Saffa, Alhaji; Tate, Anna; Ezeoke, Ifeoma; Jacobs-Wingo, Jasmine; Iqbal, Maryam; Baumgartner, Jennifer; Fine, Anne; Perri, Bianca R; McIntosh, Natasha; Levy Stennis, Natalie; Lee, Kristen; Peterson, Eric; Jones, Lucretia; Helburn, Lisa; Heindrichs, Caroline; Guthartz, Seth; Chamany, Shadi; Starr, David; Scaccia, Allison; Raphael, Marisa; Varma, Jay K; Vora, Neil M
The CDC recommended active monitoring of travelers potentially exposed to Ebola virus during the 2014 West African Ebola virus disease outbreak, which involved daily contact between travelers and health authorities to ascertain the presence of fever or symptoms for 21 days after the travelers' last potential Ebola virus exposure. From October 25, 2014, to December 29, 2015, the New York City Department of Health and Mental Hygiene (DOHMH) monitored 5,359 persons for Ebola virus disease, corresponding to 5,793 active monitoring events. Most active monitoring events were in travelers classified as low (but not zero) risk (n = 5,778; 99%). There were no gaps in contact with DOHMH of ≥2 days during 95% of active monitoring events. Instances of not making any contact with travelers decreased after CDC began distributing mobile telephones at the airport. Ebola virus disease-like symptoms or a temperature ≥100.0°F were reported in 122 (2%) active monitoring events. In the final month of active monitoring, an optional health insurance enrollment referral was offered for interested travelers, through which 8 travelers are known to have received coverage. Because it is possible that active monitoring will be used again for an infectious threat, the experience we describe might help to inform future such efforts.
van Riel, Piet; Combe, Bernard; Abdulganieva, Diana; Bousquet, Paola; Courtenay, Molly; Curiale, Cinzia; Gómez-Centeno, Antonio; Haugeberg, Glenn; Leeb, Burkhard; Puolakka, Kari; Ravelli, Angelo; Rintelen, Bernhard; Sarzi-Puttini, Piercarlo
2016-01-01
Treating to target by monitoring disease activity and adjusting therapy to attain remission or low disease activity has been shown to lead to improved outcomes in chronic rheumatic diseases such as rheumatoid arthritis and spondyloarthritis. Patient-reported outcomes, used in conjunction with clinical measures, add an important perspective of disease activity as perceived by the patient. Several validated PROs are available for inflammatory arthritis, and advances in electronic patient monitoring tools are helping patients with chronic diseases to self-monitor and assess their symptoms and health. Frequent patient monitoring could potentially lead to the early identification of disease flares or adverse events, early intervention for patients who may require treatment adaptation, and possibly reduced appointment frequency for those with stable disease. A literature search was conducted to evaluate the potential role of patient self-monitoring and innovative monitoring of tools in optimising disease control in inflammatory arthritis. Experience from the treatment of congestive heart failure, diabetes and hypertension shows improved outcomes with remote electronic self-monitoring by patients. In inflammatory arthritis, electronic self-monitoring has been shown to be feasible in patients despite manual disability and to be acceptable to older patients. Patients' self-assessment of disease activity using such methods correlates well with disease activity assessed by rheumatologists. This review also describes several remote monitoring tools that are being developed and used in inflammatory arthritis, offering the potential to improve disease management and reduce pressure on specialists. PMID:27933206
Synchronous monitoring of muscle dynamics and electromyogram
NASA Astrophysics Data System (ADS)
Zakir Hossain, M.; Grill, Wolfgang
2011-04-01
A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.
Adam J. Gaylord; Dana M. Sanchez
2014-01-01
Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...
Omura, John D; Carlson, Susan A; Paul, Prabasaj; Watson, Kathleen B; Fulton, Janet E
2017-03-01
The objective of this study was to assess usage patterns of wearable activity monitors among US adults and how user characteristics might influence physical activity estimates from this type of sample. We analyzed data on 3367 respondents to the 2015 HealthStyles survey, an annual consumer mail panel survey conducted on a nationwide sample. Approximately 1 in 8 respondents (12.5%) reported currently using a wearable activity monitor. Current use varied by sex, age, and education level. Use increased with physical activity level from 4.3% for inactive adults to 17.4% for active adults. Overall, 49.9% of all adults met the aerobic physical activity guideline, while this prevalence was 69.5% among current activity monitor users. Our findings suggest that current users of wearable activity monitors are not representative of the overall US population. Estimates of physical activity levels using data from wearable activity monitors users may be an overestimate and therefore data from users alone may have a limited role in physical activity surveillance.
Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. Thismore » report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less
Yucca Mountain biological resources monitoring program; Annual report FY92
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-02-01
The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less
Effects-based monitoring and surveillance is increasingly being utilized in conjunction with chemical monitoring to determine potential biological activity associated with environmental contaminants. Supervised approaches targeting specific chemical activity or molecular pathways...
Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L
2014-01-01
Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for widespread use. This technology has broad applications for use in clinical, public health, and rehabilitation settings. PMID:25131661
Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L
2014-08-15
Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for widespread use. This technology has broad applications for use in clinical, public health, and rehabilitation settings.
NASA Astrophysics Data System (ADS)
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-11-01
The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-11-08
The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-01-01
The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075
NASA Astrophysics Data System (ADS)
Sudmann, Tobba T.; Børsheim, Ingebjørg T.; Øvsthus, Knut; Ciamulski, Tomasz; Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Jacobsen, Frode F.
2016-11-01
This interdisciplinary project aims to develop and assess the functional potential of radar technology in the care services. The project mainly has an exploratory character where the technological and functional potential of impulse-radar sensor are tested out in monitoring of elderly and disabled people living in their own home. Designing a non-invasive system for monitoring of movements of frail persons living at home is the main goal, with the intent of assessing health and functional status through monitoring of activities of daily life (ADL) and detecting potentially dangerous situations, not the least related to a long lie following falls.
Portelli, Anthony J; Nasuto, Slawomir J
2017-01-01
For the advent of pervasive bio-potential monitoring, it will be necessary to utilize a combination of cheap, quick to apply, low-noise electrodes and compact electronics with wireless technologies. Once available, all electrical activity resulting from the processes of the human body could be actively and constantly monitored without the need for cumbersome application and maintenance. This could significantly improve the early diagnosis of a range of different conditions in high-risk individuals, opening the possibility for new treatments and interventions as conditions develop. This paper presents the design and implementation of compact, non-contact capacitive bio-potential electrodes utilising a low impedance current-to-voltage configuration and a bootstrapped voltage follower, demonstrating results applicable to research applications for capacitive electrocardiography and capacitive electromyography. The presented electrodes use few components, have a small surface area and are capable of acquiring a range of bio-potential signals.
Portelli, Anthony J.; Nasuto, Slawomir J.
2017-01-01
For the advent of pervasive bio-potential monitoring, it will be necessary to utilize a combination of cheap, quick to apply, low-noise electrodes and compact electronics with wireless technologies. Once available, all electrical activity resulting from the processes of the human body could be actively and constantly monitored without the need for cumbersome application and maintenance. This could significantly improve the early diagnosis of a range of different conditions in high-risk individuals, opening the possibility for new treatments and interventions as conditions develop. This paper presents the design and implementation of compact, non-contact capacitive bio-potential electrodes utilising a low impedance current-to-voltage configuration and a bootstrapped voltage follower, demonstrating results applicable to research applications for capacitive electrocardiography and capacitive electromyography. The presented electrodes use few components, have a small surface area and are capable of acquiring a range of bio-potential signals. PMID:28045439
DOT National Transportation Integrated Search
2014-09-01
Structural Health Monitoring has a great potential to provide valuable information about the actual structural : condition and can help optimize the management activities. However, few eective and robust monitoring technology exist which hinders a...
Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H
1987-12-01
Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.
Advances in physical activity monitoring and lifestyle interventions in obesity: a review.
Bonomi, A G; Westerterp, K R
2012-02-01
Obesity represents a strong risk factor for developing chronic diseases. Strategies for disease prevention often promote lifestyle changes encouraging participation in physical activity. However, determining what amount of physical activity is necessary for achieving specific health benefits has been hampered by the lack of accurate instruments for monitoring physical activity and the related physiological outcomes. This review aims at presenting recent advances in activity-monitoring technology and their application to support interventions for health promotion. Activity monitors have evolved from step counters and measuring devices of physical activity duration and intensity to more advanced systems providing quantitative and qualitative information on the individuals' activity behavior. Correspondingly, methods to predict activity-related energy expenditure using bodily acceleration and subjects characteristics have advanced from linear regression to innovative algorithms capable of determining physical activity types and the related metabolic costs. These novel techniques can monitor modes of sedentary behavior as well as the engagement in specific activity types that helps to evaluate the effectiveness of lifestyle interventions. In conclusion, advances in activity monitoring have the potential to support the design of response-dependent physical activity recommendations that are needed to generate effective and personalized lifestyle interventions for health promotion.
How consumer physical activity monitors could transform human physiology research.
Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn
2017-03-01
A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.
How consumer physical activity monitors could transform human physiology research
Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn
2017-01-01
A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867
DOT National Transportation Integrated Search
2014-01-01
Structural Health Monitoring has great potential to provide valuable information about the actual structural condition and can help optimize the management activities. However, few effective and robust monitoring methods exist which hinders a nationw...
Millman, Alexander J; Chamany, Shadi; Guthartz, Seth; Thihalolipavan, Sayone; Porter, Michael; Schroeder, Andrew; Vora, Neil M; Varma, Jay K; Starr, David
2016-01-29
The Ebola virus disease (Ebola) outbreak in West Africa has claimed approximately 11,300 lives (1), and the magnitude and course of the epidemic prompted many nonaffected countries to prepare for Ebola cases imported from affected countries. In October 2014, CDC and the Department of Homeland Security (DHS) implemented enhanced entry risk assessment and management at five U.S. airports: John F. Kennedy (JFK) International Airport in New York City (NYC), O'Hare International Airport in Chicago, Newark Liberty International Airport in New Jersey, Hartsfield-Jackson International Airport in Atlanta, and Dulles International Airport in Virginia (2). Enhanced entry risk assessment began at JFK on October 11, 2014, and at the remaining airports on October 16 (3). On October 21, DHS exercised its authority to direct all travelers flying into the United States from an Ebola-affected country to arrive at one of the five participating airports. At the time, the Ebola-affected countries included Guinea, Liberia, Mali, and Sierra Leone. On October 27, CDC issued updated guidance for monitoring persons with potential Ebola virus exposure (4), including recommending daily monitoring of such persons to ascertain the presence of fever or symptoms for a period of 21 days (the maximum incubation period of Ebola virus) after the last potential exposure; this was termed "active monitoring." CDC also recommended "direct active monitoring" of persons with a higher risk for Ebola virus exposure, including health care workers who had provided direct patient care in Ebola-affected countries. Direct active monitoring required direct observation of the person being monitored by the local health authority at least once daily (5). This report describes the operational structure of the NYC Department of Health and Mental Hygiene's (DOHMH) active monitoring program during its first 6 months (October 2014-April 2015) of operation. Data collected on persons who required direct active monitoring are not included in this report.
Téllez, Maria J; Ulkatan, Sedat; Urriza, Javier; Arranz-Arranz, Beatriz; Deletis, Vedran
2016-02-01
To improve the recognition and possibly prevent confounding peripheral activation of the facial nerve caused by leaking transcranial electrical stimulation (TES) current during corticobulbar tract monitoring. We applied a single stimulus and a short train of electrical stimuli directly to the extracranial portion of the facial nerve. We compared the peripherally elicited compound muscle action potential (CMAP) of the facial nerve with the responses elicited by TES during intraoperative monitoring of the corticobulbar tract. A single stimulus applied directly to the facial nerve at subthreshold intensities did not evoke a CMAP, whereas short trains of subthreshold stimuli repeatedly evoked CMAPs. This is due to the phenomenon of sub- or near-threshold super excitability of the cranial nerve. Therefore, the facial responses evoked by short trains TES, when the leaked current reaches the facial nerve at sub- or near-threshold intensity, could lead to false interpretation. Our results revealed a potential pitfall in the current methodology for facial corticobulbar tract monitoring that is due to the activation of the facial nerve by subthreshold trains of stimuli. This study proposes a new criterion to exclude peripheral activation during corticobulbar tract monitoring. The failure to recognize and avoid facial nerve activation due to leaking current in the peripheral portion of the facial nerve during TES decreases the reliability of corticobulbar tract monitoring by increasing the possibility of false interpretation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Wearable activity monitors in oncology trials: Current use of an emerging technology.
Gresham, Gillian; Schrack, Jennifer; Gresham, Louise M; Shinde, Arvind M; Hendifar, Andrew E; Tuli, Richard; Rimel, B J; Figlin, Robert; Meinert, Curtis L; Piantadosi, Steven
2018-01-01
Physical activity is an important outcome in oncology trials. Physical activity is commonly assessed using self-reported questionnaires, which are limited by recall and response biases. Recent advancements in wearable technology have provided oncologists with new opportunities to obtain real-time, objective physical activity data. The purpose of this review was to describe current uses of wearable activity monitors in oncology trials. We searched Pubmed, Embase, and the Cochrane Central Register of Controlled Trials for oncology trials involving wearable activity monitors published between 2005 and 2016. We extracted details on study design, types of activity monitors used, and purpose for their use. We summarized activity monitor metrics including step counts, sleep and sedentary time, and time spent in moderate-to-vigorous activity. We identified 41 trials of which 26 (63%) involved cancer survivors (post-treatment) and 15 trials (37%) involved patients with active cancer. Most trials (65%) involved breast cancer patients. Wearable activity monitors were commonly used in exercise (54%) or behavioral (29%) trials. Cancer survivors take between 4660 and 11,000 steps/day and those undergoing treatment take 2885 to 8300steps/day. Wearable activity monitors are increasingly being used to obtain objective measures of physical activity in oncology trials. There is potential for their use to expand to evaluate and predict clinical outcomes such as survival, quality of life, and treatment tolerance in future studies. Currently, there remains a lack of standardization in the types of monitors being used and how their data are being collected, analyzed, and interpreted. Recent advancements in wearable activity monitor technology have provided oncologists with new opportunities to monitor their patients' daily activity in real-world settings. The integration of wearable activity monitors into cancer care will help increase our understanding of the associations between physical activity and the prevention and management of the disease, in addition to other important cancer outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A Monitoring and Assessment Plan for the Youth Employment and Demonstration Projects Act of 1977.
