Sample records for monitoring laboratory detection

  1. Current practices in laboratory monitoring of HIV infection

    PubMed Central

    Vajpayee, Madhu; Mohan, Teena

    2011-01-01

    After a diagnosis of HIV infection is made, the patient needs to be monitored using both clinical assessment and laboratory markers. HIV/AIDS monitoring is essential in guiding when to recommend initiation of therapy. Clinical monitoring will include staging of the HIV/AIDS disease using either the presence or absence of HIV-related signs and symptoms using the WHO staging system. Various laboratory methods can be used to monitor the disease progression and to guide whether the patient will need antiretroviral therapy or not. Laboratory monitoring for patients who are not on drugs is done to provide information about the stage of illness; to enable the clinician to make decisions on treatment and to give information on prognosis of the patient. Patients on drugs are monitored to assess their response to treatment with antiretroviral drugs and to detect any possible toxicity and improvement associated with the antiretroviral drugs. PMID:22310815

  2. Real-Time Event Detection for Monitoring Natural and Source ...

    EPA Pesticide Factsheets

    The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitoring source water quality prior to treatment. This work highlights the use of the CANARY event detection software in detecting suspected illicit events in an actively monitored watershed in South Carolina. CANARY is an open source event detection software that was developed by USEPA and Sandia National Laboratories. The software works with any type of sensor, utilizes multiple detection algorithms and approaches, and can incorporate operational information as needed. Monitoring has been underway for several years to detect events related to intentional or unintentional dumping of materials into the monitored watershed. This work evaluates the feasibility of using CANARY to enhance the detection of events in this watershed. This presentation will describe the real-time monitoring approach used in this watershed, the selection of CANARY configuration parameters that optimize detection for this watershed and monitoring application, and the performance of CANARY during the time frame analyzed. Further, this work will highlight how rainfall events impacted analysis, and the innovative application of CANARY taken in order to effectively detect the suspected illicit events. This presentation d

  3. Continuous glucose monitoring: quality of hypoglycaemia detection.

    PubMed

    Zijlstra, E; Heise, T; Nosek, L; Heinemann, L; Heckermann, S

    2013-02-01

    To evaluate the accuracy of a (widely used) continuous glucose monitoring (CGM)-system and its ability to detect hypoglycaemic events. A total of 18 patients with type 1 diabetes mellitus used continuous glucose monitoring (Guardian REAL-Time CGMS) during two 9-day in-house periods. A hypoglycaemic threshold alarm alerted patients to sensor readings <70 mg/dl. Continuous glucose monitoring sensor readings were compared to laboratory reference measurements taken every 4 h and in case of a hypoglycaemic alarm. A total of 2317 paired data points were evaluated. Overall, the mean absolute relative difference (MARD) was 16.7%. The percentage of data points in the clinically accurate or acceptable Clarke Error Grid zones A + B was 94.6%. In the hypoglycaemic range, accuracy worsened (MARD 38.8%) leading to a failure to detect more than half of the true hypoglycaemic events (sensitivity 37.5%). Furthermore, more than half of the alarms that warn patients for hypoglycaemia were false (false alert rate 53.3%). Above the low alert threshold, the sensor confirmed 2077 of 2182 reference values (specificity 95.2%). Patients using continuous glucose monitoring should be aware of its limitation to accurately detect hypoglycaemia. © 2012 Blackwell Publishing Ltd.

  4. Diagnostic trends in Clostridium difficile detection in Finnish microbiology laboratories.

    PubMed

    Könönen, Eija; Rasinperä, Marja; Virolainen, Anni; Mentula, Silja; Lyytikäinen, Outi

    2009-12-01

    Due to increased interest directed to Clostridium difficile-associated infections, a questionnaire survey of laboratory diagnostics of toxin-producing C. difficile was conducted in Finland in June 2006. Different aspects pertaining to C. difficile diagnosis, such as requests and criteria used for testing, methods used for its detection, yearly changes in diagnostics since 1996, and the total number of investigations positive for C. difficile in 2005, were asked in the questionnaire, which was sent to 32 clinical microbiology laboratories, including all hospital-affiliated and the relevant private clinical microbiology laboratories in Finland. The situation was updated by phone and email correspondence in September 2008. In June 2006, 28 (88%) laboratories responded to the questionnaire survey; 24 of them reported routinely testing requested stool specimens for C. difficile. Main laboratory methods included toxin detection (21/24; 88%) and/or anaerobic culture (19/24; 79%). In June 2006, 18 (86%) of the 21 laboratories detecting toxins directly from feces, from the isolate, or both used methods for both toxin A (TcdA) and B (TcdB), whereas only one laboratory did so in 1996. By September 2008, all of the 23 laboratories performing diagnostics for C. difficile used methods for both TcdA and TcdB. In 2006, the number of specimens processed per 100,000 population varied remarkably between different hospital districts. In conclusion, culturing C. difficile is common and there has been a favorable shift in toxin detection practice in Finnish clinical microbiology laboratories. However, the variability in diagnostic activity reported in 2006 creates a challenge for national monitoring of the epidemiology of C. difficile and related diseases.

  5. Implementation of a computer-assisted monitoring system for the detection of adverse drug reactions in gastroenterology.

    PubMed

    Dormann, H; Criegee-Rieck, M; Neubert, A; Egger, T; Levy, M; Hahn, E G; Brune, K

    2004-02-01

    To investigate the effectiveness of a computer monitoring system that detects adverse drug reactions (ADRs) by laboratory signals in gastroenterology. A prospective, 6-month, pharmaco-epidemiological survey was carried out on a gastroenterological ward at the University Hospital Erlangen-Nuremberg. Two methods were used to identify ADRs. (i) All charts were reviewed daily by physicians and clinical pharmacists. (ii) A computer monitoring system generated a daily list of automatic laboratory signals and alerts of ADRs, including patient data and dates of events. One hundred and nine ADRs were detected in 474 admissions (377 patients). The computer monitoring system generated 4454 automatic laboratory signals from 39 819 laboratory parameters tested, and issued 2328 alerts, 914 (39%) of which were associated with ADRs; 574 (25%) were associated with ADR-positive admissions. Of all the alerts generated, signals of hepatotoxicity (1255), followed by coagulation disorders (407) and haematological toxicity (207), were prevalent. Correspondingly, the prevailing ADRs were concerned with the metabolic and hepato-gastrointestinal system (61). The sensitivity was 91%: 69 of 76 ADR-positive patients were indicated by an alert. The specificity of alerts was increased from 23% to 76% after implementation of an automatic laboratory signal trend monitoring algorithm. This study shows that a computer monitoring system is a useful tool for the systematic and automated detection of ADRs in gastroenterological patients.

  6. USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality

    USGS Publications Warehouse

    Ludtke, Amy S.; Woodworth, Mark T.

    1997-01-01

    The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.

  7. [The fundamental role of stage control technology on the detectability for Salmonella networking laboratory].

    PubMed

    Zhou, Yong-ming; Chen, Xiu-hua; Xu, Wen; Jin, Hui-ming; Li, Chao-qun; Liang, Wei-li; Wang, Duo-chun; Yan, Mei-ying; Lou, Jing; Kan, Biao; Ran, Lu; Cui, Zhi-gang; Wang, Shu-kun; Xu, Xue-bin

    2013-11-01

    To evaluated the fundamental role of stage control technology (SCT) on the detectability for Salmonella networking laboratories. Appropriate Salmonella detection methods after key point control being evaluated, were establishment and optimized. Our training and evaluation networking laboratories participated in the World Health Organization-Global Salmonella Surveillance Project (WHO-GSS) and China-U.S. Collaborative Program on Emerging and Re-emerging infectious diseases Project (GFN) in Shanghai. Staff members from the Yunnan Yuxi city Center for Disease Control and Prevention were trained on Salmonella isolation from diarrhea specimens. Data on annual Salmonella positive rates was collected from the provincial-level monitoring sites to be part of the GSS and GFN projects from 2006 to 2012. The methodology was designed based on the conventional detection procedure of Salmonella which involved the processes as enrichment, isolation, species identification and sero-typing. These methods were simultaneously used to satisfy the sensitivity requirements on non-typhoid Salmonella detection for networking laboratories. Public Health Laboratories in Shanghai had developed from 5 in 2006 to 9 in 2011, and Clinical laboratories from 8 to 22. Number of clinical isolates, including typhoid and non-typhoid Salmonella increased from 196 in 2006 to 1442 in 2011. The positive rate of Salmonella isolated from the clinical diarrhea cases was 2.4% in Yuxi county, in 2012. At present, three other provincial monitoring sites were using the SBG technique as selectivity enrichment broth for Salmonella isolation, with Shanghai having the most stable positive baseline. The method of SCT was proved the premise of the network laboratory construction. Based on this, the improvement of precise phenotypic identification and molecular typing capabilities could reach the level equivalent to the national networking laboratory.

  8. Laboratory Safety Monitoring of Chronic Medications in Ambulatory Care Settings

    PubMed Central

    Hurley, Judith S; Roberts, Melissa; Solberg, Leif I; Gunter, Margaret J; Nelson, Winnie W; Young, Linda; Frost, Floyd J

    2005-01-01

    OBJECTIVE To evaluate laboratory safety monitoring in patients taking selected chronic prescription drugs. DESIGN Retrospective study using 1999–2001 claims data to calculate rates of missed laboratory tests (potential laboratory monitoring errors). Eleven drugs/drug groups and 64 laboratory tests were evaluated. SETTING Two staff/network model health maintenance organizations. PATIENTS Continuously enrolled health plan members age≥19 years taking ≥1 chronic medications. MEASUREMENTS AND MAIN RESULTS Among patients taking chronic medications (N=29,823 in 1999, N=32,423 in 2000, and N=36,811 in 2001), 47.1% in 1999, 45.0% in 2000, and 44.0% in 2001 did not receive ≥1 test recommended for safety monitoring. Taking into account that patients were sometimes missing more than 1 test for a given drug and that patients were frequently taking multiple drugs, the rate of all potential laboratory monitoring errors was 849/1,000 patients/year in 1999, 810/1,000 patients/year in 2000, and 797/1,000 patients/year in 2001. Rates of potential laboratory monitoring errors varied considerably across individual drugs and laboratory tests. CONCLUSIONS Lapses in laboratory monitoring of patients taking selected chronic medications were common. Further research is needed to determine whether, and to what extent, this failure to monitor patients is associated with adverse clinical outcomes. PMID:15857489

  9. Alternatives for Laboratory Measurement of Aerosol Samples from the International Monitoring System of the CTBT

    NASA Astrophysics Data System (ADS)

    Miley, H.; Forrester, J. B.; Greenwood, L. R.; Keillor, M. E.; Eslinger, P. W.; Regmi, R.; Biegalski, S.; Erikson, L. E.

    2013-12-01

    The aerosol samples taken from the CTBT International Monitoring Systems stations are measured in the field with a minimum detectable concentration (MDC) of ~30 microBq/m3 of Ba-140. This is sufficient to detect far less than 1 kt of aerosol fission products in the atmosphere when the station is in the plume from such an event. Recent thinking about minimizing the potential source region (PSR) from a detection has led to a desire for a multi-station or multi-time period detection. These would be connected through the concept of ';event formation', analogous to event formation in seismic event study. However, to form such events, samples from the nearest neighbors of the detection would require re-analysis with a more sensitive laboratory to gain a substantially lower MDC, and potentially find radionuclide concentrations undetected by the station. The authors will present recent laboratory work with air filters showing various cost effective means for enhancing laboratory sensitivity.

  10. Evolution of a residue laboratory network and the management tools for monitoring its performance.

    PubMed

    Lins, E S; Conceição, E S; Mauricio, A De Q

    2012-01-01

    Since 2005 the National Residue & Contaminants Control Plan (NRCCP) in Brazil has been considerably enhanced, increasing the number of samples, substances and species monitored, and also the analytical detection capability. The Brazilian laboratory network was forced to improve its quality standards in order to comply with the NRCP's own evolution. Many aspects such as the limits of quantification (LOQs), the quality management systems within the laboratories and appropriate method validation are in continuous improvement, generating new scenarios and demands. Thus, efficient management mechanisms for monitoring network performance and its adherence to the established goals and guidelines are required. Performance indicators associated to computerised information systems arise as a powerful tool to monitor the laboratories' activity, making use of different parameters to describe this activity on a day-to-day basis. One of these parameters is related to turnaround times, and this factor is highly affected by the way each laboratory organises its management system, as well as the regulatory requirements. In this paper a global view is presented of the turnaround times related to the type of analysis, laboratory, number of samples per year, type of matrix, country region and period of the year, all these data being collected from a computerised system called SISRES. This information gives a solid background to management measures aiming at the improvement of the service offered by the laboratory network.

  11. Chronic myelogenous leukemia: laboratory diagnosis and monitoring.

    PubMed

    Wang, Y L; Bagg, A; Pear, W; Nowell, P C; Hess, J L

    2001-10-01

    Rapid developments have occurred both in laboratory medicine and in therapeutic interventions for the management of patients with chronic myelogenous leukemia (CML). With a wide array of laboratory tests available, selecting the appropriate test for a specific diagnostic or therapeutic setting has become increasingly difficult. In this review, we first discuss, from the point of view of laboratory medicine, the advantages and disadvantages of several commonly used laboratory assays, including cytogenetics, fluorescence in situ hybridization (FISH), and qualitative and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). We then discuss, from the point of view of clinical care, the test(s) of choice for the most common clinical scenarios, including diagnosis and monitoring of the therapeutic response and minimal residual disease in patients treated with different therapies. The purpose of this review is to help clinicians and laboratory physicians select appropriate tests for the diagnosis and monitoring of CML, with the ultimate goal of improving the cost-effective usage of clinical laboratories and improving patient care. Copyright 2001 Wiley-Liss, Inc.

  12. Laboratory Connections. Gas Monitoring Transducers.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1988-01-01

    Discusses three types of sensors; pressure, gas detection, and relative humidity. Explains their use for laboratory measurements of gas pressure and detection of specific gaseous species. Shows diagrams of devices and circuits along with examples and applications including microcomputer interfacing. (RT)

  13. Virtual-Instrument-Based Online Monitoring System for Hands-on Laboratory Experiment of Partial Discharges

    ERIC Educational Resources Information Center

    Karmakar, Subrata

    2017-01-01

    Online monitoring of high-voltage (HV) equipment is a vital tool for early detection of insulation failure. Most insulation failures are caused by partial discharges (PDs) inside the HV equipment. Because of the very high cost of establishing HV equipment facility and the limitations of electromagnetic interference-screened laboratories, only a…

  14. Pollution monitoring system. [photographic laboratory by-products

    NASA Technical Reports Server (NTRS)

    Goodding, R. A.

    1973-01-01

    An investigation was undertaken to identify those photographic laboratory by-products which can produce harmful reactions if released untreated. After identification of these by-products, specific monitoring systems for each of the offending ions were investigated and recommendations for implementation are presented. Appropriate monitoring systems are discussed.

  15. 1988 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millard, G.; Yeager, G.; Phelan, J.

    1989-05-01

    Sandia National Laboratories (SNL), Albuquerque is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNL, Albuquerque has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. A total of 5.23 curies of argon-41 were released as a result of SNL, Albuquerque operations in 1988. The albuquerque population received an estimated 0.04 person-rem from airborne radioactive releases, whereas it received greater than 44,500 person-rem from naturally occurring radionuclides. A nonradioactive effluent monitoring program at SNL,more » Albuquerque includes groundwater, stormwater and sewage monitoring. Results indicate that the groundwater has not been impacted by the chemical waste landfill. Preliminary testing of stormwater showed that no pollutants were above minimum detectable levels. A program to investigate potential remedial action sites has been started. 47 refs., 12 figs., 19 tabs.« less

  16. Establishing a national biological laboratory safety and security monitoring program.

    PubMed

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  17. Evaluation of a hygiene monitor for detection of contamination in dental surgeries.

    PubMed

    Douglas, C W; Rothwell, P S

    1991-05-11

    Routines for disinfecting working surfaces in dental surgeries are difficult to monitor without time-consuming and labour-intensive microbiological techniques, yet effective monitoring is a vital part of cross-infection control. Easy to use, on-site methods would be valuable in this context. This study evaluates a portable monitor, the Biotrace Hygiene Monitor, which uses bioluminescence to measure adenosine triphosphate (ATP) on surfaces. Under laboratory conditions, the ability of the monitor to detect whole saliva and Streptococcus sanguis was determined and, in the general practice environment, the level of ATP on surfaces in five dental surgeries was assessed. The minimum amount of saliva detectable was 0.5 microliters and in surgeries, the monitor readily identified numerous surfaces with fairly high levels of ATP. Routine cleaning methods sometimes left ATP on surfaces at levels which represented a cross-infection risk, if it is assumed that the ATP derived from patients' saliva. Modification of cleaning methods resulted in a reduction of ATP levels to within that which could be considered reasonably practicably safe. It is concluded that the Biotrace Hygiene Monitor offers a simple and valuable means of monitoring dental practice cleaning routines.

  18. Advancing internal erosion monitoring using seismic methods in field and laboratory studies

    NASA Astrophysics Data System (ADS)

    Parekh, Minal L.

    This dissertation presents research involving laboratory and field investigation of passive and active methods for monitoring and assessing earthen embankment infrastructure such as dams and levees. Internal erosion occurs as soil particles in an earthen structure migrate to an exit point under seepage forces. This process is a primary failure mode for dams and levees. Current dam and levee monitoring practices are not able to identify early stages of internal erosion, and often the result is loss of structure utility and costly repairs. This research contributes to innovations for detection and monitoring by studying internal erosion and monitoring through field experiments, laboratory experiments, and social and political framing. The field research in this dissertation included two studies (2009 and 2012) of a full-scale earthen embankment at the IJkdijk in the Netherlands. In both of these tests, internal erosion occurred as evidenced by seepage followed by sand traces and boils, and in 2009, eventual failure. With the benefit of arrays of closely spaced piezometers, pore pressure trends indicated internal erosion near the initiation time. Temporally and spatially dense pore water pressure measurements detected two pore water pressure transitions characteristic to the development of internal erosion, even in piezometers located away from the backward erosion activity. At the first transition, the backward erosion caused anomalous pressure decrease in piezometers, even under constant or increasing upstream water level. At the second transition, measurements stabilized as backward erosion extended further upstream of the piezometers, as shown in the 2009 test. The transitions provide an indication of the temporal development and the spatial extent of backward erosion. The 2012 IJkdijk test also included passive acoustic emissions (AE) monitoring. This study analyzed AE activity over the course of the 7-day test using a grid of geophones installed on the

  19. Detection of Enterovirus D68 in Canadian Laboratories

    PubMed Central

    Hatchette, Todd F.; Drews, Steven J.; Grudeski, Elsie; Booth, Tim; Martineau, Christine; Dust, Kerry; Garceau, Richard; Gubbay, Jonathan; Karnauchow, Tim; Krajden, Mel; Levett, Paul N.; Mazzulli, Tony; McDonald, Ryan R.; McNabb, Alan; Mubareka, Samira; Needle, Robert; Petrich, Astrid; Richardson, Susan; Rutherford, Candy; Smieja, Marek; Tellier, Raymond; Tipples, Graham

    2015-01-01

    The recent emergence of a severe respiratory disease caused by enterovirus D68 prompted investigation into whether Canadian hospital and provincial laboratories can detect this virus using commercial and laboratory-developed assays. This study demonstrated analytical sensitivity differences between commercial and laboratory-developed assays for the detection of enterovirus D68. PMID:25740765

  20. Wireless vibration monitoring for damage detection of highway bridges

    NASA Astrophysics Data System (ADS)

    Whelan, Matthew J.; Gangone, Michael V.; Janoyan, Kerop D.; Jha, Ratneshwar

    2008-03-01

    The development of low-cost wireless sensor networks has resulted in resurgence in the development of ambient vibration monitoring methods to assess the in-service condition of highway bridges. However, a reliable approach towards assessing the health of an in-service bridge and identifying and localizing damage without a priori knowledge of the vibration response history has yet to be formulated. A two-part study is in progress to evaluate and develop existing and proposed damage detection schemes. The first phase utilizes a laboratory bridge model to investigate the vibration response characteristics induced through introduction of changes to structural members, connections, and support conditions. A second phase of the study will validate the damage detection methods developed from the laboratory testing with progressive damage testing of an in-service highway bridge scheduled for replacement. The laboratory bridge features a four meter span, one meter wide, steel frame with a steel and cement board deck composed of sheet layers to regulate mass loading and simulate deck wear. Bolted connections and elastomeric bearings provide a means for prescribing variable local stiffness and damping effects to the laboratory model. A wireless sensor network consisting of fifty-six accelerometers accommodated by twenty-eight local nodes facilitates simultaneous, real-time and high-rate acquisition of the vibrations throughout the bridge structure. Measurement redundancy is provided by an array of wired linear displacement sensors as well as a scanning laser vibrometer. This paper presents the laboratory model and damage scenarios, a brief description of the developed wireless sensor network platform, an overview of available test and measurement instrumentation within the laboratory, and baseline measurements of dynamic response of the laboratory bridge model.

  1. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. © 2015 Society for Laboratory Automation and Screening.

  2. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method

    PubMed Central

    White, Richard A.; Lu, Chunling; Rodriguez, Carly A.; Bayona, Jaime; Becerra, Mercedes C.; Burgos, Marcos; Centis, Rosella; Cohen, Theodore; Cox, Helen; D'Ambrosio, Lia; Danilovitz, Manfred; Falzon, Dennis; Gelmanova, Irina Y.; Gler, Maria T.; Grinsdale, Jennifer A.; Holtz, Timothy H.; Keshavjee, Salmaan; Leimane, Vaira; Menzies, Dick; Milstein, Meredith B.; Mishustin, Sergey P.; Pagano, Marcello; Quelapio, Maria I.; Shean, Karen; Shin, Sonya S.; Tolman, Arielle W.; van der Walt, Martha L.; Van Deun, Armand; Viiklepp, Piret

    2016-01-01

    Debate persists about monitoring method (culture or smear) and interval (monthly or less frequently) during treatment for multidrug-resistant tuberculosis (MDR-TB). We analysed existing data and estimated the effect of monitoring strategies on timing of failure detection. We identified studies reporting microbiological response to MDR-TB treatment and solicited individual patient data from authors. Frailty survival models were used to estimate pooled relative risk of failure detection in the last 12 months of treatment; hazard of failure using monthly culture was the reference. Data were obtained for 5410 patients across 12 observational studies. During the last 12 months of treatment, failure detection occurred in a median of 3 months by monthly culture; failure detection was delayed by 2, 7, and 9 months relying on bimonthly culture, monthly smear and bimonthly smear, respectively. Risk (95% CI) of failure detection delay resulting from monthly smear relative to culture is 0.38 (0.34–0.42) for all patients and 0.33 (0.25–0.42) for HIV-co-infected patients. Failure detection is delayed by reducing the sensitivity and frequency of the monitoring method. Monthly monitoring of sputum cultures from patients receiving MDR-TB treatment is recommended. Expanded laboratory capacity is needed for high-quality culture, and for smear microscopy and rapid molecular tests. PMID:27587552

  3. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  4. Detection of enterovirus D68 in Canadian laboratories.

    PubMed

    Hatchette, Todd F; Drews, Steven J; Grudeski, Elsie; Booth, Tim; Martineau, Christine; Dust, Kerry; Garceau, Richard; Gubbay, Jonathan; Karnauchow, Tim; Krajden, Mel; Levett, Paul N; Mazzulli, Tony; McDonald, Ryan R; McNabb, Alan; Mubareka, Samira; Needle, Robert; Petrich, Astrid; Richardson, Susan; Rutherford, Candy; Smieja, Marek; Tellier, Raymond; Tipples, Graham; LeBlanc, Jason J

    2015-05-01

    The recent emergence of a severe respiratory disease caused by enterovirus D68 prompted investigation into whether Canadian hospital and provincial laboratories can detect this virus using commercial and laboratory-developed assays. This study demonstrated analytical sensitivity differences between commercial and laboratory-developed assays for the detection of enterovirus D68. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. The Mobile Laboratory for Radio-Frequency Interference Monitoring at the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Bolli, Pietro; Gaudiomonte, Francesco; Ambrosini, Roberto; Bortolotti, Claudio; Roma, Mauro; Barberi, Carlo; Piccoli, Fabrizio

    2013-10-01

    In this paper, a quite unique mobile laboratory for monitoring radio-frequency interference with a radio-astronomical observatory is described. The unit is fully operational at the new Sardinia Radio Telescope, a 64-m antenna now in the commissioning phase in Italy. The mobile laboratory is mainly used to identify the source of interference with the radio astronomy service using iterative triangulations in the azimuth directions. Both the design and realization of this prototype were handled with outstanding care to limit the emission of self-interference as much as possible. The laboratory was equipped with excellent microwave instruments in terms of sensitivity, frequency coverage, dynamic range, and various demodulation and signal-analysis facilities. The unit can be quickly switched to different RF and power-supply configurations, while offering operators a safe and efficient workplace, even in adverse meteorological and driving conditions. In the past months, the mobile laboratory has proven to be successful in detecting and identifying many radio interferers. Two examples of measurement campaigns are described.

  6. CONTROL CONSOLE FOR MTR FISSION PRODUCT MONITOR, USED TO DETECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL CONSOLE FOR MTR FISSION PRODUCT MONITOR, USED TO DETECT BREAKS IN CLADDING OF FUEL ELEMENTS. COUNT-RATE METER IN TOP PANEL INDICATES AMOUNT OF RADIOACTIVITY. LOWER PANELS SUPPLY POWER AND AMPLIFICATION OF SIGNALS GENERATED BY SCINTILLATION COUNTER/PHOTOMULTIPLIER TUBE COMBINATION IN RESPONSE TO RADIOACTIVITY IN A SAMPLE OF THE COOLING WATER. INL NEGATIVE NO. 56-771. Jack L. Anderson, Photographer, 3/15/1956. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Internal quality control indicators of cervical cytopathology exams performed in laboratories monitored by the External Quality Control Laboratory.

    PubMed

    Ázara, Cinara Zago Silveira; Manrique, Edna Joana Cláudio; Tavares, Suelene Brito do Nascimento; de Souza, Nadja Lindany Alves; Amaral, Rita Goreti

    2014-09-01

    To evaluate the impact of continued education provided by an external quality control laboratory on the indicators of internal quality control of cytopathology exams. The internal quality assurance indicators for cytopathology exams from 12 laboratories monitored by the External Quality Control Laboratory were evaluated. Overall, 185,194 exams were included, 98,133 of which referred to the period preceding implementation of a continued education program, while 87,061 referred to the period following this intervention. Data were obtained from the Cervical Cancer Database of the Brazilian National Health Service. Following implementation of the continued education program, the positivity index (PI) remained within recommended limits in four laboratories. In another four laboratories, the PI progressed from below the limits to within the recommended standards. In one laboratory, the PI remained low, in two laboratories, it remained very low, and in one, it increased from very low to low. The percentage of exams compatible with a high-grade squamous intraepithelial lesion (HSIL) remained within the recommended limits in five laboratories, while in three laboratories it progressed from below the recommended levels to >0.4% of the total number of satisfactory exams, and in four laboratories it remained below the standard limit. Both the percentage of atypical squamous cells of undetermined significance (ASC-US) in relation to abnormal exams, and the ratio between ASC-US and intraepithelial lesions remained within recommended levels in all the laboratories investigated. An improvement was found in the indicators represented by the positivity index and the percentage of exams compatible with a high-grade squamous intraepithelial lesion, showing that the role played by the external quality control laboratory in providing continued education contributed towards improving laboratory staff skills in detecting cervical cancer precursor lesions.

  8. Changes in laboratory test results and diagnostic imaging presentation before the detection of occupational cholangiocarcinoma.

    PubMed

    Kubo, Shoji; Takemura, Shigekazu; Sakata, Chikaharu; Urata, Yorihisa; Nishioka, Takayoshi; Nozawa, Akinori; Kinoshita, Masahiko; Hamano, Genya; Nakanuma, Yasuni; Endo, Ginji

    2014-01-01

    A cholangiocarcinoma outbreak among workers of an offset color proof-printing department in a printing company was recently reported. It is important to understand the clinical course leading to occupational cholangiocarcinoma development for investigation of the carcinogenesis process and for surveillance and early detection. We evaluated the changes in laboratory test results and diagnostic imaging presentation before the detection of cholangiocarcinoma. We investigated the changes in laboratory test results and diagnostic imaging presentation before the detection of cholangiocarcinoma in 2 patients because the data were available. Results The clinical courses observed in the 2 participating patients showed persistent elevation of serum γ-glutamyl transpeptidase levels with or without elevated serum levels of alanine aminotransferase and/or aspartate aminotransferase before cholangiocarcinoma detection. Dilatation of the bile ducts without tumor-induced stenosis was observed several years before cholangiocarcinoma detection and progressed gradually in both patients. The serum concentration of carbohydrate 19-9 also increased prior to cholangiocarcinoma detection in both patients. Eventually, observation of stenosis of the bile duct and a space-occupying lesion strongly suggested cholangiocarcinoma. Pathological examination of the resected specimens showed chronic bile duct injury and neoplastic lesions, such as "biliary intraepithelial neoplasia" and "intraductal papillary neoplasm of the bile duct" in various sites of the bile ducts, particularly in the dilated bile ducts. The changes in laboratory test results and diagnostic imaging might be related to the development of cholangiocarcinoma. It is important to monitor diagnostic imaging presentation and laboratory test results in workers with extended exposure to organic solvents.

  9. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  10. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less

  11. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  12. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  13. Detection of physical activities using a physical activity monitor system for wheelchair users.

    PubMed

    Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan

    2015-01-01

    Availability of physical activity monitors for wheelchair users can potentially assist these individuals to track regular physical activity (PA), which in turn could lead to a healthier and more active lifestyle. Therefore, the aim of this study was to develop and validate algorithms for a physical activity monitoring system (PAMS) to detect wheelchair based activities. The PAMS consists of a gyroscope based wheel rotation monitor (G-WRM) and an accelerometer device (wocket) worn on the upper arm or on the wrist. A total of 45 persons with spinal cord injury took part in the study, which was performed in a structured university-based laboratory environment, a semi-structured environment at the National Veterans Wheelchair Games, and in the participants' home environments. Participants performed at least ten PAs, other than resting, taken from a list of PAs. The classification performance for the best classifiers on the testing dataset for PAMS-Arm (G-WRM and wocket on upper arm) and PAMS-Wrist (G-WRM and wocket on wrist) was 89.26% and 88.47%, respectively. The outcomes of this study indicate that multi-modal information from the PAMS can help detect various types of wheelchair-based activities in structured laboratory, semi-structured organizational, and unstructured home environments. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.

    PubMed

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-02-25

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.

  15. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays

    PubMed Central

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-01-01

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system. PMID:28245623

  16. First proficiency testing to evaluate the ability of European Union National Reference Laboratories to detect staphylococcal enterotoxins in milk products.

    PubMed

    Hennekinne, Jacques-Antoine; Gohier, Martine; Maire, Tiphaine; Lapeyre, Christiane; Lombard, Bertrand; Dragacci, Sylviane

    2003-01-01

    The European Commission has designed a network of European Union-National Reference Laboratories (EU-NRLs), coordinated by a Community Reference Laboratory (CRL), for control of hygiene of milk and milk products (Council Directive 92/46/ECC). As a common contaminant of milk and milk products such as cheese, staphylococcal enterotoxins are often involved in human outbreaks and should be monitored regularly. The main tasks of the EU-CRLs were to select and transfer to the EU-NRLs a reference method for detection of enterotoxins, and to set up proficiency testing to evaluate the competency of the European laboratory network. The first interlaboratory exercise was performed on samples of freeze-dried cheese inoculated with 2 levels of staphylococcal enterotoxins (0.1 and 0.25 ng/g) and on an uninoculated control. These levels were chosen considering the EU regulation for staphylococcal enterotoxins in milk and milk products and the limit of detection of the enzyme-linked immunosorbent assay test recommended in the reference method. The trial was conducted according to the recommendations of ISO Guide 43. Results produced by laboratories were compiled and compared through statistical analysis. Except for data from 2 laboratories for the uninoculated control and cheese inoculated at 0.1 ng/g, all laboratories produced satisfactory results, showing the ability of the EU-NRL network to monitor the enterotoxin contaminant.

  17. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sondrup, A. Jeffrey; Rood, Arthur S.

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) formore » every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the

  18. GPS Monitor Station Upgrade Program at the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Galysh, Ivan J.; Craig, Dwin M.

    1996-01-01

    One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.

  19. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  20. Monitoring CCS Sites: Lessons Learned Studying Natural Laboratories.

    NASA Astrophysics Data System (ADS)

    Tartarello, M. C.; Beaubien, S. E.; Graziani, S.; Lombardi, S.; Ruggiero, L.

    2016-12-01

    Monitoring is one of the most important aspects of Carbon Capture and Storage (CCS), both for early recognition of leaks from the reservoir and for public safety. Natural analogues could be useful to understand the potential impact of a leakage on the local ecosystem and to develop new techniques of monitoring. These sites, called also "natural laboratories", are characterized by natural, geologically-produced CO2 constantly leaking from the seafloor or from the groundsurface. In the last 10 years, our group as partner of some EC funded projects focused on CCS (NASCENT (2000-2003), CO2GeoNet (2004-2009), CO2ReMoVe (2006-2011), RISCS (2010-2013), and ECO2 (2011-2015)), studied gas migration mechanisms in these "natural laboratories", applying near-surface geochemistry to monitoring. This method provides one of the most powerful tools to assess whether a CCS site is leaking and, if it is, to quantify that leakage. This is because rather than being a remote method that estimates amounts based on proxy associations, such as some geophysical tools, it is an exact measurement of the item of interest (in this case CO2) in the accessible biosphere where there is concern regarding its potential impact. In particular, we have been studied two sites in Italy, characterized by significant emissions of CO2, related to volcanic emissions: the Latera Caldera (in Central Italy) and the offshore emissions near Panarea Island. We combined continuous and discontinuous monitoring, structural surveys and gas flux measurements. The results show a strong correlation between fault architecture and leakage rates. Moreover, the monitoring of an area for long periods allows defining the baseline, which is the fluctuation of gas concentrations both spatially and temporally as a function of biological, chemical, geological, land-use and meteorological processes.

  1. Quality improvement project in cervical cancer screening: practical measures for monitoring laboratory performance.

    PubMed

    Tarkkanen, Jussi; Geagea, Antoine; Nieminen, Pekka; Anttila, Ahti

    2003-01-01

    We conducted a quality improvement project in a cervical cancer screening programme in Helsinki in order to see if detection of precancerous lesions could be influenced by external (participation rate) and internal (laboratory praxis) quality measures. In order to increase the participation rate, a second personal invitation to Pap-test was mailed to nonparticipants of the first call. In order to improve the quality of screening, the cytotechnicians monitored their performance longitudinally by recording the number of slides reviewed per day, the pick-up rate of abnormal smears, the report of the consulting cytopathologist, and the number of histologically verified lesions detected from the cases that they had screened. Regular sessions were held to compare the histological findings with the cytological findings of all cases referred for colposcopy. No pressure was applied on the cytotechnicians to ensure that they felt comfortable with their daily workload. A total of 110 000 smears were screened for cervical cancer at the Helsinki City Hospital during 1996-99. Initially, the overall participation rate increased from 62% to 71%. The number of histologically confirmed precancerous lesions (CIN 1-3) more than doubled and their detection rate increased from 0.32% to 0.72%. Continuous education and feedback from daily work performance were important, yet rather inexpensive means in increasing laboratory performance. Additional measures are needed to further increase the participation rate. Impact of the quality measures on cancer incidence needs to be assessed later on.

  2. INNOVATIVE CONCEPTS FOR DETECTING AND LOCATING LEAKS IN WASTE IMPOUNDMENT LINER SYSTEMS: ACOUSTIC EMISSION MONITORING AND TIME DOMAIN REFLECTOMETRY

    EPA Science Inventory

    This project is part of a program to investigate the use of innovative techniques for detecting and locating leaks in waste impoundment liners. Laboratory and small scale field studies were undertaken to evaluate the potential of Acoustic Emission Monitoring (AEM) and Time Domain...

  3. The Design Fabrication Installation & Evaluation of the Balance Probe Monitor for Large Centrifuges at a National Laboratory Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Jonathan Michael

    Balance Probe Monitors were designed, fabricated, installed, and evaluated at Sandia National Laboratories (SNL) for the 22,600 g kg (50,000 g lb) direct drive electromotor driven large centrifuges. These centrifuges provide a high onset/decay rate g environment. The Balance Probe Monitor is physically located near a centrifuge’s Capacitance Probe, a crucial sensor for the centrifuge’s sustainability. The Balance Probe Monitor will validate operability of the centrifuge. Most importantly, it is used for triggering a kill switch under the condition that the centrifuge displacement value exceeds allowed tolerances. During operational conditions, the Capacitance Probe continuously detects the structural displacement of themore » centrifuge and an adjoining AccuMeasure 9000 translates this displacement into an output voltage.« less

  4. Patient identification errors: the detective in the laboratory.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Lillo, Rosa; Gutiérrez, Mercedes; Lugo, Javier; Leiva-Salinas, Carlos

    2013-11-01

    The eradication of errors regarding patients' identification is one of the main goals for safety improvement. As clinical laboratory intervenes in 70% of clinical decisions, laboratory safety is crucial in patient safety. We studied the number of Laboratory Information System (LIS) demographic data errors registered in our laboratory during one year. The laboratory attends a variety of inpatients and outpatients. The demographic data of outpatients is registered in the LIS, when they present to the laboratory front desk. The requests from the primary care centers (PCC) are made electronically by the general practitioner. A manual step is always done at the PCC to conciliate the patient identification number in the electronic request with the one in the LIS. Manual registration is done through hospital information system demographic data capture when patient's medical record number is registered in LIS. Laboratory report is always sent out electronically to the patient's electronic medical record. Daily, every demographic data in LIS is manually compared to the request form to detect potential errors. Fewer errors were committed when electronic order was used. There was great error variability between PCC when using the electronic order. LIS demographic data manual registration errors depended on patient origin and test requesting method. Even when using the electronic approach, errors were detected. There was a great variability between PCC even when using this electronic modality; this suggests that the number of errors is still dependent on the personnel in charge of the technology. © 2013.

  5. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, Daniel L.; Yin, Xingyu; Scalia, Alexander

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were usedmore » to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.« less

  6. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides

    PubMed Central

    Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-01-01

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157

  7. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides.

    PubMed

    Wang, Kai; Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-10-30

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1-2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area.

  8. Detection of Cryptosporidium and Giardia in clinical laboratories in Europe--a comparative study.

    PubMed

    Manser, M; Granlund, M; Edwards, H; Saez, A; Petersen, E; Evengard, B; Chiodini, P

    2014-01-01

    To determine the routine diagnostic methods used and compare the performance in detection of oocysts of Cryptosporidium species and cysts of Giardia intestinalis in faecal samples by European specialist parasitology laboratories and European clinical laboratories. Two sets of seven formalin-preserved faecal samples, one containing cysts of Giardia intestinalis and the other, containing oocysts of Cryptosporidium, were sent to 18 laboratories. Participants were asked to examine the specimens using their routine protocol for detecting these parasites and state the method(s) used. Eighteen laboratories answered the questionnaire. For detection of Giardia, 16 of them used sedimentation/concentration followed by light microscopy. Using this technique the lower limit of detection of Giardia was 17.2 cysts/mL of faeces in the best performing laboratories. Only three of 16 laboratories used fluorescent-conjugated antibody-based microscopy. For detection of Cryptosporidium acid-fast staining was used by 14 of the 17 laboratories that examined the samples. With this technique the lower limit of detection was 976 oocysts/mL of faeces. Fluorescent-conjugated antibody-based microscopy was used by only five of the 17 laboratories. There was variation in the lower limit of detection of cysts of Giardia and oocysts of Cryptosporidium between laboratories using the same basic microscopic methods. Fluorescent-conjugated antibody-based microscopy was not superior to light microscopy under the conditions of this study. There is a need for a larger-scale multi-site comparison of the methods used for the diagnosis of these parasites and the development of a Europe-wide laboratory protocol based upon its findings. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  9. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, T.; Cox, W.; Hwang, H.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had nomore » discernible impact on the general public or on the environment.« less

  10. [Immunological monitoring in kidney transplantation: 13 years experience of a Moroccan histocompatibility laboratory].

    PubMed

    Brick, C; Atouf, O; Essakalli, M

    2016-05-01

    The quality of the immunological monitoring is crucial because it determines the success of the kidney transplantation. The scope of this work is to describe the experience of the department of immunological unity of the Ibn Sina university hospital in Rabat regarding the immunological monitoring of patients transplanted between 2001 and 2014. Patient samples were collected from nephrology services of different public and private hospitals of Morocco. The tests conducted in the context of immunological monitoring are ABO typing, HLA-A, B, DR, DQ typing, anti-HLA antibodies detection and identification and cross-match. One hundred and fourteen benefited from a pre- and post-transplant immunological monitoring in our laboratory. The percentage of recipients having between 2 and 5 stored sera is 60.5 before transplantation and 56.1 after transplantation. Immunized patients account for 22.8% before the transplant and 17.6% after transplantation. Ninety-seven patients still have a functional graft, while 4 of them had DSA of low intensity before transplantation. Five immunological rejections were reported while the cross-match were negative and no DSA was identified before transplantation. Patient survival and graft at 1 year was 98.2% and 92.7% respectively. Conducting regular immunological monitoring is sometimes difficult in our context, however, the results are satisfactory in terms of graft and patients survival. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Developing monitoring plans to detect spills related to natural gas production.

    PubMed

    Harris, Aubrey E; Hopkinson, Leslie; Soeder, Daniel J

    2016-11-01

    Surface water is at risk from Marcellus Shale operations because of chemical storage on drill pads during hydraulic fracturing operations, and the return of water high in total dissolved solids (up to 345 g/L) from shale gas production. This research evaluated how two commercial, off-the-shelf water quality sensors responded to simulated surface water pollution events associated with Marcellus Shale development. First, peak concentrations of contaminants from typical spill events in monitored watersheds were estimated using regression techniques. Laboratory measurements were then conducted to determine how standard in-stream instrumentation that monitor conductivity, pH, temperature, and dissolved oxygen responded to three potential spill materials: ethylene glycol (corrosion inhibitor), drilling mud, and produced water. Solutions ranging from 0 to 50 ppm of each spill material were assessed. Over this range, the specific conductivity increased on average by 19.9, 27.9, and 70 μS/cm for drilling mud, ethylene glycol, and produced water, respectively. On average, minor changes in pH (0.5-0.8) and dissolved oxygen (0.13-0.23 ppm) were observed. While continuous monitoring may be part of the strategy for detecting spills to surface water, these minor impacts to water quality highlight the difficulty in detecting spill events. When practical, sensors should be placed at the mouths of small watersheds where drilling activities or spill risks are present, as contaminant travel distance strongly affects concentrations in surface water systems.

  12. Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments

    NASA Astrophysics Data System (ADS)

    Zhou, YaoQuan; Cardiff, Michael

    2017-05-01

    Non-aqueous phase liquids (NAPLs) have a complex mode of transport in heterogeneous aquifers, which can result in pools and lenses of NAPLs (the "source zone") that are difficult to detect and can cause long-term contamination via slow dissolution into groundwater (the "dissolved plume"). Characterizing the extent and evolution of NAPL contamination within the source zone is a useful strategy for designing and adapting appropriate remedial actions at many contaminated sites. As a NAPL flows into a given aquifer volume, the effective hydraulic conductivity (K) and specific storage (Ss) of the volume changes associated with the viscosity and compressibility of the impinging fluid, meaning that NAPL movement may be detectable with hydraulic testing. Recently, the use of oscillatory pumping tests - in which sinusoidal pumping variations are implemented and oscillatory pressure changes are detected at monitoring locations - has been suggested as a low-impact hydraulic testing strategy for characterizing aquifer properties (Cardiff et al., 2013; Zhou et al., 2016). Here, we investigate this strategy in an experimental laboratory sandbox where dyed vegetable oil is injected and allowed to migrate as a NAPL. Initial qualitative analyses demonstrate that measurable changes in pressure signal amplitude and phase provide clear evidence for NAPL plume emplacement and migration. Using the approach developed in Zhou et al. (2016), we then apply tomographic analyses to estimate the location of effective K changes (representing fluid changes) and their movement throughout time. This approach provides a method for monitoring ongoing NAPL movement without net extraction or injection of fluid, making it advantageous in field remediation applications.

  13. Simple non-laboratory- and laboratory-based risk assessment algorithms and nomogram for detecting undiagnosed diabetes mellitus.

    PubMed

    Wong, Carlos K H; Siu, Shing-Chung; Wan, Eric Y F; Jiao, Fang-Fang; Yu, Esther Y T; Fung, Colman S C; Wong, Ka-Wai; Leung, Angela Y M; Lam, Cindy L K

    2016-05-01

    The aim of the present study was to develop a simple nomogram that can be used to predict the risk of diabetes mellitus (DM) in the asymptomatic non-diabetic subjects based on non-laboratory- and laboratory-based risk algorithms. Anthropometric data, plasma fasting glucose, full lipid profile, exercise habits, and family history of DM were collected from Chinese non-diabetic subjects aged 18-70 years. Logistic regression analysis was performed on a random sample of 2518 subjects to construct non-laboratory- and laboratory-based risk assessment algorithms for detection of undiagnosed DM; both algorithms were validated on data of the remaining sample (n = 839). The Hosmer-Lemeshow test and area under the receiver operating characteristic (ROC) curve (AUC) were used to assess the calibration and discrimination of the DM risk algorithms. Of 3357 subjects recruited, 271 (8.1%) had undiagnosed DM defined by fasting glucose ≥7.0 mmol/L or 2-h post-load plasma glucose ≥11.1 mmol/L after an oral glucose tolerance test. The non-laboratory-based risk algorithm, with scores ranging from 0 to 33, included age, body mass index, family history of DM, regular exercise, and uncontrolled blood pressure; the laboratory-based risk algorithm, with scores ranging from 0 to 37, added triglyceride level to the risk factors. Both algorithms demonstrated acceptable calibration (Hosmer-Lemeshow test: P = 0.229 and P = 0.483) and discrimination (AUC 0.709 and 0.711) for detection of undiagnosed DM. A simple-to-use nomogram for detecting undiagnosed DM has been developed using validated non-laboratory-based and laboratory-based risk algorithms. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  14. In Vivo Monitoring of Hemodynamic Changes during Clogging and Unclogging of Blood Supply for the Application of Clinical Shock Detection

    NASA Astrophysics Data System (ADS)

    Kanawade, Rajesh; Stelzle, Florian; Schmidt, Michael

    This paper presents a novel methodology in early detection of clinical shock by monitoring hemodynamic changes using diffuse reflectance measurement technique. Detailed prototype of the reflectance measurement system and data analysis technique of hemodynamic monitoring was carried out in our laboratory. The real time in-vivo measurements were done from the index finger. This study demonstrates preliminary results of real time monitoring of reduced/- oxyhemoglobin changes during clogging and unclogging of blood flow in the finger tip. The obtained results were verified with pulse-oximeter values, connected to the tip of the same index finger.

  15. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 themore » Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.« less

  16. Damage detection in bridges through fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Doornink, J. D.; Phares, B. M.; Wipf, T. J.; Wood, D. L.

    2006-10-01

    A fiber optic structural health monitoring (SHM) system was developed and deployed by the Iowa State University (ISU) Bridge Engineering Center (BEC) to detect gradual or sudden damage in fracture-critical bridges (FCBs). The SHM system is trained with measured performance data, which are collected by fiber optic strain sensors to identify typical bridge behavior when subjected to ambient traffic loads. Structural responses deviating from the trained behavior are considered to be signs of structural damage or degradation and are identified through analytical procedures similar to control chart analyses used in statistical process control (SPC). The demonstration FCB SHM system was installed on the US Highway 30 bridge near Ames, IA, and utilizes 40 fiber bragg grating (FBG) sensors to continuously monitor the bridge response when subjected to ambient traffic loads. After the data is collected and processed, weekly evaluation reports are developed that summarize the continuous monitoring results. Through use of the evaluation reports, the bridge owner is able to identify and estimate the location and severity of the damage. The information presented herein includes an overview of the SHM components, results from laboratory and field validation testing on the system components, and samples of the reduced and analyzed data.

  17. Low-complexity R-peak detection for ambulatory fetal monitoring.

    PubMed

    Rooijakkers, Michael J; Rabotti, Chiara; Oei, S Guid; Mischi, Massimo

    2012-07-01

    Non-invasive fetal health monitoring during pregnancy is becoming increasingly important because of the increasing number of high-risk pregnancies. Despite recent advances in signal-processing technology, which have enabled fetal monitoring during pregnancy using abdominal electrocardiogram (ECG) recordings, ubiquitous fetal health monitoring is still unfeasible due to the computational complexity of noise-robust solutions. In this paper, an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, without reducing the R-peak detection performance compared to the existing R-peak detection schemes. Validation of the algorithm is performed on three manually annotated datasets. With a detection error rate of 0.23%, 1.32% and 9.42% on the MIT/BIH Arrhythmia and in-house maternal and fetal databases, respectively, the detection rate of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.

  18. Can we detect, monitor, and characterize volcanic activity using 'off the shelf' webcams and low-light cameras?

    NASA Astrophysics Data System (ADS)

    Harrild, M.; Webley, P. W.; Dehn, J.

    2015-12-01

    The ability to detect and monitor precursory events, thermal signatures, and ongoing volcanic activity in near-realtime is an invaluable tool. Volcanic hazards often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash to aircraft cruise altitudes. Using ground based remote sensing to detect and monitor this activity is essential, but the required equipment is often expensive and difficult to maintain, which increases the risk to public safety and the likelihood of financial impact. Our investigation explores the use of 'off the shelf' cameras, ranging from computer webcams to low-light security cameras, to monitor volcanic incandescent activity in near-realtime. These cameras are ideal as they operate in the visible and near-infrared (NIR) portions of the electromagnetic spectrum, are relatively cheap to purchase, consume little power, are easily replaced, and can provide telemetered, near-realtime data. We focus on the early detection of volcanic activity, using automated scripts that capture streaming online webcam imagery and evaluate each image according to pixel brightness, in order to automatically detect and identify increases in potentially hazardous activity. The cameras used here range in price from 0 to 1,000 and the script is written in Python, an open source programming language, to reduce the overall cost to potential users and increase the accessibility of these tools, particularly in developing nations. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures to be correlated to pixel brightness. Data collected from several volcanoes; (1) Stromboli, Italy (2) Shiveluch, Russia (3) Fuego, Guatemala (4) Popcatépetl, México, along with campaign data from Stromboli (June, 2013), and laboratory tests are presented here.

  19. Automated Monitoring with a BSP Fault-Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L.; Herzog, James P.

    2003-01-01

    The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals.

