and cannot be recommended for the site. Copyright © 2012 Elsevier Ltd. All rights reserved.
Smart wearable Kevlar-based safeguarding electronic textile with excellent sensing performance.
Wang, Sheng; Xuan, Shouhu; Liu, Mei; Bai, Linfeng; Zhang, Shuaishuai; Sang, Min; Jiang, Wanquan; Gong, Xinglong
2017-03-29
A novel S-ST/MWCNT/Kevlar-based wearable electronic textile (WET) with enhanced safeguarding performance and force sensing ability was fabricated. Stab resistance performance tests under quasi-static and dynamic conditions show that the maximum resistance force and penetration impact energy for the WET are 18 N and 11.76 J, which represent a 90% and 50% increment with respect to the neat Kevlar, respectively. Dynamic impact resistance tests show that the WET absorbs all the impact energy. The maximum resistance force of the WET is 1052 N, which represents an improvement of about 190% with respect to neat Kevlar. With the incorporation of multi-walled carbon nanotubes (MWCNTs), the WET can achieve a stable electrical conductivity of ∼10 -2 S m -1 , and the conductivity is highly sensitive to external mechanic forces. Notably, the sensing fabric also exhibits an outstanding ability to detect and analyze external forces. In addition, it can be fixed at any position of the human body and exhibits an ideal monitoring performance. Because of its flexibility, high sensitivity to various types of deformations and excellent safeguarding performance, the WET has a strong potential for wearable monitoring devices that simultaneously provide body protection and monitor the movements of the human body under various conditions.
The effects of fine particulate matter (PM2.5) on human health are well documented (Pope et al., 2002). In order to spatially and temporally assess the impact of PM2.5 on the U.S. population, the U.S. Environmental Protection Agency (U.S. EPA) operates a ne...
Why is it important to monitor social conditions in wilderness?
Alan E. Watson
1990-01-01
âSocial conditions in wildernessâ refers to all aspects of human use of the wilderness that pose the possibility of impact to the resource and visitor experiences. The reasons for monitoring (1) use levels and use trends (including characteristics of use and users) and (2) the quality of the recreation experiences provided (ability to provide naturalness, privacy, and...
Assessing impacts of oil-shale development on the Piceance Basin mule deer herd
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, G.C.; Garrott, R.A.
Development of energy resources on big game ranges generally negatively impacts these important wildlife resources. Although habitat disturbance is generally important, this impact is overshadowed by the negative impacts due to an increasing human population in the area. Increased human activities particularly stress animals during winter periods when inadequate nutrition levels may have already severely impacted the population. Increased road traffic and poaching causes additional deaths, which a decline in survival rates expected, or at least changes in the cause of mortality. This paper describes the experimental design to monitor and mitigate the impact of oil shale development in northwesternmore » Colorado on the Piceance Basin mule deer herd. Biotelemetry techniques are used to measure changes through time in movements, habitat utilization, and survival rates between control and treatment areas. 2 figures.« less
NASA Astrophysics Data System (ADS)
Anderson, B. T.; Zhang, P.; Myneni, R.
2008-12-01
Drought, through its impact on food scarcity and crop prices, can have significant economic, social, and environmental impacts - presently, up to 36 countries and 73 million people are facing food crises around the globe. Because of these adverse affects, there has been a drive to develop drought and vegetation- monitoring metrics that can quantify and predict human vulnerability/susceptibility to drought at high- resolution spatial scales over the entire globe. Here we introduce a new vegetation-monitoring index utilizing data derived from satellite-based instruments (the Moderate Resolution Imaging Spectroradiometer - MODIS) designed to identify the vulnerability of vegetation in a particular region to climate variability during the growing season. In addition, the index can quantify the percentage of annual grid-point vegetation production either gained or lost due to climatic variability in a given month. When integrated over the growing season, this index is shown to be better correlated with end-of-season crop yields than traditional remotely-sensed or meteorological indices. In addition, in-season estimates of the index, which are available in near real-time, provide yield forecasts comparable to concurrent in situ objective yield surveys, which are only available in limited regions of the world. Overall, the cost effectiveness and repetitive, near-global view of earth's surface provided by this satellite-based vegetation monitoring index can potentially improve our ability to mitigate human vulnerability/susceptibility to drought and its impacts upon vegetation and agriculture.
Structural health monitoring and impact detection for primary aircraft structures
NASA Astrophysics Data System (ADS)
Kosters, Eric; van Els, Thomas J.
2010-04-01
The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.
Apparatus and methods for a human de-amplifier system
Kress, Reid L.; Jansen, John F.
2000-01-01
A human de-amplifier system for interfacing a human operator and a physical object through a physical plant, wherein the physical object has dimensions in the range of 1 micrometer to 1 mm. The human de-amplifier system uses an inner-feedback loop to increases the equivalent damping of the operating system to stabilize the system when it contacts with the environment and reduces the impact of the environment variation by utilizing a high feedback gain, determined by a root locus sketch. Because the stability of the human de-amplifier system of the present invention is greatly enhanced over that of the prior art, the de-amplifier system is able to manipulate the physical object has dimensions in the range of 1 micrometer to 1 mm with high stability and accuracy. The system also has a monitoring device to monitor the motion of the physical object under manipulation.
Wildlife mitigation and monitoring report Gunnison, Colorado, site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapramore » americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.« less
Meites, Elissa; Gorbach, Pamina M.; Gratzer, Beau; Panicker, Gitika; Steinau, Martin; Collins, Tom; Parrish, Adam; Randel, Cody; McGrath, Mark; Carrasco, Steven; Moore, Janell; Zaidi, Akbar; Braxton, Jim; Kerndt, Peter R.; Unger, Elizabeth R.; Crosby, Richard A.; Markowitz, Lauri E.
2016-01-01
Background Gay, bisexual, and other men who have sex with men (MSM) are at high risk for human papillomavirus (HPV) infection; vaccination is recommended for US males, including MSM through age 26 years. We assessed evidence of HPV among vaccine-eligible MSM and transgender women to monitor vaccine impact. Methods During 2012–2014, MSM aged 18–26 years at select clinics completed a computer-assisted self-interview regarding sexual behavior, human immunodeficiency virus (HIV) status, and vaccinations. Self-collected anal swab and oral rinse specimens were tested for HPV DNA (37 types) by L1 consensus polymerase chain reaction; serum was tested for HPV antibodies (4 types) by a multiplexed virus-like particle–based immunoglobulin G direct enzyme-linked immunosorbent assay. Results Among 922 vaccine-eligible participants, the mean age was 23 years, and the mean number of lifetime sex partners was 37. Among 834 without HIV infection, any anal HPV was detected in 69.4% and any oral HPV in 8.4%, yet only 8.5% had evidence of exposure to all quadrivalent vaccine types. In multivariate analysis, HPV prevalence varied significantly (P < .05) by HIV status, sexual orientation, and lifetime number of sex partners, but not by race/ethnicity. Discussions Most young MSM lacked evidence of current or past infection with all vaccine-type HPV types, suggesting that they could benefit from vaccination. The impact of vaccination among MSM may be assessed by monitoring HPV prevalence, including in self-collected specimens. PMID:27296847
Global Sources and Pathways of Mercury in the Context of Human Health.
Sundseth, Kyrre; Pacyna, Jozef M; Pacyna, Elisabeth G; Pirrone, Nicola; Thorne, Rebecca J
2017-01-22
This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects.
Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests
NASA Astrophysics Data System (ADS)
Hosaka, T.; Yamada, T.; Okuda, T.
2014-02-01
Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests.
ARRAYS FOR BIOMONITORING ENVIRONMENTAL AND REPRODUCTIVE TOXICOLOGY
DNA arrays are receiving increasing interest as a tool for monitoring the developmental and reproductive impact of xenobiotics and other hazardous materials on human and wildlife populations. The primary tenet of toxicogenomics is that effects of environmental exposure on cellul...
Geary, Phillip; Lucas, Steven
2018-02-03
Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.
Remote sensing of environmental impact of land use activities
NASA Technical Reports Server (NTRS)
Paul, C. K.
1977-01-01
The capability to monitor land cover, associated in the past with aerial film cameras and radar systems, was discussed in regard to aircraft and spacecraft multispectral scanning sensors. A proposed thematic mapper with greater spectral and spatial resolutions for the fourth LANDSAT is expected to usher in new environmental monitoring capability. In addition, continuing improvements in image classification by supervised and unsupervised computer techniques are being operationally verified for discriminating environmental impacts of human activities on the land. The benefits of employing remote sensing for this discrimination was shown to far outweigh the incremental costs of converting to an aircraft-satellite multistage system.
The future of imaging spectroscopy - Prospective technologies and applications
Schaepman, M.E.; Green, R.O.; Ungar, S.G.; Curtiss, B.; Boardman, J.; Plaza, A.J.; Gao, B.-C.; Ustin, S.; Kokaly, R.; Miller, J.R.; Jacquemoud, S.; Ben-Dor, E.; Clark, R.; Davis, C.; Dozier, J.; Goodenough, D.G.; Roberts, D.; Swayze, G.; Milton, E.J.; Goetz, A.F.H.
2006-01-01
Spectroscopy has existed for more than three centuries now. Nonetheless, significant scientific advances have been achieved. We discuss the history of spectroscopy in relation to emerging technologies and applications. Advanced focal plane arrays, optical design, and intelligent on-board logic are prime prospective technologies. Scalable approaches in pre-processing of imaging spectrometer data will receive additional focus. Finally, we focus on new applications monitoring transitional ecological zones, where human impact and disturbance have highest impact as well as in monitoring changes in our natural resources and environment We conclude that imaging spectroscopy enables mapping of biophysical and biochemical variables of the Earth's surface and atmospheric composition with unprecedented accuracy.
Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Khan, Muhammad Farhan; Naeem, Muhammad; Anpalagan, Alagan
2015-03-25
The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.
Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Farhan Khan, Muhammad; Naeem, Muhammad; Anpalagan, Alagan
2015-01-01
The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed. PMID:25815444
Potential impact of antimicrobial resistance in wildlife, environment and human health
Radhouani, Hajer; Silva, Nuno; Poeta, Patrícia; Torres, Carmen; Correia, Susana; Igrejas, Gilberto
2014-01-01
Given the significant spatial and temporal heterogeneity in antimicrobial resistance distribution and the factors that affect its evolution, dissemination, and persistence, it is important to highlight that antimicrobial resistance must be viewed as an ecological problem. Monitoring the resistance prevalence of indicator bacteria such as Escherichia coli and enterococci in wild animals makes it possible to show that wildlife has the potential to serve as an environmental reservoir and melting pot of bacterial resistance. These researchers address the issue of antimicrobial-resistant microorganism proliferation in the environment and the related potential human health and environmental impact. PMID:24550896
Guerra-López, Ingrid; Hicks, Karen
2015-02-01
This article illustrates the application of the impact monitoring and evaluation process for the design and development of a performance monitoring and evaluation framework in the context of human and institutional capacity development. This participative process facilitated stakeholder ownership in several areas including the design, development, and use of a new monitoring and evaluation system, as well their targeted results and accomplishments through the use of timely performance data gathered through ongoing monitoring and evaluation. The process produced a performance indicator map, a comprehensive monitoring and evaluation framework, and data collection templates to promote the development, implementation, and sustainability of the monitoring and evaluation system of a farmer's trade union in an African country. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recreation ecology research findings: Implications for wilderness and park managers
Marion, J.L.; Kirchner, Hannah
1998-01-01
Recreationists unintentionally trample vegetation, erode soil, and disturb wildlife. Such human-related impacts present a dilemma for managers charged with the dual objectives of providing recreational opportunities and preserving natural environments. This paper presents some of the principal findings and management implications from research on visitor impacts to protected areas, termed recreation ecology research. This field of study seeks to identify the type and extent of resource impacts and to evaluate relationships between use-related, environmental, and managerial factors. The capabilities and managerial utility of recreation impact monitoring are also described.
Hilborn, Elizabeth D.; Beasley, Val R.
2015-01-01
Harmful cyanobacterial blooms have adversely impacted human and animal health for thousands of years. Recently, the health impacts of harmful cyanobacteria blooms are becoming more frequently detected and reported. However, reports of human and animal illnesses or deaths associated with harmful cyanobacteria blooms tend to be investigated and reported separately. Consequently, professionals working in human or in animal health do not always communicate findings related to these events with one another. Using the One Health concept of integration and collaboration among health disciplines, we systematically review the existing literature to discover where harmful cyanobacteria-associated animal illnesses and deaths have served as sentinel events to warn of potential human health risks. We find that illnesses or deaths among livestock, dogs and fish are all potentially useful as sentinel events for the presence of harmful cyanobacteria that may impact human health. We also describe ways to enhance the value of reports of cyanobacteria-associated illnesses and deaths in animals to protect human health. Efficient monitoring of environmental and animal health in a One Health collaborative framework can provide vital warnings of cyanobacteria-associated human health risks. PMID:25903764
Hilborn, Elizabeth D; Beasley, Val R
2015-04-20
Harmful cyanobacterial blooms have adversely impacted human and animal health for thousands of years. Recently, the health impacts of harmful cyanobacteria blooms are becoming more frequently detected and reported. However, reports of human and animal illnesses or deaths associated with harmful cyanobacteria blooms tend to be investigated and reported separately. Consequently, professionals working in human or in animal health do not always communicate findings related to these events with one another. Using the One Health concept of integration and collaboration among health disciplines, we systematically review the existing literature to discover where harmful cyanobacteria-associated animal illnesses and deaths have served as sentinel events to warn of potential human health risks. We find that illnesses or deaths among livestock, dogs and fish are all potentially useful as sentinel events for the presence of harmful cyanobacteria that may impact human health. We also describe ways to enhance the value of reports of cyanobacteria-associated illnesses and deaths in animals to protect human health. Efficient monitoring of environmental and animal health in a One Health collaborative framework can provide vital warnings of cyanobacteria-associated human health risks.
Toward the Next Generation of Air Quality Monitoring Indicators
NASA Technical Reports Server (NTRS)
Hsu, Angel; Reuben, Aaron; Shindell, Drew; deSherbinin, Alex; Levy, Marc
2013-01-01
This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the "next generation" of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered e particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) e because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policyrelevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.
Self-powered monitoring of repeated head impacts using time-dilation energy measurement circuit.
Feng, Tao; Aono, Kenji; Covassin, Tracey; Chakrabartty, Shantanu
2015-04-01
Due to the current epidemic levels of sport-related concussions (SRC) in the U.S., there is a pressing need for technologies that can facilitate long-term and continuous monitoring of head impacts. Existing helmet-sensor technology is inconsistent, inaccurate, and is not economically or logistically practical for large-scale human studies. In this paper, we present the design of a miniature, battery-less, self-powered sensor that can be embedded inside sport helmets and can continuously monitor and store different spatial and temporal statistics of the helmet impacts. At the core of the proposed sensor is a novel time-dilation circuit that allows measurement of a wide-range of impact energies. In this paper an array of linear piezo-floating-gate (PFG) injectors has been used for self-powered sensing and storage of linear and rotational head-impact statistics. The stored statistics are then retrieved using a plug-and-play reader and has been used for offline data analysis. We report simulation and measurement results validating the functionality of the time-dilation circuit for different levels of impact energies. Also, using prototypes of linear PFG integrated circuits fabricated in a 0.5 μm CMOS process, we demonstrate the functionality of the proposed helmet-sensors using controlled drop tests.
An overview of existing raptor contaminant monitoring activities in Europe.
Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C
2014-06-01
Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable assessment of the appropriateness of the EU-regulation of substances that are hazardous to humans and the environment, the effectiveness of EU level mitigation policies, and identify pan-European spatial and temporal trends in current and emerging contaminants of concern. Copyright © 2014. Published by Elsevier Ltd.
Contamination Mitigation Strategies for Long Duration Human Spaceflight Missions
NASA Technical Reports Server (NTRS)
Lewis, Ruthan; Lupisella, Mark; Bleacher, Jake; Farrell, William
2017-01-01
Contamination control issues are particularly challenging for long-term human spaceflight and are associated with the search for life, dynamic environmental conditions, human-robotic-environment interaction, sample collection and return, biological processes, waste management, long-term environmental disturbance, etc. These issues impact mission success, human health, planetary protection, and research and discovery. Mitigation and control techniques and strategies may include and integrate long-term environmental monitoring and reporting, contamination control and planetary protection protocols, habitation site design, habitat design, and surface exploration and traverse pathways and area access planning.
Global Sources and Pathways of Mercury in the Context of Human Health
Sundseth, Kyrre; Pacyna, Jozef M.; Pacyna, Elisabeth G.; Pirrone, Nicola; Thorne, Rebecca J.
2017-01-01
This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects. PMID:28117743
Impacts of gas drilling on human and animal health.
Bamberger, Michelle; Oswald, Robert E
2012-01-01
Environmental concerns surrounding drilling for gas are intense due to expansion of shale gas drilling operations. Controversy surrounding the impact of drilling on air and water quality has pitted industry and lease-holders against individuals and groups concerned with environmental protection and public health. Because animals often are exposed continually to air, soil, and groundwater and have more frequent reproductive cycles, animals can be used as sentinels to monitor impacts to human health. This study involved interviews with animal owners who live near gas drilling operations. The findings illustrate which aspects of the drilling process may lead to health problems and suggest modifications that would lessen but not eliminate impacts. Complete evidence regarding health impacts of gas drilling cannot be obtained due to incomplete testing and disclosure of chemicals, and nondisclosure agreements. Without rigorous scientific studies, the gas drilling boom sweeping the world will remain an uncontrolled health experiment on an enormous scale.
Interaction of engineered nanomaterials with hydrophobic organic pollutants.
As nanomaterials become an increasing part of everyday consumer products, it is imperative to monitor their potential release during production, use and disposal, and to assess their impact on the health of humans and the ecosystem. This necessitates research to better understand...
IN SITU ASSESSMENT OF GENOTOXIC HAZARDS OF ENVIRONMENTAL POLLUTION
The potential impact of environmental pollutants on human health can be evaluated by laboratory analysis of environmental samples or by measurement of biological effects on indigenous populations and/or specific test organisms placed in the environment to be monitored. he organis...
Meites, Elissa; Gorbach, Pamina M; Gratzer, Beau; Panicker, Gitika; Steinau, Martin; Collins, Tom; Parrish, Adam; Randel, Cody; McGrath, Mark; Carrasco, Steven; Moore, Janell; Zaidi, Akbar; Braxton, Jim; Kerndt, Peter R; Unger, Elizabeth R; Crosby, Richard A; Markowitz, Lauri E
2016-09-01
Gay, bisexual, and other men who have sex with men (MSM) are at high risk for human papillomavirus (HPV) infection; vaccination is recommended for US males, including MSM through age 26 years. We assessed evidence of HPV among vaccine-eligible MSM and transgender women to monitor vaccine impact. During 2012-2014, MSM aged 18-26 years at select clinics completed a computer-assisted self-interview regarding sexual behavior, human immunodeficiency virus (HIV) status, and vaccinations. Self-collected anal swab and oral rinse specimens were tested for HPV DNA (37 types) by L1 consensus polymerase chain reaction; serum was tested for HPV antibodies (4 types) by a multiplexed virus-like particle-based immunoglobulin G direct enzyme-linked immunosorbent assay. Among 922 vaccine-eligible participants, the mean age was 23 years, and the mean number of lifetime sex partners was 37. Among 834 without HIV infection, any anal HPV was detected in 69.4% and any oral HPV in 8.4%, yet only 8.5% had evidence of exposure to all quadrivalent vaccine types. In multivariate analysis, HPV prevalence varied significantly (P < .05) by HIV status, sexual orientation, and lifetime number of sex partners, but not by race/ethnicity. Most young MSM lacked evidence of current or past infection with all vaccine-type HPV types, suggesting that they could benefit from vaccination. The impact of vaccination among MSM may be assessed by monitoring HPV prevalence, including in self-collected specimens. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Monitoring Ecological Impacts of Environmental Surface ...
Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cell-based metabolomics is used to investigate the impacts of contaminants in surface waters on biological pathways in human and ecologically relevant cell lines. Water samples were collected from stream sites nationwide, where significant impacts have been estimated from the most potentially contaminated sources (i.e. waste water treatment plants, concentrated animal feeding operations, mining operations, and plant-based agricultural operations that use intensive chemical applications). Zebrafish liver cells (ZFL) were used to study exposure impacts on in vitro metabolomes. In addition, a small number of water samples were studied using two human cell lines (liver cells, HepG2 and brain cells, LN229). The cellular metabolites were profiled by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Detailed methods and results will be reported. Presented at SETAC North America 37th Annual Meeting
Impacts of swine manure pits on groundwater quality
Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.
2002-01-01
Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and ??15N and ??18O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal streptococcus bacteria were detected at least once in groundwater from all monitoring wells at both sites. Fecal streptococcus was more common and at greater concentrations than fecal coliform. The microbiological data suggest that filtration of bacteria by soils may not be as effective as commonly assumed. The presence of fecal bacteria in the shallow groundwater may pose a significant threat to human health if the ground water is used for drinking. Both facilities are less than 4 years old and the short-term impacts of these manure storage facilities on groundwater quality have been limited. Continued monitoring of these facilities will determine if they have a long-term impact on groundwater resources. ?? 2002 Elsevier Science Ltd. All rights reserved.
Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J
2018-02-01
The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.
Reevaluating the significance of estrone as an environmental estrogen
Studies worldwide have demonstrated the occurrence of feminized male fish at sites impacted by human and animal wastes. A variety of chemicals could contribute to this phenomenon, but those receiving the greatest attention in terms of research and monitoring have been 17â-estradi...
Reevaluating the significance of estrone as an environmental estrogen
Studies worldwide have demonstrated the occurrence of feminized male fish at sites impacted by human and animal wastes. A variety of chemicals could contribute to this phenomenon, but those receiving the greatest attention in terms of research and monitoring have been 17â-e...
Stachler, Elyse; Akyon, Benay; Aquino de Carvalho, Nathalia; Ference, Christian; Bibby, Kyle
2018-06-06
Environmental waters are monitored for fecal pollution to protect public health. Many previously developed human-specific fecal pollution indicators lack adequate sensitivity to be reliably detected in environmental waters or do not correlate well with viral pathogens. Recently, two novel human sewage-associated source tracking qPCR markers were developed based on the bacteriophage crAssphage, CPQ_056 and CPQ_064. These assays are highly human specific, abundant in sewage, and are viral-based, suggesting great promise for environmental application as human fecal pollution indicators. A 30-day sampling study was conducted in an urban stream impacted by combined sewer overflows to evaluate the crAssphage markers' performance in an environmental system. The crAssphage markers were present at concentrations of 4.02-6.04 log10 copies/100 mL throughout the study period, indicating their high abundance and ease of detection in polluted environmental waters. In addition, the crAssphage assays were correlated with rain events, molecular markers for human polyomavirus and HF183, as well as culturable E. coli, enterococci, and somatic coliphage. The CPQ_064 assay correlated strongly to a greater number of biological indicators than the CPQ_056 assay. This study is the first to evaluate both crAssphage qPCR assays in an extended environmental application of crAssphage markers for monitoring of environmental waters. It is also the first study to compare crAssphage marker concentration with other viral-based indicators.
Monitoring trends of urban development and environmental impact of Beijing, 1999-2006.
Liu, Gengyuan; Yang, Zhifeng; Chen, Bin; Ulgiati, Sergio
2011-08-15
The high rates of environmental change and accelerated species loss in the urban development process should be quantified to rebalance the social and environmental dimensions of sustainability. In this study, an emergy-based environmental impact assessment model is designed according to the framework of the Eco-Indicator 99 for monitoring the negative effects on human well-being and ecosystem integrity in the urban development system of Beijing from 1999 to 2006. The environmental impact assessment model is based on the sustainability promotion perspective, and emphasizes the determinants of human health and ecosystem integrity in the urban development process. It is vital that the links among human health, ecosystem integrity and urban sustainability are therefore considered especially from the perspective of a supply-side environmental cost evaluation (including ecological service supply, ecological and economic losses and investment for treatment). Results suggest that: (1) out of all the pollutants, ecological services were mainly used to dilute sulfur dioxide and NH(3)-N; (2) nitrogen dioxide and greenhouse gases released by the urban system contribute heavily to both ecological and economic losses evaluated in emergy terms; and (3) emissions impact, mainly from airborne pollutants, with small contribution from waterborne emissions, generally increases from 1999 to 2006, undermining the sustainability of Beijing. The emergy synthesis proves to be very appropriate to account for large-scale and indirect costs generated by pollution as side effects of economic activity. Such knowledge is a necessary pre-requisite to perform a reliable cost-benefit evaluation of urban sustainability strategies, and provide guidance for policy decision making to maximize benefits and minimize negative impacts. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluating the Impact of Modern Copper Mining on Ecosystem Services in Southern Arizona
NASA Astrophysics Data System (ADS)
Virgone, K.; Brusseau, M. L.; Ramirez-Andreotta, M.; Coeurdray, M.; Poupeau, F.
2014-12-01
Historic mining practices were conducted with little environmental forethought, and hence generated a legacy of environmental and human-health impacts. However, an awareness and understanding of the impacts of mining on ecosystem services has developed over the past few decades. Ecosystem services are defined as benefits that humans obtain from ecosystems, and upon which they are fundamentally dependent for their survival. Ecosystem services are divided into four categories including provisioning services (i.e., food, water, timber, and fiber); regulating services (i.e., climate, floods, disease, wastes, and water quality); supporting services (i.e., soil formation, photosynthesis, and nutrient cycling) and cultural services (i.e., recreational, aesthetic, and spiritual benefits) (Millennium Ecosystem Assessment, 2005). Sustainable mining practices have been and are being developed in an effort to protect and preserve ecosystem services. This and related efforts constitute a new generation of "modern" mines, which are defined as those that are designed and permitted under contemporary environmental legislation. The objective of this study is to develop a framework to monitor and assess the impact of modern mining practices and sustainable mineral development on ecosystem services. Using the sustainability performance indicators from the Global Reporting Initiative (GRI) as a starting point, we develop a framework that is reflective of and adaptive to specific local conditions. Impacts on surface and groundwater water quality and quantity are anticipated to be of most importance to the southern Arizona region, which is struggling to meet urban and environmental water demands due to population growth and climate change. We seek to build a more comprehensive and effective assessment framework by incorporating socio-economic aspects via community engaged research, including economic valuations, community-initiated environmental monitoring, and environmental human-health education programs.
Drought monitoring in the Brazilian Semiarid region.
Alvalá, Regina C S; Cunha, Ana Paula M A; Brito, Sheila S B; Seluchi, Marcelo E; Marengo, José A; Moraes, Osvaldo L L; Carvalho, Magog A
2017-10-16
Drought is a natural and recurrent phenomenon. It is considered 'a natural disaster' whenever it occurs in an intensive manner in highly populated regions, resulting in significant damage (material and human) and loss (socioeconomic). This paper presents the efforts developed to monitor the impact of drought in the semiarid region of Northeast Brazil. In this scope, information from different sources is compiled to support the evaluation and identification of impacted municipalities, with the main objective of supporting emergency actions to mitigate their impact. In the semiarid region of Brazil there are frequent occurrences of dry periods during the rainy season, which, depending on the intensity and duration, can cause significant damage to family-farmed crops, with a farming system characterized by low productivity indices. However, rain-fed agriculture has great economic expression and high social importance due to the region is densely occupied, and contributes to the establishment of communities in the countryside. Specifically, in the present study, the methodology adopted to monitor the impact of agricultural droughts, including an analysis of the hydrological year 2015-2016, is presented, considering different water stress indicators for the identification of the affected municipalities and assessment of the methods and tools developed.
Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke
2015-12-15
Many South Africans living in resource-poor settings with little or no access to pipe-borne water still rely on rivers as alternative water sources for drinking and other purposes. The poor microbial quality of such water bodies calls for appropriate monitoring. However, routine monitoring only takes into consideration the microbial quality of the water column, and does not include monitoring of the riverbed sediments for microbial pollution. This study sought to investigate the microbial quality of riverbed sediments in the Apies River, Gauteng Province, South Africa, using Escherichia coli as a faecal indicator organism and to investigate the impact of seasonal variation on its abundance. Weekly samples were collected at 10 sampling sites on the Apies River between May and August 2013 (dry season) and between January and February 2014 (wet season). E. coli was enumerated using the Colilert®-18 Quanti-Tray® 2000 system. All sites tested positive for E. coli. Wastewater treatment work effluents had the highest negative impact on the river water quality. Seasonal variations had an impact on the concentration of E. coli both in water and sediments with concentrations increasing during the wet season. A strong positive correlation was observed between temperature and the E. coli concentrations. We therefore conclude that the sediments of the Apies River are heavily polluted with faecal indicator bacteria and could also harbour other microorganisms including pathogens. The release of such pathogens into the water column as a result of the resuspension of sediments due to extreme events like floods or human activities could increase the health risk of the populations using the untreated river water for recreation and other household purposes. There is therefore an urgent need to reconsider and review the current South African guidelines for water quality monitoring to include sediments, so as to protect human health and other aquatic lives. Copyright © 2015 Elsevier B.V. All rights reserved.
The collective processes that constitute the broadly used term Anatural attenuation,@ as it relates to subsurface remediation of contaminants, refer to the physical, chemical, and biological interactions that, without human intervention, reduce or contain contaminants in the sub...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Management; and, (h) Establish internal management controls to monitor NASA actions to assure compliance with... Wetlands Management § 1216.200 Scope. This subpart 1216.2 prescribes procedures to: (a) Avoid long- and... practicable alternative; (c) Reduce the risk of flood loss; (d) Minimize the impact of floods on human health...
Anthropogenic pollution is recognized as a global problem contributing to degradation of ecosystem quality, to loss of numerous plant and animal species, and to adverse impacts on human health. There is an increasing realization that a holistic hazard assessment of complex enviro...
The macroinvertebrate taxonomic resolution needed for detecting human impacts on stream ecosystems draws continued attention from stream ecologists. During late spring 1993-1995, the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) sam...
Fernandes, Itanna O; de Souza, Jorge L P
2018-01-01
Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth's natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River in Rondônia State. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six plots (transects) each, totaling 30 sampling plots. The transects were distributed with 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km, measured perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, the study used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9,165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera and 324 species/morphospecies. The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna. Until recently, most studies conducted on hydroelectric plants, located in the Amazon Basin, were carried out after the implementation of dams in order to assess their impacts on the environment and biodiversity (Benchimol and Peres 2015, Latrubesse et al. 2017, Sá-Oliveira et al. 2015). Recent studies on dam impacts have begun to be conducted prior to dam implementation (e.g. Bobrowiec and Tavares 2017, Fraga et al. 2014, Moser et al. 2014), thus providing a better overview of the impact and a better assessment of its magnitude.
A Review of Frameworks for Developing Environmental Health Indicators for Climate Change and Health
Hambling, Tammy; Weinstein, Philip; Slaney, David
2011-01-01
The role climate change may play in altering human health, particularly in the emergence and spread of diseases, is an evolving area of research. It is important to understand this relationship because it will compound the already significant burden of diseases on national economies and public health. Authorities need to be able to assess, anticipate, and monitor human health vulnerability to climate change, in order to plan for, or implement action to avoid these eventualities. Environmental health indicators (EHIs) provide a tool to assess, monitor, and quantify human health vulnerability, to aid in the design and targeting of interventions, and measure the effectiveness of climate change adaptation and mitigation activities. Our aim was to identify the most suitable framework for developing EHIs to measure and monitor the impacts of climate change on human health and inform the development of interventions. Using published literature we reviewed the attributes of 11 frameworks. We identified the Driving force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework as the most suitable one for developing EHIs for climate change and health. We propose the use of EHIs as a valuable tool to assess, quantify, and monitor human health vulnerability, design and target interventions, and measure the effectiveness of climate change adaptation and mitigation activities. In this paper, we lay the groundwork for the future development of EHIs as a multidisciplinary approach to link existing environmental and epidemiological data and networks. Analysis of such data will contribute to an enhanced understanding of the relationship between climate change and human health. PMID:21845162
Kvetonova, Dana; Mynarova, Anna; Shutt, Kathryn A.; Pomajbikova, Katerina; Kalousova, Barbora; Modry, David; Benavides, Julio; Todd, Angelique; Kvac, Martin
2013-01-01
Background Infectious diseases pose one of the greatest threats to endangered species, and a risk of gastrointestinal parasite transmission from humans to wildlife has always been considered as a major concern of tourism. Increased anthropogenic impact on primate populations may result in general changes in communities of their parasites, and also in a direct exchange of parasites between humans and primates. Aims To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, we conducted a long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas at different stages of the habituation process, humans, and other wildlife in Dzanga-Sangha Protected Areas in the Central African Republic. Results We detected Encephalitozoon cuniculi genotypes I and II (7.5%), Enterocytozoon bieneusi genotype D and three novel genotypes (gorilla 1–3) (4.0%), Giardia intestinalis subgroup A II (2.0%) and Cryptosporidium bovis (0.5%) in gorillas, whereas in humans we found only G. intestinalis subgroup A II (2.1%). In other wild and domestic animals we recorded E. cuniculi genotypes I and II (2.1%), G. intestinalis assemblage E (0.5%) and C. muris TS03 (0.5%). Conclusion Due to the non-specificity of E. cuniculi genotypes we conclude that detection of the exact source of E. cuniculi infection is problematic. As Giardia intestinalis was recorded primarily in gorilla groups with closer human contact, we suggest that human-gorilla transmission has occurred. We call attention to a potentially negative impact of habituation on selected pathogens which might occur as a result of the more frequent presence of humans in the vicinity of both gorillas under habituation and habituated gorillas, rather than as a consequence of the close contact with humans, which might be a more traditional assumption. We encourage to observe the sections concerning hygiene from the IUCN best practice guidelines for all sites where increased human-gorilla contact occurs. PMID:23951255
Sak, Bohumil; Petrzelkova, Klara J; Kvetonova, Dana; Mynarova, Anna; Shutt, Kathryn A; Pomajbikova, Katerina; Kalousova, Barbora; Modry, David; Benavides, Julio; Todd, Angelique; Kvac, Martin
2013-01-01
Infectious diseases pose one of the greatest threats to endangered species, and a risk of gastrointestinal parasite transmission from humans to wildlife has always been considered as a major concern of tourism. Increased anthropogenic impact on primate populations may result in general changes in communities of their parasites, and also in a direct exchange of parasites between humans and primates. To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, we conducted a long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas at different stages of the habituation process, humans, and other wildlife in Dzanga-Sangha Protected Areas in the Central African Republic. We detected Encephalitozoon cuniculi genotypes I and II (7.5%), Enterocytozoon bieneusi genotype D and three novel genotypes (gorilla 1-3) (4.0%), Giardia intestinalis subgroup A II (2.0%) and Cryptosporidium bovis (0.5%) in gorillas, whereas in humans we found only G. intestinalis subgroup A II (2.1%). In other wild and domestic animals we recorded E. cuniculi genotypes I and II (2.1%), G. intestinalis assemblage E (0.5%) and C. muris TS03 (0.5%). Due to the non-specificity of E. cuniculi genotypes we conclude that detection of the exact source of E. cuniculi infection is problematic. As Giardia intestinalis was recorded primarily in gorilla groups with closer human contact, we suggest that human-gorilla transmission has occurred. We call attention to a potentially negative impact of habituation on selected pathogens which might occur as a result of the more frequent presence of humans in the vicinity of both gorillas under habituation and habituated gorillas, rather than as a consequence of the close contact with humans, which might be a more traditional assumption. We encourage to observe the sections concerning hygiene from the IUCN best practice guidelines for all sites where increased human-gorilla contact occurs.
Beggs, Paul John; Bennett, Charmian Margaret
2011-03-01
The objective of this article is to systematically review and assess what is known about the impacts of climate change on aeroallergens and other naturally derived particulates, and the associated human health impacts, and to examine responses to these in Australia, focusing on adaptation. Prior research was searched using several general and discipline-specific research databases. The review concludes that whereas there is little original research on the impacts of climate change on aeroallergens and other naturally derived particulates in Australia, or the human health consequences of these, research from overseas suggests that these impacts may be adverse and of considerable magnitude. More research is required to assess the impacts of climate change on these airborne particles and associated diseases in Australia and other parts of the Asia-Pacific. There are important policy implications of this review. There is a need for enhanced monitoring of the atmospheric environment and associated health conditions in Australia. Education about climate change and human health in general, and air quality and related diseases specifically, is required for the community, health professionals, and others. Improvements are needed in the preparedness of infrastructure, such as health care facilities and early warning systems, particularly for aeroallergens, and all of these adaptive policy responses require further research.
Automated Identification of Volcanic Plumes using the Ozone Monitoring Instrument (OMI)
NASA Astrophysics Data System (ADS)
Flower, V. J. B.; Oommen, T.; Carn, S. A.
2015-12-01
Volcanic eruptions are a global phenomenon which are increasingly impacting human populations due to factors such as the extension of population centres into areas of higher risk, expansion of agricultural sectors to accommodate increased production or the increasing impact of volcanic plumes on air travel. In areas where extensive monitoring is present these impacts can be moderated by ground based monitoring and alert systems, however many volcanoes have little or no monitoring capabilities. In many of these regions volcanic alerts are generated by local communities with limited resources or formal communication systems, however additional eruption alerts can result from chance encounters with passing aircraft. In contrast satellite based remote sensing instruments possess the capability to provide near global daily monitoring, facilitating automated volcanic eruption detection. One such system generates eruption alerts through the detection of thermal anomalies, known as MODVOLC, and is currently operational utilising moderate resolution MODIS satellite data. Within this work we outline a method to distinguish SO2 eruptions from background levels recorded by the Ozone Monitoring Instrument (OMI) through the identification and classification of volcanic activity over a 5 year period. The incorporation of this data into a logistic regression model facilitated the classification of volcanic events with an overall accuracy of 80% whilst consistently identifying plumes with a mass of 400 tons or higher. The implementation of the developed model could facilitate the near real time identification of new and ongoing volcanic activity on a global scale.
Skouloudis, Andreas N; Kassomenos, Pavlos
2014-08-01
The use of emerging technologies for environmental monitoring with satellite and in-situ sensors have become essential instruments for assessing the impact of environmental pollution on human health, especially in areas that require high spatial and temporal resolution. This was until recently a rather difficult problem. Regrettably, with classical approaches the spatial resolution is frequently inadequate in reporting environmental causes and health effects in the same time scale. This work examines with new tools different levels of air-quality with sensor monitoring with the aim to associate those with severe health effects. The process established here facilitates the precise representation of human exposure with the population attributed in a fine spatial grid and taking into account environmental stressors of human exposure. These stressors can be monitored with innovative sensor units with a temporal resolution that accurately describes chronic and acute environmental burdens. The current understanding of the situation in densely populated areas can be properly analyzed, before commitments are made for reductions in total emissions as well as for assessing the effects of reduced trans-boundary fluxes. In addition, the data processed here with in-situ sensors can assist in establishing more effective regulatory policies for the protection of vulnerable population groups and the satellite monitoring instruments permit abatement strategies that are close to real-time over large geographical areas. Copyright © 2014 Elsevier B.V. All rights reserved.
Advancements in remote physiological measurement and applications in human-computer interaction
NASA Astrophysics Data System (ADS)
McDuff, Daniel
2017-04-01
Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.
Skempes, Dimitrios; Bickenbach, Jerome
2015-09-24
Rehabilitation care is fundamental to health and human dignity and a human right enshrined in the United Nations Convention on the Rights of Persons with Disabilities. The provision of rehabilitation is important for reducing the need for formal support and enabling persons with disabilities to lead an independent life. Increasingly scholars and advocacy groups voice concerns over the significant barriers facing people with disabilities in accessing appropriate and quality rehabilitation. A growing body of research highlights a "respond-need" gap in the provision of rehabilitation and assistive technologies and underscore the lack of indicators for assessing performance of rehabilitation systems and monitoring States compliance with human rights standards in rehabilitation service planning and programming. While research on human rights and health monitoring has increased exponentially over the last decade far too little attention has been paid to rehabilitation services. The proposed research aims to reduce this knowledge gap by developing a human rights based monitoring framework with indicators to support human rights accountability and performance assessment in rehabilitation. Concept mapping, a stakeholder-driven approach will be used as the core method to identify rights based indicators and develop the rehabilitation services monitoring framework. Concept mapping requires participants from various stakeholders groups to generate a list of the potential indicators through on line brainstorming, sort the indicators for conceptual similarity into clusters and rate them against predefined criteria. Multidimensional scaling and hierarchical cluster data analysis will be performed to develop the monitoring framework while bridging analysis will provide useful insights about patterns of agreement or disagreement among participants views on indicators. This study has the potential to influence future practices on data collection and measurement of compliance with human rights standards in rehabilitation service delivery and organization. The development of a valid and universally applicable set of indicators will have a profound impact on the design and implementation of evidence informed disability policies and programs as it can support countries in strengthening performance measurement through documentation of comparative information on rehabilitation care systems. Most importantly, the resulting indicators can be used by disabled people's organizations as well as national and international institutions to define a minimal standard for monitoring and reporting progress on the implementation of the Convention on the Rights of Persons with Disabilities in the area of rehabilitation.
USDA-ARS?s Scientific Manuscript database
We willexamine how climate teleconnect ions and variability impact vector biology and vector borne disease ecology, and demonstrate that global climate monitoring can be used to anticipate and forecast epidemics and epizootics. In this context we willexamine significant worldwide weather anomalies t...
Using albedo to reform wind erosion modelling, mapping and monitoring
USDA-ARS?s Scientific Manuscript database
Dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. We describe a need in aeolian research to adequately represent the spatial variability and particularly the area average of the key aerodynami...
Sonification Design for Complex Work Domains: Dimensions and Distractors
ERIC Educational Resources Information Center
Anderson, Janet E.; Sanderson, Penelope
2009-01-01
Sonification--representing data in sound--is a potential method for supporting human operators who have to monitor dynamic processes. Previous research has investigated a limited number of sound dimensions and has not systematically investigated the impact of dimensional interactions on sonification effectiveness. In three experiments the authors…
This is a draft review and synthesis of monitoring and analysis conducted by several departments at the University of Washington, U.S. Geological Survey, Pacific Northwest National Laboratory, Kitsap County, and Mason County. The report summarizes findings from a 2008 peer-revie...
Monitoring the Productivity of Coastal Systems Using PH: When Simpler is Better
The impact of nutrient inputs to the eutrophication of coastal ecosystems has been one of the great themes of coastal ecology. There have been countless studies devoted to quantifying how human sources of nutrients, in particular nitrogen (N), effect coastal water bodies. These s...
Monitoring the Productivity of Coastal Systems Using PH: When Simpler is Better (NEERS)
The impact of nutrient inputs to the eutrophication of coastal ecosystems has been one of the great themes of coastal ecology. There have been countless studies devoted to quantifying how human sources of nutrients, in particular nitrogen (N), effect coastal water bodies. These s...
Detection and Response for Rift Valley fever
USDA-ARS?s Scientific Manuscript database
Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...
Monitoring the Productivity of Coastal Systems Using PH: When Simpler is Better.
The impact of nutrient inputs to the eutrophication of coastal ecosystems has been one of the great themes of coastal ecology. There have been countless studies devoted to quantifying how human sources of nutrients, in particular nitrogen (N), effect coastal water bodies. These s...
An Assessment of Environmental Health Needs
NASA Technical Reports Server (NTRS)
Macatangay, Ariel V.
2013-01-01
Environmental health fundamentally addresses the physical, chemical, and biological risks external to the human body that can impact the health of a person by assessing and controlling these risks in order to generate and maintain a health-supportive environment. In manned spacecraft, environmental health risks are mitigated by a multi-disciplinary effort, employing several measures including active and passive controls, by establishing environmental standards (SMACs, SWEGs, microbial and acoustics limits), and through environmental monitoring. Human Health and Performance (HHP) scientists and Environmental Control and Life Support (ECLS) engineers consider environmental monitoring a vital component to an environmental health management strategy for maintaining a healthy crew and achieving mission success. ECLS engineers use environmental monitoring data to monitor and confirm the health of ECLS systems, whereas HHP scientists use the data to manage the health of the human system. Because risks can vary between missions and change over time, environmental monitoring is critical. Crew health risks associated with the environment were reviewed by agency experts with the goal of determining risk-based environmental monitoring needs for future NASA manned missions. Once determined, gaps in environmental health knowledge and technology, required to address those risks, were identified for various types of exploration missions. This agency-wide assessment of environmental health needs will help guide the activities/hardware development efforts to close those gaps and advance the knowledge required to meet NASA manned space exploration objectives. Details of the roadmap development and findings are presented in this paper.
Monitoring the tobacco use epidemic II. The Agent: Current and Emerging Tobacco Products
Stellman, Steven D.; Djordjevic, Mirjana V.
2009-01-01
Objective This Agent paper summarizes the findings and recommendations of the Agent (product) Working Group of the November, 2002, National Tobacco Monitoring, Research and Evaluation Workshop. Methods The Agent Working Group evaluated the need to develop new surveillance systems for quantifying ingredients and emissions of tobacco and tobacco smoke and to improve methods to assess uptake and metabolism of these constituents taking into account variability in human smoking behavior. Results The toxic properties of numerous tobacco and tobacco smoke constituents are well known, yet systematic monitoring of tobacco products has historically been limited to tar, nicotine, and CO in mainstream cigarette smoke using a machine-smoking protocol that does not reflect human smoking behavior. Toxicity of smokeless tobacco products has not been regularly monitored. Tobacco products are constantly changing and untested products are introduced into the marketplace with great frequency, including potential reduced-exposure products (PREPs). The public health impact of new or modified tobacco products is unknown. Conclusions Systematic surveillance is recommended for mainstream smoke constituents such as polycyclic aromatic hydrocarbons (PAH), tobacco-specific nitrosamines (TSNA), total and free-base nicotine, volatile organic compounds, aromatic amines, and metals; and design attributes including tobacco blend, additives, and filter ventilation. Research on smoking topography is recommended to help define machine-smoking protocols for monitoring emissions reflective of human smoking behavior. Recommendations are made for marketplace product sampling and for population monitoring of smoking topography, emissions of toxic constituents, biomarkers of exposure and, eventually, risk of tobacco-related diseases. PMID:18848577
NASA Technical Reports Server (NTRS)
Abell, Paul A.; Rivkin, Andy S.
2014-01-01
The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.
Groundwater quality assessment/corrective action feasibility plan: New TNX Seepage Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, R.L.
1989-12-05
The New TNX Seepage Basin is located across River Road east of the TNX Area at the Savannah River Site. Currently the basin is out of service and is awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the New TNX Seepage Basin was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater downgradient of the New TNX Seepage Basin had been impacted. Results from the data analysis indicate that the groundwater has been impacted by inorganic constituents with nomore » associated health risks. The impacts resulting from elevated levels of inorganic constituents, such as Mn, Na, and Total PO{sub 4} in the water table, do not pose a threat to human health and the environment.« less
WSN based indoor air quality monitoring in classrooms
NASA Astrophysics Data System (ADS)
Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.
2017-03-01
Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.
The Mission Accessibility of Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Abell, P. A.; Adamo, D. R.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Taylor, P.;
2015-01-01
The population of near-Earth asteroids (NEAs) that may be accessible for human space flight missions is defined by the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). The NHATS is an automated system designed to monitor the accessibility of, and particular mission opportunities offered by, the NEA population. This is analogous to systems that automatically monitor the impact risk posed to Earth by the NEA population. The NHATS system identifies NEAs that are potentially accessible for future round-trip human space flight missions and provides rapid notification to asteroid observers so that crucial follow-up observations can be obtained following discovery of accessible NEAs. The NHATS was developed in 2010 and was automated by early 2012. NHATS data are provided via an interactive web-site, and daily NHATS notification emails are transmitted to a mailing list; both resources are available to the public.
[Hurricanes and tropical coastal biodiversity].
Salazar-Vallejo, Sergio I
2002-06-01
Tropical coastal biodiversity has been modulated by tropical storms during a long time and it is currently facing a heavy human impact. The purpose of this review is to compile the available information to improve our understanding of hurricane impacts and to promote the establishment of coastal landscape monitoring, because that is the best way to assess these impacts. Although generalizations on hurricane effects are elusive, some historical dynamics and temporal relationships are included and some details are presented on the impacts by resuspension and movement of sediments, storm waves, and breaking off of coral reef organisms. Some effects on marine turtles and coastal forests are also briefly pointed out.
Personal Air Pollution Exposure Monitoring using Low Cost Sensors in Chennai City
NASA Astrophysics Data System (ADS)
Reddy Yasa, Pavan; Shiva, Nagendra S. N.
2016-04-01
Air quality in many cities is deteriorating due to rapid urbanization and motorization. In the past, most of the health impacts studies in the urban areas have considered stationary air quality monitoring station data for health impact assessment. Since, there exist a spatial and temporal variation of air quality because of rapid change in land use pattern and complex interaction between emission sources and meteorological conditions, the human exposure assessment using stationary data may not provide realistic information. In such cases low cost sensors monitoring is viable in providing both spatial and temporal variations of air pollutant concentrations. In the present study an attempt has been made to use low cost sensor for monitoring the personal exposure to the two criteria pollutants CO and PM2.5 at 3 different locations of Chennai city. Maximum and minimum concentrations of CO and PM2.5 were found to be 5.4ppm, 0.8ppm and 534.8μg/m3, 1.9μg/m3 respectively. Results showed high concentrations near the intersection and low concentrations in the straight road.
Pollution monitoring using networks of honey bees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromenshenk, J.J.; Dewart, M.L.; Thomas, J.M.
1983-08-01
Each year thousands of chemicals in large quantities are introduced into the global environment and the need for effective methods of monitoring these substances has steadily increased. Most monitoring programs rely upon instrumentation to measure specific contaminants in air, water, or soil. However, it has become apparent that humans and their environment are exposed to complex mixtures of chemicals rather than single entities. As our ability to detect ever smaller quantities of pollutants has increased, the biological significance of these findings has become more uncertain. Also, it is clear that monitoring efforts should shift from short-term studies of easily identifiablemore » sources in localized areas to long-term studies of multiple sources over widespread regions. Our investigations aim at providing better tools to meet these exigencies. Honey bees are discussed as an effective, long-term, self-sustaining system for monitoring environmental impacts. Our results indicate that the use of regional, and possibly national or international, capability can be realized with the aid of beekeepers in obtaining samples and conducting measurements. This approach has the added advantage of public involvement in environmental problem solving and protection of human health and environmental quality.« less
Huang, Y Q; Wong, C K C; Zheng, J S; Bouwman, H; Barra, R; Wahlström, B; Neretin, L; Wong, M H
2012-07-01
Bisphenol A (BPA), identified as an endocrine disruptor, is an industrially important chemical that is used as a raw material in the manufacture of many products such as engineering plastics (e.g., epoxy resins/polycarbonate plastics), food cans (i.e., lacquer coatings), and dental composites/sealants. The demand and production capacity of BPA in China have grown rapidly. This trend will lead to much more BPA contamination in the environmental media and in the general population in China. This paper reviews the current literature concerning the pollution status of BPA in China (the mainland, Hong Kong, and Taiwan) and its potential impact on human health. Due to potential human health risks from long-term exposure to BPA, body burden of the contaminant should be monitored. Copyright © 2011 Elsevier Ltd. All rights reserved.