ERIC Educational Resources Information Center
Employment and Training Administration (DOL), Washington, DC.
Intended as a general blueprint for monitoring and assessing activities under the Youth Employment and Demonstration Projects Act of 1977, this document discusses the expected constraints, evaluation and assessment tools, the analytic framework, and monitoring and review schedule. Five problem areas are recognized as potential constraints in…
Frequency Based Volcanic Activity Detection through Remotely Sensed Data
NASA Astrophysics Data System (ADS)
Worden, A. K.; Dehn, J.; Webley, P. W.
2015-12-01
Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.
Decoding intravesical pressure from local field potentials in rat lumbosacral spinal cord
NASA Astrophysics Data System (ADS)
Im, Changkyun; Park, Hae Yong; Koh, Chin Su; Ryu, Sang Baek; Seo, In Seok; Kim, Yong Jung; Kim, Kyung Hwan; Shin, Hyung-Cheul
2016-10-01
Chronic monitoring of intravesical pressure is required to detect the onset of intravesical hypertension and the progression of a more severe condition. Recent reports demonstrate the bladder state can be monitored from the spiking activity of the dorsal root ganglia or lumbosacral spinal cord. However, one of the most serious challenges for these methods is the difficulty of sustained spike signal acquisition due to the high-electrode-location-sensitivity of spikes or neuro-degeneration. Alternatively, it has been demonstrated that local field potential recordings are less affected by encapsulation reactions or electrode location changes. Here, we hypothesized that local field potential (LFP) from the lumbosacral dorsal horn may provide information concerning the intravesical pressure. LFP and spike activities were simultaneously recorded from the lumbosacral spinal cord of anesthetized rats during bladder filling. The results show that the LFP activities carry significant information about intravesical pressure along with spiking activities. Importantly, the intravesical pressure is decoded from the power in high-frequency bands (83.9-256 Hz) with a substantial performance similar to that of the spike train decoding. These findings demonstrate that high-frequency LFP activity can be an alternative intravesical pressure monitoring signal, which could lead to a proper closed loop system for urinary control.
NASA Astrophysics Data System (ADS)
Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias
2014-05-01
For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of Environmental Research and Public Health 7 (10): 3657-3703. Ryzinska-Paier, G., T. Lendenfeld, K. Correa, P. Stadler, A.P. Blaschke, R. L. Mach, H. Stadler, AKT Kirschner und A.H. Farnleitner (2014) A sensitive and robust method for automated on-line monitoring of enzymatic activities in water and water resources. Water Sci. Technol. in press
Adolescents' leisure activities, parental monitoring and cigarette smoking - a cross-sectional study
2011-01-01
Background Adolescent participation in leisure activities is developmentally beneficial, but certain activities may increase health compromising behaviours, such as tobacco smoking. A limited range of leisure activities has been studied, with little research on out-of-school settings where parental supervision is a potential protective factor. Tobacco smoking is an important, potentially modifiable health determinant, so understanding associations between adolescent leisure activities, parental monitoring, demographic factors and daily smoking may inform preventive strategies. These associations are reported for a New Zealand adolescent sample. Methods Randomly selected schools (n = 145) participated in the 2006 Youth In-depth Survey, a national, biennial study of Year 10 students (predominantly 14-15 years). School classes were randomly selected and students completed a self-report questionnaire in class time. Adjustment for clustering at the school level was included in all analyses. Since parental monitoring and demographic variables potentially confound relations between adolescent leisure activities and smoking, variables were screened before multivariable modelling. Given prior indications of demographic differences, gender and ethnic specific regression models were built. Results and Discussion Overall, 8.5% of the 3,161 students were daily smokers, including more females (10.5%) than males (6.5%). In gender and ethnic specific multivariate analysis of associations with daily smoking (adjusted for age, school socioeconomic decile rating, leisure activities and ethnicity or gender, respectively), parental monitoring exhibited a consistently protective, dose response effect, although less strongly among Māori. Attending a place of worship and going to the movies were protective for non-Māori, as was watching sports, whereas playing team sport was protective for all, except males. Attending a skate park was a risk factor for females and Māori which demonstrated a strong dose response effect. Conclusions There were significant differences in the risk of daily smoking across leisure activities by gender and ethnicity. This reinforces the need to be alert for, and respond to, gender and ethnic differences in the pattern of risk and protective factors. However, given the consistently protective, dose response effect of parental monitoring, our findings confirm that assisting oversight of adolescent leisure activities may be a key component in public health policy and prevention programmes. PMID:21645407
Adolescents' leisure activities, parental monitoring and cigarette smoking--a cross-sectional study.
Guo, Hui; Reeder, Anthony I; McGee, Rob; Darling, Helen
2011-06-06
Adolescent participation in leisure activities is developmentally beneficial, but certain activities may increase health compromising behaviours, such as tobacco smoking. A limited range of leisure activities has been studied, with little research on out-of-school settings where parental supervision is a potential protective factor. Tobacco smoking is an important, potentially modifiable health determinant, so understanding associations between adolescent leisure activities, parental monitoring, demographic factors and daily smoking may inform preventive strategies. These associations are reported for a New Zealand adolescent sample. Randomly selected schools (n = 145) participated in the 2006 Youth In-depth Survey, a national, biennial study of Year 10 students (predominantly 14-15 years). School classes were randomly selected and students completed a self-report questionnaire in class time. Adjustment for clustering at the school level was included in all analyses. Since parental monitoring and demographic variables potentially confound relations between adolescent leisure activities and smoking, variables were screened before multivariable modelling. Given prior indications of demographic differences, gender and ethnic specific regression models were built. Overall, 8.5% of the 3,161 students were daily smokers, including more females (10.5%) than males (6.5%). In gender and ethnic specific multivariate analysis of associations with daily smoking (adjusted for age, school socioeconomic decile rating, leisure activities and ethnicity or gender, respectively), parental monitoring exhibited a consistently protective, dose response effect, although less strongly among Māori. Attending a place of worship and going to the movies were protective for non-Māori, as was watching sports, whereas playing team sport was protective for all, except males. Attending a skate park was a risk factor for females and Māori which demonstrated a strong dose response effect. There were significant differences in the risk of daily smoking across leisure activities by gender and ethnicity. This reinforces the need to be alert for, and respond to, gender and ethnic differences in the pattern of risk and protective factors. However, given the consistently protective, dose response effect of parental monitoring, our findings confirm that assisting oversight of adolescent leisure activities may be a key component in public health policy and prevention programmes.
Verfuss, Ursula K; Gillespie, Douglas; Gordon, Jonathan; Marques, Tiago A; Miller, Brianne; Plunkett, Rachael; Theriault, James A; Tollit, Dominic J; Zitterbart, Daniel P; Hubert, Philippe; Thomas, Len
2018-01-01
Loud sound emitted during offshore industrial activities can impact marine mammals. Regulations typically prescribe marine mammal monitoring before and/or during these activities to implement mitigation measures that minimise potential acoustic impacts. Using seismic surveys under low visibility conditions as a case study, we review which monitoring methods are suitable and compare their relative strengths and weaknesses. Passive acoustic monitoring has been implemented as either a complementary or alternative method to visual monitoring in low visibility conditions. Other methods such as RADAR, active sonar and thermal infrared have also been tested, but are rarely recommended by regulatory bodies. The efficiency of the monitoring method(s) will depend on the animal behaviour and environmental conditions, however, using a combination of complementary systems generally improves the overall detection performance. We recommend that the performance of monitoring systems, over a range of conditions, is explored in a modelling framework for a variety of species. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Evaluating life-safety risk of fieldwork at New Zealand's active volcanoes
NASA Astrophysics Data System (ADS)
Deligne, Natalia; Jolly, Gill; Taig, Tony; Webb, Terry
2014-05-01
Volcano observatories monitor active or potentially active volcanoes. Although the number and scope of remote monitoring instruments and methods continues to grow, in-person field data collection is still required for comprehensive monitoring. Fieldwork anywhere, and especially in mountainous areas, contains an element of risk. However, on volcanoes with signs of unrest, there is an additional risk of volcanic activity escalating while on site, with potentially lethal consequences. As an employer, a volcano observatory is morally and sometimes legally obligated to take reasonable measures to ensure staff safety and to minimise occupational risk. Here we present how GNS Science evaluates life-safety risk for volcanologists engaged in fieldwork on New Zealand volcanoes with signs of volcanic unrest. Our method includes several key elements: (1) an expert elicitation for how likely an eruption is within a given time frame, (2) quantification of, based on historical data when possible, given a small, moderate, or large eruption, the likelihood of exposure to near-vent processes, ballistics, or surge at various distances from the vent, and (3) estimate of fatality rate given exposure to these volcanic hazards. The final product quantifies hourly fatality risk at various distances from a volcanic vent; various thresholds of risk (for example, zones with more than 10-5 hourly fatality risk) trigger different levels of required approval to undertake work. Although an element of risk will always be present when conducting fieldwork on potentially active volcanoes, this is a first step towards providing objective guidance for go/no go decisions for volcanic monitoring.
Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...
HUMAN EXPOSURE ACTIVITY PATTERNS
Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...
NASA Astrophysics Data System (ADS)
Corodeanu, S.; Chiriac, H.; Radulescu, L.; Lupu, N.
2014-05-01
Results on the development and testing of a novel magnetic sensor based on the detection of the magneto-impedance variation due to changes in the permeability of an amorphous wire are reported. The proposed application is the quasi-noncontact monitoring of the breathing frequency and heart rate for diagnosing sleep disorders. Patient discomfort is significantly decreased by transversally placing the sensitive element onto the surface of a flexible mattress in order to detect its deformation associated with cardiorespiratory activity and body movements. The developed sensor has a great application potential in monitoring the vital signs during sleep, with special advantages for children sleep monitoring.
Patient-centered activity monitoring in the self-management of chronic health conditions.
Chiauzzi, Emil; Rodarte, Carlos; DasMahapatra, Pronabesh
2015-04-09
As activity tracking devices become smaller, cheaper, and more consumer-accessible, they will be used more extensively across a wide variety of contexts. The expansion of activity tracking and personal data collection offers the potential for patient engagement in the management of chronic diseases. Consumer wearable devices for activity tracking have shown promise in post-surgery recovery in cardiac patients, pulmonary rehabilitation, and activity counseling in diabetic patients, among others. Unfortunately, the data generated by wearable devices is seldom integrated into programmatic self-management chronic disease regimens. In addition, there is lack of evidence supporting sustained use or effects on health outcomes, as studies have primarily focused on establishing the feasibility of monitoring activity and the association of measured activity with short-term benefits. Monitoring devices can make a direct and real-time impact on self-management, but the validity and reliability of measurements need to be established. In order for patients to become engaged in wearable data gathering, key patient-centered issues relating to usefulness in care, motivation, the safety and privacy of information, and clinical integration need to be addressed. Because the successful usage of wearables requires an ability to comprehend and utilize personal health data, the user experience should account for individual differences in numeracy skills and apply evidence-based behavioral science principles to promote continued engagement. Activity monitoring has the potential to engage patients as advocates in their personalized care, as well as offer health care providers real world assessments of their patients' daily activity patterns. This potential will be realized as the voice of the chronic disease patients is accounted for in the design of devices, measurements are validated against existing clinical assessments, devices become part of the treatment 'prescription', behavior change programs are used to engage patients in self-management, and best practices for clinical integration are defined.
Truck monitoring and warning systems for freeway-to-freeway connections
DOT National Transportation Integrated Search
1999-10-01
This research focuses on the development and evaluation of a truck monitoring and warning (TM&W) system for detecting high, long, fast trucks at freeway-to-freeway connections and activating displays to warn the truck drivers of potential hazards as ...
The potential for actigraphy to be used as an indicator of sitting discomfort.
Telfer, Scott; Spence, William D; Solomonidis, Stephan E
2009-10-01
A novel technique that uses actigraphy, the study of activity involving the use of body-mounted accelerometers, to detect the discomfort-related movements of a sitting individual has been proposed as a potential indicator of sitting discomfort, and the purpose of this study was to test its validity. Objective measurement of sitting discomfort has always been challenging for researchers. Electromyographic measurements, pressure mapping, and a wide range of other techniques have all been investigated with limited success. The activity monitor's ability to detect and measure seated movement was assessed, and 12 participants were tested on four different chairs (100-min sessions for each). The activity monitor was able to detect participants' sitting movements (Pearson coefficients > 0.9). The chairs were shown to have significantly different subjective discomfort ratings, all of which increased over time. The movements detected by the activity monitor also increased significantly with time, and the amount measured was greater in the chairs rated as most uncomfortable. Regression analysis indicated that the actigraphy data were able to account for 29.6% of the variation in perceived discomfort ratings. Actigraphy can reliably detect sitting movements and may be of use in measuring sitting discomfort. Potential applications of this technique exist for seating research in the automotive industry, health care, and office and leisure chairs.
Gaglani, Shiv; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele
2015-01-01
Objectives: This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. Methods: This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Results: Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. Conclusions: These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested. PMID:26719825
Gaglani, Shiv; Moore, Jessica; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele
2015-11-17
This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.
Dennis, John U.; Krynitsky, Jonathan; Garmendia-Cedillos, Marcial; Swaroop, Kanchan; Malley, James D.; Pajevic, Sinisa; Abuhatzira, Liron; Bustin, Michael; Gillet, Jean-Pierre; Gottesman, Michael M.; Mitchell, James B.; Pohida, Thomas J.