  20. Laboratory preparedness for detection and monitoring of Shiga toxin 2-producing Escherichia coli O104:H4 in Europe and response to the 2011 outbreak.

    PubMed

    Rosin, P; Niskanen, T; Palm, D; Struelens, M; Takkinen, J

    2013-06-20

    A hybrid strain of enteroaggregative and Shiga toxin 2-producing Escherichia coli (EAEC-STEC) serotype O104:H4 strain caused a large outbreak of haemolytic uraemic syndrome and bloody diarrhoea in 2011 in Europe. Two surveys were performed in the European Union (EU) and European Economic Area (EEA) countries to assess their laboratory capabilities to detect and characterise this previously uncommon STEC strain. Prior to the outbreak, 11 of the 32 countries in this survey had capacity at national reference laboratory (NRL) level for epidemic case confirmation according to the EU definition. During the outbreak, at primary diagnostic level, nine countries reported that clinical microbiology laboratories routinely used Shiga toxin detection assays suitable for diagnosis of infections with EAEC-STEC O104:H4, while 14 countries had NRL capacity to confirm epidemic cases. Six months after the outbreak, 22 countries reported NRL capacity to confirm such cases following initiatives taken by NRLs and the European Centre for Disease Prevention and Control (ECDC) Food- and Waterborne Disease and Zoonoses laboratory network. These data highlight the challenge of detection and confirmation of epidemic infections caused by atypical STEC strains and the benefits of coordinated EU laboratory networks to strengthen capabilities in response to a major outbreak.

  1. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.

    2004-01-01

    The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.

  2. Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection.

    PubMed

    Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae

    2017-06-12

    Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan-Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities.

  3. 40 CFR 257.24 - Detection monitoring program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Disposal Units Ground-Water Monitoring and Corrective Action § 257.24 Detection monitoring program. (a... unit; (ii) The mobility, stability, and persistence of waste constituents or their reaction products in... constituents, and reaction products in the ground water; and (iv) The concentration or values and coefficients...

  4. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    PubMed

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  5. Hawaii Munitions Monitoring Station and Natural Laboratory

    NASA Astrophysics Data System (ADS)

    Edwards, M.; Trimble, A. Z.; Rognstad, M. R.

    2017-12-01

    Hundreds of thousands of tons of conventional munitions were fired into the ocean at military ranges or deliberately disposed at sea during the twentieth century. Potential contaminants from munitions and explosives of concern (MEC) affect virtually every coast in the United States, including Alaska, the Hawaiian Islands, Guam, American Samoa and other U.S. territories as well as inland waterways. It is necessary to develop methods to assess the concentrations of munitions constituents present at a site to address concerns about the presence of environmentally relevant concentrations and their potential impacts. Having a well-characterized site to test instruments and methods is important for continued development and refinement of technology. Most sites are too big to characterize comprehensively in three dimensions over time periods lasting days or longer. We are working to develop a monitoring station and natural laboratory near Oahu, Hawaii to create a cost-effective demonstration and validation natural laboratory where emerging technologies can be evaluated and compared. Ordnance Reef (OR) is an ideal location to establish a munitions monitoring station for historical, logistical and environmental reasons. OR is an area of shallow fringing reef measuring approximately 4.2 km by 2.2 km along the Waianae coast of Oahu that was used as a disposal area for military munitions following World War II. OR has been the subject of multiple investigations including an inventory of munitions conducted by the U.S. Army Corps of Engineers in 2002 and a screening-level risk investigation conducted by the National Oceanic and Atmospheric Administration and the University of Hawaii in 2006. As a result, there are multiple datasets collected over the past fifteen years that can be leveraged to serve as a baseline for the natural laboratory. These extant datasets are being supplemented with data from integrated unmanned systems deployed at OR to characterize and visualize the

  6. Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.

    2016-12-01

    Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring

  7. [Standardization of operation monitoring and control of the clinical laboratory automation system].

    PubMed

    Tao, R

    2000-10-01

    Laboratory automation systems showed up in the 1980s and have been introduced to many clinical laboratories since early 1990s. Meanwhile, it was found that the difference in the specimen tube dimensions, specimen identification formats, specimen carrier transportation equipment architecture, electromechanical interfaces between the analyzers and the automation systems was preventing the systems from being introduced to a wider extent. To standardize the different interfaces and reduce the cost of laboratory automation, NCCLS and JCCLS started establishing standards for laboratory automation in 1996 and 1997 respectively. Operation monitoring and control of the laboratory automation system have been included in their activities, resulting in the publication of an NCCLS proposed standard in 1999.

  8. Computerized Alerts Improve Outpatient Laboratory Monitoring of Transplant Patients

    PubMed Central

    Staes, Catherine J.; Evans, R. Scott; Rocha, Beatriz H.S.C.; Sorensen, John B.; Huff, Stanley M.; Arata, Joan; Narus, Scott P.

    2008-01-01

    Authors evaluated the impact of computerized alerts on the quality of outpatient laboratory monitoring for transplant patients. For 356 outpatient liver transplant patients managed at LDS Hospital, Salt Lake City, this observational study compared traditional laboratory result reporting, using faxes and printouts, to computerized alerts implemented in 2004. Study alerts within the electronic health record notified clinicians of new results and overdue new orders for creatinine tests and immunosuppression drug levels. After implementing alerts, completeness of reporting increased from 66 to >99 %, as did positive predictive value that a report included new information (from 46 to >99 %). Timeliness of reporting and clinicians' responses improved after implementing alerts (p <0.001): median times for clinicians to receive and complete actions decreased to 9 hours from 33 hours using the prior traditional reporting system. Computerized alerts led to more efficient, complete, and timely management of laboratory information. PMID:18308982

  9. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... reaction products in the unsaturated zone beneath the MSWLF unit; (iii) The detectability of indicator parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  10. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  11. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  12. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  13. Asessment of adequacy of the monitoring method in the activity of a verification laboratory

    NASA Astrophysics Data System (ADS)

    Ivanov, R. N.; Grinevich, V. A.; Popov, A. A.; Shalay, V. V.; Malaja, L. D.

    2018-04-01

    Questions of assessing adequacy of a risk monitoring technique for a verification laboratory operation concerning the conformity to the accreditation criteria, and aimed at decision-making on advisability of a verification laboratory activities in the declared area of accreditation are considered.

  14. List of Laboratories Approved by EPA for the Fourth Unregulated Contaminant Monitoring Rule (UCMR 4)

    EPA Pesticide Factsheets

    This document provides a list of laboratories that met the Unregulated Contaminant Monitoring Rule 4 (UCMR 4) Laboratory Approval Program application and Proficiency Testing (PT) criteria for the methods indicated.

  15. List of Laboratories Approved by EPA for the Third Unregulated Contaminant Monitoring Rule (UCMR 3)

    EPA Pesticide Factsheets

    This document provides a list of laboratories that met the Unregulated Contaminant Monitoring Rule 3 (UCMR 3) Laboratory Approval Program application and Proficiency Testing (PT) criteria for the methods indicated.

  16. Population size influences amphibian detection probability: implications for biodiversity monitoring programs.

    PubMed

    Tanadini, Lorenzo G; Schmidt, Benedikt R

    2011-01-01

    Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into account in order to be reliable. Theory suggests that detection probability may be determined by population size but this relationship has not yet been assessed empirically. Population size is particularly important because it may induce heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain variation in detection probability. An index to population size best explained detection probabilities for four out of six species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current population size). The relationship between the population index and detection probability was positive. Commonly used weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities differed depending on whether the population index was or was not used to model detection probability. The relationship between the population index and detectability has implications for the design of monitoring and species conservation. Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a way that detection probabilities are constant. As we have shown here, one can easily account for variation in population size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site in previous years. Accounting for variation in population size is important because it can affect the results of long-term monitoring programs and ultimately the conservation of

  17. Monitoring of canine parvovirus (CPV) strains detected in vaccinated puppies in Brazil.

    PubMed

    Castro, T X; Costa, E M; Leite, J P; Labarthe, N V; Cubel Garcia, R C N

    2011-04-01

    The objective of this study was to investigate, by partial sequencing of VP2 protein, the variability of CPV detected in 37 fecal samples collected from vaccinated puppies with enteritis. Laboratorial diagnosis of CPV was confirmed by HA/HI and PCR and, for sequencing analyses, two different regions of the VP2 gene were amplified by PCR. From 1995 to 2004, all strains were characterized as CPV-2a. After that, both CPV-2a and CPV-2b were detected. All CPV-2a showed a non-synonymous mutation in the residue 297 (Ser→Ala). A synonymous substitution at the AA 574 was also observed in 15/37 samples. Our findings indicate that the cases of vaccine failure are most likely not associated to the mutations detected in the sequenced regions. However, the monitoring of genotyping mutations that led to new CPV strains is essential to determinate if current vaccines will keep providing protection against all new future variants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Biofouling detection monitoring devices: status assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, R.E.; Anson, D.; Corliss, J.M.

    1985-03-01

    An inventory of devices to detect and monitor biofouling in power plant condenser systems was prepared. The inventory was developed through a review of manufacturers' product information brochures, a general literature review, and limited personal contact with users and manufacturers. Two macrofouling and seventeen microfouling detection devices were reviewed. A summary analysis of the principal features of each device was prepared. Macrofouling devices are generally simple devices located at or near cooling water intakes. They monitor the growth of larger organisms such as mussels, barnacles, and large seaweeds. Microfouling detectors are usually located in or near the condenser tubes. Theymore » detect and monitor the growth of slime films on the tubes. Some of the devices measure changes in heat transfer or pressure drop in the condenser tubes. Other types include condenser simulators, biofilm samplers, or devices that measure the acoustic properties of the fouling films. Most devices are still in the development stage. Of the few available for general use, the type that measures heat transfer and/or pressure drop are developed to a greater degree than the other types. Recommendations for further research into development of a biofouling detection and monitoring devices include a side-by-side field comparison of selected devices, and the continued development of an effective acoustic device.« less

  19. Triplexer Monitor Design for Failure Detection in FTTH System

    NASA Astrophysics Data System (ADS)

    Fu, Minglei; Le, Zichun; Hu, Jinhua; Fei, Xia

    2012-09-01

    Triplexer was one of the key components in FTTH systems, which employed an analog overlay channel for video broadcasting in addition to bidirectional digital transmission. To enhance the survivability of triplexer as well as the robustness of FTTH system, a multi-ports device named triplexer monitor was designed and realized, by which failures at triplexer ports can be detected and localized. Triplexer monitor was composed of integrated circuits and its four input ports were connected with the beam splitter whose power division ratio was 95∶5. By means of detecting the sampled optical signal from the beam splitters, triplexer monitor tracked the status of the four ports in triplexer (e.g. 1310 nm, 1490 nm, 1550 nm and com ports). In this paper, the operation scenario of the triplexer monitor with external optical devices was addressed. And the integrated circuit structure of the triplexer monitor was also given. Furthermore, a failure localization algorithm was proposed, which based on the state transition diagram. In order to measure the failure detection and localization time under the circumstance of different failed ports, an experimental test-bed was built. Experiment results showed that the detection time for the failure at 1310 nm port by the triplexer monitor was less than 8.20 ms. For the failure at 1490 nm or 1550 nm port it was less than 8.20 ms and for the failure at com port it was less than 7.20 ms.

  20. Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection

    PubMed Central

    Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae

    2017-01-01

    Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan–Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities. PMID:28604628

  1. Detection of malignancy in body fluids: a comparison of the hematology and cytology laboratories.

    PubMed

    Jerz, Jaclyn L; Donohue, Rachel E; Mody, Rayomond R; Schwartz, Mary R; Mody, Dina R; Zieske, Arthur W

    2014-05-01

    Body fluids submitted to the hematology laboratory for cell counts may also be examined for the presence of malignancy. Previous studies evaluating the hematology laboratory's performance at detecting malignancy in body fluids have reached conflicting conclusions. To investigate the hematology laboratory's ability to detect malignancy in body fluids by comparison with cytology. Retrospective analysis of 414 body fluid samples during an 18-month period, with introduction of new quality assurance measures after the first 210 cases. If no concurrent cytology was ordered, results were compared with recent previous and/or subsequent cytologic, histologic, or flow cytometric diagnoses. Of the initial 210 cases, the hematology laboratory detected 3 of 13 malignancies diagnosed by concurrent cytology (23% sensitivity), with no false-positives (100% specificity). Malignancy was not identified on retrospective review of the hematology slides in the 10 discrepant cases. After the initial study, educational sessions on morphology for the medical technologists and a more thorough hematology-cytology correlation policy were implemented. The subsequent 204 hematology laboratory cases had increased sensitivity for the detection of malignancy (60%; 6 of 10). Definitive features of malignancy were seen in only one discrepant hematology laboratory slide on retrospective review. This case had not been flagged for hematopathologist review. None of the discrepancies before or after implementation of the additional quality assurance measures impacted patient care. Body fluid processing by the hematology laboratory is not optimized for the detection of malignancy. Concurrent cytologic examination is critical for the detection of malignancy, and needs to be considered as cost-saving measures are increasingly implemented.

  2. MOBLAB: a mobile laboratory for testing real-time vision-based systems in path monitoring

    NASA Astrophysics Data System (ADS)

    Cumani, Aldo; Denasi, Sandra; Grattoni, Paolo; Guiducci, Antonio; Pettiti, Giuseppe; Quaglia, Giorgio

    1995-01-01

    In the framework of the EUREKA PROMETHEUS European Project, a Mobile Laboratory (MOBLAB) has been equipped for studying, implementing and testing real-time algorithms which monitor the path of a vehicle moving on roads. Its goal is the evaluation of systems suitable to map the position of the vehicle within the environment where it moves, to detect obstacles, to estimate motion, to plan the path and to warn the driver about unsafe conditions. MOBLAB has been built with the financial support of the National Research Council and will be shared with teams working in the PROMETHEUS Project. It consists of a van equipped with an autonomous power supply, a real-time image processing system, workstations and PCs, B/W and color TV cameras, and TV equipment. This paper describes the laboratory outline and presents the computer vision system and the strategies that have been studied and are being developed at I.E.N. `Galileo Ferraris'. The system is based on several tasks that cooperate to integrate information gathered from different processes and sources of knowledge. Some preliminary results are presented showing the performances of the system.

  3. The capacity of diagnostic laboratories in Kenya for detecting infectious diseases.

    PubMed

    Slotved, H-C; Yatich, Kennedy K; Sam, Shem Otoi; Ndhine, Edwardina Otieno

    2017-01-01

    The aim of this study is to present data of the diagnostic capacity of Kenyan laboratories to diagnose a number of human pathogens. The study is based on the data obtained from a biosecurity survey conducted in Kenya in 2014/2015 and data from the Statistical Abstract of Kenya for 2015. The biosecurity survey has previously been published; however, the survey also included information on laboratory capacity to handle a number of pathogens, which have not been published. Data were retrieved from the survey on 86 laboratory facilities. The data include information from relevant categories such as training laboratories, human diagnostic laboratories, veterinary diagnostic laboratories, and research laboratories. The disease incidence in Kenya ranges widely from malaria and diarrhea with an incidence rate of around 10.000 per year to diseases such as cholera and yellow fever with an incidence rate of 1 per year or less for all age groups. The data showed that diseases with the highest number of diagnostic facilities were mainly malaria-, HIV-, tuberculosis-, and diarrhea-related infectious diseases. The study generally shows that the laboratory facilities have the capacity of detecting the infectious diseases with the highest incidence rates. Furthermore, it seems that the number of facilities able to detect a particular disease is related to the incidence rate of the disease.

  4. Polygraph lie detection on real events in a laboratory setting.

    PubMed

    Bradley, M T; Cullen, M C

    1993-06-01

    This laboratory study dealt with real-life intense emotional events. Subjects generated embarrassing stories from their experience, then submitted to polygraph testing and, by lying, denied their stories and, by telling the truth, denied a randomly assigned story. Money was given as an incentive to be judged innocent on each story. An interrogator, blind to the stories, used Control Question Tests and found subjects more deceptive when lying than when truthful. Stories interacted with order such that lying on the second story was more easily detected than lying on the first. Embarrassing stories provide an alternative to the use of mock crimes to study lie detection in the laboratory.

  5. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects.

    PubMed

    Kappel, Andreas; Keller, Andreas

    2017-05-01

    microRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression in eukaryotes. Their differential abundance is indicative or even causative for a variety of pathological processes including cancer or cardiovascular disorders. Due to their important biological function, miRNAs represent a promising class of novel biomarkers that may be used to diagnose life-threatening diseases, and to monitor disease progression. Further, they may guide treatment selection or dosage of drugs. miRNAs from blood or derived fractions are particularly interesting candidates for routine laboratory applications, as they can be measured in most clinical laboratories already today. This assures a good accessibility of respective tests. Albeit their great potential, miRNA-based diagnostic tests have not made their way yet into the clinical routine, and hence no standardized workflows have been established to measure miRNAs for patients' benefit. In this review we summarize the detection technologies and workflow options that exist to measure miRNAs, and we describe the advantages and disadvantages of each of these options. Moreover, we also provide a perspective on data analysis aspects that are vital for translation of raw data into actionable diagnostic test results.

  6. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  7. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  8. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleimer, G.E.

    1983-04-01

    In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations duringmore » 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population.« less

  9. Cardiorespiratory dynamics measured from continuous ECG monitoring improves detection of deterioration in acute care patients: A retrospective cohort study

    PubMed Central

    Clark, Matthew T.; Calland, James Forrest; Enfield, Kyle B.; Voss, John D.; Lake, Douglas E.; Moorman, J. Randall

    2017-01-01

    Background Charted vital signs and laboratory results represent intermittent samples of a patient’s dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. Methods and findings We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Conclusions Cardiorespiratory dynamics from continuous ECG monitoring detect

  10. Cardiorespiratory dynamics measured from continuous ECG monitoring improves detection of deterioration in acute care patients: A retrospective cohort study.

    PubMed

    Moss, Travis J; Clark, Matthew T; Calland, James Forrest; Enfield, Kyle B; Voss, John D; Lake, Douglas E; Moorman, J Randall

    2017-01-01

    Charted vital signs and laboratory results represent intermittent samples of a patient's dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in acute care patients

  11. Self-Potential Monitoring of Landslides on Field and Laboratory Scale

    NASA Astrophysics Data System (ADS)

    Heinze, T.; Limbrock, J. K.; Weigand, M.; Wagner, F. M.; Kemna, A.

    2017-12-01

    Among several other geophysical methods used to observe water movement in the ground, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context of landslides is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than pressure diffusion. We present self-potential measurements from over a year of continuous monitoring at an old landslide site. Using a three-dimensional electric-resistivity underground model, the self-potential signal is analyzed with respect to precipitation and the resulting flow in the ground. Additional data from electrical measurements and conventional sensors are included to assess saturation. The field observations are supplemented by laboratory experiments in which we study the behavior of the self-potential during failure of a piled land slope. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. Our results

  12. Daily Laboratory Monitoring is of Poor Health Care Value in Adolescents Acutely Hospitalized for Eating Disorders.

    PubMed

    Ridout, Kathryn K; Kole, Jonathan; Fitzgerald, Kelly L; Ridout, Samuel J; Donaldson, Abigail A; Alverson, Brian

    2016-07-01

    This study investigates how the clinical practice guideline-recommended laboratory monitoring for refeeding syndrome impacts management and outcomes of adolescents with eating disorders hospitalized for acute medical stabilization and examines the value of laboratory monitoring (defined as the patient health outcomes achieved per dollar spent). A retrospective chart review of medical admissions in a children's hospital between October 2010 and February 2014 was performed. Encounters were identified using International Classification of Diseases, Ninth Revision codes of eating disorders as primary or secondary diagnoses. Exclusion criteria included systemic diseases associated with significant electrolyte abnormalities. Chart abstraction was performed using a predetermined form. Costs were estimated by converting hospital-fixed Medicaid charges using a statewide cost-to-charge ratio. Of the 196 patient encounters, there were no cases of refeeding syndrome. A total of 3,960 key recommended laboratories were obtained; 1.9% were below normal range and .05% were critical values. Of these, .28% resulted in supplementation; none were associated with a change in inpatient management. Total laboratory costs were $269,250.85; the calculated health care value of this monitoring is 1.04 × 10(-8) differential outcomes per dollar spent. This study provides evidence to suggest that daily laboratory monitoring for refeeding syndrome is a poor health care value in the management of adolescents hospitalized for acute medical stabilization with eating disorders. This initial analysis suggests that starting at a relatively low caloric level and advancing nutrition slowly may negate the need for daily laboratory assessment, which may have important implications for current guidelines. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  13. From detection monitoring to evaluation monitoring - a case study involving crown dieback in northern white-cedar

    Treesearch

    KaDonna Randolph; William Bechtold; Randall Morin; Stanley Zarnoch

    2009-01-01

    The Forest Inventory and Analysis (FIA) Phase 3 plot network is a crucial part of the U.S. Forest Health Monitoring program's detection monitoring system, where select indicators are monitored for signals that may indicate deteriorating forest health. When a negative signal is identified, evaluation monitoring provides a mechanism whereby a potential problem can...

  14. Monitoring programs need to take into account imperfect species detectability

    USGS Publications Warehouse

    Kery, M.; Schmid, Hans

    2004-01-01

    Biodiversiry monitoring is important to identify biological units in need of conservation and to check the effectiveness of conservation actions. Programs generally monitor species richness and its changes (trend). Usually, no correction is made for imperfect species detectability. Instead, it is assumed that each species present has the same probability of being recorded and that there is no difference in this detectability across space and time, e.g. among observers and habitats. Consequently, species richness is determined by enumeration as the sum of species recorded. In Switzerland, the federal government has recently launched a comprehensive program that aims at detecting changes in biodiversity at all levels of biological integration. Birds are an important part of that program. Since 1999, 23 visits per breeding season are made to each of >250 1 km2 squares to map the territories of all detected breeding bird species. Here, we analyse data from three squares to illustrate the use of capture-recapture models in monitoring to obtain detectability-corrected estimates of species richness and trend. Species detectability averaged only 85%. Hence an estimated 15% of species present remained overlooked even after three visits. Within a square, changes in detectability for different years were of the same magnitude when surveys were conducted by the same observer as when they were by different observers. Estimates of trend were usually biased and community turnover was overestimated when based on enumeration. Here we use bird data as an illustration of methods. However, species detectability for any taxon is unlikely ever to be perfect or even constant across categories to be compared. Therefore, monitoring programs should correct for species detectability.

  15. Experimental estimation of snare detectability for robust threat monitoring.

    PubMed

    O'Kelly, Hannah J; Rowcliffe, J Marcus; Durant, Sarah; Milner-Gulland, E J

    2018-02-01

    Hunting with wire snares is rife within many tropical forest systems, and constitutes one of the severest threats to a wide range of vertebrate taxa. As for all threats, reliable monitoring of snaring levels is critical for assessing the relative effectiveness of management interventions. However, snares pose a particular challenge in terms of tracking spatial or temporal trends in their prevalence because they are extremely difficult to detect, and are typically spread across large, inaccessible areas. As with cryptic animal targets, any approach used to monitor snaring levels must address the issue of imperfect detection, but no standard method exists to do so. We carried out a field experiment in Keo Seima Wildlife Reserve in eastern Cambodia with the following objectives: (1) To estimate the detection probably of wire snares within a tropical forest context, and to investigate how detectability might be affected by habitat type, snare type, or observer. (2) To trial two sets of sampling protocols feasible to implement in a range of challenging field conditions. (3) To conduct a preliminary assessment of two potential analytical approaches to dealing with the resulting snare encounter data. We found that although different observers had no discernible effect on detection probability, detectability did vary between habitat type and snare type. We contend that simple repeated counts carried out at multiple sites and analyzed using binomial mixture models could represent a practical yet robust solution to the problem of monitoring snaring levels both inside and outside of protected areas. This experiment represents an important first step in developing improved methods of threat monitoring, and such methods are greatly needed in southeast Asia, as well as in as many other regions.

  16. Diagnosis and Threat Detection Capabilities of the SERENITY Monitoring Framework

    NASA Astrophysics Data System (ADS)

    Tsigkritis, Theocharis; Spanoudakis, George; Kloukinas, Christos; Lorenzoli, Davide

    The SERENITY monitoring framework offers mechanisms for diagnosing the causes of violations of security and dependability (S&D) properties and detecting potential violations of such properties, called "Cthreats". Diagnostic information and threat detection are often necessary for deciding what an appropriate reaction to a violation is and taking pre-emptive actions against predicted violations, respectively. In this chapter, we describe the mechanisms of the SERENITY monitoring framework which generate diagnostic information for violations of S&D properties and detecting threats.

  17. Remote health monitoring system for detecting cardiac disorders.

    PubMed

    Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal

    2015-12-01

    Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events.

  18. Validity of Activity Monitor Step Detection Is Related to Movement Patterns.

    PubMed

    Hickey, Amanda; John, Dinesh; Sasaki, Jeffer E; Mavilia, Marianna; Freedson, Patty

    2016-02-01

    There is a need to examine step-counting accuracy of activity monitors during different types of movements. The purpose of this study was to compare activity monitor and manually counted steps during treadmill and simulated free-living activities and to compare the activity monitor steps to the StepWatch (SW) in a natural setting. Fifteen participants performed laboratory-based treadmill (2.4, 4.8, 7.2 and 9.7 km/h) and simulated free-living activities (eg, cleaning room) while wearing an activPAL, Omron HJ720-ITC, Yamax Digi- Walker SW-200, 2 ActiGraph GT3Xs (1 in "low-frequency extension" [AGLFE] and 1 in "normal-frequency" mode), an ActiGraph 7164, and a SW. Participants also wore monitors for 1-day in their free-living environment. Linear mixed models identified differences between activity monitor steps and the criterion in the laboratory/free-living settings. Most monitors performed poorly during treadmill walking at 2.4 km/h. Cleaning a room had the largest errors of all simulated free-living activities. The accuracy was highest for forward/rhythmic movements for all monitors. In the free-living environment, the AGLFE had the largest discrepancy with the SW. This study highlights the need to verify step-counting accuracy of activity monitors with activities that include different movement types/directions. This is important to understand the origin of errors in step-counting during free-living conditions.

  19. [Application of lysosomal detection in marine pollution monitoring: research progress].

    PubMed

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  20. Attention focusing and anomaly detection in systems monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.

    1994-01-01

    Any attempt to introduce automation into the monitoring of complex physical systems must start from a robust anomaly detection capability. This task is far from straightforward, for a single definition of what constitutes an anomaly is difficult to come by. In addition, to make the monitoring process efficient, and to avoid the potential for information overload on human operators, attention focusing must also be addressed. When an anomaly occurs, more often than not several sensors are affected, and the partially redundant information they provide can be confusing, particularly in a crisis situation where a response is needed quickly. The focus of this paper is a new technique for attention focusing. The technique involves reasoning about the distance between two frequency distributions, and is used to detect both anomalous system parameters and 'broken' causal dependencies. These two forms of information together isolate the locus of anomalous behavior in the system being monitored.

  1. What's to Be Done About Laboratory Quality? Process Indicators, Laboratory Stewardship, the Outcomes Problem, Risk Assessment, and Economic Value: Responding to Contemporary Global Challenges.

    PubMed

    Meier, Frederick A; Badrick, Tony C; Sikaris, Kenneth A

    2018-02-17

    For 50 years, structure, process, and outcomes measures have assessed health care quality. For clinical laboratories, structural quality has generally been assessed by inspection. For assessing process, quality indicators (QIs), statistical monitors of steps in the clinical laboratory total testing, have proliferated across the globe. Connections between structural and process laboratory measures and patient outcomes, however, have rarely been demonstrated. To inform further development of clinical laboratory quality systems, we conducted a selective but worldwide review of publications on clinical laboratory quality assessment. Some QIs, like seven generic College of American Pathologists Q-Tracks monitors, have demonstrated significant process improvement; other measures have uncovered critical opportunities to improve test selection and result management. The College of Pathologists of Australasia Key Indicator Monitoring and Management System has deployed risk calculations, introduced from failure mode effects analysis, as surrogate measures for outcomes. Showing economic value from clinical laboratory testing quality is a challenge. Clinical laboratories should converge on fewer (7-14) rather than more (21-35) process monitors; monitors should cover all steps of the testing process under laboratory control and include especially high-risk specimen-quality QIs. Clinical laboratory stewardship, the combination of education interventions among clinician test orderers and report consumers with revision of test order formats and result reporting schemes, improves test ordering, but improving result reception is more difficult. Risk calculation reorders the importance of quality monitors by balancing three probabilities: defect frequency, weight of potential harm, and detection difficulty. The triple approach of (1) a more focused suite of generic consensus quality indicators, (2) more active clinical laboratory testing stewardship, and (3) integration of formal

  2. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and themore » environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.« less

  3. Near-Real-Time Detection and Monitoring of Intense Pyroconvection from Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Peterson, D. A.; Fromm, M. D.; Hyer, E. J.; Surratt, M. L.; Solbrig, J. E.; Campbell, J. R.

    2016-12-01

    Intense fire-triggered thunderstorms, known as pyrocumulonimbus (or pyroCb), can alter fire behavior, influence smoke plume trajectories, and hinder fire suppression efforts. PyroCb are also known for injecting a significant quantity of aerosol mass into the upper-troposphere and lower-stratosphere (UTLS). Near-real-time (NRT) detection and monitoring of pyroCb is highly desirable for a variety of forecasting and research applications. The Naval Research Laboratory (NRL) recently developed the first automated NRT pyroCb detection algorithm for geostationary satellite sensors. The algorithm uses multispectral infrared observations to isolate deep convective clouds with the distinct microphysical signal of pyroCb. Application of this algorithm to 88 intense wildfires observed during the 2013 fire season in western North America resulted in detection of individual intense events, pyroCb embedded within traditional convection, and multiple, short-lived pulses of activity. Comparisons with a community inventory indicate that this algorithm captures the majority of pyroCb. The primary limitation of the current system is that pyroCb anvils can be small relative to satellite pixel size, especially in in regions with large viewing angles. The algorithm is also sensitive to some false positives from traditional convection that either ingests smoke or exhibits extreme updraft velocities. This algorithm has been automated using the GeoIPS processing system developed at NRL, which produces a variety of imagery products and statistical output for rapid analysis of potential pyroCb events. NRT application of this algorithm has been extended to the majority of regions worldwide known to have a high frequency of pyroCb occurrence. This involves a constellation comprised of GOES-East, GOES-West, and Himawari-8. Imagery is posted immediately to an NRL-maintained web page. Alerts are generated by the system and disseminated via email. This detection system also has potential to serve

  4. Application of cabin atmosphere monitors to rapid screening of breath samples for the early detection of disease states

    NASA Technical Reports Server (NTRS)

    Valentine, J. L.; Bryant, P. J.

    1975-01-01

    Analysis of human breath is a nonintrusive method to monitor both endogenous and exogenous chemicals found in the body. Several technologies were investigated and developed which are applicable to monitoring some organic molecules important in both physiological and pathological states. Two methods were developed for enriching the organic molecules exhaled in the breath of humans. One device is based on a respiratory face mask fitted with a polyethylene foam wafer; while the other device is a cryogenic trap utilizing an organic solvent. Using laboratory workers as controls, two organic molecules which occurred in the enriched breath of all subjects were tentatively identified as lactic acid and contisol. Both of these substances occurred in breath in sufficient amounts that the conventional method of gas-liquid chromatography was adequate for detection and quantification. To detect and quantitate trace amounts of chemicals in breath, another type of technology was developed in which analysis was conducted using high pressure liquid chromatography and mass spectrometry.

  5. Quality assurance of reference standards from nine European solar-ultraviolet monitoring laboratories.

    PubMed

    Gröbner, Julian; Rembges, Diana; Bais, Alkiviadis F; Blumthaler, Mario; Cabot, Thierry; Josefsson, Weine; Koskela, Tapani; Thorseth, Trond M; Webb, Ann R; Wester, Ulf

    2002-07-20

    A program for quality assurance of reference standards has been initiated among nine solar-UV monitoring laboratories. By means of a traveling lamp package that comprises several 1000-W ANSI code DXW-type quartz-halogen lamps, a 0.1-ohm shunt, and a 6-1/2 digit voltmeter, the irradiance scales used by the nine laboratories were compared with one another; a relative uncertainty of 1.2% was found. The comparison of 15 reference standards yielded differences of as much as 9%; the average difference was less than 3%.

  6. Pacific Northwest National Laboratory Potential Impact Categories for Radiological Air Emission Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. Matthew

    2012-06-05

    In 2002, the EPA amended 40 CFR 61 Subpart H and 40 CFR 61 Appendix B Method 114 to include requirements from ANSI/HPS N13.1-1999 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities for major emission points. Additionally, the WDOH amended the Washington Administrative Code (WAC) 246-247 Radiation protection-air emissions to include ANSI/HPS N13.1-1999 requirements for major and minor emission points when new permitting actions are approved. A result of the amended regulations is the requirement to prepare a written technical basis for the radiological air emission sampling and monitoring program. A keymore » component of the technical basis is the Potential Impact Category (PIC) assigned to an emission point. This paper discusses the PIC assignments for the Pacific Northwest National Laboratory (PNNL) Integrated Laboratory emission units; this revision includes five PIC categories.« less

  7. Laser heterodyne detection techniques. [for atmospheric monitoring applications

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1976-01-01

    The principles of heterodyne radiometry are examined, taking into account thermal radiation, the Dicke microwave radiometer, photomixing in the infrared, and signal-to-noise considerations. The passive heterodyne radiometer is considered and a description is presented of heterodyne techniques in active monitoring systems. Attention is given to gas emissivities in the infrared, component requirements, experimental heterodyne detection of gases, a comparison of the passive heterodyne radiometer with the Michelson interferometer-spectrometer, airborne monitoring applications, turbulence effects on passive heterodyne radiometry, sensitivity improvements with heterodyning, atmosphere-induced degradation of bistatic system performance, pollutant detection experiments with a bistatic system, and the airborne laser absorption spectrometer. Future improvements in spectral flexibility are also discussed.

  8. A New Meteo-oceanographic and Environmental Monitoring Laboratory in Brazil

    NASA Astrophysics Data System (ADS)

    Fontes, Roberto F. C.; Dottori, Marcelo; Silveira, Ilson C. A.; Castro, Belmiro M.

    2013-04-01

    The newer oil provinces in the pre-salt regions off the Brazilian Coast have raised the necessity of the creation of monitoring and observational centers, regarding the best comprehension on the ocean and atmosphere dynamics. The relation between industry and university is a concept based on collaboration, and it is an innovative social experiment in Brazil. The sustainability of that collaboration depends on the balance of mutual interests on private business and public academic institutions. The entrepreneur needs continuous accesses to the new academic researches, and the greatest benefit, for the academy, are funding complementation and personnel qualification. We need to establish a thread of new challenges, some of them based on disruption of paradigms in the Brazilian academic culture, and removal of obstructive clauses from the entrepreneur. Questioning and methods revalidation, in the oceanic environment areas, also requires a collaborative and interdisciplinary effort, congregating the physical aspects along with others compartments of the environmental monitoring. We proposed the creation of a Meteo-oceanographic and Environmental Monitoring Laboratory - LAMMOA (Portuguese acronym), which will be installed in a new facility funded by PETROBRAS (the Brazilian leading oil company) and ruled by USP, UNESP and UNICAMP, the state public universities in Santos (São Paulo State, Brazil). The new facility will be a research center in oil and gas activities, named CENPEG-BS (Portuguese acronym for Research Center of Oil and Gas in the Bay of Santos). Several laboratories and groups will work together, in a highly collaborative environment and so, capable of quickly respond to sudden demands on offshore activities and logistic operations, as well as in contingency situations. LAMMOA will continuous monitor oceanic regions where the pre-salt activities of oil exploitation occur. It will monitor meteo-oceanographic parameters like winds, waves and currents

  9. An audit of Cryptosporidium and Giardia detection in Scottish National Health Service Diagnostic Microbiology Laboratories.

    PubMed

    Alexander, C L; Currie, S; Pollock, K; Smith-Palmer, A; Jones, B L

    2017-06-01

    Giardia duodenalis and Cryptosporidium species are protozoan parasites capable of causing gastrointestinal disease in humans and animals through the ingestion of infective faeces. Whereas Cryptosporidium species can be acquired locally or through foreign travel, there is the mis-conception that giardiasis is considered to be largely travel-associated, which results in differences in laboratory testing algorithms. In order to determine the level of variation in testing criteria and detection methods between diagnostic laboratories for both pathogens across Scotland, an audit was performed. Twenty Scottish diagnostic microbiology laboratories were invited to participate with questions on sample acceptance criteria, testing methods, testing rates and future plans for pathogen detection. Reponses were received from 19 of the 20 laboratories representing each of the 14 territorial Health Boards. Detection methods varied between laboratories with the majority performing microscopy, one using a lateral flow immunochromatographic antigen assay, another using a manually washed plate-based enzyme immunoassay (EIA) and one laboratory trialling a plate-based EIA automated with an EIA plate washer. Whereas all laboratories except one screened every stool for Cryptosporidium species, an important finding was that significant variation in the testing algorithm for detecting Giardia was noted with only four laboratories testing all diagnostic stools. The most common criteria were 'travel history' (11 laboratories) and/or 'when requested' (14 laboratories). Despite only a small proportion of stools being examined in 15 laboratories for Giardia (2%-18% of the total number of stools submitted), of interest is the finding that a higher positivity rate was observed for Giardia than Cryptosporidium in 10 of these 15 laboratories. These findings highlight that the underreporting of Giardia in Scotland is likely based on current selection and testing algorithms.

  10. [Capability of national reference laboratories in Latin America to detect emerging resistance mechanisms].

    PubMed

    Corso, Alejandra; Guerriero, Leonor; Pasterán, Fernando; Ceriana, Paola; Callejo, Raquel; Prieto, Mónica; Tuduri, Ezequiel; Lopardo, Horacio; Vay, Carlos; Smayevsky, Jorgelina; Tokumoto, Marta; Alvarez, Jorge Matheu; Pardo, Pilar Ramón; Galas, Marcelo

    2011-12-01

    To evaluate the capability of 17 national reference laboratories participating in the Latin American Quality Control Program in Bacteriology and Antibiotic Resistance (LA-EQAS) to detect emerging resistance mechanisms- namely: resistance of enterobacteria to carbapenems due to the presence of Klebsiella pneumoniae carbapenemase (KPC) and metallo-beta-lactamase (MBL) type IMP, and intermediate resistance of Staphylococcus aureus isolates to vancomycin (vancomycin-intermediate resistant S. aureus-VISA). The following three isolates were sent to the 17 participating LA-EQAS laboratories: KPC -producing Klebsiella pneumoniae PAHO-161, IMP-producing Enterobacter cloacae PAHO-166, and S. aureus PAHO-165 with intermediate resistance to vancomycin. Performance of each of the following operations was evaluated: interpretation of sensitivity tests, detection of the resistance mechanism, and assessment of either inhibition halo size (disk diffusion method) or minimum inhibitory concentration (MIC). Concordance in the detection of resistance mechanisms was 76.4%, 73.3%, and 66.7% for the K. pneumoniae PAHO-161, E. cloacae PAHO-166, and S. aureus PAHO-165 strains, respectively. Concordance between the inhibition areas observed by the participating laboratories and the ranges established by the coordinating laboratory was acceptable for all three isolates, at 90.8%, 92.8%, and 88.9%, respectively. Overall concordance in on the detection of KPC, MBL, and VISA resistance mechanisms was 72.1%. We consider the national reference laboratories in Latin America capable of recognizing these emerging resistance mechanisms and expect that maximum levels of concordance will be reached in the future.

  11. Quality in the molecular microbiology laboratory.

    PubMed

    Wallace, Paul S; MacKay, William G

    2013-01-01

    In the clinical microbiology laboratory advances in nucleic acid detection, quantification, and sequence analysis have led to considerable improvements in the diagnosis, management, and monitoring of infectious diseases. Molecular diagnostic methods are routinely used to make clinical decisions based on when and how to treat a patient as well as monitor the effectiveness of a therapeutic regime and identify any potential drug resistant strains that may impact on the long term patient treatment program. Therefore, confidence in the reliability of the result provided by the laboratory service to the clinician is essential for patient treatment. Hence, suitable quality assurance and quality control measures are important to ensure that the laboratory methods and service meet the necessary regulatory requirements both at the national and international level. In essence, the modern clinical microbiology laboratory ensures the appropriateness of its services through a quality management system that monitors all aspects of the laboratory service pre- and post-analytical-from patient sample receipt to reporting of results, from checking and upholding staff competency within the laboratory to identifying areas for quality improvements within the service offered. For most European based clinical microbiology laboratories this means following the common International Standard Organization (ISO9001) framework and ISO15189 which sets out the quality management requirements for the medical laboratory (BS EN ISO 15189 (2003) Medical laboratories-particular requirements for quality and competence. British Standards Institute, Bristol, UK). In the United States clinical laboratories performing human diagnostic tests are regulated by the Centers for Medicare and Medicaid Services (CMS) following the requirements within the Clinical Laboratory Improvement Amendments document 1988 (CLIA-88). This chapter focuses on the key quality assurance and quality control requirements within the

  12. Development of an electronic nose for environmental odour monitoring.

    PubMed

    Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Zanetti, Sonia; Della Torre, Matteo

    2012-10-25

    Exhaustive odour impact assessment should involve the evaluation of the impact of odours directly on citizens. For this purpose it might be useful to have an instrument capable of continuously monitoring ambient air quality, detecting the presence of odours and also recognizing their provenance. This paper discusses the laboratory and field tests conducted in order to evaluate the performance of a new electronic nose, specifically developed for monitoring environmental odours. The laboratory tests proved the instrument was able to discriminate between the different pure substances being tested, and to estimate the odour concentrations giving correlation indexes (R2) of 0.99 and errors below 15%. Finally, the experimental monitoring tests conducted in the field, allowed us to verify the effectiveness of this electronic nose for the continuous detection of odours in ambient air, proving its stability to variable atmospheric conditions and its capability to detect odour peaks.

  13. Development of a laboratory prototype water quality monitoring system suitable for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Witz, S.; Hartung, W. H.

    1973-01-01

    The development of a laboratory prototype water quality monitoring system for use in the evaluation of candidate water recovery systems and for study of techniques for measuring potability parameters is reported. Sensing techniques for monitoring of the most desirable parameters are reviewed in terms of their sensitivities and complexities, and their recommendations for sensing techniques are presented. Rationale for selection of those parameters to be monitored (pH, specific conductivity, Cr(+6), I2, total carbon, and bacteria) in a next generation water monitor is presented along with an estimate of flight system specifications. A master water monitor development schedule is included.

  14. Early Detection of Infection in Pigs through an Online Monitoring System.

    PubMed

    Martínez-Avilés, M; Fernández-Carrión, E; López García-Baones, J M; Sánchez-Vizcaíno, J M

    2017-04-01

    Late detection of emergency diseases causes significant economic losses for pig producers and governments. As the first signs of animal infection are usually fever and reduced motion that lead to reduced consumption of water and feed, we developed a novel smart system to monitor body temperature and motion in real time, facilitating the early detection of infectious diseases. In this study, carried out within the framework of the European Union research project Rapidia Field, we tested the smart system on 10 pigs experimentally infected with two doses of an attenuated strain of African swine fever. Biosensors and an accelerometer embedded in an eartag captured data before and after infection, and video cameras were used to monitor the animals 24 h per day. The results showed that in 8 of 9 cases, the monitoring system detected infection onset as an increase in body temperature and decrease in movement before or simultaneously with fever detection based on rectal temperature measurement, observation of clinical signs, the decrease in water consumption or positive qPCR detection of virus. In addition, this decrease in movement was reliably detected using automatic analysis of video images therefore providing an inexpensive alternative to direct motion measurement. The system can be set up to alert staff when high fever, reduced motion or both are detected in one or more animals. This system may be useful for monitoring sentinel herds in real time, considerably reducing the financial and logistical costs of periodic sampling and increasing the chances of early detection of infection. © 2015 Blackwell Verlag GmbH.

  15. Comparative study of electromechanical impedance and Lamb wave techniques for fatigue crack detection and monitoring in metallic structures

    NASA Astrophysics Data System (ADS)

    Lim, Say Ian; Liu, Yu; Soh, Chee Kiong

    2012-04-01

    Fatigue cracks often initiate at the weld toes of welded steel connections. Usually, these cracks cannot be identified by the naked eyes. Existing identification methods like dye-penetration test and alternating current potential drop (ACPD) may be useful for detecting fatigue cracks at the weld toes. To apply these non-destructive evaluation (NDE) techniques, the potential sites have to be accessible during inspection. Therefore, there is a need to explore other detection and monitoring techniques for fatigue cracks especially when their locations are inaccessible or cost of access is uneconomical. Electro-mechanical Impedance (EMI) and Lamb wave techniques are two fast growing techniques in the Structural Health Monitoring (SHM) community. These techniques use piezoelectric ceramics (PZT) for actuation and sensing. Since the monitoring site is only needed to be accessed once for the instrumentation of the transducers, remote monitoring is made possible. The permanent locations of these transducers also translate to having consistent measurement for monitoring. The main focus of this study is to conduct a comparative investigation on the effectiveness and efficiency of the EMI technique and the Lamb wave technique for successful fatigue crack identification and monitoring of welded steel connections using piezoelectric transducers. A laboratory-sized non-load carrying fillet weld specimen is used in this study. The specimen is subjected to cyclic tensile load and data for both techniques are acquired at stipulated intervals. It can be concluded that the EMI technique is sensitive to the crack initiation phase while the Lamb wave technique correlates well with the crack propagation phase.

  16. Vital signs monitoring to detect patient deterioration: An integrative literature review.

    PubMed

    Mok, Wen Qi; Wang, Wenru; Liaw, Sok Ying

    2015-05-01

    Vital signs monitoring is an important nursing assessment. Yet, nurses seem to be doing it as part of a routine and often overlooking their significance in detecting patient deterioration. An integrative literature review was conducted to explore factors surrounding ward nursing practice of vital signs monitoring in detecting and reporting deterioration. Twenty papers were included. The structural component of a Nursing Role Effectiveness Model framework, which comprises of patient, nurse and organizational variables, was used to synthesize the review. Patient variables include signs of deterioration displayed by patients which include physical cues and abnormal vital signs. Nursing variables include clinical knowledge, roles and responsibilities, and reporting of deteriorating vital signs. Organizational variables include heavy workload, technology, and observation chart design. This review has highlighted current nursing practice in vital signs monitoring. A myriad of factors were found to surround ward practice of vital signs monitoring in detecting and reporting deterioration. © 2015 Wiley Publishing Asia Pty Ltd.

  17. Validation of a basic neurosonology laboratory for detecting cervical carotid artery stenosis.

    PubMed

    de la Cruz Cosme, C; Dawid Milner, M S; Ojeda Burgos, G; Gallardo Tur, A; Márquez Martínez, M; Segura, T

    2017-03-24

    Most of the cases of ischaemic stroke in our setting are of atherothrombotic origin. Detecting intracranial and cervical carotid artery stenosis in patients with ischaemic stroke is therefore essential. Ultrasonography has become the tool of choice for diagnosing carotid artery stenosis because it is both readily accessibility and reliable. However, use of this technique must be validated in each laboratory. The purpose of this study is to validate Doppler ultrasound in our laboratory as a means of detecting severe carotid artery stenosis. We conducted an observational descriptive study to evaluate diagnostic tests. The results from transcranial and cervical carotid Doppler ultrasound scans conducted by neurologists were compared to those from carotid duplex scans performed by radiologists in patients diagnosed with stroke. Arteriography was considered the gold standard (MR angiography, CT angiography, or conventional arteriography). Our sample included 228 patients. Transcranial and cervical carotid Doppler ultrasound showed a sensitivity of 95% and specificity of 100% for detection of carotid artery stenosis > 70%, whereas carotid duplex displayed a sensitivity of 87% and a specificity of 94%. Transcranial carotid Doppler ultrasound achieved a sensitivity of 78% and a specificity of 98% for detection of intracranial stenosis. Doppler ultrasound in our neurosonology laboratory was found to be a useful diagnostic tool for detecting cervical carotid artery stenosis and demonstrated superiority to carotid duplex despite the lack of B-mode. Furthermore, this technique was found to be useful for detecting intracranial stenosis. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Efficient generation of receiver operating characteristics for the evaluation of damage detection in practical structural health monitoring applications.

    PubMed

    Liu, Chang; Dobson, Jacob; Cawley, Peter

    2017-03-01

    Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an

  19. Efficient generation of receiver operating characteristics for the evaluation of damage detection in practical structural health monitoring applications

    PubMed Central

    Dobson, Jacob; Cawley, Peter

    2017-01-01

    Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an

  20. Evaluation of continuous air monitor placement in a plutonium facility.

    PubMed

    Whicker, J J; Rodgers, J C; Fairchild, C I; Scripsick, R C; Lopez, R C

    1997-05-01

    Department of Energy appraisers found continuous air monitors at Department of Energy plutonium facilities alarmed less than 30% of the time when integrated room plutonium air concentrations exceeded 500 DAC-hours. Without other interventions, this alarm percentage suggests the possibility that workers could be exposed to high airborne concentrations without continuous air monitor alarms. Past research has shown that placement of continuous air monitors is a critical component in rapid and reliable detection of airborne releases. At Los Alamos National Laboratory and many other Department of Energy plutonium facilities, continuous air monitors have been primarily placed at ventilation exhaust points. The purpose of this study was to evaluate and compare the effectiveness of exhaust register placement of workplace continuous air monitors with other sampling locations. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories at Los Alamos National Laboratory. An array of laser particle counters positioned in the rooms measured time-resolved aerosol dispersion. Results showed alternative placement of air samplers generally resulted in aerosol detection that was faster, often more sensitive, and equally reliable compared with samplers at exhaust registers.

  1. Stream monitoring for detection of Phytophthora ramorum in Oregon

    Treesearch

    W. Sutton; E.M. Hansen; P. Reeser; A. Kanaskie

    2008-01-01

    Stream monitoring using leaf baits for early detection of P. ramorum is an important part of the Oregon sudden oak death program. About 50 streams in and near the Oregon quarantine area in the southwest corner of the state are currently monitored. Rhododendron and tanoak leaf baits in mesh bags are exchanged every two weeks throughout the year....

  2. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories.

    PubMed

    Domingo, Cristina; Patel, Pranav; Yillah, Jasmin; Weidmann, Manfred; Méndez, Jairo A; Nakouné, Emmanuel Rivalyn; Niedrig, Matthias

    2012-12-01

    Reported methods for the detection of the yellow fever viral genome are beset by limitations in sensitivity, specificity, strain detection spectra, and suitability to laboratories with simple infrastructure in areas of endemicity. We describe the development of two different approaches affording sensitive and specific detection of the yellow fever genome: a real-time reverse transcription-quantitative PCR (RT-qPCR) and an isothermal protocol employing the same primer-probe set but based on helicase-dependent amplification technology (RT-tHDA). Both assays were evaluated using yellow fever cell culture supernatants as well as spiked and clinical samples. We demonstrate reliable detection by both assays of different strains of yellow fever virus with improved sensitivity and specificity. The RT-qPCR assay is a powerful tool for reference or diagnostic laboratories with real-time PCR capability, while the isothermal RT-tHDA assay represents a useful alternative to earlier amplification techniques for the molecular diagnosis of yellow fever by field or point-of-care laboratories.