Port, Jesse A; Wallace, James C; Griffith, William C; Faustman, Elaine M
2012-01-01
Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP) that discharges into the Sound and pyrosequenced. A total of ~550 Mbp (1.4 million reads) were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp.), γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used to guide initial public health monitoring as well as more targeted and functionally-based investigations.
Bark beetles as agents of change in social-ecological systems
Jesse L Morris; Stuart Cottrell; Christopher J Fettig; R. Justin DeRose; Katherine M Mattor; Vachel A Carter; Jennifer Clear; Jessica Clement; Winslow D Hansen; Jeffrey A Hicke; Philip E Higuera; Alistair WR Seddon; Heikki Seppä; Rosemary L Sherriff; John D Stednick; Steven J Seybold
2018-01-01
Due to recent outbreaks of native bark beetles, forest ecosystems have experienced substantial changes in landscape structure and function, which also affect nearby human populations. As a result, land managers have been tasked with sustaining ecosystem services in impacted areas by considering the best available science, public perceptions, and monitoring data to...
Following the collapse of the World Trade Center towers on September 11, 2001, New York State and Federal agencies initiated numerous air monitoring activities to better understand the ongoing impact of emissions from the disaster. This report focuses on these air measurement da...
Assessing COSMO-SkyMed capability for crops identification and monitoring
NASA Astrophysics Data System (ADS)
Guarini, R.; Dini, L.
2015-12-01
In the last decade, it has been possible to better understand the impact of agricultural human practices on the global environmental change at different spatial (from local to global) and time (from seasonal to decadal) scales. This has been achieved thanks to: big dataset continuously acquired by Earth Observation (EO) satellites; the improved capabilities of remote sensing techniques in extracting valuable information from the EO datasets; the new EO data policy which allowed unrestricted data usage; the net technologies which allowed to quickly and easily share national, international and market-derived information; an increasingly performing computing technology which allows to massively process large amount of data easier and at decreasing costs. To better understand the environmental impacts of agriculture and to monitor the consequences of human agricultural activities on the biosphere, scientists require to better identify crops and monitor crop conditions over time and space. Traditionally, NDVI time series maps derived from optical sensors have been used to this aim. As well-known this important source of information is conditioned by cloud cover. Unlike passive systems, synthetic aperture radar (SAR) ones are almost insensitive to atmospheric influences; thus, they are especially suitable for crop identification and condition monitoring. Among the other SAR systems currently in orbit, the Italian Space Agency (ASI) COSMO Sky-Med® (CSK®) constellation (X-band, frequency 9.6 GHz, wavelength 3.1 cm), especially for its peculiar high revisit capability (up to four images in 16 days with same acquisition geometry) seems to be particular suitable for providing information in addition and/or in alternative to other optical EO systems. To assess the capability of the CSK® constellation in identifying crops and in monitoring crops condition in 2013 ASI started the "AGRICIDOT" project. Some of the main project achievements will be presented at the congress.
Comparative utility of LANDSAT-1 and Skylab data for coastal wetland mapping and ecological studies
NASA Technical Reports Server (NTRS)
Anderson, R.; Alsid, L.; Carter, V.
1975-01-01
Skylab 190-A photography and LANDSAT-1 analog data have been analyzed to determine coastal wetland mapping potential as a near term substitute for aircraft data and as a long term monitoring tool. The level of detail and accuracy of each was compared. Skylab data provides more accurate classification of wetland types, better delineation of freshwater marshes and more detailed analysis of drainage patterns. LANDSAT-1 analog data is useful for general classification, boundary definition and monitoring of human impact in wetlands.
Geographic Analysis and Monitoring Program
Campbell, Jon C.
2007-01-01
The surface of the Earth is changing rapidly, at local, regional, national, and global scales, with significant repercussions for people, the economy, and the environment. Some changes have natural causes, such as wildland fires or hurricanes, while other changes on the land, such as resource extraction, agricultural practices, and urban growth, are human-induced processes. There are other types of changes that are a combination of natural and human-induced factors; landslides and floods, for example, are fundamentally natural processes that are often intensified or accelerated by human land use practices. Whatever their cause, land-surface changes can have profound environmental and economic impacts.
Jabłońska-Trypuć, Agata; Wołejko, Elżbieta; Wydro, Urszula; Butarewicz, Andrzej
2017-07-03
Pesticides cause serious environmental and health problems both to humans and animals. The aim of this review is to discuss selected herbicides and fungicides regarding their mode of action and their influence on basic oxidative stress parameters and endocrine disruption properties tested in selected cell cultures in vitro. Because of numerous difficulties which animal studies are subject to, cell cultures are an excellent experimental model reflecting human exposure to different pesticides through all relevant routes. This experimental model can be used to monitor aggregate and cumulative pesticide exposures.
Vibration monitoring via nano-composite piezoelectric foam bushings
NASA Astrophysics Data System (ADS)
Bird, Evan T.; Merrell, A. Jake; Anderson, Brady K.; Newton, Cory N.; Rosquist, Parker G.; Fullwood, David T.; Bowden, Anton E.; Seeley, Matthew K.
2016-11-01
Most mechanical systems produce vibrations as an inherent side effect of operation. Though some vibrations are acceptable in operation, others can cause damage or signal a machine’s imminent failure. These vibrations would optimally be monitored in real-time, without human supervision to prevent failure and excessive wear in machinery. This paper explores a new alternative to currently-used machine-monitoring equipment, namely a piezoelectric foam sensor system. These sensors are made of a silicone-based foam embedded with nano- and micro-scale conductive particles. Upon impact, they emit an electric response that is directly correlated with impact energy, with no electrical power input. In the present work, we investigated their utility as self-sensing bushings on machinery. These sensors were found to accurately detect both the amplitude and frequency of typical machine vibrations. The bushings could potentially save time and money over other vibration sensing mechanisms, while simultaneously providing a potential control input that could be utilized for correcting vibrational imbalance.
2018-01-01
Abstract Background Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River in Rondônia State. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six plots (transects) each, totaling 30 sampling plots. The transects were distributed with 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km, measured perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, the study used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9,165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera and 324 species/morphospecies. The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna. New information Until recently, most studies conducted on hydroelectric plants, located in the Amazon Basin, were carried out after the implementation of dams in order to assess their impacts on the environment and biodiversity (Benchimol and Peres 2015, Latrubesse et al. 2017, Sá-Oliveira et al. 2015). Recent studies on dam impacts have begun to be conducted prior to dam implementation (e.g. Bobrowiec and Tavares 2017, Fraga et al. 2014, Moser et al. 2014), thus providing a better overview of the impact and a better assessment of its magnitude. PMID:29674939
Ellingsen, Kari E; Yoccoz, Nigel G; Tveraa, Torkild; Hewitt, Judi E; Thrush, Simon F
2017-10-30
The importance of long-term environmental monitoring and research for detecting and understanding changes in ecosystems and human impacts on natural systems is widely acknowledged. Over the last decades, a number of critical components for successful long-term monitoring have been identified. One basic component is quality assurance/quality control protocols to ensure consistency and comparability of data. In Norway, the authorities require environmental monitoring of the impacts of the offshore petroleum industry on the Norwegian continental shelf, and in 1996, a large-scale regional environmental monitoring program was established. As a case study, we used a sub-set of data from this monitoring to explore concepts regarding best practices for long-term environmental monitoring. Specifically, we examined data from physical and chemical sediment samples and benthic macroinvertebrate assemblages from 11 stations from six sampling occasions during the period 1996-2011. Despite the established quality assessment and quality control protocols for this monitoring program, we identified several data challenges, such as missing values and outliers, discrepancies in variable and station names, changes in procedures without calibration, and different taxonomic resolution. Furthermore, we show that the use of different laboratories over time makes it difficult to draw conclusions with regard to some of the observed changes. We offer recommendations to facilitate comparison of data over time. We also present a new procedure to handle different taxonomic resolution, so valuable historical data is not discarded. These topics have a broader relevance and application than for our case study.
Monitoring and controlling ovarian activity in elephants.
Thitaram, Chatchote; Brown, Janine L
2018-03-15
Both Asian (Elephas maximus) and African (Loxodonta africana) elephants are important keystone, umbrella and flagship species. Paradoxically, world population numbers of both species are declining in many of their natural ranges due mainly to poaching, while over population of elephants in some areas is resulting in serious human-elephant conflict, and modifications of natural habitats that impact biodiversity. Understanding mechanisms of reproductive control is vital to effective population management, and for that reason significant advances have been made in endocrine and ultrasonographic monitoring techniques, particularly in studies of elephants ex situ. However, there remains a need to develop new methods to control ovarian activity, both for enhancing and inhibiting reproduction, to maintain population numbers at levels that ensure species survival and their ability to safely cohabitate with humans and other species. We present an overview of reproductive monitoring methods and how they have contributed to our knowledge of elephant reproductive biology, as well as their application for in situ and ex situ conservation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.
Changing patterns of health in communities impacted by a bioenergy project in northern Sierra Leone.
Knoblauch, Astrid M; Hodges, Mary H; Bah, Mohamed S; Kamara, Habib I; Kargbo, Anita; Paye, Jusufu; Turay, Hamid; Nyorkor, Emmanuel D; Divall, Mark J; Zhang, Yaobi; Utzinger, Jürg; Winkler, Mirko S
2014-12-01
Large private sector investments in low- and middle-income countries are often critically evaluated with regards to their environmental, social, human rights, and health impacts. A health impact assessment, including a baseline health survey, was commissioned by the Addax Bioenergy Sierra Leone project in 2010. As part of the monitoring, a follow-up survey was conducted three years later. A set of health indicators was assessed at six impacted and two control sites. Most of these indices improved, particularly at the impacted sites. The prevalences of stunting, wasting, and Plasmodium falciparum in children under five years of age decreased significantly at impacted sites (all p < 0.05) and non-significantly at control sites. Anemia in children and in women of reproductive age (15-49 years) decreased significantly at impacted and control sites (p < 0.05 and p < 0.001, respectively). Health facility-based deliveries increased significantly at the impacted sites (p < 0.05). The prevalences of helminth infections in children aged 10-15 years remained approximately at the same levels, although focal increases at the impacted sites were noted. Access to improved sanitation decreased significantly (p < 0.05) at control and non-significantly at impacted sites. Water quality remained poor without significant changes. The epidemiologic monitoring of a bioenergy project provides a useful contribution for evidence-based decision-making.
Changing Patterns of Health in Communities Impacted by a Bioenergy Project in Northern Sierra Leone
Knoblauch, Astrid M.; Hodges, Mary H.; Bah, Mohamed S.; Kamara, Habib I.; Kargbo, Anita; Paye, Jusufu; Turay, Hamid; Nyorkor, Emmanuel D.; Divall, Mark J.; Zhang, Yaobi; Utzinger, Jürg; Winkler, Mirko S.
2014-01-01
Large private sector investments in low- and middle-income countries are often critically evaluated with regards to their environmental, social, human rights, and health impacts. A health impact assessment, including a baseline health survey, was commissioned by the Addax Bioenergy Sierra Leone project in 2010. As part of the monitoring, a follow-up survey was conducted three years later. A set of health indicators was assessed at six impacted and two control sites. Most of these indices improved, particularly at the impacted sites. The prevalences of stunting, wasting, and Plasmodium falciparum in children under five years of age decreased significantly at impacted sites (all p < 0.05) and non-significantly at control sites. Anemia in children and in women of reproductive age (15–49 years) decreased significantly at impacted and control sites (p < 0.05 and p < 0.001, respectively). Health facility-based deliveries increased significantly at the impacted sites (p < 0.05). The prevalences of helminth infections in children aged 10–15 years remained approximately at the same levels, although focal increases at the impacted sites were noted. Access to improved sanitation decreased significantly (p < 0.05) at control and non-significantly at impacted sites. Water quality remained poor without significant changes. The epidemiologic monitoring of a bioenergy project provides a useful contribution for evidence-based decision-making. PMID:25514152
Unobstructive Body Area Networks (BAN) for efficient movement monitoring.
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.
Potential Impacts of Organic Wastes on Small Stream Water Quality
NASA Astrophysics Data System (ADS)
Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.
2005-05-01
We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall watershed waste loading. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
Quantifying Anthropogenic Dust Emissions
NASA Astrophysics Data System (ADS)
Webb, Nicholas P.; Pierre, Caroline
2018-02-01
Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.
Dust storms and their impact on ocean and human health: dust in Earth's atmosphere
Griffin, Dale W.; Kellog, Christina A.
2004-01-01
Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.
Time-lapse photography to monitor riparian meadow use
John W. Kinney; Warren P. Clary
1998-01-01
Riparian zones are key areas of most western landscapes. The kinds and amounts of natural and human activity occurring on these sites are often in dispute as many riparian areas in the mountain West are remote or have limited seasonal access. Impacts by wild ungulates, domestic livestock, or recreationists can result in relatively similar damages to streamside...
School Projects for Monitoring the State of the Marine Environment.
ERIC Educational Resources Information Center
Benkendorff, Kirsten
Australia's marine environment hosts a high level of diverse endemic species along with some of the highest biodiversity in the world. Two-thirds of the population of Australia are living in coastal areas and can be considered a threat to marine life which is very vulnerable to human impacts. Although marine environments conserve high economic…
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Was caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring... not stem from any activity or event that could have been foreseen and avoided, or planned for. (iv... the impact of the violations on ambient air quality, the environment and human health. (6) All...
DOT National Transportation Integrated Search
2015-10-01
Visibility is one of the most important impacts weather can have on road systems; weather-related visibility reduction is most often due to fog. Florida is among the top-rated states in the United States with regards to traffic safety problems result...
Results of the fourth joint U.S.-Russian Bering and Chukchi Seas expedition (BERPAC)
USDA-ARS?s Scientific Manuscript database
It is important to monitor the status of arctic oceans especially in terms of the impact human activities are making on these sensitive ecosystems. This is a compilation of research findings from a joint US/Russian expedition to the Bering and Chukchi seas that focuses on the significance of long-t...
2012-01-01
Echinococcus transmission is known to be affected by various environmental factors, which may be modified by human influence or natural events including global warming. Considerable population growth in the last fifty years in Ningxia Hui Autonomous Region (NHAR), the People’s Republic of China (PRC), has led to dramatic increases in deforestation and modified agricultural practices. In turn, this has resulted in many changes in the habitats for the definitive and intermediate hosts of both Echinococcus granulosus and E. multilocularis, which have increased the risks for transmission of both parasites, affecting echinococcosis prevalence and human disease. Ecological environmental changes due to anthropogenic activities and natural events drive Echinococcus transmission and NHAR provides a notable example illustrating how human activity can impact on a parasitic infection of major public health significance. It is very important to continually monitor these environmental (including climatic) factors that drive the distribution of Echinococcus spp. and their impact on transmission to humans because such information is necessary to formulate reliable future public health policy for echinococcosis control programs and to prevent disease spread. PMID:22827890
Remote Sensing Application in Oil and Gas Industry
NASA Astrophysics Data System (ADS)
Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia
2014-05-01
The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.
Cumulative environmental impacts and integrated coastal management: the case of Xiamen, China.
Xue, Xiongzhi; Hong, Huasheng; Charles, Anthony T
2004-07-01
This paper examines the assessment of cumulative environmental impacts and the implementation of integrated coastal management within the harbour of Xiamen, China, an urban region in which the coastal zone is under increasing pressure as a result of very rapid economic growth. The first stage of analysis incorporates components of a cumulative effects assessment, including (a) identification of sources of environmental impacts, notably industrial expansion, port development, shipping, waste disposal, aquaculture and coastal construction, (b) selection of a set of valued ecosystem components, focusing on circulation and siltation, water quality, sediment, the benthic community, and mangrove forests, and (c) use of a set of key indicators to examine cumulative impacts arising from the aggregate of human activities. In the second stage of analysis, the paper describes and assesses the development of an institutional framework for integrated coastal management in Xiamen, one that combines policy and planning (including legislative and enforcement mechanisms) with scientific and monitoring mechanisms (including an innovative 'marine functional zoning' system). The paper concludes that the integrated coastal management framework in Xiamen has met all relevant requirements for 'integration' as laid out in the literature, and has explicitly incorporated consideration of cumulative impacts within its management and monitoring processes.
Impact of Procyanidins from Different Berries on Caspase 8 Activation in Colon Cancer.
Minker, Carole; Duban, Livine; Karas, Daniel; Järvinen, Päivi; Lobstein, Annelise; Muller, Christian D
2015-01-01
The aim of this work is to identify which proapoptotic pathway is induced in human colon cancer cell lines, in contact with proanthocyanidins extracted from various berries. Proanthocyanidins (Pcys) extracted from 11 berry species are monitored for proapoptotic activities on two related human colon cancer cell lines: SW480-TRAIL-sensitive and SW620-TRAIL-resistant. Apoptosis induction is monitored by cell surface phosphatidylserine (PS) detection. Lowbush blueberry extract triggers the strongest activity. When tested on the human monocytic cell line THP-1, blueberry Pcys are less effective for PS externalisation and DNA fragmentation is absent, highlighting a specificity of apoptosis induction in gut cells. In Pcys-treated gut cell lines, caspase 8 (apoptosis extrinsic pathway) but not caspase 9 (apoptosis intrinsic pathway) is activated after 3 hours through P38 phosphorylation (90 min), emphasizing the potency of lowbush blueberry Pcys to eradicate gut TRAIL-resistant cancer cells. We highlight here that berries Pcys, especially lowbush blueberry Pcys, are of putative interest for nutritional chemoprevention of colorectal cancer in view of their apoptosis induction in a human colorectal cancer cell lines.
Remote sensing techniques in monitoring areas affected by forest fire
NASA Astrophysics Data System (ADS)
Karagianni, Aikaterini Ch.; Lazaridou, Maria A.
2017-09-01
Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.
Koshy Cherian, Ajeesh; Parikh, Vinay; Wu, Qi; Mao-Draayer, Yang; Wang, Qin; Blakely, Randy D; Sarter, Martin
2017-09-01
The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oliveira, Rita Fontes; Castro, Lídia; Almeida, José Pedro; Alves, Carlos; Ferreira, António
2016-11-01
In Portugal, 9.8% of patients admitted were inflicted with healthcare associated infections, corresponding to a prevalence of 11.7%. The Hospital de São João has developed a business intelligence platform able to supervise (the patients), monitor (the clinical condition) and notify (the healthcare personnel): HViTAL. This study aims to assess the impact of electronic monitoring on healthcare associated infections since the year of HViTAL implementation. We evaluated data since January 2008 (moment from which computerized records exist) until December 2011, comparing them with subsequent data, those corresponding to January 2012 (implementation date of HViTAL) until 19 October 2015. There was an upward trend of infection parameters in the 2008 - 2011 period. Since January 2012 and October 2015, all parameters of the infection indicator showed a negative linear trend. The results are very suggestive that the HVITAL may have had an impact on improving parameters associated to healthcare associated infections. Basic measures of infection control were highlighted since 2005, with an increasing number of health professional awareness campaigns, a fact which, although not analyzed in this report, may also have contributed to the observed improvement. Our study did not include other variables such as investment in human capital. There was a clear improvement in all areas characterizing the healthcare associated infections, with obvious positive impact with the introduction of HViTAL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, J.M.; W. Gunther, G. Martinez-Guridi
New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less
Advanced integrated real-time clinical displays.
Kruger, Grant H; Tremper, Kevin K
2011-09-01
Intelligent medical displays have the potential to improve patient outcomes by integrating multiple physiologic signals, exhibiting high sensitivity and specificity, and reducing information overload for physicians. Research findings have suggested that information overload and distractions caused by patient care activities and alarms generated by multiple monitors in acute care situations, such as the operating room and the intensive care unit, may produce situations that negatively impact the outcomes of patients under anesthesia. This can be attributed to shortcomings of human-in-the-loop monitoring and the poor specificity of existing physiologic alarms. Modern artificial intelligence techniques (ie, intelligent software agents) are demonstrating the potential to meet the challenges of next-generation patient monitoring and alerting. Copyright © 2011 Elsevier Inc. All rights reserved.
Karp, Beth E; Tate, Heather; Plumblee, Jodie R; Dessai, Uday; Whichard, Jean M; Thacker, Eileen L; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R; Griffin, Patricia M; McDermott, Patrick F
2017-10-01
Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated "One Health" approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in clinical diagnostic practices, and new technologies, such as whole genome sequencing.
Tate, Heather; Plumblee, Jodie R.; Dessai, Uday; Whichard, Jean M.; Thacker, Eileen L.; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R.; Griffin, Patricia M.; McDermott, Patrick F.
2017-01-01
Abstract Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated “One Health” approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in clinical diagnostic practices, and new technologies, such as whole genome sequencing. PMID:28792800
Closing the loop: integrating human impacts on water resources to advanced land surface models
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.; Nie, W.; Rodell, M.; Kumar, S.; Li, B.
2016-12-01
Advanced Land Surface Models (LSMs), including those used in the North American Land Data Assimilation System (NLDAS), offer a physically consistent and spatially and temporally complete analysis of the distributed water balance. These models are constrained both by physically-based process representation and by observations ingested as meteorological forcing or as data assimilation updates. As such, they have become important tools for hydrological monitoring and long-term climate analysis. The representation of water management, however, is extremely limited in these models. Recent advances have brought prognostic irrigation routines into models used in NLDAS, while assimilation of Gravity Recovery and Climate Experiment (GRACE) derived estimates of terrestrial water storage anomaly has made it possible to nudge models towards observed states in water storage below the root zone. But with few exceptions these LSMs do not account for the source of irrigation water, leading to a disconnect between the simulated water balance and the observed human impact on water resources. This inconsistency is unacceptable for long-term studies of climate change and human impact on water resources in North America. Here we define the modeling challenge, review instances of models that have begun to account for water withdrawals (e.g., CLM), and present ongoing efforts to improve representation of human impacts on water storage across models through integration of irrigation routines, water withdrawal information, and GRACE Data Assimilation in NLDAS LSMs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring equipment...) Did not stem from any activity or event that could have been foreseen and avoided, or planned for, and... minimize the impact of the excess emissions on ambient air quality, the environment and human health, and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring equipment...) Did not stem from any activity or event that could have been foreseen and avoided, or planned for, and... minimize the impact of the excess emissions on ambient air quality, the environment and human health, and...
System Design of an Unmanned Aerial Vehicle (UAV) for Marine Environmental Sensing
2013-02-01
Malaysia to the north. Sea trials have been located through the green band. ................................................................... 56 Figure...light of recent disasters, pressure monitoring nodes mounted to the seafloor now provide advanced tsunami warning in countries including Malaysia ...organisms in huge number. Human health can also be impacted through the consumption of shellfish or other seafood contaminated with bloom-related
NASA Astrophysics Data System (ADS)
Slinski, K.; Hogue, T. S.; McCray, J. E.
2017-12-01
Drought in semi-arid areas can have substantial impact on ephemeral and small water bodies, which provide critical ecological habitat and have important socio-economic value. This is particularly true in the pastoral areas of East Africa, where these ecosystems provide local communities with water for human and animal consumption and pasture for livestock. However, monitoring the impact of drought on ephemeral and small water bodies in East Africa is challenging because of sparse in situ observational systems. Satellite remote sensing observations have been shown to be a viable option for monitoring surface water change in data-poor regions. Landsat data is widely used to detect open water, but the use of Landsat data in small waterbody studies is limited by its 30-meter spatial resolution. New remote sensing-based tools are necessary to better understand the vulnerability of ephemeral and small waterbodies in semi-arid areas to drought and to monitor drought impacts. This study combines Landsat and Sentinel 1 SAR observations to create a series of monthly waterbody maps over the Awash River basin in Ethiopia depicting the change in surface water from October 2014 to March 2017. The study time period corresponds with a major drought event in the area. Waterbody maps were generated using a 10-meter resolution and utilized to monitor drought impacts on ephemeral and small waterbodies in the Awash River basin over the course of the drought event. Initial results show that surface waterbodies in the lower catchments of the Awash basin were more severely impacted by the drought event than the upper catchments. It is anticipated that the new information provided by this tool will inform decisions affecting the water, energy, agriculture and other sectors in East Africa reliant on water resources, enabling water authorities to better manage future drought events.
Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan
2014-01-01
STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics, endocytic vesicle-mediated trafficking and the proper localization of actin regulatory proteins c-Src and annexin II in Sertoli cells were also affected. Results of statistical analysis demonstrate that these findings were not obtained by chance. LIMITATIONS, REASONS FOR CAUTION (i) This study was done in vitro and might not extrapolate to the in vivo state, (ii) conclusions are based on the use of Sertoli cell samples from three men and (iii) it is uncertain if the concentrations of toxicants used in the experiments are reached in vivo. WIDER IMPLICATIONS OF THE FINDINGS Human Sertoli cells cultured in vitro provide a robust model to monitor environmental toxicant-mediated disruption of Sertoli cell BTB function and to study the mechanism(s) of toxicant-induced testicular dysfunction. PMID:24532171
Defaunation in the Anthropocene.
Dirzo, Rodolfo; Young, Hillary S; Galetti, Mauro; Ceballos, Gerardo; Isaac, Nick J B; Collen, Ben
2014-07-25
We live amid a global wave of anthropogenically driven biodiversity loss: species and population extirpations and, critically, declines in local species abundance. Particularly, human impacts on animal biodiversity are an under-recognized form of global environmental change. Among terrestrial vertebrates, 322 species have become extinct since 1500, and populations of the remaining species show 25% average decline in abundance. Invertebrate patterns are equally dire: 67% of monitored populations show 45% mean abundance decline. Such animal declines will cascade onto ecosystem functioning and human well-being. Much remains unknown about this "Anthropocene defaunation"; these knowledge gaps hinder our capacity to predict and limit defaunation impacts. Clearly, however, defaunation is both a pervasive component of the planet's sixth mass extinction and also a major driver of global ecological change. Copyright © 2014, American Association for the Advancement of Science.
Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona.
Ikner, Luisa A; Toomey, Rickard S; Nolan, Ginger; Neilson, Julia W; Pryor, Barry M; Maier, Raina M
2007-01-01
Kartchner Caverns in Benson, AZ, was opened for tourism in 1999 after a careful development protocol that was designed to maintain predevelopment conditions. As a part of an ongoing effort to determine the impact of humans on this limestone cave, samples were collected from cave rock surfaces along the cave trail traveled daily by tour groups (200,000 visitors year-1) and compared to samples taken from areas designated as having medium (30-40 visitors year-1) and low (2-3 visitors year-1) levels of human exposure. Samples were also taken from fiberglass moldings installed during cave development. Culturable bacteria were recovered from these samples and 90 unique isolates were identified by using 16S rRNA polymerase chain reaction and sequencing. Diversity generally decreased as human impact increased leading to the isolation of 32, 27, and 22 strains from the low, medium, and high impact areas, respectively. The degree of human impact was also reflected in the phylogeny of the isolates recovered. Although most isolates fell into one of three phyla: Actinobacteria, Firmicutes, or Proteobacteria, the Proteobacteria were most abundant along the cave trail (77% of the isolates), while Firmicutes predominated in the low (66%) and medium (52%) impact areas. Although the abundance of Proteobacteria along the cave trail seems to include microbes of environmental rather than of anthropogenic origin, it is likely that their presence is a consequence of increased organic matter availability due to lint and other organics brought in by cave visitors. Monitoring of the cave is still in progress to determine whether these bacterial community changes may impact the future development of cave formations.
Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)
NASA Astrophysics Data System (ADS)
Khaki, Mehdi; Sneeuw, Nico
2015-04-01
Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.
A pilot study of human response to general aviation aircraft noise
NASA Technical Reports Server (NTRS)
Stearns, J.; Brown, R.; Neiswander, P.
1983-01-01
A pilot study, conducted to evaluate procedures for measuring the noise impact and community response to general aviation aircraft around Torrance Municipal Airport, a typical large GA airport, employed Torrance Airport's computer-based aircraft noise monitoring system, which includes nine permanent monitor stations surrounding the airport. Some 18 residences near these monitor stations were equipped with digital noise level recorders to measure indoor noise levels. Residents were instructed to fill out annoyance diaries for periods of 5-6 days, logging the time of each annoying aircraft overflight noise event and judging its degree of annoyance on a seven-point scale. Among the noise metrics studied, the differential between outdoor maximum A-weighted noise level of the aircraft and the outdoor background level showed the best correlation with annoyance; this correlation was clearly seen at only high noise levels, And was only slightly better than that using outdoor aircraft noise level alone. The results indicate that, on a national basis, a telephone survey coupled with outdoor noise measurements would provide an efficient and practical means of assessing the noise impact of general aviation aircraft.
NASA Astrophysics Data System (ADS)
Coca Castro, Alejandro; Reymondin, Louis; Rebetez, Julien; Fabio Satizabal Mejia, Hector; Perez-Uribe, Andres; Mulligan, Mark; Smith, Thomas; Hyman, Glenn
2017-04-01
Global land use monitoring is important to the the Sustainable Development Goals (SDGs). The latest advances in storage and manipulation of big earth-observation data have been key to developing multiple operational forest monitoring initiatives such as FORMA, Terra-i and Global Forest Change. Although the data provided by these systems are useful for identifying and estimating newly deforested areas (from 2000), they do not provide details about the land use to which these deforested areas are transitioned. This information is critical to understand the biodiversity and ecosystem services impact of deforestation and the resulting impacts on human wellbeing, locally and downstream. With the aim of contributing to current forest monitoring initiatives, this research presents a set of experimental case studies in Latin America which integrate existing land-change information derived from remote sensing image and aerial photography/ground datasets, high-temporal resolution MODIS data, advanced machine learning (i.e deep learning) and big data technologies (i.e. Hadoop and Spark) to assess land-use change trajectories in newly deforested areas in near real time.
Hydrochemical Impacts of CO2 Leakage on Fresh Groundwater: a Field Scale Experiment
NASA Astrophysics Data System (ADS)
Lions, J.; Gal, F.; Gombert, P.; Lafortune, S.; Darmoul, Y.; Prevot, F.; Grellier, S.; Squarcioni, P.
2013-12-01
One of the questions related to the emerging technology for Carbon Geological Storage concerns the risk of CO2 migration beyond the geological storage formation. In the event of leakage toward the surface, the CO2 might affect resources in neighbouring formations (geothermal or mineral resources, groundwater) or even represent a hazard for human activities at the surface or in the subsurface. In view of the preservation of the groundwater resources mainly for human consumption, this project studies the potential hydrogeochemical impacts of CO2 leakage on fresh groundwater quality. One of the objectives is to characterize the bio-geochemical mechanisms that may impair the quality of fresh groundwater resources in case of CO2 leakage. To reach the above mentioned objectives, this project proposes a field experiment to characterize in situ the mechanisms that could impact the water quality, the CO2-water-rock interactions and also to improve the monitoring methodology by controlled CO2 leakage in shallow aquifer. The tests were carried out in an experimental site in the chalk formation of the Paris Basin. The site is equipped with an appropriate instrumentation and was previously characterized (8 piezometers, 25 m deep and 4 piezairs 11 m deep). The injection test was preceded by 6 months of monitoring in order to characterize hydrodynamics and geochemical baselines of the site (groundwater, vadose and soil). Leakage into groundwater is simulated via the injection of a small quantity of food-grade CO2 (~20 kg dissolved in 10 m3 of water) in the injection well at a depth of about 20 m. A plume of dissolved CO2 is formed and moves downward according to the direction of groundwater flow and probably by degassing in part to the surface. During the injection test, hydrochemical monitoring of the aquifer is done in situ and by sampling. The parameters monitored in the groundwater are the piezometric head, temperature, pH and electrical conductivity. Analysis on water samples provide chemical elements (major, minor and trace metals), dissolved gases, microbiological diversity and isotopes (13C). The evolution of the composition of the groundwater in terms of major elements, trace elements and isotope signatures is interpreted in terms of geochemical mechanisms, and the water-rock-CO2 interactions are characterized. Modification of the chemical composition of water in the aquifer due to CO2 injection is assessed in term of groundwater quality i.e. metal element release and the possibility of exceeding references and quality of water for human consumption. One outcome of the CIPRES project will be to highlight mechanisms that can impact groundwater quality when a CO2 leakage occurs and to propose recommendations to prevent or/and eliminate negative effects and any risks to the environment and human health. This project is partially funded by the French Research Agency (ANR).
Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user. PMID:23112726
Monitoring technologies for ocean disposal of radioactive waste
NASA Astrophysics Data System (ADS)
Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.
1982-01-01
The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.
Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
INL Cultural Resource Management Office
2010-10-01
This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts weremore » documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.« less
Assessment of TRMM 3B43 product for drought monitoring in Singapore
NASA Astrophysics Data System (ADS)
Tan, Mou Leong; Chua, Vivien P.; Tan, Kok Chooi; Brindha, K.
2017-10-01
Drought is one of the most hazardous natural disasters for human beings and the environment. Using only rain gauge is insufficient to monitor the drought pattern effectively as it impacts large areas. This situation is more critical on small island countries, with limited rain gauges for monitoring drought pattern over the ocean regions. This study aims to assess the capability of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B43 product in monitoring drought in Singapore from 1998 to 2014. The Standardized Precipitation Index (SPI) at various time-scales is used for identifying drought patterns. Results show moderate to good correlations between TMPA- 3B43 and rain gauges in the SPI estimations. Besides that, TMPA-3B43 exhibits a similar temporal drought behavior as the rain gauges. These findings indicate the TMPA 3B43 product as a very useful tool to study drought pattern over Singapore.
Beach science in the Great Lakes
Nevers, Meredith B.; Byappanahalli, Murulee N.; Edge, Thomas A.; Whitman, Richard L.
2014-01-01
Monitoring beach waters for human health has led to an increase and evolution of science in the Great Lakes, which includes microbiology, limnology, hydrology, meteorology, epidemiology, and metagenomics, among others. In recent years, concerns over the accuracy of water quality standards at protecting human health have led to a significant interest in understanding the risk associated with water contact in both freshwater and marine environments. Historically, surface waters have been monitored for fecal indicator bacteria (fecal coliforms, Escherichia coli, enterococci), but shortcomings of the analytical test (lengthy assay) have resulted in a re-focusing of scientific efforts to improve public health protection. Research has led to the discovery of widespread populations of fecal indicator bacteria present in natural habitats such as soils, beach sand, and stranded algae. Microbial source tracking has been used to identify the source of these bacteria and subsequently assess their impact on human health. As a result of many findings, attempts have been made to improve monitoring efficiency and efficacy with the use of empirical predictive models and molecular rapid tests. All along, beach managers have actively incorporated new findings into their monitoring programs. With the abundance of research conducted and information gained over the last 25 years, “Beach Science” has emerged, and the Great Lakes have been a focal point for much of the ground-breaking work. Here, we review the accumulated research on microbiological water quality of Great Lakes beaches and provide a historic context to the collaborative efforts that have advanced this emerging science.
Assessing the impact of fine particulate matter (PM2.5) on ...
An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM2.5 in areas with and without air quality monitors by combining PM2.5 concentrations measured by monitors, PM2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition t
Metagenomic Profiling of Microbial Composition and Antibiotic Resistance Determinants in Puget Sound
Port, Jesse A.; Wallace, James C.; Griffith, William C.; Faustman, Elaine M.
2012-01-01
Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP) that discharges into the Sound and pyrosequenced. A total of ∼550 Mbp (1.4 million reads) were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp.), γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used to guide initial public health monitoring as well as more targeted and functionally-based investigations. PMID:23144718
Hughes, Kevin A.; Vega, Greta C.; Olalla-Tárraga, Miguel Á.
2017-01-01
Human footprint models allow visualization of human spatial pressure across the globe. Up until now, Antarctica has been omitted from global footprint models, due possibly to the lack of a permanent human population and poor accessibility to necessary datasets. Yet Antarctic ecosystems face increasing cumulative impacts from the expanding tourism industry and national Antarctic operator activities, the management of which could be improved with footprint assessment tools. Moreover, Antarctic ecosystem dynamics could be modelled to incorporate human drivers. Here we present the first model of estimated human footprint across predominantly ice-free areas of Antarctica. To facilitate integration into global models, the Antarctic model was created using methodologies applied elsewhere with land use, density and accessibility features incorporated. Results showed that human pressure is clustered predominantly in the Antarctic Peninsula, southern Victoria Land and several areas of East Antarctica. To demonstrate the practical application of the footprint model, it was used to investigate the potential threat to Antarctica’s avifauna by local human activities. Relative footprint values were recorded for all 204 of Antarctica’s Important Bird Areas (IBAs) identified by BirdLife International and the Scientific Committee on Antarctic Research (SCAR). Results indicated that formal protection of avifauna under the Antarctic Treaty System has been unsystematic and is lacking for penguin and flying bird species in some of the IBAs most vulnerable to human activity and impact. More generally, it is hoped that use of this human footprint model may help Antarctic Treaty Consultative Meeting policy makers in their decision making concerning avifauna protection and other issues including cumulative impacts, environmental monitoring, non-native species and terrestrial area protection. PMID:28085889
Pertierra, Luis R; Hughes, Kevin A; Vega, Greta C; Olalla-Tárraga, Miguel Á
2017-01-01
Human footprint models allow visualization of human spatial pressure across the globe. Up until now, Antarctica has been omitted from global footprint models, due possibly to the lack of a permanent human population and poor accessibility to necessary datasets. Yet Antarctic ecosystems face increasing cumulative impacts from the expanding tourism industry and national Antarctic operator activities, the management of which could be improved with footprint assessment tools. Moreover, Antarctic ecosystem dynamics could be modelled to incorporate human drivers. Here we present the first model of estimated human footprint across predominantly ice-free areas of Antarctica. To facilitate integration into global models, the Antarctic model was created using methodologies applied elsewhere with land use, density and accessibility features incorporated. Results showed that human pressure is clustered predominantly in the Antarctic Peninsula, southern Victoria Land and several areas of East Antarctica. To demonstrate the practical application of the footprint model, it was used to investigate the potential threat to Antarctica's avifauna by local human activities. Relative footprint values were recorded for all 204 of Antarctica's Important Bird Areas (IBAs) identified by BirdLife International and the Scientific Committee on Antarctic Research (SCAR). Results indicated that formal protection of avifauna under the Antarctic Treaty System has been unsystematic and is lacking for penguin and flying bird species in some of the IBAs most vulnerable to human activity and impact. More generally, it is hoped that use of this human footprint model may help Antarctic Treaty Consultative Meeting policy makers in their decision making concerning avifauna protection and other issues including cumulative impacts, environmental monitoring, non-native species and terrestrial area protection.
Bunch, A G; Perry, C S; Abraham, L; Wikoff, D S; Tachovsky, J A; Hixon, J G; Urban, J D; Harris, M A; Haws, L C
2014-01-15
Shale gas exploration and production (E&P) has experienced substantial growth across the U.S. over the last decade. The Barnett Shale, in north-central Texas, contains one of the largest, most active onshore gas fields in North America, stretching across 5000 square miles and having an estimated 15,870 producing wells as of 2011. Given that these operations may occur in relatively close proximity to populated/urban areas, concerns have been expressed about potential impacts on human health. In response to these concerns, the Texas Commission on Environmental Quality established an extensive air monitoring network in the region. This network provides a unique data set for evaluating the potential impact of shale gas E&P activities on human health. As such, the objective of this study was to evaluate community-wide exposures to volatile organic compounds (VOCs) in the Barnett Shale region. In this current study, more than 4.6 million data points (representing data from seven monitors at six locations, up to 105 VOCs/monitor, and periods of record dating back to 2000) were evaluated. Measured air concentrations were compared to federal and state health-based air comparison values (HBACVs) to assess potential acute and chronic health effects. None of the measured VOC concentrations exceeded applicable acute HBACVs. Only one chemical (1,2-dibromoethane) exceeded its applicable chronic HBACV, but it is not known to be associated with shale gas production activities. Annual average concentrations were also evaluated in deterministic and probabilistic risk assessments and all risks/hazards were below levels of concern. The analyses demonstrate that, for the extensive number of VOCs measured, shale gas production activities have not resulted in community-wide exposures to those VOCs at levels that would pose a health concern. With the high density of active wells in this region, these findings may be useful for understanding potential health risks in other shale play regions. © 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyan; Li, Chuanrong; Tang, Lingli; Zhou, Xiaonong; Ma, Lingling
2014-11-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact, this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis (snail) is the unique intermediate host of schistosoma, so monitoring and controlling of the number of snail is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to snail breeding and reproduction, and can also provide the efficient information to determine the location, area, and spread tendency of snail. Based on the T-S (Takagi-Sugeno) fuzzy information theory, a quantitative remote sensing monitoring model of snail has been developed in previous wok. In a case study, this paper will take Xinmin beach, Gaoyou Lake as new research area, carry out 20 years (1990 - 2010) dynamic monitoring, to further validate the effectiveness of the T-S Fuzzy RS snail monitoring model.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyan; Li, Chuanrong; Tang, Lingli; Zhou, Xiaonong; Ma, Lingling
2014-11-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact, this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis (snail) is the unique intermediate host of schistosoma, so monitoring and controlling of the number of snail is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to snail breeding and reproduction, and can also provide the efficient information to determine the location, area, and spread tendency of snail. Based on the T-S (Takagi-Sugeno) fuzzy information theory, a quantitative remote sensing monitoring model of snail has been developed in previous wok. In a case study, this paper will take Xinmin beach, Gaoyou Lake as new research area, carry out 20 years (1990 - 2010) dynamic monitoring, to further validate the effectiveness of the T-S Fuzzy RS snail monitoring model.
Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian
2013-06-01
The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.
Selecting habitat to survive: the impact of road density on survival in a large carnivore.
Basille, Mathieu; Van Moorter, Bram; Herfindal, Ivar; Martin, Jodie; Linnell, John D C; Odden, John; Andersen, Reidar; Gaillard, Jean-Michel
2013-01-01
Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.
Climate Change, Drought and Human Health in Canada
Yusa, Anna; Berry, Peter; Cheng, June J.; Ogden, Nicholas; Bonsal, Barrie; Stewart, Ronald; Waldick, Ruth
2015-01-01
Droughts have been recorded all across Canada and have had significant impacts on individuals and communities. With climate change, projections suggest an increasing risk of drought in Canada, particularly in the south and interior. However, there has been little research on the impacts of drought on human health and the implications of a changing climate. A review of the Canadian, U.S. and international literature relevant to the Canadian context was conducted to better define these impacts and adaptations available to protect health. Drought can impact respiratory health, mental health, illnesses related to exposure to toxins, food/water security, rates of injury and infectious diseases (including food-, water- and vector-borne diseases). A range of direct and indirect adaptation (e.g., agricultural adaptation) options exist to cope with drought. Many have already been employed by public health officials, such as communicable disease monitoring and surveillance and public education and outreach. However, gaps exist in our understanding of the impacts of short-term vs. prolonged drought on the health of Canadians, projections of drought and its characteristics at the regional level and the effectiveness of current adaptations. Further research will be critical to inform adaptation planning to reduce future drought-related risks to health. PMID:26193300
Climate Change, Drought and Human Health in Canada.
Yusa, Anna; Berry, Peter; J Cheng, June; Ogden, Nicholas; Bonsal, Barrie; Stewart, Ronald; Waldick, Ruth
2015-07-17
Droughts have been recorded all across Canada and have had significant impacts on individuals and communities. With climate change, projections suggest an increasing risk of drought in Canada, particularly in the south and interior. However, there has been little research on the impacts of drought on human health and the implications of a changing climate. A review of the Canadian, U.S. and international literature relevant to the Canadian context was conducted to better define these impacts and adaptations available to protect health. Drought can impact respiratory health, mental health, illnesses related to exposure to toxins, food/water security, rates of injury and infectious diseases (including food-, water- and vector-borne diseases). A range of direct and indirect adaptation (e.g., agricultural adaptation) options exist to cope with drought. Many have already been employed by public health officials, such as communicable disease monitoring and surveillance and public education and outreach. However, gaps exist in our understanding of the impacts of short-term vs. prolonged drought on the health of Canadians, projections of drought and its characteristics at the regional level and the effectiveness of current adaptations. Further research will be critical to inform adaptation planning to reduce future drought-related risks to health.
PERSPECTIVE How committed are we to monitoring human impacts in Antarctica?
NASA Astrophysics Data System (ADS)
Hughes, Kevin A.
2010-12-01
Under the Antarctic Treaty System, environmental monitoring is a legal obligation for signatory nations and an essential tool for managers attempting to minimize local human impacts, but is it given the importance it merits? Antarctica is a vast frozen continent with an area around 1.5 times that of Europe (14 000 000 km2), but the majority of its terrestrial life is found on multiple outcrops or 'islands' of ice-free coastal ground, with a combined area of ~6000 km2, equivalent to four times that of Greater London (Tin et al 2009). The biological communities of these ice-free terrestrial habitats are dominated by a small number of biological groups, primarily mosses, lichens, microinvertebrates and microorganisms. They include many endemic species, while birds and marine mammals use coastal areas as breeding sites (Chown and Convey 2007). Figure 1 Figure 1. Map of the Antarctic Treaty area (south of latitude 60°S) showing the locations of year-round and seasonal stations built on rock or permanent ice (i.e. ice sheets or ice shelves). Data on station locations were taken from the Council of Managers of National Antarctic Programs website (COMNAP 2010). There is evidence to suggest that although these stations are registered on the COMNAP list, a number of stations are not regularly occupied or in use (see United Kingdom et al 2006, p 9). Since the influx of national scientific research programmes and infrastructure that accompanied the International Geophysical Year (1957-1958), Antarctica's habitats have been encroached upon increasingly by human activities. Over 120 research stations have been built (~75 currently operational) with the great majority located on ice-free coastal ground to allow ease of access by ship. (Headland 2009, COMNAP 2010). Construction of cargo and personnel landing and handling facilities, station buildings, airport infrastructure, roads and fuel storage areas have, to varying degrees, destroyed native vegetation and terrestrial fauna and displaced bird and marine mammals from breeding sites in their immediate environment. An early history of poor environmental management and waste disposal practices around many stations has left a legacy of fuel-contaminated ground and abandoned waste sites in adjacent marine and terrestrial environments (Tin et al 2009). Construction of research stations and other infrastructure fulfils two national objectives: (1) supporting geopolitical aspirations of claimant nations and (2) demonstrating a significant commitment to undertaking science in Antarctica, which is a prerequisite for attaining consultative status at the Antarctic Treaty Consultative Meeting. However, these objectives may not be supported equally, with little or no science performed routinely at some stations (United Kingdom et al 2006). In addition, co-ordination of science activities between nations—another aspiration under the Antarctic Treaty—is often lacking, leading to duplication of research between national programmes, and even that undertaken at nearby stations. In some cases, components of national research programmes lack any international, open or objective assessment of quality. Nevertheless, new nations continue to become involved in Antarctic affairs, and almost inevitably seek to establish their own infrastructure, while some established Treaty Parties continue to further expand their existing logistic and infrastructure footprints. Despite calls for nations to share existing infrastructure or reuse abandoned stations (ATCM 2006), new stations continue to be constructed on pristine sites, with the Antarctic terrestrial environment in particular coming under increased pressure. The Protocol on Environmental Protection to the Antarctic Treaty (commonly known as the Environmental Protocol), which came into force in 1998, sets out common minimum standards for environmental management by all Antarctic Treaty Parties. Under the Protocol, it is mandatory to regularly monitor the environmental impacts caused by any new infrastructure that requires the completion of a Comprehensive Environmental Evaluation during the planning, as would be required for research stations or other large building projects. Ideally, monitoring should include assessment of levels of physical disruption of marine and terrestrial habitats, and should record levels of pollutants and also their impacts upon the full range of biological groups within local ecosystems. Biodiversity surveys should also be undertaken, in order that introduced non-native species can be identified at an early stage and eradicated (Hughes and Convey 2010). But where can the scientific data describing national Antarctic programme impacts be found? Some nations have a good track record of publishing environmental monitoring data, but the large majority do not. With around 75 active stations, monitoring research should be well represented in the scientific literature, but data for most stations are not available. Furthermore, Antarctic Treaty signatory nations are required to supply details of their monitoring work through the Antarctic Treaty System's Electronic Information Exchange System (see www.ats.aq/e/ie.htm), yet only three out of 28 Treaty nations did so for 2008/2009. In their recent synthesis paper, Kennicutt et al (2010) describe the results of a long-term monitoring programme at the United States' McMurdo Station, giving us a comprehensive picture of human impacts at this location. The high quality and breadth of this research makes it one of the best-documented and longest-running monitoring programmes within Antarctica to date. Yet, why is this work so exceptional, when the USA have simply fulfilled their obligations under the Environmental Protocol? Monitoring programmes of this standard should be undertaken for all stations and large infrastructure. Factors preventing this may include (1) a lack of monitoring expertise or access to sophisticated techniques, particularly by smaller or less well-funded Antarctic programmes, and (2) the lack of importance or prestige attributed to 'routine' monitoring or survey programmes by science funding bodies, compared to other 'forefront' science areas. With little formal international scrutiny other than occasional station inspections, a lack of enforcement mechanisms in place to penalize contravention of the provisions of the Antarctic Treaty and its related legal instruments, and a need to maintain good diplomatic relations between Antarctic Treaty Parties, nations are under little pressure to prioritize human impact monitoring. Despite the efforts of the Scientific Committee for Antarctic Research and COMNAP, most Antarctic nations still act individually, with little co-ordination of monitoring effort or use of standardized techniques. Close examination of the Environmental Protocol even casts some doubt over whether monitoring of infrastructure constructed before its implementation in 1998 is a formal obligation, although many would maintain that failure to do so would be contrary to the spirit of the Protocol. While it can be hoped that most signatory nations take their Antarctic environmental responsibilities seriously, recent reports of poor environmental practice show that not all national programmes adhere fully to even the minimum requirements of the Environmental Protocol (Braun et al 2010). If basic environmental practice is poor, then standards of environmental monitoring may also be poor or non-existent. In stark contrast, researchers from Antarctic programmes who willingly disseminate their results through the scientific literature deserve credit as they allow other nations to learn from their efforts. Until all Antarctic Treaty nations engage with their monitoring obligations and develop together a co-ordinated continent-wide view of human impacts, Antarctica's environmental values will remain under threat of continued degradation and the principles of the Antarctic Treaty brought into disrepute. References ATCM 2006 Final Report of the 29th Antarctic Treaty Consultative Meeting paragraph 73, available online at www.ats.aq/documents/ATCM29/fr/ATCM29_fr001_e.pdf Braun C et al 2010 Environmental situation and management proposals for the Fildes region (Antarctic) Int. Polar Year Conf., 8-12 June 2010 Abstract no EA8.4-6.8, available online at http://ipy-osc.no/event/8917 Chown S L and Convey P 2007 Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic Phil. Trans. R. Soc. B 362 2307-31 Council of Managers of National Antarctic Programs (COMNAP) 2010 Antarctic Facilities available online at www.comnap.aq/facilities Headland R 2009 A Chronology of Antarctic Exploration (London: Quaritch) p 722 Hughes K A and Convey P 2010 The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices Glob. Environ. Change 20 96-112 Kennicutt M C II, Klein A, Montagna P, Sweet S, Wade T, Palmer T, Sericano J and Denoux G 2010 Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica Environ. Res. Lett. 5 034010 Tin T et al 2009 Impacts of local human activities on the Antarctic environment Antarct. Sci. 21 3-33 United Kingdom et al 2006 Report of joint inspections under Article VII of the Antarctic Treaty and Article 14 of the Environmental Protocol ATCM XXVIII 2006 Working paper 32, available online at www.ats.aq/documents/ATCM28/att/ATCM28_att270_e.pdf
Bonkosky, M; Hernández-Delgado, E A; Sandoz, B; Robledo, I E; Norat-Ramírez, J; Mattei, H
2009-01-01
Human fecal contamination of coral reefs is a major cause of concern. Conventional methods used to monitor microbial water quality cannot be used to discriminate between different fecal pollution sources. Fecal coliforms, enterococci, and human-specific Bacteroides (HF183, HF134), general Bacteroides-Prevotella (GB32), and Clostridium coccoides group (CP) 16S rDNA PCR assays were used to test for the presence of non-point source fecal contamination across the southwestern Puerto Rico shelf. Inshore waters were highly turbid, consistently receiving fecal pollution from variable sources, and showing the highest frequency of positive molecular marker signals. Signals were also detected at offshore waters in compliance with existing microbiological quality regulations. Phylogenetic analysis showed that most isolates were of human fecal origin. The geographic extent of non-point source fecal pollution was large and impacted extensive coral reef systems. This could have deleterious long-term impacts on public health, local fisheries and in tourism potential if not adequately addressed.