2015-01-01
The System for Continuous Observation of Rodents in Home-cage Environment (SCORHE) was developed to demonstrate the viability of compact and scalable designs for quantifying activity levels and behavior patterns for mice housed within a commercial ventilated cage rack. The SCORHE in-rack design provides day- and night-time monitoring with the consistency and convenience of the home-cage environment. The dual-video camera custom hardware design makes efficient use of space, does not require home-cage modification, and is animal-facility user-friendly. Given the system’s low cost and suitability for use in existing vivariums without modification to the animal husbandry procedures or housing setup, SCORHE opens up the potential for the wider use of automated video monitoring in animal facilities. SCORHE’s potential uses include day-to-day health monitoring, as well as advanced behavioral screening and ethology experiments, ranging from the assessment of the short- and long-term effects of experimental cancer treatments to the evaluation of mouse models. When used for phenotyping and animal model studies, SCORHE aims to eliminate the concerns often associated with many mouse-monitoring methods, such as circadian rhythm disruption, acclimation periods, lack of night-time measurements, and short monitoring periods. Custom software integrates two video streams to extract several mouse activity and behavior measures. Studies comparing the activity levels of ABCB5 knockout and HMGN1 overexpresser mice with their respective C57BL parental strains demonstrate SCORHE’s efficacy in characterizing the activity profiles for singly- and doubly-housed mice. Another study was conducted to demonstrate the ability of SCORHE to detect a change in activity resulting from administering a sedative. PMID:24706080
Salem, Ghadi H; Dennis, John U; Krynitsky, Jonathan; Garmendia-Cedillos, Marcial; Swaroop, Kanchan; Malley, James D; Pajevic, Sinisa; Abuhatzira, Liron; Bustin, Michael; Gillet, Jean-Pierre; Gottesman, Michael M; Mitchell, James B; Pohida, Thomas J
2015-03-01
The System for Continuous Observation of Rodents in Home-cage Environment (SCORHE) was developed to demonstrate the viability of compact and scalable designs for quantifying activity levels and behavior patterns for mice housed within a commercial ventilated cage rack. The SCORHE in-rack design provides day- and night-time monitoring with the consistency and convenience of the home-cage environment. The dual-video camera custom hardware design makes efficient use of space, does not require home-cage modification, and is animal-facility user-friendly. Given the system's low cost and suitability for use in existing vivariums without modification to the animal husbandry procedures or housing setup, SCORHE opens up the potential for the wider use of automated video monitoring in animal facilities. SCORHE's potential uses include day-to-day health monitoring, as well as advanced behavioral screening and ethology experiments, ranging from the assessment of the short- and long-term effects of experimental cancer treatments to the evaluation of mouse models. When used for phenotyping and animal model studies, SCORHE aims to eliminate the concerns often associated with many mouse-monitoring methods, such as circadian rhythm disruption, acclimation periods, lack of night-time measurements, and short monitoring periods. Custom software integrates two video streams to extract several mouse activity and behavior measures. Studies comparing the activity levels of ABCB5 knockout and HMGN1 overexpresser mice with their respective C57BL parental strains demonstrate SCORHE's efficacy in characterizing the activity profiles for singly- and doubly-housed mice. Another study was conducted to demonstrate the ability of SCORHE to detect a change in activity resulting from administering a sedative.
Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring
NASA Astrophysics Data System (ADS)
Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner
2015-04-01
On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC bacteria. Therefore the applicability of on-site enzymatic activity determination as a direct surrogate or proxy parameter for microbiological standard assays and quantification of fecal indicator bacteria (FIB) concentration could not be approved and further research in this field is necessary. Presently we conclude that rapid on-site detection of enzymatic activity is applicable for surface water monitoring and that it constitutes a complementary on-site monitoring parameter with high potential. Selection of the type of measured enzymatic activities has to be done on a catchment-specific basis and further work is needed to learn more about its detailed information characteristics in different habitats. The accomplishment of this method detecting continuous data of enzymatic activity in high temporal resolution caused by a target bacterial member is on the way of becoming a powerful tool for water quality monitoring, health related water quality- and early warning requirements.
O' Donoghue, Deirdre; Kennedy, Norelee
2014-11-01
The activPAL™ activity monitor has potential for use in youth with Cerebral Palsy (CP) as it has demonstrated acceptable validity for the assessment of sedentary and physical activity in other populations. This study determined the validity of the activPAL™ activity monitor for the measurement of sitting, standing, walking time, transitions and step count for both legs in young people with hemiplegic and asymmetric diplegic CP. Seventeen participants with CP Gross Motor Function Classification System level I completed two video recorded test protocols that involved wearing an activPAL™ activity monitor on alternate legs. Agreement between observed video recorded data and activPAL™ activity monitor data was assessed using the Bland and Altman (BA) method and intraclass correlation coefficients (ICC 3,1). There was perfect agreement for transitions and high agreement for sitting (BA mean differences (MD): -1.8 and -1.8 s; ICCs: 0.49 and 0.95) standing (MD: 0.8 and 0.1 s; ICCs: 0.59 and 0.98) walking (MD: 1 and 1.1 s; ICCs: 0.99 and 0.94) timings and low agreement for step count (MD: 4.1 and 2.8 steps; ICCs: 0.96 and 0.95) for both legs. This study found clinically acceptable agreement with direct observation for all activPAL™ activity monitor functions, except for step count measurement with respect to the range of measurement values obtained for both legs in this study population.
Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-01-01
The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less
Truck monitoring and warning systems for freeway-to-freeway connections : summary
DOT National Transportation Integrated Search
1999-10-01
This project focuses on the development and evaluation of a truck monitoring and warning (TM&W) system for detecting high, long, fast trucks at freeway-to-freeway connections and activating displays to warn the truck drivers of potential hazards as t...
Closed-Loop Neuropharmacology For Epilepsy: Distant Dream Or Future Reality?
Aicua-Rapun, Irene; Andre, Pascal; Novy, Jan
2018-03-08
Epilepsy is considered the most frequent severe neurological condition but most patients treated with medication become seizure free. The management of treatment however is highly empirical, mainly relying on observation. A closed-loop therapy for epilepsy would be very valuable for more efficient treatment regimens. Here we discuss monitoring treatment (therapeutic drug monitoring) and the potential developments in this field, as well as providing a review of potential biomarkers that could be used to monitor the disease activity. Finally, we consider the pharmacogenetic input in epilepsy treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lee, J W; Cha, D K; Kim, I; Son, A; Ahn, K H
2008-02-01
Fatty acid methyl ester (FAME) technology was evaluated as a monitoring tool for quantification of Gordonia amarae in activated sludge systems. The fatty acid, 19:1 alcohol, which was identified as a unique fatty acid in G. amarae was not only confirmed to be present in foaming plant samples, but the quantity of the signature peak correlated closely with the degree of foaming. Foaming potential experiment provided a range of critical foaming levels that corresponded to G. amarae population. This range of critical Gordonia levels was correlated to the threshold signature FAME amount. Six full-scale wastewater treatment plants were selected based on a survey to participate in our full-scale study to evaluate the potential application of the FAME technique as the Gordonia monitoring tool. Greater amounts of signature FAME were extracted from the mixed liquor samples obtained from treatment plants experiencing Gordonia foaming problems. The amounts of signature FAME correlated well with the conventional filamentous counting technique. These results demonstrated that the relative abundance of the signature FAMEs can be used to quantitatively monitor the abundance of foam-causing microorganism in activated sludge.
Continuous multi-component geophysical experiment on LUSI mud edifice: What can we learn from it?
NASA Astrophysics Data System (ADS)
Mauri, Guillaume; Husein, Alwi; Karyono, Karyono; Hadi, Soffian; Mazzini, Adriano; Collignon, Marine; Faubert, Maïté; Miller, Stephen A.; Lupi, Matteo
2016-04-01
The Lusi eruption is located in East Java, Indonesia, and is ongoing since May 29th, 2006. In the framework of joined international projects, several joint geophysical studies focussing on seismic monitoring, spatial investigation over the mud edifice and its surroundings are being conducted. Here we present freshly acquired data from a test site to investigate: (1) potential change in the natural electrical self-potential generation over time (2) potential change in gravity field associated to change in mass or volume, (3) if the geysering activity generates disruption on either the electrical or gravity field. We selected a location ˜200m to the NE of the active Lusi crater. The experiment site covers an area of 60m x 80m, crossing the boundaries between the soft and the solid walkable mud. The western edge of the study area was less than 100m away from the rim of the crater site. A self-potential array made of 6 Pb-PbCl2 electrodes was deployed over the site. The electrodes were positioned inside active seeps, on dry unaltered zones and close to the mud stream that flushes the water erupted from the crater site. All the electrodes were connected to a single Pb-PbCl2 electrode reference. A second array of 7 thermometers was installed positioning 5 of them next to SP electrodes, one to measure atmospheric temperature and another P/T probe to monitor the stream water. In addition a seismometer coupled with a HD video camera, a thermal camera and a gravimeter recorded on site for several days monitoring visual and seismic activity of the crater. The collected data allows us to 1) monitor and define the different geysering activities ongoing at the crater, 2) define the delay existing between the recorded seismicity and the visual observations, 3) verify if the crater activity triggers perturbations that are transmitted to e.g. the thousands of satellite seeps distributed in the 7 square kilometers zone inside the embankment; 4) how significant is the delay between the crater activity and the water streamed out.
CTEPP DATA COLLECTION FORM 07: CHILD DAY CARE CENTER POST-MONITORING
This data collection form is used to provide information on the child's daily activities and potential exposures to pollutants at their homes. It includes questions on chemicals applied and cigarettes smoked at the home over the 48-hr monitoring period. It also collects informati...
CTEPP NC DATA COLLECTED ON FORM 06A: PARENT POST-MONITORING QUESTIONNAIRE
This data set contains data concerning the child’s daily activities and potential exposures to pollutants at their homes. It included questions on chemicals applied, cigarettes smoked, and cooking practices at the home over the 48-h monitoring period. It collected information on ...
Li, Peng; Zheng, Guiling; Chen, Xuan; Pemberton, Robert
2012-12-01
Epiphytic Tillandsia plants are efficient air pollution biomonitors and traditionally used to monitor atmospheric heavy metal pollution, but rarely nuclides monitoring. Here we evaluated the potential of Tillandsia usneoides for monitoring (133)Cs and investigated if Cs was trapped by the plant external surface structures. The results showed that T. usneoides was able to survive relatively high Cs stress. With the increase of Cs solution concentration, the total of Cs in plants increased significantly, which suggests that the plants could accumulate Cs quickly and effectively. Therefore, T. usneoides has considerable potential for monitoring Cs polluted environments. In addition, scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analysis showed that Cs was detected in each type of cells in foliar trichomes, and the ratio of Cs in the internal disc cell was higher than that in ring cell and wing cell, which indicates that the mechanism of adsorption Cs in Tillandsia has an active component. Copyright © 2012. Published by Elsevier Inc.
Automated locomotor activity monitoring as a quality control assay for mass-reared tephritid flies.
Dominiak, Bernard C; Fanson, Benjamin G; Collins, Samuel R; Taylor, Phillip W
2014-02-01
The Sterile Insect Technique (SIT) requires vast numbers of consistently high quality insects to be produced over long periods. Quality control (QC) procedures are critical to effective SIT, both providing quality assurance and warning of operational deficiencies. We here present a potential new QC assay for mass rearing of Queensland fruit flies (Bactrocera tryoni Froggatt) for SIT; locomotor activity monitoring. We investigated whether automated locomotor activity monitors (LAMs) that simply detect how often a fly passes an infrared sensor in a glass tube might provide similar insights but with much greater economy. Activity levels were generally lower for females than for males, and declined over five days in the monitor for both sexes. Female activity levels were not affected by irradiation, but males irradiated at 60 or 70 Gy had reduced activity levels compared with unirradiated controls. We also found some evidence that mild heat shock of pupae results in adults with reduced activity. LAM offers a convenient, effective and economical assay to probe such changes. © 2013 Society of Chemical Industry.
Andrade, Leonardo F.; Barry, Danielle; Litt, Mark D.; Petry, Nancy M.
2016-01-01
Physical inactivity is a leading cause of mortality. Reinforcement interventions appear useful for increasing activity and preventing adverse consequences of sedentary lifestyles. This study evaluated a reinforcement thinning schedule for maintaining high activity levels. Sedentary adults (n=77) were given pedometers and encouraged to walk ≥10,000 steps/day. Initially, all participants earned rewards for each day they walked ≥10,000 steps. Subsequently, 61 participants were randomized to a monitoring only condition or a monitoring plus reinforcement thinning condition, in which frequencies of monitoring and reinforcing walking decreased over 12 weeks. The mean ± SD percentage of participants in the monitoring plusreinforcement thinning condition who met walking goals was 83% ± 24% versus. 55% ± 31% for participants in the monitoring only condition, p < .001. Thus, this monitoring plusreinforcement thinning schedule maintained high rates of walking when it was in effect; however, groups did not differ at a 24-week follow-up. Monitoring plus reinforcement thinning schedules, nevertheless, hold potential to extend benefits of reinforcement interventions at low costs. PMID:25041789
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, L.; Ntarlagiannis, D.; Yee, N.
2008-10-01
There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupledmore » with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.« less
The Significance of Forest Monitoring Programmes: the Finnish Perspective
NASA Astrophysics Data System (ADS)
Merila, P.; Derome, J.; Lindgren, M.
2007-12-01
Finland has been participating in the ICP Forests programme (the International Co-operative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests) based on international agreements on the long- range transportation of air pollutants (LRTAP) and other associated monitoring programmes (e.g. Forest Focus, ICP Integrated Monitoring, ICP Vegetation) since 1985. The knowledge gained during the years has greatly increased our understanding of the overall condition of our forests and the factors affecting forest condition, the processes underlying forest ecosystem functioning, and the potential threats to our forests posed by human activities, both at home and abroad. The success of the monitoring activities in Finland is largely based on the experience gained during the early 1980's with our own national acidification project and, during the late 1980's and early 1990"s, in a number of regional monitoring projects. Finland's membership of the European Union (entry in 1996) has enabled us to further develop the infrastructure and coverage of both our extensive and intensive level networks. This broadening of our ecological understanding and development of international collaboration are now providing us with an invaluable basis for addressing the new monitoring challenges (biodiversity, climate change). The results gained in our monitoring activities clearly demonstrate the value of long-term monitoring programmes. The main results have been regularly reported both at the European (e.g. http://www.icp- forests.org/Reports.htm) and national level (e.g. http://www.metla.fi/julkaisut/workingpapers/2007/mwp045- en.htm). However, the datasets have not been intensively explored and exploited, and few of the important methodological and ecological findings have been published in peer-reviewed scientific journals. This has, understandably, not been the first priority of the international monitoring programmes. A number of the intensive forest monitoring plots in Finland have recently been included in LTER platforms, thus potentially increasing scientific collaboration between researchers across different governmental institutes and education bodies.