  3. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  4. Miniature Laboratory for Detecting Sparse Biomolecules

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Yu, Nan

    2005-01-01

    A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.

  5. Monitoring endemic livestock diseases using laboratory diagnostic data: A simulation study to evaluate the performance of univariate process monitoring control algorithms.

    PubMed

    Lopes Antunes, Ana Carolina; Dórea, Fernanda; Halasa, Tariq; Toft, Nils

    2016-05-01

    Surveillance systems are critical for accurate, timely monitoring and effective disease control. In this study, we investigated the performance of univariate process monitoring control algorithms in detecting changes in seroprevalence for endemic diseases. We also assessed the effect of sample size (number of sentinel herds tested in the surveillance system) on the performance of the algorithms. Three univariate process monitoring control algorithms were compared: Shewart p Chart(1) (PSHEW), Cumulative Sum(2) (CUSUM) and Exponentially Weighted Moving Average(3) (EWMA). Increases in seroprevalence were simulated from 0.10 to 0.15 and 0.20 over 4, 8, 24, 52 and 104 weeks. Each epidemic scenario was run with 2000 iterations. The cumulative sensitivity(4) (CumSe) and timeliness were used to evaluate the algorithms' performance with a 1% false alarm rate. Using these performance evaluation criteria, it was possible to assess the accuracy and timeliness of the surveillance system working in real-time. The results showed that EWMA and PSHEW had higher CumSe (when compared with the CUSUM) from week 1 until the end of the period for all simulated scenarios. Changes in seroprevalence from 0.10 to 0.20 were more easily detected (higher CumSe) than changes from 0.10 to 0.15 for all three algorithms. Similar results were found with EWMA and PSHEW, based on the median time to detection. Changes in the seroprevalence were detected later with CUSUM, compared to EWMA and PSHEW for the different scenarios. Increasing the sample size 10 fold halved the time to detection (CumSe=1), whereas increasing the sample size 100 fold reduced the time to detection by a factor of 6. This study investigated the performance of three univariate process monitoring control algorithms in monitoring endemic diseases. It was shown that automated systems based on these detection methods identified changes in seroprevalence at different times. Increasing the number of tested herds would lead to faster

  6. Monitoring and reporting of preanalytical errors in laboratory medicine: the UK situation.

    PubMed

    Cornes, Michael P; Atherton, Jennifer; Pourmahram, Ghazaleh; Borthwick, Hazel; Kyle, Betty; West, Jamie; Costelloe, Seán J

    2016-03-01

    Most errors in the clinical laboratory occur in the preanalytical phase. This study aimed to comprehensively describe the prevalence and nature of preanalytical quality monitoring practices in UK clinical laboratories. A survey was sent on behalf of the Association for Clinical Biochemistry and Laboratory Medicine Preanalytical Working Group (ACB-WG-PA) to all heads of department of clinical laboratories in the UK. The survey captured data on the analytical platform and Laboratory Information Management System in use; which preanalytical errors were recorded and how they were classified and gauged interest in an external quality assurance scheme for preanalytical errors. Of the 157 laboratories asked to participate, responses were received from 104 (66.2%). Laboratory error rates were recorded per number of specimens, rather than per number of requests in 51% of respondents. Aside from serum indices for haemolysis, icterus and lipaemia, which were measured in 80% of laboratories, the most common errors recorded were booking-in errors (70.1%) and sample mislabelling (56.9%) in laboratories who record preanalytical errors. Of the laboratories surveyed, 95.9% expressed an interest in guidance on recording preanalytical error and 91.8% expressed interest in an external quality assurance scheme. This survey observes a wide variation in the definition, repertoire and collection methods for preanalytical errors in the UK. Data indicate there is a lot of interest in improving preanalytical data collection. The ACB-WG-PA aims to produce guidance and support for laboratories to standardize preanalytical data collection and to help establish and validate an external quality assurance scheme for interlaboratory comparison. © The Author(s) 2015.

  7. Rain-induced increase in background radiation detected by Radiation Portal Monitors.

    PubMed

    Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A

    2014-11-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice.

    PubMed

    González-Sánchez, Carlos; Fraile, Juan-Carlos; Pérez-Turiel, Javier; Damm, Ellen; Schneider, Jochen G; Zimmermann, Heiko; Schmitt, Daniel; Ihmig, Frank R

    2016-07-07

    Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC) sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram). First experimental results are shown.

  9. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  10. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  11. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  12. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  13. Optimization of Sensor Monitoring Strategies for Emissions

    NASA Astrophysics Data System (ADS)

    Klise, K. A.; Laird, C. D.; Downey, N.; Baker Hebert, L.; Blewitt, D.; Smith, G. R.

    2016-12-01

    Continuous or regularly scheduled monitoring has the potential to quickly identify changes in air quality. However, even with low-cost sensors, only a limited number of sensors can be placed to monitor airborne pollutants. The physical placement of these sensors and the sensor technology used can have a large impact on the performance of a monitoring strategy. Furthermore, sensors can be placed for different objectives, including maximum coverage, minimum time to detection or exposure, or to quantify emissions. Different objectives may require different monitoring strategies, which need to be evaluated by stakeholders before sensors are placed in the field. In this presentation, we outline methods to enhance ambient detection programs through optimal design of the monitoring strategy. These methods integrate atmospheric transport models with sensor characteristics, including fixed and mobile sensors, sensor cost and failure rate. The methods use site specific pre-computed scenarios which capture differences in meteorology, terrain, concentration averaging times, gas concentration, and emission characteristics. The pre-computed scenarios become input to a mixed-integer, stochastic programming problem that solves for sensor locations and types that maximize the effectiveness of the detection program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    PubMed Central

    2009-01-01

    Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system. PMID:19495912

  15. Local Leak Detection and Health Monitoring of Pressurized Tanks

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2011-01-01

    An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.

  16. Laboratory Detection of HSiCN and HSiNC

    NASA Astrophysics Data System (ADS)

    Sanz, M. Eugenia; McCarthy, Michael C.; Thaddeus, Patrick

    2002-09-01

    Two new silicon-bearing molecules, the closed-shell asymmetric tops cyanosilylene HSiCN and its isomer HSiNC, have been detected in a laboratory discharge by molecular beam Fourier transform microwave spectroscopy. The rotational spectra of the normal and deuterated isotopic species of both molecules have been analyzed to derive precise spectroscopic constants, which allow the astronomically most interesting transitions up to 120 GHz to be calculated to an accuracy better than 1 km s-1 in equivalent radial velocity. Both molecules are good candidates for astronomical detection, closely related in structure and composition to known astronomical molecules, and they are highly polar, with estimated dipole moments of 3.5 D for HSiCN and 2.5 D for HSiNC.

  17. Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique

    PubMed Central

    Riaz, Muhammad Mohsin; Ghafoor, Abdul

    2014-01-01

    Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332

  18. Development of mobile laboratory for viral haemorrhagic fever detection in Africa.

    PubMed

    Weidmann, Manfred; Faye, Ousmane; Faye, Oumar; Abd El Wahed, Ahmed; Patel, Pranav; Batejat, Christophe; Manugerra, Jean Claude; Adjami, Aimee; Niedrig, Matthias; Hufert, Frank T; Sall, Amadou A

    2018-06-15

    In order to enable local response to viral haemorrhagic fever outbreaks a mobile laboratory transportable on commercial flights was developed. The development progressed from use of mobile real time RT-PCR to mobile Recombinase Polymerase Amplification (RT-RPA). The various stages of the mobile laboratory development are described. A brief overview of its deployments, which culminated in the first on site detection of Ebola virus disease (EVD) in March 2014 and a successful use in a campaign to roll back EVD cases in Conakry in the West-Africa Ebola virus outbreak are described. The developed mobile laboratory successfully enabled local teams to perform rapid viral haemorrhagic fever disgnostics.

  19. Is comprehension necessary for error detection? A conflict-based account of monitoring in speech production

    PubMed Central

    Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.

    2011-01-01

    Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the double dissociation between comprehension and error-detection ability observed in the aphasic patients. We propose a new theory of speech-error detection which is instead based on the production process itself. The theory borrows from studies of forced-choice-response tasks the notion that error detection is accomplished by monitoring response conflict via a frontal brain structure, such as the anterior cingulate cortex. We adapt this idea to the two-step model of word production, and test the model-derived predictions on a sample of aphasic patients. Our results show a strong correlation between patients’ error-detection ability and the model’s characterization of their production skills, and no significant correlation between error detection and comprehension measures, thus supporting a production-based monitor, generally, and the implemented conflict-based monitor in particular. The successful application of the conflict-based theory to error-detection in linguistic, as well as non-linguistic domains points to a domain-general monitoring system. PMID:21652015

  20. Method for evaluation of laboratory craters using crater detection algorithm for digital topography data

    NASA Astrophysics Data System (ADS)

    Salamunićcar, Goran; Vinković, Dejan; Lončarić, Sven; Vučina, Damir; Pehnec, Igor; Vojković, Marin; Gomerčić, Mladen; Hercigonja, Tomislav

    In our previous work the following has been done: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) has been developed and the GT-115225 catalog has been assembled [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]; and (2) the results of comparison between explosion-induced laboratory craters in stone powder surfaces and GT-115225 have been presented using depth/diameter measurements [41stLPSC, Abstract #1428]. The next step achievable using the available technology is to create 3D scans of such labo-ratory craters, in order to compare different properties with simple Martian craters. In this work, we propose a formal method for evaluation of laboratory craters, in order to provide objective, measurable and reproducible estimation of the level of achieved similarity between these laboratory and real impact craters. In the first step, the section of MOLA data for Mars (or SELENE LALT for Moon) is replaced with one or several 3D-scans of laboratory craters. Once embedment was done, the CDA can be used to find out whether this laboratory crater is similar enough to real craters, as to be recognized as a crater by the CDA. The CDA evaluation using ROC' curve represents how true detection rate (TDR=TP/(TP+FN)=TP/GT) depends on the false detection rate (FDR=FP/(TP+FP)). Using this curve, it is now possible to define the measure of similarity between laboratory and real impact craters, as TDR or FDR value, or as a distance from the bottom-right origin of the ROC' curve. With such an approach, the reproducible (formally described) method for evaluation of laboratory craters is provided.

  1. Statistical power for detecting trends with applications to seabird monitoring

    USGS Publications Warehouse

    Hatch, Shyla A.

    2003-01-01

    Power analysis is helpful in defining goals for ecological monitoring and evaluating the performance of ongoing efforts. I examined detection standards proposed for population monitoring of seabirds using two programs (MONITOR and TRENDS) specially designed for power analysis of trend data. Neither program models within- and among-years components of variance explicitly and independently, thus an error term that incorporates both components is an essential input. Residual variation in seabird counts consisted of day-to-day variation within years and unexplained variation among years in approximately equal parts. The appropriate measure of error for power analysis is the standard error of estimation (S.E.est) from a regression of annual means against year. Replicate counts within years are helpful in minimizing S.E.est but should not be treated as independent samples for estimating power to detect trends. Other issues include a choice of assumptions about variance structure and selection of an exponential or linear model of population change. Seabird count data are characterized by strong correlations between S.D. and mean, thus a constant CV model is appropriate for power calculations. Time series were fit about equally well with exponential or linear models, but log transformation ensures equal variances over time, a basic assumption of regression analysis. Using sample data from seabird monitoring in Alaska, I computed the number of years required (with annual censusing) to detect trends of -1.4% per year (50% decline in 50 years) and -2.7% per year (50% decline in 25 years). At ??=0.05 and a desired power of 0.9, estimated study intervals ranged from 11 to 69 years depending on species, trend, software, and study design. Power to detect a negative trend of 6.7% per year (50% decline in 10 years) is suggested as an alternative standard for seabird monitoring that achieves a reasonable match between statistical and biological significance.

  2. Cybersecurity Intrusion Detection and Monitoring for Field Area Network: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrowicz, Stanley

    This report summarizes the key technical accomplishments, industry impact and performance of the I2-CEDS grant entitled “Cybersecurity Intrusion Detection and Monitoring for Field Area Network”. Led by Applied Communication Sciences (ACS/Vencore Labs) in conjunction with its utility partner Sacramento Municipal Utility District (SMUD), the project accelerated research on a first-of-its-kind cybersecurity monitoring solution for Advanced Meter Infrastructure and Distribution Automation field networks. It advanced the technology to a validated, full-scale solution that detects anomalies, intrusion events and improves utility situational awareness and visibility. The solution was successfully transitioned and commercialized for production use as SecureSmart™ Continuous Monitoring. Discoveries made withmore » SecureSmart™ Continuous Monitoring led to tangible and demonstrable improvements in the security posture of the US national electric infrastructure.« less

  3. Data Quality Objectives Supporting the Environmental Soil Monitoring Program for the Idaho National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Thomas Jay

    This document describes the process used to develop data quality objectives for the Idaho National Laboratory (INL) Environmental Soil Monitoring Program in accordance with U.S. Environmental Protection Agency guidance. This document also develops and presents the logic that was used to determine the specific number of soil monitoring locations at the INL Site, at locations bordering the INL Site, and at locations in the surrounding regional area. The monitoring location logic follows the guidance from the U.S. Department of Energy for environmental surveillance of its facilities.

  4. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  5. Detection of pinworm eggs in the dust of laboratory animals breeding facility, in the cages and on the hands of the technicians.

    PubMed

    Lytvynets, A; Langrova, I; Lachout, J; Vadlejch, J

    2013-01-01

    Pinworms (Nematoda: Oxyurida) are common contaminants in most laboratory rodent colonies. The aim of the study was to monitor the transmission of Syphacia muris eggs in laboratory rat breeding facilities. Dust in a breeding room was investigated using special grids (free fallout, or through the help suction chamber). Furthermore, the ventilation system, breeding cages and the hands of the laboratory technical staff were examined. In the case of free fallout, the percentage of positive grids increased slightly over time: from 5.5% (after 24 h) to 8.2% (72 h). Similar values were also found when using the suction chamber (7.6%). Many more pinworm eggs were found in samples collected every second month from suction holes of the ventilation system (28.7%). One-half of the samples taken from the breeding cages (before washing) exhibited pinworm eggs (50.8%). Examination of the hands of technical staff showed positive detection in 37.9% of cases. In this study, certain transmission factors (dust, unclean cages and technicians) were proved to be significant in the distribution of pinworm infection in laboratory rodent facilities.

  6. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  7. Towards laboratory detection of topological vortices in superfluid phases of QCD

    NASA Astrophysics Data System (ADS)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  8. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    NASA Astrophysics Data System (ADS)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  9. Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-

    NASA Astrophysics Data System (ADS)

    Thaddeus, P.; Gottlieb, C. A.; Gupta, H.; Brünken, S.; McCarthy, M. C.; Agúndez, M.; Guélin, M.; Cernicharo, J.

    2008-04-01

    The negative molecular ion C3N- has been detected at millimeter wavelengths in a low-pressure laboratory discharge, and then with frequencies derived from the laboratory data in the molecular envelope of IRC+10216. Spectroscopic constants derived from laboratory measurements of 12 transitions between 97 and 378 GHz allow the rotational spectrum to be calculated well into the submillimeter-wave band to 0.03 km s-1 or better in equivalent radial velocity. Four transitions of C3N- were detected in IRC+10216 with the IRAM 30 m telescope at precisely the frequencies calculated from the laboratory measurements. The column density of C3N- is 0.5% that of C3N, or approximately 20 times greater than that of C4H- relative to C4H. The C3N- abundance in IRC+10216 is compared with a chemical model calculation by Petrie & Herbst. An upper limit in TMC-1 for C3N- relative to C3N (<0.8%) and a limit for C4H- relative to C4H (<0.004%) that is 5 times lower than that found in IRC+10216, were obtained from observations with the NRAO 100 m Green Bank Telescope (GBT). The fairly high concentration of C3N- achieved in the laboratory implies that other molecular anions containing the CN group may be within reach.

  10. Effectiveness of bed bug monitors for detecting and trapping bed bugs in apartments.

    PubMed

    Wang, Changlu; Tsai, Wan-Tien; Cooper, Richard; White, Jeffrey

    2011-02-01

    Bed bugs, Cimex lectularius L., are now considered a serious urban pest in the United States. Because they are small and difficult to find, there has been strong interest in developing and using monitoring tools to detect bed bugs and evaluate the results of bed bug control efforts. Several bed bug monitoring devices were developed recently, but their effectiveness is unknown. We comparatively evaluated three active monitors that contain attractants: CDC3000, NightWatch, and a home-made dry ice trap. The Climbup Insect Interceptor, a passive monitor (without attractants), was used for estimating the bed bug numbers before and after placing active monitors. The results of the Interceptors also were compared with the results of the active monitors. In occupied apartments, the relative effectiveness of the active monitors was: dry ice trap > CDC3000 > NightWatch. In lightly infested apartments, the Interceptor (operated for 7 d) trapped similar number of bed bugs as the dry ice trap (operated for 1 d) and trapped more bed bugs than CDC3000 and NightWatch (operated for 1 d). The Interceptor was also more effective than visual inspections in detecting the presence of small numbers of bed bugs. CDC3000 and the dry ice trap operated for 1 d were equally as effective as the visual inspections for detecting very low level of infestations, whereas 1-d deployment of NightWatch detected significantly lower number of infestations compared with visual inspections. NightWatch was designed to be able to operate for several consecutive nights. When operated for four nights, NightWatch trapped similar number of bed bugs as the Interceptors operated for 10 d after deployment of NightWatch. We conclude these monitors are effective tools in detecting early bed bug infestations and evaluating the results of bed bug control programs.

  11. RCS propulsion functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    The operational flight instrumentation required for performance monitoring and fault detection are presented. Measurements by the burn through monitors are presented along with manifold and helium source pressures.

  12. Image edge detection based tool condition monitoring with morphological component analysis.

    PubMed

    Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng

    2017-07-01

    The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory.

    PubMed

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a "Raspberry Pi" single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them.

  14. "Salivary exRNA biomarkers to detect gingivitis and monitor disease regression".

    PubMed

    Kaczor-Urbanowicz, Karolina Elżbieta; Trivedi, Harsh M; Lima, Patricia O; Camargo, Paulo M; Giannobile, William V; Grogan, Tristan R; Gleber-Netto, Frederico O; Whiteman, Yair; Li, Feng; Lee, Hyo Jung; Dharia, Karan; Aro, Katri; Carerras-Presas, Carmen Martin; Amuthan, Saarah; Vartak, Manjiri; Akin, David; Al-Adbullah, Hiba; Bembey, Kanika; Klokkevold, Perry R; Elashoff, David; Barnes, Virginia Monsul; Richter, Rose; DeVizio, William; Masters, James G; Wong, David

    2018-05-19

    This study tests the hypothesis that salivary extracellular RNA (exRNA) biomarkers can be developed for gingivitis detection and monitoring disease regression. Salivary exRNA biomarker candidates were developed from a total of 100 gingivitis and non-gingivitis individuals using Affymetrix's expression microarrays. The top ten differentially expressed exRNAs were tested in a clinical cohort to determine if the discovered salivary exRNA markers for gingivitis were associated with clinical gingivitis and disease regression. For this purpose, unstimulated saliva was collected from 30 randomly selected gingivitis subjects, the gingival and plaque indexes scores were taken at baseline, 3 & 6 weeks and salivary exRNAs were assayed by means of reverse transcription quantitative polymerase chain reaction. Eight salivary exRNA biomarkers developed for gingivitis were statistically significantly changed over time, consistent with disease regression. A panel of four salivary exRNAs [SPRR1A, lnc-TET3-2:1, FAM25A, CRCT1] can detect gingivitis with a clinical performance of 0.91 area under the curve (AUC), with 71% sensitivity and 100% specificity. The clinical values of the developed salivary exRNA biomarkers are associated with gingivitis regression. They offer strong potential to be advanced for definitive validation and clinical laboratory development test (LDT). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Protein biomarker discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monitoring (PRM) mass spectrometry.

    PubMed

    Carrera, Mónica; Gallardo, José M; Pascual, Santiago; González, Ángel F; Medina, Isabel

    2016-06-16

    Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in <2h. An affordable assay utilizing this methodology will facilitate testing for regulatory and safety applications. The work describes for the first time, the Protein Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Missed detection of significant positive and negative shifts in gentamicin assay: implications for routine laboratory quality practices.

    PubMed

    Koerbin, Gus; Liu, Jiakai; Eigenstetter, Alex; Tan, Chin Hon; Badrick, Tony; Loh, Tze Ping

    2018-02-15

    A product recall was issued for the Roche/Hitachi Cobas Gentamicin II assays on 25 th May 2016 in Australia, after a 15 - 20% positive analytical shift was discovered. Laboratories were advised to employ the Thermo Fisher Gentamicin assay as an alternative. Following the reintroduction of the revised assay on 12 th September 2016, a second reagent recall was made on 20 th March 2017 after the discovery of a 20% negative analytical shift due to erroneous instrument adjustment factor. The practices of an index laboratory were examined to determine how the analytical shifts evaded detection by routine internal quality control (IQC) and external quality assurance (EQA) systems. The ability of the patient result-based approaches, including moving average (MovAvg) and moving sum of outliers (MovSO) approaches in detecting these shifts were examined. Internal quality control data of the index laboratory were acceptable prior to the product recall. The practice of adjusting IQC target following a change in assay method resulted in the missed negative shift when the revised Roche assay was reintroduced. While the EQA data of the Roche subgroup showed clear negative bias relative to other laboratory methods, the results were considered as possible 'matrix effect'. The MovAvg method detected the positive shift before the product recall. The MovSO did not detect the negative shift in the index laboratory but did so in another laboratory 5 days before the second product recall. There are gaps in current laboratory quality practices that leave room for analytical errors to evade detection.

  17. Detection and monitoring of invasive exotic plants: a comparison of four sampling methods

    Treesearch

    Cynthia D. Huebner

    2007-01-01

    The ability to detect and monitor exotic invasive plants is likely to vary depending on the sampling method employed. Methods with strong qualitative thoroughness for species detection often lack the intensity necessary to monitor vegetation change. Four sampling methods (systematic plot, stratified-random plot, modified Whittaker, and timed meander) in hemlock and red...

  18. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology.

    PubMed

    Garg, Uttam; Zhang, Yan Victoria

    2016-01-01

    Mass spectrometry (MS) has been used in research and specialized clinical laboratories for decades as a very powerful technology to identify and quantify compounds. In recent years, application of MS in routine clinical laboratories has increased significantly. This is mainly due to the ability of MS to provide very specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100). The coupling of tandem mass spectrometry with gas chromatography (GC) or liquid chromatography (LC) has enabled the rapid expansion of this technology. While applications of MS are used in many clinical areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology are still the primary focuses of the field. It is not uncommon to see mass spectrometry being used in routine clinical practices for those applications.

  19. Good laboratory practices guarantee biosafety in the Sierra Leone-China friendship biosafety laboratory.

    PubMed

    Wang, Qin; Zhou, Wei-Min; Zhang, Yong; Wang, Huan-Yu; Du, Hai-Jun; Nie, Kai; Song, Jing-Dong; Xiao, Kang; Lei, Wen-Wen; Guo, Jian-Qiang; Wei, He-Jiang; Cai, Kun; Wang, Yan-Hai; Wu, Jiang; Kamara, Gerard; Kamara, Idrissa; Wei, Qiang; Liang, Mi-Fang; Wu, Gui-Zhen; Dong, Xiao-Ping

    2016-06-23

    The outbreak of Ebola virus disease (EVD) in West Africa between 2014 and 2015 was the largest EDV epidemic since the identification of Ebola virus (EBOV) in 1976, and the countries most strongly affected were Sierra Leone, Guinea, and Liberia. The Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab), a fixed Biosafety Level 3 laboratory in the capital city of Sierra Leone, was established by the Chinese government and has been active in EBOV detection since 11 March 2015. Complete management and program documents were created for the SLE-CHN Biosafety Lab, and it was divided into four zones (the green, yellow, brown, and red zones) based on the risk assessment. Different types of safe and appropriate personnel protection equipment (PPE) are used in different zones of the laboratory, and it fully meets the Biosafety Level 3 laboratory standards of the World Health Organization. Good preparedness, comprehensive risk assessment and operation documents, appropriate PPE, effective monitoring and intensive training, together with well-designed and reasonable laboratory sectioning are essential for guaranteeing biosafety.

  20. Alkaline peptone water enrichment with a dipstick test to quickly detect and monitor cholera outbreaks.

    PubMed

    Bwire, Godfrey; Orach, Christopher Garimoi; Abdallah, Dauda; Debes, Amanda Kay; Kagirita, Atek; Ram, Malathi; Sack, David A

    2017-11-21

    Detection, confirmation and monitoring of cholera outbreaks in many developing countries including Uganda is a big challenge due to lack of the required resources and the time the test takes. Culture method which takes 24-48 h to get the feedback and requires highly skilled laboratory staff plus other complex resources is the standard test. This study evaluated the new cholera rapid detection method that relies on Crystal VC dipsticks after enrichment with alkaline peptone water (APW) against the culture method for monitoring the progress of cholera outbreaks in rural setting. We conducted the study between March and June 2015. Fresh stool samples and rectal swabs were incubated in 1% APW for 6 h at room temperature before testing with RDT following the manufacturer's instruction. The same stool sample was cultured to isolate V. cholerae in the standard manner. We also reviewed patient registers to epidemiologically describe the cholera epidemic. We tested stool from 102 consenting suspected cholera patients reporting during daytime at Bwera Hospital (n = 69), Kilembe Mines Hospital (n = 4) and Kinyabwama Health Centre (n = 29). Ninety one (91) samples were positive and nine samples were negative according to both methods. One (1) sample was positive only by dipstick and one sample was positive only by culture (sensitivity of 99%, specificity of 90%, Positive Predictive Value of 99% and Negative Predictive Value of 90%). Overall, 146 suspected cholera cases and two deaths, (case fatality rate of 1.36%) were recorded during the study period. Among the cases aged 1-9 years, 63% (50/79) were males while in those aged 20-49 years, 76% (34/45) were females. Our findings showed that the modified dipstick test after enrichment with 1% APW had high level of accuracy in detection of V. cholerae and is quick, affordable alternative cholera outbreak monitoring tool in resource constrained settings. However, culture method should remain for cholera epidemic

  1. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  2. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    PubMed

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  3. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors

    PubMed Central

    Chowdhury, Enhad A.; Western, Max J.; Nightingale, Thomas E.; Peacock, Oliver J.; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  4. An international study of how laboratories handle and evaluate patient samples after detecting an unexpected APTT prolongation.

    PubMed

    Ajzner, Éva; Rogic, Dunja; Meijer, Piet; Kristoffersen, Ann Helen; Carraro, Paolo; Sozmen, Eser; Faria, Ana Paula; Sandberg, Sverre

    2015-09-01

    An unexpectedly detected prolonged activated partial thromboplastin time (APTT) can be a harmless laboratory finding, but can also reflect a thrombotic tendency or a bleeding disorder. The assistance of laboratory professionals in the interpretation of an unexpectedly detected prolonged APTT (uAPTT) is often required. The way in which uAPTTs are evaluated in laboratories was assessed in this international study with the aim of determining whether laboratory professionals are able to fulfill this need. Postanalytical practices after uAPTT were investigated and the mixing study methodology (if used) was studied by circulating a case report with a questionnaire to staff in the invited laboratories. In addition, the interpretations of those staff regarding the presence or absence of inhibitors in three APTT mixing study scenarios were examined. Large within- and between-country variations were detected in both postanalytical practices and mixing study methodologies among the 990 responding laboratories, 90% of which were in 13 countries. Shortcomings regarding the investigation of uAPTTs leading to potentially incorrect or delayed clinical diagnoses were found in 88% of the laboratories. Of the laboratories to which the interpretative questions were sent, 49% interpreted all mixing study scenarios correctly. uAPTTs were investigated appropriately and all mixing study scenarios interpreted correctly in parallel in only 9.6% of the participating laboratories. The clinical requirement for the assistance of laboratory professionals in the interpretation of uAPTTs cannot be met at most of the participating laboratories. Laboratory professionals should be trained in the evaluation of ordinary laboratory tests, such as that for uAPTTs.

  5. Use of a Photosimulation Laboratory for Estimating Vehicle Detection Probability and Comparing Detection Metrics

    DTIC Science & Technology

    2003-04-15

    the monitors, the authors are confident that the color fidelity is accurate. The primary physical difference of field versus lab tests is the level... Creelman , C. Douglas, Detection theory: A user’s guide, Cambridge University Press, Cambridge, U.K., 1991, pp. 189-190. *For more information, contact Dr. Thomas Meitzler at (586) 574-5405, email: meitzlet@tacom.army.mil

  6. Man vs. Machine: A Junior-level Laboratory Exercise Comparing Human and Instrumental Detection Limits

    ERIC Educational Resources Information Center

    Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.

    2017-01-01

    The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…

  7. Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.

    PubMed

    Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; Eskofier, Bjoern

    2012-01-01

    We developed an application for Android™-based mobile devices that allows real-time electrocardiogram (ECG) monitoring and automated arrhythmia detection by analyzing ECG parameters. ECG data provided by pre-recorded files or acquired live by accessing a Shimmer™ sensor node via Bluetooth™ can be processed and evaluated. The application is based on the Pan-Tompkins algorithm for QRS-detection and contains further algorithm blocks to detect abnormal heartbeats. The algorithm was validated using the MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia databases. More than 99% of all QRS complexes were detected correctly by the algorithm. Overall sensitivity for abnormal beat detection was 89.5% with a specificity of 80.6%. The application is available for download and may be used for real-time ECG-monitoring on mobile devices.

  8. A model of human event detection in multiple process monitoring situations

    NASA Technical Reports Server (NTRS)

    Greenstein, J. S.; Rouse, W. B.

    1978-01-01

    It is proposed that human decision making in many multi-task situations might be modeled in terms of the manner in which the human detects events related to his tasks and the manner in which he allocates his attention among his tasks once he feels events have occurred. A model of human event detection performance in such a situation is presented. An assumption of the model is that, in attempting to detect events, the human generates the probability that events have occurred. Discriminant analysis is used to model the human's generation of these probabilities. An experimental study of human event detection performance in a multiple process monitoring situation is described and the application of the event detection model to this situation is addressed. The experimental study employed a situation in which subjects simulataneously monitored several dynamic processes for the occurrence of events and made yes/no decisions on the presence of events in each process. Input to the event detection model of the information displayed to the experimental subjects allows comparison of the model's performance with the performance of the subjects.

  9. Detection of Mouse Cough Based on Sound Monitoring and Respiratory Airflow Waveforms

    PubMed Central

    Chen, Liyan; Lai, Kefang; Lomask, Joseph Mark; Jiang, Bert; Zhong, Nanshan

    2013-01-01

    Detection for cough in mice has never yielded clearly audible sounds, so there is still a great deal of debates as to whether mice can cough in response to tussive stimuli. Here we introduce an approach for detection of mouse cough based on sound monitoring and airflow signals. 40 Female BALB/c mice were pretreated with normal saline, codeine, capasazepine or desensitized with capsaicin. Single mouse was put in a plethysmograph, exposed to aerosolized 100 µmol/L capsaicin for 3 min, followed by continuous observation for 3 min. Airflow signals of total 6 min were recorded and analyzed to detect coughs. Simultaneously, mouse cough sounds were sensed by a mini-microphone, monitored manually by an operator. When manual and automatic detection coincided, the cough was positively identified. Sound and sound waveforms were also recorded and filtered for further analysis. Body movements were observed by operator. Manual versus automated counts were compared. Seven types of airflow signals were identified by integrating manual and automated monitoring. Observation of mouse movements and analysis of sound waveforms alone did not produce meaningful data. Mouse cough numbers decreased significantly after all above drugs treatment. The Bland-Altman and consistency analysis between automatic and manual counts was 0.968 and 0.956. The study suggests that the mouse is able to present with cough, which could be detected by sound monitoring and respiratory airflow waveform changes. PMID:23555643

  10. Picking vs Waveform based detection and location methods for induced seismicity monitoring

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Boese, Maren; Scarabello, Luca; Diehl, Tobias; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2017-04-01

    Microseismic monitoring is a common operation in various industrial activities related to geo-resouces, such as oil and gas and mining operations or geothermal energy exploitation. In microseismic monitoring we generally deal with large datasets from dense monitoring networks that require robust automated analysis procedures. The seismic sequences being monitored are often characterized by very many events with short inter-event times that can even provide overlapped seismic signatures. In these situations, traditional approaches that identify seismic events using dense seismic networks based on detections, phase identification and event association can fail, leading to missed detections and/or reduced location resolution. In recent years, to improve the quality of automated catalogues, various waveform-based methods for the detection and location of microseismicity have been proposed. These methods exploit the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. Although this family of methods have been applied to different induced seismicity datasets, an extensive comparison with sophisticated pick-based detection and location methods is still lacking. We aim here to perform a systematic comparison in term of performance using the waveform-based method LOKI and the pick-based detection and location methods (SCAUTOLOC and SCANLOC) implemented within the SeisComP3 software package. SCANLOC is a new detection and location method specifically designed for seismic monitoring at local scale. Although recent applications have proved an extensive test with induced seismicity datasets have been not yet performed. This method is based on a cluster search algorithm to associate detections to one or many potential earthquake sources. On the other hand, SCAUTOLOC is more a "conventional" method and is the basic tool for seismic event detection and location in SeisComp3. This approach was specifically designed for

  11. Immune monitoring of clinical trials with biotherapies.

    PubMed

    Whiteside, Theresa L

    2008-01-01

    Immune monitoring of biotherapy clinical trials has undergone a considerable change in recent years. Technical advances together with new insights into molecular immunology have ushered a new genre of assays into immune monitoring. Single-cell assays, multiplex profiling, and signaling molecule detection have replaced formerly used bulk assays, such as proliferation or cytotoxicity. The emphasis on immune cell functions and quantitation of antigen-specific T cells has been playing a major role in attempts to establish correlations between therapy-induced alterations in immune responses and clinical endpoints. However, this has been an elusive goal to achieve, and there is a special need for improving the quality of serial monitoring to ensure that it adequately and reliably measures changes induced by administered biotherapy. In this respect, monitoring performed in specialized reference laboratories operating as good laboratory practice (GLP) facilities and strengthening of interactions between the clinical investigator, the clinical immunologist, and the biostatistician are crucial for successful use of immune monitoring in clinical studies.

  12. Fault detection and isolation in motion monitoring system.

    PubMed

    Kim, Duk-Jin; Suk, Myoung Hoon; Prabhakaran, B

    2012-01-01

    Pervasive computing becomes very active research field these days. A watch that can trace human movement to record motion boundary as well as to study of finding social life pattern by one's localized visiting area. Pervasive computing also helps patient monitoring. A daily monitoring system helps longitudinal study of patient monitoring such as Alzheimer's and Parkinson's or obesity monitoring. Due to the nature of monitoring sensor (on-body wireless sensor), however, signal noise or faulty sensors errors can be present at any time. Many research works have addressed these problems any with a large amount of sensor deployment. In this paper, we present the faulty sensor detection and isolation using only two on-body sensors. We have been investigating three different types of sensor errors: the SHORT error, the CONSTANT error, and the NOISY SENSOR error (see more details on section V). Our experimental results show that the success rate of isolating faulty signals are an average of over 91.5% on fault type 1, over 92% on fault type 2, and over 99% on fault type 3 with the fault prior of 30% sensor errors.

  13. Early Attempts to Detect the Neutrino at the Cavendish Laboratory

    NASA Astrophysics Data System (ADS)

    Navarro, Jaume

    2006-03-01

    In the 1920s and early 1930s the Cavendish Laboratory in Cambridge was preeminent in experimental research on radioactivity and nuclear physics, with theoretical physics playing a subsidiary role in guiding, but not determining the course of experimental research. Soon after Wolfgang Pauli (1900 1958) proposed his neutrino hypothesis in 1930 to preserve conservation of energy and momentum in beta decay, experiments the first of their kind were carried out in the Cavendish Laboratory to detect Pauli’s elusive particle, but they were abandoned in 1936. I trace these early attempts and suggest reasons for their abandonment, which may contribute to an understanding of the complex way in which theoretical entities are accepted by physicists.

  14. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. V. Street

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection ofmore » public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.« less

  15. Detection of system failures in multi-axes tasks. [pilot monitored instrument approach

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1975-01-01

    The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.

  16. Digital immunohistochemistry platform for the staining variation monitoring based on integration of image and statistical analyses with laboratory information system.

    PubMed

    Laurinaviciene, Aida; Plancoulaine, Benoit; Baltrusaityte, Indra; Meskauskas, Raimundas; Besusparis, Justinas; Lesciute-Krilaviciene, Daiva; Raudeliunas, Darius; Iqbal, Yasir; Herlin, Paulette; Laurinavicius, Arvydas

    2014-01-01

    Digital immunohistochemistry (IHC) is one of the most promising applications brought by new generation image analysis (IA). While conventional IHC staining quality is monitored by semi-quantitative visual evaluation of tissue controls, IA may require more sensitive measurement. We designed an automated system to digitally monitor IHC multi-tissue controls, based on SQL-level integration of laboratory information system with image and statistical analysis tools. Consecutive sections of TMA containing 10 cores of breast cancer tissue were used as tissue controls in routine Ki67 IHC testing. Ventana slide label barcode ID was sent to the LIS to register the serial section sequence. The slides were stained and scanned (Aperio ScanScope XT), IA was performed by the Aperio/Leica Colocalization and Genie Classifier/Nuclear algorithms. SQL-based integration ensured automated statistical analysis of the IA data by the SAS Enterprise Guide project. Factor analysis and plot visualizations were performed to explore slide-to-slide variation of the Ki67 IHC staining results in the control tissue. Slide-to-slide intra-core IHC staining analysis revealed rather significant variation of the variables reflecting the sample size, while Brown and Blue Intensity were relatively stable. To further investigate this variation, the IA results from the 10 cores were aggregated to minimize tissue-related variance. Factor analysis revealed association between the variables reflecting the sample size detected by IA and Blue Intensity. Since the main feature to be extracted from the tissue controls was staining intensity, we further explored the variation of the intensity variables in the individual cores. MeanBrownBlue Intensity ((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-Blue) were introduced to better contrast the absolute intensity and the colour balance variation in each core; relevant factor scores were extracted. Finally, tissue-related factors of IHC staining variance were

  17. Digital immunohistochemistry platform for the staining variation monitoring based on integration of image and statistical analyses with laboratory information system

    PubMed Central

    2014-01-01

    Background Digital immunohistochemistry (IHC) is one of the most promising applications brought by new generation image analysis (IA). While conventional IHC staining quality is monitored by semi-quantitative visual evaluation of tissue controls, IA may require more sensitive measurement. We designed an automated system to digitally monitor IHC multi-tissue controls, based on SQL-level integration of laboratory information system with image and statistical analysis tools. Methods Consecutive sections of TMA containing 10 cores of breast cancer tissue were used as tissue controls in routine Ki67 IHC testing. Ventana slide label barcode ID was sent to the LIS to register the serial section sequence. The slides were stained and scanned (Aperio ScanScope XT), IA was performed by the Aperio/Leica Colocalization and Genie Classifier/Nuclear algorithms. SQL-based integration ensured automated statistical analysis of the IA data by the SAS Enterprise Guide project. Factor analysis and plot visualizations were performed to explore slide-to-slide variation of the Ki67 IHC staining results in the control tissue. Results Slide-to-slide intra-core IHC staining analysis revealed rather significant variation of the variables reflecting the sample size, while Brown and Blue Intensity were relatively stable. To further investigate this variation, the IA results from the 10 cores were aggregated to minimize tissue-related variance. Factor analysis revealed association between the variables reflecting the sample size detected by IA and Blue Intensity. Since the main feature to be extracted from the tissue controls was staining intensity, we further explored the variation of the intensity variables in the individual cores. MeanBrownBlue Intensity ((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-Blue) were introduced to better contrast the absolute intensity and the colour balance variation in each core; relevant factor scores were extracted. Finally, tissue-related factors of IHC

  18. Dealing with incomplete and variable detectability in multi-year, multi-site monitoring of ecological populations

    USGS Publications Warehouse

    Converse, Sarah J.; Royle, J. Andrew; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    An ecological monitoring program should be viewed as a component of a larger framework designed to advance science and/or management, rather than as a stand-alone activity. Monitoring targets (the ecological variables of interest; e.g. abundance or occurrence of a species) should be set based on the needs of that framework (Nichols and Williams 2006; e.g. Chapters 2–4). Once such monitoring targets are set, the subsequent step in monitoring design involves consideration of the field and analytical methods that will be used to measure monitoring targets with adequate accuracy and precision. Long-term monitoring programs will involve replication of measurements over time, and possibly over space; that is, one location or each of multiple locations will be monitored multiple times, producing a collection of site visits (replicates). Clearly this replication is important for addressing spatial and temporal variability in the ecological resources of interest (Chapters 7–10), but it is worth considering how this replication can further be exploited to increase the effectiveness of monitoring. In particular, defensible monitoring of the majority of animal, and to a lesser degree plant, populations and communities will generally require investigators to account for imperfect detection (Chapters 4, 18). Raw indices of population state variables, such as abundance or occupancy (sensu MacKenzie et al. 2002), are rarely defensible when detection probabilities are < 1, because in those cases detection may vary over time and space in unpredictable ways. Myriad authors have discussed the risks inherent in making inference from monitoring data while failing to correct for differences in detection, resulting in indices that have an unknown relationship to the parameters of interest (e.g. Nichols 1992, Anderson 2001, MacKenzie et al. 2002, Williams et al. 2002, Anderson 2003, White 2005, Kéry and Schmidt 2008). While others have argued that indices may be preferable in some

  19. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory

    PubMed Central

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a “Raspberry Pi” single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them. PMID:26771659

  20. Early detection monitoring for larval dreissenid mussels: How much plankton sampling is enough?

    USGS Publications Warehouse

    Counihan, Timothy D.; Bollens, Stephen M.

    2017-01-01

    The development of quagga and zebra mussel (dreissenids) monitoring programs in the Pacific Northwest provides a unique opportunity to evaluate a regional invasive species detection effort early in its development. Recent studies suggest that the ecological and economic costs of a dreissenid infestation in the Pacific Northwest of the USA would be significant. Consequently, efforts are underway to monitor for the presence of dreissenids. However, assessments of whether these efforts provide for early detection are lacking. We use information collected from 2012 to 2014 to characterize the development of larval dreissenid monitoring programs in the states of Idaho, Montana, Oregon, and Washington in the context of introduction and establishment risk. We also estimate the effort needed for high-probability detection of rare planktonic taxa in four Columbia and Snake River reservoirs and assess whether the current level of effort provides for early detection. We found that the effort expended to monitor for dreissenid mussels increased substantially from 2012 to 2014, that efforts were distributed across risk categories ranging from high to very low, and that substantial gaps in our knowledge of both introduction and establishment risk exist. The estimated volume of filtered water required to fully census planktonic taxa or to provide high-probability detection of rare taxa was high for the four reservoirs examined. We conclude that the current level of effort expended does not provide for high-probability detection of larval dreissenids or other planktonic taxa when they are rare in these reservoirs. We discuss options to improve early detection capabilities.

  1. Main propulsion functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    A total of 48 operational flight instrumentation measurements were identified for use in performance monitoring and fault detection. The Operational Flight Instrumentation List contains all measurements identified for fault detection and annunciation. Some 16 controller data words were identified for use in fault detection and annunciation.

  2. Effects of Sampling and Spatio/Temporal Granularity in Traffic Monitoring on Anomaly Detectability

    NASA Astrophysics Data System (ADS)

    Ishibashi, Keisuke; Kawahara, Ryoichi; Mori, Tatsuya; Kondoh, Tsuyoshi; Asano, Shoichiro

    We quantitatively evaluate how sampling and spatio/temporal granularity in traffic monitoring affect the detectability of anomalous traffic. Those parameters also affect the monitoring burden, so network operators face a trade-off between the monitoring burden and detectability and need to know which are the optimal paramter values. We derive equations to calculate the false positive ratio and false negative ratio for given values of the sampling rate, granularity, statistics of normal traffic, and volume of anomalies to be detected. Specifically, assuming that the normal traffic has a Gaussian distribution, which is parameterized by its mean and standard deviation, we analyze how sampling and monitoring granularity change these distribution parameters. This analysis is based on observation of the backbone traffic, which exhibits spatially uncorrelated and temporally long-range dependence. Then we derive the equations for detectability. With those equations, we can answer the practical questions that arise in actual network operations: what sampling rate to set to find the given volume of anomaly, or, if the sampling is too high for actual operation, what granularity is optimal to find the anomaly for a given lower limit of sampling rate.

  3. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  4. Monitoring distant fallout: the role of the Atomic Energy Commission Health and Safety Laboratory during the Pacific tests, with special attention to the events following BRAVO.

    PubMed

    Eisenbud, M

    1997-07-01

    The fallout from test BRAVO in March 1954 has had scientific, political, and social implications that have continued for more than 40 years. The test resulted in serious injury to the people of the Marshall Islands and 23 men on a nearby Japanese fishing boat. Prior to BRAVO there was insufficient appreciation of the dangers of fallout to people living downwind from surface or near-surface explosions of megaton weapons. In the absence of sufficient preplanning for fallout monitoring beyond the test-sites of earlier smaller yield tests, and as a result of the concern of the photographic film manufacturers, the Atomic Energy Commission Health and Safety Laboratory, now the Department of Energy Environmental Measurements Laboratory, was requested to develop a program of fallout surveillance. Beginning with Operation IVY in 1952, these surveys included aerial monitoring of the islands of the mid and western Pacific, as well as establishment of fallout monitoring stations in the United States and abroad. The first evidence of the post-BRAVO fallout was detected by a Atomic Energy Commission Health and Safety Laboratory instrument installed on the atoll of Rongerik, where 28 military personnel were stationed. The results of radiation surveys conducted immediately after BRAVO, as well as the reports of medical investigations, radioecological studies, and dose reconstruction that have been conducted by many laboratories over the years have been available from the beginning in unclassified form. However, from the time of the fallout, and continuing to the present, there have been many unanswered questions about what happened during the hours immediately after the fallout was reported. No formal investigation of the circumstances of the fallout was ever conducted, and there were serious misrepresentations of the facts in the official statements made at the time.

  5. Los Alamos National Laboratory Meteorology Monitoring Program: 2016 Data Completeness/ Quality Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    This report summarizes data completeness by tower and by instrument for 2016 and compares that data with the Los Alamos National Laboratory (LANL) and American National Standards Institute (ANSI) 2015 standards. This report is designed to make data users aware of data completeness and any data quality issues. LANL meteorology monitoring goals include 95% completeness for all measurements. The ANSI 2015 standard requires 90% completeness for all measurements. This report documents instrument/tower issues as they impact data completeness.

  6. MIT Lincoln Laboratory Annual Report 2009

    DTIC Science & Technology

    2009-01-01

    unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 MIt lincoln laboratory Massachusetts Institute...Climate-change monitoring that will be conducted by assessing the utility of using very-long-wave infrared radiation for space-based sensing and by... radiation to detect trace explosives on a person’s hair were investigated. An ultrasensitive THz receiver leverages mature technology at the near-infrared

  7. Stream Monitoring for Detection of Phytophthora ramorum in Oregon Tanoak Forests

    Treesearch

    W. Sutton; E. M. Hansen; P. W. Reeser; A. Kanaskie

    2009-01-01

    Stream monitoring using leaf baits for early detection of Phytophthora ramorum has been an important part of the Oregon Sudden Oak Death (SOD) program since 2002. Sixty-four streams in and near the Oregon quarantine area in the southwest corner of the state were monitored in 2008. Leaves of rhododendron (Rhododendron macrophyllum...

  8. Seven Q-Tracks monitors of laboratory quality drive general performance improvement: experience from the College of American Pathologists Q-Tracks program 1999-2011.

    PubMed

    Meier, Frederick A; Souers, Rhona J; Howanitz, Peter J; Tworek, Joseph A; Perrotta, Peter L; Nakhleh, Raouf E; Karcher, Donald S; Bashleben, Christine; Darcy, Teresa P; Schifman, Ron B; Jones, Bruce A

    2015-06-01

    Many production systems employ standardized statistical monitors that measure defect rates and cycle times, as indices of performance quality. Clinical laboratory testing, a system that produces test results, is amenable to such monitoring. To demonstrate patterns in clinical laboratory testing defect rates and cycle time using 7 College of American Pathologists Q-Tracks program monitors. Subscribers measured monthly rates of outpatient order-entry errors, identification band defects, and specimen rejections; median troponin order-to-report cycle times and rates of STAT test receipt-to-report turnaround time outliers; and critical values reporting event defects, and corrected reports. From these submissions Q-Tracks program staff produced quarterly and annual reports. These charted each subscriber's performance relative to other participating laboratories and aggregate and subgroup performance over time, dividing participants into best and median performers and performers with the most room to improve. Each monitor's patterns of change present percentile distributions of subscribers' performance in relation to monitoring durations and numbers of participating subscribers. Changes over time in defect frequencies and the cycle duration quantify effects on performance of monitor participation. All monitors showed significant decreases in defect rates as the 7 monitors ran variously for 6, 6, 7, 11, 12, 13, and 13 years. The most striking decreases occurred among performers who initially had the most room to improve and among subscribers who participated the longest. All 7 monitors registered significant improvement. Participation effects improved between 0.85% and 5.1% per quarter of participation. Using statistical quality measures, collecting data monthly, and receiving reports quarterly and yearly, subscribers to a comparative monitoring program documented significant decreases in defect rates and shortening of a cycle time for 6 to 13 years in all 7 ongoing

  9. Solid deuterated water in space: detection constraints from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  10. Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo

    PubMed Central

    Hwang, Jae Youn; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2011-01-01

    We report a novel in vivo spectral imaging approach to cancer detection and chemotherapy assessment. We describe and characterize a ratiometric spectral imaging and analysis method and evaluate its performance for tumor detection and delineation by quantitatively monitoring the specific accumulation of targeted gallium corrole (HerGa) into HER2-positive (HER2 +) breast tumors. HerGa temporal accumulation in nude mice bearing HER2 + breast tumors was monitored comparatively by a. this new ratiometric imaging and analysis method; b. established (reflectance and fluorescence) spectral imaging; c. more commonly used fluorescence intensity imaging. We also tested the feasibility of HerGa imaging in vivo using the ratiometric spectral imaging method for tumor detection and delineation. Our results show that the new method not only provides better quantitative information than typical spectral imaging, but also better specificity than standard fluorescence intensity imaging, thus allowing enhanced in vivo outlining of tumors and dynamic, quantitative monitoring of targeted chemotherapy agent accumulation into them. PMID:21721808

  11. Physical activity monitoring: addressing the difficulties of accurately detecting slow walking speeds.

    PubMed

    Harrison, Samantha L; Horton, Elizabeth J; Smith, Robert; Sandland, Carolyn J; Steiner, Michael C; Morgan, Mike D L; Singh, Sally J

    2013-01-01

    To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. [Comparative analysis of malaria detection ability of laboratories in Shanghai City from 2012 to 2015].