Air condition sensor on KNX network
NASA Astrophysics Data System (ADS)
Gecova, Katerina; Vala, David; Slanina, Zdenek; Walendziuk, Wojciech
2017-08-01
One of the main goals of modern buildings in addition to the management environment is also attempt to save energy. For this reason, increased demands on the prevention of energy loss, which can be expressed for example as an inefficient use of the available functions as a building or heat leakage. Reducing heat loss as a perfect tightness of doors and windows in the building, however, restricts the natural ventilation, which leads to a gradual deterioration of the quality of the internal environment. This state then has a very significant impact on human health. In the closed, poorly ventilated area, the person staying at increasing the carbon dioxide concentration, temperature and humidity, which impacts the human thermoregulation system, increases fatigue and causes restlessness. It is therefore necessary to monitor these parameters and then control so as to ensure stable and optimal human values. The aim is to design and implementation Module sensors that will be able to measure different parameters, allowing the subsequent regulation of indoor environmental quality.
NASA Astrophysics Data System (ADS)
Awasthi, Amit; Hothi, Navjot; Kaur, Prabhjot; Singh, Nirankar; Chakraborty, Monojit; Bansal, Sangeeta
2017-12-01
Atmospheric composition of ambient air consists of different gases in definite proportion that affect the earth's climate and its ecological system. Due to varied anthropogenic reasons, this composition is changed, which ultimately have an impact on the health of living beings. For survival, the human respiratory system is one of the sensitive systems, which is easily and closely affected by the change in atmospheric composition of an external environment. Many studies have been conducted to quantify the effects of atmospheric pollution on human health by using different approaches. This article presents different scenario of studies conducted to evaluate the effects on different human groups. Differences between the studies conducted using spirometry and survey methods are presented in this article to extract a better sequence between these two methodologies. Many studies have been conducted to measure the respiratory status by evaluating the respiratory symptoms and hospital admissions. Limited numbers of studies are found with repeated spirometry on the same subjects for long duration to nullify the error arising due to decrease in efforts by the same subjects during manoeuvre of pulmonary function tests. Present study reveals the importance of methodological sequencing in order to obtain more authentic and reliable results. This study suggests that impacts of deteriorating atmospheric composition on human health can be more significantly studied if spirometry is done after survey analysis. The article also proposes that efficiency and authenticity of surveys involving health impacts will increase, if medical data information of patients is saved in hospitals in a proper format.
Silva, Marisa; Pratheepa, Vijaya K.; Botana, Luis M.; Vasconcelos, Vitor
2015-01-01
Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB. PMID:25785464
Silva, Marisa; Pratheepa, Vijaya K; Botana, Luis M; Vasconcelos, Vitor
2015-03-16
Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.
Impact of Procyanidins from Different Berries on Caspase 8 Activation in Colon Cancer
Minker, Carole; Duban, Livine; Karas, Daniel; Järvinen, Päivi; Lobstein, Annelise; Muller, Christian D.
2015-01-01
Scope. The aim of this work is to identify which proapoptotic pathway is induced in human colon cancer cell lines, in contact with proanthocyanidins extracted from various berries. Methods and Results. Proanthocyanidins (Pcys) extracted from 11 berry species are monitored for proapoptotic activities on two related human colon cancer cell lines: SW480-TRAIL-sensitive and SW620-TRAIL-resistant. Apoptosis induction is monitored by cell surface phosphatidylserine (PS) detection. Lowbush blueberry extract triggers the strongest activity. When tested on the human monocytic cell line THP-1, blueberry Pcys are less effective for PS externalisation and DNA fragmentation is absent, highlighting a specificity of apoptosis induction in gut cells. In Pcys-treated gut cell lines, caspase 8 (apoptosis extrinsic pathway) but not caspase 9 (apoptosis intrinsic pathway) is activated after 3 hours through P38 phosphorylation (90 min), emphasizing the potency of lowbush blueberry Pcys to eradicate gut TRAIL-resistant cancer cells. Conclusion. We highlight here that berries Pcys, especially lowbush blueberry Pcys, are of putative interest for nutritional chemoprevention of colorectal cancer in view of their apoptosis induction in a human colorectal cancer cell lines. PMID:26180579
Herzog, Rebecca; Hadrys, Heike
2017-01-01
Modern conservationists call for long term genetic monitoring datasets to evaluate and understand the impact of human activities on natural ecosystems and species on a global but also local scale. However, long-term monitoring datasets are still rare but in high demand to correctly identify, evaluate and respond to environmental changes. In the presented study, a population of the riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae), was monitored over a time period from 1989 to 2013. Study site was an artificial irrigation ditch in one of the last European stone steppes and "nature heritage", the Crau in Southern France. This artificial riverine habitat has an unusual high diversity of odonate species, prominent indicators for evaluating freshwater habitats. A clearing of the canal and destruction of the bank vegetation in 1996 was assumed to have great negative impact on the odonate larval and adult populations. Two mitochondrial markers (CO1 & ND1) and a panel of nuclear microsatellite loci were used to assess the genetic diversity. Over time they revealed a dramatic decline in diversity parameters between the years 2004 and 2007, however not between 1996 and 1997. From 2007 onwards the population shows a stabilizing trend but has not reached the amount of genetic variation found at the beginning of this survey. This decline cannot be referred to the clearing of the canal or any other direct anthropogenic impact. Instead, it is most likely that the populations' decay was due to by extreme weather conditions during the specific years. A severe drought was recorded for the summer months of these years, leading to reduced water levels in the canal causing also other water parameters to change, and therefore impacting temperature sensitive riverine habitat specialists like the O. coerulescens in a significant way. The data provide important insights into population genetic dynamics and metrics not always congruent with traditional monitoring data (e.g. abundance); a fact that should be regarded with caution when management plans for developed landscapes are designed.
An Assessment of Environmental Health Needs for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Macatangay, Ariel V.
2013-01-01
Environmental health fundamentally addresses the physical, chemical, and biological risks external to the human body that can impact the health of a person by assessing and controlling these risks in order to generate and maintain a health-supportive environment. Environmental monitoring coupled with other measures including active and passive controls and the implementation of environmental standards (SMACs, SWEGs, microbial and acoustics limits) are used to ensure environmental health in manned spacecraft. NASA scientists and engineers consider environmental monitoring a vital component to an environmental health management strategy for maintaining a healthy crew and achieving mission success. Environmental monitoring data confirms the health of ECLS systems, in addition to contributing to the management of the health of human systems. Crew health risks associated with the environment were reviewed by agency experts with the goal of determining risk-based environmental monitoring needs for future NASA manned missions. Once determined, gaps in knowledge and technology, required to address those risks, were identified for various types of Exploration missions. This agency-wide assessment of environmental health needs will help guide the activities/hardware development efforts to close those gaps and advance the knowledge required to meet NASA manned space exploration objectives. Details of this assessment and findings are presented in this paper.
A circumpolar monitoring framework for polar bears
Vongraven, Dag; Aars, Jon; Amstrup, Steven C.; Atkinson, Stephen N.; Belikov, Stanislav; Born, Erik W.; DeBruyn, T.D.; Derocher, Andrew E.; Durner, George M.; Gill, Michael J.; Lunn, Nicholas J.; Obbard, Martyn E.; Omelak, Jack; Ovsyanikov, Nikita; Peacock, Elizabeth; Richardson, E.E.; Sahanatien, Vicki; Stirling, Ian; Wiig, Øystein
2012-01-01
Polar bears (Ursus maritimus) occupy remote regions that are characterized by harsh weather and limited access. Polar bear populations can only persist where temporal and spatial availability of sea ice provides adequate access to their marine mammal prey. Observed declines in sea ice availability will continue as long as greenhouse gas concentrations rise. At the same time, human intrusion and pollution levels in the Arctic are expected to increase. A circumpolar understanding of the cumulative impacts of current and future stressors is lacking, long-term trends are known from only a few subpopulations, and there is no globally coordinated effort to monitor effects of stressors. Here, we describe a framework for an integrated circumpolar monitoring plan to detect ongoing patterns, predict future trends, and identify the most vulnerable polar bear subpopulations. We recommend strategies for monitoring subpopulation abundance and trends, reproduction, survival, ecosystem change, human-caused mortality, human–bear conflict, prey availability, health, stature, distribution, behavioral change, and the effects that monitoring itself may have on polar bears. We assign monitoring intensity for each subpopulation through adaptive assessment of the quality of existing baseline data and research accessibility. A global perspective is achieved by recommending high intensity monitoring for at least one subpopulation in each of four major polar bear ecoregions. Collection of data on harvest, where it occurs, and remote sensing of habitat, should occur with the same intensity for all subpopulations. We outline how local traditional knowledge may most effectively be combined with the best scientific methods to provide comparable and complementary lines of evidence. We also outline how previously collected intensive monitoring data may be sub-sampled to guide future sampling frequencies and develop indirect estimates or indices of subpopulation status. Adoption of this framework will inform management and policy responses to changing worldwide polar bear status and trends.
Environmental implications of high metal content in soils of a titanium mining zone in Kenya.
Maina, David M; Ndirangu, Douglas M; Mangala, Michael M; Boman, Johan; Shepherd, Keith; Gatari, Michael J
2016-11-01
Mining activities contribute to an increase of specific metal contaminants in soils. This may adversely affect plant life and consequently impact on animal and human health. The objective of this study was to obtain the background metal concentrations in soils around the titanium mining in Kwale County for monitoring its environmental impacts. Forty samples were obtained with half from topsoils and the other from subsoils. X-ray fluorescence spectrometry was used to determine the metal content of the soil samples. High concentrations of Ti, Mn, Fe, and Zr were observed where Ti concentrations ranged from 0.47 to 2.8 %; Mn 0.02 to 3.1 %; Fe 0.89 to 3.1 %; and Zr 0.05 to 0.85 %. Using ratios of elemental concentrations in topsoil to subsoil method and enrichment factors concept, the metals were observed to be of geogenic origin with no anthropogenic input. The high concentrations of Mn and Fe may increase their concentration levels in the surrounding agricultural lands through deposition, thereby causing contamination on the land and the cultivated food crops. The latter can cause adverse human health effects. In addition, titanium mining will produce tailings containing low-level titanium concentrations, which will require proper disposal to avoid increasing titanium concentrations in the soils of the region since it has been observed to be phytotoxic to plants at high concentrations. The results of this study will serve as reference while monitoring the environmental impact by the titanium mining activities.
Grützmacher, Kim; Keil, Verena; Leinert, Vera; Leguillon, Floraine; Henlin, Arthur; Couacy-Hymann, Emmanuel; Köndgen, Sophie; Lang, Alexander; Deschner, Tobias; Wittig, Roman M; Leendertz, Fabian H
2018-01-01
Due to their genetic relatedness, great apes are highly susceptible to common human respiratory pathogens. Although most respiratory pathogens, such as human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), rarely cause severe disease in healthy human adults, they are associated with considerable morbidity and mortality in wild great apes habituated to humans for research or tourism. To prevent pathogen transmission, most great ape projects have established a set of hygiene measures ranging from keeping a specific distance, to the use of surgical masks and establishment of quarantines. This study investigates the incidence of respiratory symptoms and human respiratory viruses in humans at a human-great ape interface, the Taï Chimpanzee Project (TCP) in Côte d'Ivoire, and consequently, the effectiveness of a 5-day quarantine designed to reduce the risk of potential exposure to human respiratory pathogens. To assess the impact of quarantine as a preventative measure, we monitored the quarantine process and tested 262 throat swabs for respiratory viruses, collected during quarantine over a period of 1 year. Although only 1 subject tested positive for a respiratory virus (HRSV), 17 subjects developed symptoms of infection while in quarantine and were subsequently kept from approaching the chimpanzees, preventing potential exposure in 18 cases. Our results suggest that quarantine-in combination with monitoring for symptoms-is effective in reducing the risk of potential pathogen exposure. This research contributes to our understanding of how endangered great apes can be protected from human-borne infectious disease. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Spergel, J.; Kimball, K. C.; Fitzpatrick, S. A.; Michelson, A. V.; Leonard-Pingel, J.
2015-12-01
Lake ecosystems face a multitude of environmental threats including: eutrophication, overfishing, and heavy metal pollution. Tools to identify lakes impacted by human activity and quantify that impact are needed to combat their environmental degradation. One such promising tool has been the comparison between living communities and associated time-averaged death assemblages of mollusks in marine environments. Here we extend the reach of such live/dead comparisons using ostracodes in temperate lakes. We sampled six lakes in Wisconsin for living communities and associated death assemblages of ostracodes: two lakes impacted by human activity, two relatively "pristine" lakes, and two remediated lakes. We took sixteen grab samples of the upper centimeter of sediment in each lake, capturing simultaneously living benthic ostracodes and discarded valves of dead ostracodes. We found that impacted lakes had lower live/dead fidelity in taxonomic composition and rank-order abundance distributions and greater within-lake variation in death assemblages than "pristine" lakes. Additionally, the living communities in the impacted lakes tended to be lower in species richness and have lower evenness than "pristine" lakes. Remediated lakes displayed similar live/dead fidelity in taxonomic composition and rank-abundance distributions to "pristine" lakes and had lower within-lake variation in death assemblages than impacted lakes. Remediated lakes also contained living communities that tended to be richer and more even than impacted lakes. The lower live/dead fidelity of ostracodes in impacted lakes indicate live/dead ostracode comparisons can provide a tool to identify lake ecosystems impacted by humans. The similar results of remediated and "pristine" lakes indicate remediation efforts in these lakes have been successful in alleviating environmental impact detrimental to ostracode communities. This result indicates live/dead comparisons of ostracodes can be a useful tool to monitor the progress of remediation efforts already underway. Further work will focus on dating the upper centimeter of sediment in these lakes to provide an estimate of how long it takes for death assemblages to accumulate and thus how long it will take to regain high live/dead fidelity in impacted lakes undergoing remediation.
Eld's deer translocated to human-inhabited areas become nocturnal.
Pan, Duo; Teng, Liwei; Cui, Fangjie; Zeng, Zhigao; Bravery, Benjamin D; Zhang, Qiong; Song, Yanling
2011-02-01
As human populations expand and nonhuman animals decline, understanding the interactions between people and wildlife is essential. For endangered species, appreciating the effect of human disturbance can be important for their conservation. However, a human disturbance angle is often absent from ecological research, despite growing evidence of the negative impact of nonfatal human interference. Here, we monitored Hainan Eld's deer living within a reserve and translocated animals living amongst villagers. We show that translocated deer deviated from a crepuscular activity pattern and became increas-. ingly nocturnal, and most active when villagers were not. It appears that translocated deer adapted over time to human disturbance and this pattern is similar to that of other species during periods of hunting. People do not pose an actual threat to Eld's deer, but their presence triggered a response akin to predator avoidance and may be interfering with broader aspects of their biology and conservation.
J. L. Motloch
2006-01-01
This paper addresses the change from earth as self-managing ecosystem operating within local limits and natural laws, to a human-dominated ecosystem where people falsely believe they live outside natural limits and laws. It reviews the shift from low-technology and regional-economics to advanced technologies and globalization whose impacts exceed natureâs ability to...
2014-03-21
funding from USDA Foreign Agricultural Service towards the Global Agricultural Monitoring project, DoD Armed Forces Health Surveillance Center’s...Global Emerging Infections Surveillance and Response System (AFHSC/GEIS) under the Human Febrile and Vector -Borne Illnesses (FVBI) Program and USDA ...outbreaks during the 2010?2012 period. We utilized 2000?2012 vegetation index and land surface temperature data from NASA ?s satellitebased Moderate
Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T
2016-07-01
As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.
Background monitoring and its role in global estimation and forecast of the state of the biosphere.
Izrael, Y A
1982-12-01
(1) Scientific grounds and the concept of monitoring as the system for observations, assessment and prediction of man-induced changes in the state of natural environment, the program and aims of the background monitoring were developed by the author in 1972-1980. These questions were discussed in detail at the International Symposium on Global Integrated Monitoring (Riga, U.S.S.R., December, 1978). It should be stressed that along with significant anthropogenic loading on large cities and industrial areas, natural ecosystems covering most of the Earth's territory are also exposed to quite extended, though insignificant anthropogenic effects. This paper proposes to consider the ways of the background information use for the biosphere state assessment and prediction. (2) Classification of objects for monitoring from the point of view of the consequences of the man-made impact, pollution in the first hand, is as follows: - population (public health); - ecosystem elements employed by man whose production is used by population (soil, water bodies, forest, etc.); - biotic elements of ecosystems (without the immediate consumed production); - abiotic constituents of natural ecosystems, considerable components of the biosphere, climatic system. (3) Historically, monitoring in all countries involves the first two spheres. The background monitoring also extends on the next two spheres. It should differentially take into account physical, chemical and biological factors of impacts. Indentification of biological effects is most complex and vital. Human impact at the background level proceeds indirectly through a general (global or regional) deterioration of the state of the biosphere. (4) Gradually the background monitoring is being practiced on a larger and larger scale. It is shown that the long-range atmospheric transport of pollutants in various regions leads to a gradual general increase of all the natural media pollution and to perceptible biological effects (soil and water acidification and resulting disturbances in the composition of soil and water organisms). The levels of the background impact differ. Thus, the background concentrations of a number of anthropogenic pollutants in Central Europe is 10-20 times higher than in Central Asia. (5) The area of priority in the background monitoring of the biosphere pollution has become evident: compounds of sulphur, mercury and their derivatives, organochloride pesticides, some radioactive substances (e.g., krypton-85 in the atmosphere). (6) The World Ocean is practically all contaminated on a global scale. Biological effects of the World Ocean pollution cause special concern. Particularly important consequences, including climate impact, may be caused by disturbances in energy and matter transfer between environmental media (water-air, water-bottom, etc.). The priority of the impact factors can be allocated here as well: oil products, metals, organochloride compounds, polycyclic aromatic hydrocarbons. (7) One of the most effective possibilities of environmental quality control is standardization which consists in elaboration of permissible ecological loadings upon ecosystems and natural media. The approach to ecological standardization differs from that of hygienic control in principle. The objective of ecological standardization is to ensure the integrity of the given ecosystem and natural environment on the whole. (8) Ecological standardization in its turn requires knowledge related to the damage from this or another impact because in such a case there is a possibility to compare ecological standards for the same ecosystem in the case when impacts are of different origin (e.g., different pollutants).
Digital monitoring and care: Virtual medicine.
Shinbane, Jerold S; Saxon, Leslie A
2016-11-01
Remote digital health monitoring technologies can be synergistically organized to create a virtual medical system providing more continuous care centered on the patient rather than the bricks and mortar medical complex. Utilization of the digitalized patient health monitoring can facilitate diagnosis, treatment plans, physician-patient interaction, and accelerate the progress of medical research, education, and training. The field of cardiac electrophysiology has been an early adopter of this shift in care and serves as a paradigm applicable to all areas of medicine. The overall impact of this remote virtual care model on the quality of medical care and patient experience requires greater study, as well as vigilance as to the differences between technology and care in order to preserve the intangible and immeasurable factors that bring humanity to the art and science of medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring
Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael
2015-01-01
Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413
Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.
Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael
2015-09-30
Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.
Vital Sign Monitoring Through the Back Using an UWB Impulse Radar With Body Coupled Antennas.
Schires, Elliott; Georgiou, Pantelis; Lande, Tor Sverre
2018-04-01
Radar devices can be used in nonintrusive situations to monitor vital sign, through clothes or behind walls. By detecting and extracting body motion linked to physiological activity, accurate simultaneous estimations of both heart rate (HR) and respiration rate (RR) is possible. However, most research to date has focused on front monitoring of superficial motion of the chest. In this paper, body penetration of electromagnetic (EM) wave is investigated to perform back monitoring of human subjects. Using body-coupled antennas and an ultra-wideband (UWB) pulsed radar, in-body monitoring of lungs and heart motion was achieved. An optimised location of measurement in the back of a subject is presented, to enhance signal-to-noise ratio and limit attenuation of reflected radar signals. Phase-based detection techniques are then investigated for back measurements of vital sign, in conjunction with frequency estimation methods that reduce the impact of parasite signals. Finally, an algorithm combining these techniques is presented to allow robust and real-time estimation of both HR and RR. Static and dynamic tests were conducted, and demonstrated the possibility of using this sensor in future health monitoring systems, especially in the form of a smart car seat for driver monitoring.
Peacock, Melissa B.; Gibble, Corinne M.; Senn, David B.; Cloern, James E.; Kudela, Raphael M.
2018-01-01
San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix.
French, Susannah S.; González-Suárez, Manuela; Young, Julie K.; Durham, Susan; Gerber, Leah R.
2011-01-01
The environment is currently undergoing changes at both global (e.g., climate change) and local (e.g., tourism, pollution, habitat modification) scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups) for California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources). Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations. PMID:21436887
A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles
NASA Astrophysics Data System (ADS)
Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.
2013-12-01
Systematic geochemical monitoring of volcanic systems in the English-speaking islands of the Lesser Antilles was initiated by the UWI Seismic Research Centre (SRC) in 2000, as part of its volcanic surveillance programme for the English-speaking islands of the Lesser Antilles. This programme provided the first time-series observations used for the purpose of volcano monitoring in Dominica and Saint Lucia, permitted the characterization of the geothermal fluids associated with them, and established baseline studies for understanding of the hydrothermal systems during periods of quiescence (Joseph et al., 2011; Joseph et al., 2013). As part of efforts to improve and expand the capacity of SRC to provide volcanic surveillance through its geothermal monitoring programme, it is necessary to develop economically sustainable options for the monitoring of volcanic emissions/pollutants. Towards this effort we intend to work in collaboration with local authorities in Saint Lucia, to develop a monitoring network for quantifying the background exposure levels of ambient concentrations of volcanic pollutants, SO2 in air and As in waters (as health significant marker elements in the geothermal emissions) that would serve as a model for the emissions monitoring network for other volcanic islands. This programme would facilitate the building of local capacity and training to monitor the hazardous exposure, through the application and transfer of a regionally available low-cost and low-technology SO2 measurement/detection system in Saint Lucia. Existing monitoring technologies to inform evidence based health practices are too costly for small island Caribbean states, and no government policies or health services measures currently exist to address/mitigate these influences. Gases, aerosols and toxic elements from eruptive and non-eruptive volcanic activity are known to adversely affect human health and the environment (Baxter, 2000; Zhang et al., 2008). Investigations into the impact of volcanic emissions on health have been almost exclusively focused on acute responses, or the effects of one-off eruptions (Horwell and Baxter, 2006). However, little attention has been paid to any long-term impacts on human health in the population centers around volcanoes as a result of exposure to passive emissions from active geothermal systems. The role of volcano tourism is also recognized as an important contributor to the economy of volcanic islands in the Lesser Antilles. However, if it is to be promoted as a sustainable sector of the tourism industry tourists, tour guides, and vendors must be made aware of the potential health hazards facing them in volcanic environments.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Soave, K.; Dean, A.; Yang, G.; Solli, E.; Dattels, C.; Wallace, K.; Boesel, A.; Steiger, C.; Buie, A.
2010-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of the project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and the requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects (A and B) and using randomly determined points within a permanent 100 m2 area, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis. Future analyses and investigations will include intertidal abiotic factors (including water temperature and human foot-traffic) to enhance insights into the workings of the Duxbury Reef ecosystem, in particular, the high intertidal zone which experiences the greatest amount of human impacts.
Sustainable Seas Student Monitoring Project
NASA Astrophysics Data System (ADS)
Soave, K.; Emunah, M.; Hatfield, J.; Kiyasu, J.; Packard, E.; Ching, L.; Zhao, K.; Sanderson, L.; Turmon, M.
2016-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 2000, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Each fall student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 200 m2 areas, in fall, winter, and late spring. Using data from the previous years, we will compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, three separate Anthopluera sea anemone species, and two rockweed species. Future analyses and investigations will include intertidal abiotic factors (including water temperature, pH and human foot-traffic) to enhance insights into the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Rainsford, A.; Soave, K.; Gerraty, F.; Jung, G.; Quirke-Shattuck, M.; Kudler, J.; Hatfield, J.; Emunah, M.; Dean, A. F.
2014-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Each fall student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 200 m2 areas, in fall, winter, and late spring. Using data from the previous years, we will compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, Anthopluera elegantissima, Cladophora sp. and Fucus sp.. Future analyses and investigations will include intertidal abiotic factors (including water temperature, pH and human foot-traffic) to enhance insights into the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts.
Klailova, Michelle; Hodgkinson, Chloe; Lee, Phyllis C
2010-09-01
Gorilla tourism, widely perceived as a lucrative industry, is propelled by strong market demand with programs in five countries and for three of four gorilla subspecies. Human presence may negatively affect wild gorillas, potentially lowering immunity and increasing the likelihood of acquiring human-borne disease. Yet, behavioral impacts of humans on wild gorilla behavior remain largely unexplored, particularly for western lowland gorillas. We evaluate the impact of tourist presence, human observer numbers (tourists, trackers, and researchers), and human observer distance on the behavior of one habituated gorilla group at Bai Hokou, Central African Republic. Behavioral data were collected for more than 12 months from January 2007. Of silverback aggressive events, 39% (N=229) were human directed, but 65% were low-level soft barks. Adult females, and one in particular, were responsible for the highest number of aggressive events toward humans. Humans maintained closer proximity to the silverback when tourists were present, although tourist numbers had no significant impact on overall group activity budgets or rates of human-directed aggression. However, as research team size increased, group feeding rates decreased. Close observer-silverback distance correlated with a decrease in his feeding rates and an increase in human monitoring. He directed less aggression toward observers at distances >10 m, although observers spent 48.5% of time between 6 and 10 m of the silverback. We discuss gorilla personality as a factor in human-directed aggression. We explore whether the current 7 m distance limit governing gorilla tourism, based on disease transmission risks, is sufficient considering the potential behavioral stressor of close human presence. We recommend increasing minimum observation distance to >10 m where possible, decreasing observer group sizes, particularly after a visit consisting of maximum numbers and restricting tourist access to 1 visit/day. 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Ceccato, P.; McDonald, K. C.; Jensen, K.; Podest, E.; De La Torre Juarez, M.
2013-12-01
Public health professionals are increasingly concerned about the potential impact that climate variability and change can have on infectious disease. The International Research Institute for Climate and Society (IRI), City College of New York (CCNY) and NASA Jet Propulsion Laboratory (JPL) are developing new products to increase the public health community's capacity to understand, use, and demand the appropriate climate data and climate information to mitigate the public health impacts of climate on vector-borne diseases such as malaria, leishmaniasis, rift valley fever. In this poster we present the new and improved products that have been developed for monitoring water bodies for monitoring and forecasting risks of vector-borne disease epidemics. The products include seasonal inundation patterns in the East African region based on the global mappings of inundated water fraction derived at the 25-km scale from both active and passive microwave instruments QuikSCAT, AMSR-E, SSM/I, ERS, ASCAT, and MODIS and LANDSAT data. We also present how the products are integrated into a knowledge system (IRI Data Library Map room, SERVIR) to support the use of climate and environmental information in climate-sensitive health decision-making.
Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA
NASA Astrophysics Data System (ADS)
Rainsford, A.; Soave, K.; Costolo, R.; Kudler, J.; Emunah, M.; Hatfield, J.; Kiyasu, J.
2015-12-01
Alina Rainsford, Kathy Soave, Julia Kudler, Jane Hatfield, Melea Emunah, Rose Costelo, Jenna Kiyasu, Amy Dean and Sustainable Seas Monitoring Project, Branson School, Ross, CA, United States, Farallones Marine Sanctuary Association, San Francisco, CA, United StatesAbstract:The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Each fall student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 200 m2 areas, in fall, winter, and late spring. Using data from the previous years, we will compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, Anthopluera elegantissima, Cladophora sp. and Fucus sp.. Future analyses and investigations will include intertidal abiotic factors (including water temperature, pH and human foot-traffic) to enhance insights into the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts.
Macey, Gregg P; Breech, Ruth; Chernaik, Mark; Cox, Caroline; Larson, Denny; Thomas, Deb; Carpenter, David O
2014-10-30
Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle. Grab and passive air samples were collected by trained volunteers at locations identified through systematic observation of industrial operations and air impacts over the course of resident daily routines. A total of 75 volatile organics were measured using EPA Method TO-15 or TO-3 by gas chromatography/mass spectrometry. Formaldehyde levels were determined using UMEx 100 Passive Samplers. Levels of eight volatile chemicals exceeded federal guidelines under several operational circumstances. Benzene, formaldehyde, and hydrogen sulfide were the most common compounds to exceed acute and other health-based risk levels. Air concentrations of potentially dangerous compounds and chemical mixtures are frequently present near oil and gas production sites. Community-based research can provide an important supplement to state air quality monitoring programs.
Restelli, Umberto; Faggioli, Paola; Scolari, Francesca; Gussoni, Gualberto; Valerio, Antonella; Sciascera, Alba; Croce, Davide; Mazzone, Antonino
2015-01-01
Purpose: The study aims at assessing the organizational and economic impact related to the use of a new portable syringe pump (Pompa Infonde®, Italfarmaco S.p.A., Cinisello Balsamo, Italy) at a hospital level. Methodology: Based on the HTA approach, the analysis assessed the organizational and economic impact of the new device at hospital level, using the traditional methods of Iloprost infusion as comparator. After a pilot evaluation, the organizational impact was assessed within 24 Italian hospitals. Structured interviews were conducted with clinicians and nurses. According to the Hospital-Based HTA approach, a questionnaire assessed the impact on human resources, training activities, internal meetings, spaces needed, facilities, clinical practice implications. Using Activity Based Costing approach, the economic evaluation was performed within the pilot center “Ospedale Civile” of Legnano, Italy. Findings: The new device leads to a positive managerial impact, with a substantial reduction of time to monitor patients by nurses. This resulted in a better management of human resources and in a reduction in nursing cost. Although a mild negative impact on training time for personnel, the structured interviews allowed the identification of three main areas of positive impact: (i) efficiency of internal processes, (ii) clinical pathways, (iii) synergies between wards. Originality: The organizational impact of Pompa Infonde®, showed that it is an efficient alternative to traditional methods, with benefits in the management of patients administered with Iloprost.
NASA Astrophysics Data System (ADS)
Li, He; Cui, Yun
2017-12-01
Nowadays, flexible electronic devices are increasingly used in direct contact with human skin to monitor the real-time health of human body. Based on the Fourier heat conduction equation and Pennes bio-heat transfer equation, this paper deduces the analytical solutions of one - dimensional heat transfer for flexible electronic devices integrated with human skin under the condition of a constant power. The influence of contact thermal resistance between devices and skin is considered as well. The corresponding finite element model is established to verify the correctness of analytical solutions. The results show that the finite element analysis agrees well with the analytical solution. With bigger thermal resistance, temperature increase of skin surface will decrease. This result can provide guidance for the design of flexible electronic devices to reduce the negative impact that exceeding temperature leave on human skin.
A methodology for post-EIS (environmental impact statement) monitoring
Marcus, Linda Graves
1979-01-01
A methodology for monitoring the impacts predicted in environmental impact statements (EIS's) was developed using the EIS on phosphate development in southeastern Idaho as a case study. A monitoring system based on this methodology: (1) coordinates a comprehensive, intergovernmental monitoring effort; (2) documents the major impacts that result, thereby improving the accuracy of impact predictions in future EIS's; (3) helps agencies control impacts by warning them when critical impact levels are reached and by providing feedback on the success of mitigating measures; and (4) limits monitoring data to the essential information that agencies need to carry out their regulatory and environmental protection responsibilities. The methodology is presented as flow charts accompanied by tables that describe the objectives, tasks, and products for each work element in the flow chart.
Assessing impacts of introduced aquatic species: Grass carp in large systems
NASA Astrophysics Data System (ADS)
Bain, Mark B.
1993-03-01
Introduced species have created environmental benefits and unanticipated disasters so a priori assessments of species introductions are needed for environmental management. A checklist for assessing impacts of introduced species was developed from studies of introduced species and recommendations for planning introductions. Sterile, triploid grass carp ( Ctenopharyngodon idella) are just beginning to be used as a biocontrol agent for the management of aquatic vegetation in open waterways. Potential impacts of grass carp in open systems were identified by reviewing grass carp biology relative to the impact assessment checklist. The potential consequences of introduced grass carp were reviewed for one case study. The case study demonstrated that conclusions about potential impacts and monitoring needs can be made despite incomplete information and uncertainty. Indicators of environmental impact and vulnerability of host systems were grouped into six categories: population control, hybridization, diseases and parasites, habitat alterations, biological effects, and management issues. Triploid grass carp can significantly alter habitat and biological resources through the secondary effects of reductions in aquatic vegetation. Potential impacts and significant uncertainties involve fish dispersions from plant control areas, inability to control vegetation loss, loss of diverse plant communities and their dependent species, and conflicts with human use of the water resource. Adequate knowledge existed to assess most potential consequences of releasing large numbers of triploid grass carp in Guntersville Reservoir, Alabama. However, the assessment of potential impacts indicated that moderate, incremental stockings combined with monitoring of vegetation and biological resources are necessary to control the effects of grass carp and achieve desirable, intermediate plant densities.
Effects of human trampling on a rocky shore fauna on the Sao Paulo coast, southeastern Brazil.
Ferreira, M N; Rosso, S
2009-11-01
Increased tourist activity in coastal regions demands management strategies to reduce impacts on rocky shores. The highly populated coastal areas in southeastern Brazil are an example of degradation caused by development of industry and tourism. Among different shore impacts, trampling has been intensively studied, and may represent a significant source of stress for intertidal fauna. A randomised blocks design was applied to experimentally study the effects of two different trampling intensities on richness, diversity, density and biomass of the rocky shore fauna of Obuseiro beach, Guarujá, southeastern Brazil. Blocks were distributed in two portions of the intertidal zone, dominated respectively by Chthamalus bisinuatus (Cirripedia) and Isognomon bicolor (Bivalvia). Blocks were trampled over three months, simulating the vacation period in Brazil and were monitored for the following nine months. Results indicate that Chthamalus bisinuatus is vulnerable to trampling impacts. Richness, diversity and turn-over index tended to be higher in trampled plots four months after trampling ceased. In general, results agree with previous trampling studies, suggesting that even low intensities of trampling may cause some impact on intertidal communities. Management strategies should include isolation of sensitive areas, construction of boardwalks, visitor education and monitoring programmes. In Brazil, additional data obtained from experimental studies are necessary in order to achieve a better understanding of trampling impacts on rocky shore communities.
Veterinary pharmacovigilance in India: A need of hour.
Kumar, Rishi; Kalaiselvan, Vivekanandan; Verma, Ravendra; Kaur, Ismeet; Kumar, Pranay; Singh, G N
2017-01-01
Veterinary pharmacovigilance (PV) is important for the Medicine which are used for treating disease in animals. It becomes more important when these animals are further used for producing food. Adverse drug reactions (ADRs) have a direct impact on animals and indirect impact on human beings, for example, through milk products, other animal producing food products. Currently, PV program of India is playing a vital role in assessing the safety of medicines in Indian Population. The safety of medicine in animals can be assessed by veterinary PV. The research institutes involved in animal research and veterinary hospitals can be considered as ADR monitoring centers to assess the safety of medicines on animals.
Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenda R. Pace; Julie B. Braun
2009-10-01
This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitormore » the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.« less
NASA Astrophysics Data System (ADS)
Petrov, A. N.
2016-12-01
The Taimyr Reindeer Herd (TRH) is both the largest and the longest monitored wild reindeer herd in Eurasia. An important part of Arctic ecosystems and Indigenous livelihood, wild reindeer have been continuously monitored for almost 50 years. During this time, herds have exhibited large changes in size and these changes have been recorded in almost all herds across the animal's range. An increasing number of wild reindeer in the Soviet times was followed by a significant population loss in the last decade. In addition, recent monitoring revealed substantial shifts in the distribution of wild populations. The decline in wild reindeer is likely related to natural cycles and changes in the Arctic environment caused by climate variability and anthropogenic activity. This study investigates patterns and possible drives of reindeer population dynamics in space and time. We identify key climatic factors, possible relationships with biomass dynamics, as well as with hunting practices and other human impacts.
Annotated Bibliography of the Air Force Human Resources Laboratory Technical Reports - 1978
1980-06-01
selection of incentives for classroom use. Grade-related and non -grade-related incentives were described in this experiment in a manner designed to...information monitoring- feedback. The current piractice= materials and methods are an outgroiuth of experimental aJpproache-s to the design . dev...operated in a stand- alone mode, the R & M model can be utilized to analyze the impact of various avionics design configurations on system support
A Summary of 20 Years of Forest Monitoring in Cinnamon Bay Watershed, St. John, U.S. Virgin Islands.
Peter L. Weaver
2006-01-01
St. John, and probably the Cinnamon Bay watershed, has a history of human use dating to 1700 B.C. The most notable impacts, however, occurred from 1730 to 1780 when sugar cane and cotton production peaked on the island. As agriculture was abandoned, the island regenerated in secondary forest, and in 1956, the Virgin Islands National Park was created. From 1983 to 2003...
2012-05-01
indoor air quality from installation of a new, improved cleaning line ventilation system. Cultural Resources No adverse effect on cultural...EA) has been prepared to assess the potential effects on the human and natural environment of replacing the chemical cleaning line at Tinker Air...providing improved system monitors and controls, reducing the overall energy consumption of the system, and enabling the system to accommodate larger
Notes on a Vision for the Global Space Weather Enterprise
NASA Astrophysics Data System (ADS)
Head, James N.
2015-07-01
Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.
Geological hazard monitoring system in Georgia
NASA Astrophysics Data System (ADS)
Gaprindashvili, George
2017-04-01
Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.
Lewicka, Małgorzata; Henrykowska, Gabriela A; Pacholski, Krzysztof; Szczęsny, Artur; Dziedziczak-Buczyńska, Maria; Buczyński, Andrzej
2015-01-01
Electromagnetic radiation emitted by a variety of devices, e.g. cell phones, computers and microwaves, interacts with the human body in many ways. Research studies carried out in the last few decades have not yet resolved the issue of the effect of this factor on the human body and many questions are left without an unequivocal answer. Various biological and health-related effects have not been fully recognized. Thus further studies in this area are justified. A comparison of changes within catalase enzymatic activity and malondialdehyde concentration arising under the influence of the electromagnetic radiation emitted by car electronics, equipment used in physiotherapy and LCD monitors. The suspension of human blood platelets at a concentration of 1 × 109/0.001 dm 3, obtained from whole blood by manual apheresis, was the study material. Blood platelets were exposed to an electromagnetic field for 30 min in a laboratory stand designed for the reconstruction of the electromagnetic radiation generated by car electronics, physiotherapy equipment and LCD monitors. The changes in catalase activity and malondialdehyde concentration were investigated after the exposure and compared to the control values (unexposed material). An increase in catalase activity and malondialdehyde concentration was observed after 30 min exposure of platelets to EMF regardless of the radiation source. The most significant changes determining the degree of oxidative stress were observed after exposure to the EMF generated by car electronics. The low frequency electromagnetic fields generated by car electronics, physiotherapy equipment and LCD monitors may be a cause of oxidative stress in the human body and may lead to free radical diseases.
GLOBIL: WWF's Global Observation and Biodiversity Information Portal
NASA Astrophysics Data System (ADS)
Shapiro, A. C.; Nijsten, L.; Schmitt, S.; Tibaldeschi, P.
2015-04-01
Despite ever increasing availability of satellite imagery and spatial data, conservation managers, decision makers and planners are often unable to analyze data without special knowledge or software. WWF is bridging this gap by putting extensive spatial data into an easy to use online mapping environment, to allow visualization, manipulation and analysis of large data sets by any user. Consistent, reliable and repeatable ecosystem monitoring information for priority eco-regions is needed to increase transparency in WWF's global conservation work, to measure conservation impact, and to provide communications with the general public and organization members. Currently, much of this monitoring and evaluation data is isolated, incompatible, or inaccessible and not readily usable or available for those without specialized software or knowledge. Launched in 2013 by WWF Netherlands and WWF Germany, the Global Observation and Biodiversity Information Portal (GLOBIL) is WWF's new platform to unite, centralize, standardize and visualize geo-spatial data and information from more than 150 active GIS users worldwide via cloud-based ArcGIS Online. GLOBIL is increasing transparency, providing baseline data for monitoring and evaluation while communicating impacts and conservation successes to the public. GLOBIL is currently being used in the worldwide marine campaign as an advocacy tool for establishing more marine protected areas, and a monitoring interface to track the progress towards ocean protection goals. In the Kavango-Zambezi (KAZA) Transfrontier Conservation area, local partners are using the platform to monitor land cover changes, barriers to species migrations, potential human-wildlife conflict and local conservation impacts in vast wildlife corridor. In East Africa, an early warning system is providing conservation practitioners with real-time alerts of threats particularly to protected areas and World Heritage Sites by industrial extractive activities. And for globally consistent baseline ecosystem monitoring, MODIS-derived data are being combined with local information to provide visible advocacy for conservation. As GLOBIL is built up through the WWF network, the worldwide organization is able to provide open access to its data on biodiversity and remote sensing, spatial analysis and projects to support goal setting, monitoring and evaluation, and fundraising activities.
Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring.
Asner, Gregory P; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez
2013-11-12
Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.
Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring
Asner, Gregory P.; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez
2013-01-01
Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests. PMID:24167281
Expansion of Viral Load Testing and the Potential Impact on HIV Drug Resistance.
Raizes, Elliot; Hader, Shannon; Birx, Deborah
2017-12-01
The US President's Emergency Plan for AIDS Relief (PEPFAR) supports aggressive scale-up of antiretroviral therapy (ART) in high-burden countries and across all genders and populations at risk toward global human immunodeficiency virus (HIV) epidemic control. PEPFAR recognizes the risk of HIV drug resistance (HIVDR) as a consequence of aggressive ART scale-up and is actively promoting 3 key steps to mitigate the impact of HIVDR: (1) routine access to routine viral load monitoring in all settings; (2) optimization of ART regimens; and (3) routine collection and analysis of HIVDR data to monitor the success of mitigation strategies. The transition to dolutegravir-based regimens in PEPFAR-supported countries and the continuous evolution of HIVDR surveillance strategies are essential elements of PEPFAR implementation. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Meza-Figueroa, Diana; González-Grijalva, Belem; Del Río-Salas, Rafael; Coimbra, Rute; Ochoa-Landin, Lucas; Moreno-Rodríguez, Verónica
2016-08-01
Deeper knowledge on dust suspension processes along semiarid zones is critical for understanding potential impacts on human health. Hermosillo city, located in the heart of the Sonoran Desert was chosen to evaluate such impacts. A one-year survey of Total Suspended Particulate Matter (TSPM) was conducted at two different heights (pedestrian and rooftop level). The minimum values of TSPM were reported during monsoon season and winter. Maximum values showed a bimodal distribution, with major peaks associated with increase and decrease of temperature, as well as decreasing humidity. Concentrations of TSPM were significantly exceeded at pedestrian level (∼44% of analyzed days) when compared to roof level (∼18% of analyzed days). Metal concentrations of As, Pb, Cu, Sb, Be, Mg, Ni, and Co were higher at pedestrian level than at roof level. Pixel counting and interpretations based on scanning electron microscopy of dust filters showed a higher percentage of fine particulate fractions at pedestrian level. These fractions occur mainly as metal-enriched agglomerates resembling coarser particles. According to worldwide guidelines, particulate matter sampling should be conducted by monitoring particle sizes equal and inferior to PM10. However, this work suggests that such procedures may compromise risk assessment in semiarid environments, where coarse particles act as main carriers for emergent contaminants related to traffic. This effect is especially concerning at pedestrian level, leading to an underestimation of potential impacts of human exposure. This study brings forward novel aspects that are of relevance for those concerned with dust suspension processes across semiarid regions and related impact on human health.
Smets, G; Alcalde, E; Andres, D; Carron, D; Delzenne, P; Heise, A; Legris, G; Martinez Parrilla, M; Verhaert, J; Wandelt, C; Ilegems, M; Rüdelsheim, P
2014-07-01
The European Union (EU) Directive 2001/18/EC on the deliberate release of genetically modified organisms (GMOs) into the environment requires that both Case-Specific Monitoring (CSM) and General Surveillance (GS) are considered as post-market implementing measures. Whereas CSM is directed to monitor potential adverse effects of GMOs or their use identified in the environmental risk assessment, GS aims to detect un-intended adverse effects of GMOs or their use on human and animal health or the environment. Guidance documents on the monitoring of genetically modified (GM) plants from the Commission and EFSA clarify that, as appropriate, GS can make use of established routine surveillance practices. Networks involved in routine surveillance offer recognised expertise in a particular domain and are designed to collect information on important environmental aspects over a large geographical area. However, as the suitability of existing monitoring networks to provide relevant data for monitoring impacts of GMOs is not known, plant biotechnology companies developed an approach to describe the processes and criteria that will be used for selecting and evaluating existing monitoring systems. In this paper, the availability of existing monitoring networks for this purpose is evaluated. By cataloguing the existing environmental monitoring networks in the EU, it can be concluded that they can only be used, in the context of GMO cultivation monitoring, as secondary tools to collect baseline information.
Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M
2016-01-01
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.
Exposure and Human Health Evaluation of Airborne Pollution ...
In the days following the September 11, 2001, terrorist attack on New York City's World Trade Center (WTC) towers, many Federal agencies, including the U.S. Environmental Protection Agency (EPA), were called upon to bring their technical and scientific expertise to the national emergency. Several EPA offices, including the Office of Research and Development (ORD), quickly became involved with the Agency's response. This project entails an exposure and human health risk assessment of the impact of air emissions from the collapse of the World Trade Center Towers. ORD's National Center for Environmental Assessment (NCEA) are conducting this assessment at the request of EPA's Region II, which includes the New York City metropolitan area in both New York and New Jersey. The assessment relies primarily on the results of ambient air samples from monitors at various sites in Lower Manhattan and surrounding areas. These monitoring activities were undertaken by Federal, State and local agencies that have made their analytical results available to EPA for analysis. Most of the monitors were placed following the disaster with the intent of surrounding the World Trade Center site at different distances. Some monitors for particulate matter, operated by New York State, existed prior to the disaster. In addition, this report provides a limited discussion of the results of both indoor and outdoor dust samples and the results of some indoor air samples. The project focus
Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman
2017-07-13
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.
Orbit selection and its impact on radiation warning architecture for a human mission to Mars.
Turner, R E; Levine, J M
1998-01-01
With the recent announcement of the discovery of the possibility of life on Mars, there is renewed interest in Mars missions, perhaps eventually in human missions. Astronauts on such missions are at risk to occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. These events can pose a substantial risk to the health of the astronauts and to the on-board electronics. Effective forecast and warning of these events could provide time to take steps to minimize the risk (retreating to a safe haven, shutting down sensitive equipment, etc.) Providing that forecast capability, will require additional monitoring capability. The extent of this architecture is sensitive to the orbit selected for the transfer to and from Mars. This paper looks at the major classes of Mars missions (Conjunction and Opposition) and sub-categories of these classes and draws conclusions on the number of monitoring satellites needed for each, with a goal to reducing total system cost through optimum orbit selection.
Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman
2017-01-01
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744
Emerging methods for the study of coastal ecosystem landscape structure and change
Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam
2013-01-01
Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.