Technology platforms for remote monitoring of vital signs in the new era of telemedicine.
Zhao, Fang; Li, Meng; Tsien, Joe Z
2015-07-01
Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.
Luttenberg, D; Turgeon, D; Higgins, J
2001-10-01
Long-term monitoring of water quality, fish health, and plankton communities in susceptible bodies of water is crucial to identify the environmental factors that contribute to outbreaks of toxic Pfiesteria complex (TPC) species. In the aftermath of the 1997 toxic Pfiesteria outbreaks in North Carolina and Maryland, federal and several state agencies agreed that there was a need to standardize monitoring protocols. The National Oceanic & Atmospheric Administration convened two workshops that brought together state, federal, and academic resource managers and scientific experts to a) seek consensus on responding to and monitoring potential toxic Pfiesteria outbreaks; b) recommend standard parameters and protocols to characterize water quality, fish health, and plankton at historical event sites and potentially susceptible sites; and c) discuss options for integrating monitoring data sets from different states into regional and national assessments. Workshop recommendations included the development of a three-tiered TPC monitoring strategy: Tier 1, rapid event response; Tier 2, comprehensive assessment; and Tier 3, routine monitoring. These tiers correspond to varying levels of water quality, fish health, and plankton monitoring frequency and intensity. Under the strategy, sites are prioritized, depending upon their history and susceptibility to TPC events, and assigned an appropriate level of monitoring activity. Participants also agreed upon a suite of water quality parameters that should be monitored. These recommendations provide guidance to state and federal agencies conducting rapid-response and assessment activities at sites of suspected toxic Pfiesteria outbreaks, as well as to states that are developing such monitoring programs for the first time.
76 FR 36909 - Commission Information Collection Activities (FERC-549B); Comment Request; Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... grid, the Commission revised its capacity release regulations regarding scheduling, segmentation and... market as well as to improve shipper's and the Commission's ability to monitor the market for potential... in a competitive market as well as improve shippers' and the Commission's ability to monitor...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... potential displacement of activity from the research only area alternative. For business operations, costs... Collection; Comment Request; Socioeconomic Research and Monitoring for the Gray's Reef National Marine... regulations: (1) Prohibition of spear fishing and (2) research only area. Information was obtained to assess...
CTEPP-OH DATA COLLECTED ON FORM 07: CHILD DAY CARE CENTER POST-MONITORING
This data set contains data concerning the child’s daily activities and potential exposures to pollutants at their homes for CTEPP-OH. It included questions on chemicals applied and cigarettes smoked at the home over the 48-h monitoring period. It also collected information on th...
CTEPP NC DATA COLLECTED ON FORM 07: CHILD DAY CARE CENTER POST-MONITORING
This data set contains data concerning the child’s daily activities and potential exposures to pollutants at their homes. It included questions on chemicals applied and cigarettes smoked at the home over the 48-h monitoring period. It also collected information on the child’s han...
CTEPP-OH DATA COLLECTED ON FORM 06A: PARENT POST-MONITORING QUESTIONNAIRE
This data set contains data concerning the child’s daily activities and potential exposures to pollutants at their homes for CTEPP-OH. It included questions on chemicals applied, cigarettes smoked, and cooking practices at the home over the 48-h monitoring period. It collected in...
A Comparison of Energy Expenditure Estimation of Several Physical Activity Monitors
Dannecker, Kathryn L.; Sazonova, Nadezhda A.; Melanson, Edward L.; Sazonov, Edward S.; Browning, Raymond C.
2013-01-01
Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multi-sensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. PURPOSE To determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. METHODS Nineteen healthy young adults (10 male, 9 female), completed a four-hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as Actical, Actigraph, IDEEA, DirectLife and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. RESULTS Estimated EE using the shoe-based device was not significantly different than measured EE (476(20) vs. 478(18) kcal) (Mean (SE)), respectively, and had a root mean square error (RMSE) of (29.6 kcal (6.2%)). The IDEEA and DirectLlife estimates of EE were not significantly different than the measured EE but the Actigraph and Fitbit devices significantly underestimated EE. Root mean square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, Actigraph and Fitbit respectively. CONCLUSIONS The shoe based physical activity monitor provides a valid estimate of EE while the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity. PMID:23669877
Caulfield, Brian; Kaljo, Indira; Donnelly, Seamas
2014-01-01
COPD is associated with a gradual decline in physical activity, which itself contributes to a worsening of the underlying condition. Strategies that improve physical activity levels are critical to halt this cycle. Wearable sensor based activity monitoring and persuasive feedback might offer a potential solution. However it is not clear just how much intervention might be needed in this regard - i.e. whether programmes need to be tailored specifically for the target clinical population or whether more simple activity monitoring and feedback solutions, such as that offered in consumer market devices, might be sufficient. This research was carried out to investigate the impact of 4 weeks of using an off the shelf consumer market activity monitoring and feedback application on measures of physical activity, exercise capacity, and health related quality of life in a population of 10 Stage I and II COPD patients. Results demonstrate a significant and positive effect on exercise capacity (measured using a 6-minute walk test) and activity levels (measured in terms of average number of steps per hour) yet no impact on health related quality of life (St Georges Respiratory Disease Questionnaire).
Freitag, M; Morrell, J J
1992-04-01
Two filamentous fungi, the white-rot fungus Trametes versicolor and the soil fungus and potential biocontrol organism Trichoderma harzianum, have been grown in pure and mixed cultures on low-N (0.4 mM) and high-N (4 mM) defined synthetic media to determine the activities of selected wood-degrading enzymes such as cellobiase, cellulase, laccase, and peroxidases. Growth characteristics and enzyme activities were examined for potential correlations. Such correlations would allow the use of simple enzyme assays for measuring biomass development and would facilitate predictions about competitiveness of species in mixed fungal cultures. Our results show that while laccase and Poly Red-478 peroxidase activities indicate survival of the decay fungus, none of the monitored extracellular enzymes can serve as a quantitative indicator for biomass accumulation. As expected, the level of available nitrogen affected the production of the enzymes monitored: in low-N media, specific cellobiase, specific cellulase, and peroxidase activities were enhanced, while laccase activities were reduced. Most importantly, laccase activities of Trametes versicolor, and to a smaller extent, cellobiase activities of both fungi, were significantly induced in mixed cultures of Trametes versicolor and Trichoderma harzianum.
Dávila, Sandra Paloma Esparza; Champion, Jane Dimmitt; Monsiváis, Maria Guadalupe Moreno; Tovar, Marlene; Arias, Maria Luisa Flores
Assess perceptions of parental monitoring and sexual communication for sexual health promotion among adolescents who are Mexican. Adolescents (N=153, n=85 females, n=68 males) between 14years (n=80) and 15 years (n=73) were recruited at a public high school in Monterrey in the state of Nuevo Leon, Mexico. All participants were living with a parent(s). Descriptive statistical analyses were conducted to assess sociodemographic characteristics of the group. Chi-square analyses were conducted to identify potential group differences among the adolescents by age, gender and sexual activity regarding responses to each item of the Spanish Version Parental Monitoring and Sexual Communication Scale (a=0.88). Eleven percent of adolescents self-reported sexual activity. Significant group differences by age, gender and sexual activity were identified concerning parental monitoring and sexual communication including: less parental monitoring with older age (14 versus 15 year olds); more parental monitoring for females than males; less monitoring for sexually active adolescents; greater sexual communication for males than females, and among adolescents who were sexually active. An assessment of adolescents' perceptions of parental monitoring and sexual communication is useful for development of strategies concerning sexual health promotion in Mexico. The Spanish Version Parental Monitoring and Sexual Communication Scale can be used for assessment and modification of interventions for adolescent populations in Mexico. Information obtained from this assessment can be used to assist parents to enhance positive outcomes for parental monitoring and sexual communication with their children. Copyright © 2017 Elsevier Inc. All rights reserved.
Dry electrode bio-potential recordings.
Gargiulo, Gaetano; Bifulco, Paolo; McEwan, Alistair; Nasehi Tehrani, Joubin; Calvo, Rafael A; Romano, Maria; Ruffo, Mariano; Shephard, Richard; Cesarelli, Mario; Jin, Craig; Mohamed, Armin; van Schaik, André
2010-01-01
As wireless bio-medical long term monitoring moves towards personal monitoring it demands very high input impedance systems capable to extend the reading of bio-signal during the daily activities offering a kind of "stress free", convenient connection, with no need for skin preparation. In particular we highlight the development and broad applications of our own circuits for wearable bio-potential sensor systems enabled by the use of an FET based amplifier circuit with sufficiently high impedance to allow the use of passive dry electrodes which overcome the significant barrier of gel based contacts. In this paper we present the ability of dry electrodes in long term monitoring of ECG, EEG and fetal ECG.
An overview of existing raptor contaminant monitoring activities in Europe.
Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C
2014-06-01
Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable assessment of the appropriateness of the EU-regulation of substances that are hazardous to humans and the environment, the effectiveness of EU level mitigation policies, and identify pan-European spatial and temporal trends in current and emerging contaminants of concern. Copyright © 2014. Published by Elsevier Ltd.
Sensors for monitoring waste glass quality and method of using the same
Bickford, Dennis F.
1994-01-01
A set of three electrical probes for monitoring alkali and oxygen activity of a glass melt. On-line, real time measurements of the potential difference among the probes when they are placed in electrical contact with the melt yield the activity information and can be used to adjust the composition of the melt in order to produce higher quality glass. The first two probes each has a reference gas and a reference electrolyte and a pair of wires in electrical connection with each other in the reference gas but having one of the wires extending further into the reference electrolyte. The reference gases both include a known concentration of oxygen. The third electrode has a pair of wires extending through an otherwise solid body to join electrically just past the body but having one of the wires extend past this junction. Measuring the potential difference between wires of the first and second probes provides the alkali activity; measurement of the potential difference between wires of the second and third probes provides the oxygen activity of the melt.
Sensors for monitoring waste glass quality and method of using the same
Bickford, D.F.
1994-03-15
A set of three electrical probes is described for monitoring alkali and oxygen activity of a glass melt. On-line, real time measurements of the potential difference among the probes when they are placed in electrical contact with the melt yield the activity information and can be used to adjust the composition of the melt in order to produce higher quality glass. The first two probes each has a reference gas and a reference electrolyte and a pair of wires in electrical connection with each other in the reference gas but having one of the wires extending further into the reference electrolyte. The reference gases both include a known concentration of oxygen. The third electrode has a pair of wires extending through an otherwise solid body to join electrically just past the body but having one of the wires extend past this junction. Measuring the potential difference between wires of the first and second probes provides the alkali activity; measurement of the potential difference between wires of the second and third probes provides the oxygen activity of the melt. 1 figure.
NASA Astrophysics Data System (ADS)
Liu, Z.; Zhang, S.; Jin, Y. M.; Ouyang, H.; Zou, Y.; Wang, X. X.; Xie, L. X.; Li, Z.
2017-06-01
A wearable self-powered active sensor for respiration and healthcare monitoring was fabricated based on a flexible piezoelectric nanogenerator. An electrospinning poly(vinylidene fluoride) thin film on silicone substrate was polarized to fabricate the flexible nanogenerator and its electrical property was measured. When periodically stretched by a linear motor, the flexible piezoelectric nanogenerator generated an output open-circuit voltage and short-circuit current of up to 1.5 V and 400 nA, respectively. Through integration with an elastic bandage, a wearable self-powered sensor was fabricated and used to monitor human respiration, subtle muscle movement, and voice recognition. As respiration proceeded, the electrical output signals of the sensor corresponded to the signals measured by a physiological signal recording system with good reliability and feasibility. This self-powered, wearable active sensor has significant potential for applications in pulmonary function evaluation, respiratory monitoring, and detection of gesture and vocal cord vibration for the personal healthcare monitoring of disabled or paralyzed patients.
Macé, Sandrine; Oppert, Jean-Michel
2017-01-01
Background The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners’ requirements when prescribing electronic activity monitors have been poorly described. Objective The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. Methods We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Results Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Conclusions Features of electronic activity monitors, although popular among the general public, do not meet the needs of physicians. In-depth understanding of physicians’ expectations is a first step toward designing technologies that can be widely used in clinical settings and facilitate physical activity prescription. Physicians should have a role, along with key health care stakeholders—patients, researchers, information technology firms, the public, and private payers—in developing the most effective methods for integrating activity monitors into patient care. PMID:28947415
Integrated active sensor system for real time vibration monitoring.
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-11-05
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.
Integrated active sensor system for real time vibration monitoring
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-01-01
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293
Chemical monitoring has been widely used in environmental surveillance to assess exposure to environmental contaminants which could represent potential hazards to exposed organisms. However, the ability to detect chemicals in the environment has rapidly outpaced assessment of pot...
Progress on the biomarkers for tuberculosis diagnosis.
Fu, Tiwei; Xie, Jianping
2011-01-01
Tuberculosis (TB) remains a major threat to global health. Biomarkers derived from pathogen-host interaction can facilitate the monitoring of active TB. The recent progress regarding such biomarkers is summarized, including those can be used from serum, sputum, urine, or breath monitoring. A wide range of potential biomarkers such as protein antigens, cell-free nucleic acids, and lipoarabinomannose were compiled. The possible use of biomarkers for infection identification and monitoring drug efficacy are also presented.
Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.
1995-12-31
This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less
Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring.
Alcalá, José M; Ureña, Jesús; Hernández, Álvaro; Gualda, David
2017-02-11
The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people' demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.
Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring
Alcalá, José M.; Ureña, Jesús; Hernández, Álvaro; Gualda, David
2017-01-01
The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people’ demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented. PMID:28208672
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frandsen, K.
In the event of a major radiological incident, the Federal Radiological Monitoring and Assessment Center (FRMAC) will coordinate the federal agencies that have various statutory responsibilities. The FRMAC is responsible for coordinating all environmental radiological monitoring, sampling, and assessment activities for the response. This manual describes the FRMAC’s response activities in a radiological incident. It also outlines how FRMAC fits in the National Incident Management System (NIMS) under the National Response Framework (NRF) and describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the affected areas. In the event of a potential ormore » existing major radiological incident, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is responsible for establishing and managing the FRMAC during the initial phases.« less
Using Heart Rate Monitors in Research on Fitness Levels of Children in Physical Education.