    PubMed

    Zhen-Yu, Wang; Li, Jiang; Yao-Guang, Zhang; Min, Zhu; Xiao-Ping, Zhang; Xiao-Jiang, Ma; Qian, Zhu; Yan-Yan, He; Shou-Fu, Jiang; Li, Cai

    2017-02-27

    To compare the application effects of three methods, namely microscopic examination, antigen detection (RDT) and nucleic acid test (PCR) in malaria detection between municipal and districts/counties centers for disease control and prevention in Shanghai, and analyze the malaria detection ability of the laboratories in Shanghai. The blood smears, whole blood samples, case review confirmation records and case data of malaria cases and suspected cases in Shanghai from 2012 to 2015 were collected by Shanghai Municipal Center for Disease Control and Prevention, and the detection results were analyzed and compared. A total of 212 samples with complete data were submitted by all districts (counties) in Shanghai from 2012 to 2015, the samples submitted by Jinshan Districts were the most (41.98%), and among the first diagnosis hospitals, those submitted by the tertiary hospitals were the most (82.07%). The submitted samples in the whole year were increased gradually from January to October. All the 212 samples were detected by three methods (the microscopic examination, RDT and PCR) in the laboratory of Shanghai Municipal Center for Disease Control and Prevention, and 167 were tested and confirmed comprehensively as positives, accounting for 78.77%, and 45 were confirmed as negatives, accounting for 21.23%. The samples were detected by the method of microscopy and domestic RDT in the laboratories of the centers for disease control and prevention at district/county level, totally 153 were tested as positives, accounting for 72.17%, 41 were unclassified, accounting for 19.34%, 53 were negative, accounting for 25.00%, and 6 were undetected, accounting for 2.83%. The coincidence of microscopic examination between the report hospitals and the centers for disease control and prevention at district/county level was 78.16%, and the coincidence between centers for disease control and prevention at district/county level and municipal level was 93.20%. The utilization rate of RDT in

  13. Wireless physiological monitoring system for psychiatric patients.

    PubMed

    Rademeyer, A J; Blanckenberg, M M; Scheffer, C

    2009-01-01

    Patients in psychiatric hospitals that are sedated or secluded are at risk of death or injury if they are not continuously monitored. Some psychiatric patients are restless and aggressive, and hence the monitoring device should be robust and must transmit the data wirelessly. Two devices, a glove that measures oxygen saturation and a dorsally-mounted device that measures heart rate, skin temperature and respiratory rate were designed and tested. Both devices connect to one central monitoring station using two separate Bluetooth connections, ensuring a completely wireless setup. A Matlab graphical user interface (GUI) was developed for signal processing and monitoring of the vital signs of the psychiatric patient. Detection algorithms were implemented to detect ECG arrhythmias such as premature ventricular contraction and atrial fibrillation. The prototypes were manufactured and tested in a laboratory setting on healthy volunteers.

  14. Students' Progression in Monitoring Anomalous Results Obtained in Inquiry-Based Laboratory Tasks

    NASA Astrophysics Data System (ADS)

    Crujeiras-Pérez, Beatriz; Jiménez-Aleixandre, Maria Pilar

    2017-07-01

    This paper examines students' engagement in monitoring anomalous results across a 2-year longitudinal study with 9th and 10th graders (14-15 and 15-16 years of age). The context is a set of five inquiry-based laboratory tasks, requiring students to plan and carry out investigations. The study seeks to examine students' interpretation of data, in particular anomalous results generated by them during the process of solving the tasks, and their ability to monitor them. Data collected include video and audio recordings as well as students' written products. For the analysis, two rubrics were developed drawing on Chinn and Brewer (Cognition and Instruction, 19, 323-393, 2001) and Hmelo-Silver et al. (Science Education, 86, 219-243, 2002). The findings point to a pattern of progress in students' responses across the 2 years: (a) responses revealing a low capacity of monitoring due to not recognizing the data as anomalous or recognizing it as anomalous but being unable to explain their causes are more frequent in the first tasks and (b) responses revealing an improved capacity of monitoring are more frequent in the last tasks. The factors influencing students' regulation of their performances, as the requirement of planning, and specific scaffolding based on activity theory are discussed.

  15. Percutaneous perfusion monitoring for the detection of hemodialysis induced cardiovascular injury.

    PubMed

    Penny, Jarrin D; Grant, Claire; Salerno, Fabio; Brumfield, Anne; Mianulli, Marcus; Poole, Lori; Mcintyre, Christopher W

    2018-01-23

    The safe delivery of hemodialysis (HD) faces dual challenges; the accurate detection of systemic circulatory stress producing cardiovascular (CV) injury, and the ability to enable effective preemptive intervention for such injury. We performed a pilot study to examine the capability of a new noninvasive, real-time monitoring system to detect the deleterious effects of HD on CV stability. Eight patients were evaluated with echocardiography prior to the initiation of HD and again at peak HD stress. Continuous CV physiologic monitoring was performed throughout using oximeter-based pulse waveform analysis (CVInsight ® Monitoring System, Intelomed, Inc., Warrendale, PA, USA). Longitudinal strain (LS) values for 12 left ventricular segments were generated using speckle-tracking software (EchoPac, GE), to assess the presence of HD-induced regional wall motion abnormalities (RWMA), indicative of myocardial stunning. A reduction in pulse strength (PS) of ≥40% detected by CVI was associated with the development of RWMA (P = 0.005). This reduction occurred in 6/8 patients, all of whom exhibited myocardial stunning. Two patients had no significant reduction in PS nor evidence of myocardial stunning. In subjects with cardiac stunning, the decrease in PS was evident early during HD, 11.49 ± 10 minutes into HD treatment, prior to the detection of RWMA, which were assessed at peak HD stress, mean 210 ± 16.43 minutes into HD treatment. Percutaneous perfusion monitoring, using pulse wave analysis, appears to be useful in identifying circulatory stress during HD and predicting the development of HD-induced myocardial stunning with a lead time long enough to consider timely intervention. © 2018 International Society for Hemodialysis.

  16. Breast Cancer Detection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The BioScan System was developed by OmniCorder Technologies, Inc. at the Jet Propulsion Laboratory. The system is able to locate cancerous lesions by detecting the cancer's ability to recruit a new blood supply. A digital sensor detects infrared energy emitted from the body and identifies the minute differences accompanying the blood flow changes associated with cancerous cells. It also has potential use as a monitoring device during cancer treatment. This technology will reduce the time taken to detect cancerous cells and allow for earlier intervention, therefore increasing the overall survival rates of breast cancer patients.

  17. Cardiac monitoring for detection of atrial fibrillation after TIA: A systematic review and meta-analysis.

    PubMed

    Korompoki, Eleni; Del Giudice, Angela; Hillmann, Steffi; Malzahn, Uwe; Gladstone, David J; Heuschmann, Peter; Veltkamp, Roland

    2017-01-01

    Background and purpose The detection rate of atrial fibrillation has not been studied specifically in transient ischemic attack (TIA) patients although extrapolation from ischemic stroke may be inadequate. We conducted a systematic review and meta-analysis to determine the rate of newly diagnosed atrial fibrillation using different methods of ECG monitoring in TIA. Methods A comprehensive literature search was performed following a pre-specified protocol the PRISMA statement. Prospective observational studies and randomized controlled trials were considered that included TIA patients who underwent cardiac monitoring for >12 h. Primary outcome was frequency of detection of atrial fibrillation ≥30 s. Analyses of subgroups and of duration and type of monitoring were performed. Results Seventeen studies enrolling 1163 patients were included. The pooled atrial fibrillation detection rate for all methods was 4% (95% CI: 2-7%). Yield of monitoring was higher in selected (higher age, more extensive testing for arrhythmias before enrolment, or presumed cardioembolic/cryptogenic cause) than in unselected cohorts (7% vs 3%). Pooled mean atrial fibrillation detection rates rose with duration of monitoring: 4% (24 h), 5% (24 h to 7 days) and 6% (>7 days), respectively. Yield of non-invasive was significantly lower than that of invasive monitoring (4% vs. 11%). Significant heterogeneity was observed among studies (I 2 =60.61%). Conclusion This first meta-analysis of atrial fibrillation detection in TIA patients finds a lower atrial fibrillation detection rate in TIA than reported for IS and TIA cohorts in previous meta-analyses. Prospective studies are needed to determine actual prevalence of atrial fibrillation and optimal diagnostic procedure for atrial fibrillation detection in TIA.

  18. Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiments.

    PubMed

    Hadziioannou, Céline; Larose, Eric; Coutant, Olivier; Roux, Philippe; Campillo, Michel

    2009-06-01

    Previous studies have shown that small changes can be monitored in a scattering medium by observing phase shifts in the coda. Passive monitoring of weak changes through ambient noise correlation has already been applied to seismology, acoustics, and engineering. Usually, this is done under the assumption that a properly reconstructed Green function (GF), as well as stable background noise sources, is necessary. In order to further develop this monitoring technique, a laboratory experiment was performed in the 2.5 MHz range in a gel with scattering inclusions, comparing an active (pulse-echo) form of monitoring to a passive (correlation) one. Present results show that temperature changes in the medium can be observed even if the GF of the medium is not reconstructed. Moreover, this article establishes that the GF reconstruction in the correlations is not a necessary condition: The only condition to monitoring with correlation (passive experiment) is the relative stability of the background noise structure.

  19. Feasibility of Autonomous Monitoring of CO2 Leakage in Aquifers: Results From Controlled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Leger, E.; Dafflon, B.

    2016-12-01

    Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments

  20. Assessment of readiness for clinical decision support to aid laboratory monitoring of immunosuppressive care at U.S. liver transplant centers.

    PubMed

    Jacobs, J; Weir, C; Evans, R S; Staes, C

    2014-01-01

    Following liver transplantation, patients require lifelong immunosuppressive care and monitoring. Computerized clinical decision support (CDS) has been shown to improve post-transplant immunosuppressive care processes and outcomes. The readiness of transplant information systems to implement computerized CDS to support post-transplant care is unknown. a) Describe the current clinical information system functionality and manual and automated processes for laboratory monitoring of immunosuppressive care, b) describe the use of guidelines that may be used to produce computable logic and the use of computerized alerts to support guideline adherence, and c) explore barriers to implementation of CDS in U.S. liver transplant centers. We developed a web-based survey using cognitive interviewing techniques. We surveyed 119 U.S. transplant programs that performed at least five liver transplantations per year during 2010-2012. Responses were summarized using descriptive analyses; barriers were identified using qualitative methods. Respondents from 80 programs (67% response rate) completed the survey. While 98% of programs reported having an electronic health record (EHR), all programs used paper-based manual processes to receive or track immunosuppressive laboratory results. Most programs (85%) reported that 30% or more of their patients used external laboratories for routine testing. Few programs (19%) received most external laboratory results as discrete data via electronic interfaces while most (80%) manually entered laboratory results into the EHR; less than half (42%) could integrate internal and external laboratory results. Nearly all programs had guidelines regarding pre-specified target ranges (92%) or testing schedules (97%) for managing immunosuppressive care. Few programs used computerized alerting to notify transplant coordinators of out-of-range (27%) or overdue laboratory results (20%). Use of EHRs is common, yet all liver transplant programs were largely

  1. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-08-18

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.

  2. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring

    PubMed Central

    Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  3. 1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, S.; Chavez, G.; Phelan, J.

    1990-05-01

    This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on themore » environment. 46 refs., 20 figs., 31 tabs.« less

  4. Surface-enhanced Raman for monitoring toxins in water

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.

    2004-02-01

    Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.

  5. Erosion and Deposition Monitoring Using High-Density Aerial Lidar and Geomorphic Change Detection Software Analysis at Los Alamos National Laboratory, Los Alamos New Mexico, LA-UR-17-26743

    NASA Astrophysics Data System (ADS)

    Walker, T.; Kostrubala, T. L.; Muggleton, S. R.; Veenis, S.; Reid, K. D.; White, A. B.

    2017-12-01

    The Los Alamos National Laboratory storm water program installed sediment transport mitigation structures to reduce the migration of contaminants within the Los Alamos and Pueblo (LA/P) watershed in Los Alamos, NM. The goals of these structures are to minimize storm water runoff and erosion, enhance deposition, and reduce mobility of contaminated sediments. Previous geomorphological monitoring used GPS surveyed cross-sections on a reach scale to interpolate annual geomorphic change in sediment volumes. While monitoring has confirmed the LA/P watershed structures are performing as designed, the cross-section method proved difficult to estimate uncertainty and the coverage area was limited. A new method, using the Geomorphic Change Detection (GCD) plugin for ESRI ArcGIS developed by Wheaton et al. (2010), with high-density aerial lidar data, has been used to provide high confidence uncertainty estimates and greater areal coverage. Following the 2014 monsoon season, airborne lidar data has been collected annually and the resulting DEMs processed using the GCD method. Additionally, a more accurate characterization of low-amplitude geomorphic changes, typical of low-flow/low-rainfall monsoon years, has been documented by applying a spatially variable error to volume change calculations using the GCD based fuzzy inference system (FIS). The FIS method allows for the calculation of uncertainty based on data set quality and density e.g. point cloud density, ground slope, and degree of surface roughness. At the 95% confidence level, propagated uncertainty estimates of the 2015 and 2016 lidar DEM comparisons yielded detectable changes greater than 0.3 m - 0.46 m. Geomorphic processes identified and verified in the field are typified by low-amplitude, within-channel aggradation and incision and out of channel bank collapse that over the course of a monsoon season result in localized and dectetable change. While the resulting reach scale volume change from 2015 - 2016 was often

  6. [SWOT analysis of laboratory certification and accreditation on detection of parasitic diseases].

    PubMed

    Xiong, Yan-hong; Zheng, Bin

    2014-04-01

    This study analyzes the strength, weakness, opportunity and threat (SWOT) of laboratory certification and accreditation on detection of parasitic diseases by SWOT analysis comprehensively, and it puts forward some development strategies specifically, in order to provide some indicative references for the further development.

  7. Bed Bug (Hemiptera: Cimicidae) Detection in Low-Income, High-Rise Apartments Using Four or Fewer Passive Monitors.

    PubMed

    Vail, K M; Chandler, J G

    2017-06-01

    Bed bug, Cimex lectularius L., management in low-income, high-rise housing for the elderly and disabled can be difficult. Early detection is key to slowing their spread, and reducing management cost and time needed for control. To determine the minimum number of passive monitors needed to detect low-level bed bug infestations in this environment, we evaluated three monitors placed one, two, or four per apartment in a 3 by 3 experimental design. One sticky monitor, The Bedbug Detection System, and the two pitfall monitors, ClimbUp Insect Interceptors BG and BlackOut BedBug Detectors, were evaluated. Bed bugs were trapped by the ClimbUp Insect Interceptors BG and the BlackOut BedBug Detector in 88% and 79% of apartments, respectively, but only in 39% of the apartments monitored with The Bedbug Detection System. The Bedbug Detection System required significantly longer time to detect bed bugs than either the ClimbUp Insect Interceptor BG or the BlackOut BedBug Detector. With the less effective Bedbug Detection System data removed from analyses, detection rates ranged from 80 to 90%, with no significant differences among one, two, or four monitors per apartment. Results indicate it is especially important to include a bed placement when only placing a few monitors. Future work should compare the combination of cursory visual inspections with various monitor numbers and placements per apartment to determine the most efficient, cost-effective system that will be accepted and implemented in low-income housing. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Demonstration and Validation of a Portable Raman Sensor for In-Situ Detection and Monitoring of Perchlorate (ClO 4 -)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzinger, Paul B.; Eres, Gyula; Gu, Baohua

    Costs for environmental analysis and monitoring are increasing at a rapid rate and represent a significant percentage of the total and future remedial expenses at many U.S. Department of Defense (DoD) contaminated sites. It has been reported that about 30 to 40% of the remediation budget is usually spent on long-term monitoring (LTM), of which a large percentage represents laboratory analytical costs. Energetics such as perchlorate (ClO 4 -) are among the most frequently detected contaminants in groundwater and surface water at or near military installations due to their persistence and mobility. Currently, the standard protocol entails collecting samples inmore » the field, packaging them, and shipping them overnight to a designated laboratory for analysis. This process requires significant sample preparation and handling, and analytical results may not be available for several days to weeks. In this project, we developed and demonstrated a portable Raman sensor based on surface enhanced Raman scattering (SERS) technology to detect ClO 4 - in contaminated water. We summarize major accomplishments as follows: • A SERS sensor based on elevated gold (Au) nano-ellipse dimer architectures was designed and developed for ClO 4 - with a detection limit of ~10 -6 M (or 100 μg/L); The performance of these sensors was evaluated and optimized through variation of their geometric characteristics (i.e., dimer aspect ratio, dimer separation, etc.). • Large-scale commercial production of SERS substrate sensors via nanoimprinting by Nanova Inc. and Nanoimprint lithography (NIL) technology was successfully demonstrated. This is a substantial step forward toward the commercialization of the SERS sensors and may potentially lead to significantly reduced fabrication costs of SERS substrates. • Commercially produced SERS sensors were demonstrated to detect ClO 4 - at levels above 10 -6 M using a portable Raman analyzer. The performance of the commercial SERS sensors for ClO 4

  9. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems.

    PubMed

    Miller, Manuel; Ritter, Brbel; Zorn, Julia; Brielmeier, Markus

    2016-11-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice.

  10. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems

    PubMed Central

    Miller, Manuel; Ritter, Bärbel; Zorn, Julia; Brielmeier, Markus

    2016-01-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice. PMID:27931316

  11. Quantitative evaluation of an air-monitoring network using atmospheric transport modeling and frequency of detection methods

    DOE PAGES

    Rood, Arthur S.; Sondrup, A. Jeffrey; Ritter, Paul D.

    2016-04-01

    A methodology to quantify the performance of an air monitoring network in terms of frequency of detection has been developed. The methodology utilizes an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Frequency of detection is defined as the fraction of “events” that result in a detection at either a single sampler or network of samplers. An “event” is defined as a release of finite duration that begins on a given day and hour of the year from a facility with the potential to emit airborne radionuclides. Another metricmore » of interest is the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory (INL) Site ambient air monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km 2 region. Releases from six major INL facilities distributed over an area of 1,435 km 2 were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical 125Sb releases and measurements. Relevant one-week release quantities from each emission source were calculated based on a dose of 1.9 × 10 –4 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides considered include 241Am, 137Cs, 238Pu, 239Pu, 90Sr, and tritium. Results show the detection frequency is over 97.5% for the entire network considering all sources and radionuclides. Network intensities ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly

  12. Quantitative evaluation of an air-monitoring network using atmospheric transport modeling and frequency of detection methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rood, Arthur S.; Sondrup, A. Jeffrey; Ritter, Paul D.

    A methodology to quantify the performance of an air monitoring network in terms of frequency of detection has been developed. The methodology utilizes an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Frequency of detection is defined as the fraction of “events” that result in a detection at either a single sampler or network of samplers. An “event” is defined as a release of finite duration that begins on a given day and hour of the year from a facility with the potential to emit airborne radionuclides. Another metricmore » of interest is the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory (INL) Site ambient air monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km 2 region. Releases from six major INL facilities distributed over an area of 1,435 km 2 were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical 125Sb releases and measurements. Relevant one-week release quantities from each emission source were calculated based on a dose of 1.9 × 10 –4 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides considered include 241Am, 137Cs, 238Pu, 239Pu, 90Sr, and tritium. Results show the detection frequency is over 97.5% for the entire network considering all sources and radionuclides. Network intensities ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly

  13. Sequim Marine Research Laboratory routine environmental measurements during CY-1978. [Monitoring for laboratory-related radioactivity and pollutants in environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured.

  14. Landsat change detection can aid in water quality monitoring

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  15. Idaho National Laboratory Vadose Zone Research Park Geohydrological Monitoring Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Baker

    2006-01-01

    Vadose zone lithology, hydrological characterization of interbed sediments, and hydrological data from subsurface monitoring of Idaho Nuclear Technology and Engineering Center wastewater infiltration are presented. Three-dimensional subsurface lithology of the vadose zone beneath the Vadose Zone Research Park is represented in a 2 dimensional (2 D) diagram showing interpolated lithology between monitoring wells. Laboratory-measured values for saturated hydraulic conductivity and porosity are given for three major interbeds, denoted as the B BC interbed (20 to 35 m bls), the C D interbed (40 to 45 m bls), and the DE 1 2 interbed (55 to 65 m bls), along withmore » an overall physical description of the sediments and geologic depositional environments. Pre-operational pore water pressure conditions are presented to show the presence and location of perched water zones before pond discharge at the New Percolation Ponds. Subsurface infiltration conditions during initial high-volume discharge are presented to show water arrival times and arrival sequences. Steady-state conditions are then presented to show formation and locations of perched water zones and recharge sources after several months of discharge to the New Percolation Ponds.« less

  16. Dynamic Fault Detection Chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primarymore » turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.« less

  17. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NASA Astrophysics Data System (ADS)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  18. Laboratory and field performance of FOS sensors in static and dynamic strain monitoring in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.

    2006-03-01

    There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.

  19. Damage Detection Sensitivity of a Vehicle-based Bridge Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ayaho; Yabe, Akito; Lúcio, Válter J. G.

    2017-05-01

    As one solution to the problem for condition assessment of existing short and medium span (10-30m) reinforced/prestressed concrete bridges, a new monitoring method using a public bus as part of a public transit system (called “Bus monitoring system”) was proposed, along with safety indices, namely, “characteristic deflection”, which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter. In this study, to evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. In here, although there are some useful monitoring methods for short and medium span bridges based on the qualitative or quantitative information, the sensitivity of damage detection was newly discussed for safety assessment based on long term health monitoring data. The verification results thus obtained are also described in this paper, and also evaluates the sensitivity of the “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. Furthermore, the sensitivity of “characteristic deflection” is verified by 3D FEM analysis.

  20. Conductivity detection for monitoring mixing reactions in microfluidic devices.

    PubMed

    Liu, Y; Wipf, D O; Henry, C S

    2001-08-01

    A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.

  1. Development of anomaly detection models for deep subsurface monitoring

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.

    2017-12-01

    Deep subsurface repositories are used for waste disposal and carbon sequestration. Monitoring deep subsurface repositories for potential anomalies is challenging, not only because the number of sensor networks and the quality of data are often limited, but also because of the lack of labeled data needed to train and validate machine learning (ML) algorithms. Although physical simulation models may be applied to predict anomalies (or the system's nominal state for that sake), the accuracy of such predictions may be limited by inherent conceptual and parameter uncertainties. The main objective of this study was to demonstrate the potential of data-driven models for leakage detection in carbon sequestration repositories. Monitoring data collected during an artificial CO2 release test at a carbon sequestration repository were used, which include both scalar time series (pressure) and vector time series (distributed temperature sensing). For each type of data, separate online anomaly detection algorithms were developed using the baseline experiment data (no leak) and then tested on the leak experiment data. Performance of a number of different online algorithms was compared. Results show the importance of including contextual information in the dataset to mitigate the impact of reservoir noise and reduce false positive rate. The developed algorithms were integrated into a generic Web-based platform for real-time anomaly detection.

  2. Is Comprehension Necessary for Error Detection? A Conflict-Based Account of Monitoring in Speech Production

    ERIC Educational Resources Information Center

    Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.

    2011-01-01

    Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the…

  3. [Establishment of Quality Control System of Nucleic Acid Detection for Ebola Virus in Sierra Leone-China Friendship Biological Safety Laboratory].

    PubMed

    Wang, Qin; Zhang, Yong; Nie, Kai; Wang, Huanyu; Du, Haijun; Song, Jingdong; Xiao, Kang; Lei, Wenwen; Guo, Jianqiang; Wei, Hejiang; Cai, Kun; Wang, Yanhai; Wu, Jiang; Gerald, Bangura; Kamara, Idrissa Laybohr; Liang, Mifang; Wu, Guizhen; Dong, Xiaoping

    2016-03-01

    The quality control process throughout the Ebola virus nucleic acid detection in Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab) was described in detail, in order to comprehensively display the scientific, rigorous, accurate and efficient practice in detection of Ebola virus of first batch detection team in SLE-CHN Biosafety Lab. Firstly, the key points of laboratory quality control system was described, including the managements and organizing, quality control documents and information management, instrument, reagents and supplies, assessment, facilities design and space allocation, laboratory maintenance and biosecurity. Secondly, the application of quality control methods in the whole process of the Ebola virus detection, including before the test, during the test and after the test, was analyzed. The excellent and professional laboratory staffs, the implementation of humanized management are the cornerstone of the success; High-level biological safety protection is the premise for effective quality control and completion of Ebola virus detection tasks. And professional logistics is prerequisite for launching the laboratory diagnosis of Ebola virus. The establishment and running of SLE-CHN Biosafety Lab has landmark significance for the friendship between Sierra Leone and China, and the lab becomes the most important base for Ebola virus laboratory testing in Sierra Leone.

  4. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less

  5. Effective detection of CO 2 leakage: a comparison of groundwater sampling and pressure monitoring

    DOE PAGES

    Keating, Elizabeth; Dai, Zhenxue; Dempsey, David; ...

    2014-12-31

    Shallow aquifer monitoring is likely to be a required aspect to any geologic CO 2 sequestration operation. Collecting groundwater samples and analyzing for geochemical parameters such as pH, alkalinity, total dissolved carbon, and trace metals has been suggested by a number of authors as a possible strategy to detect CO 2 leakage. The effectiveness of this approach, however, will depend on the hydrodynamics of the leak-induced CO 2 plume and the spatial distribution of the monitoring wells relative to the origin of the leak. To our knowledge, the expected effectiveness of groundwater sampling to detect CO 2 leakage has notmore » yet been quantitatively assessed. In this study we query hundreds of simulations developed for the National Risk Assessment Project (US DOE) to estimate risks to drinking water resources associated with CO 2 leaks. The ensemble of simulations represent transient, 3-D multi-phase reactive transport of CO 2 and brine leaked from a sequestration reservoir, via a leaky wellbore, into an unconfined aquifer. Key characteristics of the aquifer, including thickness, mean permeability, background hydraulic gradient, and geostatistical measures of aquifer heterogeneity, were all considered uncertain parameters. Complex temporally-varying CO 2 and brine leak rate scenarios were simulated using a heuristic scheme with ten uncertain parameters. The simulations collectively predict the spatial and temporal evolution of CO 2 and brine plumes over 200 years in a shallow aquifer under a wide range of leakage scenarios and aquifer characteristics. Using spatial data from an existing network of shallow drinking water wells in the Edwards Aquifer, TX, as one illustrative example, we calculated the likelihood of leakage detection by groundwater sampling. In this monitoring example, there are 128 wells available for sampling, with a density of about 2.6 wells per square kilometer. If the location of the leak is unknown a priori, a reasonable assumption in many

  6. Experimental investigation of leak detection using mobile distributed monitoring system

    NASA Astrophysics Data System (ADS)

    Chen, Jiang; Zheng, Junli; Xiong, Feng; Ge, Qi; Yan, Qixiang; Cheng, Fei

    2018-01-01

    The leak detection of rockfill dams is currently hindered by spatial and temporal randomness and wide monitoring range. The spatial resolution of fiber Bragg grating (FBG) temperature sensing technology is related to the distance between measuring points. As a result, the number of measuring points should be increased to ensure that the precise location of the leak is detected. However, this leads to a higher monitoring cost. Consequently, it is difficult to promote and apply this technology to effectively monitor rockfill dam leakage. In this paper, a practical mobile distributed monitoring system with dual-tubes is used by combining the FBG sensing system and hydrothermal cycling system. This dual-tube structure is composed of an outer polyethylene of raised temperature resistance heating pipe, an inner polytetrafluoroethylene tube, and a FBG sensor string, among which, the FBG sensor string can be dragged freely in the internal tube to change the position of the measuring points and improve the spatial resolution. In order to test the effectiveness of the system, the large-scale model test of concentrated leakage in 13 working conditions is carried out by identifying the location, quantity, and leakage rate of leakage passage. Based on Newton’s law of cooling, the leakage state is identified using the seepage identification index ζ v that was confirmed according to the cooling curve. Results suggested that the monitoring system shows high sensitivity and can improve the spatial resolution with limited measuring points, and thus better locate the leakage area. In addition, the seepage identification index ζ v correlated well with the leakage rate qualitatively.

  7. Rapid and simple detection of foot-and-mouth disease virus: Evaluation of a cartridge-based molecular detection system for use in basic laboratories.

    PubMed

    Goller, K V; Dill, V; Madi, M; Martin, P; Van der Stede, Y; Vandenberge, V; Haas, B; Van Borm, S; Koenen, F; Kasanga, C J; Ndusilo, N; Beer, M; Liu, L; Mioulet, V; Armson, B; King, D P; Fowler, V L

    2018-04-01

    Highly contagious transboundary animal diseases such as foot-and-mouth disease (FMD) are major threats to the productivity of farm animals. To limit the impact of outbreaks and to take efficient steps towards a timely control and eradication of the disease, rapid and reliable diagnostic systems are of utmost importance. Confirmatory diagnostic assays are typically performed by experienced operators in specialized laboratories, and access to this capability is often limited in the developing countries with the highest disease burden. Advances in molecular technologies allow implementation of modern and reliable techniques for quick and simple pathogen detection either in basic laboratories or even at the pen-side. Here, we report on a study to evaluate a fully automated cartridge-based real-time RT-PCR diagnostic system (Enigma MiniLab ® ) for the detection of FMD virus (FMDV). The modular system integrates both nucleic acid extraction and downstream real-time RT-PCR (rRT-PCR). The analytical sensitivity of this assay was determined using serially diluted culture grown FMDV, and the performance of the assay was evaluated using a selected range of FMDV positive and negative clinical samples of bovine, porcine and ovine origin. The robustness of the assay was evaluated in an international inter-laboratory proficiency test and by deployment into an African laboratory. It was demonstrated that the system is easy to use and can detect FMDV with high sensitivity and specificity, roughly on par with standard laboratory methods. This cartridge-based automated real-time RT-PCR system for the detection of FMDV represents a reliable and easy to use diagnostic tool for the early and rapid disease detection of acutely infected animals even in remote areas. This type of system could be easily deployed for routine surveillance within endemic regions such as Africa or could alternatively be used in the developed world. © 2017 The Authors. Transboundary and Emerging Diseases

  8. Enhanced Raman Monitor Project

    NASA Technical Reports Server (NTRS)

    Westenskow, Dwayne

    1996-01-01

    Monitoring of gaseous contaminants stems from the need to ensure a healthy and safe environment. NASA/Ames needs sensors that are able to monitor common atmospheric gas concentrations as well as trace amounts of contaminant gases. To provide an accurate assessment of air quality, a monitoring system would need to be continuous and on-line with full spectrum capabilities, allowing simultaneous detection of all gas components in a sample, including both combustible and non-combustible gases. The system demands a high degree of sensitivity to detect low gas concentrations in the low-ppm and sub-ppm regions. For clean and healthy air ('good' category), criteria established by the EPA requires that contaminant concentrations not exceed 4 ppm of carbon monoxide (CO) in an 8 hour period, 60 ppb of ozone(O3) in a one hour period and 30 ppb of sulfur dioxide (SO2) in a 24 hour period. One step below this is the National Ambient Air Quality Standard ('moderate' category) which requires that contaminant concentrations not exceed 9 ppm of carbon monoxide (CO), 120 ppb of ozone (O3) and 140 ppb of sulfur dioxide (SO2) for their respective time periods. Ideally a monitor should be able to detect the concentrations specified in the 'good' category. To benchmark current abilities of Raman technology in gas phase analysis, laboratory experiments were performed to evaluate the RASCAL II anesthetic gas monitor.

  9. 1999 Leak Detection and Monitoring and Mitigation Strategy Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OHL, P.C.

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

  10. Low-complexity R-peak detection in ECG signals: a preliminary step towards ambulatory fetal monitoring.

    PubMed

    Rooijakkers, Michiel; Rabotti, Chiara; Bennebroek, Martijn; van Meerbergen, Jef; Mischi, Massimo

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however still unfeasible due to the computational complexity of noise robust solutions. In this paper an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, while increasing the R-peak detection quality compared to existing R-peak detection schemes. Validation of the algorithm is performed on two manually annotated datasets, the MIT/BIH Arrhythmia database and an in-house abdominal database. Both R-peak detection quality and computational complexity are compared to state-of-the-art algorithms as described in the literature. With a detection error rate of 0.22% and 0.12% on the MIT/BIH Arrhythmia and in-house databases, respectively, the quality of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.

  11. Detection and monitoring of surface micro-cracks by PPP-BOTDA.

    PubMed

    Meng, Dewei; Ansari, Farhad; Feng, Xin

    2015-06-01

    Appearance of micrometer size surface cracks is common in structural elements such as welded connections, beams, and gusset plates in bridges. Brillouin scattering-based sensors are capable of making distributed strain measurements. Pre-pump-pulse Brillouin optical time domain analysis (PPP-BOTDA) provides a centimeter-level spatial resolution, which facilitates detection and monitoring of the cracks. In the work described here, in addition to the shift in Brillouin frequency (distributed strains), change in the Brillouin gain spectrum (BGS) width is investigated for the detection and monitoring of surface micro-cracks. A theoretical analysis was undertaken in order to verify the rationality of the proposed method. The theoretical approach involved simulation of strain within a segment of the optical fiber traversing a crack and use of the simulated strain distribution in the opto-mechanical relations in order to numerically obtain the change in the BGS. Simulations revealed that the increase in crack opening displacements is associated with increase in BGS width and decrease in its peak power. Experimental results also indicated that the increases in crack opening displacements are accompanied with increases in BGS widths. However, it will be difficult to use the decrease in BGS power peak as another indicator due to practical difficulties in establishing generalized power amplitude in all the experiments. The study indicated that, in combination with the shift in Brillouin frequency, the increase in BGS width will provide a strong tool for detection and monitoring of surface micro-crack growths.

  12. Power analysis and trend detection for water quality monitoring data. An application for the Greater Yellowstone Inventory and Monitoring Network

    USGS Publications Warehouse

    Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia

    2012-01-01

    An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.

  13. Progress towards an AIS early detection monitoring network for the Great Lakes

    EPA Science Inventory

    As an invasion prone location, the lower St. Louis River system (SLR) has been a case study for ongoing research to develop the framework for a practical Great Lakes monitoring network for early detection of aquatic invasive species (AIS). Early detection, however, necessitates f...

  14. Feasibility of portable sleep monitors to detect obstructive sleep apnea (OSA) in a vulnerable urban population.

    PubMed

    Nickerson, Jillian; Lee, Euny; Nedelman, Michael; Aurora, R Nisha; Krieger, Ana; Horowitz, Carol R

    2015-01-01

    Portable sleep monitors may offer a convenient method to expand detection of obstructive sleep apnea (OSA), yet few studies have evaluated this technology in vulnerable populations. We therefore aimed to assess the feasibility and acceptability of portable sleep monitors for detection of OSA in a prediabetic, urban minority population. We recruited a convenience sample of participants at their 12-month follow-up for a community-partnered, peer-led lifestyle intervention aimed to prevent diabetes in prediabetic and overweight patients in this prospective mixed-methods pilot study. All participants wore portable sleep monitors overnight at home. We qualitatively explored perceptions about OSA and portable monitors in a subset of participants. We tested 72 people, predominantly non-White, female, Spanish speaking, uninsured, and of low income. Use of portable sleep monitors was feasible: 100% of the monitors were returned and all participants received results. We detected OSA in 49% (defined as an Apnea-Hypopnea Index [AHI] >5) and moderate-severe OSA in 14% (AHI >15) requiring treatment in 14%. In 21 qualitative interviews, participants supported increased use of portable sleep monitors in their community, were appropriately concerned that OSA could cause progression to diabetes, and thought weight loss could prevent or improve OSA. Portable sleep monitors may represent a feasible method for detecting OSA in high-risk urban minority populations. © Copyright 2015 by the American Board of Family Medicine.

  15. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, T.; Cox, W.; Hwang, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 {times} 10{sup {minus}3} mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had nomore » discernible impact on the general public or on the environment.« less

  16. Thoracic organ transplantation: laboratory methods.

    PubMed

    Patel, Jignesh K; Kobashigawa, Jon A

    2013-01-01

    Although great progress has been achieved in thoracic organ transplantation through the development of effective immunosuppression, there is still significant risk of rejection during the early post-transplant period, creating a need for routine monitoring for both acute antibody and cellular mediated rejection. The currently available multiplexed, microbead assays utilizing solubilized HLA antigens afford the capability of sensitive detection and identification of HLA and non-HLA specific antibodies. These assays are being used to assess the relative strength of donor specific antibodies; to permit performance of virtual crossmatches which can reduce the waiting time to transplantation; to monitor antibody levels during desensitization; and for heart transplants to monitor antibodies post-transplant. For cell mediated immune responses, the recent development of gene expression profiling has allowed noninvasive monitoring of heart transplant recipients yielding predictive values for acute cellular rejection. T cell immune monitoring in heart and lung transplant recipients has allowed individual tailoring of immunosuppression, particularly to minimize risk of infection. While the current antibody and cellular laboratory techniques have enhanced the ability to manage thoracic organ transplant recipients, future developments from improved understanding of microchimerism and graft tolerance may allow more refined allograft monitoring techniques.

  17. Timely detection and monitoring of oil leakage by satellite optical data.

    NASA Astrophysics Data System (ADS)

    Grimaldi, C. S. L.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2009-04-01

    Sea oil pollution can derive from different sources. Accidental release of oil into the oceans caused by "human errors" (tankers collisions and/or shipwrecks) or natural hazards (hurricanes, landslides, earthquakes) have remarkable ecological impact on maritime and coastal environments. Katrina Hurricane, for example, hitting oil and gas infrastructures off USA coasts caused the destruction of more than 100 platforms and the release into the sea of more than 10,000 gallons of crude oil. In order to reduce the environmental impact of such kind of technological hazards, timely detection and continuously updated information are fundamental. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/weather capability of the present operational sensors. Anyway, due to their current revisiting cycles, SAR systems cannot be profitably used for a rapid detection and for a continuous and near real-time monitoring of these phenomena. Until COSMO-Skymed SAR constellation, that will be able to improve SAR observational frequency, will not be fully operational, passive optical sensors on board meteorological satellites, thanks to their high temporal resolution, may represent a suitable alternative for early detection and continuous monitoring of oil spills, provided that adequate and reliable data analysis techniques exist. Recently, an innovative technique for oil spill detection and monitoring, based on the general Robust Satellite Techniques (RST) approach, has been proposed. It exploits the multi-temporal analysis of optical data acquired by both AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) sensors in order to detect, automatically and timely, the presence of oil spill over the sea surface, trying to minimize

  18. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    DOE PAGES

    Dewji, Shaheen A.; Lee, Denise L.; Croft, Stephen; ...

    2016-03-28

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP).more » In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of gamma

  19. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    NASA Astrophysics Data System (ADS)

    Dewji, S. A.; Lee, D. L.; Croft, S.; Hertel, N. E.; Chapman, J. A.; McElroy, R. D.; Cleveland, S.

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is

  20. Vision-based method for detecting driver drowsiness and distraction in driver monitoring system

    NASA Astrophysics Data System (ADS)

    Jo, Jaeik; Lee, Sung Joo; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2011-12-01

    Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new driver-monitoring method considering both factors. We make the following contributions. First, if the driver is looking ahead, drowsiness detection is performed; otherwise, distraction detection is performed. Thus, the computational cost and eye-detection error can be reduced. Second, we propose a new eye-detection algorithm that combines adaptive boosting, adaptive template matching, and blob detection with eye validation, thereby reducing the eye-detection error and processing time significantly, which is hardly achievable using a single method. Third, to enhance eye-detection accuracy, eye validation is applied after initial eye detection, using a support vector machine based on appearance features obtained by principal component analysis (PCA) and linear discriminant analysis (LDA). Fourth, we propose a novel eye state-detection algorithm that combines appearance features obtained using PCA and LDA, with statistical features such as the sparseness and kurtosis of the histogram from the horizontal edge image of the eye. Experimental results showed that the detection accuracies of the eye region and eye states were 99 and 97%, respectively. Both driver drowsiness and distraction were detected with a success rate of 98%.

  1. EARLY DETECTION MONITORING OF INVASIVE SPECIES IN GREAT LAKES HARBORS

    EPA Science Inventory

    The Great Ships Initiative (GSI) has asked for a presentation on designing harbor monitoring. Our research/development project on early detection provides some examples and lessons for GSI to consider in evaluating effectiveness of ballast water treatments; the presentation allo...

  2. An easy, rapid and inexpensive method to monitor tributyltin (TBT) toxicity in the laboratory.

    PubMed

    Cruz, Andreia; Moreira, Rafael; Mendo, Sónia

    2014-05-01

    Tributyltin (TBT) contamination remains a major problem worldwide. Many laboratories are committed to the development of remediation methodologies that could help reduce the negative impact of this compound in the environment. Furthermore, it is important to have at hand simple methodologies for evaluating TBT toxicity in the laboratory, besides the use of complex and costly analytical instrumentation. With that purpose, a method was adapted that is based on the inhibition of growth of an indicator strain, Micrococcus luteus ATCC 9341, under TBT. Different types of matrices, of TBT concentrations and sample treatments were tested. The results herein reported show that the bioassay method can be applied for both aqueous and soil samples and also for a high range of TBT concentrations (at least up to 500 μmol/L). Besides being cheap and easy to perform, it can be performed in any laboratory. Additionally, one possible application of the method to monitor TBT degradation is presented as an example.

  3. Trends in Laboratory Rotavirus Detection: 2003 to 2014.

    PubMed

    Kaufman, Harvey W; Chen, Zhen

    2016-10-01

    We assessed the impact of rotavirus vaccination at national and state levels by evaluating the change in rotavirus antigen detection after vaccination licensure. We examined herd immunity in an unlikely vaccinated cohort and waning immunity with aging in a likely vaccinated cohort. We proposed a new approach to estimate the length of season by contrasting with what is recently reported by the Centers for Disease Control and Prevention. We analyzed 11-year results of rotavirus testing (n = 276 342) conducted at Quest Diagnostics, a national clinical reference laboratory, spanning from September 2003 to August 2014. An enzyme immunoassay was used to test children's stool specimens for the presence of rotavirus antigen; results were reported as not detected or detected. Nationally, there was a significant reduction in the number of positive results (82.4%) and positivity rate (73.3%) after vaccination availability. The reductions were seen in all major states, although with geographic variability. The declining positivity rate in unlikely vaccinated children suggests herd immunity. Among those who were likely vaccinated, the positivity rate was higher in older children, indicating potential waning immunity with aging. Seasonal outbreaks continued in the postvaccine period, with peaks in alternating years. Seasons were longer in the postvaccine period than the prevaccine period. Our findings show a marked reduction in rotavirus detection throughout the nation after vaccine licensure, consistent with herd immunity. Postvaccine effectiveness may wane with aging. Seasons appear to be longer in the postvaccine period. Copyright © 2016 by the American Academy of Pediatrics.

  4. Unobtrusive monitoring of computer interactions to detect cognitive status in elders.

    PubMed

    Jimison, Holly; Pavel, Misha; McKanna, James; Pavel, Jesse

    2004-09-01

    The U.S. has experienced a rapid growth in the use of computers by elders. E-mail, Web browsing, and computer games are among the most common routine activities for this group of users. In this paper, we describe techniques for unobtrusively monitoring naturally occurring computer interactions to detect sustained changes in cognitive performance. Researchers have demonstrated the importance of the early detection of cognitive decline. Users over the age of 75 are at risk for medically related cognitive problems and confusion, and early detection allows for more effective clinical intervention. In this paper, we present algorithms for inferring a user's cognitive performance using monitoring data from computer games and psychomotor measurements associated with keyboard entry and mouse movement. The inferences are then used to classify significant performance changes, and additionally, to adapt computer interfaces with tailored hints and assistance when needed. These methods were tested in a group of elders in a residential facility.

  5. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  6. Development of the GC-MS organic aerosol monitor (GC-MS OAM) for in-field detection of particulate organic compounds

    NASA Astrophysics Data System (ADS)

    Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.

    2017-11-01

    Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.

  7. SHynergie: Development of a virtual project laboratory for monitoring hydraulic stimulations

    NASA Astrophysics Data System (ADS)

    Renner, Jörg; Friederich, Wolfgang; Meschke, Günther; Müller, Thomas; Steeb, Holger

    2016-04-01

    Hydraulic stimulations are the primary means of developing subsurface reservoirs regarding the extent of fluid transport in them. The associated creation or conditioning of a system of hydraulic conduits involves a range of hydraulic and mechanical processes but also chemical reactions, such as dissolution and precipitation, may affect the stimulation result on time scales as short as hours. In the light of the extent and complexity of these processes, the steering potential for the operator of a stimulation critically depends on the ability to integrate the maximum amount of site-specific information with profound process understanding and a large spectrum of experience. We report on the development of a virtual project laboratory for monitoring hydraulic stimulations within the project SHynergie (http://www.ruhr-uni-bochum.de/shynergie/). The concept of the laboratory envisioned product that constitutes a preparing and accompanying rather than post-processing instrument ultimately accessible to persons responsible for a project over a web-repository. The virtual laboratory consists of a data base, a toolbox, and a model-building environment. Entries in the data base are of two categories. On the one hand, selected mineral and rock properties are provided from the literature. On the other hand, project-specific entries of any format can be made that are assigned attributes regarding their use in a stimulation problem at hand. The toolbox is interactive and allows the user to perform calculations of effective properties and simulations of different types (e.g., wave propagation in a reservoir, hydraulic test). The model component is also hybrid. The laboratory provides a library of models reflecting a range of scenarios but also allows the user to develop a site-specific model constituting the basis for simulations. The laboratory offers the option to use its components following the typical workflow of a stimulation project. The toolbox incorporates simulation

  8. Inductive System Monitors Tasks

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Inductive Monitoring System (IMS) software developed at Ames Research Center uses artificial intelligence and data mining techniques to build system-monitoring knowledge bases from archived or simulated sensor data. This information is then used to detect unusual or anomalous behavior that may indicate an impending system failure. Currently helping analyze data from systems that help fly and maintain the space shuttle and the International Space Station (ISS), the IMS has also been employed by data classes are then used to build a monitoring knowledge base. In real time, IMS performs monitoring functions: determining and displaying the degree of deviation from nominal performance. IMS trend analyses can detect conditions that may indicate a failure or required system maintenance. The development of IMS was motivated by the difficulty of producing detailed diagnostic models of some system components due to complexity or unavailability of design information. Successful applications have ranged from real-time monitoring of aircraft engine and control systems to anomaly detection in space shuttle and ISS data. IMS was used on shuttle missions STS-121, STS-115, and STS-116 to search the Wing Leading Edge Impact Detection System (WLEIDS) data for signs of possible damaging impacts during launch. It independently verified findings of the WLEIDS Mission Evaluation Room (MER) analysts and indicated additional points of interest that were subsequently investigated by the MER team. In support of the Exploration Systems Mission Directorate, IMS is being deployed as an anomaly detection tool on ISS mission control consoles in the Johnson Space Center Mission Operations Directorate. IMS has been trained to detect faults in the ISS Control Moment Gyroscope (CMG) systems. In laboratory tests, it has already detected several minor anomalies in real-time CMG data. When tested on archived data, IMS was able to detect precursors of the CMG1 failure nearly 15 hours in advance of

  9. External quality assessment on detection of hepatitis C virus RNA in clinical laboratories of China.

    PubMed

    Wang, Lu-nan; Zhang, Rui; Shen, Zi-yu; Chen, Wen-xiang; Li, Jin-ming

    2008-06-05

    As with many studies carried out in European countries, a quality assurance program has been established by the National Center for Clinical Laboratories in China (NCCL). The results showed that the external quality assessment significantly improves laboratory performance for quantitative evaluation of hepatitis C virus (HCV) RNA. Serum panels were delivered twice annually to the clinical laboratories which performed HCV RNA detection in China. Each panel made up of 5 coded samples. All laboratories were requested to carry out the detection within the required time period and report on testing results which contained qualitative and/or quantitative test findings, reagents used and relevant information about apparatus. All the positive samples were calibrated against the first International Standard for HCV RNA in a collaborative study and the range of comparison target value (TG) designated as +/- 0.5 log. The numbers of laboratories reporting on qualitative testing results for the first and second time external quality assessment were 168 and 167 in the year of 2003 and increased to 209 and 233 in 2007; the numbers of laboratories reporting on quantitative testing results were 134 and 147 in 2003 and rose to 340 and 339 in 2007. Deviation between the mean value for quantitative results at home in 2003 and the target value was above 0.5 log, which was comparatively high. By 2007, the target value was close to the national average except for the low concentrated specimens (10(3) IU/ml). The percentage of results within the range of GM +/- 0.5 log(10) varied from 8.2% to 93.5%. Some laboratories had some difficulties in the exact quantification of the lowest (3.00 log IU/ml) as well as of the highest viral levels (6.37 log IU/ml) values, very near to the limits of the dynamic range of the assays. The comparison of these results with the previous study confirms that a regular participation in external quality assessment (EQA) assures the achievement of a high

  10. The HAWC Real-time Flare Monitor for Rapid Detection of Transient Events

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De la Fuente, E.; De León, C.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González, M. M.; González Muñoz, A.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; López-Cámara, D.; López-Coto, R.; Raya, G. Luis; Luna-García, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Younk, P. W.; Zepeda, A.; Zhou, H.

    2017-07-01

    We present the development of a real-time flare monitor for the High Altitude Water Cherenkov (HAWC) observatory. The flare monitor has been fully operational since 2017 January and is designed to detect very high energy (VHE; E ≳ 100 GeV) transient events from blazars on timescales lasting from 2 minutes to 10 hr in order to facilitate multiwavelength and multimessenger studies. These flares provide information for investigations into the mechanisms that power the blazars’ relativistic jets and accelerate particles within them, and they may also serve as probes of the populations of particles and fields in intergalactic space. To date, the detection of blazar flares in the VHE range has relied primarily on pointed observations by imaging atmospheric Cherenkov telescopes. The recently completed HAWC observatory offers the opportunity to study VHE flares in survey mode, scanning two-thirds of the entire sky every day with a field of view of ˜1.8 steradians. In this work, we report on the sensitivity of the HAWC real-time flare monitor and demonstrate its capabilities via the detection of three high-confidence VHE events in the blazars Markarian 421 and Markarian 501.