Ameca y Juárez, Eric I; Ellis, Edward A; Rodríguez-Luna, Ernesto
2015-07-01
Long-term studies quantifying impacts of hurricane activity on growth and trajectory of primate populations are rare. Using a 14-year monitored population of Alouatta palliata mexicana as a study system, we developed a modeling framework to assess the relative contribution of hurricane disturbance and two types of human impacts, habitat loss, and hunting, on quasi-extinction risk. We found that the scenario with the highest level of disturbance generated a 21% increase in quasi-extinction risk by 40 years compared to scenarios of intermediate disturbance, and around 67% increase relative to that found in low disturbance scenarios. We also found that the probability of reaching quasi-extinction due to human disturbance alone was below 1% by 40 years, although such scenarios reduced population size by 70%, whereas the risk of quasi-extinction ranged between 3% and 65% for different scenarios of hurricane severity alone, in absence of human impacts. Our analysis moreover found that the quasi-extinction risk driven by hunting and hurricane disturbance was significantly lower than the quasi-extinction risk posed by human-driven habitat loss and hurricane disturbance. These models suggest that hurricane disturbance has the potential to exceed the risk posed by human impacts, and, in particular, to substantially increase the speed of the extinction vortex driven by habitat loss relative to that driven by hunting. Early mitigation of habitat loss constituted the best method for reducing quasi-extinction risk: the earlier habitat loss is halted, the less vulnerable the population becomes to hurricane disturbance. By using a well-studied population of A. p. mexicana, we help understand the demographic impacts that extreme environmental disturbance can trigger on isolated populations of taxa already endangered in other systems where long-term demographic data are not available. For those experiencing heavy anthropogenic pressure and lacking sufficiently evolved coping strategies against unpredictable environmental disturbance, the risk of population extinction can be exacerbated. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liu, Pei; Han, Ruimei; Wang, Shuangting
2014-11-01
According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.
Zhou, Xiaoying; Schoenung, Julie M
2009-12-15
There are two quantitative indicators that are most widely used to assess the extent of compliance of industrial facilities with environmental regulations: the quantity of hazardous waste generated and the amount of toxics released. These indicators, albeit useful in terms of some environmental monitoring, fail to account for direct or indirect effects on human and environmental health, especially when aggregating total quantity of releases for a facility or industry sector. Thus, there is a need for a more comprehensive approach that can prioritize a particular chemical (or industry sector) on the basis of its relevant environmental performance and impact on human health. Accordingly, the objective of the present study is to formulate an aggregation of tools that can simultaneously capture multiple effects and several environmental impact categories. This approach allows us to compare and combine results generated with the aid of select U.S.-based quantitative impact assessment tools, thereby supplementing compliance-based metrics such as data from the U.S. Toxic Release Inventory. A case study, which presents findings for the U.S. chemical manufacturing industry, is presented to illustrate the aggregation of these tools. Environmental impacts due to both upstream and manufacturing activities are also evaluated for each industry sector. The proposed combinatorial analysis allows for a more robust evaluation for rating and prioritizing the environmental impacts of industrial waste.
Hervás, Marcos; Alsina-Pagès, Rosa Ma; Alías, Francesc; Salvador, Martí
2017-06-08
Fast environmental variations due to climate change can cause mass decline or even extinctions of species, having a dramatic impact on the future of biodiversity. During the last decade, different approaches have been proposed to track and monitor endangered species, generally based on costly semi-automatic systems that require human supervision adding limitations in coverage and time. However, the recent emergence of Wireless Acoustic Sensor Networks (WASN) has allowed non-intrusive remote monitoring of endangered species in real time through the automatic identification of the sound they emit. In this work, an FPGA-based WASN centralized architecture is proposed and validated on a simulated operation environment. The feasibility of the architecture is evaluated in a case study designed to detect the threatened Botaurus stellaris among other 19 cohabiting birds species in The Parc Natural dels Aiguamolls de l'Empord.
Bilingualism tunes the anterior cingulate cortex for conflict monitoring.
Abutalebi, Jubin; Della Rosa, Pasquale Anthony; Green, David W; Hernandez, Mireia; Scifo, Paola; Keim, Roland; Cappa, Stefano F; Costa, Albert
2012-09-01
Monitoring and controlling 2 language systems is fundamental to language use in bilinguals. Here, we reveal in a combined functional (event-related functional magnetic resonance imaging) and structural neuroimaging (voxel-based morphometry) study that dorsal anterior cingulate cortex (ACC), a structure tightly bound to domain-general executive control functions, is a common locus for language control and resolving nonverbal conflict. We also show an experience-dependent effect in the same region: Bilinguals use this structure more efficiently than monolinguals to monitor nonlinguistic cognitive conflicts. They adapted better to conflicting situations showing less ACC activity while outperforming monolinguals. Importantly, for bilinguals, brain activity in the ACC, as well as behavioral measures, also correlated positively with local gray matter volume. These results suggest that early learning and lifelong practice of 2 languages exert a strong impact upon human neocortical development. The bilingual brain adapts better to resolve cognitive conflicts in domain-general cognitive tasks.
A Global Framework for Monitoring Phenological Responses to Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Michael A; Hoffman, Forrest M; Hargrove, William Walter
2005-01-01
Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, whichmore » we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.« less
Jung, Dawoon; Kim, Jung-Ah; Park, Myung-Sook; Yim, Un Hyuk; Choi, Kyungho
2017-04-01
Hebei Spirit oil spill (HSOS) of December 2007 is one of the worst oil spill accidents that occurred in Yellow Sea. The affected coastline along the west coast of Korean Peninsula hosts one of the largest tidal flats worldwide, and is home to tens of thousands of human residents. Based on nation-wide concerns on ecosystem damages and adverse human health effects, two separate surveillance programs on ecosystem and human health were initiated: a 10-year follow-up program by Ministry of Oceans and Fisheries to assess ecological impacts of the oil spill, and an exposure and health effect assessment program by Ministry of Environment for the residents of Taean and its vicinity. For the past eight years, extensive monitoring and surveillance data on ecosystem and humans have been accumulated through these programs. But these studies have been conducted mostly independently, and collaborations were seldom made between two programs. The lack of communication resulted in gaps and overlaps between the programs which led to loss of critical information and efficiency. As oil spill can affect both humans and ecosystem through various pathways, collaboration and communication between human and ecosystem health surveillance programs are necessary, and will synergize the success of both programs. Such concerted efforts will provide better platform for understanding the status of impact, and for developing approaches to address human and ecosystem health challenges that may be faced following environmental disasters like HSOS. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tortini, R.; van Manen, S. M.; Parkes, B. R. B.; Carn, S. A.
2017-07-01
Although the impacts of large volcanic eruptions on the global environment have been frequently studied, the impacts of lower tropospheric emissions from persistently degassing volcanoes remain poorly understood. Gas emissions from persistent degassing exceed those from sporadic eruptive activity, and can have significant long-term (years to decades) effects on local and regional scales, both on humans and the environment. Here, we exploit a variety of high temporal and high spatial resolution satellite-based time series and complementary ground-based measurements of element deposition and surveys of species richness, to enable a comprehensive spatio-temporal assessment of sulfur dioxide (SO2) emissions and their associated impacts on vegetation at Turrialba volcano (Costa Rica) from 2000 to 2013. We observe increased emissions of SO2 coincident with a decline in vegetation health downwind of the vents, in accordance with the prevalent wind direction at Turrialba. We also find that satellite-derived vegetation indices at various spatial resolutions are able to accurately define the vegetation kill zone, the extent of which is independently confirmed by ground-based sampling, and monitor its expansion over time. In addition, ecological impacts in terms of vegetation composition and diversity and physiological damage to vegetation, all spatially correspond to fumigation by Turrialba's plume. This study shows that analyzing and relating satellite observations to conditions and impacts on the ground can provide an increased understanding of volcanic degassing, its impacts in terms of the long-term vegetation response and the potential of satellite-based monitoring to inform hazard management strategies related to land use.
Drought: A comprehensive R package for drought monitoring, prediction and analysis
NASA Astrophysics Data System (ADS)
Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Cheng, Hongguang
2015-04-01
Drought may impose serious challenges to human societies and ecosystems. Due to complicated causing effects and wide impacts, a universally accepted definition of drought does not exist. The drought indicator is commonly used to characterize drought properties such as duration or severity. Various drought indicators have been developed in the past few decades for the monitoring of a certain aspect of drought condition along with the development of multivariate drought indices for drought characterizations from multiple sources or hydro-climatic variables. Reliable drought prediction with suitable drought indicators is critical to the drought preparedness plan to reduce potential drought impacts. In addition, drought analysis to quantify the risk of drought properties would provide useful information for operation drought managements. The drought monitoring, prediction and risk analysis are important components in drought modeling and assessments. In this study, a comprehensive R package "drought" is developed to aid the drought monitoring, prediction and risk analysis (available from R-Forge and CRAN soon). The computation of a suite of univariate and multivariate drought indices that integrate drought information from various sources such as precipitation, temperature, soil moisture, and runoff is available in the drought monitoring component in the package. The drought prediction/forecasting component consists of statistical drought predictions to enhance the drought early warning for decision makings. Analysis of drought properties such as duration and severity is also provided in this package for drought risk assessments. Based on this package, a drought monitoring and prediction/forecasting system is under development as a decision supporting tool. The package will be provided freely to the public to aid the drought modeling and assessment for researchers and practitioners.
NASA Technical Reports Server (NTRS)
Wells, Nathan D.; Madaras, Eric I.
2017-01-01
Expandable modules for use in space and on the Moon or Mars offer a great opportunity for volume and mass savings in future space exploration missions. This type of module can be compressed into a relatively small shape on the ground, allowing them to fit into space vehicles with a smaller cargo/fairing size than a traditional solid, metallic structure based module would allow. In April 2016, the Bigelow Expandable Activity Module (BEAM) was berthed to the International Space Station (ISS). BEAM is the first human-rated expandable habitat/module to be deployed and crewed in space. BEAM is a NASA managed ISS payload project in partnership with Bigelow Aerospace. BEAM is intended to stay attached to ISS for an operational period of 2 years to help advance the technology readiness for future expandable modules. BEAM has been instrumented with a suite of space flight certified sensors systems which will help characterize the module's performance for thermal, radiation shielding and impact monitoring against potential Micro Meteoroid/Orbital Debris (MM/OD) providing fundamental information on the BEAM environment for potential health monitoring requirements and capabilities. This paper will provide an overview of how the sensors/instrumentation systems were developed, tested, installed and an overview of the current sensor system operations. It will also discuss how the MM/OD impact detection system referred to as the Distributed Impact Detection System (DIDS) data is being processed and reviewed on the ground by the principle investigators.
Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A
2017-02-15
Chronic administration of the selective noradrenaline reuptake inhibitor (NRI) reboxetine (RBX) increased and prolonged the long-term potentiation-like plasticity induced by anodal transcranial direct current stimulation (tDCS) for over 24 h. Chronic administration of RBX converted cathodal tDCS-induced long-term depression-like plasticity into facilitation for 120 min. Chronic noradrenergic activity enhancement on plasticity of the human brain might partially explain the delayed therapeutic impact of selective NRIs in depression and other neuropsychiatric diseases. Noradrenaline affects cognition and motor learning processes via its impact on long-term potentiation (LTP) and depression (LTD). We aimed to explore the impact of single dose and chronic administration of the selective noradrenaline reuptake inhibitor (NRI) reboxetine (RBX) on plasticity induced by transcranial direct current stimulation (tDCS) in healthy humans via a double-blinded, placebo-controlled, randomized crossover study. Sixteen healthy volunteers received placebo or single dose RBX (8 mg) before anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took RBX (8 mg day -1 ) consecutively for 21 days. During this period, two additional interventions were performed (RBX with anodal or cathodal tDCS), to explore the impact of chronic RBX treatment on plasticity. Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic administration of RBX increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h. Chronic RBX significantly converted cathodal tDCS-induced LTD-like plasticity into facilitation, as compared to the single dose condition, for 120 min after stimulation. The results show a prominent impact of chronic noradrenergic enhancement on plasticity of the human brain that might partially explain the delayed therapeutic impact of selective NRIs in depression and other neuropsychiatric diseases. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Peacock, Melissa B; Gibble, Corinne M; Senn, David B; Cloern, James E; Kudela, Raphael M
2018-03-01
San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Monitoring the wild black bear's reaction to human and environmental stressors
2011-01-01
Background Bears are among the most physiologically remarkable mammals. They spend half their life in an active state and the other half in a state of dormancy without food or water, and without urinating, defecating, or physical activity, yet can rouse and defend themselves when disturbed. Although important data have been obtained in both captive and wild bears, long-term physiological monitoring of bears has not been possible until the recent advancement of implantable devices. Results Insertable cardiac monitors that were developed for use in human heart patients (Reveal® XT, Medtronic, Inc) were implanted in 15 hibernating bears. Data were recovered from 8, including 2 that were legally shot by hunters. Devices recorded low heart rates (pauses of over 14 seconds) and low respiration rates (1.5 breaths/min) during hibernation, dramatic respiratory sinus arrhythmias in the fall and winter months, and elevated heart rates in summer (up to 214 beats/min (bpm)) and during interactions with hunters (exceeding 250 bpm). The devices documented the first and last day of denning, a period of quiescence in two parturient females after birthing, and extraordinary variation in the amount of activity/day, ranging from 0 (winter) to 1084 minutes (summer). Data showed a transition toward greater nocturnal activity in the fall, preceding hibernation. The data-loggers also provided evidence of the physiological and behavioral responses of bears to our den visits to retrieve the data. Conclusions Annual variations in heart rate and activity have been documented for the first time in wild black bears. This technique has broad applications to wildlife management and physiological research, enabling the impact of environmental stressors from humans, changing seasons, climate change, social interactions and predation to be directly monitored over multiple years. PMID:21849079
Biodiversity of Fungi : Inventory and Monitoring Methods
Mueller, G.M.; Bills, G.F.; Foster, M.S.
2004-01-01
Biodiversity of Fungi is essential for anyone collecting and/or monitoring any fungi. Fascinating and beautiful, fungi are vital components of nearly all ecosystems and impact human health and our economy in a myriad of ways. Standardized methods for documenting diversity and distribution have been lacking. An wealth of information, especially regrading sampling protocols, compiled by an international team of fungal biologists, make Biodiversity of Fungi an incredible and fundamental resource for the study of organismal biodiversity. Chapters cover everything from what is a fungus, to maintaining and organizing a permanent study collection with associated databases; from protocols for sampling slime molds to insect associated fungi; from fungi growing on and in animals and plants to mushrooms and truffles. The chapters are arranged both ecologically and by sampling method rather than by taxonomic group for ease of use. The information presented here is intended for everyone interested in fungi, anyone who needs tools to study them in nature including naturalists, land managers, ecologists, mycologists, and even citizen scientists and sophiscated amateurs. Fungi are among the most important organisms in the world; they play vital roles in ecosystem functions and have wide-ranging effects, both positive and negative, on humans and human-related activities. There are about 1.5 million species of fungi. The combination of fungal species and abundances in an ecosystem are often used as indicators of ecosystem health and as indicators of the effects of pollution and of different management and use plans. Because of their significance, it is important that these organisms be monitored. This book is the first comprehensive treatment of fungal inventory and monitoring, including standardized sampling protocols as well as information on study design, sample preservation, and data analysis.
Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C
2015-09-01
Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.
Bell, Shannon M; Edwards, Stephen W
2015-11-01
There are > 80,000 chemicals in commerce with few data available describing their impacts on human health. Biomonitoring surveys, such as the NHANES (National Health and Nutrition Examination Survey), offer one route to identifying possible relationships between environmental chemicals and health impacts, but sparse data and the complexity of traditional models make it difficult to leverage effectively. We describe a workflow to efficiently and comprehensively evaluate and prioritize chemical-health impact relationships from the NHANES biomonitoring survey studies. Using a frequent itemset mining (FIM) approach, we identified relationships between chemicals and health biomarkers and diseases. The FIM method identified 7,848 relationships between 219 chemicals and 93 health outcomes/biomarkers. Two case studies used to evaluate the FIM rankings demonstrate that the FIM approach is able to identify published relationships. Because the relationships are derived from the vast majority of the chemicals monitored by NHANES, the resulting list of associations is appropriate for evaluating results from targeted data mining or identifying novel candidate relationships for more detailed investigation. Because of the computational efficiency of the FIM method, all chemicals and health effects can be considered in a single analysis. The resulting list provides a comprehensive summary of the chemical/health co-occurrences from NHANES that are higher than expected by chance. This information enables ranking and prioritization on chemicals or health effects of interest for evaluation of published results and design of future studies. Bell SM, Edwards SW. 2015. Identification and prioritization of relationships between environmental stressors and adverse human health impacts. Environ Health Perspect 123:1193-1199; http://dx.doi.org/10.1289/ehp.1409138.
NASA Astrophysics Data System (ADS)
Rovere, A.; Casella, E.; Vacchi, M.; Mucerino, L.; Pedroncini, A.; Ferrari, M.; Firpo, M.
2013-12-01
A large part of the Mediterranean coastlines are strongly affected by coastal erosion. This is mainly due to human impact, natural hazards and their mutual interaction. All along the Regione Liguria coastlines (Northwestern Mediterranean), significant problems of coastal erosion are reported since the '60s. In this study, we focus on the coastal area between Albenga and Savona, where dramatic coastal retreat of ~2 m y-1 has been inferred from comparison of historic maps and older aerial pictures. Beach monitoring is essential in order to understand the mechanisms of evolution of soft coasts, and the rates of erosion. Traditional beach monitoring techniques involve topographic and bathymetric surveys of the emerged and submerged beach, and/or aerial photos repeated in time and compared through geographical information systems. A major problem of this kind of approach is the high economic cost. This often leads to increase the time lag between successive monitoring campaigns to reduce survey costs, with the consequence of fragmenting the information available for coastal zone management. MIRAMar is a project funded by Regione Liguria through the PO CRO European Social Fund, and it has two main objectives: i) to study and develop an innovative technique, relatively low-cost, to monitor the evolution of the shoreline using low-altitude Unmanned Aerial Vehicle (UAV) photos; ii) to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion using also the data collected by the UAV instrument. To achieve these aims we use a drone with its hardware and software suit, traditional survey techniques (bathymetric surveys, topographic GPS surveys and GIS techniques) and we implement a numerical modeling chain (coupling hydrodynamic, wave and sand transport modules) in order to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion. Aerial picture of one of the beaches studied. Red circles represent GPS ground control points.
Hanford Environmental Dose Reconstruction Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, S.D.; Finch, S.M.
1992-10-01
The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.
Walters, Johanna; Goh, Kean S; Li, Linying; Feng, Hsiao; Hernandez, Jorge; White, Jane
2003-03-01
Carbaryl insecticide was applied by ground spray to plants in urban areas to control a serious insect pest the glassy-winged sharpshooter, Homalodisca coagulata (Say), newly introduced in California. To assure there are no adverse impacts to human health and the environment from the carbaryl applications, carbaryl was monitored in tank mixtures, air, surface water, foliage and backyard fruits and vegetables. Results from the five urban areas - Porterville, Fresno, Rancho Cordova, Brentwood and Chico - showed there were no significant human exposures or impacts on the environment. Spray tank concentrations ranged from 0.1-0.32%. Carbaryl concentrations in air ranged from none detected to 1.12 microg m(-3), well below the interim health screening level in air of 51.7 microg m(-3). There were three detections of carbaryl in surface water near application sites: 0.125 ppb (parts per billion) from a water treatment basin; 6.94 ppb from a gold fish pond; and 1737 ppb in a rain runoff sample collected from a drain adjacent to a sprayed site. The foliar dislodgeable residues ranged from 1.54-7.12 microg cm(-2), comparable to levels reported for safe reentry of 2.4 to 5.6 microg cm(-2) for citrus. Carbaryl concentrations in fruits and vegetables ranged from no detectable amounts to 7.56 ppm, which were below the U.S. EPA tolerance, allowable residue of 10 ppm.
Exposure and Human Health Evaluation of Airborne Pollution ...
Following the collapse of the World Trade Center towers on September 11, 2001, New York State and Federal agencies initiated numerous air monitoring activities to better understand the ongoing impact of emissions from the disaster. This report focuses on these air measurement data, evaluating them in terms of what is typical for New York City or general urban background and interpreting it with regard to the potential for human health consequences. The report does not evaluate exposures possibly faced by rescue or clean-up workers and briefly discusses past and current indoor monitoring efforts. The analysis in this report supports three general findings: 1) Persons exposed to the extremely high levels of ambient particulate matter and its components during the collapse of the World Trade Center towers and for several hours afterwards were likely to be at risk for immediate acute (and possibly chronic) respiratory and other types (e.g., cardiovascular) of symptoms. 2) The first measurements of some of the contaminants were on September 14, while other contaminants were not measured until September 23. Available data suggest that the concentrations within and near Ground Zero were likely to be highest in the few days following September 11. Because there are only limited data on these critical few days, exposures and potential health impacts cannot be evaluated with certainty for this time period. 3) Except for exposures on September 11 and possibly d
Komparic, Ana; Smith, Maxwell J; Thompson, Alison
2016-04-01
Health regulators must carefully monitor the real-world safety and effectiveness of marketed vaccines through post-market monitoring in order to protect the public's health and promote those vaccines that best achieve public health goals. Yet, despite the fact that vaccines used in collective immunization programmes should be assessed in the context of a public health response, post-market effectiveness monitoring is often limited to assessing immunogenicity or limited programmatic features, rather than assessing effectiveness across populations. We argue that post-market monitoring ought to be expanded in two ways to reflect a 'public health notion of post-market effectiveness', which incorporates normative public health considerations: (i) effectiveness monitoring should yield higher quality data and grant special attention to underrepresented and vulnerable populations; and (ii) the scope of effectiveness should be expanded to include a consideration of the various social factors that maximize (and minimize) a vaccine's effectiveness at the population level, paying particular attention to how immunization programmes impact related health gradients. We use the case of the human papillomavirus vaccine in Canada to elucidate how expanding post-market effectiveness monitoring is necessary to close the gap between clinical practice and public health, and to ensure that vaccines are effective in a morally relevant sense.
Temporal trends in human vulnerability to excessive heat
NASA Astrophysics Data System (ADS)
Sheridan, Scott C.; Allen, Michael J.
2018-04-01
Over recent decades, studies have examined various morbidity and mortality outcomes associated with heat exposure. This review explores the collective knowledge of the temporal trends of heat on human health, with regard to the hypothesis that humans are less vulnerable to heat events presently than in the past. Using Web of Science and Scopus, the authors identified all peer-reviewed articles that contained keywords on human impact (e.g. mortality, morbidity) and meteorological component (e.g. heat, heatwave). After sorting, a total of 71 articles, both case studies and epidemiological studies, contained explicit assessments of temporal trends in human vulnerability, and thus were used in this review. Most of the studies utilized mortality data, focused on the developed world, and showed a general decrease in heat sensitivity. Factors such as the implementation of a heat warning system, increased awareness, and improved quality of life were cited as contributing factors that led to the decreased impact of heat. Despite the overall recent decreases in heat vulnerability, spatial variability was shown, and differences with respect to health outcomes were also discussed. Several papers noted increases in heat’s impact on human health, particularly when unprecedented conditions occurred. Further, many populations, from outdoor workers to rural residents, in addition to the populations in much of the developing world, have been significantly underrepresented in research to date, and temporal changes in their vulnerability should be assessed in future studies. Moreover, continued monitoring and improvement of heat intervention is needed; with projected changes in the frequency, duration, and intensity of heat events combined with shifts in demographics, heat will remain a major public health issue moving forward.
Sengupta, Asmita; McConkey, Kim R; Radhakrishna, Sindhu
2015-01-01
Human provisioning of wildlife with food is a widespread global practice that occurs in multiple socio-cultural circumstances. Provisioning may indirectly alter ecosystem functioning through changes in the eco-ethology of animals, but few studies have quantified this aspect. Provisioning of primates by humans is known to impact their activity budgets, diets and ranging patterns. Primates are also keystone species in tropical forests through their role as seed dispersers; yet there is no information on how provisioning might affect primate ecological functions. The rhesus macaque is a major human-commensal species but is also an important seed disperser in the wild. In this study, we investigated the potential impacts of provisioning on the role of rhesus macaques as seed dispersers in the Buxa Tiger Reserve, India. We studied a troop of macaques which were provisioned for a part of the year and were dependent on natural resources for the rest. We observed feeding behaviour, seed handling techniques and ranging patterns of the macaques and monitored availability of wild fruits. Irrespective of fruit availability, frugivory and seed dispersal activities decreased when the macaques were provisioned. Provisioned macaques also had shortened daily ranges implying shorter dispersal distances. Finally, during provisioning periods, seeds were deposited on tarmac roads that were unconducive for germination. Provisioning promotes human-primate conflict, as commensal primates are often involved in aggressive encounters with humans over resources, leading to negative consequences for both parties involved. Preventing or curbing provisioning is not an easy task as feeding wild animals is a socio-cultural tradition across much of South and South-East Asia, including India. We recommend the initiation of literacy programmes that educate lay citizens about the ill-effects of provisioning and strongly caution them against the practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farnham, Irene
Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are evaluatedmore » to determine whether the UR boundaries remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Additionally, monitoring data are used to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries (CBs) calculated with the models are the primary basis of the UR boundaries. In summary, the monitoring results from 2016 indicate the regulatory controls on the closure of CAU 98 remain effective in protection of human health and the environment. Recommendations resulting from this first year of monitoring activities include formally incorporating wells UE-5 PW-1, UE-5 PW-2, and UE-5 PW-3 into the groundwater-level monitoring network given their strategic location in the basin; and early development of a basis for trigger levels for the groundwater-level monitoring given the observed trends. Additionally, it is recommended to improve the Real Estate/Operations Permit process for capturing information important for evaluating the impact of activities on groundwater resources, and to shift the reporting requirement for this annual report from the second quarter of the federal fiscal year (end of March) to the second quarter of the calendar year (end of June).« less
Kirby, Mark F; Law, Robin J
2010-06-01
A fully integrated and effective response to an oil or chemical spill at sea must include a well planned and executed post-incident assessment of environmental contamination and damage. While salvage, rescue and clean-up operations are generally well considered, including reviews and exercises, the expertise, resources, networks and logistical planning required to achieve prompt and effective post-spill impact assessment and monitoring are not generally well established. The arrangement and co-ordination of post-incident monitoring and impact assessment need to consider sampling design, biological effects, chemical analysis and collection/interpretation of expert local knowledge. This paper discusses the risks, impacts and mitigation options associated with accidental spills and considers the importance of pre-considered impact assessment and monitoring programmes in the wider response cycle. The PREMIAM (Pollution Response in Emergencies: Marine Impact Assessment and Monitoring; www.premiam.org) project is considered as an example of an improved approach to the planning, co-ordination and conduct of post-incident monitoring.
Biomarkers of human exposure to pesticides.
Anwar, W A
1997-01-01
For centuries, several hundred pesticides have been used to control insects. These pesticides differ greatly in their mode of action, uptake by the body, metabolism, elimination from the body, and toxicity to humans. Potential exposure from the environment can be estimated by environmental monitoring. Actual exposure (uptake) is measured by the biological monitoring of human tissues and body fluids. Biomarkers are used to detect the effects of pesticides before adverse clinical health effects occur. Pesticides and their metabolites are measured in biological samples, serum, fat, urine, blood, or breast milk by the usual analytical techniques. Biochemical responses to environmental chemicals provide a measure of toxic effect. A widely used biochemical biomarker, cholinesterase depression, measures exposure to organophosphorus insecticides. Techniques that measure DNA damage (e.g., detection of DNA adducts) provide a powerful tool in measuring environmental effects. Adducts to hemoglobin have been detected with several pesticides. Determination of chromosomal aberration rates in cultured lymphocytes is an established method of monitoring populations occupationally or environmentally exposed to known or suspected mutagenic-carcinogenic agents. There are several studies on the cytogenetic effects of work with pesticide formulations. The majority of these studies report increases in the frequency of chromosomal aberrations and/or sister chromatid exchanges among the exposed workers. Biomarkers will have a major impact on the study of environmental risk factors. The basic aim of scientists exploring these issues is to determine the nature and consequences of genetic change or variation, with the ultimate purpose of predicting or preventing disease. PMID:9255564
[Air quality surveillance in France].
Téton, S; Robin, D; Genève, C
2009-10-01
As air quality has a direct impact on human health, its monitoring is imperative. In France, this task was entrusted by the government (Air Law of 1996) to organisations with territorial responsibility: the Registered Associations for the Surveillance of Air Quality. The type and level of pollution evolve: from industrial and sulphur pollution in the seventies, to urban and photochemical pollution today and to nanoparticles, pesticides and pollutants in buildings tomorrow. The tools, the skills and the roles of the different people involved in air quality control follow these sometimes rapid transitions in connection with an increasingly precise understanding of the relationship between health and the environment and of the considerable research on the subject. This article describes the mechanisms of air quality monitoring in France.
[Monitoring of the chemical composition of snow cover pollution in the Moscow region].
Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N
2014-01-01
Monitoring of snow cover pollution as an indicator of ambient air pollution in 20 districts in the Moscow region during 2009-2013 was performed. The identification with a quantitative assessment of a wide array of organic compounds and the control of the main physical and chemical and inorganic indices of snow water pollution were carried out. More than 60 organic substances for most of which there are no the hygienic standards were established. The assessment of pollution levels of basic inorganic indices was given by means of the comparing them with the average values in the snow cover in the European territory of Russia and natural content in areas not been exposed to human impact.
A model of human decision making in multiple process monitoring situations
NASA Technical Reports Server (NTRS)
Greenstein, J. S.; Rouse, W. B.
1982-01-01
Human decision making in multiple process monitoring situations is considered. It is proposed that human decision making in many multiple process monitoring situations can be modeled in terms of the human's detection of process related events and his allocation of attention among processes once he feels event have occurred. A mathematical model of human event detection and attention allocation performance in multiple process monitoring situations is developed. An assumption made in developing the model is that, in attempting to detect events, the human generates estimates of the probabilities that events have occurred. An elementary pattern recognition technique, discriminant analysis, is used to model the human's generation of these probability estimates. The performance of the model is compared to that of four subjects in a multiple process monitoring situation requiring allocation of attention among processes.
NASA Astrophysics Data System (ADS)
Dantas Brites, Alice; Morsello, Carla
2017-06-01
Harvesting and trading non-timber forest products is advocated as a win-win strategy for conservation and development, yet it can produce negative ecological and socioeconomic impacts. Hence, monitoring exploitation outcomes is essential, and participatory monitoring has been suggested to be the most suitable approach. Among possible approaches, participatory monitoring is preferred because it is likely to increase people's awareness and beliefs regarding impacts or potential impacts, thus inducing behavioral changes, although the evidence in this regard is contradictory. We therefore evaluated whether people's beliefs about the potential ecological and socioeconomic impacts of non-timber forest product exploitation increased their likelihood of volunteering to monitor. We studied a community of forest inhabitants in the Brazilian Amazon who harvested and traded a commercially important non-timber forest product. Two methods of data gathering were employed: (i) a survey of 166 adults (51 households) to evaluate people's beliefs and their stated intention to engage in four different monitoring tasks and (ii) four pilot monitoring tasks to evaluate who actually participated. Based on mixed-effects regressions, the results indicated that beliefs regarding both types of impacts could predict participation in certain tasks, although gender, age and schooling were occasionally stronger predictors. On average, people had stronger beliefs about potential socioeconomic impacts than about potential ecological impacts, with the former also predicting participation in ecological data gathering. This finding reinforces the importance of monitoring both types of impacts to help achieve the win-win outcomes originally proposed by non-timber forest product trade initiatives.
Dantas Brites, Alice; Morsello, Carla
2017-06-01
Harvesting and trading non-timber forest products is advocated as a win-win strategy for conservation and development, yet it can produce negative ecological and socioeconomic impacts. Hence, monitoring exploitation outcomes is essential, and participatory monitoring has been suggested to be the most suitable approach. Among possible approaches, participatory monitoring is preferred because it is likely to increase people's awareness and beliefs regarding impacts or potential impacts, thus inducing behavioral changes, although the evidence in this regard is contradictory. We therefore evaluated whether people's beliefs about the potential ecological and socioeconomic impacts of non-timber forest product exploitation increased their likelihood of volunteering to monitor. We studied a community of forest inhabitants in the Brazilian Amazon who harvested and traded a commercially important non-timber forest product. Two methods of data gathering were employed: (i) a survey of 166 adults (51 households) to evaluate people's beliefs and their stated intention to engage in four different monitoring tasks and (ii) four pilot monitoring tasks to evaluate who actually participated. Based on mixed-effects regressions, the results indicated that beliefs regarding both types of impacts could predict participation in certain tasks, although gender, age and schooling were occasionally stronger predictors. On average, people had stronger beliefs about potential socioeconomic impacts than about potential ecological impacts, with the former also predicting participation in ecological data gathering. This finding reinforces the importance of monitoring both types of impacts to help achieve the win-win outcomes originally proposed by non-timber forest product trade initiatives.
Xia, Shaoxia; Liu, Yu; Yu, Xiubo; Fu, Bojie
2018-08-15
Environmental assessments estimate, evaluate and predict the consequences of natural processes and human activities on the environment. Long-term ecosystem observation and research networks (LTERs) are potentially valuable infrastructure to support environmental assessments. However, very few environmental assessments have successfully incorporated them. In this study, we try to reveal the current status of coupling LTERs with environmental assessments and look at the challenges involved in improving this coupling through exploring the role that Chinese Ecological Research Network (CERN), the LTER of China, currently plays in regional environment assessments. A review of official protocols and standards, regional assessments and CERN researches related to ecosystems and environment shows that there is great potential for coupling CERN with environment assessments. However in practice, CERN does not currently play the expected role. Remote sensing and irregular inventory data are still the main data sources currently used in regional assessments. Several causes led to the present situation: (1) insufficient cross-site research and failure to scale up site-level variables to the regional scale; (2) data barriers resulting from incompatible protocols and low data usability due to lack of data assimilation and scaling; and (3) absence of indicators relevant to human activities in existing monitoring protocols. For these reasons, enhancing cross-site monitoring and research, data assimilation and scaling up are critical steps required to improve coupling of LTER with environmental assessments. Site-focused long-term monitoring should be combined with wide-scale ground surveys and remote sensing to establish an effective connection between different environmental monitoring platforms for regional assessments. It is also necessary to revise the current monitoring protocols to include human activities and their impacts on the ecosystem, or change the LTERs into Long-Term Socio-Ecological Research (LTSER) networks. Copyright © 2018 Elsevier B.V. All rights reserved.
Using Aerial Photography to Estimate Riparian Zone Impacts in a Rapidly Developing River Corridor
NASA Astrophysics Data System (ADS)
Owers, Katharine A.; Albanese, Brett; Litts, Thomas
2012-03-01
Riparian zones are critical for protecting water quality and wildlife, but are often impacted by human activities. Ongoing threats and uncertainty about the effectiveness of buffer regulations emphasize the importance of monitoring riparian buffers through time. We developed a method to rapidly categorize buffer width and landuse attributes using 2007 leaf-on aerial photography and applied it to a 65 km section of the Toccoa River in north Georgia. We repeated our protocol using 1999 leaf-off aerial photographs to assess the utility of our approach for monitoring. Almost half (45%) of the length of the Toccoa River was bordered by buffers less than 50 ft wide in 2007, with agricultural and built-up lands having the smallest buffers. The percentage of river length in each buffer width category changed little between 1999 and 2007, but we did detect a 5% decrease in agricultural land use, a corresponding increase in built-up land use, and an additional 149 buildings within 100 ft of the river. Field verification indicated that our method overestimated buffer widths and forested land use and underestimated built-up land use and the number of buildings within 100 ft of the river. Our methodology can be used to rapidly assess the status of riparian buffers. Including supplemental data (e.g., leaf-off imagery, road layers) will allow detection of the fine-scale impacts underestimated in our study. Our results on the Toccoa River reflect historic impacts, exemptions and variances to regulations, and the ongoing threat of vacation home development. We recommend additional monitoring, improvements in policy, and efforts to increase voluntary protection and restoration of stream buffers.
Using aerial photography to estimate riparian zone impacts in a rapidly developing river corridor.
Owers, Katharine A; Albanese, Brett; Litts, Thomas
2012-03-01
Riparian zones are critical for protecting water quality and wildlife, but are often impacted by human activities. Ongoing threats and uncertainty about the effectiveness of buffer regulations emphasize the importance of monitoring riparian buffers through time. We developed a method to rapidly categorize buffer width and landuse attributes using 2007 leaf-on aerial photography and applied it to a 65 km section of the Toccoa River in north Georgia. We repeated our protocol using 1999 leaf-off aerial photographs to assess the utility of our approach for monitoring. Almost half (45%) of the length of the Toccoa River was bordered by buffers less than 50 ft wide in 2007, with agricultural and built-up lands having the smallest buffers. The percentage of river length in each buffer width category changed little between 1999 and 2007, but we did detect a 5% decrease in agricultural land use, a corresponding increase in built-up land use, and an additional 149 buildings within 100 ft of the river. Field verification indicated that our method overestimated buffer widths and forested land use and underestimated built-up land use and the number of buildings within 100 ft of the river. Our methodology can be used to rapidly assess the status of riparian buffers. Including supplemental data (e.g., leaf-off imagery, road layers) will allow detection of the fine-scale impacts underestimated in our study. Our results on the Toccoa River reflect historic impacts, exemptions and variances to regulations, and the ongoing threat of vacation home development. We recommend additional monitoring, improvements in policy, and efforts to increase voluntary protection and restoration of stream buffers.
Towards developing drought impact functions to advance drought monitoring and early warning
NASA Astrophysics Data System (ADS)
Bachmair, Sophie; Stahl, Kerstin; Hannaford, Jamie; Svoboda, Mark
2015-04-01
In natural hazard analysis, damage functions (also referred to as vulnerability or susceptibility functions) relate hazard intensity to the negative effects of the hazard event, often expressed as damage ratio or monetary loss. While damage functions for floods and seismic hazards have gained considerable attention, there is little knowledge on how drought intensity translates into ecological and socioeconomic impacts. One reason for this is the multifaceted nature of drought affecting different domains of the hydrological cycle and different sectors of human activity (for example, recognizing meteorological - agricultural - hydrological - socioeconomic drought) leading to a wide range of drought impacts. Moreover, drought impacts are often non-structural and hard to quantify or monetarize (e.g. impaired navigability of streams, bans on domestic water use, increased mortality of aquatic species). Knowledge on the relationship between drought intensity and drought impacts, i.e. negative environmental, economic or social effects experienced under drought conditions, however, is vital to identify critical thresholds for drought impact occurrence. Such information may help to improve drought monitoring and early warning (M&EW), one goal of the international DrIVER project (Drought Impacts: Vulnerability thresholds in monitoring and Early-warning Research). The aim of this study is to test the feasibility of designing "drought impact functions" for case study areas in Europe (Germany and UK) and the United States to derive thresholds meaningful for drought impact occurrence; to account for the multidimensionality of drought impacts, we use the broader term "drought impact function" over "damage function". First steps towards developing empirical drought impact functions are (1) to identify meaningful indicators characterizing the hazard intensity (e.g. indicators expressing a precipitation or streamflow deficit), (2) to identify suitable variables representing impacts, damage, or loss due to drought, and (3) to test different statistical models to link drought intensity with drought impact information to derive meaningful thresholds. While the focus regarding drought impact variables lies on text-based impact reports from the European Drought Impact report Inventory (EDII) and the US Drought Impact Reporter (DIR), the information gain through exploiting other variables such as agricultural yield statistics and remotely sensed vegetation indices is explored. First results reveal interesting insights into the complex relationship between drought indicators and impacts and highlight differences among drought impact variables and geographies. Although a simple intensity threshold evoking specific drought impacts cannot be identified, developing drought impact functions helps to elucidate how drought conditions relate to ecological or socioeconomic impacts. Such knowledge may provide guidance for inferring meaningful triggers for drought M&EW and could have potential for a wide range of drought management applications (for example, building drought scenarios for testing the resilience of drought plans or water supply systems).
NASA Astrophysics Data System (ADS)
Torrecillas Nunez, C.; Miguel-rodriguez, A.
2012-12-01
As a collaborative project between the Faculties of Engineering of the University of Sinaloa, Mexico and the University of Auckland, an inter-disciplinary team researched historical information, monitoring results and modelling completed over the last ten years to establish the cause-effect relationship of development and human impacts in the watershed and recommend strategies to offset them .The research program analyzed the performance of the Twin Streams watershed over time with modelling of floods, hydrological disturbance indicators, analysis of water quality and ecological information, cost / benefit, harbor modelling and contaminant loads. The watershed is located in the west of Auckland and comprises 10,356 hectare: 8.19% ecologically protected area, 29.70% buffer zone, 6.67% peri-urban, 30.98% urban, 16.04% parks, and 8.42% other; average impermeability is 19.1%. Current population is 129,475 (2011) forecast to grow to 212,798 by 2051. The watershed includes 317.5 km of streams that drain to the Waitemata Harbor. The human impact can be traced back to the 1850s when the colonial settlers logged the native forests, dammed streams and altered the channel hydro-ecology resulting in significant erosion, sediment and changes to flows. In the early 1900s native vegetation started to regenerate in the headwaters, while agriculture and horticulture become established in rest of the watershed leading to the use of quite often very harmful pesticides and insecticides, such as DDT which is still detected in current environmental monitoring programs, and more erosion and channel alterations. As land become unproductive in the 1950s it stared to be urbanized, followed by more intensive urban development in the 1990s. Curiously there was no regulatory regime to control land use in the early stages and consequently over 400 houses were built in the floodplains, as well there were no legislation to control environmental impacts until 1991. Consequently today there is a wide range of impacts due to human actions which will exacerbated by future development as the population in the watershed is forecast to increase by at least 65% and the likely impacts of global warming. The rural watershed generates sediment which smothers the streams and harbor, while the urban watershed is the source of point and diffuse contamination with heavy metals which damage ecosystems. Evidence of impacts is given by the extent of flooding, reduced ecological flows and sampling results showing that more than 50% of the sites do not comply with environmental guidelines for: water clarity, turbidity, suspended solids, nitrogen, phosphorus, copper, zinc, conductivity, Dieldrin, DDT, Dissolved Oxygen, E.Coli, macroinvertebrates ,etc. , with water quality deteriorating progressively downstream where there is greater urbanization. But perhaps the most stunning evidence of the impacts was established by comparing aerial photographs of the 1940s and 2006 and seeing the build-up of sediments in the estuaries, the change in vegetation cover and discolored water. It is highly likely that the tipping point was reached before urbanization started but there is no doubt that urban development has accelerated the impacts, which has been corroborated by studies in other watersheds in Auckland.
Applied Meteorology Unit (AMU) Quarterly Report. Third Quarter FY-10
NASA Technical Reports Server (NTRS)
Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark
2010-01-01
By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic,as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period. With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need sophisticated climate models, in situ process studies, and data sets that extend back well before the introduction of satellite technology. Nuomthc)cmm, the repetitive, global view provided by satellites is contributing in a major way to our improved recognition of how the Earth is changing, a recognition that is none too soon in view of the magnitude of the impacts that humans can now have.
Satellite Contributions to Global Change Studies
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2009-01-01
By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need sophisticated climate models, in situ process studies, and data sets that extend back well before the introduction of satellite technology. Nonetheless, the repetitive, global view provided by satellites is contributing in a major way to our improved recognition of how the Earth im changing, a recognition that is none too soon in view of the magnitude of the impacts that humans can now have.
High-resolution remote sensing of water quality in the San Francisco Bay-Delta Estuary
Fichot, Cédric G.; Downing, Bryan D.; Bergamaschi, Brian; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Thompson, David R.; Gierach, Michelle M.
2015-01-01
The San Francisco Bay–Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.
Assessment of the Indoor Odour Impact in a Naturally Ventilated Room
Eusebio, Lidia; Derudi, Marco; Capelli, Laura; Nano, Giuseppe; Sironi, Selena
2017-01-01
Indoor air quality influences people’s lives, potentially affecting their health and comfort. Nowadays, ventilation is the only technique commonly used for regulating indoor air quality. CO2 is the reference species considered in order to calculate the air exchange rates of indoor environments. Indeed, regarding air quality, the presence of pleasant or unpleasant odours can strongly influence the environmental comfort. In this paper, a case study of indoor air quality monitoring is reported. The indoor field tests were conducted measuring both CO2 concentration, using a photoacoustic multi-gas analyzer, and odour trends, using an electronic nose, in order to analyze and compare the information acquired. The indoor air monitoring campaign was run for a period of 20 working days into a university room. The work was focused on the determination of both CO2 and odour emission factors (OEF) emitted by the human activity and on the evaluation of the odour impact in a naturally ventilated room. The results highlighted that an air monitoring and recycling system based only on CO2 concentration and temperature measurements might be insufficient to ensure a good indoor air quality, whereas its performances could be improved by integrating the existing systems with an electronic nose for odour detection. PMID:28379190
Flux of Kilogram-sized Meteoroids from Lunar Impact Monitoring. Supplemental Movies
NASA Technical Reports Server (NTRS)
Suggs, Robert; Cooke, William; Suggs, Ron; McNamara, Heather; Swift, Wesley; Moser, Danielle; Diekmann, Anne
2008-01-01
These videos, and audio accompany the slide presentation "Flux of Kilogram-sized Meteoroids from Lunar Impact Monitoring." The slide presentation reviews the routine lunar impact monitoring that has harvested over 110 impacts in 2 years of observations using telescopes and low-light level video cameras. The night side of the lunar surface provides a large collecting area for detecting these impacts and allows estimation of the flux of meteoroids down to a limiting luminous energy.
Lemieux, Jennifer; Jobin, Christine; Simard, Carl; Néron, Sonia
2016-07-01
The cryopreservation of human lymphocytes is an essential step for the achievement of several cellular therapies. Besides, T cells are considered as promising actors in cancer therapy for their cytotoxic and regulatory properties. Consequently, the development of tools to monitor the impact of freezing and thawing processes on their fine distribution may be an asset to achieve quality control in cellular therapy. In this study, the phenotypes of freshly isolated human mononuclear cells were compared to those observed following one cycle of cryopreservation and rest periods 0h, 1h and 24h after thawing but before staining. T cells were scrutinized for their distribution according to naive, memory effector, regulatory and helper subsets. Flow cytometry analyses were done using eight-color antibody panels as proposed by the Human Immunophenotyping Consortium. Data were further analyzed by using conventional directed gating and clustering software, namely SPADE and viSNE. Overall, SPADE and viSNE tools were very efficient to monitor the outcome of PBMC populations and T cell subsets. T cells were more sensitive to cryopreservation than other cells. Our results indicated that submitting the thawed cells to a 1h rest period improved the detection of some cell markers when compared to fresh samples. In contrast, cells submitted to a 24h rest period, or to none, were less representative of fresh sample distribution. The heterogeneity of PBMC, as well as the effects of freeze-thaw cycle on their distribution, can be easily monitored by using SPADE and viSNE. Copyright © 2016 Elsevier B.V. All rights reserved.
Global change pressures on soils from land use and management.
Smith, Pete; House, Joanna I; Bustamante, Mercedes; Sobocká, Jaroslava; Harper, Richard; Pan, Genxing; West, Paul C; Clark, Joanna M; Adhya, Tapan; Rumpel, Cornelia; Paustian, Keith; Kuikman, Peter; Cotrufo, M Francesca; Elliott, Jane A; McDowell, Richard; Griffiths, Robert I; Asakawa, Susumu; Bondeau, Alberte; Jain, Atul K; Meersmans, Jeroen; Pugh, Thomas A M
2016-03-01
Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development. © 2015 John Wiley & Sons Ltd.
Ståhl, Timo P
2010-04-01
The European Commission has an Impact Assessment (IA) procedure that aims to inform decision-makers of the all important impacts that decisions may have. This article studies how health is considered in the IA procedure and how it is reflected in the reports: what aspects, whose and simply in what context health is mentioned in the IA reports. Half of the Commissions IAs from 2006 were studied. The analysis was text based and informed by content analysis. In total, 48 reports by 17 DGs were analysed. Five DGs (29%) and 10 reports (21%) made no reference to human health, public health or health systems. Five DGs were clearly considering health impacts more often than others; DG EMPL, SANCO, AGRI, ELARG and ENV. Health systems/services were most often and human health next most common referred to (39% and 29% of all, respectively). Health impacts were usually referred to in the sections on the definition of problems and the analysis of impacts. Seldom were they reported on in the sections on policy options, comparing options, or in the monitoring and evaluation sections. The results partly support concerns about the potential neglect of health impacts. The results also suggest that health is not considered an important factor when discussing alternative policy choices, and neither does it seem to be an important objective. There is a clear need for further exploration on ways in which health could be more appropriately considered when impacts of other policies are considered by the various DGs.
Incorporating human-water dynamics in a hyper-resolution land surface model
NASA Astrophysics Data System (ADS)
Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.
2017-12-01
The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in a hyper-resolution LSM this work allows for progress on hydrological monitoring and predictions, as well as drought preparedness and water impact assessments at relevant decision-making scales.
Impacts of waste from concentrated animal feeding operations on water quality
Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.
2007-01-01
Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.
Dambacher, Jeffrey M; Brewer, David T; Dennis, Darren M; Macintyre, Martha; Foale, Simon
2007-01-15
Inhabitants of Lihir Island, Papua New Guinea, have traditionally relied on reef fishing and rotational farming of slash-burn forest plots for a subsistence diet. However, a new gold mine has introduced a cash economy to the island's socioeconomic system and impacted the fringing coral reef through sedimentation from the near-shore dumping of mine wastes. Studies of the Lihirian people have documented changes in population size, local customs, health, education, and land use; studies of the reef have documented impacts to fish populations in mine affected sites. Indirect effects from these impacts are complex and indecipherable when viewed only from isolated studies. Here, we use qualitative modelling to synthesize the social and biological research programs in order to understand the interaction of the human and ecological systems. Initial modelling results appear to be consistent with differences in fish and macroalgae populations in sites with and without coral degradation due to sedimentation. A greater cash flow from mine expansion is predicted to increase the human population, the intensity of the artisanal fishery, and the rate of sewage production and land clearing. Modelling results are being used to guide ongoing research projects, such as monitoring fish populations and artisanal catch and patterns and intensity of land clearing.
Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality
Burkholder, JoAnn; Libra, Bob; Weyer, Peter; Heathcote, Susan; Kolpin, Dana; Thorne, Peter S.; Wichman, Michael
2007-01-01
Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems. PMID:17384784
Bayesian modeling to assess populated areas impacted by radiation from Fukushima
NASA Astrophysics Data System (ADS)
Hultquist, C.; Cervone, G.
2017-12-01
Citizen-led movements producing spatio-temporal big data are increasingly important sources of information about populations that are impacted by natural disasters. Citizen science can be used to fill gaps in disaster monitoring data, in addition to inferring human exposure and vulnerability to extreme environmental impacts. As a response to the 2011 release of radiation from Fukushima, Japan, the Safecast project began collecting open radiation data which grew to be a global dataset of over 70 million measurements to date. This dataset is spatially distributed primarily where humans are located and demonstrates abnormal patterns of population movements as a result of the disaster. Previous work has demonstrated that Safecast is highly correlated in comparison to government radiation observations. However, there is still a scientific need to understand the geostatistical variability of Safecast data and to assess how reliable the data are over space and time. The Bayesian hierarchical approach can be used to model the spatial distribution of datasets and flexibly integrate new flows of data without losing previous information. This enables an understanding of uncertainty in the spatio-temporal data to inform decision makers on areas of high levels of radiation where populations are located. Citizen science data can be scientifically evaluated and used as a critical source of information about populations that are impacted by a disaster.