ERIC Educational Resources Information Center
Strand, Brad; Reeder, Steve
1993-01-01
Demonstrates the use of heart rate monitors (HRMs) in fitness research and examines heart rate intensity levels of middle school students while they participated in a variety of physical education activities throughout a school year. Research shows the HRM has considerable potential in assessing fitness achievements in school-age children. (GLR)
Degradation activities, drivers, and emissions: US Forest Service LEAF Country Assessments
Patricia Manley; Leif Mortenson; James Halperin; Rick Turner
2013-01-01
Degradation is emerging as a common outcome of forest activities, and associated greenhouse gas (GHG) emissions have the potential to be significant. Understanding the activities and drivers of degradation is central to the ability to effectively measure, monitor, and mitigate associated emissions. Current inventories of GHG emissions do not effectively account for...
Getting the Biggest Bang for Your Buck: Wildlife Monitoring on Shrublands of the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Derek B.; Greger, Paul D.
The Nevada Test Site (NTS) covers 3,561 km2 and extends over portions of both the Mojave and Great Basin Deserts. The resulting diverse and complex flora and fauna exhibit elements of both deserts. There are 20 vegetation associations, composed primarily of shrubs, nested within 10 vegetation alliances. Of the more than 1,200 invertebrate and 339 vertebrate species found in these shrubland habitats, 267 are considered sensitive or protected/regulated by federal or state laws. Wildlife and wildlife habitat monitoring ensures NTS activities comply with all federal and state laws enacted for the protection of these valuable biological resources and provides ecologicalmore » information that can be used to predict and evaluate the potential impacts of proposed projects and current activities on these resources. This paper describes the monitoring approach used at this large site. Monitoring strategies include conducting preactivity surveys, proactively monitoring sensitive species, monitoring long-term population trends, and collaborating with other agencies and biologists. Ways to make monitoring more efficient and examples of successful monitoring and collaborations are discussed.« less
NASA Technical Reports Server (NTRS)
Francis, P. W.; Rothery, D. A.
1987-01-01
The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.
Detection of physical activities using a physical activity monitor system for wheelchair users.
Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan
2015-01-01
Availability of physical activity monitors for wheelchair users can potentially assist these individuals to track regular physical activity (PA), which in turn could lead to a healthier and more active lifestyle. Therefore, the aim of this study was to develop and validate algorithms for a physical activity monitoring system (PAMS) to detect wheelchair based activities. The PAMS consists of a gyroscope based wheel rotation monitor (G-WRM) and an accelerometer device (wocket) worn on the upper arm or on the wrist. A total of 45 persons with spinal cord injury took part in the study, which was performed in a structured university-based laboratory environment, a semi-structured environment at the National Veterans Wheelchair Games, and in the participants' home environments. Participants performed at least ten PAs, other than resting, taken from a list of PAs. The classification performance for the best classifiers on the testing dataset for PAMS-Arm (G-WRM and wocket on upper arm) and PAMS-Wrist (G-WRM and wocket on wrist) was 89.26% and 88.47%, respectively. The outcomes of this study indicate that multi-modal information from the PAMS can help detect various types of wheelchair-based activities in structured laboratory, semi-structured organizational, and unstructured home environments. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
A comparison of energy expenditure estimation of several physical activity monitors.
Dannecker, Kathryn L; Sazonova, Nadezhda A; Melanson, Edward L; Sazonov, Edward S; Browning, Raymond C
2013-11-01
Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multisensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. This study aimed to determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. Nineteen healthy young adults (10 men, 9 women) completed a 4-h stay in a room calorimeter. Participants wore a footwear-based physical activity monitor as well as Actical, ActiGraph, IDEEA, DirectLife, and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Estimated EE using the shoe-based device was not significantly different than measured EE (mean ± SE; 476 ± 20 vs 478 ± 18 kcal, respectively) and had a root-mean-square error of 29.6 kcal (6.2%). The IDEEA and the DirectLlife estimates of EE were not significantly different than the measured EE, but the ActiGraph and the Fitbit devices significantly underestimated EE. Root-mean-square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, ActiGraph, and Fitbit, respectively. The shoe-based physical activity monitor provides a valid estimate of EE, whereas the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity.
Skariyachan, Sinosh; Garka, Shruthi; Puttaswamy, Sushmitha; Shanbhogue, Shobitha; Devaraju, Raksha; Narayanappa, Rajeswari
2017-06-01
Assessment of the therapeutic potential of secondary metabolite producing microorganisms from the marine coastal areas imparts scope and application in the field of environmental monitoring. The present study aims to screen metabolites with antibacterial potential from actionbacteria associated with marine sediments collected from south coastal regions of Karnataka, India. The actinobacteria were isolated and characterized from marine sediments by standard protocol. The metabolites were extracted, and antibacterial potential was analyzed against eight hospital associated bacteria. The selected metabolites were partially characterized by proximate analysis, SDS-PAGE, and FTIR-spectroscopy. The antibiogram of the test clinical isolates revealed that they were emerged as multidrug-resistant strains (P ≤ 0.05). Among six actinobacteria (IS1-1S6) screened, 100 μl -1 metabolite from IS1 showed significant antibacterial activities against all the clinical isolates except Pseudomonas aeruginosa. IS2 demonstrated antimicrobial potential towards Proteus mirabilis, Streptococcus pyogenes, and Escherichia coli. The metabolite from IS3 showed activity against Strep. pyogenes and E. coli. The metabolites from IS4, IS5, and IS6 exhibited antimicrobial activities against Ps. aeruginosa (P ≤ 0.05). The two metabolites that depicted highest antibacterial activities against the test strains were suggested to be antimicrobial peptides with low molecular weight. These isolates were characterized and designated as Streptomyces sp. strain mangaluru01 and Streptomyces sp. mangaloreK01 by 16S ribosomal DNA (rDNA) sequencing. This study suggests that south coastal regions of Karnataka, India, are one of the richest sources of antibacterial metabolites producing actinobacteria and monitoring of these regions for therapeutic intervention plays profound role in healthcare management.
Application of biospeckle phenomenon on monitoring of leavening process in breadmaking
NASA Astrophysics Data System (ADS)
da Silva, Emerson Rodrigo; da Silva Junior, Elieste; Júnior, Mauro Favoretto; da Silva Lannes, Suzana Caetano; Muramatsu, Mikiya
2008-04-01
Since the sixties, dynamic speckles have found a wide number of applications, covering fields from engineering to biomedicine. However, despite of this potential, its utilisation in food manufacture control is still incipient. In this work, our objective was to use the biospeckle phenomenon to monitoring the expansion of the dough during the leavening process. Our experiments consisted in the temporal evolution observation of speckle patterns scattered by samples prepared from two formulations: by yoghurt addition and without it. Every two minutes, it was constructed a 2-D image, recording the Time History Speckle Pattern (THSP). The full monitoring time was 50 minutes. A new estimator of activity index, proposed by some of the authors, was used in data analysis. This estimator is based on contrast of successive correlations of intensities recorded in THSP. It was found a strong correlation between the activities on the samples and the type of fermentative agents. These results reveal an interesting potential of the biospeckle to control in bread manufacture industries.
SAR-based sea traffic monitoring: a reliable approach for maritime surveillance
NASA Astrophysics Data System (ADS)
Renga, Alfredo; Graziano, Maria D.; D'Errico, M.; Moccia, A.; Cecchini, A.
2011-11-01
Maritime surveillance problems are drawing the attention of multiple institutional actors. National and international security agencies are interested in matters like maritime traffic security, maritime pollution control, monitoring migration flows and detection of illegal fishing activities. Satellite imaging is a good way to identify ships but, characterized by large swaths, it is likely that the imaged scenes contain a large number of ships, with the vast majority, hopefully, performing legal activities. Therefore, the imaging system needs a supporting system which identifies legal ships and limits the number of potential alarms to be further monitored by patrol boats or aircrafts. In this framework, spaceborne Synthetic Aperture Radar (SAR) sensors, terrestrial AIS and the ongoing satellite AIS systems can represent a great potential synergy for maritime security. Starting from this idea the paper develops different designs for an AIS constellation able to reduce the time lag between SAR image and AIS data acquisition. An analysis of SAR-based ship detection algorithms is also reported and candidate algorithms identified.
Volcano hazards program in the United States
Tilling, R.I.; Bailey, R.A.
1985-01-01
Volcano monitoring and volcanic-hazards studies have received greatly increased attention in the United States in the past few years. Before 1980, the Volcanic Hazards Program was primarily focused on the active volcanoes of Kilauea and Mauna Loa, Hawaii, which have been monitored continuously since 1912 by the Hawaiian Volcano Observatory. After the reawakening and catastrophic eruption of Mount St. Helens in 1980, the program was substantially expanded as the government and general public became aware of the potential for eruptions and associated hazards within the conterminous United States. Integrated components of the expanded program include: volcanic-hazards assessment; volcano monitoring; fundamental research; and, in concert with federal, state, and local authorities, emergency-response planning. In 1980 the David A. Johnston Cascades Volcano Observatory was established in Vancouver, Washington, to systematically monitor the continuing activity of Mount St. Helens, and to acquire baseline data for monitoring the other, presently quiescent, but potentially dangerous Cascade volcanoes in the Pacific Northwest. Since June 1980, all of the eruptions of Mount St. Helens have been predicted successfully on the basis of seismic and geodetic monitoring. The largest volcanic eruptions, but the least probable statistically, that pose a threat to western conterminous United States are those from the large Pleistocene-Holocene volcanic systems, such as Long Valley caldera (California) and Yellowstone caldera (Wyoming), which are underlain by large magma chambers still potentially capable of producing catastrophic caldera-forming eruptions. In order to become better prepared for possible future hazards associated with such historically unpecedented events, detailed studies of these, and similar, large volcanic systems should be intensified to gain better insight into caldera-forming processes and to recognize, if possible, the precursors of caldera-forming eruptions. ?? 1985.
Reference Guide for Building Diagnostics Equipment and Techniques.
1986-07-01
ventilation rates indicates a potential for employee complaints of symptoms and of contamination by such pollutants as radon daughters which cause no...MONITOR (active) Measurement and Analysis. Radon daughters are collected on a filter and particle activity is measured with a detector. A microprocessor
Usefulness of emergency ultrasound in nontraumatic cardiac arrest.
Volpicelli, Giovanni
2011-02-01
Treatment of nontraumatic cardiac arrest in the hospital setting depends on the recognition of heart rhythm and differential diagnosis of the underlying condition while maintaining a constant oxygenated blood flow by ventilation and chest compression. Diagnostic process relies only on patient's history, physical findings, and active electrocardiography. Ultrasound is not currently scheduled in the resuscitation guidelines. Nevertheless, the use of real-time ultrasonography during resuscitation has the potential to improve diagnostic accuracy and allows the physician a greater confidence in deciding aggressive life-saving therapeutic procedures. This article reviews the current opinions and literature about the use of emergency ultrasound during resuscitation of nontraumatic cardiac arrest. Cardiac and lung ultrasound have a great potential in identifying the reversible mechanical causes of pulseless electrical activity or asystole. Brief examination of the heart can even detect a real cardiac standstill regardless of electrical activity displayed on the monitor, which is a crucial prognostic indicator. Moreover, ultrasound can be useful to verify and monitor the tracheal tube placement. Limitation to the use of ultrasound is the need to minimize the no-flow intervals during mechanical cardiopulmonary resuscitation. However, real-time ultrasound can be successfully applied during brief pausing of chest compression and first pulse-check. Finally, lung sonographic examination targeted to the detection of signs of pulmonary congestion has the potential to allow hemodynamic noninvasive monitoring before and after mechanical cardiopulmonary maneuvers. Copyright © 2011 Elsevier Inc. All rights reserved.
Hydrogen and Oxygen Gas Monitoring System Design and Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring
2007-06-01
This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices ismore » also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus« less
Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function.
Yu, Zhe; McKnight, Timothy E; Ericson, M Nance; Melechko, Anatoli V; Simpson, Michael L; Morrison, Barclay
2012-05-01
Neural chips, which are capable of simultaneous multisite neural recording and stimulation, have been used to detect and modulate neural activity for almost thirty years. As neural interfaces, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information of neuroplasticity. This novel nano-neuron interface may potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single-cell level and even inside the cell. The authors demonstrate the utility of a neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes. The new device can be used to stimulate and/or monitor signals from brain tissue in vitro and for monitoring dynamic information of neuroplasticity both intracellularly and at the single cell level including neuroelectrical and neurochemical activities. Copyright © 2012 Elsevier Inc. All rights reserved.
Bellicha, Alice; Macé, Sandrine; Oppert, Jean-Michel
2017-09-23
The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners' requirements when prescribing electronic activity monitors have been poorly described. The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Features of electronic activity monitors, although popular among the general public, do not meet the needs of physicians. In-depth understanding of physicians' expectations is a first step toward designing technologies that can be widely used in clinical settings and facilitate physical activity prescription. Physicians should have a role, along with key health care stakeholders-patients, researchers, information technology firms, the public, and private payers-in developing the most effective methods for integrating activity monitors into patient care. ©Alice Bellicha, Sandrine Macé, Jean-Michel Oppert. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.09.2017.