  11. System and process for detecting and monitoring surface defects

    NASA Technical Reports Server (NTRS)

    Mueller, Mark K. (Inventor)

    1994-01-01

    A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.

  12. Novel Monitoring Techniques for Characterizing Frictional Interfaces in the Laboratory

    PubMed Central

    Selvadurai, Paul A.; Glaser, Steven D.

    2015-01-01

    A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA) interface in the laboratory. The film has structural health monitoring (SHM) applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM) to compare normal stress profiles. Experimental measurements of the normal stress profiles were within −7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light) of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa. PMID:25923930

  13. Early detection monitoring of Phytophthora ramorum in high-risk forests of California

    Treesearch

    Ross Meentemeyer; Elizabeth Lotz; David M. Rizzo; Kelly Buja; Walter Mark

    2006-01-01

    Early detection monitoring is essential for successful control of invasive organisms. Detection of invasions at an early stage of establishment when a population is small and isolated makes eradication more feasible and less costly. Sudden oak death, caused by the recently described pathogen Phytophthora ramorum, is an emerging forest disease that...

  14. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, S.; Yeager, G.; Wolff, T.

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 {times} 10{sup {minus}3} mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on themore » environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs.« less

  15. Randomized trial of a home monitoring system for early detection of choroidal neovascularization home monitoring of the Eye (HOME) study.

    PubMed

    Chew, Emily Y; Clemons, Traci E; Bressler, Susan B; Elman, Michael J; Danis, Ronald P; Domalpally, Amitha; Heier, Jeffrey S; Kim, Judy E; Garfinkel, Richard

    2014-02-01

    To determine whether home monitoring with the ForeseeHome device (Notal Vision Ltd, Tel Aviv, Israel), using macular visual field testing with hyperacuity techniques and telemonitoring, results in earlier detection of age-related macular degeneration-associated choroidal neovascularization (CNV), reflected in better visual acuity, when compared with standard care. The main predictor of treatment outcome from anti-vascular endothelial growth factor (VEGF) agents is the visual acuity at the time of CNV treatment. Unmasked, controlled, randomized clinical trial. One thousand nine hundred and seventy participants 53 to 90 years of age at high risk of CNV developing were screened. Of these, 1520 participants with a mean age of 72.5 years were enrolled in the Home Monitoring of the Eye study at 44 Age-Related Eye Disease Study 2 clinical centers. In the standard care and device arms arm, investigator-specific instructions were provided for self-monitoring vision at home followed by report of new symptoms to the clinic. In the device arm, the device was provided with recommendations for daily testing. The device monitoring center received test results and reported changes to the clinical centers, which contacted participants for examination. The main outcome measure was the difference in best-corrected visual acuity scores between baseline and detection of CNV. The event was determined by investigators based on clinical examination, color fundus photography, fluorescein angiography, and optical coherence tomography findings. Masked graders at a central reading center evaluated the images using standardized protocols. Seven hundred sixty-three participants were randomized to device monitoring and 757 participants were randomized to standard care and were followed up for a mean of 1.4 years between July 2010 and April 2013. At the prespecified interim analysis, 82 participants progressed to CNV, 51 in the device arm and 31 in the standard care arm. The primary analysis

  16. Establishment and evaluation of a theater influenza monitoring platform.

    PubMed

    Wang, Jian; Yang, Hui-Suo; Deng, Bing; Shi, Meng-Jing; Li, Xiang-Da; Nian, Qing-Gong; Song, Wen-Jing; Bing, Feng; Li, Qing-Feng

    2017-11-20

    Influenza is an acute respiratory infectious disease with a high incidence rate in the Chinese army, which directly disturbs military training and affects soldiers' health. Influenza surveillance systems are widely used around the world and play an important role in influenza epidemic prevention and control. As a theater centers for disease prevention and control, we established an influenza monitoring platform (IMP) in 2014 to strengthen the monitoring of influenza-like illness and influenza virus infection. In this study, we introduced the constitution, influenza virus detection, and quality control for an IMP. The monitoring effect was also evaluated by comparing the monitoring data with data from national influenza surveillance systems. The experiences and problems associated with the platform also were summarized. A theater IMP was established based on 3 levels of medical units, including monitoring sites, testing laboratories and a checking laboratory. A series of measures were taken to guarantee the quality of monitoring, such as technical training, a unified process, sufficient supervision and timely communication. The platform has run smoothly for 3 monitoring years to date. In the 2014-2015 and 2016-2017 monitoring years, sample amount coincided with that obtained from the National Influenza Surveillance program. In the 2015-2016 monitoring year, due to the strict prevention and control measures, an influenza epidemic peak was avoided in monitoring units, and the monitoring data did not coincide with that of the National Influenza Surveillance program. Several problems, including insufficient attention, unreasonable administrative intervention or subordination relationships, and the necessity of detection in monitoring sites were still observed. A theater IMP was established rationally and played a deserved role in the prevention and control of influenza. However, several problems remain to be solved.

  17. U.S. Geological Survey geohydrologic studies and monitoring at the Idaho National Laboratory, southeastern Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.

    2017-09-14

    BackgroundThe U.S. Geological Survey (USGS) geohydrologic studies and monitoring at the Idaho National Laboratory (INL) is an ongoing, long-term program. This program, which began in 1949, includes hydrologic monitoring networks and investigative studies that describe the effects of waste disposal on water contained in the eastern Snake River Plain (ESRP) aquifer and the availability of water for long-term consumptive and industrial use. Interpretive reports documenting study findings are available to the U.S. Department of Energy (DOE) and its contractors; other Federal, State, and local agencies; private firms; and the public at https://id.water.usgs.gov/INL/Pubs/index.html. Information contained within these reports is crucial to the management and use of the aquifer by the INL and the State of Idaho. USGS geohydrologic studies and monitoring are done in cooperation with the DOE Idaho Operations Office.

  18. Use of Portal Monitors for Detection of Technogenic Radioactive Sources in Scrap Metal

    NASA Astrophysics Data System (ADS)

    Solovev, D. B.; Merkusheva, A. E.

    2017-11-01

    The article considers the features of organization of scrap-metal primary radiation control on the specialized enterprises engaging in its deep processing and storage at using by primary technical equipment - radiation portal monitors. The issue of this direction relevance, validity of radiation control implementation with the use of radiation portal monitors, physical and organizational bases of radiation control are considered in detail. The emphasis is put on the considerable increase in the number of technogenic radioactive sources detected in scrap-metal that results in the entering into exploitation of radioactive metallic structures as different building wares. One of reasons of such increase of the number of technogenic radioactive sources getting for processing with scrap-metal is the absence of any recommendations on the radiation portal monitors exploitation. The practical division of the article offers to recommendation on tuning of the modes of work of radiation portal monitors depending on influence the weather factor thus allowing to considerably increase the percent of technogenic radioactive sources detection.

  19. Oil spill disasters detection and monitoring by optical satellite data

    NASA Astrophysics Data System (ADS)

    Livia Grimaldi, Caterina Sara; Coviello, Irina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    Marine oil spill disasters may be related to natural hazards, when storms and hurricanes cause the sinking of tankers carrying crude or refined oil, as well as to human action, as illegal discharges, assessment errors (failures or collisions) or acts of warfare. Their consequence has a devastating effects on the marine and coastal environment. In order to reduce the environmental impact of such kind of hazard, giving to local authorities necessary information of pollution entity and evolution, timely detection and continuously updated information are fundamental. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and description, thanks to the high spatial resolution and all-time/weather capability of the present operational sensors. Anyway, the actual SARs revisiting time does not allow a rapid detection and near real-time monitoring of these phenomena at global scale. The COSMO-Skymed Italian dual-mission (expected in the 2010) will overcome this limitation improving the temporal resolution until 12 hours by a SAR constellation of four satellites, but several open questions regarding costs and global delivery policy of such data, might prevent their use in an operational context. Passive optical sensors, on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), may represent, at this moment, a suitable SAR alternative/complement for oil spill detection and monitoring. Up to now, some techniques have been proposed for mapping known oil spill discharges monitoring using optical satellite data, on the other hand, reliable satellite methods for an automatic and timely detection of oil spill are still currently missing. Existing methods, in fact, can localize the presence of an oil spill only after an alert and

  20. Effect of monitor display on detection of approximal caries lesions in digital radiographs.

    PubMed

    Isidor, S; Faaborg-Andersen, M; Hintze, H; Kirkevang, L-L; Frydenberg, M; Haiter-Neto, F; Wenzel, A

    2009-12-01

    The aim was to compare the accuracy of five flat panel monitors for detection of approximal caries lesions. Five flat panel monitors, Mermaid Ventura (15 inch, colour flat panel, 1024 x 768, 32 bit, analogue), Olórin VistaLine (19 inch, colour, 1280 x 1024, 32 bit, digital), Samsung SyncMaster 203B (20 inch, colour, 1024 x 768, 32 bit, analogue), Totoku ME251i (21 inch, greyscale, 1400 x 1024, 32 bit, digital) and Eizo FlexScan MX190 (19 inch, colour, 1280 x 1024, 32 bit, digital), were assessed. 160 approximal surfaces of human teeth were examined with a storage phosphor plate system (Digora FMX, Soredex) and assessed by seven observers for the presence of caries lesions. Microscopy of the teeth served as validation for the presence/absence of a lesion. The sensitivities varied between observers (range 7-25%) but the variation between the monitors was not large. The Samsung monitor obtained a significantly higher sensitivity than the Mermaid and Olórin monitors (P<0.02) and a lower specificity than the Eizo and Totoku monitors (P<0.05). There were no significant differences between any other monitors. The percentage of correct scores was highest for the Eizo monitor and significantly higher than for the Mermaid and Olórin monitors (P<0.03). There was no clear relationship between the diagnostic accuracy and the resolution or price of the monitor. The Eizo monitor was associated with the overall highest percentage of correct scores. The standard analogue flat panel monitor, Samsung, had higher sensitivity and lower specificity than some of the other monitors, but did not differ in overall accuracy for detection of carious lesions.

  1. Applications of polarization speckle in skin cancer detection and monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Tim K.; Tchvialeva, Lioudmila; Phillips, Jamie; Louie, Daniel C.; Zhao, Jianhua; Wang, Wei; Lui, Harvey; Kalia, Sunil

    2018-01-01

    Polarization speckle is a rapidly developed field. Unlike laser speckle, polarization speckle consists of stochastic interference patterns with spatially random polarizations, amplitudes and phases. We have been working in this exciting research field, developing techniques to generate polarization patterns from skin. We hypothesize that polarization speckle patterns could be used in biomedical applications, especially, for detecting and monitoring skin cancers, the most common neoplasmas for white populations around the world. This paper describes our effort in developing two polarization speckle devices. One of them captures the Stokes parameters So and S1 simultaneously, and another one captures all four Stokes parameters So, S1, S2, and S3 in one-shot, within milliseconds. Hence these two devices could be used in medical clinics and assessed skin conditions in-vivo. In order to validate our hypothesis, we conducted a series of three clinical studies. These are early pilot studies, and the results suggest that the devices have potential to detect and monitor skin cancers.

  2. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site

    PubMed Central

    Cauda, Emanuele; Miller, Arthur; Drake, Pamela

    2017-01-01

    The exposure to respirable crystalline silica (RCS) in the mining industry is a recognized occupational hazard. The assessment and monitoring of the exposure to RCS is limited by two main factors: (1) variability of the silica percent in the mining dust and (2) lengthy off-site laboratory analysis of collected samples. The monitoring of respirable dust via traditional or real-time techniques is not adequate. A solution for on-site quantification of RCS in dust samples is being investigated by the Office of Mine Safety and Health Research, a division of the National Institute for Occupational Safety and Health. The use of portable Fourier transform infrared analyzers in conjunction with a direct-on-filter analysis approach is proposed. The progress made so far, the necessary steps in progress, and the application of the monitoring solution to a small data set is presented. When developed, the solution will allow operators to estimate RCS immediately after sampling, resulting in timelier monitoring of RCS for self-assessment of compliance at the end of the shift, more effective engineering monitoring, and better evaluation of control technologies. PMID:26558490

  3. Adverse event detection (AED) system for continuously monitoring and evaluating structural health status

    NASA Astrophysics Data System (ADS)

    Yun, Jinsik; Ha, Dong Sam; Inman, Daniel J.; Owen, Robert B.

    2011-03-01

    Structural damage for spacecraft is mainly due to impacts such as collision of meteorites or space debris. We present a structural health monitoring (SHM) system for space applications, named Adverse Event Detection (AED), which integrates an acoustic sensor, an impedance-based SHM system, and a Lamb wave SHM system. With these three health-monitoring methods in place, we can determine the presence, location, and severity of damage. An acoustic sensor continuously monitors acoustic events, while the impedance-based and Lamb wave SHM systems are in sleep mode. If an acoustic sensor detects an impact, it activates the impedance-based SHM. The impedance-based system determines if the impact incurred damage. When damage is detected, it activates the Lamb wave SHM system to determine the severity and location of the damage. Further, since an acoustic sensor dissipates much less power than the two SHM systems and the two systems are activated only when there is an acoustic event, our system reduces overall power dissipation significantly. Our prototype system demonstrates the feasibility of the proposed concept.

  4. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  5. A Comparative Study for Detection of EGFR Mutations in Plasma Cell-Free DNA in Korean Clinical Diagnostic Laboratories

    PubMed Central

    2018-01-01

    Liquid biopsies to genotype the epidermal growth factor receptor (EGFR) for targeted therapy have been implemented in clinical decision-making in the field of lung cancer, but harmonization of detection methods is still scarce among clinical laboratories. We performed a pilot external quality assurance (EQA) scheme to harmonize circulating tumor DNA testing among laboratories. For EQA, we created materials containing different levels of spiked cell-free DNA (cfDNA) in normal plasma. The limit of detection (LOD) of the cobas® EGFR Mutation Test v2 (Roche Molecular Systems) was also evaluated. From November 2016 to June 2017, seven clinical diagnostic laboratories participated in the EQA program. The majority (98.94%) of results obtained using the cobas assay and next-generation sequencing (NGS) were acceptable. Quantitative results from the cobas assay were positively correlated with allele frequencies derived from digital droplet PCR measurements and showed good reproducibility among laboratories. The LOD of the cobas assay was 5~27 copies/mL for p.E746_A750del (exon 19 deletion), 35~70 copies/mL for p.L858R, 18~36 copies/mL for p.T790M, and 15~31 copies/mL for p.A767_V769dup (exon 20 insertion). Deep sequencing of materials (>100,000X depth of coverage) resulted in detection of low-level targets present at frequencies of 0.06~0.13%. Our results indicate that the cobas assay is a reliable and rapid method for detecting EGFR mutations in plasma cfDNA. Careful interpretation is particularly important for p.T790M detection in the setting of relapse. Individual laboratories should optimize NGS performance to maximize clinical utility.

  6. Radiation Detection Center on the Front Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2005-09-20

    Many of today's radiation detection tools were developed in the 1960s. For years, the Laboratory's expertise in radiation detection resided mostly within its nuclear test program. When nuclear testing was halted in the 1990s, many of Livermore's radiation detection experts were dispersed to other parts of the Laboratory, including the directorates of Chemistry and Materials Science (CMS); Physics and Advanced Technologies (PAT); Defense and Nuclear Technologies (DNT); and Nonproliferation, Arms Control, and International Security (NAI). The RDC was formed to maximize the benefit of radiation detection technologies being developed in 15 to 20 research and development (R&D) programs. These effortsmore » involve more than 200 Laboratory employees across eight directorates, in areas that range from electronics to computer simulations. The RDC's primary focus is the detection, identification, and analysis of nuclear materials and weapons. A newly formed outreach program within the RDC is responsible for conducting radiation detection workshops and seminars across the country and for coordinating university student internships. Simon Labov, director of the RDC, says, ''Virtually all of the Laboratory's programs use radiation detection devices in some way. For example, DNT uses radiation detection to create radiographs for their work in stockpile stewardship and in diagnosing explosives; CMS uses it to develop technology for advancing the detection, diagnosis, and treatment of cancer; and the Energy and Environment Directorate uses radiation detection in the Marshall Islands to monitor the aftermath of nuclear testing in the Pacific. In the future, the National Ignition Facility will use radiation detection to probe laser targets and study shock dynamics.''« less

  7. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  8. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J. M.; Adams, S. M.; Blaylock, B. G.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4)more » instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.« less

  9. Acoustic Emission Detected by Matched Filter Technique in Laboratory Earthquake Experiment

    NASA Astrophysics Data System (ADS)

    Wang, B.; Hou, J.; Xie, F.; Ren, Y.

    2017-12-01

    Acoustic Emission in laboratory earthquake experiment is a fundamental measures to study the mechanics of the earthquake for instance to characterize the aseismic, nucleation, as well as post seismic phase or in stick slip experiment. Compared to field earthquake, AEs are generally recorded when they are beyond threshold, so some weak signals may be missing. Here we conducted an experiment on a 1.1m×1.1m granite with a 1.5m fault and 13 receivers with the same sample rate of 3MHz are placed on the surface. We adopt continues record and a matched filter technique to detect low-SNR signals. We found there are too many signals around the stick-slip and the P- arrival picked by manual may be time-consuming. So, we combined the short-term average to long-tem-average ratio (STA/LTA) technique with Autoregressive-Akaike information criterion (AR-AIC) technique to pick the arrival automatically and found mostly of the P- arrival accuracy can satisfy our demand to locate signals. Furthermore, we will locate the signals and apply a matched filter technique to detect low-SNR signals. Then, we can see if there is something interesting in laboratory earthquake experiment. Detailed and updated results will be present in the meeting.

  10. Imaging monitoring techniques applications in the transient gratings detection

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-ming

    2009-07-01

    Experimental studies of Degenerate four-wave mixing (DFWM) in iodine vapor at atmospheric pressure and 0℃ and 25℃ are reported. The Laser-induced grating (LIG) studies are carried out by generating the thermal grating using a pulsed, narrow bandwidth, dye laser .A new image processing system for detecting forward DFWM spectroscopy on iodine vapor is reported. This system is composed of CCD camera, imaging processing card and the related software. With the help of the detecting system, phase matching can be easily achieved in the optical arrangement by crossing the two pumps and the probe as diagonals linking opposite corners of a rectangular box ,and providing a way to position the PhotoMultiplier Tube (PMT) . Also it is practical to know the effect of the pointing stability on the optical path by monitoring facula changing with the laser beam pointing and disturbs of the environment. Finally the effects of Photostability of dye laser on the ration of signal to noise in DFWM using forward geometries have been investigated in iodine vapor. This system makes it feasible that the potential application of FG-DFWM is used as a diagnostic tool in combustion research and environment monitoring.

  11. Cost Effectiveness Analysis of Clinically Driven versus Routine Laboratory Monitoring of Antiretroviral Therapy in Uganda and Zimbabwe

    PubMed Central

    Medina Lara, Antonieta; Kigozi, Jesse; Amurwon, Jovita; Muchabaiwa, Lazarus; Nyanzi Wakaholi, Barbara; Mujica Mota, Ruben E.; Walker, A. Sarah; Kasirye, Ronnie; Ssali, Francis; Reid, Andrew; Grosskurth, Heiner; Babiker, Abdel G.; Kityo, Cissy; Katabira, Elly; Munderi, Paula; Mugyenyi, Peter; Hakim, James; Darbyshire, Janet; Gibb, Diana M.; Gilks, Charles F.

    2012-01-01

    Background Despite funding constraints for treatment programmes in Africa, the costs and economic consequences of routine laboratory monitoring for efficacy and toxicity of antiretroviral therapy (ART) have rarely been evaluated. Methods Cost-effectiveness analysis was conducted in the DART trial (ISRCTN13968779). Adults in Uganda/Zimbabwe starting ART were randomised to clinically-driven monitoring (CDM) or laboratory and clinical monitoring (LCM); individual patient data on healthcare resource utilisation and outcomes were valued with primary economic costs and utilities. Total costs of first/second-line ART, routine 12-weekly CD4 and biochemistry/haematology tests, additional diagnostic investigations, clinic visits, concomitant medications and hospitalisations were considered from the public healthcare sector perspective. A Markov model was used to extrapolate costs and benefits 20 years beyond the trial. Results 3316 (1660LCM;1656CDM) symptomatic, immunosuppressed ART-naive adults (median (IQR) age 37 (32,42); CD4 86 (31,139) cells/mm3) were followed for median 4.9 years. LCM had a mean 0.112 year (41 days) survival benefit at an additional mean cost of $765 [95%CI:685,845], translating into an adjusted incremental cost of $7386 [3277,dominated] per life-year gained and $7793 [4442,39179] per quality-adjusted life year gained. Routine toxicity tests were prominent cost-drivers and had no benefit. With 12-weekly CD4 monitoring from year 2 on ART, low-cost second-line ART, but without toxicity monitoring, CD4 test costs need to fall below $3.78 to become cost-effective (<3xper-capita GDP, following WHO benchmarks). CD4 monitoring at current costs as undertaken in DART was not cost-effective in the long-term. Conclusions There is no rationale for routine toxicity monitoring, which did not affect outcomes and was costly. Even though beneficial, there is little justification for routine 12-weekly CD4 monitoring of ART at current test costs in low-income African

  12. The Advanced Monitoring Systems Initiative--Performance Monitoring for DOE Environmental Remediation and Contaminant Containment

    NASA Astrophysics Data System (ADS)

    Haas, W. J.; Venedam, R. J.; Lohrstorfer, C. F.; Weeks, S. J.

    2005-05-01

    The Advanced Monitoring System Initiative (AMSI) is a new approach to accelerate the development and application of advanced sensors and monitoring systems in support of Department of Energy needs in monitoring the performance of environmental remediation and contaminant containment activities. The Nevada Site Office of the National Nuclear Security Administration (NNSA) and Bechtel Nevada manage AMSI, with funding provided by the DOE Office of Environmental Management (DOE EM). AMSI has easy access to unique facilities and capabilities available at the Nevada Test Site (NTS), including the Hazardous Materials (HazMat) Spill Center, a one-of-a-kind facility built and permitted for releases of hazardous materials for training purposes, field-test detection, plume dispersion experimentation, and equipment and materials testing under controlled conditions. AMSI also has easy access to the facilities and considerable capabilities of the DOE and NNSA National Laboratories, the Special Technologies Laboratory, Remote Sensing Laboratory, Desert Research Institute, and Nevada Universities. AMSI provides rapid prototyping, systems integration, and field-testing, including assistance during initial site deployment. The emphasis is on application. Important features of the AMSI approach are: (1) customer investment, involvement and commitment to use - including definition of needs, desired mode of operation, and performance requirements; and (2) employment of a complete systems engineering approach, which allows the developer to focus maximum attention on the essential new sensing element or elements while AMSI assumes principal responsibility for infrastructure support elements such as power, packaging, and general data acquisition, control, communication, visualization and analysis software for support of decisions. This presentation describes: (1) the needs for sensors and performance monitoring for environmental systems as seen by the DOE Long Term Stewardship Science and

  13. Laboratory preparedness in EU/EEA countries for detection of novel avian influenza A(H7N9) virus, May 2013

    PubMed Central

    Broberg, E; Pereyaslov, D; Struelens, M; Palm, D; Meijer, A; Ellis, J; Zambon, M; McCauley, J; Daniels, R

    2015-01-01

    Following human infections with novel avian influenza A(H7N9) viruses in China, the European Centre for Disease Prevention and Control, the World Health Organization (WHO) Regional Office for Europe and the European Reference Laboratory Network for Human Influenza (ERLI-Net) rapidly posted relevant information, including real-time RT-PCR protocols. An influenza RNA sequence-based computational assessment of detection capabilities for this virus was conducted in 32 national influenza reference laboratories in 29 countries, mostly WHO National Influenza Centres participating in the WHO Global Influenza Surveillance and Response System (GISRS). Twenty-seven countries considered their generic influenza A virus detection assay to be appropriate for the novel A(H7N9) viruses. Twenty-two countries reported having containment facilities suitable for its isolation and propagation. Laboratories in 27 countries had applied specific H7 real-time RT-PCR assays and 20 countries had N9 assays in place. Positive control virus RNA was provided by the WHO Collaborating Centre in London to 34 laboratories in 22 countries to allow evaluation of their assays. Performance of the generic influenza A virus detection and H7 and N9 subtyping assays was good in 24 laboratories in 19 countries. The survey showed that ERLI-Net laboratories had rapidly developed and verified good capability to detect the novel A(H7N9) influenza viruses. PMID:24507469

  14. Propulsion Health Monitoring for Enhanced Safety

    NASA Technical Reports Server (NTRS)

    Butz, Mark G.; Rodriguez, Hector M.

    2003-01-01

    This report presents the results of the NASA contract Propulsion System Health Management for Enhanced Safety performed by General Electric Aircraft Engines (GE AE), General Electric Global Research (GE GR), and Pennsylvania State University Applied Research Laboratory (PSU ARL) under the NASA Aviation Safety Program. This activity supports the overall goal of enhanced civil aviation safety through a reduction in the occurrence of safety-significant propulsion system malfunctions. Specific objectives are to develop and demonstrate vibration diagnostics techniques for the on-line detection of turbine rotor disk cracks, and model-based fault tolerant control techniques for the prevention and mitigation of in-flight engine shutdown, surge/stall, and flameout events. The disk crack detection work was performed by GE GR which focused on a radial-mode vibration monitoring technique, and PSU ARL which focused on a torsional-mode vibration monitoring technique. GE AE performed the Model-Based Fault Tolerant Control work which focused on the development of analytical techniques for detecting, isolating, and accommodating gas-path faults.

  15. Conflict monitoring in speech processing: An fMRI study of error detection in speech production and perception.

    PubMed

    Gauvin, Hanna S; De Baene, Wouter; Brass, Marcel; Hartsuiker, Robert J

    2016-02-01

    To minimize the number of errors in speech, and thereby facilitate communication, speech is monitored before articulation. It is, however, unclear at which level during speech production monitoring takes place, and what mechanisms are used to detect and correct errors. The present study investigated whether internal verbal monitoring takes place through the speech perception system, as proposed by perception-based theories of speech monitoring, or whether mechanisms independent of perception are applied, as proposed by production-based theories of speech monitoring. With the use of fMRI during a tongue twister task we observed that error detection in internal speech during noise-masked overt speech production and error detection in speech perception both recruit the same neural network, which includes pre-supplementary motor area (pre-SMA), dorsal anterior cingulate cortex (dACC), anterior insula (AI), and inferior frontal gyrus (IFG). Although production and perception recruit similar areas, as proposed by perception-based accounts, we did not find activation in superior temporal areas (which are typically associated with speech perception) during internal speech monitoring in speech production as hypothesized by these accounts. On the contrary, results are highly compatible with a domain general approach to speech monitoring, by which internal speech monitoring takes place through detection of conflict between response options, which is subsequently resolved by a domain general executive center (e.g., the ACC). Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Emergency response networks for disaster monitoring and detection from space

    NASA Astrophysics Data System (ADS)

    Vladimirova, Tanya; Sweeting, Martin N.; Vitanov, Ivan; Vitanov, Valentin I.

    2009-05-01

    Numerous man-made and natural disasters have stricken mankind since the beginning of the new millennium. The scale and impact of such disasters often prevent the collection of sufficient data for an objective assessment and coordination of timely rescue and relief missions on the ground. As a potential solution to this problem, in recent years constellations of Earth observation small satellites and in particular micro-satellites (<100 kg) in low Earth orbit have emerged as an efficient platform for reliable disaster monitoring. The main task of the Earth observation satellites is to capture images of the Earth surface using various techniques. For a large number of applications the resulting delay between image capture and delivery is not acceptable, in particular for rapid response remote sensing aiming at disaster monitoring and detection. In such cases almost instantaneous data availability is a strict requirement to enable an assessment of the situation and instigate an adequate response. Examples include earthquakes, volcanic eruptions, flooding, forest fires and oil spills. The proposed solution to this issue are low-cost networked distributed satellite systems in low Earth orbit capable of connecting to terrestrial networks and geostationary Earth orbit spacecraft in real time. This paper discusses enabling technologies for rapid response disaster monitoring and detection from space such as very small satellite design, intersatellite communication, intelligent on-board processing, distributed computing and bio-inspired routing techniques.

  17. Weak fault detection and health degradation monitoring using customized standard multiwavelets

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Wang, Yu; Peng, Yizhen; Wei, Chenjun

    2017-09-01

    Due to the nonobvious symptoms contaminated by a large amount of background noise, it is challenging to beforehand detect and predictively monitor the weak faults for machinery security assurance. Multiwavelets can act as adaptive non-stationary signal processing tools, potentially viable for weak fault diagnosis. However, the signal-based multiwavelets suffer from such problems as the imperfect properties missing the crucial orthogonality, the decomposition distortion impossibly reflecting the relationships between the faults and signatures, the single objective optimization and independence for fault prognostic. Thus, customized standard multiwavelets are proposed for weak fault detection and health degradation monitoring, especially the weak fault signature quantitative identification. First, the flexible standard multiwavelets are designed using the construction method derived from scalar wavelets, seizing the desired properties for accurate detection of weak faults and avoiding the distortion issue for feature quantitative identification. Second, the multi-objective optimization combined three dimensionless indicators of the normalized energy entropy, normalized singular entropy and kurtosis index is introduced to the evaluation criterions, and benefits for selecting the potential best basis functions for weak faults without the influence of the variable working condition. Third, an ensemble health indicator fused by the kurtosis index, impulse index and clearance index of the original signal along with the normalized energy entropy and normalized singular entropy by the customized standard multiwavelets is achieved using Mahalanobis distance to continuously monitor the health condition and track the performance degradation. Finally, three experimental case studies are implemented to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed method can quantitatively identify the fault signature of a slight rub on

  18. Monitoring of bedridden patients: development of a fall detection tool.

    PubMed

    Vilas-Boas, M; Silva, P; Cunha, S R; Correia, M V

    2013-01-01

    Falls of patients are an important issue in hospitals nowadays; it causes severe injuries, increases hospitalization time and treatment costs. The detection of a fall, in time, provides faster rescue to the patient, preventing more serious injuries, as well as saving nursing time. The MovinSense® is an electronic device designed for monitoring patients to prevent pressure sores, and the main goal of this work was to develop a new tool for this device, with the purpose of detecting if the patient has fallen from the hospital bed, without changing any of the device's original features. Experiments for gathering data samples of inertial signals of falling from the bed were obtained using the device. For fall detection a sensitivity of 72% and specificity of 100% were reached. Another algorithm was developed to detect if the patient got out of his/her bed.

  19. A Distance Measure for Attention Focusing and Anomaly Detection in Systems Monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, R.

    1994-01-01

    Any attempt to introduce automation into the monitoring of complex physical systems must start from a robust anomaly detection capability. This task is far from straightforward, for a single definition of what constitutes an anomaly is difficult to come by. In addition, to make the monitoring process efficient, and to avoid the potential for information overload on human operators, attention focusing must also be addressed. When an anomaly occurs, more often than not several sensors are affected, and the partially redundant information they provide can be confusing, particularly in a crisis situation where a response is needed quickly. Previous results on extending traditional anomaly detection techniques are summarized. The focus of this paper is a new technique for attention focusing.

  20. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  1. Graph-based structural change detection for rotating machinery monitoring

    NASA Astrophysics Data System (ADS)

    Lu, Guoliang; Liu, Jie; Yan, Peng

    2018-01-01

    Detection of structural changes is critically important in operational monitoring of a rotating machine. This paper presents a novel framework for this purpose, where a graph model for data modeling is adopted to represent/capture statistical dynamics in machine operations. Meanwhile we develop a numerical method for computing temporal anomalies in the constructed graphs. The martingale-test method is employed for the change detection when making decisions on possible structural changes, where excellent performance is demonstrated outperforming exciting results such as the autoregressive-integrated-moving average (ARIMA) model. Comprehensive experimental results indicate good potentials of the proposed algorithm in various engineering applications. This work is an extension of a recent result (Lu et al., 2017).

  2. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay.

    PubMed

    Mondal, Dinesh; Ghosh, Prakash; Khan, Md Anik Ashfaq; Hossain, Faria; Böhlken-Fascher, Susanne; Matlashewski, Greg; Kroeger, Axel; Olliaro, Piero; Abd El Wahed, Ahmed

    2016-05-13

    Leishmania donovani (LD) is a protozoan parasite transmitted to humans from sand flies, which causes Visceral Leishmaniasis (VL). Currently, the diagnosis is based on presence of the anti-LD antibodies and clinical symptoms. Molecular diagnosis would require real-time PCR, which is not easy to implement at field settings. In this study, we report on the development and testing of a recombinase polymerase amplification (RPA) assay for the detection of LD. A genomic DNA sample was applied to determine the assay analytical sensitivity. The cross-reactivity of the assay was tested by DNA of Leishmania spp. and of pathogens considered for differential diagnosis. The clinical performance of the assay was evaluated on LD positive and negative samples. All results were compared with real-time PCR. To allow the use of the assay at field settings, a mobile suitcase laboratory (56 × 45.5 × 26.5 cm) was developed and operated at the local hospital in Mymensingh, Bangladesh. The LD RPA assay detected equivalent to one LD genomic DNA. The assay was performed at constant temperature (42 °C) in 15 min. The RPA assay also detected other Leishmania species (L. major, L. aethiopica and L. infantum), but did not identify nucleic acid of other pathogens. Forty-eight samples from VL, asymptomatic and post-kala-azar dermal leishmaniasis subjects were detected positive and 48 LD-negative samples were negative by both LD RPA and real-time PCR assays, which indicates 100 % agreement. The suitcase laboratory was successfully operated at the local hospital by using a solar-powered battery. DNA extraction was performed by a novel magnetic bead based method (SpeedXtract), in which a simple fast lysis protocol was applied. Moreover, All reagents were cold-chain independent. The mobile suitcase laboratory using RPA is ideal for rapid sensitive and specific detection of LD especially at low resource settings and could contribute to VL control and elimination programmes.

  3. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  4. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A; Patterson, Eileen F

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, asmore » well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  5. Intra- and inter-laboratory validation of a dipstick immunoassay for the detection of tropane alkaloids hyoscyamine and scopolamine in animal feed.

    PubMed

    Mulder, Patrick P J; von Holst, Christoph; Nivarlet, Noan; van Egmond, Hans P

    2014-01-01

    Tropane alkaloids (TAs) are toxic secondary metabolites produced by plants of, inter alia, the genera Datura (thorn apple) and Atropa (deadly nightshade). The most relevant TAs are (-)-L-hyoscyamine and (-)-L-scopolamine, which act as antagonists of acetylcholine muscarinic receptors and can induce a variety of distinct toxic syndromes in mammals (anti-cholinergic poisoning). The European Union has regulated the presence of seeds of Datura sp. in animal feeds, specifying that the content should not exceed 1000 mg kg(-1) (Directive 2002/32/EC). For materials that have not been ground, visual screening methods are often used to comply with these regulations, but these cannot be used for ground materials and compound feeds. Immunological assays, preferably in dipstick format, can be a simple and cost-effective approach to monitor feedstuffs in an HACCP setting in control laboratories. So far no reports have been published on immunoassays that are capable of detecting both hyoscyamine and scopolamine with equal sensitivity and that can be used, preferably in dipstick format, for application as a fast screening tool in feed analysis. This study presents the results obtained for the in-house and inter-laboratory validation of a dipstick immunoassay for the detection of hyoscyamine and scopolamine in animal feed. The target level was set at 800 µg kg(-1) for the sum of both alkaloids. By using a representative set of compound feeds during validation and a robust study design, a reliable impression of the relevant characteristics of the assay could be obtained. The dipstick test displayed similar sensitivity towards the two alkaloids and it could be concluded that the test has a very low probability of producing a false-positive result at blank level or a false-negative result at target level. The assay can be used for monitoring of TAs in feedstuffs, but has also potential as a quick screening tool in food- or feed-related poisonings.

  6. Damage Detection Using Lamb Waves for Structural Health Monitoring

    DTIC Science & Technology

    2007-03-01

    experiments have been reported by Seth Kessler [8]. 2.2 Large Aluminum Plate The second experiment included a 2024-0 aluminum plate with dimensions of...Mechanical Engineering Congress , (IMECE2002- 39017) (17-22 November 2002). 6. Kessler , Seth S. Piezoelectric-Based In-Situ Damage Detection of...Composite Materials for Structural Health Monitoring Systems. Ph.D. thesis, Massachusetts Institute of Technology, January 2002. 7. Kessler , Seth S. “Metis

  7. High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer

    DTIC Science & Technology

    2010-07-01

    W81XWH-09-1-0420 TITLE: High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer...4. TITLE AND SUBTITLE High-Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment of Prostate Cancer... molecular imaging for diagnosis as well as treatment planning and monitoring in prostate cancer. This investigation hypothesizes that a dedicated

  8. How to Monitor the Breathing of Laboratory Rodents: A Review of the Current Methods.

    PubMed

    Grimaud, Julien; Murthy, Venkatesh N

    2018-05-23

    Accurately measuring respiration in laboratory rodents is essential for many fields of research, including olfactory neuroscience, social behavior, learning and memory, and respiratory physiology. However, choosing the right technique to monitor respiration can be tricky, given the many criteria to take into account: reliability, precision, and invasiveness, to name a few. This review aims to assist experimenters in choosing the technique that will best fit their needs, by surveying the available tools, discussing their strengths and weaknesses, and offering suggestions for future improvements.

  9. Signal Detection and Monitoring Based on Longitudinal Healthcare Data

    PubMed Central

    Suling, Marc; Pigeot, Iris

    2012-01-01

    Post-marketing detection and surveillance of potential safety hazards are crucial tasks in pharmacovigilance. To uncover such safety risks, a wide set of techniques has been developed for spontaneous reporting data and, more recently, for longitudinal data. This paper gives a broad overview of the signal detection process and introduces some types of data sources typically used. The most commonly applied signal detection algorithms are presented, covering simple frequentistic methods like the proportional reporting rate or the reporting odds ratio, more advanced Bayesian techniques for spontaneous and longitudinal data, e.g., the Bayesian Confidence Propagation Neural Network or the Multi-item Gamma-Poisson Shrinker and methods developed for longitudinal data only, like the IC temporal pattern detection. Additionally, the problem of adjustment for underlying confounding is discussed and the most common strategies to automatically identify false-positive signals are addressed. A drug monitoring technique based on Wald’s sequential probability ratio test is presented. For each method, a real-life application is given, and a wide set of literature for further reading is referenced. PMID:24300373

  10. Rapid, Sensitive, Enzyme-Immunodotting Assay for Detecting Cow Milk Adulteration in Sheep Milk: A Modern Laboratory Project

    NASA Astrophysics Data System (ADS)

    Inda, Luis A.; Razquín, Pedro; Lampreave, Fermín; Alava, María A.; Calvo, Miguel

    1998-12-01

    Specificity, sensitivity, and experimental simplicity make the immunoenzymatic assay suitable for a variety of laboratories dedicated to diverse activities such as research, quality control in food analysis, or clinical biochemistry. In these assays, the antibody that specifically recognizes the antigen is covalently attached to an enzyme. Once the antigen-antibody immunocomplex is formed, the enzymatic reaction gives a colored product that allows the detection of the initial antigen. The aim of this work was the design of a new laboratory project appropriate for use in courses of biochemistry, immunochemistry, or analytical chemistry. The assay described here detects the presence of cow milk in milk of other species. The main application is the detection of cow milk in sheep milk and cheese. Specific proteins, immunoglobulins (IgG) of the fraudulent bovine milk, are specifically recognized and retained by antibodies immobilized on a membrane. The binding of a second antibody covalently attached to horseradish peroxidase (HRP) allows the development of a visible signal. Thus, students can rapidly detect milk adulterations using a specific, sensitive, and safe experimental approach. The experiment allows students to apply their theoretical knowledge, resulting in a stimulating experience of solving a real problem during a 4-hour laboratory period.

  11. Atrial Fibrillation Detection During 24-Hour Ambulatory Blood Pressure Monitoring: Comparison With 24-Hour Electrocardiography.

    PubMed

    Kollias, Anastasios; Destounis, Antonios; Kalogeropoulos, Petros; Kyriakoulis, Konstantinos G; Ntineri, Angeliki; Stergiou, George S

    2018-07-01

    This study assessed the diagnostic accuracy of a novel 24-hour ambulatory blood pressure (ABP) monitor (Microlife WatchBP O3 Afib) with implemented algorithm for automated atrial fibrillation (AF) detection during each ABP measurement. One hundred subjects (mean age 70.6±8.2 [SD] years; men 53%; hypertensives 85%; 17 with permanent AF; 4 paroxysmal AF; and 79 non-AF) had simultaneous 24-hour ABP monitoring and 24-hour Holter monitoring. Among a total of 6410 valid ABP readings, 1091 (17%) were taken in ECG AF rhythm. In reading-to-reading ABP analysis, the sensitivity, specificity, and accuracy of ABP monitoring in detecting AF were 93%, 87%, and 88%, respectively. In non-AF subjects, 12.8% of the 24-hour ABP readings indicated false-positive AF, of whom 27% were taken during supraventricular premature beats. There was a strong association between the proportion of false-positive AF readings and that of supraventricular premature beats ( r =0.67; P <0.001). Receiver operating characteristic curve revealed that in paroxysmal AF and non-AF subjects, AF-positive readings at 26% during 24-hour ABP monitoring had 100%/85% sensitivity/specificity (area under the curve 0.91; P <0.01) for detecting paroxysmal AF. These findings suggest that in elderly hypertensives, a novel 24-hour ABP monitor with AF detector has high sensitivity and moderate specificity for AF screening during routine ABP monitoring. Thus, in elderly hypertensives, a 24-hour ABP recording with at least 26% of the readings suggesting AF indicates a high probability for AF diagnosis and should be regarded as an indication for performing 24-hour Holter monitoring. © 2018 American Heart Association, Inc.

  12. The role of MEXART in the National Space Weather Laboratory of Mexico: Detection of solar wind, CMEs, ionosphere, active regions and flares.

    NASA Astrophysics Data System (ADS)

    Mejia-Ambriz, J.; Gonzalez-Esparza, A.; De la Luz, V.; Villanueva-Hernandez, P.; Andrade, E.; Aguilar-Rodriguez, E.; Chang, O.; Romero Hernandez, E.; Sergeeva, M. A.; Perez Alanis, C. A.; Reyes-Marin, P. A.

    2017-12-01

    The National Space Weather Laboratory - Laboratorio Nacional de Clima Espacial (LANCE) - of Mexico has different ground based instruments to study and monitor the space weather. One of these instruments is the Mexican Array Radio Telescope (MEXART) which is principally dedicated to remote sensing the solar wind and coronal mass ejections (CMEs) at 140 MHz, the instrument can detect solar wind densities and speeds from about 0.4 to 1 AU by modeling observations of interplanetary scintillation (IPS). MEXART is also able to detect ionospheric disturbances associated with transient space weather events by the analysis of ionospheric scintillation (IONS) . Additionally, MEXART has followed the Sun since the beginning of the current Solar Cycle 24 with records of 8 minutes per day, and occasionally, has partially detected the process of strong solar flares. Here we show the contributions of MEXART to the LANCE by reporting recent detections of CMEs by IPS, the arrive of transient events at Earth by IONS, the influence of active regions in the flux of the Sun at 140 MHz and the detection of a M6.5 class flare. Furthermore we report the status of a near real time analysis of IPS data for forecast purposes and the potential contribution to the Worldwide IPS Stations network (WIPSS), which is an effort to achieve a better coverage of the solar wind observations in the inner heliosphere.

  13. Results of neutron irradiation of GEM detector for plasma radiation detection

    NASA Astrophysics Data System (ADS)

    Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.

    2015-09-01

    The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.

  14. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  15. Reusable rocket engine optical condition monitoring

    NASA Technical Reports Server (NTRS)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.

    1987-01-01

    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  16. Hierarchical effects on target detection and conflict monitoring

    PubMed Central

    Cao, Bihua; Gao, Feng; Ren, Maofang; Li, Fuhong

    2016-01-01

    Previous neuroimaging studies have demonstrated a hierarchical functional structure of the frontal cortices of the human brain, but the temporal course and the electrophysiological signature of the hierarchical representation remains unaddressed. In the present study, twenty-one volunteers were asked to perform a nested cue-target task, while their scalp potentials were recorded. The results showed that: (1) in comparison with the lower-level hierarchical targets, the higher-level targets elicited a larger N2 component (220–350 ms) at the frontal sites, and a smaller P3 component (350–500 ms) across the frontal and parietal sites; (2) conflict-related negativity (non-target minus target) was greater for the lower-level hierarchy than the higher-level, reflecting a more intensive process of conflict monitoring at the final step of target detection. These results imply that decision making, context updating, and conflict monitoring differ among different hierarchical levels of abstraction. PMID:27561989

  17. Internal defect detection success story : industry taps into the Forest Products Laboratory's research capabilities-so can you

    Treesearch

    John Dramm; Bill Adam

    2000-01-01

    This presentation discusses a success story of cooperative research and development (R&D) and commercialization of ultrasonic detection technology for locating internal defects in lumber. The R&D work described in this paper is the result of a unique federal laboratory and private sector partnership between the USDA Forest Service, Forest Products Laboratory (...

  18. Modelling detectability of kiore (Rattus exulans) on Aguiguan, Mariana Islands, to inform possible eradication and monitoring efforts

    USGS Publications Warehouse

    Adams, A.A.Y.; Stanford, J.W.; Wiewel, A.S.; Rodda, G.H.

    2011-01-01

    Estimating the detection probability of introduced organisms during the pre-monitoring phase of an eradication effort can be extremely helpful in informing eradication and post-eradication monitoring efforts, but this step is rarely taken. We used data collected during 11 nights of mark-recapture sampling on Aguiguan, Mariana Islands, to estimate introduced kiore (Rattus exulans Peale) density and detection probability, and evaluated factors affecting detectability to help inform possible eradication efforts. Modelling of 62 captures of 48 individuals resulted in a model-averaged density estimate of 55 kiore/ha. Kiore detection probability was best explained by a model allowing neophobia to diminish linearly (i.e. capture probability increased linearly) until occasion 7, with additive effects of sex and cumulative rainfall over the prior 48 hours. Detection probability increased with increasing rainfall and females were up to three times more likely than males to be trapped. In this paper, we illustrate the type of information that can be obtained by modelling mark-recapture data collected during pre-eradication monitoring and discuss the potential of using these data to inform eradication and posteradication monitoring efforts. ?? New Zealand Ecological Society.

  19. Laboratory monitoring of patients treated with antihypertensive drugs and newly exposed to non steroidal anti-inflammatory drugs: a cohort study.

    PubMed

    Fournier, Jean-Pascal; Lapeyre-Mestre, Maryse; Sommet, Agnès; Dupouy, Julie; Poutrain, Jean-Christophe; Montastruc, Jean-Louis

    2012-01-01

    Drug-Drug Interactions between Non Steroidal Anti-Inflammatory Drugs (NSAIDs) and Angiotensin Converting Enzyme Inhibitors (ACEIs), Angiotensin Receptor Blocker (ARBs) or diuretics can lead to renal failure and hyperkalemia. Thus, monitoring of serum creatinine and potassium is recommended when a first dispensing of NSAID occur in patients treated with these drugs. We conducted a pharmacoepidemiological retrospective cohort study using data from the French Health Insurance Reimbursement Database to evaluate the proportion of serum creatinine and potassium laboratory monitoring in patients treated with ACEI, ARB or diuretic and receiving a first dispensing of NSAID. We described the first dispensing of NSAID among 3,500 patients of a 4-year cohort (6,633 patients treated with antihypertensive drugs) and analyzed serum creatinine and potassium laboratory monitoring within the 3 weeks after the first NSAID dispensing. General Practitioners were the most frequent prescribers of NSAIDs (85.5%, 95% CI: 84.3-86.6). The more commonly prescribed NSAIDs were ibuprofen (20%), ketoprofen (15%), diclofenac (15%) and piroxicam (12%). Serum creatinine and potassium monitoring was 10.7% (95% CI: 9.5-11.8) in patients treated by ACEIs, ARBs or diuretics. Overall, monitoring was more frequently performed to women aged over 60, treated with digoxin or glucose lowering drugs, but not to patients treated with ACEIs, ARBs or diuretics. Monitoring was more frequent when NSAIDs' prescribers were cardiologists or anesthesiologists. Monitoring of serum creatinine and potassium of patients treated with ACEIs, ARBs or diuretics and receiving a first NSAID dispensing is insufficiently performed and needs to be reinforced through specific interventions.

  20. Detection and plant monitoring programs: lessons from an intensive survey of Asclepias meadii with five observers.

    PubMed

    Alexander, Helen M; Reed, Aaron W; Kettle, W Dean; Slade, Norman A; Bodbyl Roels, Sarah A; Collins, Cathy D; Salisbury, Vaughn

    2012-01-01

    Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using Huggins models revealed important effects of observer, patch state (flowering/nonflowering), and patch size (number of stems) on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than nonflowering patches), the importance of our approach is the ability to quantify the magnitude of detection problems. We also evaluated the degree to which increased observer numbers improved detection: smaller groups (3-4 observers) generally found 90 - 99% of the patches found by all five people, but pairs of observers or single observers had high error and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-term monitoring study provides essential information about probabilities of detection and what factors cause plants to be missed. This information can guide development of monitoring programs.

  1. Replaceable Sensor System for Bioreactor Monitoring

    NASA Technical Reports Server (NTRS)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  2. Towards a rational antimicrobial testing policy in the laboratory.

    PubMed

    Banaji, N; Oommen, S

    2011-01-01

    Antimicrobial policy for prophylactic and therapeutic use of antimicrobials in a tertiary care setting has gained importance. A hospital's antimicrobial policy as laid down by its hospital infection control team needs to include inputs from the microbiology laboratory, besides the pharmacy and therapeutic committee. Therefore, it is of utmost importance that clinical microbiologists across India follow international guidelines and also take into account local settings, especially detection and presence of resistance enzymes. This article draws a framework for rational antimicrobial testing in our laboratories in tertiary care centers, from the Clinical and Laboratory Standards Institute guidelines. It does not address testing methodologies but suggests ways and means by which antimicrobial susceptibility reporting can be rendered meaningful not only to the treating physician but also to the resistance monitoring epidemiologist. It hopes to initiate some standardization in rational choice of antimicrobial testing in laboratories in the country pertaining to nonfastidious bacteria.

  3. Probabilistic monitoring in intrusion detection module for energy efficiency in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    De Rango, Floriano; Lupia, Andrea

    2016-05-01

    MANETs allow mobile nodes communicating to each other using the wireless medium. A key aspect of these kind of networks is the security, because their setup is done without an infrastructure, so external nodes could interfere in the communication. Mobile nodes could be compromised, misbehaving during the multi-hop transmission of data, or they could have a selfish behavior to save energy, which is another important constraint in MANETs. The detection of these behaviors need a framework that takes into account the latest interactions among nodes, so malicious or selfish nodes could be detected also if their behavior is changed over time. The monitoring activity increases the energy consumption, so our proposal takes into account this issue reducing the energy required by the monitoring system, keeping the effectiveness of the intrusion detection system. The results show an improvement in the saved energy, improving the detection performance too.