Hanford Environmental Dose Reconstruction Project. Monthly report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, S.D.; Finch, S.M.
1992-10-01
The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.
Application of the SCADA system in wastewater treatment plants.
Dieu, B
2001-01-01
The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Technical Reports Server (NTRS)
Koshak, W.
2017-01-01
Changes in climate can affect the characteristics of lightning (e.g., number of flashes that occur in a region, return stroke current and multiplicity, polarity of charge deposited to ground, and the lightning cloud-top optical energy emission). The NASA/MSFC Lightning Analysis Tool (LAT) monitors these and other quantities in support of the National Climate Assessment (NCA) program. Changes in lightning characteristics lead to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality).
Participating in a Citizen Science Monitoring Program: Implications for Environmental Education
Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano
2015-01-01
Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs PMID:26200660
NASA Astrophysics Data System (ADS)
Koff, T.; Marzecova, A.; Vandel, E.; Mikomägi, A.; Avi, E.
2015-12-01
Human activities have impacted aquatic systems through the release of contaminants and the regulation of surface and groundwater. Although environmental monitoring has been essential in detecting eutrophication, biodiversity loss or water quality deterioration, monitoring activities are limited in time and are thus not sufficient in their scope to identify causality and thresholds. Paleolimnological studies increasingly show that the response of lakes to climatic and human influences is complex, multidimensional, and often indirectly mediated through watershed processes. In this study we examine the history of eutrophication processes in small lakes in Estonia using the multi-proxy analysis of sediment. Study sites represent lakes with different anthropogenic stressors: urbanisation and recreational use, run-off from an oil shale mine, and fish-kills and liming measures. We have used diverse analytical methods, such as elemental analysis, stable isotopes, fossil pigments, diatoms and Cladocera remains. The information derived from sedimentary indicators broadly agrees with the historical evidence of eutrophication and pollution. Moreover, the sediment records are indispensable for identifying additional issues such as: 1) earlier onset of cultural eutrophication; 2) the significant impact of catchment erosion on the deterioration of lake quality, particularly cyanobacterial blooms; and 3) changes in sedimentation processes with significance for internal biogeochemical cycling of nutrients. Importantly, the integration of several methods has significantly improved interpretation of sedimentary data and elucidated the different strengths of various indicator types. The project findings prove to be highly relevant for both the prediction of the ecological responses of lakes to different anthropogenic impacts and the establishment of reasonable reference target conditions in restoration schemes, as well as for methodological improvements of the sediment analysis.
Using smartphone technology to reduce health impacts from atmospheric environmental hazards
NASA Astrophysics Data System (ADS)
Johnston, F. H.; Wheeler, A. J.; Williamson, G. J.; Campbell, S. L.; Jones, P. J.; Koolhof, I. S.; Lucani, C.; Cooling, N. B.; Bowman, D. M. J. S.
2018-04-01
Background: Global environmental change is exacerbating human vulnerability to adverse atmospheric conditions including air pollution, aeroallergens such as pollen, and extreme weather events. Public information and advisories are a central component of responses to mitigate the human impacts of environmental hazards. Digital technologies are emerging as a means of providing personalised, timely and accessible warnings. Method: We describe AirRater, an integrated online platform that combines symptom surveillance, environmental monitoring, and notifications of changing environmental conditions via a free smartphone app. It was developed and launched in Tasmania, Australia (population 510 000), with the aim of reducing health impacts and improving quality of life in people with conditions such as asthma and allergic rhinitis. We present environmental data, user uptake and results from three online evaluation surveys conducted during the first 22 months of operation, from October 2015 through August 2017. Results: There were 3,443 downloads of the app from all regions of Tasmania. Of the 1,959 individuals who registered, 79% reported having either asthma or allergic rhinitis. Downloads increased during adverse environmental conditions and following publicity. Symptom reports per active user were highest during spring (72%), lowest in autumn (37%) and spiked during periods of reduced air quality. In response to online surveys, most users reported that the app was useful and had improved their understanding of how environmental conditions affect their health, and in some cases had prompted action such as the timely use of medication. Conclusion: Active engagement and consistent positive feedback from users demonstrates the potential for considerable individual, clinical and wider public health benefits from integrated and personalised monitoring systems such as AirRater. The perceived health benefits require objective verification, and such systems need to address several challenges in providing timely, reliable and valid environmental data.
Participating in a Citizen Science Monitoring Program: Implications for Environmental Education.
Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano
2015-01-01
Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs.
NASA Astrophysics Data System (ADS)
Santos, Maria J.; Hestir, Erin; Khanna, Shruti; Ustin, Susan L.
2017-04-01
Historically, deltas have been extensively affected both by natural processes and human intervention. Thus, understanding drivers, predicting impacts and optimizing solutions to delta problems requires a holistic approach spanning many sectors, disciplines and fields of expertise. Deltas are ideal model systems to understand the effects of the interaction between social and ecological domains, as they face unprecedented disturbances and threats to their biological and ecological sustainability. The challenge for deltas is to meet the goals of supporting biodiversity and ecosystem processes while also provisioning fresh water resources for human use. We provide an overview of the last 150 years of the Sacramento-San Joaquin River delta, where we illustrate the parallel process of an increase in disturbances, by particularly zooming in on the current cascading effects of invasive species on geophysical and biological processes. Using remote sensing data coupled with in situ measurements of water quality, turbidity, and species presence we show how the spread and persistence of aquatic invasive species affects sedimentation processes and ecosystem functioning. Our results show that the interactions between the biological and physical conditions in the Delta affect the trajectory of dominance by native and invasive aquatic plant species. Trends in growth and community characteristics associated with predicted impacts of climate change (sea level rise, warmer temperatures, changes in the hydrograph with high winter and low summer outflows) do not provide simple predictions. Individually, the impact of specific environmental changes on the biological components can be predicted, however it is the complex interactions of biological communities with the suite of physical changes that make predictions uncertain. Systematic monitoring is critical to provide the data needed to document and understand change of these delta systems, and to identify successful adaptation strategies.
Daily monitoring of the land surface of the Earth
NASA Astrophysics Data System (ADS)
Mascaro, J.
2016-12-01
Planet is an integrated aerospace and data analytics company that operates the largest fleet of Earth-imaging satellites. With more than 140 cube-sats successfully launched to date, Planet is now collecting approximately 10 million square kilometers of imagery per day (3-5m per pixel, in red, green, blue and near infrared spectral bands). By early 2017, Planet's constellation will image the entire land surface of the Earth on a daily basis. Due to investments in cloud storage and computing, approximately 75% of imagery collected is available to Planet's partners within 24 hours of capture through an Application Program Interface. This unique dataset has enormous applications for monitoring the status of Earth's natural ecosystems, as well as human settlements and agricultural welfare. Through our Ambassadors Program, Planet has made data available for researchers in areas as disparate as human rights monitoring in refugee camps, to assessments of the impact of hydroelectric installations, to tracking illegal gold mining in Amazon forests, to assessing the status of the cryosphere. Here, we share early results from Planet's research partner network, including enhanced spatial and temporal resolution of NDVI data for agricultural health in Saudi Arabia, computation of rates of illegal deforestation in Southern Peru, estimates of tropical forest carbon stocks based on data integration with active sensors, and estimates of glacial flow rates. We synthesize the potentially enormous research and scientific value of Planet's persistent monitoring capability, and discuss methods by which the data will be disseminated into the scientific community.
Future technologies for monitoring HIV drug resistance and cure.
Parikh, Urvi M; McCormick, Kevin; van Zyl, Gert; Mellors, John W
2017-03-01
Sensitive, scalable and affordable assays are critically needed for monitoring the success of interventions for preventing, treating and attempting to cure HIV infection. This review evaluates current and emerging technologies that are applicable for both surveillance of HIV drug resistance (HIVDR) and characterization of HIV reservoirs that persist despite antiretroviral therapy and are obstacles to curing HIV infection. Next-generation sequencing (NGS) has the potential to be adapted into high-throughput, cost-efficient approaches for HIVDR surveillance and monitoring during continued scale-up of antiretroviral therapy and rollout of preexposure prophylaxis. Similarly, improvements in PCR and NGS are resulting in higher throughput single genome sequencing to detect intact proviruses and to characterize HIV integration sites and clonal expansions of infected cells. Current population genotyping methods for resistance monitoring are high cost and low throughput. NGS, combined with simpler sample collection and storage matrices (e.g. dried blood spots), has considerable potential to broaden global surveillance and patient monitoring for HIVDR. Recent adaptions of NGS to identify integration sites of HIV in the human genome and to characterize the integrated HIV proviruses are likely to facilitate investigations of the impact of experimental 'curative' interventions on HIV reservoirs.
Hunter, Gary W; Dweik, Raed A
2010-01-01
The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933
Large-scale projects in the amazon and human exposure to mercury: The case-study of the Tucuruí Dam.
Arrifano, Gabriela P F; Martín-Doimeadios, Rosa C Rodríguez; Jiménez-Moreno, María; Ramírez-Mateos, Vanesa; da Silva, Núbia F S; Souza-Monteiro, José Rogério; Augusto-Oliveira, Marcus; Paraense, Ricardo S O; Macchi, Barbarella M; do Nascimento, José Luiz M; Crespo-Lopez, Maria Elena
2018-01-01
The Tucuruí Dam is one of the largest dams ever built in the Amazon. The area is not highly influenced by gold mining as a source of mercury contamination. Still, we recently noted that one of the most consumed fishes (Cichla sp.) is possibly contaminated with methylmercury. Therefore, this work evaluated the mercury content in the human population living near the Tucuruí Dam. Strict exclusion/inclusion criteria were applied for the selection of participants avoiding those with altered hepatic and/or renal functions. Methylmercury and total mercury contents were analyzed in hair samples. The median level of total mercury in hair was above the safe limit (10µg/g) recommended by the World Health Organization, with values up to 75µg/g (about 90% as methylmercury). A large percentage of the participants (57% and 30%) showed high concentrations of total mercury (≥ 10µg/g and ≥ 20µg/g, respectively), with a median value of 12.0µg/g. These are among the highest concentrations ever detected in populations living near Amazonian dams. Interestingly, the concentrations are relatively higher than those currently shown for human populations highly influenced by gold mining areas. Although additional studies are needed to confirm the possible biomagnification and bioaccumulation of mercury by the dams in the Amazon, our data already support the importance of adequate impact studies and continuous monitoring. More than 400 hydropower dams are operational or under construction in the Amazon, and an additional 334 dams are presently planned/proposed. Continuous monitoring of the populations will assist in the development of prevention strategies and government actions to face the problem of the impacts caused by the dams. Copyright © 2017 Elsevier Inc. All rights reserved.
Sustainable Horizontal Bioventing and Vertical Biosparging Implementation (Invited)
NASA Astrophysics Data System (ADS)
Leu, J.; Lin, J.; Ferris, S.
2013-12-01
A former natural gas processing site with total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylene (BTEX) impacts in both soil and groundwater was partially excavated to remove 2,400 cubic yards of impacted soil. However, due to active natural gas pipelines within the impacted footprint, excavation was discontinued and an area of impacted soil containing maximum concentrations of 5,000 mg/kg gasoline-range organics (GRO), 8,600 mg/kg diesel-range organics (DRO), and 130 mg/kg motor oil-range organics (ORO). Groundwater was impacted with concentrations up to 2,300 μg/L GRO and 4,200 μg/L DRO remained in place. Taking advantage of the open excavation, horizontal-screened piping was placed in the backfill to deliver air for bioventing, which resulted in successful remediation of soil in a physically inaccessible area. The combined use of excavation of the source area, bioventing of surrounding inaccessible soil, and biosparging of the groundwater and smear zone resulted in nearing a no-further-action status at the site. The sustainable bioventing system consisted of one 3-HP blower and eight horizontal air injection wells. Five dual-depth nested vapor monitoring points (VMPs) were installed at 5 feet and 10 feet below ground surface as part of the monitoring system for human health and system performance. The bioventing system operated for one year followed by a three-month rebound test. During the one-year operation, air flow was periodically adjusted to maximize removal of volatile organic compounds (VOCs) from the vent wells with elevated photo-ionization detector readings. After the bioventing successfully remediated the inaccessible impacted soil, the biosparging system incorporated the pre-existing bioventing unit with an upgraded 5-HP blower and three vertical biosparging wells to biodegrade dissolved phase impacts in the groundwater. The subsequent monitoring system includes the VMPs, the air injection wells, and four groundwater monitoring wells including three existing wells. The system is scheduled to operate for at least one year followed by a three-month rebound test. The flow rate was adjusted between 5 and 10 scfm during operations to focus the biosparging in the impacted area of the site. After the bioventing system was operated and optimized for a year, average VOC concentrations were reduced from approximately 120 to 5 ppmv in the vadose zone. TPH gasoline and BTEX concentrations experienced reductions up to 99%. Fugitive VOCs were not detected outside the property boundary or at possible fugitive gas monitoring points. During the rebound test, no significant rebound of VOC concentrations was observed. The average hydrocarbon biodegradation rate was estimated to be approximately 2.5 mg TPH/kg soil/day. During biosparging, the migration of injected air also stimulated biodegradation in the vadose zone. Within six months of operation, the groundwater GRO and DRO concentrations decreased approximately 70% and 50%, respectively, at the monitoring well within the excavation/backfill area. Bioventing followed by biosparging has proven to be successful in decreasing soil vapor chemicals of concern in the native soil of the inaccessible area and in groundwater of the excavation/backfill area.
Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer.
Kennedy, E M; Powell, D R; Li, Z; Bell, J S K; Barwick, B G; Feng, H; McCrary, M R; Dwivedi, B; Kowalski, J; Dynan, W S; Conneely, K N; Vertino, P M
2018-04-30
Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56 Fe and 28 Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56 Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28 Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56 Fe ion sensitive sites, but not those affected by X ray or 28 Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.
Marques, M P M; Batista de Carvalho, A L M; Sakai, V Garcia; Hatter, L; Batista de Carvalho, L A E
2017-01-25
The first neutron scattering study on human nucleated cells is reported, addressing the subject of solvent-slaving to a drug by probing intracellular water upon drug exposure. Inelastic and quasi-elastic neutron scattering spectroscopy with isotope labelling was applied for monitoring interfacial water response to the anticancer drug cisplatin, in the low prognosis human metastatic breast cancer cells MDA-MB-231. Optical vibrational data were also obtained for lyophilised cells. Concentration-dependent dynamical changes evidencing a progressive mobility reduction were unveiled between untreated and cisplatin-exposed samples, concurrent with variations in the native organisation of water molecules within the intracellular medium as a consequence of drug action. The results thus obtained yielded a clear picture of the intracellular water response to cisplatin and constitute the first reported experimental proof of a drug impact on the cytomatrix by neutron techniques. This is an innovative way of tackling a drug's pharmacodynamics, searching for alternative targets of drug action.
Ali, Mahboob; Athar, Makshoof
2008-01-01
Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.
Water-quality monitoring of Sweetwater Reservoir
Majewski, Michael
2001-01-01
Sweetwater Authority is concerned with the quality of water it provides to its customers. Results from the water-quality monitoring study that the USGS is conducting in the Sweetwater watershed show that the contaminant concentrations in bed sediments, water, and air are reflected in increased urbanization. The bed sediments show the most dramatic evidence of this impact with a sharp increase of persistent organic chemical concentrations over the past 65 years. Water quality is also affected by urbanization in the form of chemicals in the runoff water and deposition of airborne chemicals. The concentrations of the detected organic chemicals in Sweetwater and Loveland Reservoirs are all well below the guidance limits set by State and Federal agencies to protect human health. Many of these compounds are detected only because of the sensitive analytical methods used. This monitoring program provides the Sweetwater Authority with information on what monitored chemicals are present in the reservoirs, and at what concentrations. With this information, the Authority can assess the associated risks, and consider future water treatment and remediation. These results also help focus and support future efforts by Sweetwater Authority to protect the watershed.
Reflexive aerostructures: increased vehicle survivability
NASA Astrophysics Data System (ADS)
Margraf, Thomas W.; Hemmelgarn, Christopher D.; Barnell, Thomas J.; Franklin, Mark A.
2007-04-01
Aerospace systems stand to benefit significantly from the advancement of reflexive aerostructure technologies for increased vehicle survivability. Cornerstone Research Group Inc. (CRG) is developing lightweight, healable composite systems for use as primary load-bearing aircraft components. The reflexive system is comprised of piezoelectric structural health monitoring systems, localized thermal activation systems, and lightweight, healable composite structures. The reflexive system is designed to mimic the involuntary human response to damage. Upon impact, the structural health monitoring system will identify the location and magnitude of the damage, sending a signal to a discrete thermal activation control system to resistively heat the shape memory polymer (SMP) matrix composite above activation temperature, resulting in localized shape recovery and healing of the damaged areas. CRG has demonstrated SMP composites that can recover 90 percent of flexural yield stress and modulus after postfailure healing. During the development, CRG has overcome issues of discrete activation, structural health monitoring integration, and healable resin systems. This paper will address the challenges associated with development of a reflexive aerostructure, including integration of structural health monitoring, discrete healing, and healable shape memory resin systems.
Fitness impacts of tapeworm parasitism on wild gelada monkeys at Guassa, Ethiopia.
Nguyen, Nga; Fashing, Peter J; Boyd, Derek A; Barry, Tyler S; Burke, Ryan J; Goodale, C Barret; Jones, Sorrel C Z; Kerby, Jeffrey T; Kellogg, Bryce S; Lee, Laura M; Miller, Carrie M; Nurmi, Niina O; Ramsay, Malcolm S; Reynolds, Jason D; Stewart, Kathrine M; Turner, Taylor J; Venkataraman, Vivek V; Knauf, Yvonne; Roos, Christian; Knauf, Sascha
2015-05-01
Parasitism is expected to impact host morbidity or mortality, although the fitness costs of parasitism have rarely been quantified for wildlife hosts. Tapeworms in the genus Taenia exploit a variety of vertebrates, including livestock, humans, and geladas (Theropithecus gelada), monkeys endemic to the alpine grasslands of Ethiopia. Despite Taenia's adverse societal and economic impacts, we know little about the prevalence of disease associated with Taenia infection in wildlife or the impacts of this disease on host health, mortality and reproduction. We monitored geladas at Guassa, Ethiopia over a continuous 6½ year period for external evidence (cysts or coenuri) of Taenia-associated disease (coenurosis) and evaluated the impact of coenurosis on host survival and reproduction. We also identified (through genetic and histological analyses) the tapeworms causing coenurosis in wild geladas at Guassa as Taenia serialis. Nearly 1/3 of adult geladas at Guassa possessed ≥1 coenurus at some point in the study. Coenurosis adversely impacted gelada survival and reproduction at Guassa and this impact spanned two generations: adults with coenuri suffered higher mortality than members of their sex without coenuri and offspring of females with coenuri also suffered higher mortality. Coenurosis also negatively affected adult reproduction, lengthening interbirth intervals and reducing the likelihood that males successfully assumed reproductive control over units of females. Our study provides the first empirical evidence that coenurosis increases mortality and reduces fertility in wild nonhuman primate hosts. Our research highlights the value of longitudinal monitoring of individually recognized animals in natural populations for advancing knowledge of parasite-host evolutionary dynamics and offering clues to the etiology and control of infectious disease. © 2015 Wiley Periodicals, Inc.
Maghnia, Fatima Z; Sanguin, Hervé; Abbas, Younes; Verdinelli, Marcello; Kerdouh, Benaissa; El Ghachtouli, Naima; Lancellotti, Enrico; Bakkali Yakhlef, Salah Eddine; Duponnois, Robin
2017-05-01
The cork oak forest is an ecosystem playing a major role in Moroccan socio-economy and biodiversity conservation. However, this ecosystem is negatively impacted by extensive human- and climate-driven pressures, causing a strong decrease in its distribution and a worsening of the desertification processes. This study aims at characterising the impact of cork oak forest management on a major actor of its functioning, the ectomycorrhizal (EcM) fungal community associated with Quercus suber, and the determination of EcM bio-indicators. The EcM fungal community has been monitored during spring and winter seasons in two sites of the Moroccan Mâamora forest, corresponding to a forest site either impacted by human activities or protected. A significant impact of cork oak forest management on the EcM fungal community has been revealed, with major differences during the summer season. The results confirmed the potential ecological significance of several EcM fungi (e.g., Cenococcum) in the sustainability of the cork oak forest functioning, but also the significant association of certain EcM fungi (Pachyphloeus, Russula, Tomentella) with a perturbation or a season, and consequently to the cork oak forest status or to climatic conditions, respectively. The development of study at the Mediterranean scale may improve the robustness of ecological models to predict the impact of global changes on this emblematic ecosystem of Mediterranean basin. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Potential effects on health of global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, A.; Parry, M.
1993-12-01
Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important tomore » monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.« less
Human impacts of the motorways of the sea
NASA Astrophysics Data System (ADS)
March, David; Gómara, Sonia; Tintoré, Joaquin
2014-05-01
Maritime transport plays an important role in the world trade and economics development. In Europe the "motorways on the sea" concept has been an important issue since the launch of the EU Transport white paper (EC 2001). An enclosed sea such as the Mediterranean is particularly vulnerable to ship-associated pressures due to a high-volume of shipping routes, long history of use, and sensitive shallow and deep-sea habitats. Negative impacts associated to maritime traffic include biodiversity loss, introduction of alien species, pollution, marine litter and underwater noise among others. The monitoring and characterization of the spatio-temporal patterns of marine traffic constitutes an important element for the effective management and assessment of environmental impacts of this activity. Monitoring of real-time ship locations can be achieved through the Automated Identification System (AIS). The AIS is a VHF transmitter that broadcast the ship position, as well as additional information (eg. timestamp, speed, heading, boat type). All ocean-going commercial traffic >300 gross tons, or carrying more than 165 passengers, as well as tug/tows, are required to carry AIS transmitters (IALA 2004). In addition, the rest of the ships are able to carry on these transmitters on a voluntary basis. In this work we present the development of an information system designed to store, manage, analyze and visualize historical AIS data based on open-source components. We analyse such data to assess and map multiple anthropogenic pressures. For example, segmented regression on speed distribution is carried out to identify and map fishing activity, whereas neighbourhood statistics and GIS methods are used to generate underwater noise maps. We will illustrate these products within the context of risk assessment on marine ecosystems at the Western Mediterranean Sea. The information provided in this study can be incorporated into Decision Support Systems (DSS) for supporting the implementation of European and national policies for the assessment of environmental impacts and the interactions among human activities as well.
AIDA: Asteroid Impact & Deflection Assessment
NASA Astrophysics Data System (ADS)
Cheng, Andrew; Michel, Patrick; Ulamec, Stephan; Reed, Cheryl; Galvez, Andres; Carnelli, Ian
On Feb. 15, 2013, an exceptionally close approach to Earth by the small asteroid 2012 DA14 was eagerly awaited by observers, but another small asteroid impacted Earth over Chelyabinsk, Russia the same day without warning, releasing several hundred kilotons TNT of energy and injuring over 1500 people. These dramatic events remind us of the needs to discover hazardous asteroids and to learn how to mitigate them. The AIDA mission is the first demonstration of a mitigation technique to protect the Earth from a potential asteroid impact, by performing a spacecraft kinetic impact on an asteroid to deflect it from its trajectory. We will provide an update on the status of parallel AIDA mission studies supported by ESA and NASA. AIDA is an international collaboration consisting of two independent but mutually supporting missions, one of which is the asteroid kinetic impactor, and the other is the characterization spacecraft which will orbit the asteroid system to monitor the deflection experiment and measure the results. These two missions are the NASA Double Asteroid Redirection Test (DART), which is the kinetic impactor, and the European Space Agency's Asteroid Impact Monitoring (AIM) mission, which is the characterization spacecraft. The target of the AIDA mission will be a binary asteroid, in which DART will target the secondary, smaller member in order to deflect the binary orbit. The resulting period change can be measured to within 10% by ground-based observations. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in great detail by the AIM mission. AIDA will return vital data to determine the momentum transfer efficiency of the kinetic impact and key physical properties of the target asteroid. The two mission components of AIDA, DART and AIM, are each independently valuable, but when combined they provide a greatly increased knowledge return. The AIDA mission will combine US and European space experience and expertise to address an international problem, the asteroid impact hazard. AIDA will also be a valuable precursor to human spaceflight to an asteroid, as it would return unique information on an asteroid's strength and internal structure and would be particularly relevant to a human mission for asteroid mitigation. AIDA will furthermore return fundamental new science data on impact cratering, surface properties and interior structure. AIDA will target the binary Near-Earth asteroid Didymos with two independently launched spacecraft, with the deflection experiment to occur in October, 2022.
Non-communicable diseases and human rights: Global synergies, gaps and opportunities.
Ferguson, Laura; Tarantola, Daniel; Hoffmann, Michael; Gruskin, Sofia
2017-10-01
The incorporation of human rights in health policy and programmes is known to strengthen responses to health problems and help address disparities created or exacerbated by illness yet this remains underexplored in relation to non-communicable diseases (NCDs). Aiming to understand existing synergies and how they might be further strengthened, we assessed the extent to which human rights are considered in global NCD policies and strategies and the degree of attention given to NCDs by select United Nations human rights mechanisms. Across global NCD policies and strategies, rhetorical assertions regarding human rights appear more often than actionable statements, thus limiting their implementation and impact. Although no human rights treaty explicitly mentions NCDs, some human rights monitoring mechanisms have been paying increasing attention to NCDs. This provides important avenues for promoting the incorporation of human rights norms and standards into NCD responses as well as for accountability. Linking NCDs and human rights at the global level is critical for encouraging national-level action to promote better outcomes relating to both health and human rights. The post-2015 development agenda constitutes a key entry point for highlighting these synergies and strengthening opportunities for health and rights action at global, national and local levels.
Monitoring Diffuse Impacts: Australian Tourism Developments.
Warnken; Buckley
2000-04-01
/ The scientific quality of monitoring for diffuse environmental impacts has rarely been quantified. This paper presents an analysis of all formal environmental monitoring programs for Australian tourism developments over a 15-year period from 1980 to 1995. The tourism sector provides a good test bed for this study because tourism developments are (1) often adjacent to or even within conservation reserves and other relatively undisturbed natural environments, and (2) often clustered, with resulting cumulative impacts that require detection at an early stage. Here we analyze the precision and reliability with which monitoring programs as actually implemented can detect diffuse environmental impacts against natural variation. Of 175 Australian tourism developments subject to EIA from 1980 to 1993 inclusive, only 13 were subject to formal monitoring. Only 44 individual parameters, in total, were monitored for all these developments together. No baseline monitoring was conducted for nine of the 44 parameters. For the remaining 35, only one was monitored for a full year. Before, after, control, impact, paired sampling (BACIP) monitoring designs were used for 24 of the 44 parameters, and power analysis in 10. The scientific quality of monitoring was significantly better for developments subject to control by the Great Barrier Reef Marine Park Authority (GBRMPA). The key factor appears to be the way in which GBRMPA uses external referees and manages external consultants. The GBRMPA model merits wider adoption.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Broad, C.; Soave, K.; Ericson, W.; Raabe, B.; Glazer, R.; Ahuatzi, A.; Pereira, M.; Rainsford, A.
2013-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and the requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 100 m2 areas, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will once again compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, Anthopluera elegantissima and Fucus spp. We will continue to closely monitor algal population densities in within our site in light of the November 2007 San Francisco Bay oil spill that leaked heavy bunker fuel into intertidal habitats around the SF Bay. Future analyses and investigations will include intertidal abiotic factors (including water temperature and human foot-traffic) to enhance insights into the workings of the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts.
GEO-MOTION: A fresh approach to land, water and sea level changes in a European habitat
NASA Astrophysics Data System (ADS)
Cloetingh, S.; Geo-Motion Consortium, T.; GEO-MOTION Consortium
2003-04-01
The present state and behaviour of the Shallow Earth System is a consequence of processes on a wide range of time scales. These include the long term tectonic effects on uplift, subsidence and river systems, residual effects of the ice ages on crustal movement and geochemistry, natural climate to environmental changes over recent millennia and up to the present, and the powerful anthropogenic impacts of the last century. If we are to understand the present state of the system, to predict its future and to engineer our use of it, this spectrum of processes, operating concurrently but on different time scales, needs to be better understood. The challenge to the Geosciences is to describe the state of the system, to monitor its changes, to forecast its evolution and, in collaboration with others, to evaluate modes of sustainable use by human society. Land, water and sea level changes can seriously affect the sustainability of ecological and human habitats in Europe. When sea water or surface water levels rise, or land subsides, the risk of flooding increases, directly inflicting on local ecosystems and human habitats. The effects on society are widely known as many of the affected areas in Europe are densely populated and the financial loss foreseen is tremendous. On the other hand, declining water levels and uplift may lead to a higher risk of desertification. These changes are caused by both natural processes and human activities, but the absolute and relative contributions of each of these processes are still little understood. Only very recently, the impact of processes located in the underlying subsurface of intraplate areas has been recognized in the coastal realm, leading to the newly coined term ‘Environmental Earth System Dynamics’. The members of the Geo-Motion consortium have joined forces in order to create a fully integrated pan-European research infrastructure (a virtual scientific centre) on a hitherto not existing scale. It runs monitoring programs including satellite, surface and borehole monitoring instruments. It integrates large scale and excellent geo-mechanical, geo-chemical and geo-biological laboratory facilities. Based on existing structures and data sets it develops a new geo data infrastructure containing historical data on global and regional changes in combination with the vulnerability of natural and human habitats. Most significant milestones are a large scale and excellent know-how base on geo-motion modelling and simulation, as well as on risk and impact assessment. The development of a foresight and assessment competency represents a long-term strategic scientific objective for the consortium. It is vital that it is also promoted in education, which will be done through the development of a European School for Predictive Geoscience, in which parallel masters programmes will be offered by the university partners based on their pooled expertise. The national geoscience surveys play a key role in delivering the outputs of research into the public, policy and industrial domains.
Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.
2011-01-01
The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gopalakrishnan, G.
2013-12-01
In the aftermath of man-made disasters such as oil spills or natural disasters such as hurricanes and floods, city planners and residents of affected areas are often concerned about future vulnerabilities and rebuilding the area to increase resilience. However, identifying locations in the affected area that are most impacted by the disaster, the associated human health risks and potential vulnerabilities often require a monitoring effort that is expensive, time-consuming and difficult to implement in disaster-hit areas using traditional monitoring techniques. This project presents a framework for identifying areas that are most likely to be impacted by disasters by integrating remote sensing data and information from social media networks, including Twitter streams. The framework was tested for New York, coastal New Jersey and Staten Island in the aftermath of Hurricane Sandy. Vulnerable areas were identified using anomaly detection and the results were mapped against measurements collected on the ground. A correlation coefficient of 0.78 was obtained. Uncertainty in model predictions was evaluated using Monte Carlo simulations.
Identification and ranking of environmental threats with ecosystem vulnerability distributions.
Zijp, Michiel C; Huijbregts, Mark A J; Schipper, Aafke M; Mulder, Christian; Posthuma, Leo
2017-08-24
Responses of ecosystems to human-induced stress vary in space and time, because both stressors and ecosystem vulnerabilities vary in space and time. Presently, ecosystem impact assessments mainly take into account variation in stressors, without considering variation in ecosystem vulnerability. We developed a method to address ecosystem vulnerability variation by quantifying ecosystem vulnerability distributions (EVDs) based on monitoring data of local species compositions and environmental conditions. The method incorporates spatial variation of both abiotic and biotic variables to quantify variation in responses among species and ecosystems. We show that EVDs can be derived based on a selection of locations, existing monitoring data and a selected impact boundary, and can be used in stressor identification and ranking for a region. A case study on Ohio's freshwater ecosystems, with freshwater fish as target species group, showed that physical habitat impairment and nutrient loads ranked highest as current stressors, with species losses higher than 5% for at least 6% of the locations. EVDs complement existing approaches of stressor assessment and management, which typically account only for variability in stressors, by accounting for variation in the vulnerability of the responding ecosystems.
Dengue Vectors and their Spatial Distribution
Higa, Yukiko
2011-01-01
The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133
Supporting Disaster Assessment and Response with the VIIRS Day-Night Band
NASA Technical Reports Server (NTRS)
Schultz, Lori A.; Cole, Tony; Molthan, Andrew L.
2015-01-01
When meteorological or man-made disasters occur, first responders often focus on impacts to the affected population and other human activities. Often, these disasters result in significant impacts to local infrastructure and power, resulting in widespread power outages. For minor events, these power outages are often short-lived, but major disasters often include long-term outages that have a significant impact on wellness, safety, and recovery efforts within the affected areas. Staff at NASA's Short-term Prediction Research and Transition (SPoRT) Center have been investigating the use of the VIIRS day-night band for monitoring power outages that result from significant disasters, and developing techniques to identify damaged areas in near real-time following events. In addition to immediate assessment, the VIIRS DNB can be used to monitor and assess ongoing recovery efforts. In this presentation, we will highlight previous applications of the VIIRS DNB following Superstorm Sandy in 2012, and other applications of the VIIRS DNB to more recent disaster events, including detection of outages following the Moore, Oklahoma tornado of May 2013 and the Chilean earthquake of April 2014. Examples of current products will be shown, along with future work and other goals for supporting disaster assessment and response with VIIRS capabilities.
Waters, Keith P; Zuber, Alexandra; Willy, Rankesh M; Kiriinya, Rose N; Waudo, Agnes N; Oluoch, Tom; Kimani, Francis M; Riley, Patricia L
2013-09-01
Countries worldwide are challenged by health worker shortages, skill mix imbalances, and maldistribution. Human resources information systems (HRIS) are used to monitor and address these health workforce issues, but global understanding of such systems is minimal and baseline information regarding their scope and capability is practically non-existent. The Kenya Health Workforce Information System (KHWIS) has been identified as a promising example of a functioning HRIS. The objective of this paper is to document the impact of KHWIS data on human resources policy, planning and management. Sources for this study included semi-structured interviews with senior officials at Kenya's Ministry of Medical Services (MOMS), Ministry of Public Health and Sanitation (MOPHS), the Department of Nursing within MOMS, the Nursing Council of Kenya, Kenya Medical Practitioners and Dentists Board, Kenya's Clinical Officers Council, and Kenya Medical Laboratory Technicians and Technologists Board. Additionally, quantitative data were extracted from KHWIS databases to supplement the interviews. Health sector policy documents were retrieved from MOMS and MOPHS websites, and reviewed to assess whether they documented any changes to policy and practice as having been impacted by KHWIS data. Interviews with Kenyan government and regulatory officials cited health workforce data provided by KHWIS influenced policy, regulation, and management. Policy changes include extension of Kenya's age of mandatory civil service retirement from 55 to 60 years. Data retrieved from KHWIS document increased relicensing of professional nurses, midwives, medical practitioners and dentists, and interviewees reported this improved compliance raised professional regulatory body revenues. The review of Government records revealed few references to KHWIS; however, documentation specifically cited the KHWIS as having improved the availability of human resources for health information regarding workforce planning, management, and development. KHWIS data have impacted a range of improvements in health worker regulation, human resources management, and workforce policy and planning at Kenya's ministries of health. Published by Elsevier Ireland Ltd.
Non-Traditional Displays for Mission Monitoring
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Schutte, Paul C.
1999-01-01
Advances in automation capability and reliability have changed the role of humans from operating and controlling processes to simply monitoring them for anomalies. However, humans are traditionally bad monitors of highly reliable systems over time. Thus, the human is assigned a task for which he is ill equipped. We believe that this has led to the dominance of human error in process control activities such as operating transportation systems (aircraft and trains), monitoring patient health in the medical industry, and controlling plant operations. Research has shown, though, that an automated monitor can assist humans in recognizing and dealing with failures. One possible solution to this predicament is to use a polar-star display that will show deviations from normal states based on parameters that are most indicative of mission health.
Microgravity Flight - Accommodating Non-Human Primates
NASA Technical Reports Server (NTRS)
Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis
1994-01-01
Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of thermoregulation, muscular, and cardiac responses to weightlessness. In contrast, the five completed Cosmos/Bion flights, lacked the metabolic samples and behavioral task monitoring, but did facilitate studies of the neurovestibular system during several of the flights.
Is anthelmintic resistance a concern for the control of human soil-transmitted helminths?
Vercruysse, Jozef; Albonico, Marco; Behnke, Jerzy M.; Kotze, Andrew C.; Prichard, Roger K.; McCarthy, James S.; Montresor, Antonio; Levecke, Bruno
2011-01-01
The major human soil-transmitted helminths (STH), Ascaris lumbricoides, hookworms (Necator americanus and Ancylostoma duodenale) and Trichuris trichiura have a marked impact on human health in many parts of the world. Current efforts to control these parasites rely predominantly on periodic mass administration of anthelmintic drugs to school age children and other at-risk groups. After many years of use of these same drugs for controlling roundworms in livestock, high levels of resistance have developed, threatening the sustainability of these livestock industries in some locations. Hence, the question arises as to whether this is likely to also occur in the human STH, thereby threatening our ability to control these parasites. This is particularly important because of the recent increase in mass control programmes, relying almost exclusively on benzimidazole anthelmintics. It will be important to ensure that resistance is detected as it emerges in order to allow the implementation of mitigation strategies, such as use of drug combinations, to ensure that the effectiveness of the few existing anthelmintic drugs is preserved. In this review we address these issues by firstly examining the efficacy of anthelmintics against the human STH, and assessing whether there are any indications to date that resistance has emerged. We then consider the factors that influence the effect of current drug-use patterns in selecting for resistant parasite populations. We describe the tools currently available for resistance monitoring (field-based coprological methods), and those under development (in vitro bioassays and molecular tests), and highlight confounding factors that need to be taken into account when interpreting such resistance-monitoring data. We then highlight means to ensure that the currently available tools are used correctly, particularly with regard to study design, and we set appropriate drug-efficacy thresholds. Finally, we make recommendations for monitoring drug efficacy in the field, as components of control programmes, in order to maximise the ability to detect drug resistance, and if it arises to change control strategy and prevent the spread of resistance. PMID:24533260
Microbial Impact on Success of Human Exploration Missions
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Ott, C. Mark; Groves, T. O.; Paloski, W. H. (Technical Monitor)
2000-01-01
The purpose of this study is to identify microbiological risks associated with space exploration and identify potential countermeasures available. Identification of microbial risks associated with space habitation requires knowledge of the sources and expected types of microbial agents. Crew data along with environmental data from water, surfaces, air, and free condensate are utilized in risk examination. Data from terrestrial models are also used. Microbial risks to crew health include bacteria, fungi, protozoa, and viruses. Adverse effects of microbes include: infections, allergic reactions, toxin production, release of volatiles, food spoilage, plant disease, material degradation, and environmental contamination. Risk is difficult to assess because of unknown potential changes in microbes (e.g., mutation) and the human host (e.g., immune changes). Prevention of adverse microbial impacts is preferred over remediation. Preventative measures include engineering measures (e.g., air filtration), crew microbial screening, acceptability standards, and active verification by onboard monitoring. Microbiological agents are important risks to human health and performance during space flight and risks increase with mission duration. Acceptable risk level must be defined. Prevention must be given high priority. Careful screening of crewmembers and payloads is an important element of any risk mitigation plan. Improved quantitation of microbiological risks is a high priority.
Giorgini, Paolo; Di Giosia, Paolo; Petrarca, Marco; Lattanzio, Francesco; Stamerra, Cosimo Andrea; Ferri, Claudio
2017-01-01
Climate change is rapidly affecting all the regions of our planet. The most relevant example is global warming, which impacts on the earth's ecosystems, threatening human health. Other effects include extreme variations in temperature and increases in air pollution. These events may negatively impact mortality and morbidity for cardiovascular diseases. In this review, we discuss the main effects of climate changes on cardiovascular diseases, reporting the epidemiological evidences and the biological mechanisms linking climate change consequences to hypertension, diabetes, ischemic heart diseases, heart failure and stroke. Up to now, findings suggest that humans acclimate under different weather conditions, even though extreme temperatures and higher levels of air pollution can influence health-related outcomes. In these cases, climate change adversely affects cardiovascular system and the high-risk subjects for cardiovascular diseases are those more exposed. Finally, we examine climate change implications on publich health and suggest adaptation strategies to monitor the high-risk population, and reduce the amount of hospital admissions associated to these events. Such interventions may minimize the costs of public health and reduce the mortality for cardiovascular diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling
NASA Astrophysics Data System (ADS)
La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino
2011-11-01
Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.
Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, Ronald; Acheson, A.; Peterson, J.
1999-01-01
An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forests, lichens, cryptogamic crusts, high-elevation lakes and streams, arid lands, and class I areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.
Impact of space weather on human heart rate during the years 2011-2013
NASA Astrophysics Data System (ADS)
Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K.
2017-08-01
During the last years a possible link between different levels of solar and geomagnetic disturbances and human physiological parameters is suggested by several published studies. In this work the examination of the potential association between heart rate variations and specific space weather activities was performed. A total of 482 individuals treated at Hippocratio General Hospital in Athens, the Cardiology clinics of Nikaia General Hospital in Piraeus and the Heraklion University Hospital in Crete, Greece, were assessed from July 2011 to April 2013. The heart rate of the individuals was recorded by a Holter monitor on a n hourly basis, while the hourly variations of the cosmic ray intensity measured by the Neutron Monitor Station of the Athens University and of the geomagnetic index Dst provided by the Kyoto Observatory were used. The ANalysis Of VAriance (ANOVA) and the Multiple Linear Regression analysis were used for analysis of these data. A statistically significant effect of both cosmic rays and geomagnetic activity on heart rate was observed, which may indicate that changes in space weather could be linked to heart rate variations.
Runtime visualization of the human arterial tree.
Insley, Joseph A; Papka, Michael E; Dong, Suchuan; Karniadakis, George; Karonis, Nicholas T
2007-01-01
Large-scale simulation codes typically execute for extended periods of time and often on distributed computational resources. Because these simulations can run for hours, or even days, scientists like to get feedback about the state of the computation and the validity of its results as it runs. It is also important that these capabilities be made available with little impact on the performance and stability of the simulation. Visualizing and exploring data in the early stages of the simulation can help scientists identify problems early, potentially avoiding a situation where a simulation runs for several days, only to discover that an error with an input parameter caused both time and resources to be wasted. We describe an application that aids in the monitoring and analysis of a simulation of the human arterial tree. The application provides researchers with high-level feedback about the state of the ongoing simulation and enables them to investigate particular areas of interest in greater detail. The application also offers monitoring information about the amount of data produced and data transfer performance among the various components of the application.
Moving to Mars: There and Back Again. Stress and the Psychology and Culture of Crew and Astronaut
NASA Astrophysics Data System (ADS)
Bishop, Sheryl L.
2010-10-01
The journey to explore our red neighbor will entail the application of all our terrestrial lessons learned and of some we have yet to discover. A Mars mission represents the extreme in terms of both distance and uncharted environment. The selection, monitoring and support of Mars bound crews will challenge existing technology and knowledge. The human, at the center, represents the greatest strength and the greatest weakness for a Mars mission. Human response to confined and isolated environments has been shown to be characterized by serious stressors and a Mars mission will represent the most extreme of such environments. The impact of such stressors on coping, performance, motivation, behavior, cognitive functioning and psychological well-being must be taken into account. The extraordinary duration of the mission poses special challenges in planning for mission support since very different needs may be driven by particular phases of the mission. Selection, monitoring and! support will similarly be significantly affected by anticipating potential differential characteristics and needs across the travel phases to and from Mars and the period on the planet's surface.
Utilization of Satellite Data to Identify and Monitor Changes in Frequency of Meteorological Events
NASA Astrophysics Data System (ADS)
Mast, J. C.; Dessler, A. E.
2017-12-01
Increases in temperature and climate variability due to human-induced climate change is increasing the frequency and magnitude of extreme heat events (i.e., heatwaves). This will have a detrimental impact on the health of human populations and habitability of certain land locations. Here we seek to utilize satellite data records to identify and monitor extreme heat events. We analyze satellite data sets (MODIS and AIRS land surface temperatures (LST) and water vapor profiles (WV)) due to their global coverage and stable calibration. Heat waves are identified based on the frequency of maximum daily temperatures above a threshold, determined as follows. Land surface temperatures are gridded into uniform latitude/longitude bins. Maximum daily temperatures per bin are determined and probability density functions (PDF) of these maxima are constructed monthly and seasonally. For each bin, a threshold is calculated at the 95th percentile of the PDF of maximum temperatures. Per each bin, an extreme heat event is defined based on the frequency of monthly and seasonal days exceeding the threshold. To account for the decreased ability of the human body to thermoregulate with increasing moisture, and to assess lethality of the heat events, we determine the wet-bulb temperature at the locations of extreme heat events. Preliminary results will be presented.
Matthews, Stephen G; Miller, Amy L; Clapp, James; Plötz, Thomas; Kyriazakis, Ilias
2016-11-01
Early detection of health and welfare compromises in commercial piggeries is essential for timely intervention to enhance treatment success, reduce impact on welfare, and promote sustainable pig production. Behavioural changes that precede or accompany subclinical and clinical signs may have diagnostic value. Often referred to as sickness behaviour, this encompasses changes in feeding, drinking, and elimination behaviours, social behaviours, and locomotion and posture. Such subtle changes in behaviour are not easy to quantify and require lengthy observation input by staff, which is impractical on a commercial scale. Automated early-warning systems may provide an alternative by objectively measuring behaviour with sensors to automatically monitor and detect behavioural changes. This paper aims to: (1) review the quantifiable changes in behaviours with potential diagnostic value; (2) subsequently identify available sensors for measuring behaviours; and (3) describe the progress towards automating monitoring and detection, which may allow such behavioural changes to be captured, measured, and interpreted and thus lead to automation in commercial, housed piggeries. Multiple sensor modalities are available for automatic measurement and monitoring of behaviour, which require humans to actively identify behavioural changes. This has been demonstrated for the detection of small deviations in diurnal drinking, deviations in feeding behaviour, monitoring coughs and vocalisation, and monitoring thermal comfort, but not social behaviour. However, current progress is in the early stages of developing fully automated detection systems that do not require humans to identify behavioural changes; e.g., through automated alerts sent to mobile phones. Challenges for achieving automation are multifaceted and trade-offs are considered between health, welfare, and costs, between analysis of individuals and groups, and between generic and compromise-specific behaviours. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
A multi-sensor monitoring system of human physiology and daily activities.
Doherty, Sean T; Oh, Paul
2012-04-01
To present the design and pilot test results of a continuous multi-sensor monitoring system of real-world physiological conditions and daily life (activities, travel, exercise, and food consumption), culminating in a Web-based graphical decision-support interface. The system includes a set of wearable sensors wirelessly connected to a "smartphone" with a continuously running software application that compresses and transmits the data to a central server. Sensors include a Global Positioning System (GPS) receiver, electrocardiogram (ECG), three-axis accelerometer, and continuous blood glucose monitor. A food/medicine diary and prompted recall activity diary were also used. The pilot test involved 40 type 2 diabetic patients monitored over a 72-h period. All but three subjects were successfully monitored for the full study period. Smartphones proved to be an effective hub for managing multiple streams of data but required attention to data compression and battery consumption issues. ECG, accelerometer, and blood glucose devices performed adequately as long as subjects wore them. GPS tracking for a full day was feasible, although significant efforts are needed to impute missing data. Activity detection algorithms were successful in identifying activities and trip modes but could benefit by incorporating accelerometer data. The prompted recall diary was an effective tool for augmenting algorithm results, although subjects reported some difficulties with it. The food and medicine diary was completed fully, although end times and medicine dosages were occasionally missing. The unique combination of sensors holds promise for increasing accuracy and reducing burden associated with collecting individual-level activity and physiological data under real-world conditions, but significant data processing issues remain. Such data will provide new opportunities to explore the impacts of human geography and daily lifestyle on health at a fine spatial/temporal scale.
de Kool, Dennis
2015-11-01
An increasing stream of monitoring activities is entering the public sector. This article analyzes the perceived impacts of monitoring activities on intergovernmental relationships. Our theoretical framework is based on three approaches to monitoring and intergovernmental relationships, namely, a rational, a political, and a cultural perspective. Our empirical insights are based on two Dutch case studies, namely, the Ecological Monitoring Network and the Water in Focus reports. The conclusion is that monitoring activities have an impact on intergovernmental relationships in terms of standardizing working processes and methods, formalizing information relationships, ritualizing activities, and developing shared concepts ("common grammar"). An important challenge is to deal with the politicization of intergovernmental relationships, because monitoring reports can also stimulate political discussions about funding, the design of the instrument, administrative burdens, and supervisory relationships.
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.; Perchonek, M. H.; Ott, C. M.; Kaiser, M. K.
2011-01-01
Exploration missions will carry crews far beyond the relatively safe environs of cis-lunar space. Such trips will have little or no opportunity for resupply or rapid aborts and will be of a duration that far exceeds our experience to date. The challenges this imposes on the requirements of systems that monitor the life support and provide food and shelter for the crew are the focus of much research within the Human Research Program. Making all of these technologies robust and reliable enough for multi-year missions with little or no ability to run for home calls for a thorough understanding of the risks and impacts of failure. The way we currently monitor for microbial contamination of water, air, and surfaces, by sampling and growing cultures on nutrient media, must be reconsidered for exploration missions which have limited capacity for consumables. Likewise, the shelf life of food must be increased so that the nutrients required to keep the crewmembers healthy do not degrade over the life of the mission. Improved formulations, preservation, packaging, and storage technologies are all being investigated for ways slow this process or replace stowed food with key food items grown fresh in situ. Ensuring that the mass and volume of a spacecraft are used to maximum efficiency calls for infusing human factors into the design from its inception to increase efficiency, improve performance, and retain robustness toward operational realities. Integrating the human system with the spacecraft systems is the focus of many lines of investigation.
Doocy, Shannon; Daniels, Amy; Murray, Sarah; Kirsch, Thomas D
2013-04-16
Background. Floods are the most common natural disaster and the leading cause of natural disaster fatalities worldwide. Risk of catastrophic losses due to flooding is significant given deforestation and the increasing proximity of large populations to coastal areas, river basins and lakeshores. The objectives of this review were to describe the impact of flood events on human populations in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters Methods. Data on the impact of floods were compiled using two methods, a historical review of flood events from 1980 to 2009 from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics, bivariate tests for associations and multinomial logistic regression of flood characteristics and mortality using Stata 11.0. Findings. There were 539,811 deaths (range: 510,941 to 568,680), 361,974 injuries and 2,821,895,005 people affected by floods between 1980 and 2009. Inconsistent reporting suggests this is an underestimate, particularly in terms of the injured and affected populations. The primary cause of flood-related mortality is drowning; in developed countries being in a motor-vehicle and male gender are associated with increased mortality, whereas female gender may be linked to higher mortality in low-income countries. Conclusions. Expanded monitoring of floods, improved mitigation measures, and effective communication with civil authorities and vulnerable populations has the potential to reduce loss of life in future flood events.