Boulé, Stéphane; Ninni, Sandro; Finat, Loïc; Botcherby, Edward J; Kouakam, Claude; Klug, Didier; Marquié, Christelle; Brigadeau, François; Lacroix, Dominique; Kacet, Salem; Guédon-Moreau, Laurence
2016-12-01
Despite increased use of remote monitoring (RM) to follow up implantable cardioverter-defibrillator (ICD) recipients, many patients still receive ICD shocks in the community and present to the emergency department. Our aim was to identify the best predictors of impending shock delivery that can be measured with an ICD and to identify the most appropriate activities to alert physicians to during RM follow-up. All patients presenting to our institution for ICD shock, from November 2011 to November 2014, were enrolled in this prospective study. Patient characteristics, investigation results, and details of electrical activities from ICD interrogation were recorded at presentation. Presentations were classified as potentially avoidable if activities from a list of set criteria were apparent more than 48 h before index shock. Univariate and multivariate analyses were then used to identify predictors of potentially avoidable shocks. In total, 109 emergency presentations were recorded in 90 patients (male: 85%; 57 ± 16 years; ischaemic cardiomyopathy: 49%; LVEF: 34 ± 13%; electrical storm: 40%), of which 26 (24%) were potentially avoidable. Antitachycardia pacing (ATP) episodes were the most important predictor of impending shock. Potentially avoidable shocks were preceded by more episodes of ATP than unavoidable shocks (13 [3-67] vs. 3 [0-10]; P < 0.001). Patients followed up with RM systems configured to generate alerts following ATP delivery experienced significantly less ICD shocks (24 vs. 16%, P < 0.01). Remote monitoring systems that generate alerts following ATP delivery could reduce emergency presentations for ICD shock by 24%, as ATP is a key predictor of impending shock delivery. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1975-01-01
Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.
NASA Astrophysics Data System (ADS)
Jeong, Hyeran; Park, Donguk
2017-09-01
The aims of this study were to quantify the contributions of activities or microenvironments (MEs) to daily total exposure to and potential dose of black carbon (BC). Daily BC exposures (24-h) were monitored using a micro-aethalometer micoAeth AE51 with forty school-aged children living in an urban area in Korea from August 2015 to January 2016. The children's time-activity patterns and the MEs they visited were investigated by means of a time-activity diary (TAD) and follow-up interviews with the children and their parents. Potential inhaled dose was estimated by multiplying the airborne BC concentrations (μg/m3) we monitored for the time the children spent in a particular ME by the inhalation rate (IR, m3/h) for the time-activity performed. The contribution of activities and MEs to overall daily exposure to and potential dose of BC was quantified. Overall mean daily potential dose was equal to 24.1 ± 10.6 μg/day (range: 6.6-46.3 μg/day). The largest contribution to BC exposure and potential dose (51.9% and 41.7% respectively) occurred in the home thanks to the large amount of time spent there. Transportation was where children received the most intense exposure to (14.8%) and potential dose (20.2%) of BC, while it accounted for 7.6% of daily time. School on weekdays during the semester was responsible for 20.3% of exposure and 22.5% of potential dose. Contribution to BC exposure and potential dose was altered by several time-activity parameters, such as type of day (weekdays vs. weekends; school days vs. holidays), season, and gender. Traveling by motor vehicle and subway showed more elevated exposure or potential dose intensity on weekdays or school days, probably influenced by the increased surrounding traffic volumes on these days compared to on weekends or holidays. This study may be used to prioritize targets for minimizing children's exposure to BC and to indicate outcomes of BC control strategies.
Active and passive electrical and seismic time-lapse monitoring of earthen embankments
NASA Astrophysics Data System (ADS)
Rittgers, Justin Bradley
In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to earthen embankment failures from a Science, Technology, Engineering, and Policy (STEP) perspective. Here, I discuss how the proclaimed scientific expertise and shifting of responsibility (Responsibilization) by governing entities tasked with operating and maintaining water storage and conveyance infrastructure throughout the United States tends to create barriers for 1) public voice and participation in relevant technical activities and outcomes, 2) meaningful discussions with the public and media during crisis communication, and 3) public perception of risk and the associated resilience of downhill communities.
Thorndike, Anne N; Mills, Sarah; Sonnenberg, Lillian; Palakshappa, Deepak; Gao, Tian; Pau, Cindy T; Regan, Susan
2014-01-01
Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention) or to a blinded monitor (control). Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1) median steps/day and 2) proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day). Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16) and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73). In Phase 2 (team competition), residents recorded more steps/day than during Phase 1 (CONTROL: 7,971 vs. 7,567, p = 0.002; 7,832 vs. 7,739, p = 0.13). Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001). Mean systolic blood pressure decreased (p = 0.004) and HDL cholesterol increased (p<0.001) among all participants at end of study compared to baseline. Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more intensive hospital-based wellness programs have potential for promoting healthier lifestyles among physicians. Clinicaltrials.gov NCT01287208.
Thorndike, Anne N.; Mills, Sarah; Sonnenberg, Lillian; Palakshappa, Deepak; Gao, Tian; Pau, Cindy T.; Regan, Susan
2014-01-01
Background Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. Methods We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention) or to a blinded monitor (control). Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1) median steps/day and 2) proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day). Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. Results In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16) and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73). In Phase 2 (team competition), residents recorded more steps/day than during Phase 1 (Control: 7,971 vs. 7,567, p = 0.002; Intervention: 7,832 vs. 7,739, p = 0.13). Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001). Mean systolic blood pressure decreased (p = 0.004) and HDL cholesterol increased (p<0.001) among all participants at end of study compared to baseline. Conclusions Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more intensive hospital-based wellness programs have potential for promoting healthier lifestyles among physicians. Trial Registration Clinicaltrials.gov NCT01287208. PMID:24950218
Monitoring ATP dynamics in electrically active white matter tracts
Trevisiol, Andrea; Saab, Aiman S; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes
2017-01-01
In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.24241.001 PMID:28414271
Monitoring environmental burden reduction from household waste prevention.
Matsuda, Takeshi; Hirai, Yasuhiro; Asari, Misuzu; Yano, Junya; Miura, Takahiro; Ii, Ryota; Sakai, Shin-Ichi
2018-01-01
In this study, the amount of prevented household waste in Kyoto city was quantified using three methods. Subsequently, the greenhouse gas (GHG) emission reduction by waste prevention was calculated in order to monitor the impact of waste prevention. The methods of quantification were "relative change from baseline year (a)," "absolute change from potential waste generation (b)," and "absolute amount of activities (c)." Method (a) was popular for measuring waste prevention, but method (b) was the original approach to determine the absolute amount of waste prevention by estimating the potential waste generation. Method (c) also provided the absolute value utilizing the information of activities. Methods (b) and (c) enable the evaluation of the waste prevention activities with a similar baseline for recycling. Methods (b) and (c) gave significantly higher GHG reductions than method (a) because of the difference in baseline between them. Therefore, setting a baseline is very important for evaluating waste prevention. In practice, when focusing on the monitoring of a specific policy or campaign, method (a) is an appropriate option. On the other hand, when comparing the total impact of waste prevention to that of recycling, methods (b) and (c) should be applied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced integrated real-time clinical displays.
Kruger, Grant H; Tremper, Kevin K
2011-09-01
Intelligent medical displays have the potential to improve patient outcomes by integrating multiple physiologic signals, exhibiting high sensitivity and specificity, and reducing information overload for physicians. Research findings have suggested that information overload and distractions caused by patient care activities and alarms generated by multiple monitors in acute care situations, such as the operating room and the intensive care unit, may produce situations that negatively impact the outcomes of patients under anesthesia. This can be attributed to shortcomings of human-in-the-loop monitoring and the poor specificity of existing physiologic alarms. Modern artificial intelligence techniques (ie, intelligent software agents) are demonstrating the potential to meet the challenges of next-generation patient monitoring and alerting. Copyright © 2011 Elsevier Inc. All rights reserved.
Ecological Monitoring and Compliance Program 2007 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Dennis; Anderson, David; Derek, Hall
2008-03-01
In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate themore » potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.« less
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1974-01-01
The charged particle observations proposed for the new low altitude weather satellites, TIROS-N, are described that will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance in distinguishing between solar and geomagnetic activity as possible causative sources.
Lin, Yanli; Moran, Tim P; Schroder, Hans S; Moser, Jason S
2015-10-01
Anxious apprehension/worry is associated with exaggerated error monitoring; however, the precise mechanisms underlying this relationship remain unclear. The current study tested the hypothesis that the worry-error monitoring relationship involves left-lateralized linguistic brain activity by examining the relationship between worry and error monitoring, indexed by the error-related negativity (ERN), as a function of hand of error (Experiment 1) and stimulus orientation (Experiment 2). Results revealed that worry was exclusively related to the ERN on right-handed errors committed by the linguistically dominant left hemisphere. Moreover, the right-hand ERN-worry relationship emerged only when stimuli were presented horizontally (known to activate verbal processes) but not vertically. Together, these findings suggest that the worry-ERN relationship involves left hemisphere verbal processing, elucidating a potential mechanism to explain error monitoring abnormalities in anxiety. Implications for theory and practice are discussed. © 2015 Society for Psychophysiological Research.
Science at the policy interface: volcano-monitoring technologies and volcanic hazard management
NASA Astrophysics Data System (ADS)
Donovan, Amy; Oppenheimer, Clive; Bravo, Michael
2012-07-01
This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.
Simple, inexpensive computerized rodent activity meters.
Horton, R M; Karachunski, P I; Kellermann, S A; Conti-Fine, B M
1995-10-01
We describe two approaches for using obsolescent computers, either an IBM PC XT or an Apple Macintosh Plus, to accurately quantify spontaneous rodent activity, as revealed by continuous monitoring of the spontaneous usage of running activity wheels. Because such computers can commonly be obtained at little or no expense, and other commonly available materials and inexpensive parts can be used, these meters can be built quite economically. Construction of these meters requires no specialized electronics expertise, and their software requirements are simple. The computer interfaces are potentially of general interest, as they could also be used for monitoring a variety of events in a research setting.
Performance Confirmation Data Aquisition System
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.W. Markman
2000-10-27
The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, Performance Confirmation Input Criteria (CRWMS M&O 1999c). (2) Identify and describe existing and potential new trends in data acquisition system software and hardware that would support the PC plan. The data acquisition softwaremore » and hardware will support the field instruments and equipment that will be installed for the observation and perimeter drift borehole monitoring, and in-situ monitoring within the emplacement drifts. The exhaust air monitoring requirements will be supported by a data communication network interface with the ventilation monitoring system database. (3) Identify the concepts and features that a data acquisition system should have in order to support the PC process and its activities. (4) Based on PC monitoring needs and available technologies, further develop concepts of a potential data acquisition system network in support of the PC program and the Site Recommendation and License Application.« less
Swendeman, Dallas; Ramanathan, Nithya; Baetscher, Laura; Medich, Melissa; Scheffler, Aaron; Comulada, W Scott; Estrin, Deborah
2015-05-01
Self-monitoring by mobile phone applications offers new opportunities to engage patients in self-management. Self-monitoring has not been examined thoroughly as a self-directed intervention strategy for self-management of multiple behaviors and states by people living with HIV (PLH). PLH (n = 50), primarily African American and Latino, were recruited from 2 AIDS services organizations and randomly assigned to daily smartphone (n = 34) or biweekly Web-survey only (n = 16) self-monitoring for 6 weeks. Smartphone self-monitoring included responding to brief surveys on medication adherence, mental health, substance use, and sexual risk behaviors, and brief text diaries on stressful events. Qualitative analyses examine biweekly open-ended user-experience interviews regarding perceived benefits and barriers of self-monitoring, and to elaborate a theoretical model for potential efficacy of self-monitoring to support self-management for multiple domains. Self-monitoring functions include reflection for self-awareness, cues to action (reminders), reinforcements from self-tracking, and their potential effects on risk perceptions, motivations, skills, and behavioral activation states. Participants also reported therapeutic benefits related to self-expression for catharsis, nonjudgmental disclosure, and in-the-moment support. About one-third of participants reported that surveys were too long, frequent, or tedious. Some smartphone group participants suggested that daily self-monitoring was more beneficial than biweekly due to frequency and in-the-moment availability. About twice as many daily self-monitoring group participants reported increased awareness and behavior change support from self-monitoring compared with biweekly Web-survey only participants. Self-monitoring is a potentially efficacious disruptive innovation for supporting self-management by PLH and for complementing other interventions, but more research is needed to confirm efficacy, adoption, and sustainability.
Remote Sensing Application in Oil and Gas Industry
NASA Astrophysics Data System (ADS)
Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia
2014-05-01
The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.
Tedesco, Salvatore; Barton, John; O'Flynn, Brendan
2017-06-03
The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future.
Tedesco, Salvatore; Barton, John; O’Flynn, Brendan
2017-01-01
The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future. PMID:28587188
A data mining approach to predict in situ chlorinated ethene detoxification potential
NASA Astrophysics Data System (ADS)
Lee, J.; Im, J.; Kim, U.; Loeffler, F. E.
2015-12-01
Despite major advances in physicochemical remediation technologies, in situ biostimulation and bioaugmentation treatment aimed at stimulating Dehalococcoides mccartyi (Dhc) reductive dechlorination activity remains a cornerstone approach to remedy sites impacted with chlorinated ethenes. In practice, selecting the best remedial strategy is challenging due to uncertainties associated with the microbiology (e.g., presence and activity of Dhc) and geochemical factors influencing Dhc activity. Extensive groundwater datasets collected over decades of monitoring exist, but have not been systematically analyzed. In the present study, geochemical and microbial data sets collected from 35 wells at 5 contaminated sites were used to develop a predictive empirical model using a machine learning algorithm (i) to rank the relative importance of parameters that affect in situ reductive dechlorination potential, and (ii) to provide recommendations for selecting the optimal remediation strategy at a specific site. Classification and regression tree (CART) analysis was applied, and a representative classification tree model was developed that allowed short-term prediction of dechlorination potential. Indirect indicators for low dissolved oxygen (e.g., low NO3-and NO2-, high Fe2+ and CH4) were the most influential factors for predicting dechlorination potential, followed by total organic carbon content (TOC) and Dhc cell abundance. These findings indicate that machine learning-based data mining techniques applied to groundwater monitoring data can lead to the development of predictive groundwater remediation models. A major need for improving the predictive capabilities of the data mining approach is a curated, up-to-date and comprehensive collection of groundwater monitoring data.
Automated measurement and monitoring of bioprocesses: key elements of the M(3)C strategy.