  4. Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite

    NASA Astrophysics Data System (ADS)

    Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris

    2004-02-01

    Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.

  5. Dip-strip method for monitoring environmental contamination of aflatoxin in food and feed: use of a portable aflatoxin detection kit.

    PubMed

    Sashidhar, R B

    1993-10-01

    Aflatoxin contamination of food and feed have gained global significance due to its deleterious effect on human and animal health and its importance in the international trade. The potential of aflatoxin as a carcinogen, mutagen, teratogen, and immunosuppressive agent is well documented. The problem of aflatoxin contamination of food and feed has led to the enactment of various legislation. However, meaningful strategies for implementation of this legislation is limited by nonavailability of simple, cost-effective method for screening and detection of aflatoxin under field conditions. Keeping in mind the analytical constraints in developing countries, a simple-to-operate, rapid, reliable, and cost-effective portable aflatoxin detection kit has been developed. The important components of the kit include a hand-held UV lamp (365 nm, 4 W output), a solvent blender (12,000 rpm) for toxin extraction, and adsorbent-coated dip-strips (polyester film) for detecting and quantifying aflatoxin. Analysis of variance indicates that there were no significant differences between various batches of dip-strips (p > 0.05). The minimum detection limit for aflatoxin B1 was 10 ppb per spot. The kit may find wide application as a research tool in public health laboratories, environmental monitoring agencies, and in the poultry industry.

  6. Dip-strip method for monitoring environmental contamination of aflatoxin in food and feed: use of a portable aflatoxin detection kit.

    PubMed Central

    Sashidhar, R B

    1993-01-01

    Aflatoxin contamination of food and feed have gained global significance due to its deleterious effect on human and animal health and its importance in the international trade. The potential of aflatoxin as a carcinogen, mutagen, teratogen, and immunosuppressive agent is well documented. The problem of aflatoxin contamination of food and feed has led to the enactment of various legislation. However, meaningful strategies for implementation of this legislation is limited by nonavailability of simple, cost-effective method for screening and detection of aflatoxin under field conditions. Keeping in mind the analytical constraints in developing countries, a simple-to-operate, rapid, reliable, and cost-effective portable aflatoxin detection kit has been developed. The important components of the kit include a hand-held UV lamp (365 nm, 4 W output), a solvent blender (12,000 rpm) for toxin extraction, and adsorbent-coated dip-strips (polyester film) for detecting and quantifying aflatoxin. Analysis of variance indicates that there were no significant differences between various batches of dip-strips (p > 0.05). The minimum detection limit for aflatoxin B1 was 10 ppb per spot. The kit may find wide application as a research tool in public health laboratories, environmental monitoring agencies, and in the poultry industry. Images FIGURE 1. PMID:8143644

  7. Detection and Monitoring of Intense Pyroconvection in Western North America using Remote Sensing and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Peterson, D. A.; Solbrig, J. E.; Hyer, E. J.; Campbell, J. R.; Fromm, M. D.

    2015-12-01

    Fire-triggered thunderstorms, known as pyrocumulonimbus (pyroCb), can alter fire behavior, influence smoke plume trajectory, and hinder fire suppression efforts. Intense pyroCb can also inject a significant quantity of aerosol mass into the lower stratosphere. Systematic detection and monitoring of these events is important for wildfire response and aviation applications, as well as understanding climate and air quality implications. The United States Naval Research Laboratory (NRL) recently developed a near-real-time pyroCb detection algorithm using geostationary satellite observations, currently focused on GOES-West. The algorithm is tuned to the microphysics of fire-perturbed thunderstorms over elevated terrain in western North America. By incorporating reanalysis data, NRL has also developed the first observationally-based conceptual model for pyroCb development. Results are focused on 41 large wildfires observed in the United States and Canada during 2013, which produced more than 50 intense pyroCb. The majority of these develop when a layer of increased moisture content and instability is advected over a dry, deep, and unstable mixed layer, typically along the leading edge of an approaching disturbance. The upper-tropospheric dynamics and synoptic pattern must also be conducive for vertical development of convection. Mid- and upper-tropospheric conditions similar to those that produce traditional dry thunderstorms are therefore paramount for development and maintenance of pyroCb. The amount of mid-level moisture and instability required is strongly dependent on the surface elevation of the contributing fire. Surface-based fire weather indices have limited capability for predicting pyroCb development. The intense radiant heat emitted by large wildfires can serve as a potential trigger, suggesting pyroCb may develop in the absence of traditional triggering mechanisms when an otherwise favorable meteorological environment is in place. This conceptual model

  8. Testing & Evaluation of Close-Range SAR for Monitoring & Automatically Detecting Pavement Conditions

    DOT National Transportation Integrated Search

    2012-01-01

    This report summarizes activities in support of the DOT contract on Testing & Evaluating Close-Range SAR for Monitoring & Automatically Detecting Pavement Conditions & Improve Visual Inspection Procedures. The work of this project was performed by Dr...

  9. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  10. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  11. Remote monitoring and security alert based on motion detection using mobile

    NASA Astrophysics Data System (ADS)

    Suganya Devi, K.; Srinivasan, P.

    2016-03-01

    Background model does not have any robust solution and constitutes one of the main problems in surveillance systems. The aim of the paper is to provide a mobile based security to a remote monitoring system through a WAP using GSM modem. It is most designed to provide durability and versatility for a wide variety of indoor and outdoor applications. It is compatible with both narrow and band networks and provides simultaneous image detection. The communicator provides remote control, event driven recording, including pre-alarm and post-alarm and image motion detection. The web cam allowing them to be mounted either to a ceiling or wall without requiring bracket, with the use of web cam. We could continuously monitoring status in the client system through the web. If any intruder arrives in the client system, server will provide an alert to the mobile (what we are set in the message that message send to the authorized person) and the client can view the image using WAP.

  12. Early Detection Monitoring for Invasive Fish: St. Louis River (SLR) Pilot Study

    EPA Science Inventory

    Early detection of aquatic invasive species is necessary to develop and implement timely management responses. Predicting species introductions, however, is difficult and resources are typically limited. Therefore, monitoring strategies should be designed to effectively and eff...

  13. Comparative evaluation of laboratory developed real-time PCR assays and RealStar(®) BKV PCR Kit for quantitative detection of BK polyomavirus.

    PubMed

    Hasan, Mohammad R; Tan, Rusung; Al-Rawahi, Ghada; Thomas, Eva; Tilley, Peter

    2016-08-01

    Quantitative, viral load monitoring for BK virus (BKV) by real-time PCR is an important tool in the management of polyomavirus associated nephropathy in renal transplant patients. However, variability in PCR results has been reported because of polymorphisms in viral genes among different subtypes of BKV, and lack of standardization of the PCR assays among different laboratories. In this study we have compared the performance of several laboratory developed PCR assays that target highly conserved regions of BKV genome with a commercially available, RealStar(®) BKV PCR Kit. Three real-time PCR assays (i) VP1 assay: selected from the literature that targets the major capsid protein (VP1) gene (ii) VP1MOD assay: VP1 assay with a modified probe, and (iii) BKLTA assay: newly designed assay that targets the large T antigen gene were assessed in parallel, using controls and clinical specimens that were previously tested using RealStar(®) BKV PCR Kit (Altona Diagnostics GmbH, Hamburg, Germany). Nucleic acid from all samples were extracted using the QIA symphony virus/bacteria kit on an automated DNA extraction platform QIA symphony SP (Qiagen). Primer and probe concentration, and reaction conditions for laboratory developed assays were optimized and the limit of detection of different assays was determined. Positive control for laboratory developed BK assays was prepared through construction of a plasmid carrying respective amplicon sequences. The 95% detection limit of VP1, VP1MOD and BKLTA assays were 1.8×10(2), 3×10(3) and 3.5×10(2) genomic copies/ml, respectively, as determined by Probit regression analysis of data obtained by testing a dilution series of a titered patient specimen, using RealStar(®) BKV PCR Kit. The inter-assay and intra-assay, coefficient of variations of these assays using calibrated, plasmid standards were <1%. All assays, including the RealStar(®) BKV PCR assay, were highly specific when tested against a panel of external proficiency

  14. Detection of hypoglycemia with continuous interstitial and traditional blood glucose monitoring using the FreeStyle Navigator Continuous Glucose Monitoring System.

    PubMed

    McGarraugh, Geoffrey; Bergenstal, Richard

    2009-03-01

    The objective of the analysis was to compare detection of hypoglycemic episodes (glucose <70 mg/dL lasting >15 min) with the FreeStyle Navigator Continuous Glucose Monitoring System (FSN-CGM) (Abbott Diabetes Care, Alameda, CA) alarms to detection with traditional finger stick testing at an average frequency of eight tests per day. The performance of FSN-CGM alarms was evaluated in a clinic setting using 58 subjects with type 1 diabetes mellitus (T1DM) monitoring interstitial glucose concentration over a 5-day period compared to reference YSI measurements (instrument manufactured by YSI, Yellow Springs, OH) at 15-min intervals. Finger stick glucose testing was evaluated in the home environment with 91 subjects with TIDM monitoring with the blood glucose meter integrated into the FreeStyle Navigator (FSN-BG) over a 20-day period. The reference was FSN-CGM with results masked from the subjects. Blood glucose values <=85 mg/dL were considered the optimal treatment level to avoid or reverse hypoglycemia. With a threshold alarm setting of 85 mg/dL, 90.6% of hypoglycemic episodes were detected within +/- 30 min by FSN-CGM in the clinic study. When the alarm was activated, YSI glucose was <= 85 mg/dL 77.2% of the time. In the home environment, the average FSN-BG testing frequency was 7.9 tests per day. Hypoglycemia was verified within +/- 30 min by FSN-BG measurements <= 85 mg/dL at a rate of 27.5%. Even with a high rate of FSN-BG testing, hypoglycemia detected by FSN-CGM was verified by patients with T1DM very infrequently. A high rate of hypoglycemia detection with a moderate rate of unnecessary alarms can be attained using FSN-CGM.

  15. Chromatography related performance of the Monitor for Aerosols and Gases in Ambient Air (MARGA): laboratory and field based evaluation

    EPA Science Inventory

    Evaluation of the semi-continuous Monitor for Aerosols and Gases in Ambient Air (MARGA, Metrohm Applikon B.V.) was conducted with an emphasis on examination of accuracy and precision associated with processing of chromatograms. Using laboratory standards and atmospheric measureme...

  16. Regional Monitoring Plan for the Detection of Allergens in Food from Campania Region. First Year Monitoring Results

    PubMed Central

    Biondi, Loredana; Pellicanò, Roberta; Caligiuri, Vincenzo; Nava, Donatella

    2014-01-01

    Food allergens are substances able to induce an abnormal immunological response in sensitive individuals. The presence of allergens in food must be reported in tables (Directive 2003/89/EC). In this study we report the data of a monitoring plan carried out in the Campania Region during the 2012 for the detection of allergens (ovoalbumine and β-lattoglobulin) in food of different origin. The analisys were performed by means of ELISA assays. The percentage of analyzes with the presence of allegens not declared on the label is 4.3%, out of a total of 208 analyzes. It is therefore important to continue monitoring activities by the competent Authorities. PMID:27800313

  17. Not All Are Lost: Interrupted Laboratory Monitoring, Early Death, and Loss to Follow-Up (LTFU) in a Large South African Treatment Program

    PubMed Central

    Ahonkhai, Aima A.; Noubary, Farzad; Munro, Alison; Stark, Ruth; Wilke, Marisa; Freedberg, Kenneth A.; Wood, Robin; Losina, Elena

    2012-01-01

    Background Many HIV treatment programs in resource-limited settings are plagued by high rates of loss to follow-up (LTFU). Most studies have not distinguished between those who briefly interrupt, but return to care, and those more chronically lost to follow-up. Methods We conducted a retrospective cohort study of 11,397 adults initiating antiretroviral therapy (ART) in 71 Southern African Catholic Bishops Conference/Catholic Relief Services HIV treatment clinics between January 2004 and December 2008. We distinguished among patients with early death, within the first 7 months on ART; patients with interruptions in laboratory monitoring (ILM), defined as missing visits in the first 7 months on ART, but returning to care by 12 months; and those LTFU, defined as missing all follow-up visits in the first 12 months on ART. We used multilevel logistic regression models to determine patient and clinic-level characteristics associated with these outcomes. Results In the first year on ART, 60% of patients remained in care, 30% missed laboratory visits, and 10% suffered early death. Of the 3,194 patients who missed laboratory visits, 40% had ILM, resuming care by 12 months. After 12 months on ART, patients with ILM had a 30% increase in detectable viremia compared to those who remained in care. Risk of LTFU decreased with increasing enrollment year, and was lowest for patients who enrolled in 2008 compared to 2004 [OR 0.49, 95%CI 0.39–0.62]. Conclusions In a large community-based cohort in South Africa, nearly 30% of patients miss follow-up visits for CD4 monitoring in the first year after starting ART. Of those, 40% have ILM but return to clinic with worse virologic outcomes than those who remain in care. The risk of chronic LTFU decreased with enrollment year. As ART availability increases, interruptions in care may become more common, and should be accounted for in addressing program LTFU. PMID:22427925

  18. 40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Constituents for Detection Monitoring I Appendix I to Part 258 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Pt. 258, App. I Appendix I to Part 258—Constituents...

  19. 40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Constituents for Detection Monitoring I Appendix I to Part 258 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Pt. 258, App. I Appendix I to Part 258—Constituents...

  20. Alarm characterization for a continuous glucose monitor that replaces traditional blood glucose monitoring.

    PubMed

    McGarraugh, Geoffrey

    2010-01-01

    Continuous glucose monitoring (CGM) devices available in the United States are approved for use as adjuncts to self-monitoring of blood glucose (SMBG); all CGM alarms require SMBG confirmation before treatment. In this report, an analysis method is proposed to determine the CGM threshold alarm accuracy required to eliminate SMBG confirmation. The proposed method builds on the Clinical and Laboratory Standards Institute (CLSI) guideline for evaluating CGM threshold alarms using data from an in-clinic study of subjects with type 1 diabetes. The CLSI method proposes a maximum time limit of +/-30 minutes for the detection of hypo- and hyperglycemic events but does not include limits for glucose measurement accuracy. The International Standards Organization (ISO) standard for SMBG glucose measurement accuracy (ISO 15197) is +/-15 mg/dl for glucose <75 mg/dl and +/-20% for glucose > or = 75 mg/dl. This standard was combined with the CLSI method to more completely characterize the accuracy of CGM alarms. Incorporating the ISO 15197 accuracy margins, FreeStyle Navigator CGM system alarms detected 70 mg/dl hypoglycemia within 30 minutes at a rate of 70.3%, with a false alarm rate of 11.4%. The device detected high glucose in the range of 140-300 mg/dl within 30 minutes at an average rate of 99.2%, with a false alarm rate of 2.1%. Self-monitoring of blood glucose confirmation is necessary for detecting and treating hypoglycemia with the FreeStyle Navigator CGM system, but at high glucose levels, SMBG confirmation adds little incremental value to CGM alarms. 2010 Diabetes Technology Society.

  1. Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Pang, Y.; Soergel, U.

    2017-05-01

    Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.

  2. Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Jong, Jen-Yi

    1986-01-01

    An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.

  3. A practical approach to determination of laboratory GC-MS limits of detection.

    PubMed

    Underwood, P J; Kananen, G E; Armitage, E K

    1997-01-01

    Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.

  4. Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-01-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.

  5. Caged Fish Studies to Detect and Monitor Contaminants of Emerging Concern in the Great Lakes

    EPA Science Inventory

    Effects-based monitoring studies were conducted in the St. Louis Harbor, Lake Superior, in support of the Great Lakes Restoration Initiative (GLRI). The overall goal of the research was to develop and validate methods using caged fish exposures to detect and monitor contaminants...

  6. Detection and Plant Monitoring Programs: Lessons from an Intensive Survey of Asclepias meadii with Five Observers

    PubMed Central

    Alexander, Helen M.; Reed, Aaron W.; Kettle, W. Dean; Slade, Norman A.; Bodbyl Roels, Sarah A.; Collins, Cathy D.; Salisbury, Vaughn

    2012-01-01

    Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using Huggins models revealed important effects of observer, patch state (flowering/nonflowering), and patch size (number of stems) on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than nonflowering patches), the importance of our approach is the ability to quantify the magnitude of detection problems. We also evaluated the degree to which increased observer numbers improved detection: smaller groups (3–4 observers) generally found 90 – 99% of the patches found by all five people, but pairs of observers or single observers had high error and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-term monitoring study provides essential information about probabilities of detection and what factors cause plants to be missed. This information can guide development of monitoring programs. PMID:23285179

  7. Laboratory Monitoring of Patients Treated with Antihypertensive Drugs and Newly Exposed to Non Steroidal Anti-Inflammatory Drugs: A Cohort Study

    PubMed Central

    Fournier, Jean-Pascal; Lapeyre-Mestre, Maryse; Sommet, Agnès; Dupouy, Julie; Poutrain, Jean-Christophe; Montastruc, Jean-Louis

    2012-01-01

    Background Drug-Drug Interactions between Non Steroidal Anti-Inflammatory Drugs (NSAIDs) and Angiotensin Converting Enzyme Inhibitors (ACEIs), Angiotensin Receptor Blocker (ARBs) or diuretics can lead to renal failure and hyperkalemia. Thus, monitoring of serum creatinine and potassium is recommended when a first dispensing of NSAID occur in patients treated with these drugs. Methods We conducted a pharmacoepidemiological retrospective cohort study using data from the French Health Insurance Reimbursement Database to evaluate the proportion of serum creatinine and potassium laboratory monitoring in patients treated with ACEI, ARB or diuretic and receiving a first dispensing of NSAID. We described the first dispensing of NSAID among 3,500 patients of a 4-year cohort (6,633 patients treated with antihypertensive drugs) and analyzed serum creatinine and potassium laboratory monitoring within the 3 weeks after the first NSAID dispensing. Results General Practitioners were the most frequent prescribers of NSAIDs (85.5%, 95% CI: 84.3–86.6). The more commonly prescribed NSAIDs were ibuprofen (20%), ketoprofen (15%), diclofenac (15%) and piroxicam (12%). Serum creatinine and potassium monitoring was 10.7% (95% CI: 9.5–11.8) in patients treated by ACEIs, ARBs or diuretics. Overall, monitoring was more frequently performed to women aged over 60, treated with digoxin or glucose lowering drugs, but not to patients treated with ACEIs, ARBs or diuretics. Monitoring was more frequent when NSAIDs' prescribers were cardiologists or anesthesiologists. Conclusion Monitoring of serum creatinine and potassium of patients treated with ACEIs, ARBs or diuretics and receiving a first NSAID dispensing is insufficiently performed and needs to be reinforced through specific interventions. PMID:22479557

  8. Point-of-Care Detection Devices for Food Safety Monitoring: Proactive Disease Prevention.

    PubMed

    Wu, Marie Yung-Chen; Hsu, Min-Yen; Chen, Shih-Jen; Hwang, De-Kuang; Yen, Tzung-Hai; Cheng, Chao-Min

    2017-04-01

    Food safety has become an increasingly significant public concern in both developed and under-developed nations around the world; it increases morbidity, mortality, human suffering, and economic burden. This Opinion focuses on (i) examining the influence of pathogens and chemicals (e.g., food additives and pesticide residue) on food-borne illnesses, (ii) summarizing food hazards that are present in Asia, and (iii) summarizing the array of current point-of-care (POC) detection devices that have potential applications in food safety monitoring. In addition, we provide insight into global healthcare issues in both developing and under-developed nations with a focus on bridging the gap between food safety issues in the public sector (associated with relevant clinical cases) and the use of POC detection devices for food safety monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Water quality real-time monitoring system via biological detection based on video analysis

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Fei, Yuan

    2017-11-01

    With the development of society, water pollution has become the most serious problem in China. Therefore, real-time water quality monitoring is an important part of human activities and water pollution prevention. In this paper, the behavior of zebrafish was monitored by computer vision. Firstly, the moving target was extracted by the method of saliency detection, and tracked by fitting the ellipse model. Then the motion parameters were extracted by optical flow method, and the data were monitored in real time by means of Hinkley warning and threshold warning. We achieved classification warning through a number of dimensions by comprehensive toxicity index. The experimental results show that the system can achieve more accurate real-time monitoring.

  10. Scanning seismic intrusion detection method and apparatus. [monitoring unwanted subterranean entry and departure

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1983-01-01

    An intrusion monitoring system includes an array of seismic sensors, such as geophones, arranged along a perimeter to be monitored for unauthorized intrusion as by surface movement or tunneling. Two wires lead from each sensor to a central monitoring station. The central monitoring station has three modes of operation. In a first mode of operation, the output of all of the seismic sensors is summed into a receiver for amplification and detection. When the amplitude of the summed signals exceeds a certain predetermined threshold value an alarm is sounded. In a second mode of operation, the individual output signals from the sensors are multiplexed into the receiver for sequentially interrogating each of the sensors.

  11. Establishment of Next-Generation Neurosurgery Research and Training Laboratory with Integrated Human Performance Monitoring.

    PubMed

    Bernardo, Antonio

    2017-10-01

    Quality of neurosurgical care and patient outcomes are inextricably linked to surgical and technical proficiency and a thorough working knowledge of microsurgical anatomy. Neurosurgical laboratory-based cadaveric training is essential for the development and refinement of technical skills before their use on a living patient. Recent biotechnological advances including 3-dimensional (3D) microscopy and endoscopy, 3D printing, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging have proved to reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills in neurosurgical training. Until recently, few means have allowed surgeons to obtain integrated surgical and technological training in an operating room setting. We report on a new model, currently in use at our institution, for technologically integrated surgical training and innovation using a next-generation microneurosurgery skull base laboratory designed to recreate the setting of a working operating room. Each workstation is equipped with a 3D surgical microscope, 3D endoscope, surgical drills, operating table with a Mayfield head holder, and a complete set of microsurgical tools. The laboratory also houses a neuronavigation system, a surgical robotic, a surgical planning system, 3D visualization, virtual reality, and computerized simulation for training of surgical procedures and visuospatial skills. In addition, the laboratory is equipped with neurophysiological monitoring equipment in order to conduct research into human factors in surgery and the respective roles of workload and fatigue on surgeons' performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Use of sulfur hexafluoride airflow studies to determine the appropriate number and placement of air monitors in an alpha inhalation exposure laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, G.J.; Hoover, M.D.

    1995-12-01

    Determination of the appropriate number and placement of air monitors in the workplace is quite subjective and is generally one of the more difficult tasks in radiation protection. General guidance for determining the number and placement of air sampling and monitoring instruments has been provided by technical reports such as Mishima, J. These two documents and other published guidelines suggest that some insight into sampler placement can be obtained by conducting airflow studies involving the dilution and clearance of the relatively inert tracer gas sulfur hexafluoride (SF{sub 6}) in sampler placement studies and describes the results of a study donemore » within the ITRI alpha inhalation exposure laboratories. The objectives of the study were to document an appropriate method for conducting SF{sub 6} dispersion studies, and to confirm the appropriate number and placement of air monitors and air samplers within a typical ITRI inhalation exposure laboratory. The results of this study have become part of the technical bases for air sampling and monitoring in the test room.« less

  13. Monitoring laboratory data across manufacturers and laboratories--A prerequisite to make "Big Data" work.

    PubMed

    Goossens, Kenneth; Van Uytfanghe, Katleen; Twomey, Patrick J; Thienpont, Linda M

    2015-05-20

    "The Percentiler" project provides quasi real-time access to patient medians across laboratories and manufacturers. This data can serve as "clearinghouse" for electronic health record applications, e.g., use of laboratory data for global health-care research. Participants send their daily outpatient medians to the Percentiler application. After 6 to 8weeks, the laboratory receives its login information, which gives access to the user interface. Data is assessed by peer group, i.e., 10 or more laboratories using the same test system. Participation is free of charge. Participation is global with, to date, >120 laboratories and >250 instruments. Up to now, several reports have been produced that address i) the general features of the project, ii) peer group observations; iii) synergisms between "The Percentiler" and dedicated external quality assessment surveys. Reasons for long-term instability and bias (calibration- or lot-effects) have been observed for the individual laboratory and manufacturers. "The Percentiler" project has the potential to build a continuous, global evidence base on in vitro diagnostic test comparability and stability. As such, it may be beneficial for all stakeholders and, in particular, the patient. The medical laboratory is empowered for contributing to the development, implementation, and management of global health-care policies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The value of point-of-care CD4+ and laboratory viral load in tailoring antiretroviral therapy monitoring strategies to resource limitations.

    PubMed

    Hyle, Emily P; Jani, Ilesh V; Rosettie, Katherine L; Wood, Robin; Osher, Benjamin; Resch, Stephen; Pei, Pamela P; Maggiore, Paolo; Freedberg, Kenneth A; Peter, Trevor; Parker, Robert A; Walensky, Rochelle P

    2017-09-24

    To examine the clinical and economic value of point-of-care CD4 (POC-CD4) or viral load monitoring compared with current practices in Mozambique, a country representative of the diverse resource limitations encountered by HIV treatment programs in sub-Saharan Africa. We use the Cost-Effectiveness of Preventing AIDS Complications-International model to examine the clinical impact, cost (2014 US$), and incremental cost-effectiveness ratio [$/year of life saved (YLS)] of ART monitoring strategies in Mozambique. We compare: monitoring for clinical disease progression [clinical ART monitoring strategy (CLIN)] vs. annual POC-CD4 in rural settings without laboratory services and biannual laboratory CD4 (LAB-CD4), biannual POC-CD4, and annual viral load in urban settings with laboratory services. We examine the impact of a range of values in sensitivity analyses, using Mozambique's 2014 per capita gross domestic product ($620) as a benchmark cost-effectiveness threshold. In rural settings, annual POC-CD4 compared to CLIN improves life expectancy by 2.8 years, reduces time on failed ART by 0.6 years, and yields an incremental cost-effectiveness ratio of $480/YLS. In urban settings, biannual POC-CD4 is more expensive and less effective than viral load. Compared to biannual LAB-CD4, viral load improves life expectancy by 0.6 years, reduces time on failed ART by 1.0 year, and is cost-effective ($440/YLS). In rural settings, annual POC-CD4 improves clinical outcomes and is cost-effective compared to CLIN. In urban settings, viral load has the greatest clinical benefit and is cost-effective compared to biannual POC-CD4 or LAB-CD4. Tailoring ART monitoring strategies to specific settings with different available resources can improve clinical outcomes while remaining economically efficient.

  15. The Value of Ultrasound Monitoring of Adnexal Masses for Early Detection of Ovarian Cancer

    PubMed Central

    Suh-Burgmann, Elizabeth; Kinney, Walter

    2016-01-01

    Although ultrasound has so far been found to be ineffective as a screening tool for ovarian cancer, it is commonly used as a means of evaluating or following ovarian or adnexal masses once they are detected. We review the use of serial ultrasound for the management of adnexal masses and propose an approach to monitoring based on an understanding of the overall risk of cancer among the population in question and an assessment of how the potential benefit of monitoring compares with potential risk. In our approach, masses that are symptomatic, large (>10 cm), associated with an elevated CA 125 level or overt signs of malignancy, or that are determined to have a worrisome appearance by stringent ultrasound criteria should be evaluated surgically. Women with masses that have none of these characteristics should be offered monitoring. Short-term initial ultrasound monitoring carries significant potential benefit in terms of aiding detection of early malignancy and avoidance of unnecessary surgery. However, if a mass remains stable but persistent, the potential benefit of ongoing monitoring wanes with time, whereas the potential harms, in terms of patient anxiety, cost, and the risk of incidental findings and unnecessary surgery increase. Therefore, monitoring of stable lesions should be limited in duration in order to limit potential harms from overtreatment and overdiagnosis. PMID:26904503

  16. Transmission of a Viral Disease (AIDS) Detected by a Modified ELISA Reaction: A Laboratory Simulation.

    ERIC Educational Resources Information Center

    Grimes, William J.; Chambers, Linda; Kubo, Kenneth M.; Narro, Martha L.

    1998-01-01

    Describes a laboratory exercise that simulates the spread of an infectious agent among students in a classroom. Uses a modified Enzyme Linked ImmunoSorbent Assay (ELISA) to provide students with experience using an authentic diagnostic tool for detecting human infections. (DDR)

  17. Generic protease detection technology for monitoring periodontal disease.

    PubMed

    Zheng, Xinwei; Cook, Joseph P; Watkinson, Michael; Yang, Shoufeng; Douglas, Ian; Rawlinson, Andrew; Krause, Steffi

    2011-01-01

    Periodontal diseases are inflammatory conditions that affect the supporting tissues of teeth and can lead to destruction of the bone support and ultimately tooth loss if untreated. Progression of periodontitis is usually site specific but not uniform, and currently there are no accurate clinical methods for distinguishing sites where there is active disease progression from sites that are quiescent. Consequently, unnecessary and costly treatment of periodontal sites that are not progressing may occur. Three proteases have been identified as suitable markers for distinguishing sites with active disease progression and quiescent sites: human neutrophil elastase, cathepsin G and MMP8. Generic sensor materials for the detection of these three proteases have been developed based on thin dextran hydrogel films cross-linked with peptides. Degradation of the hydrogel films was monitored using impedance measurements. The target proteases were detected in the clinically relevant range within a time frame of 3 min. Good specificity for different proteases was achieved by choosing appropriate peptide cross-linkers.

  18. Interstellar and Planetary Analogs in the Laboratory

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  19. An evaluation of the effects of high visual taskload on the separate behaviors involved in complex monitoring performance.

    DOT National Transportation Integrated Search

    1988-01-01

    Operational monitoring situations, in contrast to typical laboratory vigilance tasks, generally involve more than just stimulus detection and recognition. They frequently involve complex multidimensional discriminations, interpretations of significan...

  20. A Distance Measure for Attention Focusing and Anaomaly Detection in Systems Monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, R. J.

    1994-01-01

    Any attempt to introduce automation into the monitoring of complex physical systems must start from a robust anomaly detection capability. This task is far from straightforward, for a single definition of what constitutes an anomaly is difficult to come by.

  1. Real-Time Event Detection for Monitoring Natural and Source Waterways - Sacramento, CA

    EPA Science Inventory

    The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitori...

  2. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 77 FR 22282 - Draft Guidelines on Biologics Quality Monitoring: Testing for the Detection of Mycoplasma...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ...] Draft Guidelines on Biologics Quality Monitoring: Testing for the Detection of Mycoplasma Contamination... Detection of Mycoplasma Contamination.'' This draft guideline identifies stages of manufacture where... contamination. Because the guidelines apply to final product and master seed/cell testing in veterinary vaccines...

  4. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  5. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is tomore » provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  6. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as

  7. Low-background gamma-ray spectrometry for the international monitoring system

    DOE PAGES

    Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...

    2016-12-28

    PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

  8. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    NASA Astrophysics Data System (ADS)

    Harrild, M.; Webley, P.; Dehn, J.

    2014-12-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  9. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    NASA Astrophysics Data System (ADS)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  10. OMCat: Catalogue of Serendipitous Sources Detected with the XMM-Newton Optical Monitor

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Harrus, Ilana; McGlynn, Thomas A.; Mushotsky, Richard F.; Snowden, Steven L.

    2007-01-01

    The Optical Monitor Catalogue of serendipitous sources (OMCat) contains entries for every source detected in the publically available XMM-Newton Optical Monitor (OM) images taken in either the imaging or "fast" modes. Since the OM records data simultaneously with the X-ray telescopes on XMM-Newton, it typically produces images in one or more near-UV/optical bands for every pointing of the observatory. As of the beginning of 2006, the public archive had covered roughly 0.5% of the sky in 2950 fields. The OMCat is not dominated by sources previously undetected at other wavelengths; the bulk of objects have optical counterparts. However, the OMCat can be used to extend optical or X-ray spectral energy distributions for known objects into the ultraviolet, to study at higher angular resolution objects detected with GALEX, or to find high-Galactic-latitude objects of interest for UV spectroscopy.

  11. Laboratory database population surveillance to improve detection of progressive chronic kidney disease.

    PubMed

    Kennedy, David M; Chatha, Kamaljit; Rayner, Hugh C

    2013-09-01

    Some patients with chronic kidney disease are still referred late for specialist care despite the evidence that earlier detection and intervention can halt or delay progression to end-stage kidney disease (ESKD). To develop a population surveillance system using existing laboratory data to enable early detection of patients at high risk of ESKD by reviewing cumulative graphs of estimated glomerular filtration rate (eGFR). A database was developed, updated daily with data from the laboratory computer. Cumulative eGFR graphs containing up to five years of data are reviewed by clinical scientists for all primary care patients or out-patients with a low eGFR for their age. For those with a declining trend, a report containing the eGFR graph is sent to the requesting doctor. A retrospective audit was performed using historical data to assess the predictive value of the graphs. In nine months, we reported 370,000 eGFR results, reviewing 12,000 eGFR graphs. On average 60 graphs per week were flagged as 'high' or 'intermediate' risk. Patients with graphs flagged as high risk had a significantly higher mortality after 3.5 years and a significantly greater chance of requiring renal replacement therapy after 4.5 years of follow-up. Five patients (7%) with graphs flagged as high risk had a sustained >25% fall in eGFR without evidence of secondary care referral. Feedback about the service from requesting clinicians was 73% positive. We have developed a system for laboratory staff to review cumulative eGFR graphs for a large population and identify patients at highest risk of developing ESKD. Further research is needed to measure the impact of this service on patient outcomes. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  12. External detection and localization of well leaks in aquifer zones

    NASA Astrophysics Data System (ADS)

    Haas, Allan K.

    This dissertation presents a new methodology for monitoring, detecting, and localizing shallow, aquifer zone leaks in oil and gas wells. The rationale for this type of leak detection is to close the knowledge gap associated with public claims of subsurface water resource contamination caused by the oil and gas industry. A knowledge gap exists because there is no data, one way or the other, that can definitively prove or deny the existence of subsurface leakage pathways in oil and gas wells, new, old or abandoned. This dissertation begins with an overview of existing and future oil and gas well leak detection methods, and then presents three published papers, each describing a different phenomena that can be exploited for leak monitoring, detection, localization, and damage extent determination. The first paper describes the direct detection and localization of a leak that was discovered during a laboratory based hydraulic fracturing experiment. The second paper describes the laboratory measured electrical response that occurs during two phase flow inside of porous media. The third paper describes the detection and tracking of a gravity driven salt plume leak in a freshwater test tank in the laboratory. the three geophysical approaches that are presented, when combined together, provide a new, powerful, external to the well method to monitor, detect, localize, and assess the damage from leaks in the drinking water protection zone of oil and gas wells. This is a capability that is not available in any other leak detection and localization method. This dissertation also presents a chapter of Science, Technology and Society (STS), and Science, and Technology Policy (STP) as a final fulfillment requirement of the SmartGeo Fellowship program, and the Science, Technology, Engineering, and Policy minor. This chapter introduces a new STS/STP concept concerning the after effects of knowledge boundary disputes. This new concept is called the residual footprints of knowledge

  13. Automatic crack detection and classification method for subway tunnel safety monitoring.

    PubMed

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-10-16

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  14. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-01-01

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337

  15. Unobtrusive Detection of Mild Cognitive Impairment in Older Adults Through Home Monitoring*

    PubMed Central

    Akl, Ahmad; Snoek, Jasper; Mihailidis, Alex

    2016-01-01

    The early detection of dementias such as Alzheimer’s disease can in some cases reverse, stop or slow cognitive decline and in general greatly reduce the burden of care. This is of increasing significance as demographic studies are warning of an aging population in North America and worldwide. Various smart homes and systems have been developed to detect cognitive decline through continuous monitoring of high risk individuals. However, the majority of these smart homes and systems use a number of predefined heuristics to detect changes in cognition, which has been demonstrated to focus on the idiosyncratic nuances of the individual subjects and thus does not generalize. In this paper, we address this problem by building generalized linear models of home activity of subjects monitored using unobtrusive sensing technologies. We use inhomogenous Poisson processes to model the presence of subjects within different rooms throughout the day. We employ an information theoretic approach to compare the activity distributions learned, and we observe significant statistical differences between the cognitively intact and impaired subjects. Using a simple thresholding approach, we were able to detect mild cognitive impairment in older adults with an average area under the ROC curve of 0.716 and an average area under the precision-recall curve of 0.706 using distributions estimated over time windows of 12 weeks. PMID:26841424

  16. Unobtrusive Detection of Mild Cognitive Impairment in Older Adults Through Home Monitoring.

    PubMed

    Akl, Ahmad; Snoek, Jasper; Mihailidis, Alex

    2017-03-01

    The early detection of dementias such as Alzheimer's disease can in some cases reverse, stop, or slow cognitive decline and in general greatly reduce the burden of care. This is of increasing significance as demographic studies are warning of an aging population in North America and worldwide. Various smart homes and systems have been developed to detect cognitive decline through continuous monitoring of high risk individuals. However, the majority of these smart homes and systems use a number of predefined heuristics to detect changes in cognition, which has been demonstrated to focus on the idiosyncratic nuances of the individual subjects, and thus, does not generalize. In this paper, we address this problem by building generalized linear models of home activity of older adults monitored using unobtrusive sensing technologies. We use inhomogenous Poisson processes to model the presence of the recruited older adults within different rooms throughout the day. We employ an information theoretic approach to compare the generalized linear models learned, and we observe significant statistical differences between the cognitively intact and impaired older adults. Using a simple thresholding approach, we were able to detect mild cognitive impairment in older adults with an average area under the ROC curve of 0.716 and an average area under the precision-recall curve of 0.706 using activity models estimated over a time window of 12 weeks.

  17. Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.

    2012-01-01

    The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.

  18. Ring trial 2016 for Bluetongue virus detection by real-time RT-PCR in France.

    PubMed

    Sailleau, Corinne; Viarouge, Cyril; Breard, Emmanuel; Vitour, Damien; Zientara, Stephan

    2017-05-01

    Since the unexpected emergence of BTV-8 in Northern Europe and the incursion of BTV-8 and 1 in France in 2006-2007, molecular diagnosis has considerably evolved. Several real-time RT-PCR (rtRT-PCR) methods have been developed and published, and are currently being used in many countries across Europe for BTV detection and typing. In France, the national reference laboratory (NRL) for orbiviruses develops and validates 'ready-to-use' kits with private companies for viral RNA detection. The regional laboratories network that was set up to deal with a heavy demand for analyses has used these available kits. From 2007, ring tests were organized to monitor the performance of the French laboratories. This study presents the results of 63 regional laboratories in the ring trial organized in 2016. Blood samples were sent to the laboratories. Participants were asked to use the rtRT-PCR methods in place in their laboratory, for detection of all BTV serotypes and specifically BTV-8. The French regional laboratories are able to detect and genotype BTV in affected animals. Despite the use of several methods (i.e. RNA extraction and different commercial rtRT-PCRs), the network is homogeneous. The ring trial demonstrated that the French regional veterinary laboratories have reliable and robust BTV diagnostic tools for BTV genome detection.

  19. Insertable cardiac monitors in the diagnosis of syncope and the detection of atrial fibrillation: A systematic review and meta-analysis.

    PubMed

    Burkowitz, Jörg; Merzenich, Carina; Grassme, Kathrin; Brüggenjürgen, Bernd

    2016-08-01

    Insertable or implantable cardiac monitors (ICMs) continuously monitor the heart rhythm and record irregularities over 3 years, enabling the diagnosis of infrequent rhythm abnormalities associated with syncope and stroke. The enhanced recognition capabilities of recent ICM models are able to accurately detect atrial fibrillation (AF) and have led to new applications of ICMs for the detection and monitoring of AF. Based on a systematic literature search, two indications were identified for ICMs for which considerable evidence, including randomized studies, exists: diagnosing the underlying cardiac cause of unexplained recurrent syncope and detecting AF in patients after cryptogenic stroke (CS). Three randomized controlled trials (RCTs) were identified that compared the effectiveness of ICMs in diagnosing patients with unexplained syncope (n = 556) to standard of care. A meta-analysis was conducted in order to generate an overall effect size and confidence interval of the diagnostic yield of ICMs versus conventional monitoring. In the indication CS, one RCT and five observational studies were included in order to assess the performance of ICMs in diagnosing patients with AF (n = 1129). Based on these studies, there is strong evidence that ICMs provide a higher diagnostic yield for detecting arrhythmias in patients with unexplained syncope and for detection of AF in patients after CS compared to conventional monitoring. Prolonged monitoring with ICMs is an effective tool for diagnosing the underlying cardiac cause of unexplained syncope and for detecting AF in patients with CS. In all RCTs, ICMs have a superior diagnostic yield compared to conventional monitoring. © The European Society of Cardiology 2016.

  20. Fiber-optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  1. Fiber optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  2. Detection of emetic activity in the cat by monitoring venous pressure and audio signals

    NASA Technical Reports Server (NTRS)

    Nagahara, A.; Fox, Robert A.; Daunton, Nancy G.; Elfar, S.

    1991-01-01

    To investigate the use of audio signals as a simple, noninvasive measure of emetic activity, the relationship between the somatic events and sounds associated with retching and vomiting was studied. Thoracic venous pressure obtained from an implanted external jugular catheter was shown to provide a precise measure of the somatic events associated with retching and vomiting. Changes in thoracic venous pressure monitored through an indwelling external jugular catheter with audio signals, obtained from a microphone located above the animal in a test chamber, were compared. In addition, two independent observers visually monitored emetic episodes. Retching and vomiting were induced by injection of xylazine (0.66mg/kg s.c.), or by motion. A unique audio signal at a frequency of approximately 250 Hz is produced at the time of the negative thoracic venous pressure change associated with retching. Sounds with higher frequencies (around 2500 Hz) occur in conjunction with the positive pressure changes associated with vomiting. These specific signals could be discriminated reliably by individuals reviewing the audio recordings of the sessions. Retching and those emetic episodes associated with positive venous pressure changes were detected accurately by audio monitoring, with 90 percent of retches and 100 percent of emetic episodes correctly identified. Retching was detected more accurately (p is less than .05) by audio monitoring than by direct visual observation. However, with visual observation a few incidents in which stomach contents were expelled in the absence of positive pressure changes or detectable sounds were identified. These data suggest that in emetic situations, the expulsion of stomach contents may be accomplished by more than one neuromuscular system and that audio signals can be used to detect emetic episodes associated with thoracic venous pressure changes.

  3. Randomized trial of the ForeseeHome monitoring device for early detection of neovascular age-related macular degeneration. The HOme Monitoring of the Eye (HOME) study design - HOME Study report number 1.

    PubMed

    Chew, Emily Y; Clemons, Traci E; Bressler, Susan B; Elman, Michael J; Danis, Ronald P; Domalpally, Amitha; Heier, Jeffrey S; Kim, Judy E; Garfinkel, Richard A

    2014-03-01

    To evaluate the effects of a home-monitoring device with tele-monitoring compared with standard care in detection of progression to choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD), the leading cause of blindness in the US. Participants, aged 55 to 90 years, at high risk of developing CNV associated with AMD were recruited to the HOme Monitoring of Eye (HOME) Study, an unmasked, multi-center, randomized trial of the ForeseeHome (FH) device plus standard care vs. standard care alone. The FH device utilizes preferential hyperacuity perimetry and tele-monitoring to detect changes in vision function associated with development of CNV, potentially prior to symptom and visual acuity loss. After establishing baseline measurements, subsequent changes on follow-up are detected by the device, causing the monitoring center to alert the clinical center to recall participants for an exam. Standard care consists of instructions for self-monitoring visual changes with subsequent self-report to the clinical center. The primary objective of this study is to determine whether home monitoring plus standard care in comparison with standard care alone, results in earlier detection of incident CNV with better present visual acuity. The primary outcome is the decline in visual acuity at CNV diagnosis from baseline. Detection of CNV prior to substantial vision loss is critical as vision outcome following anti-angiogenic therapy is dependent on the visual acuity at initiation of treatment. HOME Study is the first large scale study to test the use of home tele-monitoring system in the management of AMD patients. Published by Elsevier Inc.

  4. A laboratory validation study of the time-lapse oscillatory pumping test concept for leakage detection in geological repositories

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Islam, A.; Lu, J.

    2017-12-01

    Time-lapse oscillatory pumping test (OPT) has been introduced recently as a pressure-based monitoring technique for detecting potential leakage in geologic repositories. By routinely conducting OPT at a number of pulsing frequencies, a site operator may identify the potential anomalies in the frequency domain, alleviating the ambiguity caused by reservoir noise and improving the signal-to-noise ratio. Building on previous theoretical and field studies, this work performed a series of laboratory experiments to validate the concept of time-lapse OPT using a custom made, stainless steel tank under relatively high pressures ( 120psi). The experimental configuration simulates a miniature geologic storage repository consisting of three layers (i.e., injection zone, caprock, and above-zone aquifer). Results show that leakage in the injection zone led to deviations in the power spectrum of observed pressure data, and the amplitude of which also increases with decreasing pulsing frequencies. The experimental results were further analyzed by developing a 3D flow model, using which the model parameters were estimated through frequency domain inversion.

  5. Long Distance Reactor Antineutrino Flux Monitoring

    NASA Astrophysics Data System (ADS)

    Dazeley, Steven; Bergevin, Marc; Bernstein, Adam

    2015-10-01

    The feasibility of antineutrino detection as an unambiguous and unshieldable way to detect the presence of distant nuclear reactors has been studied. While KamLAND provided a proof of concept for long distance antineutrino detection, the feasibility of detecting single reactors at distances greater than 100 km has not yet been established. Even larger detectors than KamLAND would be required for such a project. Considerations such as light attenuation, environmental impact and cost, which favor water as a detection medium, become more important as detectors get larger. We have studied both the sensitivity of water based detection media as a monitoring tool, and the scientific impact such detectors might provide. A next generation water based detector may be able to contribute to important questions in neutrino physics, such as supernova neutrinos, sterile neutrino oscillations, and non standard electroweak interactions (using a nearby compact accelerator source), while also providing a highly sensitive, and inherently unshieldable reactor monitoring tool to the non proliferation community. In this talk I will present the predicted performance of an experimental non proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674192.

  6. Cassette bacteria detection system. [for monitoring the sterility of regenerated water in spacecraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, fabrication, and testing of an automatic bacteria detection system, with a zero-g capability, based on the filter-capable approach, and intended for monitoring the sterility of regenerated water in spacecraft is discussed. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins on a luminol-hydrogen peroxide mixture. Viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. High signals for the incubated water sample indicate the presence of viable organisms.

  7. Monitoring of Recommended Metabolic Laboratory Parameters Among Medicaid Recipients on Second-Generation Antipsychotics in Federally Qualified Health Centers.

    PubMed

    Uzal, Natalia E; Chavez, Benjamin; Kosirog, Emily R; Billups, Sarah J; Saseen, Joseph J

    2018-02-01

    In 2004, a consensus statement outlining recommended metabolic monitoring for patients prescribed second-generation antipsychotics (SGAs) was published. More than a decade later, suboptimal adherence rates to these recommendations continue to be reported, which could lead to long-term and costly complications. To define the prevalence of appropriately monitored Medicaid patients receiving care at federally qualified health centers (FQHCs) prescribed SGAs. This was a retrospective study examining electronic health record and Medicaid claims data to assess the rates of glucose and lipid monitoring for patients prescribed SGAs from January 2014 to August 2016 in a FQHC. Prescription and laboratory claims for patients receiving care at 4 FQHCs were reviewed. Descriptive statistics were used to evaluate the primary outcome. A total of 235 patients were included in the analysis. Patients initiated on SGA therapy (n = 92) had baseline glucose and lipid monitoring rates of 50% and 23%, respectively. The 3-month monitoring rates were 37% for glucose and 26% for lipids, whereas annual rates were 71% and 40%, respectively. Patients continuing SGA therapy (n = 143) had annual glucose and lipid monitoring rates of 67% and 44%. Medicaid patients at FQHCs initially prescribed SGAs have low baseline and 3-month metabolic monitoring, whereas annual monitoring was comparable to previously published studies. Adults receiving chronic care at a FQHC were more likely to receive glucose monitoring. Those with type 2 diabetes mellitus and/or hyperlipidemia were more likely to receive glucose and lipid monitoring.

  8. Mountain pine beetle detection and monitoring: evaluation of airborne imagery

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Bone, C.; Dragicevic, S.; Ettya, A.; Northrup, J.; Reich, R.

    2007-10-01

    The processing and evaluation of digital airborne imagery for detection, monitoring and modeling of mountain pine beetle (MPB) infestations is evaluated. The most efficient and reliable remote sensing strategy for identification and mapping of infestation stages ("current" to "red" to "grey" attack) of MPB in lodgepole pine forests is determined for the most practical and cost effective procedures. This research was planned to specifically enhance knowledge by determining the remote sensing imaging systems and analytical procedures that optimize resource management for this critical forest health problem. Within the context of this study, airborne remote sensing of forest environments for forest health determinations (MPB) is most suitably undertaken using multispectral digitally converted imagery (aerial photography) at scales of 1:8000 for early detection of current MPB attack and 1:16000 for mapping and sequential monitoring of red and grey attack. Digital conversion should be undertaken at 10 to 16 microns for B&W multispectral imagery and 16 to 24 microns for colour and colour infrared imagery. From an "operational" perspective, the use of twin mapping-cameras with colour and B&W or colour infrared film will provide the best approximation of multispectral digital imagery with near comparable performance in a competitive private sector context (open bidding).

  9. The Geothermic Fatigue Hydraulic Fracturing Experiment in Äspö Hard Rock Laboratory, Sweden: New Insights Into Fracture Process through In-situ AE Monitoring

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Plenkers, K.; Zang, A.; Stephansson, O.; Stenberg, L.

    2016-12-01

    The geothermic Fatigue Hydraulic Fracturing (FHF) in situ experiment (Nova project 54-14-1) took place in the Äspö Hard Rock Laboratory/Sweden in a 1.8 Ma old granitic to dioritic rock mass. The experiment aims at optimizing geothermal heat exchange in crystalline rock mass by multistage hydraulic fracturing at 10 m scale. Six fractures are driven by three different water injection schemes (continuous, cyclic, pulse pressurization) inside a 28 m long, horizontal borehole at depth level 410 m. The rock volume subject to hydraulic fracturing and monitored by three different networks with acoustic emission (AE), micro-seismicity and electromagnetic sensors is about 30 m x 30 m x 30 m in size. The 16-channel In-situ AE monitoring network by GMuG monitored the rupture generation and propagation in the frequency range 1000 Hz to 100,000 Hz corresponding to rupture dimensions from cm- to dm-scale. The in-situ AE monitoring system detected and analyzed AE activity in-situ (P- and S-wave picking, localization). The results were used to review the ongoing microfracturing activity in near real-time. The in-situ AE monitoring network successfully recorded and localized 196 seismic events for most, but not all, hydraulic fractures. All AE events detected in-situ occurred during fracturing time periods. The source parameters (fracture sizes, moment magnitudes, static stress drop) of AE events framing injection periods were calculated using the combined spectral fitting/spectra ratio techniques. The AE activity is clustered in space and clearly outline the fractures location, its orientation, and expansion as well as their temporal evolution. The outward migration of AE events away from the borehole is observed. Fractures extend up to 7 m from the injection interval in the horizontal borehole. The fractures orientation and location correlate for most fractures roughly with the results gained by image packer. Clear differences in seismic response between hydraulic fractures in

  10. Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The

  11. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.