The Human Impact of Floods: a Historical Review of Events 1980-2009 and Systematic Literature Review
Doocy, Shannon; Daniels, Amy; Murray, Sarah; Kirsch, Thomas D.
2013-01-01
Background. Floods are the most common natural disaster and the leading cause of natural disaster fatalities worldwide. Risk of catastrophic losses due to flooding is significant given deforestation and the increasing proximity of large populations to coastal areas, river basins and lakeshores. The objectives of this review were to describe the impact of flood events on human populations in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters Methods. Data on the impact of floods were compiled using two methods, a historical review of flood events from 1980 to 2009 from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics, bivariate tests for associations and multinomial logistic regression of flood characteristics and mortality using Stata 11.0. Findings. There were 539,811 deaths (range: 510,941 to 568,680), 361,974 injuries and 2,821,895,005 people affected by floods between 1980 and 2009. Inconsistent reporting suggests this is an underestimate, particularly in terms of the injured and affected populations. The primary cause of flood-related mortality is drowning; in developed countries being in a motor-vehicle and male gender are associated with increased mortality, whereas female gender may be linked to higher mortality in low-income countries. Conclusions. Expanded monitoring of floods, improved mitigation measures, and effective communication with civil authorities and vulnerable populations has the potential to reduce loss of life in future flood events. PMID:23857425
NASA Astrophysics Data System (ADS)
Schiavon, Marco; Redivo, Martina; Antonacci, Gianluca; Rada, Elena Cristina; Ragazzi, Marco; Zardi, Dino; Giovannini, Lorenzo
2015-11-01
Simulations of emission and dispersion of nitrogen oxides (NOx) are performed in an urban area of Verona (Italy), characterized by street canyons and typical sources of urban pollutants. Two dominant source categories are considered: road traffic and, as an element of novelty, domestic heaters. Also, to assess the impact of urban air pollution on human health and, in particular, the cancer risk, simulations of emission and dispersion of benzene are carried out. Emissions from road traffic are estimated by the COPERT 4 algorithm, whilst NOx emission factors from domestic heaters are retrieved by means of criteria provided in the technical literature. Then maps of the annual mean concentrations of NOx and benzene are calculated using the AUSTAL2000 dispersion model, considering both scenarios representing the current situation, and scenarios simulating the introduction of environmental strategies for air pollution mitigation. The simulations highlight potentially critical situations of human exposure that may not be detected by the conventional network of air quality monitoring stations. The proposed methodology provides a support for air quality policies, such as planning targeted measurement campaigns, re-locating monitoring stations and adopting measures in favour of better air quality in urban planning. In particular, the estimation of the induced cancer risk is an important starting point to conduct zoning analyses and to detect the areas where population is more directly exposed to potential risks for health.
Pielke, Roger A; Marland, Gregg; Betts, Richard A; Chase, Thomas N; Eastman, Joseph L; Niles, John O; Niyogi, Dev Dutta S; Running, Steven W
2002-08-15
Our paper documents that land-use change impacts regional and global climate through the surface-energy budget, as well as through the carbon cycle. The surface-energy budget effects may be more important than the carbon-cycle effects. However, land-use impacts on climate cannot be adequately quantified with the usual metric of 'global warming potential'. A new metric is needed to quantify the human disturbance of the Earth's surface-energy budget. This 'regional climate change potential' could offer a new metric for developing a more inclusive climate protocol. This concept would also implicitly provide a mechanism to monitor potential local-scale environmental changes that could influence biodiversity.
Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie
2014-02-02
The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as wellmore » as considering the path forward for smaller community scale projects.« less
ASSESSMENT OF DIOXIN INHALATION EXPOSURES AND ...
In the days following the September 11, 2001, terrorist attack on New York City's World Trade Center (WTC) towers, EPA, other federal agencies, and New York City and New York State public health and environmental authorities initiated numerous air monitoring activities to better understand the ongoing impact of emissions from that disaster. Using these data, EPA conducted an inhalation exposure and human health risk assessment. The overall evaluation focused on particulate matter, metals, polychlorinated biphenyls, dioxin-like compounds, asbestos, and volatile organic compounds. This paper reports on the analysis of dioxin-like compounds only.Lorber, M. 2003. Assessment of Dioxin Inhalation Exposures and Potential Health Impacts Following the Collapse of the World Trade Center Towers. Organohalogen Compounds 63 (no page numbers). journal article
External quality assurance performance of clinical research laboratories in sub-saharan Africa.
Amukele, Timothy K; Michael, Kurt; Hanes, Mary; Miller, Robert E; Jackson, J Brooks
2012-11-01
Patient Safety Monitoring in International Laboratories (JHU-SMILE) is a resource at Johns Hopkins University that supports and monitors laboratories in National Institutes of Health-funded international clinical trials. To determine the impact of the JHU-SMILE quality assurance scheme in sub-Saharan African laboratories, we reviewed 40 to 60 months of external quality assurance (EQA) results of the College of American Pathologists (CAP) in these laboratories. We reviewed the performance of 8 analytes: albumin, alanine aminotransferase, creatinine, sodium, WBC, hemoglobin, hematocrit, and the human immunodeficiency virus antibody rapid test. Over the 40- to 60-month observation period, the sub-Saharan laboratories had a 1.63% failure rate, which was 40% lower than the 2011 CAP-wide rate of 2.8%. Seventy-six percent of the observed EQA failures occurred in 4 of the 21 laboratories. These results demonstrate that a system of remote monitoring, feedback, and audits can support quality in low-resource settings, even in places without strong regulatory support for laboratory quality.
Water quality of arctic rivers in Finnish Lapland.
Niemi, Jorma
2010-02-01
The water quality monitoring data of eight rivers situated in the Finnish Lapland above the Arctic Circle were investigated. These rivers are icebound annually for about 200 days. They belong to the International River Basin District founded according to the European Union Water Framework Directive and shared with Norway. They are part of the European river monitoring network that includes some 3,400 river sites. The water quality monitoring datasets available varied between the rivers, the longest comprising the period 1975-2003 and the shortest 1989-2003. For each river, annual medians of eight water quality variables were calculated. In addition, medians and fifth and 95th percentiles were calculated for the whole observation periods. The medians indicated good river water quality in comparison to other national or foreign rivers. However, the river water quality oscillated widely. Some rivers were in practice in pristine state, whereas some showed slight human impacts, e.g., occasional high values of hygienic indicator bacteria.
NASA Astrophysics Data System (ADS)
Lubkin, S. H.; Morgan, C.
2015-12-01
Harmful algal bloom species have had an increasing ecological impact on the Chesapeake Bay Watershed where they disrupt water chemistry, kill fish and cause human illness. In Virginia, scientists from Virginia Institute of Marine Science and Old Dominion University monitor HABs and their effect on water quality; however, these groups lack a method to monitor HABs in real time. This limits the ability to document associated water quality conditions and predict future blooms. Band reflectance values from Landsat 8 Surface Reflectance data (USGS Earth Explorer) and MODIS Chlorophyll imagery (NOAA CoastWatch) were cross calibrated to create a regression model that calculated concentrations of chlorophyll. Calculations were verified with in situ measurements from the Virginia Estuarine and Coastal Observing System. Imagery produced with the Chlorophyll-A calculation model will allow VIMS and ODU scientists to assess the timing, magnitude, duration and frequency of HABs in Virginia's Chesapeake watershed and to predict the environmental and water quality conditions that favor bloom development.
Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M
2015-01-01
Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to display tailored combinations of AOD and RGB imagery, as well as overlay the VIIRS smoke mask and fire hotspots at pixel resolution (~750-m × 750-m), and zoom into the county level. Two case studies of recent wildfires in the Western US are presented to show how operational users can access and display VIIRS aerosol products to monitor the transport of smoke plumes and evolution of fires in the exo-urban environment on the regional and county scales. The new National Oceanic and Atmospheric Administration (NOAA) Western Region Fire and Smoke Initiative is also discussed, which will enhance IDEA to allow visualization of VIIRS aerosol products down to the neighborhood scale. The new high-resolution VIIRS aerosol products can be used for NRT monitoring of human exposure to smoke, and they can be used to gauge the spread of fires and, thus, provide advanced warning for evacuations and fire suppression efforts, thereby reducing risks to human populations and forest ecosystems in the exo-urban environment.
Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M
2015-01-01
Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to display tailored combinations of AOD and RGB imagery, as well as overlay the VIIRS smoke mask and fire hotspots at pixel resolution (~750-m × 750-m), and zoom into the county level. Two case studies of recent wildfires in the Western US are presented to show how operational users can access and display VIIRS aerosol products to monitor the transport of smoke plumes and evolution of fires in the exo-urban environment on the regional and county scales. The new National Oceanic and Atmospheric Administration (NOAA) Western Region Fire and Smoke Initiative is also discussed, which will enhance IDEA to allow visualization of VIIRS aerosol products down to the neighborhood scale. The new high-resolution VIIRS aerosol products can be used for NRT monitoring of human exposure to smoke, and they can be used to gauge the spread of fires and, thus, provide advanced warning for evacuations and fire suppression efforts, thereby reducing risks to human populations and forest ecosystems in the exo-urban environment. PMID:26078588
Socioeconomic Impact Assessment of the Los Angeles Automatic Vehicle Monitoring (AVM) Demonstration
DOT National Transportation Integrated Search
1982-09-01
This report presents a socioeconomic impact assessment of the Automatic Vehicle Monitoring (AVM) Demonstration in Los Angeles. An AVM system uses location, communication, and data processing subsystems to monitor the locations of appropriately equipp...
Impact of court monitoring on DWI adjudication
DOT National Transportation Integrated Search
1990-12-01
Author's abstract: Court monitoring of Driving While Intoxicated (DWI) cases is a labor intensive effort conducted by over 300 concerned citizen groups across the U.S. The present project assessed the impact of court monitoring by analyzing the diffe...
Du, Guofeng; Zhang, Juan; Zhang, Jicheng; Song, Gangbing
2017-08-22
The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.
Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards.
Riley, Mark R; Lucas, Pierre; Le Coq, David; Juncker, Christophe; Boesewetter, Dianne E; Collier, Jayne L; DeRosa, Diana M; Katterman, Matthew E; Boussard-Plédel, Catherine; Bureau, Bruno
2006-11-05
Health risks associated with the inhalation of biological materials have been a topic of great concern; however, there are no rapid and automatable methods available to evaluate the potential health impact of inhaled materials. Here we describe a novel approach to evaluate the potential toxic effects of materials evaluated through cell-based spectroscopic analysis. Anchorage-dependent cells are grown on the surface of optical fibers transparent to infrared light. The probe system is composed of a single chalcogenide fiber (composed of Te, As, and Se) acting as both the sensor and transmission line for infrared optical signals. The cells are exposed to potential toxins and alterations of cellular composition are monitored through their impact on cellular spectral features. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber through spectral changes between 3,000 and 600 cm(-1) (3,333-16,666 nm). Cell physiology, composition, and function are non-invasively tracked through monitoring infrared light absorption by the cell layer. This approach is demonstrated with an immortalized lung cell culture (A549, human lung carcinoma epithelia) in response to a variety of inhalation hazards including gliotoxin (a fungal metabolite), etoposide (a genotoxin), and methyl methansesulfonate (MMS, an alkylating agent). Gliotoxin impacts cell metabolism, etoposide impacts nucleic acids and the cell cycle, and MMS impacts nucleic acids and induces an immune response. This spectroscopic method is sensitive, non-invasive, and provides information on a wide range of cellular damage and response mechanisms and could prove useful for cell response screening of pharmaceuticals or for toxicological evaluations. (c) 2006 Wiley Periodicals, Inc.
Hoffman, Emma; Bernier, Meagan; Blotnicky, Brenden; Golden, Peter G; Janes, Jeffrey; Kader, Allison; Kovacs-Da Costa, Rachel; Pettipas, Shauna; Vermeulen, Sarah; Walker, Tony R
2015-12-01
Communities across Canada rely heavily on natural resources for their livelihoods. One such community in Pictou County, Nova Scotia, has both benefited and suffered, because of its proximity to a pulp and paper mill (currently owned by Northern Pulp). Since production began in 1967, there have been increasing impacts to the local environment and human health. Environmental reports funded by the mill were reviewed and compared against provincial and federal regulatory compliance standards. Reports contrasted starkly to societal perceptions of local impacts and independent studies. Most environmental monitoring reports funded by the mill indicate some levels of compliance in atmospheric and effluent emissions, but when compliance targets were not met, there was a lack of regulatory enforcement. After decades of local pollution impacts and lack of environmental compliance, corporate social responsibility initiatives need implementing for the mill to maintain its social licence to operate.
Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W; Brown, Ross D; Ehrich, Dorothee; Essery, Richard L H; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A; Terzago, Silvia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V
2016-09-01
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.
NASA Technical Reports Server (NTRS)
Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne;
2016-01-01
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.
Climate Change and Food Security: Health Impacts in Developed Countries
Hooper, Lee; Abdelhamid, Asmaa; Bentham, Graham; Boxall, Alistair B.A.; Draper, Alizon; Fairweather-Tait, Susan; Hulme, Mike; Hunter, Paul R.; Nichols, Gordon; Waldron, Keith W.
2012-01-01
Background: Anthropogenic climate change will affect global food production, with uncertain consequences for human health in developed countries. Objectives: We investigated the potential impact of climate change on food security (nutrition and food safety) and the implications for human health in developed countries. Methods: Expert input and structured literature searches were conducted and synthesized to produce overall assessments of the likely impacts of climate change on global food production and recommendations for future research and policy changes. Results: Increasing food prices may lower the nutritional quality of dietary intakes, exacerbate obesity, and amplify health inequalities. Altered conditions for food production may result in emerging pathogens, new crop and livestock species, and altered use of pesticides and veterinary medicines, and affect the main transfer mechanisms through which contaminants move from the environment into food. All these have implications for food safety and the nutritional content of food. Climate change mitigation may increase consumption of foods whose production reduces greenhouse gas emissions. Impacts may include reduced red meat consumption (with positive effects on saturated fat, but negative impacts on zinc and iron intake) and reduced winter fruit and vegetable consumption. Developed countries have complex structures in place that may be used to adapt to the food safety consequences of climate change, although their effectiveness will vary between countries, and the ability to respond to nutritional challenges is less certain. Conclusions: Climate change will have notable impacts upon nutrition and food safety in developed countries, but further research is necessary to accurately quantify these impacts. Uncertainty about future impacts, coupled with evidence that climate change may lead to more variable food quality, emphasizes the need to maintain and strengthen existing structures and policies to regulate food production, monitor food quality and safety, and respond to nutritional and safety issues that arise. PMID:23124134
Climate change and food security: health impacts in developed countries.
Lake, Iain R; Hooper, Lee; Abdelhamid, Asmaa; Bentham, Graham; Boxall, Alistair B A; Draper, Alizon; Fairweather-Tait, Susan; Hulme, Mike; Hunter, Paul R; Nichols, Gordon; Waldron, Keith W
2012-11-01
Anthropogenic climate change will affect global food production, with uncertain consequences for human health in developed countries. We investigated the potential impact of climate change on food security (nutrition and food safety) and the implications for human health in developed countries. Expert input and structured literature searches were conducted and synthesized to produce overall assessments of the likely impacts of climate change on global food production and recommendations for future research and policy changes. Increasing food prices may lower the nutritional quality of dietary intakes, exacerbate obesity, and amplify health inequalities. Altered conditions for food production may result in emerging pathogens, new crop and livestock species, and altered use of pesticides and veterinary medicines, and affect the main transfer mechanisms through which contaminants move from the environment into food. All these have implications for food safety and the nutritional content of food. Climate change mitigation may increase consumption of foods whose production reduces greenhouse gas emissions. Impacts may include reduced red meat consumption (with positive effects on saturated fat, but negative impacts on zinc and iron intake) and reduced winter fruit and vegetable consumption. Developed countries have complex structures in place that may be used to adapt to the food safety consequences of climate change, although their effectiveness will vary between countries, and the ability to respond to nutritional challenges is less certain. Climate change will have notable impacts upon nutrition and food safety in developed countries, but further research is necessary to accurately quantify these impacts. Uncertainty about future impacts, coupled with evidence that climate change may lead to more variable food quality, emphasizes the need to maintain and strengthen existing structures and policies to regulate food production, monitor food quality and safety, and respond to nutritional and safety issues that arise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, R.E.; Wigley, C.R.; Fisco, P.
1982-01-01
During 1979, 1980, and 1981 3 major and different environments of human interest and economic well-being were impacted by 3 different and major Gulf of Mexico oil spills. All the studied spills had pre-spill data. This study revealed 3 conclusions useful in the monitoring of spill recovery. (1) Immediately or continually impacted areas exhibited a mass mortality for microplankton in pelagic systems, and an abnormally high concentration (collection) of nematodes in nearshore sands. (2) Impacted benthonic areas exhibited increases in nematode standing corps followed by increases in benthonic forminiferal standing crops. (3) Recovery to pre-spill conditions may be indicated bymore » termination of red tide condition or mortality of susceptible microplankton; return to pre-spill standing crops, taxonomic character, and diversity of microbenthon or microplankton; and return to pre-spill seasonal fluctuation of peaks and lows in microbenthon and microplankton.« less
Long-term monitoring of change in Tropical grasslands- GLORIA network in the Andes
NASA Astrophysics Data System (ADS)
Cuesta, F. X.; Muriel, P.; Halloy, S.; Beck, S.; Meneses, R. I.; Irazabal, J.; Aguirre, N.; Viñas, P.; Suarez, D.; Becerra, M. T.; Gloria-Andes Network
2013-05-01
It has been shown that predicted warming and increased frequency of extreme weather events increase with altitude in the Andean mountains. Combined with enormous topographic (and hence precipitation) heterogeneity, poverty and intensive land use, creates in the region a situation of high vulnerability to global change. Since 2005 the network Global Research Initiative in Alpine Environment (GLORIA) sites have been progressively installed in Andean countries to monitor changes, document the type and magnitude of impacts and provide guidance to develop adaptation strategies for biodiversity, humans, and productive systems. We report the preliminary results from 10 of those sites, in addition to new sites planned in South America. These sites provide baseline data and identify processes and patterns in plant biodiversity across different geographic contexts. These preliminary results show the tremendous singularity of the vegetation and flora patterns in the study sites, suggesting high sensitivity of these ecosystems to climate anomalies. It is expected that the consolidation of this network will support and strengthen long-term observation and monitoring research programs to enable the documentation and understanding of climate change impacts on the Andean biota. Our research considers complementary modules of investigation (e.g. carbon stocks and fluxes, plant responses to experimental manipulation) that contextualize the challenges and opportunities of adaptation for biodiversity and socio-economic components, providing measures of trends as well as effectiveness of adaptive management strategies.
Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng
2013-01-01
To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123
NPOESS, Essential Climates Variables and Climate Change
NASA Astrophysics Data System (ADS)
Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.
2008-12-01
Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.
Envisioning, quantifying, and managing thermal regimes on river networks
Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.
NASA Technical Reports Server (NTRS)
Washington, Gloria
2012-01-01
Have you heard the saying "frustration is written all over your falce"? Well this saying is true, but that is not the only place. Frustration is written all over your face and your body. The human body has various means to communicate an emotion without the utterance of a single word. The Media Equation says that people interact with computers as if they are human: this includes experiencing frustration. This research measures frustration by monitoring human body-based measures such as heart rate, posture, skin temperature. and respiration. The OCC Theory of Emotions is used to separate frustration into different levels or intensities. The results of this study showed that individual intensities of frustration exist, so that task performance is not degraded. Results from this study can be used by usability testers to model how much frustration is needed before task performance measures start to decrease.
Garfì, Marianna; Ferrer-Martí, Laia; Bonoli, Alessandra; Tondelli, Simona
2011-03-01
Multi-criteria analysis (MCA) is a family of decision-making tools that can be used in strategic environmental assessment (SEA) procedures to ensure that environmental, social and economic aspects are integrated into the design of human development strategies and planning, in order to increase the contribution of the environment and natural resources to poverty reduction. The aim of this paper is to highlight the contribution of a particular multi-criteria technique, the analytic hierarchy process (AHP), in two stages of the SEA procedure applied to water programmes in developing countries: the comparison of alternatives and monitoring. This proposal was validated through its application to a case study in Brazilian semi-arid region. The objective was to select and subsequently monitor the most appropriate programme for safe water availability. On the basis of the SEA results, a project was identified and implemented with successful results. In terms of comparisons of alternatives, AHP meets the requirements of human development programme assessment, including the importance of simplicity, a multidisciplinary and flexible approach, and a focus on the beneficiaries' concerns. With respect to monitoring, the study shows that AHP contributes to SEA by identifying the most appropriate indicators, in order to control the impacts of a project. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gordon, Catherine A; McManus, Donald P; Acosta, Luz P; Olveda, Remigio M; Williams, Gail M; Ross, Allen G; Gray, Darren J; Gobert, Geoffrey N
2015-06-01
The global socioeconomic importance of helminth parasitic disease is underpinned by the considerable clinical impact on millions of people. While helminth polyparasitism is considered common in the Philippines, little has been done to survey its extent in endemic communities. High morphological similarity of eggs between related species complicates conventional microscopic diagnostic methods which are known to lack sensitivity, particularly in low intensity infections. Multiplex quantitative PCR diagnostic methods can provide rapid, simultaneous identification of multiple helminth species from a single stool sample. We describe a multiplex assay for the differentiation of Ascaris lumbricoides, Necator americanus, Ancylostoma, Taenia saginata and Taenia solium, building on our previously published findings for Schistosoma japonicum. Of 545 human faecal samples examined, 46.6% were positive for at least three different parasite species. High prevalences of S. japonicum (90.64%), A. lumbricoides (58.17%), T. saginata (42.57%) and A. duodenale (48.07%) were recorded. Neither T. solium nor N. americanus were found to be present. The utility of molecular diagnostic methods for monitoring helminth parasite prevalence provides new information on the extent of polyparasitism in the Philippines municipality of Palapag. These methods and findings have potential global implications for the monitoring of neglected tropical diseases and control measures. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Love, Sara A; Thompson, John W; Haynes, Christy L
2012-09-01
As nanoparticles have found increased use in both consumer and medical applications, corresponding increases in possible exposure to humans necessitate studies examining the impacts of these nanomaterials in biological systems. This article examines the effects of approximately 30-nm-diameter gold nanoparticles, with positively and negatively charged surface coatings in human blood. Here, we study the exposure effects, with up to 72 h of exposure to 5, 15, 25 and 50 µg/ml nanoparticles on hemolysis, reactive oxygen species (ROS) generation and platelet aggregation in subsets of cells from human blood. Assessing viability with hemolysis, results show significant changes in a concentration-dependent fashion. Rates of ROS generation were investigated using the dichlorofluorscein diacetate-based assay as ROS generation is a commonly suspected mechanism of nanoparticle toxicity; herein, ROS was not a significant factor. Optical monitoring of platelet aggregation revealed that none of the examined nanoparticles induced aggregation upon short-term exposure.
Hammond, Davyda; Croghan, Carry; Shin, Hwashin; Burnett, Richard; Bard, Robert; Brook, Robert D; Williams, Ron
2014-07-01
The US Environmental Protection Agency's (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) has provided extensive data on human exposures to a wide variety of air pollutants and their impact on human health. Previous analyses in the DEARS revealed select cardiovascular (CV) health outcomes such as increase in heart rate (HR) associated with hourly based continuous personal fine particulate matter (PM2.5) exposures in this adult, non-smoking cohort. Examination of time activity diary (TAD), follow-up questionnaire (FQ) and the continuous PM2.5 personal monitoring data provided the means to more fully examine the impact of discreet human activity patterns on personal PM2.5 exposures and changes in CV outcomes. A total of 329 343 min-based PM2.5 personal measurements involving 50 participants indicated that ∼75% of these total events resulted in exposures <35 μg/m(3). Cooking and car-related events accounted for nearly 10% of the hourly activities that were identified with observed peaks in personal PM2.5 exposures. In-residence cooking often resulted in some of the highest incidents of 1 min exposures (33.5-17.6 μg/m(3)), with average peaks for such events in excess of 209 μg/m(3). PM2.5 exposure data from hourly based personal exposure activities (for example,, cooking, cleaning and household products) were compared with daily CV data from the DEARS subject population. A total of 1300 hourly based lag risk estimates associated with changes in brachial artery diameter and flow-mediated dilatation (BAD and FMD, respectively), among others, were defined for this cohort. Findings indicate that environmental tobacco smoke (ETS) exposures resulted in significant HR changes between 3 and 7 h following the event, and exposure to smells resulted in increases in BAD on the order of 0.2-0.7 mm/μg/m(3). Results demonstrate that personal exposures may be associated with several biological responses, sometimes varying in degree and direction in relation to the extent of the exposure.
Maintaining the Health of Software Monitors
NASA Technical Reports Server (NTRS)
Person, Suzette; Rungta, Neha
2013-01-01
Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.
Human biological monitoring of suspected endocrine-disrupting compounds
Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG
2014-01-01
Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128
Biomarkers: Delivering on the expectation of molecularly driven, quantitative health.
Wilson, Jennifer L; Altman, Russ B
2018-02-01
Biomarkers are the pillars of precision medicine and are delivering on expectations of molecular, quantitative health. These features have made clinical decisions more precise and personalized, but require a high bar for validation. Biomarkers have improved health outcomes in a few areas such as cancer, pharmacogenetics, and safety. Burgeoning big data research infrastructure, the internet of things, and increased patient participation will accelerate discovery in the many areas that have not yet realized the full potential of biomarkers for precision health. Here we review themes of biomarker discovery, current implementations of biomarkers for precision health, and future opportunities and challenges for biomarker discovery. Impact statement Precision medicine evolved because of the understanding that human disease is molecularly driven and is highly variable across patients. This understanding has made biomarkers, a diverse class of biological measurements, more relevant for disease diagnosis, monitoring, and selection of treatment strategy. Biomarkers' impact on precision medicine can be seen in cancer, pharmacogenomics, and safety. The successes in these cases suggest many more applications for biomarkers and a greater impact for precision medicine across the spectrum of human disease. The authors assess the status of biomarker-guided medical practice by analyzing themes for biomarker discovery, reviewing the impact of these markers in the clinic, and highlight future and ongoing challenges for biomarker discovery. This work is timely and relevant, as the molecular, quantitative approach of precision medicine is spreading to many disease indications.
The impact of ions on allosteric functions in human liver pyruvate kinase
Alontaga, Aileen Y.
2010-01-01
Experimental designs used to monitor the magnitude of an allosteric response can greatly influence observed values. We report here the impact of buffer, monovalent cation, divalent cation and anion on the magnitude of the allosteric regulation of the affinity of human liver pyruvate kinase (hL-PYK) for substrate, phosphoenolpyruvate (PEP). The magnitudes of the allosteric activation by fructose-1,6-bisphosphate (Fru-1,6-BP) and the allosteric inhibition by alanine are independent of most, but not all buffers tested. However, these magnitudes are dependent on whether Mg2+ or Mn2+ is included as the divalent cation. In the presence of Mn2+, any change in Kapp-PEP caused by Fru-1,6-BP is minimal. hL-PYK activity does not appear to require monovalent cation. Monovalent cation binding in the active site impacts PEP affinity with minimum influence on the magnitude of allosteric coupling. However, Na+ and Li+ reduce the magnitude of the allosteric response to Fru-1,6-BP, likely due to mechanisms outside of the active site. Which anion is used to maintain a constant monovalent cation concentration also influences the magnitude of the allosteric response. The value of determining the impact of ions on allosteric function can be appreciated by considering that representative structures used in comparative studies have often been determined using protein crystals grown in diverse buffer and salt conditions. PMID:21609859
NASA Astrophysics Data System (ADS)
Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi
2012-06-01
This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.
This presentation, ANTHC Rural Alaska Monitoring Program (RAMP): Assessing, Monitoring, and Adapting to Emerging Environmental Human and Wildlife Health Threats, was given at the 2016 STAR Tribal Research Meeting held on Sept. 20-21, 2016.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Vassilakos, Gregory J.
2015-01-01
This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.
Automatically monitoring driftwood in large rivers: preliminary results
NASA Astrophysics Data System (ADS)
Piegay, H.; Lemaire, P.; MacVicar, B.; Mouquet-Noppe, C.; Tougne, L.
2014-12-01
Driftwood in rivers impact sediment transport, riverine habitat and human infrastructures. Quantifying it, in particular large woods on fairly large rivers where it can move easily, would allow us to improve our knowledge on fluvial transport processes. There are several means of studying this phenomenon, amongst which RFID sensors tracking, photo and video monitoring. In this abstract, we are interested in the latter, being easier and cheaper to deploy. However, video monitoring of driftwood generates a huge amount of images and manually labeling it is tedious. It is essential to automate such a monitoring process, which is a difficult task in the field of computer vision, and more specifically automatic video analysis. Detecting foreground into dynamic background remains an open problem to date. We installed a video camera at the riverside of a gauging station on the Ain River, a 3500 km² Piedmont River in France. Several floods were manually annotated by a human operator. We developed software that automatically extracts and characterizes wood blocks within a video stream. This algorithm is based upon a statistical model and combines static, dynamic and spatial data. Segmented wood objects are further described with the help of a skeleton-based approach that helps us to automatically determine its shape, diameter and length. The first detailed comparisons between manual annotations and automatically extracted data show that we can fairly well detect large wood until a given size (approximately 120 cm in length or 15 cm in diameter) whereas smaller ones are difficult to detect and tend to be missed by either the human operator, either the algorithm. Detection is fairly accurate in high flow conditions where the water channel is usually brown because of suspended sediment transport. In low flow context, our algorithm still needs improvement to reduce the number of false positive so as to better distinguish shadow or turbulence structures from wood pieces.
Applying DOE's Graded Approach for assessing radiation impacts to non-human biota at the INL.
Morris, Randall C
2006-01-01
In July 2002, The US Department of Energy (DOE) released a new technical standard entitled A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota. DOE facilities are annually required to demonstrate that routine radioactive releases from their sites are protective of non-human receptors and sites are encouraged to use the Graded Approach for this purpose. Use of the Graded Approach requires completion of several preliminary steps, to evaluate the degree to which the site environmental monitoring program is appropriate for evaluating impacts to non-human biota. We completed these necessary activities at the Idaho National Laboratory (INL) using the following four tasks: (1) develop conceptual models and evaluate exposure pathways; (2) define INL evaluation areas; (3) evaluate sampling locations and media; (4) evaluate data gaps. All of the information developed in the four steps was incorporated, data sources were identified, departures from the Graded Approach were justified, and a step-by-step procedure for biota dose assessment at the INL was specified. Finally, we completed a site-wide biota dose assessment using the 2002 environmental surveillance data and an offsite assessment using soil and surface water data collected since 1996. These assessments demonstrated the environmental concentrations of radionuclides measured on and near the INL do not present significant risks to populations of non-human biota.
Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette
2017-01-01
Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km 2 landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.
Grizzle, R E; Ward, L G; Fredriksson, D W; Irish, J D; Langan, R; Heinig, C S; Greene, J K; Abeels, H A; Peter, C R; Eberhardt, A L
2014-11-15
The seafloor at an open ocean finfish aquaculture facility in the western Gulf of Maine, USA was monitored from 1999 to 2008 by sampling sites inside a predicted impact area modeled by oceanographic conditions and fecal and food settling characteristics, and nearby reference sites. Univariate and multivariate analyses of benthic community measures from box core samples indicated minimal or no significant differences between impact and reference areas. These findings resulted in development of an adaptive monitoring protocol involving initial low-cost methods that required more intensive and costly efforts only when negative impacts were initially indicated. The continued growth of marine aquaculture is dependent on further development of farming methods that minimize negative environmental impacts, as well as effective monitoring protocols. Adaptive monitoring protocols, such as the one described herein, coupled with mathematical modeling approaches, have the potential to provide effective protection of the environment while minimize monitoring effort and costs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Using Copernicus earth observation services to monitor climate change impacts and adaptations
NASA Astrophysics Data System (ADS)
Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan
2016-04-01
In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long term monitoring. Furthermore, we provide specific recommendations for the Copernicus services to ensure a consistent climate change monitoring in future and we indicate options and limitations for integrating service products into practical assessment and monitoring activities.
Alados, C.L.; Escos, J.; Emlen, J.M.
1994-01-01
Developmental lnstability (DI) has been proposed as an inexpensive, quickly applied, and sensitive indicator of stress that can be utilized in early warning and in monitoring anthropogenic impacts on fish and other animals and plants. A problem arises, however, to the extent that natural stressors confound the effects of human-induced disturbances. Our objective in this work was to investigate whether a natural stressor, in the form of EI Nino conditions, contributed to DI in the Pacific hake. Right-left (fluctuating> asymmetry of otolith length, width, growth rate, and weight, as well as right-left otolith shape differences, were used as measures of DI. Results show that indeed EI Nino disrupts development, indicating stress. This outcome suggests that DI, as an early warning and monitoring tool for stress, must be used with caution.
Nanomaterial-enabled Rapid Detection of Water Contaminants.
Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong
2015-10-28
Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomechanics of stair walking and jumping.
Loy, D J; Voloshin, A S
1991-01-01
Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.
Brouillard, Brent M; Dickenson, Eric R V; Mikkelson, Kristin M; Sharp, Jonathan O
2016-12-01
The recent bark beetle epidemic across western North America may impact water quality as a result of elevated organic carbon release and hydrologic shifts associated with extensive tree dieback. Analysis of quarterly municipal monitoring data from 2004 to 2014 with discretization of six water treatment facilities in the Rocky Mountains by extent of beetle impact revealed a significant increasing trend in total organic carbon (TOC) and total trihalomethane (TTHM) production within high (≳50% areal infestation) beetle-impacted watersheds while no or insignificant trends were found in watersheds with lower impact levels. Alarmingly, the TTHM concentration trend in the high impact sites exceeded regulatory maximum contaminant levels during the most recent two years of analysis (2013-14). To evaluate seasonal differences, explore the interplay of water quality and hydrologic processes, and eliminate variability associated with municipal reporting, these treatment facilities were targeted for more detailed surface water sampling and characterization. Surface water samples collected from high impact watersheds exhibited significantly higher TOC, aromatic signatures, and disinfection byproduct (DBP) formation potential than watersheds with lower infestation levels. Spectroscopic analyses of surface water samples indicated that these heightened DBP precursor levels are a function of both elevated TOC loading and increased aromatic character. This association was heightened during precipitation and runoff events in high impact sites, supporting the hypothesis that altered hydrologic flow paths resulting from tree mortality mobilize organic carbon and elevate DBP formation potential for several months after runoff ceases. The historical trends found here likely underestimate the full extent of TTHM shifts due to monitoring biases with the extended seasonal release of DBP precursors increasing the potential for human exposure. Collectively, our analysis suggests that while water quality impacts continue to rise nearly one decade after infestation, significant increases in TOC mobilization and DBP precursors are limited to watersheds that experience extensive tree mortality. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate Change in the North American Arctic: A One Health Perspective.
Dudley, Joseph P; Hoberg, Eric P; Jenkins, Emily J; Parkinson, Alan J
2015-12-01
Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.
Is polychaete family-level sufficient to assess impact on tropical estuarine gradients?
NASA Astrophysics Data System (ADS)
Nóbrega-Silva, Climélia; Patrício, Joana; Marques, João Carlos; Olímpio, Monalisa dos Santos; Farias, Jéssica Natyelle Barros; Molozzi, Joseline
2016-11-01
Regular, robust monitoring programs set up to assess the environmental conditions of aquatic systems often target different biological groups. And, of these, macroinvertebrate communities and particularly the class Polychaeta are frequently used. Identifying these organisms takes time, money and specialized expertise to ensure correct identification to the lowest possible taxonomic level. Identification errors can lead to an erroneous assessment. The concept of taxonomic sufficiency has been proposed both to minimize errors and to save time and money. This study tested the usefulness of this concept in tropical estuaries in northeast Brazil. We selected two transitional systems with different degrees of human impact due to different land uses and different conservation systems: the Mamanguape estuary, which is in an environmental conservation unit for sustainable use, and the highly impacted, urban Paraíba do Norte estuary. The results clearly showed that nutrient concentrations were markedly higher in the Paraíba do Norte estuary in the dry season and that the composition of the polychaete assemblages differed between the two estuaries as well as along the spatial gradient of each estuary. The use of either genus or family level led to equivalent representation in each system in terms of taxon richness and both the Margalef and Shannon-Wiener diversity indices. Both taxonomic levels described similar changes in the polychaete assemblage along the estuarine gradients. Based on our findings, the use of a coarser taxonomic level (i.e., family) is a good option when the aim is to implement a monitoring program in tropical estuaries with the polychaete assemblages as one of the target groups. This time-efficient taxonomic resolution can help improve sampling designs and allow long-term monitoring studies without losing much vital information.
NASA Astrophysics Data System (ADS)
Selkoe, K. A.; Halpern, B. S.; Ebert, C. M.; Franklin, E. C.; Selig, E. R.; Casey, K. S.; Bruno, J.; Toonen, R. J.
2009-09-01
Effective and comprehensive regional-scale marine conservation requires fine-grained data on the spatial patterns of threats and their overlap. To address this need for the Papahānaumokuākea Marine National Monument (Monument) in Hawaii, USA, spatial data on 14 recent anthropogenic threats specific to this region were gathered or created, including alien species, bottom fishing, lobster trap fishing, ship-based pollution, ship strike risks, marine debris, research diving, research equipment installation, research wildlife sacrifice, and several anthropogenic climate change threats i.e., increase in ultraviolet (UV) radiation, seawater acidification, the number of warm ocean temperature anomalies relevant to disease outbreaks and coral bleaching, and sea level rise. These data were combined with habitat maps and expert judgment on the vulnerability of different habitat types in the Monument to estimate spatial patterns of current cumulative impact at 1 ha (0.01 km2) resolution. Cumulative impact was greatest for shallow reef areas and peaked at Maro Reef, where 13 of the 14 threats overlapped in places. Ocean temperature variation associated with disease outbreaks was found to have the highest predicted impact overall, followed closely by other climate-related threats, none of which have easily tractable management solutions at the regional scale. High impact threats most tractable to regional management relate to ship traffic. Sensitivity analyses show that the results are robust to both data availability and quality. Managers can use these maps to (1) inform management and surveillance priorities based on the ranking of threats and their distributions, (2) guide permitting decisions based on cumulative impacts, and (3) choose areas to monitor for climate change effects. Furthermore, this regional analysis can serve as a case study for managers elsewhere interested in assessing and mapping region-specific cumulative human impacts.
Participatory Patterns in an International Air Quality Monitoring Initiative
Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D. P.; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris
2015-01-01
The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution. PMID:26313263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-05-01
During the Summer and Fall of 1982, Arawak Consulting Corporation monitored a number of program management functions of the Low Income Weatherization Assistance Program (WAP) in the 20 states under the jurisdiction of the DOE Chicago Operations Office. The monitoring included on-site visits to all 20 state grantees and 85 randomly selected local subgrantees. Although the monitoring was designed to focus only on the DOE funded program, it soon became apparent that funds from the Department of Health and Human Services' Low Income Home Energy Assistance Program (LIHEAP) often had a significant effect on the scope and mode of operationmore » of the weatherization program. As a result of these and other outcomes, DOE asked Arawak to further study the impact of HHS funds on the Weatherization Assistance Program in the same 20 states. This report is the result of that request. It draws on information collected during the monitoring visits which were conducted from mid-July to mid-October 1982, and on additional information obtained in telephone interviews during the last two weeks of February 1983.« less
Participatory Patterns in an International Air Quality Monitoring Initiative.
Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris
2015-01-01
The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.
The human right to water and sanitation: a new perspective for public policies.
Brown, Colin; Neves-Silva, Priscila; Heller, Léo
2016-03-01
The recognition of the human right to water and sanitation (HRtWS) by the United Nations General Assembly and Human Rights Council in 2010 constituted a significant political measure whose direct consequences are still being assessed. Previous to this date, the HRtWS and its link to a healthy life and adequate standard of living had been recognised in diverse legal and judicial spheres worldwide, in some cases under the pressure of the initiatives of strong social movements. However, while the HRtWS is recognised by the UN State Members, it constitutes a concept in construction that has not been approached and interpreted in consensual ways by all concerned stakeholders. The present article presents a formal definition of this right with a base in human rights regulation. It attempts to dialogue with the different existing perspectives regarding the impact of its international recognition as a human right. It then elucidates the progressive development of the HRtWS in law and jurisprudence. Finally, it considers the urgency and challenge of monitoring the HRtWS and discusses important implications for public policies.
NASA Astrophysics Data System (ADS)
Mabrouk, Badr; Arafa, Salah; Gemajl, Khaled
2015-04-01
Sustainable development in the Nile Delta of Egypt is retarded by serious environmental problems, where land-use and land-cover of the region are subjected to continuous changes; including shoreline changes either by erosion or accretion, subsidence of the delta, as well as by sea level rise due to climate change. The current research attempts to; (1) study the vulnerability of the northern western region of the Nile Delta coastal zone to climate change/sea level rise while setting basic challenges, review adaptation strategies based on adaptation policy framework, and highlight recommended programs for preparedness to climate change, (2) study the scarcity of water resources in the area of study with review of the socioeconomic impacts and the critical need of establishing desalination plants with new standards assessing the environmental situation and population clusters, and (3) monitor of the brine water extracted from the desalination plants and injected to subsurface strata. This monitoring process is divided into 3 main directions: 1) studying the chemical characteristics of water extracted from the water desalinations plants qualitatively and quantitatively. 2) mapping the subsurface of which that brine water will be injected to it and the flow directions and effects using resistivity data, and 3) using GIS and suitable numerical models in order to study the effect, volume, flow of the brine water and its long term environmental impacts on the area. The results indicate that the area is particularly vulnerable to the impact of SLR, salt water intrusion, the deterioration of coastal tourism and the impact of extreme dust storms. This in turn will directly affect the agricultural productivity and human settlements in coastal zones. The paper presents different scenarios for water management and recommends the most suitable scenarios in order to establish a core for water management strategy in the region according to existing socio-economic and environmental situations. Key words: Nile Delta, climate change, socioeconomic, sea level rise, groundwater monitoring, GIS
Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.
2010-01-01
This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.
Head-Impact-Measurement Devices: A Systematic Review.
O'Connor, Kathryn L; Rowson, Steven; Duma, Stefan M; Broglio, Steven P
2017-03-01
With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. To assess available head-impact devices and their clinical utility. We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians working on the sidelines to monitor athletes. However, head-impact-monitoring systems have limited clinical utility due to error rates, designs, and low specificity in predicting concussive injury.
Seagrass-Watch: Engaging Torres Strait Islanders in marine habitat monitoring
NASA Astrophysics Data System (ADS)
Mellors, Jane E.; McKenzie, Len J.; Coles, Robert G.
2008-09-01
Involvement in scientifically structured habitat monitoring is a relatively new concept to the peoples of Torres Strait. The approach we used was to focus on awareness, and to build the capacity of groups to participate using Seagrass-Watch as the vehicle to provide education and training in monitoring marine ecosystems. The project successfully delivered quality scientifically rigorous baseline information on the seasonality of seagrasses in the Torres Strait—a first for this region. Eight seagrass species were identified across the monitoring sites. Seagrass cover varied within and between years. Preliminary evidence indicated that drivers for seagrass variability were climate related. Generally, seagrass abundance increased during the north-west monsoon ( Kuki), possibly a consequence of elevated nutrients, lower tidal exposure times, less wind, and higher air temperatures. Low seagrass abundance coincided with the presence of greater winds and longer periods of exposure at low tides during the south-east trade wind season ( Sager). No seasonal patterns were apparent when frequency of disturbance from high sedimentation and human impacts was high. Seagrass-Watch has been incorporated in to the Thursday Island High School's Marine Studies Unit ensuring continuity of monitoring. The students, teachers, and other interested individuals involved in Seagrass-Watch have mastered the necessary scientific procedures to monitor seagrass meadows, and developed skills in coordinating a monitoring program and skills in mentoring younger students. This has increased the participants' self-esteem and confidence, and given them an insight into how they may participate in the future management of their sea country.
Geomorphology of Impact Features on Tethys Using High Resolution Mosaics
2017-03-01
Space Exploration, Arizona State University, Tempe, AZ 85282 NIA 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM...8217 coorbital moons are very likely to impact Tethys. The distribution, impact velocities, and impact angles of the debris are spatially-variable. In...particular, high-velocity debris (>5 km/s) with low impact angles are highly clustered along the equator in Tethys’ leading hemisphere. Slower impacts
Considerations for human-machine interfaces in tele-operations
NASA Technical Reports Server (NTRS)
Newport, Curt
1991-01-01
Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.
Roberts, James H.; Anderson, Gregory B.; Angermeier, Paul
2016-01-01
Projects to assess environmental impact or restoration success in rivers focus on project-specific questions but can also provide valuable insights for future projects. Both restoration actions and impact assessments can become “adaptive” by using the knowledge gained from long-term monitoring and analysis to revise the actions, monitoring, conceptual model, or interpretation of findings so that subsequent actions or assessments are better informed. Assessments of impact or restoration success are especially challenging when the indicators of interest are imperiled species and/or the impacts being addressed are complex. From 1997 to 2015, we worked closely with two federal agencies to monitor habitat availability for and population density of Roanoke logperch (Percina rex), an endangered fish, in a 24-km-long segment of the upper Roanoke River, VA. We primarily used a Before-After-Control-Impact analytical framework to assess potential impacts of a river channelization project on the P. rex population. In this paper, we summarize how our extensive monitoring facilitated the evolution of our (a) conceptual understanding of the ecosystem and fish population dynamics; (b) choices of ecological indicators and analytical tools; and (c) conclusions regarding the magnitude, mechanisms, and significance of observed impacts. Our experience with this case study taught us important lessons about how to adaptively develop and conduct a monitoring program, which we believe are broadly applicable to assessments of environmental impact and restoration success in other rivers. In particular, we learned that (a) pre-treatment planning can enhance monitoring effectiveness, help avoid unforeseen pitfalls, and lead to more robust conclusions; (b) developing adaptable conceptual and analytical models early was crucial to organizing our knowledge, guiding our study design, and analyzing our data; (c) catchment-wide processes that we did not monitor, or initially consider, had profound implications for interpreting our findings; and (d) using multiple analytical frameworks, with varying assumptions, led to clearer interpretation of findings than the use of a single framework alone. Broader integration of these guiding principles into monitoring studies, though potentially challenging, could lead to more scientifically defensible assessments of project effects.
The Heavy Metals in Agrosystems and Impact on Health and Quality of Life.
Tutic, Adnan; Novakovic, Srecko; Lutovac, Mitar; Biocanin, Rade; Ketin, Sonja; Omerovic, Nusret
2015-06-15
The metal is a chemical element that conducts electricity well and heat, and the nonferrous metals builds cations and ionic bonds. Heavy metals include metals whose density is higher than 5 g/cm(3). The whole range of the metal is in the form of essential trace elements, essential for a number of functions in the human body, and its deficiency results in a lack of occurrence of a serious symptom. The best examples are anemia lack of iron, lack of chromium in diabetes, growth problems in lack of nickel. Other elements such as lead, cadmium, mercury, arsenic and molybdenum have been shown to exhibit large quantities of toxic effects. The paper examines the problem of heavy metals originating from agriculture on agroecosystems. This group of pollutants is considered the most important cause of degradation of soil quality, surface and groundwater and direct causal adverse effects on human and animal health. In order to complete the environmental monitoring of pollutants, these main categories, origins, and possible negative impacts of the basic principles of preventing their toxic effects were examined.
The Heavy Metals in Agrosystems and Impact on Health and Quality of Life
Tutic, Adnan; Novakovic, Srecko; Lutovac, Mitar; Biocanin, Rade; Ketin, Sonja; Omerovic, Nusret
2015-01-01
The metal is a chemical element that conducts electricity well and heat, and the nonferrous metals builds cations and ionic bonds. Heavy metals include metals whose density is higher than 5 g/cm3. The whole range of the metal is in the form of essential trace elements, essential for a number of functions in the human body, and its deficiency results in a lack of occurrence of a serious symptom. The best examples are anemia lack of iron, lack of chromium in diabetes, growth problems in lack of nickel. Other elements such as lead, cadmium, mercury, arsenic and molybdenum have been shown to exhibit large quantities of toxic effects. The paper examines the problem of heavy metals originating from agriculture on agroecosystems. This group of pollutants is considered the most important cause of degradation of soil quality, surface and groundwater and direct causal adverse effects on human and animal health. In order to complete the environmental monitoring of pollutants, these main categories, origins, and possible negative impacts of the basic principles of preventing their toxic effects were examined. PMID:27275249
Hogan, Daniel R.; Salomon, Joshua A.
2005-01-01
Strategies for confronting the epidemic of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) have included a range of different approaches that focus on prevention and treatment. However, debate persists over what levels of emphasis are appropriate for the different components of the global response. This paper presents an overview of this debate and briefly summarizes the evidence on a range of interventions designed to prevent the spread of HIV infection, paying particular attention to voluntary counselling and testing, treatment for sexually transmitted infections and prevention of mother-to-child transmission. We also review the experience with antiretroviral therapy to date in terms of response rates and survival rates, adherence, drug resistance, behavioural change and epidemiological impact. Although various studies have identified strategies with proven effectiveness in reducing the risks of HIV infection and AIDS mortality, considerable uncertainties remain. Successful integration of treatment and prevention of HIV/AIDS will require a balanced approach and rigorous monitoring of the impact of programmes in terms of both individual and population outcomes. PMID:15744406
OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America
NASA Astrophysics Data System (ADS)
Kharol, Shailesh K.; McLinden, Chris A.; Sioris, Christopher E.; Shephard, Mark W.; Fioletov, Vitali; van Donkelaar, Aaron; Philip, Sajeev; Martin, Randall V.