Sonnleitner, Bernhard
2013-01-01
The state-of-routine monitoring items established in the bioprocess industry as well as some important state-of-the-art methods are briefly described and the potential pitfalls discussed. Among those are physical and chemical variables such as temperature, pressure, weight, volume, mass and volumetric flow rates, pH, redox potential, gas partial pressures in the liquid and molar fractions in the gas phase, infrared spectral analysis of the liquid phase, and calorimetry over an entire reactor. Classical as well as new optical versions are addressed. Biomass and bio-activity monitoring (as opposed to "measurement") via turbidity, permittivity, in situ microscopy, and fluorescence are critically analyzed. Some new(er) instrumental analytical tools, interfaced to bioprocesses, are explained. Among those are chromatographic methods, mass spectrometry, flow and sequential injection analyses, field flow fractionation, capillary electrophoresis, and flow cytometry. This chapter surveys the principles of monitoring rather than compiling instruments.
Xia, Shaoxia; Liu, Yu; Yu, Xiubo; Fu, Bojie
2018-08-15
Environmental assessments estimate, evaluate and predict the consequences of natural processes and human activities on the environment. Long-term ecosystem observation and research networks (LTERs) are potentially valuable infrastructure to support environmental assessments. However, very few environmental assessments have successfully incorporated them. In this study, we try to reveal the current status of coupling LTERs with environmental assessments and look at the challenges involved in improving this coupling through exploring the role that Chinese Ecological Research Network (CERN), the LTER of China, currently plays in regional environment assessments. A review of official protocols and standards, regional assessments and CERN researches related to ecosystems and environment shows that there is great potential for coupling CERN with environment assessments. However in practice, CERN does not currently play the expected role. Remote sensing and irregular inventory data are still the main data sources currently used in regional assessments. Several causes led to the present situation: (1) insufficient cross-site research and failure to scale up site-level variables to the regional scale; (2) data barriers resulting from incompatible protocols and low data usability due to lack of data assimilation and scaling; and (3) absence of indicators relevant to human activities in existing monitoring protocols. For these reasons, enhancing cross-site monitoring and research, data assimilation and scaling up are critical steps required to improve coupling of LTER with environmental assessments. Site-focused long-term monitoring should be combined with wide-scale ground surveys and remote sensing to establish an effective connection between different environmental monitoring platforms for regional assessments. It is also necessary to revise the current monitoring protocols to include human activities and their impacts on the ecosystem, or change the LTERs into Long-Term Socio-Ecological Research (LTSER) networks. Copyright © 2018 Elsevier B.V. All rights reserved.
Borehole temperature variability at Hoher Sonnblick, Austria
NASA Astrophysics Data System (ADS)
Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia
2016-04-01
The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in the time series by cross checking all available information of the three boreholes. Furthermore, the already available ERT profiles will serve as additional information source improving the quality of the measured borehole temperatures.
40 CFR 8.9 - Measures to assess and verify environmental impacts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL IMPACT ASSESSMENT OF NONGOVERNMENTAL ACTIVITIES IN ANTARCTICA § 8.9 Measures to assess and verify environmental impacts. (a) The operator shall conduct appropriate monitoring of key environmental indicators as proposed in the CEE to assess and verify the potential environmental impacts of activities which are the...
21 CFR 320.33 - Criteria and evidence to assess actual or potential bioequivalence problems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... bioavailability. (4) Certain physical structural characteristics of the active drug ingredient, e.g., polymorphic... effective use of the drug products requires careful dosage titration and patient monitoring. (d) Competent... or prevention of a serious disease or condition. (e) Physicochemical evidence that: (1) The active...
21 CFR 320.33 - Criteria and evidence to assess actual or potential bioequivalence problems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... bioavailability. (4) Certain physical structural characteristics of the active drug ingredient, e.g., polymorphic... effective use of the drug products requires careful dosage titration and patient monitoring. (d) Competent... or prevention of a serious disease or condition. (e) Physicochemical evidence that: (1) The active...
21 CFR 320.33 - Criteria and evidence to assess actual or potential bioequivalence problems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... bioavailability. (4) Certain physical structural characteristics of the active drug ingredient, e.g., polymorphic... effective use of the drug products requires careful dosage titration and patient monitoring. (d) Competent... or prevention of a serious disease or condition. (e) Physicochemical evidence that: (1) The active...
21 CFR 320.33 - Criteria and evidence to assess actual or potential bioequivalence problems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... bioavailability. (4) Certain physical structural characteristics of the active drug ingredient, e.g., polymorphic... effective use of the drug products requires careful dosage titration and patient monitoring. (d) Competent... or prevention of a serious disease or condition. (e) Physicochemical evidence that: (1) The active...
21 CFR 320.33 - Criteria and evidence to assess actual or potential bioequivalence problems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... bioavailability. (4) Certain physical structural characteristics of the active drug ingredient, e.g., polymorphic... effective use of the drug products requires careful dosage titration and patient monitoring. (d) Competent... or prevention of a serious disease or condition. (e) Physicochemical evidence that: (1) The active...
Jha, Ashish K; Laguette, Julia; Seger, Andrew; Bates, David W
2008-01-01
Computerized monitors can effectively detect and potentially prevent adverse drug events (ADEs). Most monitors have been developed in large academic hospitals and are not readily usable in other settings. We assessed the ability of a commercial program to identify and prevent ADEs in a community hospital. and Measurement We prospectively evaluated the commercial application in a community-based hospital. We examined the frequency and types of alerts produced, how often they were associated with ADEs and potential ADEs, and the potential financial impact of monitoring for ADEs. Among 2,407 patients screened, the application generated 516 high priority alerts. We were able to review 266 alerts at the time they were generated and among these, 30 (11.3%) were considered substantially important to warrant contacting the physician caring for the patient. These 30 alerts were associated with 4 ADEs and 11 potential ADEs. In all 15 cases, the responsible physician was unaware of the event, leading to a change in clinical care in 14 cases. Overall, 23% of high priority alerts were associated with an ADE (95% confidence interval [CI] 12% to 34%) and another 15% were associated with a potential ADE (95% CI 6% to 24%). Active surveillance used approximately 1.5 hours of pharmacist time daily. A commercially available, computer-based ADE detection tool was effective at identifying ADEs. When used as part of an active surveillance program, it can have an impact on preventing or ameliorating ADEs.
Monitoring of the Spacecraft Potential in the Magetosphere With a Double Probe Instrument
NASA Astrophysics Data System (ADS)
Laakso, H.
1998-11-01
Measurements of the double probe instrument can be used for monitoring the variation of the spacecraft potential Vs in tenuous plasmas where the satellite usually floats at a positive potential. This study deals with the Vs variation of the Polar satellite in the magnetosphere, using three and half years of data in 1996-99. The observations are binned with the Kp index in order to investigate how the level of geomagnetic activity affects the average surface potential. Two different antenna baselines are used, 6 and 60 meters, which both can be used for monitoring the spacecraft potential. In a low-density environment, however, the short antenna measurements are more influenced by the charging sheath of the satellite, but the data are nevertheless qualitatively useful. In burst mode the sampling rate of the double probe experiment is 1-8 kHz, and then very fast spacecraft potential variations can be monitored. Typically Vs varies between 0 and 50 volts so that in the plasmasphere it is 0-1 volt, at the plasmapause it exhibits a steep increase by 3-5 volts, and outside the plasmasphere Vs is more than 5 volts. Highest Vs's occur in the high-altitude (> 4 RE) polar cap, where Vs is usually between 20 and 30 volts, and on auroral field lines where it frequently lies in the 30-50 volts range and occasionally above 50 volts.
NASA Astrophysics Data System (ADS)
Swanson, Don
Monitoring volcanoes is a surprisingly controversial enterprise. Some volcanologists argue that monitoring promises too much and delivers too little for risk mitigation. They trust only strict land-use measures (and accompanying high insurance premiums in risky zones) and urge that funds be used for public education and awareness rather than for instrumental monitoring. Others claim that monitoring is more akin to Brownian motion than to science: lots of action but little net progress. Still other volcanologists acknowledge the potential value of monitoring for prediction and warning but despair at the difficulty of it all. And, finally, some shy from surveillance, fearing the legal consequences of a failed monitoring effort during these litigious times. They wonder, “Will I be sued if an eruption is not foreseen or if an instrument fails at a critical time?”
NASA Technical Reports Server (NTRS)
Hielkema, J. U.; Howard, J. A.; Tucker, C. J.; Van Ingen Schenau, H. A.
1987-01-01
The African real time environmental monitoring using imaging satellites (Artemis) system, which should monitor precipitation and vegetation conditions on a continental scale, is presented. The hardware and software characteristics of the system are illustrated and the Artemis databases are outlined. Plans for the system include the use of hourly digital Meteosat data and daily NOAA/AVHRR data to study environmental conditions. Planned mapping activities include monthly rainfall anomaly maps, normalized difference vegetation index maps for ten day and monthly periods with a spatial resolution of 7.6 km, ten day crop/rangeland moisture availability maps, and desert locust potential breeding activity factor maps for a plague prevention program.
Guaranha, Mirian S B; Garzon, Eliana; Buchpiguel, Carlos A; Tazima, Sérgio; Yacubian, Elza M T; Sakamoto, Américo C
2005-01-01
Hyperventilation is an activation method that provokes physiological slowing of brain rhythms, interictal discharges, and seizures, especially in generalized idiopathic epilepsies. In this study we assessed its effectiveness in inducing focal seizures during video-EEG monitoring. We analyzed the effects of hyperventilation (HV) during video-EEG monitoring (video-EEG) of patients with medically intractable focal epilepsies. We excluded children younger than 10 years, mentally retarded patients, and individuals with frequent seizures. We analyzed 97 patients; 24 had positive seizure activation (PSA), and 73 had negative seizure activation (NSA). No differences were found between groups regarding sex, age, age at epilepsy onset, duration of epilepsy, frequency of seizures, and etiology. Temporal lobe epilepsies were significantly more activated than frontal lobe epilepsies. Spontaneous and activated seizures did not differ in terms of their clinical characteristics, and the activation did not affect the performance of ictal single-photon emission computed tomography (SPECT). HV is a safe and effective method of seizure activation during monitoring. It does not modify any of the characteristics of the seizures and allows the obtaining of valuable ictal SPECTs. This observation is clinically relevant and suggests the effectiveness and the potential of HV in shortening the presurgical evaluation, especially of temporal lobe epilepsy patients, consequently reducing its costs and increasing the number of candidates for epilepsy surgery.
Barton D. Clinton; James M. Vose; Dick L. Fowler
2010-01-01
Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...
Childers, J W; Witherspoon, C L; Smith, L B; Pleil, J D
2000-01-01
We used real-time monitors and low-volume air samplers to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. We used three types of photoelectric aerosol sensors (PASs) to measure real-time concentrations of particle-bound PAHs in a break room, downwind from a C-130H aircraft during a four-engine run-up test, in a maintenance hangar, in a C-130H aircraft cargo bay during cargo-drop training, downwind from aerospace ground equipment (AGE), and in a C-130H aircraft cargo bay during engine running on/off (ERO) loading and backup exercises. Two low-volume air samplers were collocated with the real-time monitors for all monitoring events except those in the break room and during in-flight activities. Total PAH concentrations in the integrated-air samples followed a general trend: downwind from two AGE units > ERO-loading exercise > four-engine run-up test > maintenance hangar during taxi and takeoff > background measurements in maintenance hangar. Each PAH profile was dominated by naphthalene, the alkyl-substituted naphthalenes, and other PAHs expected to be in the vapor phase. We also found particle-bound PAHs, such as fluoranthene, pyrene, and benzo[a]pyrene in some of the sample extracts. During flight-related exercises, total PAH concentrations in the integrated-air samples were 10-25 times higher than those commonly found in ambient air. Real-time monitor mean responses generally followed the integrated-air sample trends. These monitors provided a semiquantitative temporal profile of ambient PAH concentrations and showed that PAH concentrations can fluctuate rapidly from a baseline level < 20 to > 4,000 ng/m(3) during flight-related activities. Small handheld models of the PAS monitors exhibited potential for assessing incidental personal exposure to particle-bound PAHs in engine exhaust and for serving as a real-time dosimeter to indicate when respiratory protection is advisable. PMID:11017890
Environmental monitoring, restoration and assessment: What have we learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R.H.
1990-01-01
The Twenty-Eighth Hanford Symposium on Health and the Environment was held in Richland, Washington, October 16--19, 1989. The symposium was sponsored by the US Department of Energy and the Pacific Northwest Laboratory, operated by Battelle Memorial Institute. The symposium was organized to review and evaluate some of the monitoring and assessment programs that have been conducted or are currently in place. Potential health and environmental effects of energy-related and other industrial activities have been monitored and assessed at various government and private facilities for over three decades. Most monitoring is required under government regulations; some monitoring is implemented because facilitymore » operators consider it prudent practice. As a result of these activities, there is now a substantial radiological, physical, and chemical data base for various environmental components, both in the United States and abroad. Symposium participants, both platform and poster presenters, were asked to consider, among other topics, the following: Has the expenditure of millions of dollars for radiological monitoring and assessment activities been worth the effort How do we decide when enough monitoring is enough Can we adequately assess the impacts of nonradiological components -- both inorganic and organic -- of wastes Are current regulatory requirements too restrictive or too lenient Can monitoring and assessment be made more cost effective Papers were solicited in the areas of environmental monitoring; environmental regulations; remediation, restoration, and decommissioning; modeling and dose assessment; uncertainty, design, and data analysis; and data management and quality assurance. Individual reports are processed separately for the databases.« less
Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...
Silva, H G; Lopes, I
Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.
Bunch, A G; Perry, C S; Abraham, L; Wikoff, D S; Tachovsky, J A; Hixon, J G; Urban, J D; Harris, M A; Haws, L C
2014-01-15
Shale gas exploration and production (E&P) has experienced substantial growth across the U.S. over the last decade. The Barnett Shale, in north-central Texas, contains one of the largest, most active onshore gas fields in North America, stretching across 5000 square miles and having an estimated 15,870 producing wells as of 2011. Given that these operations may occur in relatively close proximity to populated/urban areas, concerns have been expressed about potential impacts on human health. In response to these concerns, the Texas Commission on Environmental Quality established an extensive air monitoring network in the region. This network provides a unique data set for evaluating the potential impact of shale gas E&P activities on human health. As such, the objective of this study was to evaluate community-wide exposures to volatile organic compounds (VOCs) in the Barnett Shale region. In this current study, more than 4.6 million data points (representing data from seven monitors at six locations, up to 105 VOCs/monitor, and periods of record dating back to 2000) were evaluated. Measured air concentrations were compared to federal and state health-based air comparison values (HBACVs) to assess potential acute and chronic health effects. None of the measured VOC concentrations exceeded applicable acute HBACVs. Only one chemical (1,2-dibromoethane) exceeded its applicable chronic HBACV, but it is not known to be associated with shale gas production activities. Annual average concentrations were also evaluated in deterministic and probabilistic risk assessments and all risks/hazards were below levels of concern. The analyses demonstrate that, for the extensive number of VOCs measured, shale gas production activities have not resulted in community-wide exposures to those VOCs at levels that would pose a health concern. With the high density of active wells in this region, these findings may be useful for understanding potential health risks in other shale play regions. © 2013. Published by Elsevier B.V. All rights reserved.