  12. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    PubMed Central

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464

  13. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    PubMed

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  14. Laboratory activities involving transmissible spongiform encephalopathy causing agents

    PubMed Central

    Leunda, Amaya; Van Vaerenbergh, Bernadette; Baldo, Aline; Roels, Stefan; Herman, Philippe

    2013-01-01

    Since the appearance in 1986 of epidemic of bovine spongiform encephalopathy (BSE), a new form of neurological disease in cattle which also affected human beings, many diagnostic and research activities have been performed to develop detection and therapeutic tools. A lot of progress was made in better identifying, understanding and controlling the spread of the disease by appropriate monitoring and control programs in European countries. This paper reviews the recent knowledge on pathogenesis, transmission and persistence outside the host of prion, the causative agent of transmissible spongiform encephalopathies (TSE) in mammals with a particular focus on risk (re)assessment and management of biosafety measures to be implemented in diagnostic and research laboratories in Belgium. Also, in response to the need of an increasing number of European diagnostic laboratories stopping TSE diagnosis due to a decreasing number of TSE cases reported in the last years, decontamination procedures and a protocol for decommissioning TSE diagnostic laboratories is proposed. PMID:24055928

  15. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  16. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  17. Factors influencing detection of the federally endangered Diamond Darter Crystallaria cincotta: Implications for long-term monitoring strategies

    USGS Publications Warehouse

    Rizzo, Austin A.; Brown, Donald J.; Welsh, Stuart A.; Thompson, Patricia A.

    2017-01-01

    Population monitoring is an essential component of endangered species recovery programs. The federally endangered Diamond Darter Crystallaria cincotta is in need of an effective monitoring design to improve our understanding of its distribution and track population trends. Because of their small size, cryptic coloration, and nocturnal behavior, along with limitations associated with current sampling methods, individuals are difficult to detect at known occupied sites. Therefore, research is needed to determine if survey efforts can be improved by increasing probability of individual detection. The primary objective of this study was to determine if there are seasonal and diel patterns in Diamond Darter detectability during population surveys. In addition to temporal factors, we also assessed five habitat variables that might influence individual detection. We used N-mixture models to estimate site abundances and relationships between covariates and individual detectability and ranked models using Akaike's information criteria. During 2015 three known occupied sites were sampled 15 times each between May and Oct. The best supported model included water temperature as a quadratic function influencing individual detectability, with temperatures around 22 C resulting in the highest detection probability. Detection probability when surveying at the optimal temperature was approximately 6% and 7.5% greater than when surveying at 16 C and 29 C, respectively. Time of Night and day of year were not strong predictors of Diamond Darter detectability. The results of this study will allow researchers and agencies to maximize detection probability when surveying populations, resulting in greater monitoring efficiency and likely more precise abundance estimates.

  18. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.

    PubMed

    Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe

    2014-01-01

    As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space.

  19. Detection and localization capability of an urban seismic sinkhole monitoring network

    NASA Astrophysics Data System (ADS)

    Becker, Dirk; Dahm, Torsten; Schneider, Fabian

    2017-04-01

    Microseismic events linked to underground processes in sinkhole areas might serve as precursors to larger mass dislocation or rupture events which can cause felt ground shaking or even structural damage. To identify these weak and shallow events, a sensitive local seismic monitoring network is needed. In case of an urban environment the performance of local monitoring networks is severely compromised by the high anthropogenic noise level. We study the detection and localization capability of such a network, which is already partly installed in the urban area of the city of Hamburg, Germany, within the joint project SIMULTAN (http://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/simultan/). SIMULTAN aims to monitor a known sinkhole structure and gain a better understanding of the underlying processes. The current network consists of six surface stations installed in the basement of private houses and underground structures of a research facility (DESY - Deutsches Elektronen Synchrotron). During the started monitoring campaign since 2015, no microseismic events could be unambiguously attributed to the sinkholes. To estimate the detection and location capability of the network, we calculate synthetic waveforms based on the location and mechanism of former events in the area. These waveforms are combined with the recorded urban seismic noise at the station sites. As detection algorithms a simple STA/LTA trigger and a more sophisticated phase detector are used. While the STA/LTA detector delivers stable results and is able to detect events with a moment magnitude as low as 0.35 at a distance of 1.3km from the source even under the present high noise conditions the phase detector is more sensitive but also less stable. It should be stressed that due to the local near surface conditions of the wave propagation the detections are generally performed on S- or surface waves and not on P-waves, which have a significantly lower amplitude. Due to the often

  20. Development of a novel optical remote sensing monitor for fenceline monitoring and enhancement of existing leak detection and repair programs

    EPA Science Inventory

    Manual leak detection and repair (LDAR) programs are currently implemented on a regular basis at refinery sites to limit fugitive emissions of volatile organic compounds (VOC). However, LDAR surveys can be time-consuming and are not always cost-effective. Fence line monitoring of...

  1. A laser profilometry technique for monitoring fluvial dike breaching in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Dewals, Benjamin; Rifai, Ismail; Erpicum, Sébastien; Archambeau, Pierre; Violeau, Damien; Pirotton, Michel; El kadi Abderrezzak, Kamal

    2017-04-01

    A challenging aspect for experimental modelling of fluvial dike breaching is the continuous monitoring of the transient breach geometry. In dam breaching cases induced by flow overtopping over the whole breach crest (plane erosion), a side view through a glass wall is sufficient to monitor the breach formation. This approach can be extended for 3D dam breach tests (spatial erosion) if the glass wall is located along the breach centreline. In contrast, using a side view does not apply for monitoring fluvial dike breaching, because the breach is not symmetric in this case. We present a non-intrusive, high resolution technique to record the breach development in experimental models of fluvial dikes by means of a laser profilometry (Rifai et al. 2016). Most methods used for monitoring dam and dike breaching involve the projection of a pattern (fringes, grid) on the dam or dike body and the analysis of its deformation on images recorded during the breaching (e.g., Pickert et al. 2011, Frank and Hager 2014). A major limitation of these methods stems from reflection on the water surface, particularly in the vicinity of the breach where the free surface is irregular and rippled. This issue was addressed by Spinewine et al. (2004), who used a single laser sheet so that reflections on the water surface were strongly limited and did not hamper the accurate processing of each image. We have developed a similar laser profilometry technique tailored for laboratory experiments on fluvial dike breaching. The setup is simple and relatively low cost. It consists of a digital video camera (resolution of 1920 × 1080 pixels at 60 frames per second) and a swiping red diode 30 mW laser that enables the projection of a laser sheet over the dike body. The 2D image coordinates of each deformed laser profile incident on the dike are transformed into 3D object coordinates using the Direct Linear Transformation (DLT) algorithm. All 3D object coordinates computed over a swiping cycle of the

  2. Data analysis and detection methods for on-line health monitoring of bridge structures

    DOT National Transportation Integrated Search

    2002-06-01

    Developing an efficient structural health monitoring (SHM) technique is important for reducing potential hazards posed : to the public by damaged civil structures. The ultimate goal of applying SHM is to real-time detect, localize, and quantify : the...

  3. Quality management system and accreditation of the in vivo monitoring laboratory at Karslruhe Institute of Technology.

    PubMed

    Breustedt, B; Mohr, U; Biegard, N; Cordes, G

    2011-03-01

    The in vivo monitoring laboratory (IVM) at Karlsruhe Institute of Technology (KIT), with one whole body counter and three partial-body counters, is an approved lab for individual monitoring according to German regulation. These approved labs are required to prove their competencies by accreditation to ISO/IEC 17025:2005. In 2007 a quality management system (QMS), which was successfully audited and granted accreditation, was set up at the IVM. The system is based on the ISO 9001 certified QMS of the central safety department of the Research Centre Karlsruhe the IVM belonged to at that time. The system itself was set up to be flexible and could be adapted to the recent organisational changes (e.g. founding of KIT and an institute for radiation research) with only minor effort.

  4. A differential detection scheme of spectral shifts in long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, Katerina; Eftimov, Tinko; Smietana, Mateusz; Bock, Wojtek

    2010-10-01

    In this work we present an analysis of the response of a compact, simple and inexpensive optoelectronic sensor system intended to detect spectral shifts of a long-period fiber grating (LPG). The system makes use of a diffraction grating and a couple of receiving optical fibers that pick up signals at two different wavelengths. This differential detection system provides the same useful information from an LPG-based sensor as with a conventional laboratory system using optical spectrum analyzers for monitoring the minimum offset of LPG. The design of the fiber detection pair as a function of the parameters of the dispersion grating, the pick-up fiber and the LPG parameters, is presented in detail. Simulation of the detection system responses is presented using real from spectral shifts in nano-coated LPGs caused by the evaporation of various liquids such as water, ethanol and acetone, which are examples of corrosive, flammable and hazardous substances. Fiber optic sensors with similar detection can find applications in structural health monitoring for moisture detection, monitoring the spillage of toxic and flammable substances in industry etc.

  5. Clinical presentation of terbinafine-induced severe liver injury and the value of laboratory monitoring: a Critically Appraised Topic.

    PubMed

    Kramer, O N; Albrecht, J

    2017-11-01

    Many physicians monitor liver function tests during terbinafine therapy. To evaluate the symptoms of published cases of terbinafine-associated severe drug-induced liver injury (DILI) to assess the utility of laboratory monitoring. We based our search on the LiverTox database of the National Institutes of Health, but we also searched both PubMed and Embase. In addition, we hand searched the references of the papers we found. All reports of patients with DILI on terbinafine and with reported clinical symptoms, or absence thereof, were evaluated. Two independent reviewers (J.A. and O.N.K.) assessed articles for eligibility of inclusion, and collected and evaluated the data. Thirty-eight papers fulfilled the inclusion criteria, with reports of 69 symptomatic patients. The mean duration of terbinafine treatment until onset of symptoms was 30·2 days (range 5-84). Symptoms in order of frequency were jaundice, flu-like symptoms, dark urine and pruritus. Patients experienced symptoms for a mean and median of 14·8 and 16 days, respectively (range 0-42) until seeking medical attention. Patients who had DILI were symptomatic, usually with jaundice, abdominal pain and general malaise, but also with severe pruritus. No asymptomatic patient was identified through laboratory screening. The timeline of DILI onset varies significantly, but most cases occur between 4 and 6 weeks. There was no time point at which monitoring was meaningful, and we do not recommend monitoring of liver function tests on terbinafine; however, patients should be advised to discontinue treatment and look for medical care when symptoms of DILI occur. © 2017 British Association of Dermatologists.

  6. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    DOE PAGES

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; ...

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-opticmore » strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.« less

  7. Sandia National Laboratories: Cooperative Monitoring Center

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  8. [Laboratory diagnostics and monitoring of virus circulation in surveillance system for rubella in Belarus].

    PubMed

    Samoĭlovich, E O; Semeĭko, G V; Ermolovich, M A; Svirchevskaia, E Iu

    2010-01-01

    To summarize data on laboratory diagnostics of prenatal and postnatal rubella and molecular monitoring of rubella virus circulation in Belarus obtained during implementation of rubella elimination program. Serum samples from 2314 persons were tested on the presence of IgM to rubella virus and measles virus (in case of negative result on rubella) using respective enzyme immunoassays. Virological testing using RT-PCR as well as genotyping on the basis of E1 gene fragment sequencing were also performed. Two viruses isolated in Belarus were set as reference strains of genotypes 1G and 1h. Implementation of laboratory diagnostics allowed to differentiate cases of rubella from other exanthematous infections, significantly increase the number of laboratory-confirmed cases among all reported cases, and show presence of endemic circulation of rubella virus strains of 3 different genotypes (1G, 1E, and 1h) in Belarus (2004-2006). In 2006, when relatively high incidence of rubella was reported in the country (24.39 per 100,000 population), the risk of congenital rubella syndrome was not less than 9 per 100,000 births. Conducted in October 2005-May 2006 additional rounds of immunization against rubella (>1 million people were vaccinated) decreased incidence to single cases. Obtained data show achievability of indigenous rubella elemination by 2010. Revealed genetic diversity of rubella virus strains allowed to update the International classification of wild rubella viruses.

  9. Detecting NEO Impacts using the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Dube, Kimberlee; Silber, Elizabeth

    2014-11-01

    As part of the verification regime for the Comprehensive Nuclear Test Ban Treaty an International Monitoring System (IMS) consisting of seismic, hydroacoustic, infrasound and radionuclide technologies has been globally deployed beginning in the late 1990s. The infrasound network sub-component of the IMS consists of 47 active stations as of mid-2014. These microbarograph arrays detect coherent infrasonic signals from a range of sources including volcanoes, man-made explosions and bolides. Bolide detections from IMS stations have been reported since ~2000, but with the maturation of the network over the last several years the rate of detections has increased substantially. Presently the IMS performs semi-automated near real-time global event identification on timescales of 6-12 hours as well as analyst verified event identification having time lags of several weeks. Here we report on infrasound events identified by the IMS between 2010-2014 which are likely bolide impacts. Identification in this context refers to an event being included in one of the event bulletins issued by the IMS. In this untargeted study we find that the IMS globally identifies approximately 16 events per year which are likely bolide impacts. Using data released since the beginning of 2014 of US Government sensor detections (as given at http://neo.jpl.nasa.gov/fireballs/ ) of fireballs we find in a complementary targeted survey that the current IMS system is able to identify ~25% of fireballs with E > 0.1 kT energy. Using all 16 US Government sensor fireballs listed as of July 31, 2014 we are able to detect infrasound from 75% of these events on at least one IMS station. The high ratio of detection/identification is a product of the stricter criteria adopted by the IMS for inclusion in an event bulletin as compared to simple station detection.We discuss energy comparisons between infrasound-estimated energies based on amplitudes and periods and estimates provided by US Government sensors

  10. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.

    1975-01-01

    A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.

  11. Above-ground antineutrino detection for nuclear reactor monitoring

    NASA Astrophysics Data System (ADS)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of 6Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  12. [The purpose of clinical laboratory accreditation in transplantation medicine].

    PubMed

    Flegar-Mestrić, Zlata; Nazor, Aida; Perkov, Sonja; Surina, Branka; Siftar, Zoran; Ozvald, Ivan; Vidas, Zeljko

    2011-09-01

    loss of base equivalents starts during the dissection stage and accelerates during the anhepatic stage. Fast and efficient intraoperative monitoring of hematological tests and coagulation status is of great help in detecting the cause of possible hemorrhage and consequential complications during transplantation procedure. The possibility of organ and tissue transplantation mostly depends on well regulated international cooperation in the areas of donating, transplanting and exchange of required organs and tissues, while laboratory test results must be comparable regardless of their geographical area, methodology employed or analytical equipment used, which is mainly warranted through accreditation according to the international ISO 15189 standard.

  13. A rapid detection method using flow cytometry to monitor the risk of Legionella in bath water.

    PubMed

    Taguri, Toshitsugu; Oda, Yasunori; Sugiyama, Kanji; Nishikawa, Toru; Endo, Takuro; Izumiyama, Shinji; Yamazaki, Masayuki; Kura, Fumiaki

    2011-07-01

    Legionella species are the causative agents of human legionellosis, and bathing facilities have been identified as the sources of infection in several outbreaks in Japan. Researchers in Japan have recently reported evidence of significant associations between bacterial counts and the occurrence of Legionella in bathing facilities and in a hot tub model. A convenient and quantitative bacterial enumeration method is therefore required as an indicator of Legionella contamination or disinfection to replace existing methods such as time-consuming Legionella culture and expensive Legionella-DNA amplification. In this study, we developed a rapid detection method (RDM) to monitor the risk of Legionella using an automated microbial analyzing device based on flow cytometry techniques to measure the total number of bacteria in water samples within two minutes, by detecting typical patterns of scattered light and fluorescence. We first compared the results of our RDM with plate counting results for five filtered hot spring water samples spiked with three species of bacteria, including Legionella. Inactivation of these samples by chlorine was also assessed by the RDM, a live/dead bacterial fluorescence assay and plate counting. Using the RDM, the lower limit of quantitative bacterial counts in the spiked samples was determined as 3.0×10(3)(3.48log)counts mL(-1). We then used a laboratory model of a hot tub and found that the RDM could monitor the growth curve of naturally occurring heterotrophic bacteria with 1 and 2 days' delayed growth of amoeba and Legionella, respectively, and could also determine the killing curve of these bacteria by chlorination. Finally, samples with ≥3.48 or <3.48log total bacterial counts mL(-1) were tested using the RDM from 149 different hot tubs, and were found to be significantly associated with the positive or negative detection of Legionella with 95% sensitivity and 84% specificity. These findings indicated that the RDM can be used for

  14. A prototype detection system for atmospheric monitoring of xenon radioisotopes

    NASA Astrophysics Data System (ADS)

    Czyz, Steven A.; Farsoni, Abi T.; Ranjbar, Lily

    2018-03-01

    The design of a radioxenon detection system utilizing a CdZeTe crystal and a plastic scintillator coupled to an array of SiPMs to conduct beta-gamma coincidence detection for atmospheric radioxenon monitoring, as well as the measurement of 135Xe and 133/133mXe, have been detailed previously. This paper presents recent measurements of 133/133mXe and 131mXe and the observation of conversion electrons in their coincidence spectra, as well as a 48-hour background measurement to calculate the Minimum Detectable Concentration (MDC) of radioxenon isotopes in the system. The identification of Regions of Interest (ROIs) in the coincidence spectra yielded from the radioxenon measurements, and the subsequent calculation of the MDCs of the system for 135Xe, 133/133mXe, and 131mXe, are also discussed. Calculated MDCs show that the detection system preforms respectably when compared to other state of the art radioxenon detection systems and achieved an MDC of less than 1 mBq/m3 for 131mXe, 133Xe, and 133mXe, in accordance with limits set by the Comprehensive Nuclear-Test-Ban Treaty (CTBTO). The system also provides the advantage of room temperature operation, compactness, low noise operation and having simple readout electronics.

  15. Unsupervised Multi-Scale Change Detection from SAR Imagery for Monitoring Natural and Anthropogenic Disasters

    NASA Astrophysics Data System (ADS)

    Ajadi, Olaniyi A.

    Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition.. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to

  16. Performance testing of radiobioassay laboratories: In vivo measurements, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLellan, J.A.; Traub, R.J.; Olsen, P.C.

    1990-04-01

    A study of two rounds of in vivo laboratory performance testing was undertaken by Pacific Northwest Laboratory (PNL) to determine the appropriateness of the in vivo performance criteria of draft American National Standards Institute (ANSI) standard ANSI N13.3, Performance Criteria for Bioassay.'' The draft standard provides guidance to in vivo counting facilities regarding the sensitivity, precision, and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. This report concludes the testing program by presenting the results of the Round Two testing. Testing involved two types of measurements: chest counting for radionuclide detection inmore » the lung, and whole body counting for detection of uniformly distributed material. Each type of measurement was further divided into radionuclide categories as defined in the draft standard. The appropriateness of the draft standard criteria by measuring a laboratory's ability to attain them were judged by the results of both round One and Round Two testing. The testing determined that performance criteria are set at attainable levels, and the majority of in vivo monitoring facilities passed the criteria when complete results were submitted. 18 refs., 18 figs., 15 tabs.« less

  17. Medical radar considerations for detecting and monitoring Crohn's disease

    NASA Astrophysics Data System (ADS)

    Smith, Sonny; Narayanan, Ram M.; Messaris, Evangelos

    2014-05-01

    Crohn's disease is a condition that causes inflammation and associated complications along any section of the digestive tract. Over the years, numerous radiological and endoscopic methods as well as the use of ultrasound have been developed to examine and diagnose inflammatory bowel disorders such as Crohn's disease. While such techniques have much merit, an alternative medical solution that is safe, non-invasive, and inexpensive is proposed in this paper. Reflections from electromagnetic signals transmitted by an ultra-wide band (UWB) radar allow for not only range (or extent) information but also spectral analysis of a given target of interest. Moreover, the radar cross-section (RCS) of an object measures how detectable the electromagnetic return energy of such an object is to the radar. In the preliminary phase of research, we investigate how disparities in the dielectric properties of diseased versus non-diseased portions of the intestines can aid in the detection of Crohn's disease. RCS analysis from finite-difference time-domain (FDTD) method simulations using a simple 3D model of the intestines are presented. The ultimate goal of our research is to design a UWB radar system using a suitable waveform to detect and monitor Crohn's disease.

  18. Video-based respiration monitoring with automatic region of interest detection.

    PubMed

    Janssen, Rik; Wang, Wenjin; Moço, Andreia; de Haan, Gerard

    2016-01-01

    Vital signs monitoring is ubiquitous in clinical environments and emerging in home-based healthcare applications. Still, since current monitoring methods require uncomfortable sensors, respiration rate remains the least measured vital sign. In this paper, we propose a video-based respiration monitoring method that automatically detects a respiratory region of interest (RoI) and signal using a camera. Based on the observation that respiration induced chest/abdomen motion is an independent motion system in a video, our basic idea is to exploit the intrinsic properties of respiration to find the respiratory RoI and extract the respiratory signal via motion factorization. We created a benchmark dataset containing 148 video sequences obtained on adults under challenging conditions and also neonates in the neonatal intensive care unit (NICU). The measurements obtained by the proposed video respiration monitoring (VRM) method are not significantly different from the reference methods (guided breathing or contact-based ECG; p-value  =  0.6), and explain more than 99% of the variance of the reference values with low limits of agreement (-2.67 to 2.81 bpm). VRM seems to provide a valid solution to ECG in confined motion scenarios, though precision may be reduced for neonates. More studies are needed to validate VRM under challenging recording conditions, including upper-body motion types.

  19. Accounting for Incomplete Species Detection in Fish Community Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Orth, Dr. Donald J; Jager, Yetta

    2013-01-01

    Riverine fish assemblages are heterogeneous and very difficult to characterize with a one-size-fits-all approach to sampling. Furthermore, detecting changes in fish assemblages over time requires accounting for variation in sampling designs. We present a modeling approach that permits heterogeneous sampling by accounting for site and sampling covariates (including method) in a model-based framework for estimation (versus a sampling-based framework). We snorkeled during three surveys and electrofished during a single survey in suite of delineated habitats stratified by reach types. We developed single-species occupancy models to determine covariates influencing patch occupancy and species detection probabilities whereas community occupancy models estimated speciesmore » richness in light of incomplete detections. For most species, information-theoretic criteria showed higher support for models that included patch size and reach as covariates of occupancy. In addition, models including patch size and sampling method as covariates of detection probabilities also had higher support. Detection probability estimates for snorkeling surveys were higher for larger non-benthic species whereas electrofishing was more effective at detecting smaller benthic species. The number of sites and sampling occasions required to accurately estimate occupancy varied among fish species. For rare benthic species, our results suggested that higher number of occasions, and especially the addition of electrofishing, may be required to improve detection probabilities and obtain accurate occupancy estimates. Community models suggested that richness was 41% higher than the number of species actually observed and the addition of an electrofishing survey increased estimated richness by 13%. These results can be useful to future fish assemblage monitoring efforts by informing sampling designs, such as site selection (e.g. stratifying based on patch size) and determining effort required (e

  20. Detection and monitoring of anaerobic rumen fungi using an ARISA method.

    PubMed

    Denman, S E; Nicholson, M J; Brookman, J L; Theodorou, M K; McSweeney, C S

    2008-12-01

    To develop an automated ribosomal intergenic spacer region analysis (ARISA) method for the detection of anaerobic rumen fungi and also to demonstrate utility of the technique to monitor colonization and persistence of fungi, and diet-induced changes in community structure. The method could discriminate between three genera of anaerobic rumen fungal isolates, representing Orpinomyces, Piromyces and Neocallimastix species. Changes in anaerobic fungal composition were observed between animals fed a high-fibre diet compared with a grain-based diet. ARISA analysis of rumen samples from animals on grain showed a decrease in fungal diversity with a dominance of Orpinomyces and Piromyces spp. Clustering analysis of ARISA profile patterns grouped animals based on diet. A single strain of Orpinomyces was dosed into a cow and was detectable within the rumen fungal population for several weeks afterwards. The ARISA technique was capable of discriminating between pure cultures at the genus level. Diet composition has a significant influence on the diversity of anaerobic fungi in the rumen and the method can be used to monitor introduced strains. Through the use of ARISA analysis, a better understanding of the effect of diets on rumen anaerobic fungi populations is provided.

  1. System for particle concentration and detection

    DOEpatents

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  2. Surveillance and laboratory detection for non-polio enteroviruses in the European Union/European Economic Area, 2016

    PubMed Central

    Harvala, Heli; Jasir, Aftab; Penttinen, Pasi; Pastore Celentano, Lucia; Greco, Donato; Broberg, Eeva

    2017-01-01

    Enteroviruses (EVs) cause severe outbreaks of respiratory and neurological disease as illustrated by EV-D68 and EV-A71 outbreaks, respectively. We have mapped European laboratory capacity for identification and characterisation of non-polio EVs to improve preparedness to respond to (re)-emerging EVs linked to severe disease. An online questionnaire on non-polio EV surveillance and laboratory detection was submitted to all 30 European Union (EU)/European Economic Area (EEA) countries. Twenty-nine countries responded; 26 conducted laboratory-based non-polio EV surveillance, and 24 included neurological infections in their surveillance. Eleven countries have established specific surveillance for EV-D68 via sentinel influenza surveillance (n = 7), typing EV-positive respiratory samples (n = 10) and/or acute flaccid paralysis surveillance (n = 5). Of 26 countries performing non-polio EV characterisation/typing, 10 further characterised culture-positive EV isolates, whereas the remainder typed PCR-positive but culture-negative samples. Although 19 countries have introduced sequence-based EV typing, seven still rely entirely on virus isolation. Based on 2015 data, six countries typed over 300 specimens mostly by sequencing, whereas 11 countries characterised under 50 EV-positive samples. EV surveillance activity varied between EU/EEA countries, and did not always specifically target patients with neurological and/or respiratory infections. Introduction of sequence-based typing methods is needed throughout the EU/EEA to enhance laboratory capacity for the detection of EVs. PMID:29162204

  3. Surveillance and laboratory detection for non-polio enteroviruses in the European Union/European Economic Area, 2016.

    PubMed

    Harvala, Heli; Jasir, Aftab; Penttinen, Pasi; Pastore Celentano, Lucia; Greco, Donato; Broberg, Eeva

    2017-11-01

    Enteroviruses (EVs) cause severe outbreaks of respiratory and neurological disease as illustrated by EV-D68 and EV-A71 outbreaks, respectively. We have mapped European laboratory capacity for identification and characterisation of non-polio EVs to improve preparedness to respond to (re)-emerging EVs linked to severe disease. An online questionnaire on non-polio EV surveillance and laboratory detection was submitted to all 30 European Union (EU)/European Economic Area (EEA) countries. Twenty-nine countries responded; 26 conducted laboratory-based non-polio EV surveillance, and 24 included neurological infections in their surveillance. Eleven countries have established specific surveillance for EV-D68 via sentinel influenza surveillance (n = 7), typing EV-positive respiratory samples (n = 10) and/or acute flaccid paralysis surveillance (n = 5). Of 26 countries performing non-polio EV characterisation/typing, 10 further characterised culture-positive EV isolates, whereas the remainder typed PCR-positive but culture-negative samples. Although 19 countries have introduced sequence-based EV typing, seven still rely entirely on virus isolation. Based on 2015 data, six countries typed over 300 specimens mostly by sequencing, whereas 11 countries characterised under 50 EV-positive samples. EV surveillance activity varied between EU/EEA countries, and did not always specifically target patients with neurological and/or respiratory infections. Introduction of sequence-based typing methods is needed throughout the EU/EEA to enhance laboratory capacity for the detection of EVs.

  4. Sampling Methods for Detection and Monitoring of the Asian Citrus Psyllid (Hemiptera: Psyllidae).

    PubMed

    Monzo, C; Arevalo, H A; Jones, M M; Vanaclocha, P; Croxton, S D; Qureshi, J A; Stansly, P A

    2015-06-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama is a key pest of citrus due to its role as vector of citrus greening disease or "huanglongbing." ACP monitoring is considered an indispensable tool for management of vector and disease. In the present study, datasets collected between 2009 and 2013 from 245 citrus blocks were used to evaluate precision, sensitivity for detection, and efficiency of five sampling methods. The number of samples needed to reach a 0.25 standard error-mean ratio was estimated using Taylor's power law and used to compare precision among sampling methods. Comparison of detection sensitivity and time expenditure (cost) between stem-tap and other sampling methodologies conducted consecutively at the same location were also assessed. Stem-tap sampling was the most efficient sampling method when ACP densities were moderate to high and served as the basis for comparison with all other methods. Protocols that grouped trees near randomly selected locations across the block were more efficient than sampling trees at random across the block. Sweep net sampling was similar to stem-taps in number of captures per sampled unit, but less precise at any ACP density. Yellow sticky traps were 14 times more sensitive than stem-taps but much more time consuming and thus less efficient except at very low population densities. Visual sampling was efficient for detecting and monitoring ACP at low densities. Suction sampling was time consuming and taxing but the most sensitive of all methods for detection of sparse populations. This information can be used to optimize ACP monitoring efforts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-d numerical modeling approach.

    PubMed

    Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant

    2014-09-16

    Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well.

  6. Suspect/foil identification in actual crimes and in the laboratory: a reality monitoring analysis.

    PubMed

    Behrman, Bruce W; Richards, Regina E

    2005-06-01

    Four reality monitoring variables were used to discriminate suspect from foil identifications in 183 actual criminal cases. Four hundred sixty-one identification attempts based on five and six-person lineups were analyzed. These identification attempts resulted in 238 suspect identifications and 68 foil identifications. Confidence, automatic processing, eliminative processing and feature use comprised the set of reality monitoring variables. Thirty-five verbal confidence phrases taken from police reports were assigned numerical values on a 10-point confidence scale. Automatic processing identifications were those that occurred "immediately" or "without hesitation." Eliminative processing identifications occurred when witnesses compared or eliminated persons in the lineups. Confidence, automatic processing and eliminative processing were significant predictors, but feature use was not. Confidence was the most effective discriminator. In cases that involved substantial evidence extrinsic to the identification 43% of the suspect identifications were made with high confidence, whereas only 10% of the foil identifications were made with high confidence. The results of a laboratory study using the same predictors generally paralleled the archival results. Forensic implications are discussed.

  7. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.

    PubMed

    Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng

    2017-05-27

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short

  8. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors

    PubMed Central

    Xi, Xugang; Tang, Minyan; Miran, Seyed M.; Luo, Zhizeng

    2017-01-01

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short

  9. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  10. Syndromic surveillance using veterinary laboratory data: data pre-processing and algorithm performance evaluation

    PubMed Central

    Dórea, Fernanda C.; McEwen, Beverly J.; McNab, W. Bruce; Revie, Crawford W.; Sanchez, Javier

    2013-01-01

    Diagnostic test orders to an animal laboratory were explored as a data source for monitoring trends in the incidence of clinical syndromes in cattle. Four years of real data and over 200 simulated outbreak signals were used to compare pre-processing methods that could remove temporal effects in the data, as well as temporal aberration detection algorithms that provided high sensitivity and specificity. Weekly differencing demonstrated solid performance in removing day-of-week effects, even in series with low daily counts. For aberration detection, the results indicated that no single algorithm showed performance superior to all others across the range of outbreak scenarios simulated. Exponentially weighted moving average charts and Holt–Winters exponential smoothing demonstrated complementary performance, with the latter offering an automated method to adjust to changes in the time series that will likely occur in the future. Shewhart charts provided lower sensitivity but earlier detection in some scenarios. Cumulative sum charts did not appear to add value to the system; however, the poor performance of this algorithm was attributed to characteristics of the data monitored. These findings indicate that automated monitoring aimed at early detection of temporal aberrations will likely be most effective when a range of algorithms are implemented in parallel. PMID:23576782

  11. Syndromic surveillance using veterinary laboratory data: data pre-processing and algorithm performance evaluation.

    PubMed

    Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Revie, Crawford W; Sanchez, Javier

    2013-06-06

    Diagnostic test orders to an animal laboratory were explored as a data source for monitoring trends in the incidence of clinical syndromes in cattle. Four years of real data and over 200 simulated outbreak signals were used to compare pre-processing methods that could remove temporal effects in the data, as well as temporal aberration detection algorithms that provided high sensitivity and specificity. Weekly differencing demonstrated solid performance in removing day-of-week effects, even in series with low daily counts. For aberration detection, the results indicated that no single algorithm showed performance superior to all others across the range of outbreak scenarios simulated. Exponentially weighted moving average charts and Holt-Winters exponential smoothing demonstrated complementary performance, with the latter offering an automated method to adjust to changes in the time series that will likely occur in the future. Shewhart charts provided lower sensitivity but earlier detection in some scenarios. Cumulative sum charts did not appear to add value to the system; however, the poor performance of this algorithm was attributed to characteristics of the data monitored. These findings indicate that automated monitoring aimed at early detection of temporal aberrations will likely be most effective when a range of algorithms are implemented in parallel.

  12. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5more » day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.« less

  13. Capacity Development through the US President's Malaria Initiative-Supported Antimalarial Resistance Monitoring in Africa Network.

    PubMed

    Halsey, Eric S; Venkatesan, Meera; Plucinski, Mateusz M; Talundzic, Eldin; Lucchi, Naomi W; Zhou, Zhiyong; Mandara, Celine I; Moonga, Hawela; Hamainza, Busiku; Beavogui, Abdoul Habib; Kariuki, Simon; Samuels, Aaron M; Steinhardt, Laura C; Mathanga, Don P; Gutman, Julie; Denon, Yves Eric; Uwimana, Aline; Assefa, Ashenafi; Hwang, Jimee; Shi, Ya Ping; Dimbu, Pedro Rafael; Koita, Ousmane; Ishengoma, Deus S; Ndiaye, Daouda; Udhayakumar, Venkatachalam

    2017-12-01

    Antimalarial drug resistance is an evolving global health security threat to malaria control. Early detection of Plasmodium falciparum resistance through therapeutic efficacy studies and associated genetic analyses may facilitate timely implementation of intervention strategies. The US President's Malaria Initiative-supported Antimalarial Resistance Monitoring in Africa Network has assisted numerous laboratories in partner countries in acquiring the knowledge and capability to independently monitor for molecular markers of antimalarial drug resistance.

  14. Development of a colony lift immunoassay to facilitate rapid detection and quantification of Escherichia coli O157:H7 from agar plates and filter monitor membranes.

    PubMed

    Ingram, D T; Lamichhane, C M; Rollins, D M; Carr, L E; Mallinson, E T; Joseph, S W

    1998-07-01

    E. coli O157:H7 is a food-borne adulterant that can cause hemorrhagic ulcerative colitis and hemolytic uremic syndrome. Faced with an increasing risk of foods contaminated with E. coli O157:H7, food safety officials are seeking improved methods to detect and isolate E. coli O157:H7 in hazard analysis and critical control point systems in meat- and poultry-processing plants. A colony lift immunoassay was developed to facilitate the positive identification and quantification of E. coli O157:H7 by incorporating a simple colony lift enzyme-linked immunosorbent assay with filter monitors and traditional culture methods. Polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, Mass.) were prewet with methanol and were used to make replicates of every bacterial colony on agar plates or filter monitor membranes that were then reincubated for 15 to 18 h at 36 +/- 1 degree C, during which the colonies not only remained viable but were reestablished. The membranes were dried, blocked with blocking buffer (Kirkegaard and Perry Laboratories [KPL], Gaithersburg, Md.), and exposed for 7 min to an affinity-purified horseradish peroxidase-labeled goat anti-E. coli O157 antibody (KPL). The membranes were washed, exposed to a 3,3',5,5'-tetramethylbenzidine membrane substrate (TMB; KPL) or aminoethyl carbazole (AEC; Sigma Chemical Co., St. Louis, Mo.), rinsed in deionized water, and air dried. Colonies of E. coli O157:H7 were identified by either a blue (via TMB) or a red (via AEC) color reaction. The colored spots on the PVDF lift membrane were then matched to their respective parent colonies on the agar plates or filter monitor membranes. The colony lift immunoassay was tested with a wide range of genera in the family Enterobacteriaceae as well as different serotypes within the E. coli genus. The colony lift immunoassay provided a simple, rapid, and accurate method for confirming the presence of E. coli O157:H7 colonies isolated on filter monitors or spread plates by

  15. Development of a Colony Lift Immunoassay To Facilitate Rapid Detection and Quantification of Escherichia coli O157:H7 from Agar Plates and Filter Monitor Membranes

    PubMed Central

    Ingram, David T.; Lamichhane, Chinta M.; Rollins, David M.; Carr, Lewis E.; Mallinson, Edward T.; Joseph, Sam W.

    1998-01-01

    E. coli O157:H7 is a food-borne adulterant that can cause hemorrhagic ulcerative colitis and hemolytic uremic syndrome. Faced with an increasing risk of foods contaminated with E. coli O157:H7, food safety officials are seeking improved methods to detect and isolate E. coli O157:H7 in hazard analysis and critical control point systems in meat- and poultry-processing plants. A colony lift immunoassay was developed to facilitate the positive identification and quantification of E. coli O157:H7 by incorporating a simple colony lift enzyme-linked immunosorbent assay with filter monitors and traditional culture methods. Polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, Mass.) were prewet with methanol and were used to make replicates of every bacterial colony on agar plates or filter monitor membranes that were then reincubated for 15 to 18 h at 36 ± 1°C, during which the colonies not only remained viable but were reestablished. The membranes were dried, blocked with blocking buffer (Kirkegaard and Perry Laboratories [KPL], Gaithersburg, Md.), and exposed for 7 min to an affinity-purified horseradish peroxidase-labeled goat anti-E. coli O157 antibody (KPL). The membranes were washed, exposed to a 3,3′,5,5′-tetramethylbenzidine membrane substrate (TMB; KPL) or aminoethyl carbazole (AEC; Sigma Chemical Co., St. Louis, Mo.), rinsed in deionized water, and air dried. Colonies of E. coli O157:H7 were identified by either a blue (via TMB) or a red (via AEC) color reaction. The colored spots on the PVDF lift membrane were then matched to their respective parent colonies on the agar plates or filter monitor membranes. The colony lift immunoassay was tested with a wide range of genera in the family Enterobacteriaceae as well as different serotypes within the E. coli genus. The colony lift immunoassay provided a simple, rapid, and accurate method for confirming the presence of E. coli O157:H7 colonies isolated on filter monitors or spread plates by traditional

  16. NASA Ames’ COSmIC Laboratory Astrophysics Facility: Recent Results and Progress

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2018-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1, 2]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of molecules, ions and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow generating; processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [3, 4].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular in the domain of the diffuse interstellar bands (DIBs) [5, 6] and the monitoring, in the laboratory, of the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [7] and planetary atmospheres [8, 9, 10]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs) will also be addressed as well as the implications for astronomy.References: [1] Salama F., Proceed. IAU S251, Kwok & Sandford eds. CUP, 4, 357 (2008).[2] Salama F., et al., Proceed. IAU S332, Y. Aikawa, M. Cunningham, T. Millar, eds., CUP (2018)[3] Biennier L., et al., J. Chem. Phys., 118, 7863 (2003)[4] Ricketts C. et al. IJMS, 300, 26 (2011)[5] Salama F., et al., ApJ., 728, 154 (2011)[6] EDIBLES

  17. A ubiquitous and low-cost solution for movement monitoring and accident detection based on sensor fusion.

    PubMed

    Felisberto, Filipe; Fdez-Riverola, Florentino; Pereira, António

    2014-05-21

    The low average birth rate in developed countries and the increase in life expectancy have lead society to face for the first time an ageing situation. This situation associated with the World's economic crisis (which started in 2008) forces the need of equating better and more efficient ways of providing more quality of life for the elderly. In this context, the solution presented in this work proposes to tackle the problem of monitoring the elderly in a way that is not restrictive for the life of the monitored, avoiding the need for premature nursing home admissions. To this end, the system uses the fusion of sensory data provided by a network of wireless sensors placed on the periphery of the user. Our approach was also designed with a low-cost deployment in mind, so that the target group may be as wide as possible. Regarding the detection of long-term problems, the tests conducted showed that the precision of the system in identifying and discerning body postures and body movements allows for a valid monitorization and rehabilitation of the user. Moreover, concerning the detection of accidents, while the proposed solution presented a near 100% precision at detecting normal falls, the detection of more complex falls (i.e., hampered falls) will require further study.

  18. Metacognitive monitoring and control in visual change detection: Implications for situation awareness and cognitive control

    PubMed Central

    McAnally, Ken I.; Morris, Adam P.; Best, Christopher

    2017-01-01

    Metacognitive monitoring and control of situation awareness (SA) are important for a range of safety-critical roles (e.g., air traffic control, military command and control). We examined the factors affecting these processes using a visual change detection task that included representative tactical displays. SA was assessed by asking novice observers to detect changes to a tactical display. Metacognitive monitoring was assessed by asking observers to estimate the probability that they would correctly detect a change, either after study of the display and before the change (judgement of learning; JOL) or after the change and detection response (judgement of performance; JOP). In Experiment 1, observers failed to detect some changes to the display, indicating imperfect SA, but JOPs were reasonably well calibrated to objective performance. Experiment 2 examined JOLs and JOPs in two task contexts: with study-time limits imposed by the task or with self-pacing to meet specified performance targets. JOPs were well calibrated in both conditions as were JOLs for high performance targets. In summary, observers had limited SA, but good insight about their performance and learning for high performance targets and allocated study time appropriately. PMID:28915244

  19. Detecting European Rabbit ( Oryctolagus cuniculus) Disease Outbreaks by Monitoring Digital Media.

    PubMed

    Peacock, David E; Grillo, Tiggy L

    2018-04-18

      Digital media and digital search tools offer simple and effective means to monitor for pathogens and disease outbreaks in target organisms. Using tools such as Rich Site Summary feeds, and Google News and Google Scholar specific key word searches, international digital media were actively monitored from 2012 to 2016 for pathogens and disease outbreaks in the taxonomic order Lagomorpha, with a specific focus on the European rabbit ( Oryctolagus cuniculus). The primary objective was identifying pathogens for assessment as potential new biocontrol agents for Australia's pest populations of the European rabbit. A number of pathogens were detected in digital media reports. Additional benefits arose in the regular provision of case reports and research on myxomatosis and rabbit haemorrhagic disease virus that assisted with current research.

  20. Capacitive detection of micromotions: Monitoring ballistics of a developing avian embryo

    NASA Astrophysics Data System (ADS)

    Szymanski, Jan A.; Pawlak, Krzysztof; Wasowicz, Pawel; Moscicki, Jozef K.

    2002-09-01

    An instrument for noninvasive monitoring of very weak biomechanical activities of small living organisms is described. The construction is sufficiently flexible to permit a range of studies including developing embryos of oviparous animals, pests that live in loose materials and timber, and insects that develop in cocoons. Motions are detected by monitoring a current generated by the fluctuating position of the object-loaded electrode of a capacitive sensor. To maximize the signal, oscillations of the electrode are mechanically enhanced and the current is amplified and filtered by a two-stage signal amplifier and a bank of six active Butterworth filters. The device is optimized to ballistocardiography of hen embryos. The sensitivity achieved makes possible quantitative studies of heart activity of 7-day-old embryos.

  1. Evaluation of Loop-Mediated Isothermal Amplification Suitable for Molecular Monitoring of Schistosome-Infected Snails in Field Laboratories

    PubMed Central

    Hamburger, Joseph; Abbasi, Ibrahim; Kariuki, Curtis; Wanjala, Atsabina; Mzungu, Elton; Mungai, Peter; Muchiri, Eric; King, Charles H.

    2013-01-01

    We previously described loop-mediated isothermal amplification (LAMP) for detection of Schistosoma haematobium and S. mansoni DNA in infected snails. In the present study, we adapted the LAMP assay for application in field laboratories in schistosomiasis-endemic areas. Isolation of DNA was simplified by blotting snail tissue (extracted in NaOH/sodium dodecyl sulfate) onto treated membranes, which enabled preservation at ambient temperatures. A ready-mix of LAMP reagents, suitable for shipment at ambient temperature and storage in minimal refrigeration, was used. Local survey teams without experience in molecular biology acquired operational expertise with this test within a few hours. Fifty-four field-caught snails were tested locally by LAMP and 59 were tested at similar conditions in Jerusalem. The LAMP results were consistent with those of a polymerase chain reaction; only four samples showed false-negative results. Results indicate that LAMP assays are suitable for detection of S. haematobium and S. mansoni in low-technology parasitology laboratories in which schistosomiasis elimination activities are undertaken. PMID:23208875

  2. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  3. Novel methods for aircraft corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.

    1995-07-01

    Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.

  4. Laboratory and field based evaluations of chromatography related performance of the Monitor for AeRosols and GAses in ambient Air (MARGA)

    EPA Science Inventory

    The semi-continuous Monitor for AeRosols and Gases in Ambient air (MARGA) was evaluated using laboratory and field data with a focus on chromatography. The performance and accuracy assessment revealed various errors and uncertainties resulting from mis-identification and mis-int...

  5. Laboratory and field based evaluation of chromatography related performance of the Monitor for AeRosols and Gases in ambient Air (MARGA)

    EPA Science Inventory

    The semi-continuous Monitor for AeRosols and Gases in Ambient air (MARGA) was evaluated using laboratory and field data with a focus on chromatography. The performance and accuracy assessment revealed various errors and uncertainties resulting from mis-identification and mis-int...

  6. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  7. Engine rotor health monitoring: an experimental approach to fault detection and durability assessment

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George

    2015-03-01

    Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital. This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.

  8. A comprehensive evaluation of strip performance in multiple blood glucose monitoring systems.

    PubMed

    Katz, Laurence B; Macleod, Kirsty; Grady, Mike; Cameron, Hilary; Pfützner, Andreas; Setford, Steven

    2015-05-01

    Accurate self-monitoring of blood glucose is a key component of effective self-management of glycemic control. Accurate self-monitoring of blood glucose results are required for optimal insulin dosing and detection of hypoglycemia. However, blood glucose monitoring systems may be susceptible to error from test strip, user, environmental and pharmacological factors. This report evaluated 5 blood glucose monitoring systems that each use Verio glucose test strips for precision, effect of hematocrit and interferences in laboratory testing, and lay user and system accuracy in clinical testing according to the guidelines in ISO15197:2013(E). Performance of OneTouch(®) VerioVue™ met or exceeded standards described in ISO15197:2013 for precision, hematocrit performance and interference testing in a laboratory setting. Performance of OneTouch(®) Verio IQ™, OneTouch(®) Verio Pro™, OneTouch(®) Verio™, OneTouch(®) VerioVue™ and Omni Pod each met or exceeded accuracy standards for user performance and system accuracy in a clinical setting set forth in ISO15197:2013(E).

  9. Luminance level of a monitor: influence on detectability and detection rate of breast cancer in 2D mammography

    NASA Astrophysics Data System (ADS)

    Bemelmans, Frédéric; Rashidnasab, Alaleh; Chesterman, Frédérique; Kimpe, Tom; Bosmans, Hilde

    2016-03-01

    Purpose: To evaluate lesion detectability and reading time as a function of luminance level of the monitor. Material and Methods: 3D mass models and microcalcification clusters were simulated into ROIs of for processing mammograms. Randomly selected ROIs were subdivided in three groups according to their background glandularity: high (>30%), medium (15-30%) and low (<15%). 6 non-spiculated masses (9 - 11mm), 6 spiculated masses (5 - 7mm) and 6 microcalcification clusters (2 - 4mm) were scaled in 3D to create a range of sizes. The linear attenuation coefficient (AC) of the masses was adjusted from 100% glandular tissue to 90%, 80%, 70%, to create different contrasts. Six physicists read the full database on Barco's Coronis Uniti monitor for four different luminance levels (300, 800, 1000 and 1200 Cd/m2), using a 4-AFC tool. Percentage correct (PC) and time were computed for all different conditions. A paired t-test was performed to evaluate the effect of luminance on PC and time. A multi-factorial analysis was performed using MANOVA.. Results: Paired t-test indicated a statistically significant difference for the average time per session between 300 and 1200; 800 and 1200; 1000 and 1200 Cd/m2, for all participants combined. There was no effect on PC. MANOVA denoted significantly lower reading times for high glandularity images at 1200 Cd/m2. Both types of masses were significantly faster detected at 1200 Cd/m2, for the contrast study. In the size study, microcalcification clusters and spiculated masses had a significantly higher detection rate at 1200 Cd/m2. Conclusion: These results demonstrate a significant decrease in reading time, while detectability remained constant.

  10. Recent advances in immunosensor for narcotic drug detection

    PubMed Central

    Gandhi, Sonu; Suman, Pankaj; Kumar, Ashok; Sharma, Prince; Capalash, Neena; Suri, C. Raman

    2015-01-01

    Introduction: Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. Methods: In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. Results: This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. Conclusion: In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates. PMID:26929925

  11. Alarm characterization for continuous glucose monitors used as adjuncts to self-monitoring of blood glucose.

    PubMed

    McGarraugh, Geoffrey

    2010-01-01

    Continuous glucose monitoring (CGM) devices available in the United States are approved for use as adjuncts to self-monitoring of blood glucose (SMBG). Alarm evaluation in the Clinical and Laboratory Standards Institute (CLSI) guideline for CGM does not specifically address devices that employ both CGM and SMBG. In this report, an alarm evaluation method is proposed for these devices. The proposed method builds on the CLSI method using data from an in-clinic study of subjects with type 1 diabetes. CGM was used to detect glycemic events, and SMBG was used to determine treatment. To optimize detection of a single glucose level, such as 70 mg/dl, a range of alarm threshold settings was evaluated. The alarm characterization provides a choice of alarm settings that trade off detection and false alarms. Detection of a range of high glucose levels was similarly evaluated. Using low glucose alarms, detection of 70 mg/dl within 30 minutes increased from 64 to 97% as alarm settings increased from 70 to 100 mg/dl, and alarms that did not require treatment (SMBG >85 mg/dl) increased from 18 to 52%. Using high glucose alarms, detection of 180 mg/dl within 30 minutes increased from 87 to 96% as alarm settings decreased from 180 to 165 mg/dl, and alarms that did not require treatment (SMBG <180 mg/dl) increased from 24 to 42%. The proposed alarm evaluation method provides information for choosing appropriate alarm thresholds and reflects the clinical utility of CGM alarms. 2010 Diabetes Technology Society.