2017-05-01
Sulfur dioxide (SO2) has a significant impact on the environment and human health. We estimated ground-level sulfur dioxide (SO2) concentrations from the Ozone Monitoring Instrument (OMI) using SO2 profiles from the Global Environmental Multi-scale - Modelling Air quality and CHemistry (GEM-MACH) model over North America for the period of 2005-2015. OMI-derived ground-level SO2 concentrations (r = 0. 61) and trends (r = 0. 74) correlated well with coincident in situ measurements from air quality networks over North America. We found a strong decreasing trend in coincidently sampled ground-level SO2 from OMI (-81 ± 19 %) and in situ measurements (-86 ± 13 %) over the eastern US for the period of 2005-2015, which reflects the implementation of stricter pollution control laws, including flue-gas desulfurization (FGD) devices in power plants. The spatially and temporally contiguous OMI-derived ground-level SO2 concentrations can be used to assess the impact of long-term exposure to SO2 on the health of humans and the environment.
Management applications of discontinuity theory
Angeler, David G.; Allen, Craig R.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance H.; Knutson, Melinda; Nash, Kirsty L.; Nelson, R. John; Nystrom, Magnus; Spanbauer, Trisha; Stow, Craig A.; Sundstrom, Shana M.
2015-01-01
Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation.
Suspect screening and non-targeted analysis of drinking water using point-of-use filters.
Newton, Seth R; McMahen, Rebecca L; Sobus, Jon R; Mansouri, Kamel; Williams, Antony J; McEachran, Andrew D; Strynar, Mark J
2018-03-01
Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita ® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries. Published by Elsevier Ltd.
Structural health monitoring of inflatable structures for MMOD impacts
NASA Astrophysics Data System (ADS)
Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish
2017-04-01
Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.
The conservation status and anthropogenic impacts assessments of Mediterranean coastal dunes
NASA Astrophysics Data System (ADS)
Pinna, Maria Silvia; Cogoni, Donatella; Fenu, Giuseppe; Bacchetta, Gianluigi
2015-12-01
Mediterranean coastal dunes have been highly modified by human impacts and understanding their conservation status is crucial to preserve these extremely vulnerable habitats. In the present study three different diversity indices elaborated by Grunewald and Schubert (Hdune, a modified version of the Shannon diversity index, Edune, a modified Evenness index, and N, the Naturalness index) were applied in order to assess the conservation status and anthropogenic impacts on Is Arenas dune system (CW Sardinia), one of the widest and most important in the Western Mediterranean Basin. Within the system, two sites with different anthropic disturbance conditions were selected; 25 permanent plots were seasonally monitored and the cover of each vascular plant present was visually estimated. The Hdune values were similar between sites and differences were not significant; Edune showed higher value in the North than in the South site with relevant statistical differences. Moreover a seasonal variation in the indices values was recorded, which could be linked to presence of annual plants rather than the touristic pressure. Instead, the small variability of N index suggests that the application of this index may be an important tool to assess human impact on coastal dunes, but better discriminates between sites with different disturbance degrees. Our results highlight the usefulness of Hdune and Edune indices to assess the conservation status of a Mediterranean coastal dune system, while these indices are less influenced by the human trampling at finer scale (sites within the beach). Spring and summer are the best seasons when the main plant diversity of Mediterranean coastal dune can be captured. The diversity indices applied, although need to be developed through further researches, could be a quickly tool allowing to assess the integrity of the coastal dunes in order to plan management actions of these complex and threatened ecosystems.
Effect of quality metric monitoring and colonoscopy performance.
Razzak, Anthony; Smith, Dineen; Zahid, Maliha; Papachristou, Georgios; Khalid, Asif
2016-10-01
Background and aims: Adenoma detection rate (ADR) and cecal withdrawal time (CWT) have been identified as measures of colonoscopy quality. This study evaluates the impact of monitoring these measures on provider performance. Methods: Six blinded gastroenterologists practicing at a Veterans Affairs Medical Center were prospectively monitored over 9 months. Data for screening, adenoma surveillance, and fecal occult blood test positive (FOBT +) indicated colonoscopies were obtained, including exam preparation quality, cecal intubation rate, CWT, ADR, adenomas per colonoscopy (APC), and adverse events. Metrics were continuously monitored after a period of informed CWT monitoring and informed CWT + ADR monitoring. The primary outcome was impact on ADR and APC. Results: A total of 1671 colonoscopies were performed during the study period with 540 before informed monitoring, 528 during informed CWT monitoring, and 603 during informed CWT + ADR monitoring. No statistically significant impact on ADR was noted across each study phase. Multivariate regression revealed a trend towards fewer adenomas removed during the CWT monitoring phase (OR = 0.79; 95 %CI 0.62 - 1.02, P = 0.065) and a trend towards more adenomas removed during the CWT + ADR monitoring phase when compared to baseline (OR = 1.26; 95 %CI 0.99 - 1.61, P = 0.062). Indication for examination and provider were significant predictors for higher APC. Provider-specific data demonstrated a direct relationship between high ADR performers and increased CWT. Conclusions: Monitoring quality metrics did not significantly alter colonoscopy performance across a small heterogeneous group of providers. Non-significant trends towards higher APC were noted with CWT + ADR monitoring. Providers with a longer CWT had a higher ADR. Further studies are needed to determine the impact of monitoring on colonoscopy performance.
NASA Astrophysics Data System (ADS)
Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.
2017-12-01
Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.
Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming
2014-10-01
Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.
Micro-patterned graphene-based sensing skins for human physiological monitoring
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik
2018-03-01
Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.
Groundwater monitoring for the impacts of geothermal energy development, conversion and waste disposal is similar to groundwater monitoring for other purposes except that additional information is needed concerning the geothermal reservoir. The research described here developed a...
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Tseng, Chih-Ming
2017-04-01
Due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island Taiwan. Global warming and sea-level rise with increasing frequency and magnitude of storms and typhoons has resulted in an increase of natural hazards, and strong impacts on human life. A consequence of a change of the rainfall regime, increase of intensity and in a reduction of the duration of the events may have dramatic impacts. Heavy rainfall precipitations are one of the major triggering factors for landslides. Typhoon Morakot in 2009 brought extreme and long-time rainfall, and caused severe disasters. After 2009, numerous debris and sediment deposition increased greatly due to the severe landslides in upstream area. Detail morphological records may able to reveal the environment changes. This kind of analysis is based on the concept of DEM of difference (DoD) to evaluate the sediment budgets during climate and geo-hazard events. The aerial photographs generated digital surface models (DSMs) before and after Typhoon Morakot, and the subsequent multi-periods of imageries is thus been conducted in this study. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious information. In order quantify the hazards in different time; we try to integrate several technologies, especially by unmanned aircraft system (UAS), to decipher the consequence and the potential hazard, and the social impact. In order to monitoring the sediment budget of the study area, we integrates several methods, including, 1) Remote-sensing images gathered by UAS and by aerial photos taken in different periods; 2) field in-situ geologic investigation; 3) Differential GPS, RTK GPS in-site geomatic measurements; 4) Construct the DTMs before and after landslide, as well as the subsequent periods using UAS and aerial photos. We finally acquired 7 DEMs, prior to post-events, from 2009-2015. The precision of the dataset been verified firstly. The migration of the debris is well defined from DEMs and been calculated. The sediment budgets are thus been evaluated. The riverbed migration is affect both by natural sediment deposition and by human activities. The profile of the riverbed is blocked mainly in the midstream area. One-half of the debris still rested on the mid- to upstream, and in the up-slope. To the end, the UAS and the methodology used in this study is been adjusted and is capable to apply to other region for hazard monitoring, mitigation and planning.
NASA Astrophysics Data System (ADS)
Nastan, A.; Diner, D. J.
2017-12-01
Epidemiological studies have demonstrated convincingly that airborne particulate matter has a major impact on human health, particularly in urban areas. However, providing an accurate picture of the health effects of various particle mixtures — distinguished by size, shape, and composition — is difficult due to the constraints of currently available measurement tools and the heterogeneity of atmospheric chemistry and human activities over space and time. The Multi-Angle Imager for Aerosols (MAIA) investigation, currently in development as part of NASA's Earth Venture Instrument Program, will address this issue through a powerful combination of technologies and informatics. Atmospheric measurements collected by the MAIA satellite instrument featuring multiangle and innovative polarimetric imaging capabilities will be combined with available ground monitor data and a chemical transport model to produce maps of speciated particulate matter at 1 km spatial resolution for a selected set of globally distributed cities. The MAIA investigation is also original in integrating data providers (atmospheric scientists), data users (epidemiologists), and stakeholders (public health experts) into a multidisciplinary science team that will tailor the observation and analysis strategy within each target area to improve our understanding of the linkages between different particle types and adverse human health outcomes.
Theiner, Sarah; Grabarics, Márkó; Galvez, Luis; Varbanov, Hristo P; Sommerfeld, Nadine S; Galanski, Markus; Keppler, Bernhard K; Koellensperger, Gunda
2018-04-17
The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.
Health consequences of exposure to brominated flame retardants: a systematic review.
Kim, Young Ran; Harden, Fiona A; Toms, Leisa-Maree L; Norman, Rosana E
2014-07-01
Brominated flame retardants (BFRs), are chemicals widely used in consumer products including electronics, vehicles, plastics and textiles to reduce flammability. Experimental animal studies have confirmed that these compounds may interfere with thyroid hormone homeostasis and neurodevelopment but to date health effects in humans have not been systematically examined. To conduct a systematic review of studies on the health impacts of exposure to BFRs in humans, with a particular focus on children. A systematic review was conducted using the MEDLINE and EMBASE electronic databases up to 1 February 2012. Published cohort, cross-sectional, and case-control studies exploring the relationship between BFR exposure and various health outcomes were included. In total, 36 epidemiological studies meeting the pre-determined inclusion criteria were included. Plausible outcomes associated with BFR exposure include diabetes, neurobehavioral and developmental disorders, cancer, reproductive health effects and alteration in thyroid function. Evidence for a causal relationship between exposure to BFRs and health outcomes was evaluated within the Bradford Hill framework. Although there is suggestive evidence that exposure to BFRs is harmful to health, further epidemiological investigations particularly among children, and long-term monitoring and surveillance of chemical impacts on humans are required to confirm these relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.
Employing moderate resolution sensors in human rights and international humanitarian law monitoring
NASA Astrophysics Data System (ADS)
Marx, Andrew J.
Organizations concerned with human rights are increasingly using remote sensing as a tool to improve their detection of human rights and international humanitarian law violations. However, as these organizations have transitioned to human rights monitoring campaigns conducted over large regions and extended periods of time, current methods of using fine- resolution sensors and manpower-intensive analyses have become cost- prohibitive. To support the continued growth of remote sensing in human rights and international humanitarian law monitoring campaigns, this study researches how moderate resolution land observatories can provide complementary data to operational human rights monitoring efforts. This study demonstrates the capacity of moderate resolutions to provide data to monitoring efforts by developing an approach that uses Landsat Enhanced Thematic Mapper Plus (ETM+) as part of a system for the detection of village destruction in Darfur, Sudan. Village destruction is an indicator of a human rights or international humanitarian law violations in Darfur during the 2004 study period. This analysis approach capitalizes on Landsat's historical archive and systematic observations by constructing a historic spectral baseline for each village in the study area that supports automated detection of a potentially destroyed village with each new overpass of the sensor. Using Landsat's near-infrared band, the approach demonstrates high levels of accuracy when compared with a U.S. government database documenting destroyed villages. This approach is then applied to the Darfur conflict from 2002 to 2008, providing new data on when and where villages were destroyed in this widespread and long-lasting conflict. This application to the duration of a real-world conflict illustrates the abilities and shortcomings of moderate resolution sensors in human rights monitoring efforts. This study demonstrates that moderate resolution satellites have the capacity to contribute complementary data to operational human rights monitoring efforts. While this study validates this capacity for the burning of villages in arid environments, this approach can be generalized to detect other human rights violations if an observable signal that represents the violation is identified.
Hoxha, Endrit; Jusselme, Thomas
2017-10-15
There is now clear evidence regarding the extensive use of furniture and appliances in daily human life, but there is less evidence of their impact on the environment. Responding to this gap in knowledge, this study focuses on an assessment of the environmental impacts of furniture and appliances as used in highly energy efficient buildings. Their primary energy, non-renewable energy and global warming potential indicators have been assessed by extending the boundaries of the Life Cycle Assessment (LCA) study beyond the building itself. In conclusion, we found that furniture and appliances were responsible for around 30% of greenhouse gas emissions and non-renewable energy consumption and 15% of primary energy consumption comparing to the overall impacts of the building. Since embodied impacts represent the largest values, the process for labelling the appliances' energy efficiency should encompass a life-cycle point of view, not just a usage point of view as the case currently. Among office appliances, computer equipment was ranked as the highest impacting element, especially laptops and monitors. As for domestic appliances, refrigerators and electric ovens had the biggest impacts. Concerning furniture, the greatest impacts were from office and kitchen cabinets. Copyright © 2017 Elsevier B.V. All rights reserved.
Pellegrinelli, L; Binda, S; Chiaramonte, I; Primache, V; Fiore, L; Battistone, A; Fiore, S; Gambino, M; Bubba, L; Barbi, M
2013-11-01
Human Enteroviruses (HEVs) infections have a significant impact on public health, being implicated in outbreaks of meningitis, encephalitis, hand-foot-mouth disease and other acute and chronic manifestation. In the strategic plan for poliomyelitis eradication, the environmental surveillance of poliovirus (PV) has been identified by the World Health Organization (WHO) as an activity that can complement the surveillance of polio. Having wastewater samples available for PV surveillance allows us to study nonpolio enteroviruses (NPEVs) circulating in the study population, which are widely spread. This study was carried out according to the WHO guidelines for environmental surveillance of PV and analysed the circulation of PV and NPEVs through the isolation of viruses in cell cultures in Milan area; from 2006 to 2010, 321 wastewater samples were collected, regularly over time, at the inlet of three diverse waste water treatment plants (WWTPs). Culturable HEVs were isolated in 80% of sewage samples: all isolates belonged to the HEV-B group and those circulating more intensely were CVB5 and Echo 6, while CVB4 was the predominant serotype found in 2010. In this study, two type 2 PVs were isolated, both characterized as Sabin like. Environmental monitoring of HEVs in Milan has proved to be an interesting tool to investigate the circulation and distribution of viruses. The detection of PV and other NPEV could be predictive of possible re-emergence of these viruses with an impact on public health. NPEV monitoring could also be a powerful public health tool to investigate the possible role of NPEV in different clinical manifestations. © 2013 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Li, JunLi; Fang, Hui; Yang, Liao
2011-12-01
Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.
Taylor, Helen A; Rasheed, Michael A
2011-01-01
We used an established seagrass monitoring programme to examine the short and longer-term impacts of an oil spill event on intertidal seagrass meadows. Results for potentially impacted seagrass areas were compared with existing monitoring data and with control seagrass meadows located outside of the oil spill area. Seagrass meadows were not significantly affected by the oil spill. Declines in seagrass biomass and area 1month post-spill were consistent between control and impact meadows. Eight months post-spill, seagrass density and area increased to be within historical ranges. The declines in seagrass meadows were likely attributable to natural seasonal variation and a combination of climatic and anthropogenic impacts. The lack of impact from the oil spill was due to several mitigating factors rather than a lack of toxic effects to seagrasses. The study demonstrates the value of long-term monitoring of critical habitats in high risk areas to effectively assess impacts. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Monitoring and Protecting Health and Human Rights in Mexico.
Gómez-Dantés; Frenk; Zorrilla
1995-01-01
This paper describes a unique system through which health care-related human rights are now being monitored and protected in Mexico. Based on the ombudsman concept, the system focuses on identifying and responding to violations of human rights and dignity which may occur in the context of health care delivery. Experience thus far has been encouraging; the Mexican population has identified and used the National Commission of Human Rights as a forum for a variety of health-related complaints. The Mexican system, while requiring strengthening and expansion, is an effort to integrate the monitoring and protection of health-related human rights into the broader field of human rights work in Mexico.
Widespread local chronic stressors in Caribbean coastal habitats
Collin, Rachel; Bastidas, Carolina; Cróquer, Aldo; Gayle, Peter M. H.; Jordán-Dahlgren, Eric; Koltes, Karen; Oxenford, Hazel; Rodriguez-Ramirez, Alberto; Weil, Ernesto; Alemu, Jahson; Bone, David; Buchan, Kenneth C.; Creary Ford, Marcia; Escalante-Mancera, Edgar; Garzón-Ferreira, Jaime; Guzmán, Hector M.; Kjerfve, Björn; Klein, Eduardo; McCoy, Croy; Potts, Arthur C.; Ruíz-Rentería, Francisco; Smith, Struan R.; Tschirky, John; Cortés, Jorge
2017-01-01
Coastal ecosystems and the livelihoods they support are threatened by stressors acting at global and local scales. Here we used the data produced by the Caribbean Coastal Marine Productivity program (CARICOMP), the longest, largest monitoring program in the wider Caribbean, to evidence local-scale (decreases in water quality) and global-scale (increases in temperature) stressors across the basin. Trend analyses showed that visibility decreased at 42% of the stations, indicating that local-scale chronic stressors are widespread. On the other hand, only 18% of the stations showed increases in water temperature that would be expected from global warming, partially reflecting the limits in detecting trends due to inherent natural variability of temperature data. Decreases in visibility were associated with increased human density. However, this link can be decoupled by environmental factors, with conditions that increase the flush of water, dampening the effects of human influence. Besides documenting environmental stressors throughout the basin, our results can be used to inform future monitoring programs, if the desire is to identify stations that provide early warning signals of anthropogenic impacts. All CARICOMP environmental data are now available, providing an invaluable baseline that can be used to strengthen research, conservation, and management of coastal ecosystems in the Caribbean basin. PMID:29261694
Air quality concerns of unconventional oil and natural gas production.
Field, R A; Soltis, J; Murphy, S
2014-05-01
Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of pollutants is possible. Public health protection is improved when emissions are controlled and facilities are located away from where people live. Based on lessons learned in the US we outline an approach for future unconventional O & NG development that includes regulation, assessment and monitoring.
NASA Technical Reports Server (NTRS)
Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil
2011-01-01
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA (Invited)
NASA Astrophysics Data System (ADS)
Soave, K.; Dean, A.; Darakananda, K.; Ball, O.; Butti, C.; Yang, G.; Vetter, M.; Grimaldi, Z.
2009-12-01
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA Kathy Soave, Amy Dean, Olivia Ball, Karin Darakananda, Matt Vetter, Grant Yang, Charlotte Butti, Zoe Grimaldi The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of the project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and the requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects (A and B) and using randomly determined points within a permanent 100 m2 area, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will analyze the population densities, seasonal abundance and long-term population trends of key algal and invertebrate species. Future analyses and investigations will include intertidal abiotic factors (including water temperature and human foot-traffic) to enhance insights into the workings of the Duxbury Reef ecosystem, in particular, the high intertidal zone which experiences the greatest amount of human impacts. Kathy Soave The Branson School 39 Fernhill Rd. Ross, CA 94957 (415) 454-3612 x 323 Amy Dean Farallones Marine Sanctuary Association, PO Box 29386 San Francisco, CA 94129, 415-561-6625 x 303 AGU Sponsor, Ines Cifuentes, AGU membership number 10189667
A low-cost particulate matter (PM2.5) monitor for wildland fire smoke
NASA Astrophysics Data System (ADS)
Kelleher, Scott; Quinn, Casey; Miller-Lionberg, Daniel; Volckens, John
2018-02-01
Wildfires and prescribed fires produce emissions that degrade visibility and are harmful to human health. Smoke emissions and exposure monitoring is critical for public and environmental health protection; however, ground-level measurements of smoke from wildfires and prescribed fires has proven difficult, as existing (validated) monitoring technologies are expensive, cumbersome, and generally require line power. Few ground-based measurements are made during fire events, which limits our ability to assess the environmental and human health impacts of wildland fire smoke. The objective of this work was to develop and validate an Outdoor Aerosol Sampler (OAS) - a filter-based air sampler that has been miniaturized, solar powered, and weatherproofed. This sampler was designed to overcome several of the technical challenges of wildland fire monitoring by being relatively inexpensive and solar powered. The sampler design objectives were achieved by leveraging low-cost electronic components, open-source programming platforms, and in-house fabrication methods. A direct-reading PM2.5 sensor was selected and integrated with the OAS to provide time-resolved concentration data. Cellular communications established via short message service (SMS) technology were utilized in transmitting online sensor readings and controlling the sampling device remotely. A Monte Carlo simulation aided in the selection of battery and solar power necessary to independently power the OAS, while keeping cost and size to a minimum. Thirteen OAS were deployed to monitor smoke concentrations downwind from a large prescribed fire. Aerosol mass concentrations were interpolated across the monitoring network to depict smoke concentration gradients in the vicinity of the fire. Strong concentration gradients were observed (spatially and temporally) and likely present due to a combination of changing fire location and intensity, topographical features (e.g., mountain ridges), and diurnal weather patterns. Gravimetric filter measurements made by the OAS (when corrected for filter collection efficiency) showed relatively good agreement with measurements from an EPA federal equivalent monitor. However, the real-time optical sensor (Sharp GP2Y1023AU0F, Sharp Electronic Co.) within the OAS suffered from temperature dependence, drift, and imprecision.
NASA Astrophysics Data System (ADS)
Huff, A. K.; Weber, S.; Braggio, J.; Talbot, T.; Hall, E.
2012-12-01
Fine particulate matter (PM2.5) is a criterion air pollutant, and its adverse impacts on human health are well established. Traditionally, studies that analyze the health effects of human exposure to PM2.5 use concentration measurements from ground-based monitors and predicted PM2.5 concentrations from air quality models, such as the U.S. EPA's Community Multi-scale Air Quality (CMAQ) model. There are shortcomings associated with these datasets, however. Monitors are not distributed uniformly across the U.S., which causes spatially inhomogeneous measurements of pollutant concentrations. There are often temporal variations as well, since not all monitors make daily measurements. Air quality model output, while spatially and temporally uniform, represents predictions of PM2.5 concentrations, not actual measurements. This study is exploring the potential of combining Aerosol Optical Depth (AOD) data from the MODIS instrument on NASA's Terra and Aqua satellites with PM2.5 monitor data and CMAQ predictions to create PM2.5 datasets that more accurately reflect the spatial and temporal variations in ambient PM2.5 concentrations on the metropolitan scale, with the overall goal of enhancing capabilities for environmental public health decision-making. AOD data provide regional information about particulate concentrations that can fill in the spatial and temporal gaps in the national PM2.5 monitor network. Furthermore, AOD is a measurement, so it reflects actual concentrations of particulates in the atmosphere, in contrast to PM2.5 predictions from air quality models. Results will be presented from the Battelle/U.S. EPA statistical Hierarchical Bayesian Model (HBM), which was used to combine three PM2.5 concentration datasets: monitor measurements, AOD data, and CMAQ model predictions. The study is focusing on the Baltimore, MD and New York City, NY metropolitan regions for the period 2004-2006. For each region, combined monitor/AOD/CMAQ PM2.5 datasets generated by the HBM are being correlated with data on inpatient hospitalizations and emergency room visits for seven respiratory and cardiovascular diseases using statistical case-crossover analyses. Preliminary results will be discussed regarding the potential for the addition of AOD data to increase the correlation between PM2.5 concentrations and health outcomes. Environmental public health tracking programs associated with the Maryland Department of Health and Mental Hygiene, the New York State Department of Health, the CDC, and the U.S. EPA have expressed interest in using the results of this study to enhance their existing environmental health surveillance activities.
Raina, A K; Baheti, M; Haldar, A; Ramulu, M; Chakraborty, A K; Sahu, P B; Bandopadhayay, C
2004-04-01
Human response to blast induced ground vibration and air-overpressure/noise is a major concern of current mining activity. This is because the fact that mines are fast transgressing the habitats and people are getting educated. Consequently the response of humans is changing and expectedly will increase in days to come with no viable and economic alternative to blasting--an essential component of mining. The response of humans can be purely physiological or psychological in nature or combination of both depending upon the situation and conditions of mining. Where physiological response is documented in terms of effects on ears and lungs there is a meager amount or no literature available regarding effects of blasting on the brain. Moreover, the studies on transitory phenomenon like the effects of blasting on humans are rare in comparison to the whole body vibration studies. This study was designed to address the issues as a precursor to a major initiative. The preliminary investigations conducted with the monitoring of EEG responses of humans to vibration and air-overpressure/noise due to blasting revealed that there is no major response of the brain to transitory vibrations and noise.
Sensor Technologies on Flexible Substrates
NASA Technical Reports Server (NTRS)
Koehne, Jessica
2016-01-01
NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.
Water Quality Monitoring in the Execution of Canal Remediation Methods in the Florida Keys
NASA Astrophysics Data System (ADS)
Serna, A.; Briceno, H.
2016-02-01
Monitoring data indicate relatively high nutrient concentrations in waters close to shore along the Florida Keys, and corresponding responses from the system, such as higher phytoplankton biomass, turbidity and light attenuation as well as lower oxygenation and lower salinities of the water column. These changes, associated to human impact, have become more obvious near canal mouths. Waters close to shore show characteristics closely related to those in residential canals, affected by quick movement of infiltrated runoff and wastewaters (septic tanks), tides and high water table. Many canals do not meet the minimum water quality (WQ) criteria established by the State of Florida and are a potential source of contaminants to near shore waters designated as Outstanding Florida Waters. Canal remediation is being conducted by the Monroe County targeting poor circulation and organic matter accumulation. The restoration technologies include reduction in weed wrack, enhanced circulation, organic removal and partial backfilling. The objective of WQ monitoring is to measure the status and trends of WQ parameters to evaluate progress toward achieving and maintaining WQ standards and protecting/restoring the living marine resources. Monitoring followed a Before-and-After-Control-Impact scheme (BACI). Field measurements, included diel observations and vertical profiles of physical-chemical properties (salinity, DO, %DO saturation, temperature and turbidity) and nutrient analysis. Comparing profiles between remediated and control canals indicated similar patterns in physicochemical properties, and suggesting larger seasonal than spatial variability. BACI diel observations, in surface and bottom waters of remediated canals indicated little difference for surface waters, but significant improvements for bottom waters. Most surface waters are well oxygenated, while bottom waters show a significant increase in DO following culvert installation.
Lunar impacts: frequencies and monitoring. (Italian Title: Impatti lunari: frequenze e monitoraggio)
NASA Astrophysics Data System (ADS)
Sigismondi, C.
2012-12-01
Lunar impacts have been continuously registered by lunar seismographs from 1969 to 1978, and recently they have been also monitored by a NASA project after several observational campaigns steered by IOTA. Video and naked eye observations, with UTC synchronization, can help to identify impact candidates.
On developing bioindicators for human and ecological health.
Burger, J; Gochfeld, M
2001-01-01
Risk assessors and risk managers generally either examine ecological health (using bioindicators) or human health (using biomarkers of exposure or effect). In this paper we suggest that it is possible and advantageous to develop bioindicators that can be used to assess exposure and effect for both human and non-human receptors. We describe the characteristics of suitable bioindicators for both human and ecological health, using mourning doves (Zenaida macroura), raccoons (Procyon lotor), and bluefish (Pomatomus saltatrix) as examples, and list the general characteristics of other species that would make them useful indicators for assessing both human and ecological health. Bioindicators can be used cross-sectionally to assess the status of ecosystems and risk as well as longitudinally for monitoring changes or evaluating remediation. For both human and ecological risk assessment, there are three sets of characteristics to consider when selecting bioindicators: biological relevance, methodological relevance, and societal relevance. An indicator which fails to fulfill these is not likely to be considered cost-effective and is likely to be abandoned. The indicator should be readily measured and must measure an important range of impacts. For long-term support of a bioindicator, the indicator should be easily understood, and be cost effective. We suggest that bioindicators that can also be used for both ecological and human health risk assessment are optimal.
Electric Currents in Granite and Gabbro Generated by Impacts Up To 1 km/sec
NASA Astrophysics Data System (ADS)
Hollerman, W. A.; Lau, B. L.; Moore, R. J.; Malespin, C. A.; Bergeron, N. P.; Freund, F. T.; Wasilewski, P. J.
2006-12-01
For many years, radio noise, strange lights coming out of the ground, and other unusual phenomena have been detected prior to major earthquakes. Only recently have these signals been systematically monitored and their correlations to earthquakes have been more firmly established. A glow in the sky sometimes heralds a big quake. In January 1995, white, blue, or orange lights extending some 200 m into the air and spreading 1 to 8 km across the ground were reported by at least 23 eyewitnesses in and around Kobe, Japan. Hours later, a 6.9-magnitude earthquake killed more than 4,500 people. Such signals imply the movement of electric currents through rock and soil and their discharge into the air. During summer 2006 a research project started using the single-stage light gas gun at the NASA Goddard Space Flight Center in Maryland. The gun fires 63 mm diameter aluminum sabots of a few grams to 1.2 kilograms. A catcher was designed to stop the sabot while allowing a smaller projectile to impact a desired target at velocities up to 1 km/s. This presentation documents first results of the production of electric currents during impacts on granite and gabbro instrumented with capacitive sensors, contact electrodes, magnetic pick-up coils and photo diodes for light detection. This research is critical towards the development of techniques that could be used to monitor quakes on the Earth and estimate secondary effects of meteorite impacts on the Moon and Mars during the next phase of human space exploration.
Vulnerability and fragility risk indices for non-renewable resources.
Miller, Anne E; Steele, Nicholas; Tobin, Benjamin W
2018-06-02
Protected areas are tasked with mitigating impacts to a wide range of invaluable resources. These resources are often subject to a variety of potential natural and anthropogenic impacts that require monitoring efforts and management actions to minimize the degradation of these resources. However, due to insufficient funding and staff, managers often have to prioritize efforts, leaving some resources at higher risk to impact. Attempts to address this issue have resulted in numerous qualitative and semi-quantitative frameworks for prioritization based on resource vulnerability. Here, we add to those methods by modifying an internationally standardized vulnerability framework, quantify both resource vulnerability, susceptibility to human disturbance, and fragility, susceptibility to natural disturbance. This modified framework quantifies impacts through a six-step process: identifying the resource and management objectives, identifying exposure and sensitivity indicators, define scoring criteria for each indicator, collect and compile data, calculate indices, and prioritize sites for mitigations. We applied this methodology to two resource types in Grand Canyon National Park (GRCA): caves and fossil sites. Three hundred sixty-five cave sites and 127 fossil sites in GRCA were used for this analysis. The majority of cave and fossil sites scored moderate to low vulnerability (0-6 out of 10 points) and moderate to low fragility for fossils. The percentage of sites that fell in the high-priority range was 5.5% for fossils and 21.9% for caves. These results are consistent with the known state of these resources and the results present a tool for managers to utilize to prioritize monitoring and management needs.
Impact of Extreme Climatic Events on the Temperature Regimes in Urban Streams
NASA Astrophysics Data System (ADS)
Parchem, C.; Stewart, I. T.
2016-12-01
Urban streams provide important aquatic and riparian habitat close to population centers, as well as other ecosystem services such as flood protection, storm water drainage and recreational functions. Yet, they are already greatly impacted by human action through water management, channel modifications, destruction of riparian habitat, and pollution. This has potentially rendered them more vulnerable to the climatic extremes projected from climatic changes. From 2012 - 2016, California has experienced to date the most severe drought since the beginning of weather recordings. The combination of the resulting extremely low stream flows exacerbated by low precipitation, high evaporation rates, and greater human demand on water, with high temperature have increased the temperature regime in urban streams. However, the extent to which urban stream temperatures are impacted by extreme climatic conditions and what role stream morphology, stream flow characteristics, and riparian vegetation play, are not sufficiently understood. For this project, we monitored stream temperature, dissolved oxygen, and flow depth along a network of 18 sites in the Los Gatos Creek, Guadalupe River, and Coyote Creek, located in the urban regions of the southern San Francisco Bay Area. Monitoring sites were distributed from stream headwaters to flood plains and represented a variety of stream environments. We examined the variation in stream temperature and dissolved oxygen with extreme air temperature, extremely low flow conditions, riparian shading, and channel morphology. Our results show that during the recent drought, hourly stream temperatures rose up to 34°C during summer heat waves for sites in the lower stream reaches without riparian shading. By contrast, shaded sites with deeper flows, and minimally affected by water management were able to maintain lower temperatures by several degrees. Understanding the conditions driving the response of urban streams to climatic extremes can aid in the protection of aquatic ecosystems under climatic change.
Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J. (Compiler)
2014-01-01
The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.
A case study of potential human health impacts from petroleum coke transfer facilities.
Dourson, Michael L; Chinkin, Lyle R; MacIntosh, David L; Finn, Jennifer A; Brown, Kathleen W; Reid, Stephen B; Martinez, Jeanelle M
2016-11-01
Petroleum coke or "petcoke" is a solid material created during petroleum refinement and is distributed via transfer facilities that may be located in densely populated areas. The health impacts from petcoke exposure to residents living in proximity to such facilities were evaluated for a petcoke transfer facilities located in Chicago, Illinois. Site-specific, margin of safety (MOS) and margin of exposure (MOE) analyses were conducted using estimated airborne and dermal exposures. The exposure assessment was based on a combined measurement and modeling program that included multiyear on-site air monitoring, air dispersion modeling, and analyses of soil and surfaces in residential areas adjacent to two petcoke transfer facilities located in industrial areas. Airborne particulate matter less than 10 microns (PM 10 ) were used as a marker for petcoke. Based on daily fence line monitoring, the average daily PM 10 concentration at the KCBX Terminals measured on-site was 32 μg/m 3 , with 89% of 24-hr average PM 10 concentrations below 50 μg/m 3 and 99% below 100 μg/m 3 . A dispersion model estimated that the emission sources at the KCBX Terminals produced peak PM 10 levels attributed to the petcoke facility at the most highly impacted residence of 11 μg/m 3 on an annual average basis and 54 μg/m 3 on 24-hr average basis. Chemical indicators of petcoke in soil and surface samples collected from residential neighborhoods adjacent to the facilities were equivalent to levels in corresponding samples collected at reference locations elsewhere in Chicago, a finding that is consistent with limited potential for off-site exposure indicated by the fence line monitoring and air dispersion modeling. The MOE based upon dispersion model estimates ranged from 800 to 900 for potential inhalation, the primary route of concern for particulate matter. This indicates a low likelihood of adverse health effects in the surrounding community. Implications: Handling of petroleum coke at bulk material transfer facilities has been identified as a concern for the public health of surrounding populations. The current assessment, based on measurements and modeling of two facilities located in a densely populated urban area, indicates that petcoke transport and accumulation in off-site locations is minimal. In addition, estimated human exposures, if any, are well below levels that could be anticipated to produce adverse health effects in the general population.
Gezie, Ayenew; Anteneh, Wassie; Dejen, Eshete; Mereta, Seid Tiku
2017-04-01
Wetlands of Lake Tana Watershed provide various ecological and socioeconomic functions. However, they are losing their vigor at alarming rate due to unwise management. Hence, there is an urgent need to monitor and assess these resources so as to identify the major drivers of its degradation and to provide information for management decisions. In this context, we aimed to assess the effects of human activities on macroinvertebrate assemblages of wetlands in Lake Tana Watershed. Biotic and abiotic data were collected from 46 sampling sites located in eight wetlands. A total of 2568 macroinvertebrates belonging to 46 families were recorded. Macroinvertebrate metrics such as Biological Monitoring Working Party score, Shannon diversity index, Ephemeroptera and odonata family richness, and total family richness portrayed a clear pattern of decreasing with increasing in human disturbances, whereas Family biotic index score, which is an indicator of organic pollution, increased with increasing in human disturbances. The regression analysis also revealed that livestock grazing, leather tanning, and eucalyptus plantation were important predictors of macroinvertebrate metrics (p < 0.05). In conclusion, human activities in and around the wetlands such as farming, leather tanning, solid waste dumping, and effluent discharges were contributed to the degradation of water quality and decreasing in the macroinvertebrate richness and diversity. These alterations could also reduce the availability of wetland products (sedges, craft materials, etc.) and the related ecosystem services. This in turn has an adverse effect on food security and poverty alleviation with considerable impact on communities who heavily depend on wetland products for their livelihood. Therefore, it is essential to formulate wetland policy for achieving wise use goals and necessary legal and institutional backup for sustainable wetland management in Ethiopia.
Fayter, D; Nixon, J; Hartley, S; Rithalia, A; Butler, G; Rudolf, M; Glasziou, P; Bland, M; Stirk, L; Westwood, M
2007-06-01
To clarify the role of growth monitoring in primary school children, including obesity, and to examine issues that might impact on the effectiveness and cost-effectiveness of such programmes. Electronic databases were searched up to July 2005. Experts in the field were also consulted. Data extraction and quality assessment were performed on studies meeting the review's inclusion criteria. The performance of growth monitoring to detect disorders of stature and obesity was evaluated against National Screening Committee (NSC) criteria. In the 31 studies that were included in the review, there were no controlled trials of the impact of growth monitoring and no studies of the diagnostic accuracy of different methods for growth monitoring. Analysis of the studies that presented a 'diagnostic yield' of growth monitoring suggested that one-off screening might identify between 1:545 and 1:1793 new cases of potentially treatable conditions. Economic modelling suggested that growth monitoring is associated with health improvements [incremental cost per quality-adjusted life-year (QALY) of 9500 pounds] and indicated that monitoring was cost-effective 100% of the time over the given probability distributions for a willingness to pay threshold of 30,000 pounds per QALY. Studies of obesity focused on the performance of body mass index against measures of body fat. A number of issues relating to human resources required for growth monitoring were identified, but data on attitudes to growth monitoring were extremely sparse. Preliminary findings from economic modelling suggested that primary prevention may be the most cost-effective approach to obesity management, but the model incorporated a great deal of uncertainty. This review has indicated the potential utility and cost-effectiveness of growth monitoring in terms of increased detection of stature-related disorders. It has also pointed strongly to the need for further research. Growth monitoring does not currently meet all NSC criteria. However, it is questionable whether some of these criteria can be meaningfully applied to growth monitoring given that short stature is not a disease in itself, but is used as a marker for a range of pathologies and as an indicator of general health status. Identification of effective interventions for the treatment of obesity is likely to be considered a prerequisite to any move from monitoring to a screening programme designed to identify individual overweight and obese children. Similarly, further long-term studies of the predictors of obesity-related co-morbidities in adulthood are warranted. A cluster randomised trial comparing growth monitoring strategies with no growth monitoring in the general population would most reliably determine the clinical effectiveness of growth monitoring. Studies of diagnostic accuracy, alongside evidence of effective treatment strategies, could provide an alternative approach. In this context, careful consideration would need to be given to target conditions and intervention thresholds. Diagnostic accuracy studies would require long-term follow-up of both short and normal children to determine sensitivity and specificity of growth monitoring.
Perceptions of occupational injury and illness costs by size of organization.
Haslam, C; Haefeli, K; Haslam, R
2010-09-01
Little is known about how organizations perceive and monitor occupational injury and illness costs. To explore perceptions of injury and illness costs, the extent to which organizations monitor their impact, attitudes towards this practice and views on using cost information in health and safety campaigns. Interviews were conducted with 212 representatives from 49 small- and medium-sized enterprises (SMEs) and 80 large organizations from a range of industry sectors. Health and safety investments were driven by a range of factors, of which cost reduction was only one. Human costs were also considered important. Injuries were perceived to represent a substantial business cost by 10% of respondents from SMEs and 56% of those from large organizations. Most were uncertain about the financial impact of work-related illness. No organizations had attempted to monitor occupational illness costs. Injury costs had been assessed within 3 SMEs and 30 large organizations. Only 12% of SME representatives recognized the benefits of costing health and safety failures and around half were unreceptive to the use of cost information in health and safety promotions. Two-thirds of those from large organizations recognized some benefit in measuring costs, and over three-quarters welcomed the provision of industry-specific information. Provision of information that focuses solely on the economic implications of occupational injury and illness may be of limited value and agencies involved in the promotion of health and safety should incorporate a range of information, taking into account the needs and concerns of different sectors.
Wu, Qimei; Wang, Xin; Zhou, Qixing
2014-05-01
Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Studying fish near ocean energy devices using underwater video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzner, Shari; Hull, Ryan E.; Harker-Klimes, Genevra EL
The effects of energy devices on fish populations are not well-understood, and studying the interactions of fish with tidal and instream turbines is challenging. To address this problem, we have evaluated algorithms to automatically detect fish in underwater video and propose a semi-automated method for ocean and river energy device ecological monitoring. The key contributions of this work are the demonstration of a background subtraction algorithm (ViBE) that detected 87% of human-identified fish events and is suitable for use in a real-time system to reduce data volume, and the demonstration of a statistical model to classify detections as fish ormore » not fish that achieved a correct classification rate of 85% overall and 92% for detections larger than 5 pixels. Specific recommendations for underwater video acquisition to better facilitate automated processing are given. The recommendations will help energy developers put effective monitoring systems in place, and could lead to a standard approach that simplifies the monitoring effort and advances the scientific understanding of the ecological impacts of ocean and river energy devices.« less
Climate variability and vulnerability to climate change: a review
Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J
2014-01-01
The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802
Monitoring of organochlorine pesticides in blood of women with uterine cervix cancer.
Polanco Rodríguez, Ángel G; Riba López, M Inmaculada; DelValls Casillas, T Ángel; Araujo León, J Alfredo; Mahjoub, Olfa; Prusty, Anjan Kumar
2017-01-01
In Yucatan, Mexico, chronic exposure of Mayan population to pesticides is expected as about 30 per cent are drinking polluted water. Residues of organochlorine pesticides (OCP) were monitored in 18 municipalities of Yucatan with high mortality rates due to uterine cervix cancer. 70 blood samples collected from Mayan women living in livestock, agricultural and metropolitan area were analyzed for OCP. Solid Phase Extraction was performed on C18 cartridges and analyzed by Gas Chromatography with Electron Capture Detector. The results showed that the highest OCP levels were detected in blood of women living in the livestock area. OCP detected were endosulfan I (7.35 μg/mL), aldrin (3.69 μg/mL), 4,4' DDD (2.33 μg/mL), 1.39 and 1.46 μg/mL of δ-HCH. Women from the agricultural area had high concentrations of OCP in their blood, particularly dieldrin (1.19 μg/mL), and 1.26 μg/mL of 4,4' DDE. In the metropolitan area, 0.080 μg/mL of γ-HCH and 0.064 μg/mL of heptachlore were detected. This monitoring study was also based on epidemiological data of uterine cervical cancer. It was found that environmental factors may have facilitated the infiltration of OCP to the aquifer used for potable water supply. These factors in addition to poverty can have impacts on public health. This first exploratory study suggests that monitoring of OCP in human is important for the establishment of health promotion programs. The integrative analysis of both, environmental and social factors would be helpful to characterize the bioaccumulation of pesticides in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sharma, Chetan; Rokana, Namita; Chandra, Mudit; Singh, Brij Pal; Gulhane, Rohini Devidas; Gill, Jatinder Paul Singh; Ray, Pallab; Puniya, Anil Kumar; Panwar, Harsh
2018-01-01
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host–microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector. PMID:29359135
Sharma, Chetan; Rokana, Namita; Chandra, Mudit; Singh, Brij Pal; Gulhane, Rohini Devidas; Gill, Jatinder Paul Singh; Ray, Pallab; Puniya, Anil Kumar; Panwar, Harsh
2017-01-01
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector.
Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping
2011-02-01
The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment is thus believed to have potentials to offer new insights into water management and advance the source apportionment framework as an operational basis for national and local governments. © 2010 Elsevier Ltd. All rights reserved.
Otaki, Joji M
2016-10-01
A series of studies on the pale grass blue butterfly that were carried out to assess the biological effects of the Fukushima nuclear accident teach 3 important lessons. First, it is necessary to have an environmental indicator species, such as the pale grass blue butterfly in Japan, that is common (not endangered), shares a living environment (air, water, and soil) with humans, and is amenable to laboratory experiments. The monitoring of such indicator species before and immediately after a nuclear accident likely reflects acute impacts caused by initial exposure. To assess transgenerational and chronic effects, continuous monitoring over time is encouraged. Second, it is important to understand the actual health status of a polluted region and comprehend the whole picture of the pollution impacts, rather than focusing on the selected effects of radiation alone. In our butterfly experiments, plant leaves from Fukushima were fed to larval butterflies to access whole-body effects, focusing on survival rate and morphological abnormalities (rather than focusing on a specific disease or biochemical marker). Our results revealed that ionizing radiation is unlikely to be the exclusive source of environmental disturbances. Airborne particulate matter from a nuclear reactor, regardless of its radioactivity, is likely equally important. Finally, our butterfly experiments demonstrate that there is considerable variation in sensitivities to nuclear pollution within a single species or even within a local population. Based on these results, it is speculated that high pollution sensitivity in humans may be caused not only by low levels of functional DNA repair enzymes but also by immunological responses to particulate matter in the respiratory tract. These lessons from the pale grass blue butterfly should be integrated in studying future nuclear pollution events and decision making on nuclear and environmental policies at the local and international levels in the postFukushima era. Integr Environ Assess Manag 2016;12:667-672. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Plessen, Birgit; Kienel, Ulrike; Dräger, Nadine; Brauer, Achim
2015-04-01
The light stable isotopes of nitrogen and carbon can be widely used to reconstruct past paleoenvironmental conditions, agricultural landscape development, and industrial pollution. They may reflect human impact by extensive land use, manure, sewage input, and atmospheric nitrogen compounds. To understand the lake nitrogen cycle depending on natural variability and anthropogenic forcing, we study the sediment record of Lake Tiefer See (Mecklenburg/NE-Germany) together with the recent input and productivity monthly monitored in sediment traps in the hypo-, meta- and epilimnion. The monitoring of the dimictic to monomictic Lake Tiefer See (62.5 m water depth) over the last three years clearly shows high δ15N (+7 to +14‰ ), and low δ113Corg (-28 to -33‰ ) values of the deposited matter mainly corresponding to internal organic productivity driven by nutrient loading and the development of anoxia in the hypolimnion. Compared to that, surface soil and terrestrial plant materials are characterised by lower δ15N (+3 to +6‰ ), and higher δ13Corg (-28 to -25‰ ) values. Recent high δ15N values of the phytoplankton in the lake water reflect assimilation of dissolved nitrogen compounds enriched in 15N, whereas the lower δ15N of surface core sedimentary matter indicate partly decomposition of organic matter in the anoxic zone and release of 15N enriched components into the lake water. We furthermore identified in the lake sedimentary record a continuous increase in δ15N from +3 to +8‰ over the last 400 years interrupted by short term phases of decreasing 15N enrichment implying an intrusion of human activity in the nitrogen cycle starting at ca. AD 1590. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association, grant number VH-VI-415.
Moreland, Joe A.; Wood, Wayne A.
1982-01-01
Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system.Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant.Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts.
Thomas, James P.; Fisher, Gary B.; Chandler, Lisbeth A.; Angeli, Kim M.; Wheeler, Douglas J.; Glover, Robert P.; Schenck-Gardner, Elizabeth J.; Wiles, Steve E.; Lindley, Carolyn F.; Peccini, Michael B.
2011-01-01
In 1999, the National Oceanic and Atmospheric Administration-National Marine Fisheries Service and the State of Louisiana jointly undertook the restoration of East Timbalier, a barrier island along a sediment-starved portion of the Gulf of Mexico coast of Louisiana. High-resolution overhead imagery was used to monitor the course of this restoration effort. This article describes the changes in area and movement of East Timbalier Island and compares these changes with the previous measurements. Between 2000 and 2010, East Timbalier Island lost 52–66% of its area and moved northwards 12–105 m/year. The area of East Timbalier Island is less today than at any time since 1887. Understanding of the physical processes in nature that control the size, shape and movement of the island, as well as the human impacts that have hastened its degradation, is critical for accomplishing any future restoration.
Venkatesan, Arjun K.; Halden, Rolf U.
2015-01-01
Traditionally, hazardous chemicals have been regulated in the U.S. on a one-by-one basis, an approach that is slow, expensive and can be inefficient, as illustrated by a decades-long succession of replacing one type of organohalogen flame retardants (OHFRs) with another one, without addressing the root cause of toxicity and associated public health threats posed. The present article expounds on the need for efficient monitoring strategies and pragmatic steps in reducing environmental pollution and adverse human health impacts. A promising approach is to combine specific bioassays with state-of-the-art chemical screening to identify chemicals and chemical mixtures sharing specific modes of action (MOAs) and pathways of toxicity (PoTs). This approach could be used to identify and regulate hazardous chemicals as classes or compound families, featuring similar biological end-points, such as endocrine disruption and mutagenicity. Opportunities and potential obstacles of implementing this approach are discussed. PMID:26343697
Monitoring biodiversity in libraries: a pilot study and perspectives for indoor air quality.
Valeriani, F; Cianfanelli, C; Gianfranceschi, G; Santucci, S; Romano Spica, V; Mucci, N
2017-09-01
Indoor Air Quality (IAQ) in libraries is influenced by the presence of specific factors which can impact on both paper storage as well as people health. Microclimatic conditions induce and support a biodiversity pattern involving environmental and anthropic microorganisms. We used a multidisciplinary monitoring model to characterize microflora biodiversity by Next Generation Sequencing (NGS). Biodiversity indexes were adapted to evaluate anthropic vs environmental pollution by combining Shannon mean index (H), species representativeness (E H ), human/environmental pollution ratio (SA) to better characterize the NGS output and acquire synthetic information on Indoor Air Microbial Biodiversity (IAMB). Results indicate a frequently low microbial load (IGCM/m 3 < 1000) characterized by different species (n = 102), including several cellulose metabolizing bacteria. Workers and visitors appeared a relevant source of microbial contamination. Air biodiversity assayed by NGS seems a promising marker for studying IAQ.
NASA Astrophysics Data System (ADS)
Henri, C.; Fernandez-Garcia, D.; de Barros, F.
2014-12-01
Improper disposals of hazardous wastes in most industrial countries give rise to severe groundwater contamination problems that can lead to adverse health effects in humans. Therefore risk assessment methods play an important role in population protection by (1) quantifying the impact on human health of an aquifer contamination and (2) aiding the decision making process of to better manage our groundwater resources. Many reactive components such as chlorinated solvent or nitrate potentially experience attenuation processes under common geochemical conditions. Based on this, monitored natural attenuation has become nowadays an attractive remediation solution. However, in some cases, intermediate degradation products can constitute noxious chemical compounds before reaching a harmless chemical form. In these cases, the joint effect of advection-dispersion transport and the species-dependent kinetic reactions and toxicity will dictate the relative importance of the degradation byproducts to the total risk. This renders the interpretation of risk a non-trivial task. In this presentation, we quantify, through a probabilistic framework, the human health risk posed by a chemical mixture in a heterogeneous aquifer. This work focuses on a Perchloroethylene contamination problem followed by the first-order production/biodegradation of its daughter species Trichloroethylene, Dichloroethylene and Vinyl Chlorine that is known to be highly toxic. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme. A comparative description of human health risk metrics as a function of aquifer heterogeneity and contaminant injection mode is provided by means of a spatial characterization of the lower-order statistical moments and empirical probability density functions of both individual and total risks. Interestingly, we show that the human health risk of a chemical mixture is mainly controlled by a modified Damköhler number that express the joint effect of contaminant mean travel times, reaction kinetics and chemical toxicity. From this, connectivity is shown to produce a significant and non-trivial impact on risk measures. The impact of connectivity can be potentially beneficial or detrimental on the magnitude of human health risk depending on the modified Damköhler number.