  12. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    DOE PAGES

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; ...

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less

  13. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  14. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of wastemore » water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program« less

  15. Clinical microbiology laboratories do not always detect resistance of Haemophilus influenzae with disk or tablet diffusion methods. Finnish Study Group for Antimicrobial Resistance (FiRe).

    PubMed

    Manninen, R; Huovinen, P; Nissinen, A

    1998-04-01

    The performance of disk diffusion testing of Haemophilus influenzae was evaluated in 20 laboratories. Thirteen disk-medium-breakpoint-inoculum modifications were used in Finnish clinical microbiology laboratories. The performance of various methods was evaluated by testing a susceptible control strain and one with non-beta-lactamase-mediated ampicillin resistance 10 times in 16 laboratories. Gaps in millimeters were measured between these two groups of results. The strains were separated by a gap of at least 5 mm in 8/16 laboratories testing ampicillin, in 7/15 laboratories testing cefaclor, in 5/ 16 laboratories testing cefuroxime, and in 15/16 laboratories testing trimethoprim-sulfa. Detection of ampicillin resistance was better with 2.5 microg tablets than with 10 microg disks or 33 microg tablets. For MIC-determinations, 785 isolates and their disk diffusion results were collected. None of the 12 clinical isolates with non-beta-lactamase-mediated ampicillin resistance was detected as resistant in the participating laboratories. The ampicillin and cefaclor results of the isolates were no better even when a laboratory was able to separate the control strains. Cefaclor results were unreliable because of poor disk diffusion-MIC correspondence and incoherent breakpoint references. Interlaboratory variation of the zone diameters caused false intermediate results of cefuroxime-susceptible strains. When ampicillin, cefaclor and cefuroxime were tested, the discrimination of laboratories using disks and tablets was equal, whereas the laboratories using paper disks were better able to detect trimethoprim-sulfa resistance.

  16. Detection of rebar delamination using modal analysis

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.

    2003-08-01

    A non-destructive method for early detection of reinforcement steel bars (re-bar) delamination in concrete structures has been developed. This method, termed modal analysis, has been shown effective in both laboratory and field experiments. In modal analysis, an audio speaker is used to generate flexural resonant modes in the re-bar in reinforced concrete structures. Vibrations associated with these modes are coupled to the surrounding concrete and propagate to the surface where they are detected using a laser vibrometer and/or accelerometer. Monitoring both the frequency and amplitude of these vibrations provides information on the bonding state of the embedded re-bar. Laboratory measurements were performed on several specially prepared concrete blocks with re-bar of varying degrees of simulated corrosion. Field measurements were performed on an old bridge about to be torn down in Howard County, Maryland and the results compared with those obtained using destructive analysis of the bridge after demolition. Both laboratory and field test results show this technique to be sensitive to re-bar delamination.

  17. Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Yu; Cunningham, Brian T.

    2014-04-01

    We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten

  18. Evaluation of an improved fiberoptics luminescence skin monitor with background correction.

    PubMed

    Vo-Dinh, T

    1987-06-01

    In this work, an improved version of a fiberoptics luminescence monitor, the prototype luminoscope II, is evaluated for in situ quantitative measurements. The instrument was developed to detect traces of luminescing organic contaminants on skin. An electronic background-nulling system was designed and incorporated into the instrument to compensate for various skin background emissions. A dose-response curve for a coal liquid spotted on mouse skin was established. The results illustrated the usefulness of the instrument for in vivo detection of organic materials on laboratory mouse skin.

  19. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  20. Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland

    USGS Publications Warehouse

    Weir, L.A.; Royle, J. Andrew; Nanjappa, P.; Jung, R.E.

    2005-01-01

    One of the most fundamental problems in monitoring animal populations is that of imperfect detection. Although imperfect detection can be modeled, studies examining patterns in occurrence often ignore detection and thus fail to properly partition variation in detection from that of occurrence. In this study, we used anuran calling survey data collected on North American Amphibian Monitoring Program routes in eastern Maryland to investigate factors that influence detection probability and site occupancy for 10 anuran species. In 2002, 17 calling survey routes in eastern Maryland were surveyed to collect environmental and species data nine or more times. To analyze these data, we developed models incorporating detection probability and site occupancy. The results suggest that, for more than half of the 10 species, detection probabilities vary most with season (i.e., day-of-year), air temperature, time, and moon illumination, whereas site occupancy may vary by the amount of palustrine forested wetland habitat. Our results suggest anuran calling surveys should document air temperature, time of night, moon illumination, observer skill, and habitat change over time, as these factors can be important to model-adjusted estimates of site occupancy. Our study represents the first formal modeling effort aimed at developing an analytic assessment framework for NAAMP calling survey data.

  1. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    PubMed

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  2. New reporting procedures based on long-term method detection levels and some considerations for interpretations of water-quality data provided by the U.S. Geological Survey National Water Quality Laboratory

    USGS Publications Warehouse

    Childress, Carolyn J. Oblinger; Foreman, William T.; Connor, Brooke F.; Maloney, Thomas J.

    1999-01-01

    This report describes the U.S. Geological Survey National Water Quality Laboratory?s approach for determining long-term method detection levels and establishing reporting levels, details relevant new reporting conventions, and provides preliminary guidance on interpreting data reported with the new conventions. At the long-term method detection level concentration, the risk of a false positive detection (analyte reported present at the long-term method detection level when not in sample) is no more than 1 percent. However, at the long-term method detection level, the risk of a false negative occurrence (analyte reported not present when present at the long-term method detection level concentration) is up to 50 percent. Because this false negative rate is too high for use as a default 'less than' reporting level, a more reliable laboratory reporting level is set at twice the determined long-term method detection level. For all methods, concentrations measured between the laboratory reporting level and the long-term method detection level will be reported as estimated concentrations. Non-detections will be censored to the laboratory reporting level. Adoption of the new reporting conventions requires a full understanding of how low-concentration data can be used and interpreted and places responsibility for using and presenting final data with the user rather than with the laboratory. Users must consider that (1) new laboratory reporting levels may differ from previously established minimum reporting levels, (2) long-term method detection levels and laboratory reporting levels may change over time, and (3) estimated concentrations are less certain than concentrations reported above the laboratory reporting level. The availability of uncensored but qualified low-concentration data for interpretation and statistical analysis is a substantial benefit to the user. A decision to censor data after they are reported from the laboratory may still be made by the user, if

  3. Portable 4.6 Micrometers Laser Absorption Spectrometer for Carbon Monoxide Monitoring and Fire Detection

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.

    2013-01-01

    The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.

  4. Evaluation of a regional monitoring program's statistical power to detect temporal trends in forest health indicators

    USGS Publications Warehouse

    Perles, Stephanie J.; Wagner, Tyler; Irwin, Brian J.; Manning, Douglas R.; Callahan, Kristina K.; Marshall, Matthew R.

    2014-01-01

    Forests are socioeconomically and ecologically important ecosystems that are exposed to a variety of natural and anthropogenic stressors. As such, monitoring forest condition and detecting temporal changes therein remain critical to sound public and private forestland management. The National Parks Service’s Vital Signs monitoring program collects information on many forest health indicators, including species richness, cover by exotics, browse pressure, and forest regeneration. We applied a mixed-model approach to partition variability in data for 30 forest health indicators collected from several national parks in the eastern United States. We then used the estimated variance components in a simulation model to evaluate trend detection capabilities for each indicator. We investigated the extent to which the following factors affected ability to detect trends: (a) sample design: using simple panel versus connected panel design, (b) effect size: increasing trend magnitude, (c) sample size: varying the number of plots sampled each year, and (d) stratified sampling: post-stratifying plots into vegetation domains. Statistical power varied among indicators; however, indicators that measured the proportion of a total yielded higher power when compared to indicators that measured absolute or average values. In addition, the total variability for an indicator appeared to influence power to detect temporal trends more than how total variance was partitioned among spatial and temporal sources. Based on these analyses and the monitoring objectives of theVital Signs program, the current sampling design is likely overly intensive for detecting a 5 % trend·year−1 for all indicators and is appropriate for detecting a 1 % trend·year−1 in most indicators.

  5. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  6. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  7. Detecting temporal change in freshwater fisheries surveys: statistical power and the important linkages between management questions and monitoring objectives

    USGS Publications Warehouse

    Wagner, Tyler; Irwin, Brian J.; James R. Bence,; Daniel B. Hayes,

    2016-01-01

    Monitoring to detect temporal trends in biological and habitat indices is a critical component of fisheries management. Thus, it is important that management objectives are linked to monitoring objectives. This linkage requires a definition of what constitutes a management-relevant “temporal trend.” It is also important to develop expectations for the amount of time required to detect a trend (i.e., statistical power) and for choosing an appropriate statistical model for analysis. We provide an overview of temporal trends commonly encountered in fisheries management, review published studies that evaluated statistical power of long-term trend detection, and illustrate dynamic linear models in a Bayesian context, as an additional analytical approach focused on shorter term change. We show that monitoring programs generally have low statistical power for detecting linear temporal trends and argue that often management should be focused on different definitions of trends, some of which can be better addressed by alternative analytical approaches.

  8. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  9. An intra-laboratory cultural and real-time PCR method comparison and evaluation for the detection of subclinical paratuberculosis in dairy herds.

    PubMed

    Heuvelink, Annet; Hassan, Abdulwahed Ahmed; van Weering, Hilmar; van Engelen, Erik; Bülte, Michael; Akineden, Ömer

    2017-05-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is a vigorous microorganism which causes incurable chronic enteritis, Johne's disease (JD) in cattle. A target of control programmes for JD is to accurately detect MAP-infected cattle early to reduce disease transmission. The present study evaluated the efficacy of two different cultural procedures and a TaqMan real-time PCR assay for detection of subclinical paratuberculosis in dairy herds. Therefore, sixty-one faecal samples were collected from two Dutch dairy herds (n = 40 and n = 21, respectively) which were known to be MAP-ELISA positive. All individual samples were assessed using two different cultural protocols in two different laboratories. The first cultural protocol (first laboratory) included a decontamination step with 0.75% hexadecylpyridinium chloride (HPC) followed by inoculation on Herrold's egg yolk media (HEYM). The second protocol (second laboratory) comprised of a decontamination step using 4% NaOH and malachite green-oxalic acid followed by inoculation on two media, HEYM and in parallel on modified Löwenstein-Jensen media (mLJ). For the TaqMan real-time PCR assay, all faecal samples were tested in two different laboratories using TaqMan® MAP (Johne's) reagents (Life Technologies). The cultural procedures revealed positive reactions in 1.64% of the samples for cultivation protocol 1 and 6.56 and 8.20% of the samples for cultivation protocol 2, respectively. The results of the TaqMan real-time PCR performed in two different laboratories yielded 13.11 and 19.76% positive reaction. The kappa test showed proportional agreement 0.54 between the mLJ media (second laboratory) and TaqMan® real-time PCR method (second laboratory). In conclusion, the TaqMan real-time PCR could be a strongly useful and efficient assay for the detection of subclinical paratuberculosis in dairy cattle leading to an improvement in the efficiency of MAP control strategies.

  10. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    PubMed

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.

  11. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China

    PubMed Central

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun

    2015-01-01

    Introduction To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. Materials and methods 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. Results The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479 / 1307), 38% (228 / 598), and 36% (449 / 1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Conclusions Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them. PMID:26110033

  12. Syndromic Surveillance Using Veterinary Laboratory Data: Algorithm Combination and Customization of Alerts

    PubMed Central

    Dórea, Fernanda C.; McEwen, Beverly J.; McNab, W. Bruce; Sanchez, Javier; Revie, Crawford W.

    2013-01-01

    Background Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. Methods This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. Results The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. Conclusion The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes. PMID:24349216

  13. Syndromic surveillance using veterinary laboratory data: algorithm combination and customization of alerts.

    PubMed

    Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Sanchez, Javier; Revie, Crawford W

    2013-01-01

    Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes.

  14. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    NASA Astrophysics Data System (ADS)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  15. Sensitive and specific identification by polymerase chain reaction of Eimeria tenella and Eimeria maxima, important protozoan pathogens in laboratory avian facilities.

    PubMed

    Lee, Hyun-A; Hong, Sunhwa; Chung, Yungho; Kim, Okjin

    2011-09-01

    Eimeria tenella and Eimeria maxima are important pathogens causing intracellular protozoa infections in laboratory avian animals and are known to affect experimental results obtained from contaminated animals. This study aimed to find a fast, sensitive, and efficient protocol for the molecular identification of E. tenella and E. maxima in experimental samples using chickens as laboratory avian animals. DNA was extracted from fecal samples collected from chickens and polymerase chain reaction (PCR) analysis was employed to detect E. tenella and E. maxima from the extracted DNA. The target nucleic acid fragments were specifically amplified by PCR. Feces secreting E. tenella and E. maxima were detected by a positive PCR reaction. In this study, we were able to successfully detect E. tenella and E. maxima using the molecular diagnostic method of PCR. As such, we recommended PCR for monitoring E. tenella and E. maxima in laboratory avian facilities.

  16. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    2003-01-01

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application. Published by Elsevier Science Ltd on behalf of COSPAR.

  17. Automated electrohysterographic detection of uterine contractions for monitoring of pregnancy: feasibility and prospects.

    PubMed

    Muszynski, C; Happillon, T; Azudin, K; Tylcz, J-B; Istrate, D; Marque, C

    2018-05-08

    Preterm birth is a major public health problem in developed countries. In this context, we have conducted research into outpatient monitoring of uterine electrical activity in women at risk of preterm delivery. The objective of this preliminary study was to perform automated detection of uterine contractions (without human intervention or tocographic signal, TOCO) by processing the EHG recorded on the abdomen of pregnant women. The feasibility and accuracy of uterine contraction detection based on EHG processing were tested and compared to expert decision using external tocodynamometry (TOCO) . The study protocol was approved by local Ethics Committees under numbers ID-RCB 2016-A00663-48 for France and VSN 02-0006-V2 for Iceland. Two populations of women were included (threatened preterm birth and labour) in order to test our system of recognition of the various types of uterine contractions. EHG signal acquisition was performed according to a standardized protocol to ensure optimal reproducibility of EHG recordings. A system of 18 Ag/AgCl surface electrodes was used by placing 16 recording electrodes between the woman's pubis and umbilicus according to a 4 × 4 matrix. TOCO was recorded simultaneously with EHG recording. EHG signals were analysed in real-time by calculation of the nonlinear correlation coefficient H 2 . A curve representing the number of correlated pairs of signals according to the value of H 2 calculated between bipolar signals was then plotted. High values of H 2 indicated the presence of an event that may correspond to a contraction. Two tests were performed after detection of an event (fusion and elimination of certain events) in order to increase the contraction detection rate. The EHG database contained 51 recordings from pregnant women, with a total of 501 contractions previously labelled by analysis of the corresponding tocographic recording. The percentage recognitions obtained by application of the method based on coefficient H 2 was

  18. Monitor for status epilepticus seizures

    NASA Technical Reports Server (NTRS)

    Johnson, Mark; Simkins, Thomas

    1994-01-01

    This paper describes the sensor technology and associated electronics of a monitor designed to detect the onset of a seizure disorder called status epilepticus. It is a condition that affects approximately 3-5 percent of those individuals suffering from epilepsy. This form of epilepsy does not follow the typical cycle of start-peak-end. The convulsions continue until medically interrupted and are life threatening. The mortality rate is high without prompt medical treatment at a suitable facility. The paper describes the details of a monitor design that provides an inexpensive solution to the needs of those responsible for the care of individuals afflicted with this disorder. The monitor has been designed as a cooperative research and development effort involving the United States Army Armament Research, Development, and Engineering Center's Benet Laboratories (Benet) and the Cerebral Palsy Center for the Disabled (Center), in association with the Department of Neurology at Albany Medical College (AMC). Benet has delivered a working prototype of the device for field testing, in collaboration with Albany Medical College. The Center has identified several children in need of special monitoring and has agreed to pursue commercialization of the device.

  19. Laboratory characterization and astrophysical detection of vibrationally excited states of vinyl cyanide in Orion-KL

    NASA Astrophysics Data System (ADS)

    López, A.; Tercero, B.; Kisiel, Z.; Daly, A. M.; Bermúdez, C.; Calcutt, H.; Marcelino, N.; Viti, S.; Drouin, B. J.; Medvedev, I. R.; Neese, C. F.; Pszczółkowski, L.; Alonso, J. L.; Cernicharo, J.

    2014-12-01

    Context. We perform a laboratory characterization in the 18-1893 GHz range and astronomical detection between 80-280 GHz in Orion-KL with IRAM-30 m of CH2CHCN (vinyl cyanide) in its ground and vibrationally excited states. Aims: Our aim is to improve the understanding of rotational spectra of vibrationally excited vinyl cyanide with new laboratory data and analysis. The laboratory results allow searching for these excited state transitions in the Orion-KL line survey. Furthermore, rotational lines of CH2CHCN contribute to the understanding of the physical and chemical properties of the cloud. Methods: Laboratory measurements of CH2CHCN made on several different frequency-modulated spectrometers were combined into a single broadband 50-1900 GHz spectrum and its assignment was confirmed by Stark modulation spectra recorded in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of vinyl cyanide detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. Results: Detailed characterization of laboratory spectra of CH2CHCN in nine different excited vibrational states: ν11 = 1, ν15 = 1, ν11 = 2, ν10 = 1 ⇔ (ν11 = 1,ν15 = 1), ν11 = 3/ν15 = 2/ν14 = 1, (ν11 = 1,ν10 = 1) ⇔ (ν11 = 2,ν15 = 1), ν9 = 1, (ν11 = 1,ν15 = 2) ⇔ (ν10 = 1,ν15 = 1) ⇔ (ν11 = 1,ν14 = 1), and ν11 = 4 are determined, as well as the detection of transitions in the ν11 = 2 and ν11 = 3 states for the first time in Orion-KL and of those in the ν10 = 1 ⇔ (ν11 = 1,ν15 = 1) dyad of states for the first time in space. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature, which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The lowest energy vibrationally excited states of vinyl cyanide, such as ν11 = 1 (at 328.5 K), ν15 = 1 (at 478.6 K), ν11 = 2 (at 657.8 K), the ν10

  20. Monitoring Sensitive Bat Species at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenberg, Kari M.

    Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. Inmore » 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that

  1. Optical nanofiber temperature monitoring via double heterodyne detection

    NASA Astrophysics Data System (ADS)

    Anderson, P.; Jalnapurkar, S.; Moiseev, E. S.; Chang, D.; Barclay, P. E.; Lezama, A.; Lvovsky, A. I.

    2018-05-01

    Tapered optical fibers (nanofibers) whose diameters are smaller than the optical wavelength are very fragile and can be easily destroyed if excessively heated by energy dissipated from the transmitted light. We present a technique for monitoring the nanofiber temperature using two-stage heterodyne detection. The phase of the heterodyne output signal is determined by that of the transmitted optical field, which, in turn, depends on the temperature through the refractive index. From the phase data, by numerically solving the heat exchange equations, the temperature distribution along the nanofiber is determined. The technique is applied to the controlled heating of the nanofiber by a laser in order to remove rubidium atoms adsorbed on its surface that substantially degrade its transmission. Almost 90% of the nanofiber's original transmission is recovered.

  2. Biomedical laboratory science education: standardising teaching content in resource-limited countries.

    PubMed

    Arneson, Wendy; Robinson, Cathy; Nyary, Bryan

    2013-01-01

    There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA). Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS) lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  3. Monitoring Least Bitterns (Ixobrychis exilis) in Vermont: Detection probability and occupancy modeling

    USGS Publications Warehouse

    Cherukuri, Aswini; Strong, Allan; Donovan, Therese M.

    2018-01-01

    Ixobrychus exillis (Least Bittern) is listed as a species of high concern in the North American Waterbird Conservation Plan and is a US Fish and Wildlife Service migratory bird species of conservation concern in the Northeast. Little is known about the population of Least Bitterns in the Northeast because of their low population density, tendency to nest in dense wetland vegetation, and secretive behavior. Urban and agricultural development is expected to encroach on and degrade suitable wetland habitat; however, we cannot predict the effects on Least Bittern populations without more accurate information on their abundance and distribution. We conducted surveys of wetlands in Vermont to assess the efficacy of a monitoring protocol and to establish baseline Least Bittern abundance and distribution data at a sample of 29 wetland sites. Surveys yielded detections of 31 individuals at 15 of 29 sites across 3 biophysical regions and at 5 sites where occupancy had not been previously reported. Probability of occupancy was positively related to wetland size and number of patches, though the relationships were not strong enough to conclude if these were true determinants of occupancy. Call—response broadcast surveys yielded 30 detections, while passive surveys yielded 13. Call—response broadcasts (P = 0.897) increased the rate of detection by 55% compared to passive surveys (P = 0.577). Our results suggest that call—response broadcast surveys are an effective means of assessing Least Bittern occupancy and may reduce bias in long-term monitoring programs.

  4. Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor.

    PubMed

    Wu, Hsin-Yu; Cunningham, Brian T

    2014-05-21

    We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml(-1)) well below typical administered dosages (mg ml(-1)). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.

  5. CAPILLARY GAS CHROMATOGRAPHY-ATOMIC EMISSION DETECTION METHOD FOR THE DETERMINATION OF PENTYLATED ORGANOTIN COMPOUNDS: INTERLABORATORY STUDY

    EPA Science Inventory

    A capillary gas chromatography-atomic emission detection (GC-AED) method was developed for the U. S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, NV, for determination of selected organotin compounds. Here we report on an interlabora...

  6. Monitoring of Progressive Damage in Buildings Using Laser Scan Data

    NASA Astrophysics Data System (ADS)

    Puente, I.; Lindenbergh, R.; Van Natijne, A.; Esposito, R.; Schipper, R.

    2018-05-01

    Vulnerability of buildings to natural and man-induced hazards has become a main concern for our society. Ensuring their serviceability, safety and sustainability is of vital importance and the main reason for setting up monitoring systems to detect damages at an early stage. In this work, a method is presented for detecting changes from laser scan data, where no registration between different epochs is needed. To show the potential of the method, a case study of a laboratory test carried out at the Stevin laboratory of Delft University of Technology was selected. The case study was a quasi-static cyclic pushover test on a two-story high unreinforced masonry structure designed to simulate damage evolution caused by cyclic loading. During the various phases, we analysed the behaviour of the masonry walls by monitoring the deformation of each masonry unit. First a plane is fitted to the selected wall point cloud, consisting of one single terrestrial laser scan, using Principal Component Analysis (PCA). Second, the segmentation of individual elements is performed. Then deformations with respect to this plane model, for each epoch and specific element, are determined by computing their corresponding rotation and cloud-to-plane distances. The validation of the changes detected within this approach is done by comparison with traditional deformation analysis based on co-registered TLS point clouds between two or more epochs of building measurements. Initial results show that the sketched methodology is indeed able to detect changes at the mm level while avoiding 3D point cloud registration, which is a main issue in computer vision and remote sensing.

  7. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Julie B.

    2013-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resourcemore » recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.« less

  8. An international survey of current practice in the laboratory assessment of anticoagulant therapy with heparin.

    PubMed

    Favaloro, Emmanuel J; Bonar, Roslyn; Sioufi, John; Wheeler, Michael; Low, Joyce; Aboud, Margaret; Lloyd, John; Street, Alison; Marsden, Katherine

    2005-06-01

    We conducted a survey of laboratory practice for assessment of heparin anticoagulant therapy by participants of the Royal College of Pathologists of Australasia Quality Assurance Program (RCPA QAP). A questionnaire was sent to 646 laboratories enrolled in the Haematology component of the QAP, requesting details of tests used for monitoring heparin therapy. Seventy laboratories (10.8%) returned results that indicated that they performed laboratory monitoring of heparin therapy. Most laboratories (69/70 = 98.6%) use the activated partial thromboplastin time (APTT) to monitor unfractionated heparin, with eight (11.4%) also using the APTT for monitoring low molecular weight (LMW) heparin. Five (7.1%) laboratories use the thrombin time (TT) test to help monitor heparin therapy and 37 (52.9%) laboratories use an anti-Xa assay to monitor heparin (either LMW or unfractionated). Normal reference ranges (NRR) for APTT differed considerably between laboratories, even those using the same reagent. Therapeutic ranges (TR) also differed considerably between laboratories, for both APTT and the anti-Xa assay. Laboratory differences in NRR and TR using the same reagents could only be partly explained by the use of different instrumentation. There is a large variation in current laboratory practice relating to monitoring of heparin anticoagulant therapy. This finding is similar to that of a similar survey conducted by the RCPA QAP almost a decade ago. This study suggests that better standardisation is still required for laboratory monitoring of heparin therapy.

  9. Aerial Detection, Ground Evaluation, and Monitoring of the Southern Pine Beetle: State Perspectives

    Treesearch

    Ronald F. Billings

    2011-01-01

    The southern pine beetle (SPB), is recognized as the most serious insect pest of southern pine forests. Outbreaks occur almost every year somewhere within its wide range, requiring intensive suppression efforts to minimize resource losses to Federal, State, and private forests. Effective management involves annual monitoring of SPB populations and aerial detection and...

  10. Detection of lesser grain borer larvae in internally infested kernels of brown rice and wheat using an electrically conductive roller mill

    USDA-ARS?s Scientific Manuscript database

    Modifications were made to a small laboratory mill to enable the detection of rice kernels infested by immature, hidden stored-grain insects. The mill, which was originally designed for wheat, monitors the electrical conductance through the grain and detects kernels that are infested with live inse...

  11. A practical tool for monitoring the performance of measuring systems in a laboratory network: report of an ACB Working Group.

    PubMed

    Ayling, Pete; Hill, Robert; Jassam, Nuthar; Kallner, Anders; Khatami, Zahra

    2017-11-01

    Background A logical consequence of the introduction of robotics and high-capacity analysers has seen a consolidation to larger units. This requires new structures and quality systems to ensure that laboratories deliver consistent and comparable results. Methods A spreadsheet program was designed to accommodate results from up to 12 different instruments/laboratories and present IQC data, i.e. Levey-Jennings and Youden plots and comprehensive numerical tables of the performance of each item. Input of data was made possible by a 'data loader' by which IQC data from the individual instruments could be transferred to the spreadsheet program on line. Results A set of real data from laboratories is used to populate the data loader and the networking software program. Examples are present from the analysis of variance components, the Levey-Jennings and Youden plots. Conclusions This report presents a software package that allows the simultaneous management and detailed monitoring of the performance of up to 12 different instruments/laboratories in a fully interactive mode. The system allows a quality manager of networked laboratories to have a continuous updated overview of the performance. This software package has been made available at the ACB website.

  12. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitt, Daniel Glenn; Birdsell, Kay Hanson; Jennings, Terry L.

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automatedmore » dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data

  13. External quality assessment of medical laboratories in Croatia: preliminary evaluation of post-analytical laboratory testing.

    PubMed

    Krleza, Jasna Lenicek; Dorotic, Adrijana; Grzunov, Ana

    2017-02-15

    Proper standardization of laboratory testing requires assessment of performance after the tests are performed, known as the post-analytical phase. A nationwide external quality assessment (EQA) scheme implemented in Croatia in 2014 includes a questionnaire on post-analytical practices, and the present study examined laboratory responses in order to identify current post-analytical phase practices and identify areas for improvement. In four EQA exercises between September 2014 and December 2015, 145-174 medical laboratories across Croatia were surveyed using the Module 11 questionnaire on the post-analytical phase of testing. Based on their responses, the laboratories were evaluated on four quality indicators: turnaround time (TAT), critical values, interpretative comments and procedures in the event of abnormal results. Results were presented as absolute numbers and percentages. Just over half of laboratories (56.3%) monitored TAT. Laboratories varied substantially in how they dealt with critical values. Most laboratories (65-97%) issued interpretative comments with test results. One third of medical laboratories (30.6-33.3%) issued abnormal test results without confirming them in additional testing. Our results suggest that the nationwide post-analytical EQA scheme launched in 2014 in Croatia has yet to be implemented to the full. To close the gaps between existing recommendations and laboratory practice, laboratory professionals should focus on ensuring that TAT is monitored and lists of critical values are established within laboratories. Professional bodies/institutions should focus on clarify and harmonized rules to standardized practices and applied for adding interpretative comments to laboratory test results and for dealing with abnormal test results.

  14. How Can We Better Detect Unauthorized GMOs in Food and Feed Chains?

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; De Loose, Marc; Debode, Frédéric; Roosens, Nancy H

    2017-06-01

    Current GMO detection systems have limited abilities to detect unauthorized genetically modified organisms (GMOs). Here, we propose a new workflow, based on next-generation sequencing (NGS) technology, to overcome this problem. In providing information about DNA sequences, this high-throughput workflow can distinguish authorized and unauthorized GMOs by strengthening the tools commonly used by enforcement laboratories with the help of NGS technology. In addition, thanks to its massive sequencing capacity, this workflow could be used to monitor GMOs present in the food and feed chain. In view of its potential implementation by enforcement laboratories, we discuss this innovative approach, its current limitations, and its sustainability of use over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  16. A Total Validation Approach for assessing the RST technique in forest fire detection and monitoring

    NASA Astrophysics Data System (ADS)

    Mazzeo, Giuseppe; Baldassarre, Giuseppe; Corrado, Rosita; Filizzola, Carolina; Genzano, Nicola; Marchese, Francesco; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    Several studies have shown that high temporal resolution sensors such as AVHRR (Advanced Very High Resolution Radiometer) aboard NOAA (National Oceanic and Atmospheric Administration) satellites, MODIS (Moderate Resolution Imaging Spectroradiometer) aboard EOS (Earth Observing System) satellites and, more recently, SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard MSG (Meteosat Second Generation) platforms, are suitable for detecting and monitoring forest fires. At the same time, many satellite-based techniques have been proposed for fire detection, but most of them, based on single image fixed-thresholds, often generate false alarms mainly due to the contribution of the reflected solar radiation in daytime, atmospheric effects, etc., so that they result to have scarce reliability when applied in an operational scenario. Other algorithms, which are quite reliable thanks to their multitemporal and/or contextual nature, may turn out to be hardly applicable so that they cannot be inserted in whatever operative schemes. An innovative approach, named RST - Robust Satellite Technique, already applied for the monitoring of major natural and environmental risks has been recently used for fire detection and monitoring. The RST approach is based on local (in space and time) thresholds which are automatically computed on the basis of long temporal series of satellite data. It demonstrated already good performances in many cases of applications, but recently for the first time a total validation approach (TVA) was experimented in collaboration with administrators, decision makers and local agencies, in order to evaluate the actual reliability and sensitivity of RST in a pre-operational context. TVA, based on a systematic study of the origin of each hot spot identified by RST, allowed us to recognize most of them as actual thermal anomalies (associated to small fires, to variations of thermal emission in industrial plants, etc.) and not as false alarms simply

  17. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  18. Automated terrestrial laser scanning with near-real-time change detection - monitoring of the Séchilienne landslide

    NASA Astrophysics Data System (ADS)

    Kromer, Ryan A.; Abellán, Antonio; Hutchinson, D. Jean; Lato, Matt; Chanut, Marie-Aurelie; Dubois, Laurent; Jaboyedoff, Michel

    2017-05-01

    We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.

  19. Handheld hyperspectral imager for standoff detection of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard

    2004-08-01

    Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.

  20. Monitoring in Situ Anaerobic Alkylbenzene Biodegradation Based on Mass Spectrometric Detection of Unique Metabolites or Real-Time PCR Detection of a Catabolic Gene

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Kane, S. R.

    2002-12-01

    Monitored natural attenuation (MNA) can be a cost-effective and viable approach for remediation of hydrocarbon-contaminated groundwater. However, regulatory acceptance of the approach is often contingent on monitoring that can convincingly demonstrate the role of microbial degradation. Recent advances in anaerobic hydrocarbon biochemistry, analytical chemistry, and molecular biology have fostered the development of powerful new techniques that can be applied to MNA of BTEX (benzene, toluene, ethylbenzene, and xylenes). Here we report two independent methods that have been developed to monitor in situ, anaerobic biodegradation of toluene and xylenes. A method has been developed for rapid, sensitive, and highly selective detection of distinctive indicators of anaerobic alkylbenzene metabolism. The target metabolites, benzylsuccinic acid (BS) and methylbenzylsuccinic acid (MeBS) isomers, have no known sources other than anaerobic toluene or xylene degradation; thus, their mere presence in groundwater provides definitive evidence of in situ metabolism. The method, which involves small sample size (<1 mL) and no extraction/concentration steps, relies on isotope dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) with selected reaction monitoring. Detection limits for benzylsuccinates were determined to be ca. 0.3 μg/L and accuracy and precision were favorable in a groundwater matrix. The LC/MS/MS method was used to characterize geographic and temporal distributions of benzylsuccinates in an anaerobic, hydrocarbon-contaminated aquifer. BS was never detected and MeBS isomers were detected in the three wells with the highest concentrations of BTEX; MeBS concentrations ranged from <0.3 to 205 μg/L. A strong linear correlation was found between concentrations of total MeBS isomers and their parent compounds, xylenes. A monitoring method based on real-time Polymerase Chain Reaction (PCR) analysis has been developed to specifically quantify populations of

  1. Prospective multi-center study of an automatic online seizure detection system for epilepsy monitoring units.

    PubMed

    Fürbass, F; Ossenblok, P; Hartmann, M; Perko, H; Skupch, A M; Lindinger, G; Elezi, L; Pataraia, E; Colon, A J; Baumgartner, C; Kluge, T

    2015-06-01

    A method for automatic detection of epileptic seizures in long-term scalp-EEG recordings called EpiScan will be presented. EpiScan is used as alarm device to notify medical staff of epilepsy monitoring units (EMUs) in case of a seizure. A prospective multi-center study was performed in three EMUs including 205 patients. A comparison between EpiScan and the Persyst seizure detector on the prospective data will be presented. In addition, the detection results of EpiScan on retrospective EEG data of 310 patients and the public available CHB-MIT dataset will be shown. A detection sensitivity of 81% was reached for unequivocal electrographic seizures with false alarm rate of only 7 per day. No statistical significant differences in the detection sensitivities could be found between the centers. The comparison to the Persyst seizure detector showed a lower false alarm rate of EpiScan but the difference was not of statistical significance. The automatic seizure detection method EpiScan showed high sensitivity and low false alarm rate in a prospective multi-center study on a large number of patients. The application as seizure alarm device in EMUs becomes feasible and will raise the efficiency of video-EEG monitoring and the safety levels of patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. An adaptive field detection method for bridge scour monitoring using motion-sensing radio transponders (RFIDs).

    DOT National Transportation Integrated Search

    2014-01-01

    A comprehensive field detection method is proposed that is aimed at developing advanced capability for : reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on...

  3. A novel mobile system for radiation detection and monitoring

    NASA Astrophysics Data System (ADS)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their

  4. Silicon Carbide Temperature Monitor Processing Improvements. Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy Casey; Daw, Joshua Earl; Ahamad Al Rashdan

    2016-01-29

    Silicon carbide (SiC) temperature monitors are used as temperature sensors in Advanced Test Reactor (ATR) irradiations at the Idaho National Laboratory (INL). Although thermocouples are typically used to provide real-time temperature indication in instrumented lead tests, other indicators, such as melt wires, are also often included in such tests as an independent technique of detecting peak temperatures incurred during irradiation. In addition, less expensive static capsule tests, which have no leads attached for real-time data transmission, often rely on melt wires as a post-irradiation technique for peak temperature indication. Melt wires are limited in that they can only detect whethermore » a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that occurred during irradiation. As part of the process initiated to make SiC temperature monitors available at the ATR, post-irradiation evaluations of these monitors have been previously completed at the High Temperature Test Laboratory (HTTL). INL selected the resistance measurement approach for determining irradiation temperature from SiC temperature monitors because it is considered to be the most accurate measurement. The current process involves the repeated annealing of the SiC monitors at incrementally increasing temperature, with resistivity measurements made between annealing steps. The process is time consuming and requires the nearly constant attention of a trained staff member. In addition to the expensive and lengthy post analysis required, the current process adds many potential sources of error in the measurement, as the sensor must be repeatedly moved from furnace to test fixture. This time-consuming post irradiation analysis is a significant portion of the total cost of using these otherwise inexpensive sensors. An additional consideration of this research is that, if the SiC post processing can be

  5. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  6. Spectrophotometric color measurement for early detection and monitoring of greening on granite buildings.

    PubMed

    Sanmartín, P; Vázquez-Nion, D; Silva, B; Prieto, B

    2012-01-01

    This paper addresses the detection and monitoring of the development of epilithic phototrophic biofilms on the granite façade of an institutional building in Santiago de Compostela (NW Spain), and reports a case study of preventive conservation. The results provide a basis for establishing criteria for the early detection of phototrophic colonization (greening) and for monitoring its development on granite buildings by the use of color changes recorded with a portable spectrophotometer and represented in the CIELAB color space. The results show that parameter b* (associated with changes of yellowness-blueness) provides the earliest indication of colonization and varies most over time, so that it is most important in determining the total color change. The limit of perception of the greening on a granite surface was also established in a psycho-physical experiment, as Δb*: +0.59 CIELAB units that correspond, in the present study, to 6.3 μg of biomass dry weight cm(-2) and (8.43 ± 0.24) × 10(-3) μg of extracted chlorophyll a cm(-2).

  7. Molecular detection of Borrelia burgdorferi sensu lato – An analytical comparison of real-time PCR protocols from five different Scandinavian laboratories

    PubMed Central

    Faller, Maximilian; Wilhelmsson, Peter; Kjelland, Vivian; Andreassen, Åshild; Dargis, Rimtas; Quarsten, Hanne; Dessau, Ram; Fingerle, Volker; Margos, Gabriele; Noraas, Sølvi; Ornstein, Katharina; Petersson, Ann-Cathrine; Matussek, Andreas; Lindgren, Per-Eric; Henningsson, Anna J.

    2017-01-01

    Introduction Lyme borreliosis (LB) is the most common tick transmitted disease in Europe. The diagnosis of LB today is based on the patient´s medical history, clinical presentation and laboratory findings. The laboratory diagnostics are mainly based on antibody detection, but in certain conditions molecular detection by polymerase chain reaction (PCR) may serve as a complement. Aim The purpose of this study was to evaluate the analytical sensitivity, analytical specificity and concordance of eight different real-time PCR methods at five laboratories in Sweden, Norway and Denmark. Method Each participating laboratory was asked to analyse three different sets of samples (reference panels; all blinded) i) cDNA extracted and transcribed from water spiked with cultured Borrelia strains, ii) cerebrospinal fluid spiked with cultured Borrelia strains, and iii) DNA dilution series extracted from cultured Borrelia and relapsing fever strains. The results and the method descriptions of each laboratory were systematically evaluated. Results and conclusions The analytical sensitivities and the concordance between the eight protocols were in general high. The concordance was especially high between the protocols using 16S rRNA as the target gene, however, this concordance was mainly related to cDNA as the type of template. When comparing cDNA and DNA as the type of template the analytical sensitivity was in general higher for the protocols using DNA as template regardless of the use of target gene. The analytical specificity for all eight protocols was high. However, some protocols were not able to detect Borrelia spielmanii, Borrelia lusitaniae or Borrelia japonica. PMID:28937997

  8. Lessons learned from implementing a wet laboratory molecular training workshop for beach water quality monitoring.

    PubMed

    Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A Denene; Noble, Rachel

    2015-01-01

    Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods.

  9. Lessons Learned from Implementing a Wet Laboratory Molecular Training Workshop for Beach Water Quality Monitoring

    PubMed Central

    Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A. Denene; Noble, Rachel

    2015-01-01

    Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods. PMID:25822486

  10. Using ATP-driven bioluminescence assay to monitor microbial safety in a contemporary human cadaver laboratory.

    PubMed

    Benninger, Brion; Maier, Thomas

    2015-03-01

    The objective of this study was to utilize a cost-effective method for assessing the levels of bacterial, yeast, and mold activity during a human dissection laboratory course. Nowadays, compliance with safety regulations is policed by institutions at higher standards than ever before. Fear of acquiring an unknown infection is one of the top concerns of professional healthcare students, and it provokes anti-laboratory anxiety. Human cadavers are not routinely tested for bacteria and viruses prior to embalming. Human anatomy dissecting rooms that house embalmed cadavers are normally cleaned after the dissected cadavers have been removed. There is no evidence that investigators have ever assessed bacterial and fungal activities using adenosine triphosphate (ATP)-driven bioluminescence assays. A literature search was conducted on texts, journals, and websites regarding bacterial, yeast, and mold activities in an active cadaver laboratory. Midway into a clinical anatomy course, ATP bioluminescence assays were used to swab various sites within the dissection room, including entrance and exiting door handles, water taps, cadaver tables, counter tops, imaging material, X-ray box switches, and the cadaver surfaces. The results demonstrated very low activities on cadaver tables, washing up areas, and exiting door handles. There was low activity on counter tops and X-ray boxes. There was medium activity on the entrance door handles. These findings suggest an inexpensive and accurate method for monitoring safety compliance and microbial activity. Students can feel confident and safe in the environment in which they work. © 2014 Wiley Periodicals, Inc.

  11. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus.

    PubMed

    Tignon, Marylène; Gallardo, Carmina; Iscaro, Carmen; Hutet, Evelyne; Van der Stede, Yves; Kolbasov, Denis; De Mia, Gian Mario; Le Potier, Marie-Frédérique; Bishop, Richard P; Arias, Marisa; Koenen, Frank

    2011-12-01

    A real-time polymerase chain reaction (PCR) assay for the rapid detection of African swine fever virus (ASFV), multiplexed for simultaneous detection of swine beta-actin as an endogenous control, has been developed and validated by four National Reference Laboratories of the European Union for African swine fever (ASF) including the European Union Reference Laboratory. Primers and a TaqMan(®) probe specific for ASFV were selected from conserved regions of the p72 gene. The limit of detection of the new real-time PCR assay is 5.7-57 copies of the ASFV genome. High accuracy, reproducibility and robustness of the PCR assay (CV ranging from 0.7 to 5.4%) were demonstrated both within and between laboratories using different real-time PCR equipments. The specificity of virus detection was validated using a panel of 44 isolates collected over many years in various geographical locations in Europe, Africa and America, including recent isolates from the Caucasus region, Sardinia, East and West Africa. Compared to the OIE-prescribed conventional and real-time PCR assays, the sensitivity of the new assay with internal control was improved, as demonstrated by testing 281 field samples collected in recent outbreaks and surveillance areas in Europe and Africa (170 samples) together with samples obtained through experimental infections (111 samples). This is particularly evident in the early days following experimental infection and during the course of the disease in pigs sub-clinically infected with strains of low virulence (from 35 up to 70dpi). The specificity of the assay was also confirmed on 150 samples from uninfected pigs and wild boar from ASF-free areas. Measured on the total of 431 tested samples, the positive deviation of the new assay reaches 21% or 26% compared to PCR and real-time PCR methods recommended by OIE. This improved and rigorously validated real-time PCR assay with internal control will provide a rapid, sensitive and reliable molecular tool for ASFV

  12. Nuclear Explosion Monitoring History and Research and Development

    NASA Astrophysics Data System (ADS)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  13. Data Report for Monitoring at Six West Virginia Marcellus Shale Development Sites using NETL’s Mobile Air Monitoring Laboratory (July–November 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekney, Natalie J.; Reeder, Matthew; Veloski, Garret A.

    The West Virginia Department of Environmental Protection’s Office of Oil and Gas was directed according to the Natural Gas Horizontal Well Control Act of December 14, 2011 (West Virginia Code §22-6A) to conduct studies of horizontal well drilling activities related to air quality. The planned study, “Noise, Light, Dust, Volatile Organic Compounds Related to Well Location Restrictions,” required determination of the effectiveness of a 625 ft minimum set-back from the center of the pad of a horizontal well drilling site to the nearest occupied dwelling. An investigation was conducted at seven drilling sites by West Virginia University (WVU) and themore » National Energy Technology Laboratory (NETL) to collect data on dust, hydrocarbon compounds and on noise, radiation, and light levels. NETL’s role in this study was to collect measurements of ambient pollutant concentrations at six of the seven selected sites using NETL’s Mobile Air Monitoring Laboratory. The trailer-based laboratory was situated a distance of 492–1,312 ft from each well pad, on which activities included well pad construction, vertical drilling, horizontal drilling, hydraulic fracturing, and flaring, with the objective of evaluating the air quality impact of each activity for 1–4 weeks per site. Measured pollutants included volatile organic compounds (VOCs), coarse and fine particulate matter (PM 10 and PM 2.5, respectively), ozone, methane (CH 4), carbon dioxide (CO 2), carbon isotopes of CH 4 and CO 2, organic carbon (OC), elemental carbon (EC), oxides of nitrogen (NOx), and sulfur dioxide (SO 2).« less

  14. Application of a Subspace-Based Fault Detection Method to Industrial Structures

    NASA Astrophysics Data System (ADS)

    Mevel, L.; Hermans, L.; van der Auweraer, H.

    1999-11-01

    Early detection and localization of damage allow increased expectations of reliability, safety and reduction of the maintenance cost. This paper deals with the industrial validation of a technique to monitor the health of a structure in operating conditions (e.g. rotating machinery, civil constructions subject to ambient excitations, etc.) and to detect slight deviations in a modal model derived from in-operation measured data. In this paper, a statistical local approach based on covariance-driven stochastic subspace identification is proposed. The capabilities and limitations of the method with respect to health monitoring and damage detection are discussed and it is explained how the method can be practically used in industrial environments. After the successful validation of the proposed method on a few laboratory structures, its application to a sports car is discussed. The example illustrates that the method allows the early detection of a vibration-induced fatigue problem of a sports car.

  15. Nitinol Temperature Monitoring Devices

    DTIC Science & Technology

    1976-01-09

    AD-A021 578 NITINOL TEMPERATURE MONITORING DEVICES William J. Buehler, et al Naval Surface Weapons Center Silver Spring, Maryland 9 January 1976...LABORATORY S NITINOL TEMPERATURE MONITORING DEVICES 9 JANUARY 1976 NAVAL SURFACE WEAPONS CENTER WHITE OAK LABORATORY SILVER SPRING, MARYLAND 20910 * Approved...GOVT ACCESSION NO. 3. RECIPIIENT’S CATALOG NUMBER NSWC/WOL/TR 75-140 ____ ______ 4 TITLE (and Subtitle) 5. TYPE OF REPCRT & PERIOD COVERED Nitinol

  16. Integrated Framework for Assessing Impacts of CO₂ Leakage on Groundwater Quality and Monitoring-Network Efficiency: Case Study at a CO₂ Enhanced Oil Recovery Site.

    PubMed

    Yang, Changbing; Hovorka, Susan D; Treviño, Ramón H; Delgado-Alonso, Jesus

    2015-07-21

    This study presents a combined use of site characterization, laboratory experiments, single-well push-pull tests (PPTs), and reactive transport modeling to assess potential impacts of CO2 leakage on groundwater quality and leakage-detection ability of a groundwater monitoring network (GMN) in a potable aquifer at a CO2 enhanced oil recovery (CO2 EOR) site. Site characterization indicates that failures of plugged and abandoned wells are possible CO2 leakage pathways. Groundwater chemistry in the shallow aquifer is dominated mainly by silicate mineral weathering, and no CO2 leakage signals have been detected in the shallow aquifer. Results of the laboratory experiments and the field test show no obvious damage to groundwater chemistry should CO2 leakage occur and further were confirmed with a regional-scale reactive transport model (RSRTM) that was built upon the batch experiments and validated with the single-well PPT. Results of the RSRTM indicate that dissolved CO2 as an indicator for CO2 leakage detection works better than dissolved inorganic carbon, pH, and alkalinity at the CO2 EOR site. The detection ability of a GMN was assessed with monitoring efficiency, depending on various factors, including the natural hydraulic gradient, the leakage rate, the number of monitoring wells, the aquifer heterogeneity, and the time for a CO2 plume traveling to the monitoring well.

  17. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    PubMed

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

  18. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection

    PubMed Central

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  19. Assessment of the diurnal blood pressure profile and detection of non-dippers based on home or ambulatory monitoring.

    PubMed

    Stergiou, George S; Nasothimiou, Efthimia G; Destounis, Antonios; Poulidakis, Emanouel; Evagelou, Irini; Tzamouranis, Dimitrios

    2012-09-01

    A unique advantage of ambulatory blood pressure (ABP) monitoring is the assessment of nocturnal blood pressure (BP) and the detection of non-dippers. This study assessed nocturnal BP and non-dippers using a novel home BP (HBP) monitor. Eighty-one hypertensives performed within 2 weeks ABP (24-h, Microlife WatchBP O3) and HBP monitoring (Microlife WatchBPN) during daytime (6 days, duplicate morning and evening measurements) and nighttime (automated asleep measurements, 3 nights, 3 readings/night). Patients' preference in using ABP or HBP was assessed by a questionnaire. Strong associations were found between ABP and HBP (intraclass correlation coefficients for awake systolic/diastolic 0.75/0.81; asleep 0.87/0.85). No statistically significant difference was found between HBP and ABP (mean difference ± SD awake systolic/diastolic 1.5 ± 10.1/-1.1 ± 6.0 mm Hg, P = 0.20/0.09; asleep -0.4 ± 7.8/-1.0 ± 5.3, P = 0.63/0.09). There was substantial agreement (74%, kappa 0.2) between ABP and HBP in the detection of non-dippers, which was similar to the previously reported test-retest reproducibility of repeated ABP monitoring in the diagnosis of non-dippers. Moderate to severe disturbance from ABP monitoring was reported by 18% of the participants and severe restriction of their daily activities by 9, vs. 3 and 1.5%, respectively for HBP (P < 0.001/ <0.01, for comparisons respectively). Nighttime BP monitoring and cuff discomfort were the main complaints for ABP (46 and 32%, respectively) and HBP (34 and 28%), whereas 89% reported more nighttime sleep disturbance by ABP than HBP (P < 0.001). HBP monitoring appears to be a reliable and well accepted by users alternative to ABP for the assessment of nocturnal BP and the detection of non-dippers.

  20. Direct real-time detection of vapors from explosive compounds.

    PubMed

    Ewing, Robert G; Clowers, Brian H; Atkinson, David A

    2013-11-19

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX, and nitroglycerine along with various compositions containing these substances was demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a nonradioactive ionization source coupled to a mass spectrometer. Direct vapor detection was accomplished in less than 5 s at ambient temperature without sample preconcentration. The several seconds of residence time of analytes in the AFT provided a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3(-) and NO3(-)·HNO3), enabled highly sensitive explosives detection from explosive vapors present in ambient laboratory air. Observed signals from diluted explosive vapors indicated detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284, and 289 for tetryl, PETN, RDX, and NG, respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations sampled in ambient laboratory air, including double base propellants, plastic explosives, and commercial blasting explosives using SIM for the NG, PETN, and RDX product ions.