Effects of modifying water environments on water supply and human health
NASA Astrophysics Data System (ADS)
Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.
2008-12-01
Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water environments on human health, we have to develop tools to assess and predict such impacts. This paper presents methodologies to assess the current status of water resources degradation and resultant effects on human health are discussed based on some case studies.
Singh, Kunwar P; Mohan, Dinesh; Sinha, Sarita; Dalwani, R
2004-04-01
Studies were undertaken to assess the impact of wastewater/sludge disposal (metals and pesticides) from sewage treatment plants (STPs) in Jajmau, Kanpur (5 MLD) and Dinapur, Varanasi (80 MLD), on health, agriculture and environmental quality in the receiving/application areas around Kanpur and Varanasi in Uttar Pradesh, India. The raw, treated and mixed treated urban wastewater samples were collected from the inlet and outlet points of the plants during peak (morning and evening) and non-peak (noon) hours. The impact of the treated wastewater toxicants (metals and pesticides) on the environmental quality of the disposal area was assessed in terms of their levels in different media samples viz., water, soil, crops, vegetation, and food grains. The data generated show elevated levels of metals and pesticides in all the environmental media, suggesting a definite adverse impact on the environmental quality of the disposal area. The critical levels of the heavy metals in the soil for agricultural crops are found to be much higher than those observed in the study areas receiving no effluents. The sludge from the STPs has both positive and negative impacts on agriculture as it is loaded with high levels of toxic heavy metals and pesticides, but also enriched with several useful ingredients such as N, P, and K providing fertilizer values. The sludge studied had cadmium, chromium and nickel levels above tolerable levels as prescribed for agricultural and lands application. Bio-monitoring of the metals and pesticides levels in the human blood and urine of the different population groups under study areas was undertaken. All the different approaches indicated a considerable risk and impact of heavy metals and pesticides on human health in the exposed areas receiving the wastewater from the STPs.
How 21st century droughts affect food and environmental security
NASA Astrophysics Data System (ADS)
Kogan, Felix
The first 13th years of the 21st century has begun with a series of widespread, long and intensive droughts around the world. Extreme and severe-to-extreme intensity droughts covered 2-6% and 7-16% of the world land, respectively, affecting environment, economies and humans. These droughts reduced agricultural production, leading to food shortages, human health deterioration, poverty, regional disturbances, population migration and death. This presentation is a travelogue of the 21st century global and regional droughts during the warmest years of the past 100 years. These droughts were identified and monitored with the NOAA operational space technology, called Vegetation Health (VH), which has the longest period of observation and provide good data quality. The VH method was used for assessment of vegetation condition or health, including drought early detection and monitoring. The VH method is based on operational satellites data estimating both land surface greenness (NDVI) and thermal conditions. The 21st century droughts in the USA, Russia, Australia Argentina, Brazil, China, India and other principal grain producing countries were intensive, long, covered large areas and caused huge losses in agricultural production, which affected food and environmental security and led to food riots in some countries. This presentation investigate how droughts affect food and environmental security, if they can be detected earlier, how to monitor their area, intensity, duration and impacts and also their dynamics during the climate warming era with satellite-based vegetation health technology.
Monitoring osseointegration and developing intelligent systems (Conference Presentation)
NASA Astrophysics Data System (ADS)
Salvino, Liming W.
2017-05-01
Effective monitoring of structural and biological systems is an extremely important research area that enables technology development for future intelligent devices, platforms, and systems. This presentation provides an overview of research efforts funded by the Office of Naval Research (ONR) to establish structural health monitoring (SHM) methodologies in the human domain. Basic science efforts are needed to utilize SHM sensing, data analysis, modeling, and algorithms to obtain the relevant physiological and biological information for human-specific health and performance conditions. This overview of current research efforts is based on the Monitoring Osseointegrated Prosthesis (MOIP) program. MOIP develops implantable and intelligent prosthetics that are directly anchored to the bone of residual limbs. Through real-time monitoring, sensing, and responding to osseointegration of bones and implants as well as interface conditions and environment, our research program aims to obtain individualized actionable information for implant failure identification, load estimation, infection mitigation and treatment, as well as healing assessment. Looking ahead to achieve ultimate goals of SHM, we seek to expand our research areas to cover monitoring human, biological and engineered systems, as well as human-machine interfaces. Examples of such include 1) brainwave monitoring and neurological control, 2) detecting and evaluating brain injuries, 3) monitoring and maximizing human-technological object teaming, and 4) closed-loop setups in which actions can be triggered automatically based on sensors, actuators, and data signatures. Finally, some ongoing and future collaborations across different disciplines for the development of knowledge automation and intelligent systems will be discussed.
Ioriatti, Claudio; Agnello, Arthur M; Martini, Fabrizio; Kovach, Joseph
2011-10-01
Various pesticide risk indicators have been developed for estimating pesticide impact on human health and the environment. The present work applied a pesticide risk indicator to estimate change in pesticide risk in apple production between 2001 and 2009. The "Environmental Impact Quotient" was used, which evaluates potential impacts of pesticide active ingredients on farm workers, consumers, and nontarget organisms. A modified Environmental Impact Quotient was also tested, which accounts for all ingredients in the formulation presenting a health or environmental hazard, as identified in the Security Data Sheet. Irrespective of the rating system applied, an overall average improvement in environmental impact of apple protection strategies was indicated ranging from 23 to 24%. Hazard reduction was more significant when estimated per treatment, and was higher for acaricides and insecticides than for fungicides. Improvement appeared to be a consequence of using more selective and more effective active ingredients, applying alternative pest control techniques, compulsory periodic sprayer calibration, and wider use of dwarfing orchards. The modified Environmental Impact Quotient does not overcome all limitations regarding accuracy of pesticide risk indicators, but its ease of use in relying on official, easily accessible data, and the consistency of its results, makes it a good candidate for monitoring the success of reduced risk policies. Copyright © 2011 SETAC.
Review of Offshore Wind Farm Impact Monitoring and Mitigation with Regard to Marine Mammals.
Verfuss, Ursula K; Sparling, Carol E; Arnot, Charlie; Judd, Adrian; Coyle, Michael
2016-01-01
Monitoring and mitigation reports from 19 UK and 9 other European Union (EU) offshore wind farm (OWF) developments were reviewed, providing a synthesis of the evidence associated with the observed environmental impact on marine mammals. UK licensing conditions were largely concerned with mitigation measures reducing the risk of physical and auditory injury from pile driving. At the other EU sites, impact monitoring was conducted along with mitigation measures. Noise-mitigation measures were developed and tested in UK and German waters in German government-financed projects. We highlight some of the review's findings and lessons learned with regard to noise impact on marine mammals.
NASA Astrophysics Data System (ADS)
Foolad, Foad; Franz, Trenton E.; Wang, Tiejun; Gibson, Justin; Kilic, Ayse; Allen, Richard G.; Suyker, Andrew
2017-03-01
In this study, the feasibility of using inverse vadose zone modeling for estimating field-scale actual evapotranspiration (ETa) was explored at a long-term agricultural monitoring site in eastern Nebraska. Data from both point-scale soil water content (SWC) sensors and the area-average technique of cosmic-ray neutron probes were evaluated against independent ETa estimates from a co-located eddy covariance tower. While this methodology has been successfully used for estimates of groundwater recharge, it was essential to assess the performance of other components of the water balance such as ETa. In light of recent evaluations of land surface models (LSMs), independent estimates of hydrologic state variables and fluxes are critically needed benchmarks. The results here indicate reasonable estimates of daily and annual ETa from the point sensors, but with highly varied soil hydraulic function parameterizations due to local soil texture variability. The results of multiple soil hydraulic parameterizations leading to equally good ETa estimates is consistent with the hydrological principle of equifinality. While this study focused on one particular site, the framework can be easily applied to other SWC monitoring networks across the globe. The value-added products of groundwater recharge and ETa flux from the SWC monitoring networks will provide additional and more robust benchmarks for the validation of LSM that continues to improve their forecast skill. In addition, the value-added products of groundwater recharge and ETa often have more direct impacts on societal decision-making than SWC alone. Water flux impacts human decision-making from policies on the long-term management of groundwater resources (recharge), to yield forecasts (ETa), and to optimal irrigation scheduling (ETa). Illustrating the societal benefits of SWC monitoring is critical to insure the continued operation and expansion of these public datasets.
Human Factors Analysis of Pipeline Monitoring and Control Operations: Final Technical Report
DOT National Transportation Integrated Search
2008-11-26
The purpose of the Human Factors Analysis of Pipeline Monitoring and Control Operations project was to develop procedures that could be used by liquid pipeline operators to assess and manage the human factors risks in their control rooms that may adv...
Why is the Groundwater Level Rising? A Case Study Using HARTT to Simulate Groundwater Level Dynamic.
Yihdego, Yohannes; Danis, Cara; Paffard, Andrew
2017-12-01
Groundwater from a shallow unconfined aquifer at a site in coastal New South Wales has been causing recent water logging issues. A trend of rising groundwater level has been anecdotally observed over the last 10 years. It was not clear whether the changes in groundwater levels were solely natural variations within the groundwater system or whether human interference was driving the level up. Time series topographic images revealed significant surrounding land use changes and human modification to the environment of the groundwater catchment. A statistical model utilising HARTT (multiple linear regression hydrograph analysis method) simulated the groundwater level dynamics at five key monitoring locations and successfully showed a trend of rising groundwater level. Utilising hydrogeological input from field investigations, the model successfully simulated the rise in the water table over time to the present day levels, whilst taking into consideration rainfall and land changes. The underlying geological/land conditions were found to be just as significant as the impact of climate variation. The correlation coefficient for the monitoring bores (MB), excluding MB4, show that the groundwater level fluctuation can be explained by the climate variable (rainfall) with the lag time between the atypical rainfall and groundwater level ranging from 4 to 7 months. The low R2 value for MB4 indicates that there are factors missing in the model which are primarily related to human interference. The elevated groundwater levels in the affected area are the result of long term cumulative land use changes, instigated by humans, which have directly resulted in detrimental changes to the groundwater aquifer properties.
Threats to sandy beach ecosystems: A review
NASA Astrophysics Data System (ADS)
Defeo, Omar; McLachlan, Anton; Schoeman, David S.; Schlacher, Thomas A.; Dugan, Jenifer; Jones, Alan; Lastra, Mariano; Scapini, Felicita
2009-01-01
We provide a brief synopsis of the unique physical and ecological attributes of sandy beach ecosystems and review the main anthropogenic pressures acting on the world's single largest type of open shoreline. Threats to beaches arise from a range of stressors which span a spectrum of impact scales from localised effects (e.g. trampling) to a truly global reach (e.g. sea-level rise). These pressures act at multiple temporal and spatial scales, translating into ecological impacts that are manifested across several dimensions in time and space so that today almost every beach on every coastline is threatened by human activities. Press disturbances (whatever the impact source involved) are becoming increasingly common, operating on time scales of years to decades. However, long-term data sets that describe either the natural dynamics of beach systems or the human impacts on beaches are scarce and fragmentary. A top priority is to implement long-term field experiments and monitoring programmes that quantify the dynamics of key ecological attributes on sandy beaches. Because of the inertia associated with global climate change and human population growth, no realistic management scenario will alleviate these threats in the short term. The immediate priority is to avoid further development of coastal areas likely to be directly impacted by retreating shorelines. There is also scope for improvement in experimental design to better distinguish natural variability from anthropogenic impacts. Sea-level rise and other effects of global warming are expected to intensify other anthropogenic pressures, and could cause unprecedented ecological impacts. The definition of the relevant scales of analysis, which will vary according to the magnitude of the impact and the organisational level under analysis, and the recognition of a physical-biological coupling at different scales, should be included in approaches to quantify impacts. Zoning strategies and marine reserves, which have not been widely implemented in sandy beaches, could be a key tool for biodiversity conservation and should also facilitate spillover effects into adjacent beach habitats. Setback and zoning strategies need to be enforced through legislation, and all relevant stakeholders should be included in the design, implementation and institutionalisation of these initiatives. New perspectives for rational management of sandy beaches require paradigm shifts, by including not only basic ecosystem principles, but also incentives for effective governance and sharing of management roles between government and local stakeholders.
Nedveckaite, T; Gudelis, A; Vives i Batlle, J
2013-05-01
This work describes the radiological assessment of the near-surface Maisiagala radioactive waste repository (Lithuania) over the period 2005-2012, with focus on water pathways and special emphasis on tritium. The study includes an assessment of the effect of post-closure upgrading, the durability of which is greater than 30 years. Both human and terrestrial non-human biota are considered, with local low-intensity forestry and small farms being the area of concern. The radiological exposure was evaluated using the RESRAD-OFFSITE, RESRAD-BIOTA and ERICA codes in combination with long-term data from a dedicated environmental monitoring programme. All measurements were performed at the Lithuanian Institute of Physics as part of this project. It is determined that, after repository upgrading, radiological exposure to humans are significantly lower than the human dose constraint of 0.2 mSv/year valid in the Republic of Lithuania. Likewise, for non-human biota, dose rates are below the ERICA/PROTECT screening levels. The potential annual effective inhalation dose that could be incurred by the highest-exposed human individual (which is due to tritiated water vapour airborne release over the most exposed area) does not exceed 0.1 μSv. Tritium-labelled drinking water appears to be the main pathway for human impact, representing about 83 % of the exposure. Annual committed effective dose (CED) values for members of the public consuming birch sap as medical practice are calculated to be several orders of magnitude below the CEDs for the same location associated with drinking of well water. The data presented here indicate that upper soil-layer samples may not provide a good indication of potential exposure to terrestrial deep-rooted trees, as demonstrated by an investigation of stratified (3)H in soil moisture, expressed on a wet soil mass basis, in an area with subsurface contamination.
Packstock in wilderness: Use, impacts, monitoring, and management
Mitchel P. McClaran; David N. Cole
1993-01-01
Information about packstock use in wilderness in summarized. The results of a survey of managers of all wilderness areas are presented. Sections describe: the amount and composition of packstock use in wilderness, impacts associated with packstock use, methods for monitoring impacts caused by packstock, techniques for managing packstock in wilderness, examples of...
An overheight vehicle bridge collision monitoring system using piezoelectric transducers
NASA Astrophysics Data System (ADS)
Song, G.; Olmi, C.; Gu, H.
2007-04-01
With increasing traffic volume follows an increase in the number of overheight truck collisions with highway bridges. The detection of collision impact and evaluation of the impact level is a critical issue in the maintenance of a concrete bridge. In this paper, an overheight collision detection and evaluation system is developed for concrete bridge girders using piezoelectric transducers. An electric circuit is designed to detect the impact and to activate a digital camera to take photos of the offending truck. Impact tests and a health monitoring test were conducted on a model concrete bridge girder by using three piezoelectric transducers embedded before casting. From the experimental data of the impact test, it can be seen that there is a linear relation between the output of sensor energy and the impact energy. The health monitoring results show that the proposed damage index indicates the level of damage inside the model concrete bridge girder. The proposed overheight truck-bridge collision detection and evaluation system has the potential to be applied to the safety monitoring of highway bridges.
A qualitative review for wireless health monitoring system
NASA Astrophysics Data System (ADS)
Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan
2013-12-01
A proliferating interest has been being observed over the past years in accurate wireless system development in order to monitor incessant human activities in health care centres. Furthermore because of the swelling number of elderly population and the inadequate number of competent staffs for nursing homes there is a big market petition for health care monitoring system. In order to detect human researchers developed different methods namely which include Field Identification technique, Visual Sensor Network, radar detection, e-mobile techniques and so on. An all-encompassing overview of the non-wired human detection application advancement is presented in this paper. Inductive links are used for human detection application while wiring an electronic system has become impractical in recent times. Keeping in mind the shortcomings, an Inductive Intelligent Sensor (IIS) has been proposed as a novel human monitoring system for future implementation. The proposed sensor works towards exploring the signature signals of human body movement and size. This proposed sensor is fundamentally based on inductive loop that senses the presence and a passing human resulting an inductive change.
Cullen, Elizabeth; Evans, David; Griffin, Chris; Burke, Padraig; Mannion, Rory; Burns, Damien; Flanagan, Andrew; Kellegher, Ann; Schoeters, Greet; Govarts, Eva; Biot, Pierre; Casteleyn, Ludwine; Castaño, Argelia; Kolossa-Gehring, Marike; Esteban, Marta; Schwedler, Gerda; Angerer, Jürgen; Knudsen, Lisbeth E.; Joas, Reinhard; Joas, Anke; Dumez, Birgit; Sepai, Ovnair; Exley, Karen; Aerts, Dominique
2017-01-01
Background: Phthalates are chemicals which are widespread in the environment. Although the impacts on health of such exposure are unclear, there is evidence of a possible impact on the incidence of a diverse range of diseases. Monitoring of human exposure to phthalates is therefore important. This study aimed to determine the extent of phthalate exposure among mothers and their children in both rural and urban areas in Ireland, and to identify factors associated with elevated concentrations. It formed part of the ‘Demonstration of a study to Co-ordinate and Perform Human Biomonitoring on a European Scale’ (DEMOCOPHES) pilot biomonitoring study. Methods: the concentration of phthalate metabolites were determined from a convenience sample of 120 mother/child pairs. The median age of the children was 8 years. A questionnaire was used to collect information regarding lifestyle and environmental conditions of the children and mothers. Rigorous quality assurance within DEMOCOPHES guaranteed the accuracy and international comparability of results. Results: Phthalate metabolites were detected in all of the samples from both children and mothers. Concentrations were significantly higher in respondents from families with lower educational attainment and in those exposed to such items as polyvinyl chloride (PVC), fast food and personal care products (PCP). Conclusions: The study demonstrates that human biomonitoring for assessing exposure to phthalates can be undertaken in Ireland and that the exposure of the population is widespread. Further work will be necessary before the consequences of this exposure are understood. PMID:29186834
Cullen, Elizabeth; Evans, David; Griffin, Chris; Burke, Padraig; Mannion, Rory; Burns, Damien; Flanagan, Andrew; Kellegher, Ann; Schoeters, Greet; Govarts, Eva; Biot, Pierre; Casteleyn, Ludwine; Castaño, Argelia; Kolossa-Gehring, Marike; Esteban, Marta; Schwedler, Gerda; Koch, Holger M; Angerer, Jürgen; Knudsen, Lisbeth E; Joas, Reinhard; Joas, Anke; Dumez, Birgit; Sepai, Ovnair; Exley, Karen; Aerts, Dominique
2017-11-25
Background : Phthalates are chemicals which are widespread in the environment. Although the impacts on health of such exposure are unclear, there is evidence of a possible impact on the incidence of a diverse range of diseases. Monitoring of human exposure to phthalates is therefore important. This study aimed to determine the extent of phthalate exposure among mothers and their children in both rural and urban areas in Ireland, and to identify factors associated with elevated concentrations. It formed part of the 'Demonstration of a study to Co-ordinate and Perform Human Biomonitoring on a European Scale' (DEMOCOPHES) pilot biomonitoring study. Methods : the concentration of phthalate metabolites were determined from a convenience sample of 120 mother/child pairs. The median age of the children was 8 years. A questionnaire was used to collect information regarding lifestyle and environmental conditions of the children and mothers. Rigorous quality assurance within DEMOCOPHES guaranteed the accuracy and international comparability of results. Results : Phthalate metabolites were detected in all of the samples from both children and mothers. Concentrations were significantly higher in respondents from families with lower educational attainment and in those exposed to such items as polyvinyl chloride (PVC), fast food and personal care products (PCP). Conclusions : The study demonstrates that human biomonitoring for assessing exposure to phthalates can be undertaken in Ireland and that the exposure of the population is widespread. Further work will be necessary before the consequences of this exposure are understood.
Multidimensional Profiling of Task Stress States for Human Factors: A Brief Review.
Matthews, Gerald
2016-09-01
This article advocates multidimensional assessment of task stress in human factors and reviews the use of the Dundee Stress State Questionnaire (DSSQ) for evaluation of systems and operators. Contemporary stress research has progressed from an exclusive focus on environmental stressors to transactional perspectives on the stress process. Performance impacts of stress reflect the operator's dynamic attempts to understand and cope with task demands. Multidimensional stress assessments are necessary to gauge the different forms of system-operator interaction. This review discusses the theoretical and practical use of the DSSQ in evaluating multidimensional patterns of stress response. It presents psychometric evidence for the multidimensional perspective and illustrative profiles of subjective state response to task stressors and environments. Evidence is also presented on stress state correlations with related variables, including personality, stress process measures, psychophysiological response, and objective task performance. Evidence supports the validity of the DSSQ as a task stress measure. Studies of various simulated environments show that different tasks elicit different profiles of stress state response. Operator characteristics such as resilience predict individual differences in state response to stressors. Structural equation modeling may be used to understand performance impacts of stress states. Multidimensional assessment affords insight into the stress process in a variety of human factors contexts. Integrating subjective and psychophysiological assessment is a priority for future research. Stress state measurement contributes to evaluating system design, countermeasures to stress and fatigue, and performance vulnerabilities. It may also support personnel selection and diagnostic monitoring of operators. © 2016, Human Factors and Ergonomics Society.
Direct Monitoring of Trace Atmospheric Species via Ion Trap Mass Spectrometry
NASA Technical Reports Server (NTRS)
Palmer, P. T.; Pearson, Richard; Saimonson, Jay D.; Wong, Carla M.; Lawless, James G. (Technical Monitor)
1994-01-01
There is an ever-increasing emphasis on the part of government agencies, academia, and industry on enhancing our understanding of atmospheric processes and assessing the impact of human activities on these processes. While issues such as the ozone hole and rising levels of greenhouse gases have received major attention. relatively little is known about the types, concentrations, sources, and sinks of hydrocarbons in the troposphere and stratosphere. Such information would be of tremendous utility in assessing the roles of various anthropogenic and biogenic processes on global carbon cycles. An ion trap mass spectrometer has been developed for monitoring trace levels of hydrocarbons in the atmosphere on NASA's DC-8 "flying laboratory". This aircraft is used to provide measurements in support of a number of "Mission to Planet Earth" activities and tropospheric chemistry experiments. In past missions, specific compounds have been monitored via highly specialized instrumentation, fast GO, or collection of whole air samples for subsequent ground-based analysis. The ion trap has several features. including small size. excellent sensitivity, and broad applicability, which make it highly atttrat:ive for atmospheric monitoring. The design of this instrument, its air sampling interface. and the various complications associated with aircraft-deployment will be described. Data showing the sensitivity of the instrument for detecting hydrocarbons at mixing ratios below one part-per-billion, and the use of MS/MS for direct, on-line, real-time monitoring will be presented.
The Copernicus Marine Environment Monitoring Service (CMEMS)
NASA Astrophysics Data System (ADS)
Le Traon, Pierre-Yves
2017-04-01
The oceans provide essential services to society. They regulate climate, they provide food and energy, and many economic activities depend on our seas and oceans. But our oceans and marine ecosystems are under threat. They are impacted by the effects of climate change as well as from other human-induced pressures. More than ever, there is a need to continuously monitor the oceans. This is imperative to understanding and predicting the evolution of our weather and climate. This is also essential for a better and sustainable management of our oceans and seas. The Copernicus Marine Environment Monitoring Service (CMEMS) has been set up to answer these challenges. CMEMS provides a unique monitoring of the global ocean and European seas based on satellite and in situ observations and models. CMEMS monitors past (over the last 30 years) and current marine conditions and provide short-term forecasts. Mercator Ocean was tasked by the EU to implement the service. The organisation is based on a strong European partnership with more than 60 marine operational and research centres in Europe that are involved in the service and its evolution. An overview of CMEMS, its drivers, organization and initial achievements will be given. The essential role of in-situ and satellite upstream observations will be discussed as well as CMEMS Service Evolution Strategy, associated R&D priorities and future scientific challenges.
A spectral method for spatial downscaling | Science Inventory ...
Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this paper, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July, 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. The National Exposure Research Laboratory′s (NERL′s)Atmospheric Modeling Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing ch
Monitoring of the mercury mining site Almadén implementing remote sensing technologies.
Schmid, Thomas; Rico, Celia; Rodríguez-Rastrero, Manuel; José Sierra, María; Javier Díaz-Puente, Fco; Pelayo, Marta; Millán, Rocio
2013-08-01
The Almadén area in Spain has a long history of mercury mining with prolonged human-induced activities that are related to mineral extraction and metallurgical processes before the closure of the mines and a more recent post period dominated by projects that reclaim the mine dumps and tailings and recuperating the entire mining area. Furthermore, socio-economic alternatives such as crop cultivation, livestock breeding and tourism are increasing in the area. Up till now, only scattered information on these activities is available from specific studies. However, improved acquisition systems using satellite borne data in the last decades opens up new possibilities to periodically study an area of interest. Therefore, comparing the influence of these activities on the environment and monitoring their impact on the ecosystem vastly improves decision making for the public policy makers to implement appropriate land management measures and control environmental degradation. The objective of this work is to monitor environmental changes affected by human-induced activities within the Almadén area occurring before, during and after the mine closure over a period of nearly three decades. To achieve this, data from numerous sources at different spatial scales and time periods are implemented into a methodology based on advanced remote sensing techniques. This includes field spectroradiometry measurements, laboratory analyses and satellite borne data of different surface covers to detect land cover and use changes throughout the mining area. Finally, monitoring results show that the distribution of areas affected by mercury mining is rapidly diminishing since activities ceased and that rehabilitated mining areas form a new landscape. This refers to mine tailings that have been sealed and revegetated as well as an open pit mine that has been converted to an "artificial" lake surface. Implementing a methodology based on remote sensing techniques that integrate data from several sources at different scales greatly improves the regional characterization and monitoring of an area dominated by mercury mining activities. Copyright © 2013 Elsevier Inc. All rights reserved.
Michez, Adrien; Piégay, Hervé; Lejeune, Philippe; Claessens, Hugues
2017-11-01
Riparian buffers are of major concern for land and water resource managers despite their relatively low spatial coverage. In Europe, this concern has been acknowledged by different environmental directives which recommend multi-scale monitoring (from local to regional scales). Remote sensing methods could be a cost-effective alternative to field-based monitoring, to build replicable "wall-to-wall" monitoring strategies of large river networks and associated riparian buffers. The main goal of our study is to extract and analyze various parameters of the riparian buffers of up to 12,000 km of river in southern Belgium (Wallonia) from three-dimensional (3D) point clouds based on LiDAR and photogrammetric surveys to i) map riparian buffers parameters on different scales, ii) interpret the regional patterns of the riparian buffers and iii) propose new riparian buffer management indicators. We propose different strategies to synthesize and visualize relevant information at different spatial scales ranging from local (<10 km) to regional scale (>12,000 km). Our results showed that the selected parameters had a clear regional pattern. The reaches of Ardenne ecoregion have channels with the highest flow widths and shallowest depths. In contrast, the reaches of the Loam ecoregion have the narrowest and deepest flow channels. Regional variability in channel width and depth is used to locate management units potentially affected by human impact. Riparian forest of the Loam ecoregion is characterized by the lowest longitudinal continuity and mean tree height, underlining significant human disturbance. As the availability of 3D point clouds at the regional scale is constantly growing, our study proposes reproducible methods which can be integrated into regional monitoring by land managers. With LiDAR still being relatively expensive to acquire, the use of photogrammetric point clouds combined with LiDAR data is a cost-effective means to update the characterization of the riparian forest conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C
2011-07-01
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.
Cruz, Mercedes Cecilia; Cacciabue, Dolores Gutiérrez; Gil, José F; Gamboni, Oscar; Vicente, María Soledad; Wuertz, Stefan; Gonzo, Elio; Rajal, Verónica B
2012-09-01
Many developing and threshold countries rely on shallow groundwater wells for their water supply whilst pit latrines are used for sanitation. We employed a unified strategy involving satellite images and environmental monitoring of 16 physico-chemical and microbiological water quality parameters to identify significant land uses that can lead to unacceptable deterioration of source water, in a region with a subtropical climate and seasonally restricted torrential rainfall in Northern Argentina. Agricultural and non-agricultural sources of nitrate were illustrated in satellite images and used to assess the organic load discharged. The estimated human organic load per year was 28.5 BOD(5) tons and the N load was 7.5 tons, while for poultry farms it was 9940-BOD(5) tons and 1037-N tons, respectively. Concentrations of nitrates and organics were significantly different between seasons in well water (p values of 0.026 and 0.039, respectively). The onset of the wet season had an extraordinarily negative impact on well water due in part to the high permeability of soils made up of fine gravels and coarse sand. Discriminant analysis showed that land uses had a pronounced seasonal influence on nitrates and introduced additional microbial contamination, causing nitrification and denitrification in shallow groundwater. P-well was highly impacted by a poultry farm while S-well was affected by anthropogenic pollution and background load, as revealed by Principal Component Analysis. The application of microbial source tracking techniques is recommended to corroborate local sources of human versus animal origin.
Roux, Aurélie; Thévenot, Etienne A; Seguin, François; Olivier, Marie-Françoise; Junot, Christophe
There is a lack of comprehensive studies documenting the impact of sample collection conditions on metabolic composition of human urine. To address this issue, two experiments were performed at a 3-month interval, in which midstream urine samples from healthy individuals were collected, pooled, divided into several aliquots and kept under specific conditions (room temperature, 4 °C, with or without preservative) up to 72 h before storage at -80 °C. Samples were analyzed by high-performance liquid chromatography coupled to high-resolution mass spectrometry and bacterial contamination was monitored by turbidimetry. Multivariate analyses showed that urinary metabolic fingerprints were affected by the presence of preservatives and also by storage at room temperature from 24 to 72 h, whereas no change was observed for urine samples stored at 4 °C over a 72-h period. Investigations were then focused on 280 metabolites previously identified in urine: 19 of them were impacted by the kind of sample collection protocol in both experiments, including 12 metabolites affected by bacterial contamination and 7 exhibiting poor chemical stability. Finally, our results emphasize that the use of preservative prevents bacterial overgrowth, but does not avoid metabolite instability in solution, whereas storage at 4 °C inhibits bacterial overgrowth at least over a 72-h period and slows the chemical degradation process. Consequently, and for further LC/MS analyses, human urine samples should be kept at 4 °C if their collection is performed over 24 h.
Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc
2014-04-15
Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maguire, Julie; Cusack, Caroline; Ruiz-Villarreal, Manuel; Silke, Joe; McElligott, Deirdre; Davidson, Keith
2016-03-01
Reasons for the emergent interest in HABs are abundant, including concerns associated with human health, adverse effects on biological resources, economic losses attributed to recreation, tourism and seafood related industries, and the cost of maintaining public advisory services and monitoring programs for shellfish toxins and water quality. The impact of HABs can potentially be mitigated by early warning of their development. In this regard the project ASIMUTH (Applied Simulations and Integrated Modelling for the Understanding of Toxic and Harmful algal blooms) was borne in order to develop short term HAB alert systems for Atlantic Europe. This was achieved using information on the most current marine conditions (weather, water characteristics, toxicity, harmful algal presence etc.) combined with high resolution local numerical predictions. This integrated, multidisciplinary, trans-boundary approach to the study of HABs developed during ASIMUTH led to a better understanding of the physical, chemical and ecological factors controlling these blooms, as well as their impact on human activities. The outcome was an appropriate alert system for an effective management of areas that are usually associated with HAB events and where these episodes may have a more significant negative impact on human activities. Specifically for the aquaculture industry, the information provided enabled farmers to adapt their working practices in time to prevent mortalities in finfish farms and/or manage their shellfish harvest more effectively. This paper summarises the modelling and alert developments generated by the ASIMUTH project. Copyright © 2015 Elsevier B.V. All rights reserved.
Risk Management for Human Support Technology Development
NASA Technical Reports Server (NTRS)
jones, Harry
2005-01-01
NASA requires continuous risk management for all programs and projects. The risk management process identifies risks, analyzes their impact, prioritizes them, develops and carries out plans to mitigate or accept them, tracks risks and mitigation plans, and communicates and documents risk information. Project risk management is driven by the project goal and is performed by the entire team. Risk management begins early in the formulation phase with initial risk identification and development of a risk management plan and continues throughout the project life cycle. This paper describes the risk management approach that is suggested for use in NASA's Human Support Technology Development. The first step in risk management is to identify the detailed technical and programmatic risks specific to a project. Each individual risk should be described in detail. The identified risks are summarized in a complete risk list. Risk analysis provides estimates of the likelihood and the qualitative impact of a risk. The likelihood and impact of the risk are used to define its priority location in the risk matrix. The approaches for responding to risk are either to mitigate it by eliminating or reducing the effect or likelihood of a risk, to accept it with a documented rationale and contingency plan, or to research or monitor the risk, The Human Support Technology Development program includes many projects with independently achievable goals. Each project must do independent risk management, considering all its risks together and trading them against performance, budget, and schedule. Since the program can succeed even if some projects fail, the program risk has a complex dependence on the individual project risks.
Operational Monitoring of Data Production at KNMI
NASA Astrophysics Data System (ADS)
van de Vegte, John; Kwidama, Anecita; van Moosel, Wim; Oosterhof, Rijk; de Wit de Wit, Ronny; Klein Ikkink, Henk Jan; Som de Cerff, Wim; Verhoef, Hans; Koutek, Michal; Duin, Frank; van der Neut, Ian; verhagen, Robert; Wollerich, Rene
2016-04-01
Within KNMI a new fully automated system for monitoring the KNMI operational data production systems is being developed: PRISMA (PRocessflow Infrastructure Surveillance and Monitoring Application). Currently the KNMI operational (24/7) production systems consist of over 60 applications, running on different hardware systems and platforms. They are interlinked for the production of numerous data products, which are delivered to internal and external customers. Traditionally these applications are individually monitored by different applications or not at all; complicating root cause and impact analysis. Also, the underlying hardware and network is monitored via an isolated application. Goal of the PRISMA system is to enable production chain monitoring, which enables root cause analysis (what is the root cause of the disruption) and impact analysis (what downstream products/customers will be effected). The PRISMA system will make it possible to reduce existing monitoring applications and provides one interface for monitoring the data production. For modeling and storing the state of the production chains a graph database is used. The model is automatically updated by the applications and systems which are to be monitored. The graph models enables root cause and impact analysis. In the PRISMA web interface interaction with the graph model is accomplished via a graphical representation. The presentation will focus on aspects of: • Modeling real world computers, applications, products to a conceptual model; • Architecture of the system; • Configuration information and (real world) event handling of the to be monitored objects; • Implementation rules for root cause and impact analysis. • How PRISMA was developed (methodology, facts, results) • Presentation of the PRISMA system as it now looks and works
Irrigation Signals Detected From SMAP Soil Moisture Retrievals
NASA Astrophysics Data System (ADS)
Lawston, Patricia M.; Santanello, Joseph A.; Kumar, Sujay V.
2017-12-01
Irrigation can influence weather and climate, but the magnitude, timing, and spatial extent of irrigation are poorly represented in models, as are the resulting impacts of irrigation on the coupled land-atmosphere system. One way to improve irrigation representation in models is to assimilate soil moisture observations that reflect an irrigation signal to improve model states. Satellite remote sensing is a promising avenue for obtaining these needed observations on a routine basis, but to date, irrigation detection in passive microwave satellites has proven difficult. In this study, results show that the new enhanced soil moisture product from the Soil Moisture Active Passive satellite is able to capture irrigation signals over three semiarid regions in the western United States. This marks an advancement in Earth-observing satellite skill and the ability to monitor human impacts on the water cycle.
Križan, Josip; Gužvica, Goran
2016-01-01
The conservation of gray wolf (Canis lupus) and its coexistence with humans presents a challenge and requires continuous monitoring and management efforts. One of the non-invasive methods that produces high-quality wolf monitoring datasets is camera trapping. We present a novel monitoring approach where camera traps are positioned on wildlife crossing structures that channel the animals, thereby increasing trapping success and increasing the cost-efficiency of the method. In this way we have followed abundance trends of five wolf packs whose home ranges are intersected by a motorway which spans throughout the wolf distribution range in Croatia. During the five-year monitoring of six green bridges we have recorded 28 250 camera-events, 132 with wolves. Four viaducts were monitored for two years, recording 4914 camera-events, 185 with wolves. We have detected a negative abundance trend of the monitored Croatian wolf packs since 2011, especially severe in the northern part of the study area. Further, we have pinpointed the legal cull as probable major negative influence on the wolf pack abundance trends (linear regression, r2 > 0.75, P < 0.05). Using the same approach we did not find evidence for a negative impact of wolves on the prey populations, both wild ungulates and livestock. We encourage strict protection of wolf in Croatia until there is more data proving population stability. In conclusion, quantitative methods, such as the one presented here, should be used as much as possible when assessing wolf abundance trends. PMID:27327498
Šver, Lidija; Bielen, Ana; Križan, Josip; Gužvica, Goran
2016-01-01
The conservation of gray wolf (Canis lupus) and its coexistence with humans presents a challenge and requires continuous monitoring and management efforts. One of the non-invasive methods that produces high-quality wolf monitoring datasets is camera trapping. We present a novel monitoring approach where camera traps are positioned on wildlife crossing structures that channel the animals, thereby increasing trapping success and increasing the cost-efficiency of the method. In this way we have followed abundance trends of five wolf packs whose home ranges are intersected by a motorway which spans throughout the wolf distribution range in Croatia. During the five-year monitoring of six green bridges we have recorded 28 250 camera-events, 132 with wolves. Four viaducts were monitored for two years, recording 4914 camera-events, 185 with wolves. We have detected a negative abundance trend of the monitored Croatian wolf packs since 2011, especially severe in the northern part of the study area. Further, we have pinpointed the legal cull as probable major negative influence on the wolf pack abundance trends (linear regression, r2 > 0.75, P < 0.05). Using the same approach we did not find evidence for a negative impact of wolves on the prey populations, both wild ungulates and livestock. We encourage strict protection of wolf in Croatia until there is more data proving population stability. In conclusion, quantitative methods, such as the one presented here, should be used as much as possible when assessing wolf abundance trends.
Chiari, Brasília M; Goulart, Bárbara N G
2009-09-01
Studies showing stronger scientific evidence related to speech, language and hearing pathology (SLP) have an impact on the prevention and rehabilitation of human communication and gained ground in SLP research agenda. In this paper we discuss some aspects and directions that should be considered for in-depth knowledge about speech, language and hearing needs in different population groups (age group, gender and other variables according to specific related disorders) for improved comprehensive care, successful efforts and effective use of financial and human resources. It is also discussed the decision making process for requesting complementary evaluations and tests, from routine to highly complex ones, that should be based on each test and/or procedure and their contribution to the diagnosis and therapeutic planning. In fact, it is crucial to have reliable parameters for planning, preventing and treating human communication and its related disorders. Epidemiology, biostatistics and social sciences can contribute with more specific information in human communication sciences and guide more specific studies on the international science and technology agenda, improving communication sciences involvement in the international health-related scientific scenario.
Use of an action-selection framework for human-carnivore conflict in the Bangladesh Sundarbans.
Barlow, Adam C D; Greenwood, Christina J; Ahmad, Ishtiaq U; Smith, James L D
2010-10-01
Human-carnivore conflict is manifested in the death of humans, livestock, and carnivores. The resulting negative local attitudes and retribution killings imperil the future of many endangered carnivores. We tailored existing management tools to create a framework to facilitate the selection of actions to alleviate human-carnivore conflict and applied the framework to the human-tiger conflict in the Bangladesh Sundarbans. We identified potential actions that consider previous management efforts, local knowledge, cost-effectiveness, fieldwork experience of authors and project staff, previous research on tiger ecology by the authors, and recommendations from human-carnivore conflict studies in other countries. Our framework includes creation of a profile to improve understanding of the nature of the conflict and its underlying causality. Identified actions include deterrents, education, direct tiger management, and response teams. We ranked actions by their potential to reduce conflict and the monetary cost of their implementation. We ranked tiger-response teams and monitoring problem tigers as the two best actions because both had relatively high impact and cost-effectiveness. We believe this framework could be used under a wide range of human-wildlife conflict situations because it provides a structured approach to selection of mitigating actions. © 2010 Society for Conservation Biology.
Neo, Jacqueline Pei Shan; Tan, Boon Huan
2017-05-01
This review discusses the utilization of wild or domestic animals as surveillance tools for monitoring naturally occurring environmental and human health hazards. Besides providing early warning to natural hazards, animals can also provide early warning to societal hazards like bioterrorism. Animals are ideal surveillance tools to humans because they share the same environment as humans and spend more time outdoors than humans, increasing their exposure risk. Furthermore, the biologically compressed lifespans of some animals may allow them to develop clinical signs more rapidly after exposure to specific pathogens. Animals are an excellent channel for monitoring novel and known pathogens with outbreak potential given that more than 60 % of emerging infectious diseases in humans originate as zoonoses. This review attempts to highlight animal illnesses, deaths, biomarkers or sentinel events, to remind human and veterinary public health programs that animal health can be used to discover, monitor or predict environmental health hazards, human health hazards, or bioterrorism. Lastly, we hope that this review will encourage the implementation of animals as a surveillance tool by clinicians, veterinarians, ecosystem health professionals, researchers and governments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit
NASA Technical Reports Server (NTRS)
Rudisill, Marianne
2000-01-01
The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.
ERIC Educational Resources Information Center
Nelson, Peter M.; Van Norman, Ethan R.; Klingbeil, Dave A.; Parker, David C.
2017-01-01
Although extensive research exists on the use of curriculum-based measures for progress monitoring, little is known about using computer adaptive tests (CATs) for progress-monitoring purposes. The purpose of this study was to evaluate the impact of the frequency of data collection on individual and group growth estimates using a CAT. Data were…
Anya V. Zavadskaya
2011-01-01
This paper describes an assessment and monitoring program that was designed and initiated for monitoring recreational impacts in a wilderness in Kamchatka. The framework of the recreational assessment was tested through its application to a case study conducted during the summers of 2008 and 2009 in the Kronotsky State Natural Biosphere Preserve (Kamchatka peninsula,...
Stokes, Emma J.; Strindberg, Samantha; Bakabana, Parfait C.; Elkan, Paul W.; Iyenguet, Fortuné C.; Madzoké, Bola; Malanda, Guy Aimé F.; Mowawa, Brice S.; Moukoumbou, Calixte; Ouakabadio, Franck K.; Rainey, Hugo J.
2010-01-01
Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats - irrespective of land-use type - harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads – even subject to anti-poaching controls - were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or more mature forests and human disturbance had a negative influence on chimpanzee abundance, in spite of anti-poaching interventions. We caution against the pitfalls of missing and confounded co-variables in model-based estimation approaches and highlight the importance of spatial scale in the response of different species to landscape processes. We stress the importance of a stratified design-based approach to monitoring species status in response to conservation interventions and advocate a holistic framework for landscape-scale monitoring that includes smaller-scale targeted research and punctual assessment of threats. PMID:20428233
Stokes, Emma J; Strindberg, Samantha; Bakabana, Parfait C; Elkan, Paul W; Iyenguet, Fortuné C; Madzoké, Bola; Malanda, Guy Aimé F; Mowawa, Brice S; Moukoumbou, Calixte; Ouakabadio, Franck K; Rainey, Hugo J
2010-04-23
Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats--irrespective of land-use type--harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads--even subject to anti-poaching controls--were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or more mature forests and human disturbance had a negative influence on chimpanzee abundance, in spite of anti-poaching interventions. We caution against the pitfalls of missing and confounded co-variables in model-based estimation approaches and highlight the importance of spatial scale in the response of different species to landscape processes. We stress the importance of a stratified design-based approach to monitoring species status in response to conservation interventions and advocate a holistic framework for landscape-scale monitoring that includes smaller-scale targeted research and punctual assessment of threats.
3D Printed Stretchable Tactile Sensors.
Guo, Shuang-Zhuang; Qiu, Kaiyan; Meng, Fanben; Park, Sung Hyun; McAlpine, Michael C
2017-07-01
The development of methods for the 3D printing of multifunctional devices could impact areas ranging from wearable electronics and energy harvesting devices to smart prosthetics and human-machine interfaces. Recently, the development of stretchable electronic devices has accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Vuyst, Hugo; Lillo, Flavia; Broutet, Nathalie; Smith, Jennifer S
2008-11-01
The objective of this study was to review the literature on the epidemiological association between human papillomavirus (HPV), HIV, and cervical neoplasia, and the impact of highly active antiretroviral therapy (HAART) on this association. MEDLINE was searched using the terms 'human papillomavirus', 'HPV', 'HIV', 'cervix', 'neoplasm', and 'antiretroviral' to identify articles published before December 2006. HIV-infection was strongly associated with a higher prevalence, incidence, and persistence of HPV infection and correlated with prevalence, incidence, persistence, and progression of squamous intraepithelial lesions. The association between HIV and invasive cervical carcinoma has been more difficult to establish, but is now fully recognized. HAART seems to have little, if any, beneficial effect on the natural history of intraepithelial lesions in HIV-positive women. Despite this fact, HAART, does increase the life expectancy of HIV-positive women. Therefore, it remains important to closely monitor HPV-related disease in women with HIV who are receiving HAART, particularly in regions of the world where cervical screening is not available routinely.
HydroGrid: Technologies for Global Water Quality and Sustainability
NASA Astrophysics Data System (ADS)
Yeghiazarian, L.
2017-12-01
Humans have been transforming planet Earth for millennia. We have recently come to understand that the collective impact of our decisions and actions has brought about severe water quality problems, which are likely to worsen in the light of rapid population growth to the projected nine billion by 2050. To sustainably manage our global water resources and possibly reverse these effects requires efforts in real-time monitoring of water contamination, analysis of monitoring data, and control of the state of water contamination. We develop technologies to address all three areas: monitoring, analysis and control. These efforts are carried out in the conceptual framework of the HydroGrid, an interconnected water system, which is (1) firmly rooted in the fundamental understanding of processes that govern microbial dynamics on multiple scales; and (2) used to develop watershed-specific management strategies. In the area of monitoring we are developing mobile autonomous sensors to detect surface water contamination, an effort supported by extensive materials research to provide multifunctional materials. We analyze environmental data within a stochastic modeling paradigm that bridges microscopic particle interactions to macroscopic manifestation of microbial population behavior in time and space in entire watersheds. These models are supported with laboratory and field experiments. Finally, we combine control and graph theories to derive controllability metrics of natural watersheds.
Kristensen, Esben Astrup; Baattrup-Pedersen, Annette; Andersen, Hans Estrup
2012-03-01
Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1-81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.
NASA Astrophysics Data System (ADS)
Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng
2015-10-01
The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.
NASA Astrophysics Data System (ADS)
Kloppmann, Wolfram; Mayer, Berhard; Millot, Romain; Parker, Beth L.; Gaucher, Eric; Clarkson, Christopher R.; Cherry, John A.; Humez, Pauline; Cahill, Aaron
2015-04-01
A major scientific challenge and an indispensible prerequisite for environmental impact assessment in the context of unconventional gas development is the determination of the baseline conditions against which potential environmental impacts on shallow freshwater resources can be accurately and quantitatively tested. Groundwater and surface water resources overlying the low-permeability hydrocarbon host rocks containing shale gas may be impacted to different extents by naturally occurring saline fluids and by natural gas emanations. Baseline assessments in areas of previous conventional hydrocarbon production may also reveal anthropogenic impacts from these activities not related to unconventional gas development. Once unconventional gas exploitation has started, the baseline may be irrevocably lost by the intricate superposition of geogenic and potential anthropogenic contamination by stray gas, formation waters and chemicals used during hydraulic fracturing. The objective of the Franco-Canadian NSERC-ANR project G-Baseline is to develop an innovative and comprehensive methodology of geochemical and isotopic characterization of the environmental baseline for water and gas samples from all three essential zones: (1) the production zone, including flowback waters, (2) the intermediate zone comprised of overlying formations, and (3) shallow aquifers and surface water systems where contamination may result from diverse natural or human impacts. The outcome will be the establishment of a methodology based on innovative tracer and monitoring techniques, including traditional and non-traditional isotopes (C, H, O, S, B, Sr, Cl, Br, N, U, Li, Cu, Zn, CSIA...) for detecting, quantifying and modeling of potential leakage of stray gas and of saline formation water mixed with flowback fluids into fresh groundwater resources and surface waters taking into account the pathways and mechanisms of fluid and gas migration. Here we present an outline of the project as well as first results from chemical and isotopic analyses on gas, fluid and solid samples collected during a baseline monitoring program at the Carbon Management Canada field research site in south-eastern Alberta, Canada.
Electronic alerts and clinician turnover: the influence of user acceptance.
Hysong, Sylvia J; Spitzmuller, Christiane; Espadas, Donna; Sittig, Dean F; Singh, Hardeep
2014-11-01
Use of certain components of electronic health records (EHRs), such as EHR-based alerting systems (EASs), might reduce provider satisfaction, a strong precursor to turnover. We examined the impact of factors likely to influence providers' acceptance of an alerting system, designed to facilitate electronic communication in outpatient settings, on provider satisfaction, intentions to quit, and turnover. We conducted a cross-sectional Web-based survey of EAS-related practices from a nationwide sample of primary care providers (PCPs) practicing at Department of Veterans Affairs (VA) medical facilities. Of 5001 invited VA PCPs, 2590 completed the survey. We relied on Venkatesh's Unified Theory of Acceptance and Use of Technology to create survey measures of 4 factors likely to impact user acceptance of EAS: supportive norms, monitoring/ feedback, training, and providers' perceptions of the value (PPOV) of EASs to provider effectiveness. Facility-level PCP turnover was measured via the VA's Service Support Center Human Resources Cube. Hypotheses were tested using structural equation modeling. After accounting for intercorrelations among predictors, monitoring/feedback regarding EASs significantly predicted intention to quit (b = 0.30, P < .01), and PPOV of EASs predicted both overall provider satisfaction (b = 0.58, P < .01) and facility-level provider turnover levels (b = -0.19, P < .05), all without relying on any intervening mechanisms. Design, implementation, and use of EASs might impact provider satisfaction and retention. Institutions should consider strategies to help providers perceive greater value in these clinical tools.
Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks
Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad
2015-01-01
The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown. PMID:26340633