The Value of Information from a GRACE-Enhanced Drought Severity Index
NASA Astrophysics Data System (ADS)
Kuwayama, Y.; Bernknopf, R.; Brookshire, D.; Macauley, M.; Zaitchik, B. F.; Rodell, M.; Vail, P.; Thompson, A.
2015-12-01
In this project, we develop a framework to estimate the economic value of information from the Gravity and Climate Experiment (GRACE) for drought monitoring and to understand how the GRACE Data Assimilation (GRACE-DA) system can inform decision making to improve regional economic outcomes. Specifically, we consider the potential societal value of further incorporating GRACE-DA information into the U.S. Drought Monitor mapmaking process. Research activities include (a) a literature review, (b) a series of listening sessions with experts and stakeholders, (c) the development of a conceptual economic framework based on a Bayesian updating procedure, and (d) an econometric analysis and retrospective case study to understand the GRACE-DA contribution to agricultural policy and production decisions. Taken together, the results from these research activities support our conclusion that GRACE-DA has the potential to lower the variance associated with our understanding of drought and that this improved understanding has the potential to change policy decisions that lead to tangible societal benefits.
An MFC-Based Online Monitoring and Alert System for Activated Sludge Process
Xu, Gui-Hua; Wang, Yun-Kun; Sheng, Guo-Ping; Mu, Yang; Yu, Han-Qing
2014-01-01
In this study, based on a simple, compact and submersible microbial fuel cell (MFC), a novel online monitoring and alert system with self-diagnosis function was established for the activated sludge (AS) process. Such a submersible MFC utilized organic substrates and oxygen in the AS reactor as the electron donor and acceptor respectively, and could provide an evaluation on the status of the AS reactor and thus give a reliable early warning of potential risks. In order to evaluate the reliability and sensitivity of this online monitoring and alert system, a series of tests were conducted to examine the response of this system to various shocks imposed on the AS reactor. The results indicate that this online monitoring and alert system was highly sensitive to the performance variations of the AS reactor. The stability, sensitivity and repeatability of this online system provide feasibility of being incorporated into current control systems of wastewater treatment plants to real-time monitor, diagnose, alert and control the AS process. PMID:25345502
Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine
2012-12-01
Recent studies have demonstrated the presence of trace-level pharmaceutically active compounds (PhACs) and endocrine disrupting compounds (EDCs) in a number of finished drinking waters (DWs). Since there is sparse knowledge currently available on the potential effects on human health associated with the chronic exposure to trace levels of these Emerging Contaminants (ECs) through routes such as DW, it is suggested that the most appropriate criterion is a treatment criterion in order to prioritize ECs to be monitored during DW preparation. Hence, only the few ECs showing the lowest removals towards a given DW Treatment (DWT) process would serve as indicators of the overall efficiency of this process and would be relevant for DW quality monitoring. In addition, models should be developed for estimating the removal of ECs in DWT processes, thereby overcoming the practical difficulties of experimentally assessing each compound. Therefore, the present review has two objectives: (1) to provide an overview of the recent scientific surveys on the occurrence of PhACs and EDCs in finished DWs; and (2) to propose the potential of Quantitative-Structure-Activity-Relationship-(QSAR)-like models to rank ECs found in environmental waters, including parent compounds, metabolites and transformation products, in order to select the most relevant compounds to be considered as indicators for monitoring purposes in DWT systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E; Dichter, Marc A; Lucas, Timothy H; Viventi, Jonathan; Litt, Brian; Rogers, John A
2016-07-01
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.
Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ericson, Milton Nance; McKnight, Timothy E; Melechko, Anatoli Vasilievich
2012-01-01
Neural chips, which are capable of simultaneous, multi-site neural recording and stimulation, have been used to detect and modulate neural activity for almost 30 years. As a neural interface, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information ofmore » neuroplasticity. This novel nano-neuron interface can potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single cell level and even inside the cell.« less
Vogiatzis, Konstantinos; Zafiropoulou, Vassiliki; Mouzakis, Haralampos
2018-10-15
The Line 3 Extension from Aghia Marina to Piraeus constitutes one of the most significant construction projects in full development in Athens Greater area. For the management and abatement of the air borne noise generated from surface, and/or underground construction activities, relevant machinery operation, and trucks movements at open worksites and the tunnel, a continuous monthly noise and vibration monitoring program is enforced in order to assess any potential intrusion of the acoustic environment. On basis of measured 24 hour L eq noise levels, both L den and L night EU indices were assessed along with vibration velocity for every worksite and tunnel construction activity. The existing environmental noise background generated mainly from road traffic was assessed in order to evaluate potential effects on both air borne noise from construction activities. This comprehensive monitoring program aims to protect the inhabitants in the vicinity of worksites and the tunnel surrounding from construction noise and vibration processing and evaluating all necessary mitigation measures. Especially, for the protection of sensitive receptors, this program may serve as a tool ensuring a successful management of both noise and vibration levels emitted from open air construction activities and (Tunnel Boring Machine) TBM or hammer/pilling operation by implementing mitigation measures where necessary. Copyright © 2018 Elsevier B.V. All rights reserved.
Nuclear magnetic resonance studies of the regulation of the pentose phosphate pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolo, N.R.
1991-11-01
The goal of this work is to investigate the potential for and limitations of in vivo nuclear magnetic resonance (NMR) spectroscopy for quantitation of glucose flux through the pentose phosphate pathway (shunt). Interest in the shunt is motivated by the possibility that its activity may be greatly increased in cancer and in the pathological states of cardiac and cerebral ischemia. The ability to dynamically monitor flux through the pentose shunt can give new knowledge about metabolism in pathological states. {sup 13}C NMR spectroscopy was used to monitor shunt activity by determination of the ratios of ({sup 13}C-4) to ({sup 13}C-5)-glutamate,more » ({sup 13}C-3) to ({sup 13}C-2)-alanine or ({sup 13}C-3) to ({sup 13}C-2)-lactate produced when ({sup 13}C-2)-glucose is infused. These methods provide measures of the effect of oxidative stresses on shunt activity in systems ranging from cell free enzyme-substrate preparations to cell suspensions and whole animals. In anaerobic cell free preparations, the fraction of glucose flux through the shunt was monitored with a time resolution of 3 minutes. This work predicts the potential for in vivo human studies of pentose phosphate pathway activity based on the mathematical simulation of the {sup 13}C fractional enrichments of C4 and C5-glutamate as a function of shunt activity and on the signal-to- noise ratio acquired in {sup 13}C NMR human studies from the current literature.« less
Nuclear magnetic resonance studies of the regulation of the pentose phosphate pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolo, Nicolas Robin
1991-11-01
The goal of this work is to investigate the potential for and limitations of in vivo nuclear magnetic resonance (NMR) spectroscopy for quantitation of glucose flux through the pentose phosphate pathway (shunt). Interest in the shunt is motivated by the possibility that its activity may be greatly increased in cancer and in the pathological states of cardiac and cerebral ischemia. The ability to dynamically monitor flux through the pentose shunt can give new knowledge about metabolism in pathological states. 13C NMR spectroscopy was used to monitor shunt activity by determination of the ratios of [ 13C-4] to [ 13C-5]-glutamate, [more » 13C-3] to [ 13C-2]-alanine or [ 13C-3] to [ 13C-2]-lactate produced when [ 13C-2]-glucose is infused. These methods provide measures of the effect of oxidative stresses on shunt activity in systems ranging from cell free enzyme-substrate preparations to cell suspensions and whole animals. In anaerobic cell free preparations, the fraction of glucose flux through the shunt was monitored with a time resolution of 3 minutes. This work predicts the potential for in vivo human studies of pentose phosphate pathway activity based on the mathematical simulation of the 13C fractional enrichments of C4 and C5-glutamate as a function of shunt activity and on the signal-to- noise ratio acquired in 13C NMR human studies from the current literature.« less
Implicit Interaction: A Modality for Ambient Exercise Monitoring
NASA Astrophysics Data System (ADS)
Wan, J.; O'Grady, M. J.; O'Hare, G. M. P.
Ambient Exercise refers to the implicit exercise that people undertake in the course of their everyday duties - a simple example being climbing stairs. Increasing awareness of the potential health benefits of such activities may well contribute to an increase in a person’s well-being. Initially, it is necessary to monitor and quantify such exercise so that personalized fitness plans may be constructed. In this paper, the implicit interaction modality is harnessed to enable the capturing of ambient exercise activity thereby facilitating its subsequent quantification and interpretation. The novelty of the solution proposed lies in its ubiquity and transparency.
Quarello, Paola; Spada, Marco; Porta, Francesco; Vassallo, Elena; Timeus, Fabio; Fagioli, Franca
2018-02-01
Here, we report a patient with Niemann-Pick disease type B, with early severe onset of disease and pulmonary involvement, treated with hematopoietic stem cell transplant (HSCT) from a bone marrow matched unrelated donor. We confirm that HSCT is feasible and potentially beneficial for patients with severe phenotype. Noteworthy, we discussed the potential usefulness of the activity of peripheral chitotriosidase for the longitudinal evaluation of HSCT success and effectiveness. © 2017 Wiley Periodicals, Inc.
The Use of Electrocortical Activity to Monitor Human Decision Making
1974-02-01
processor’ lies in a principle i of neural organization rather than in a specific locus in the CNS. We cannot assume that activity related to the...Slov potential changes and choice RT as a function cf Ir.terctlmitlua Interval, Acta Paychoiepical 37, 173-186, 1973. Gerbrandt, L. K., Coff , W. R
Peetoom, Kirsten K B; Lexis, Monique A S; Joore, Manuela; Dirksen, Carmen D; De Witte, Luc P
2015-07-01
To obtain insight into what kind of monitoring technologies exist to monitor activity in-home, what the characteristics and aims of applying these technologies are, what kind of research has been conducted on their effects and what kind of outcomes are reported. A systematic document search was conducted within the scientific databases Pubmed, Embase, Cochrane, PsycINFO and Cinahl, complemented by Google Scholar. Documents were included in this review if they reported on monitoring technologies that detect activities of daily living (ADL) or significant events, e.g. falls, of elderly people in-home, with the aim of prolonging independent living. Five main types of monitoring technologies were identified: PIR motion sensors, body-worn sensors, pressure sensors, video monitoring and sound recognition. In addition, multicomponent technologies and smart home technologies were identified. Research into the use of monitoring technologies is widespread, but in its infancy, consisting mainly of small-scale studies and including few longitudinal studies. Monitoring technology is a promising field, with applications to the long-term care of elderly persons. However, monitoring technologies have to be brought to the next level, with longitudinal studies that evaluate their (cost-) effectiveness to demonstrate the potential to prolong independent living of elderly persons. [Box: see text].
[Wireless device for monitoring the patients with chronic disease].
Ciorap, R; Zaharia, D; Corciovă, C; Ungureanu, Monica; Lupu, R; Stan, A
2008-01-01
Remote monitoring of chronic diseases can improve health outcomes and potentially lower health care costs. The high number of the patients, suffering of chronically diseases, who wish to stay at home rather then in a hospital increasing the need of homecare monitoring and have lead to a high demand of wearable medical devices. Also, extended patient monitoring during normal activity has become a very important target. In this paper are presented the design of the wireless monitoring devices based on ultra low power circuits, high storage memory flash, bluetooth communication and the firmware for the management of the monitoring device. The monitoring device is built using an ultra low power microcontroller (MSP430 from Texas Instruments) that offers the advantage of high integration of some circuits. The custom made electronic boards used for biosignal acquisition are also included modules for storage device (SD/MMC card) with FAT32 file system and Bluetooth device for short-range communication used for data transmission between monitoring device and PC or PDA. The work was focused on design and implementation of an ultra low power wearable device able to acquire patient vital parameters, causing minimal discomfort and allowing high mobility. The proposed wireless device could be used as a warning system for monitoring during normal activity.
Preconcentration for Improved Long-term Monitoring of Contaminants in Groundwater
2014-04-10
Johnson of the US Army Corps of Engineers, Tulsa District (recently retired) provided sites in northeastern Oklahoma for field trials as well as...neighboring wildlife is also a concern. Long-term monitoring of sites undergoing remediation as well as sites that may eventually require cleanup is...Activated charcoal and peroxide cleanup steps offer potential avenues for addressing this problem. The materials may be of value in isotopic analysis of
Mapping epistemic cultures and learning potential of participants in citizen science projects.
Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid
2016-06-01
The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for Conservation Biology.
Development of Cloud-Based UAV Monitoring and Management System
Itkin, Mason; Kim, Mihui; Park, Younghee
2016-01-01
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation. PMID:27854267
Development of Cloud-Based UAV Monitoring and Management System.
Itkin, Mason; Kim, Mihui; Park, Younghee
2016-11-15
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation.
The NASA Carbon Monitoring System
NASA Astrophysics Data System (ADS)
Hurtt, G. C.
2015-12-01
Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder engagement, 6) partnerships with other U.S. agencies and international partners, and 7) modeling and data assimilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VANNONI, MICHAEL G.; BIRINGER, KENT L.; TROST, LAWRENCE C.
Missiles are attractive weapon systems because of their flexibility, survivability, and relatively low cost. Consequently, many nations are seeking to build missile forces resulting in regional arms races. Missile forces can be both stabilizing (e.g., providing a survivable force for deterrence) and destabilizing (e.g., creating strategic asymmetries). Efforts to control missile proliferation must account for these effects. A number of strategies to control the destabilizing effects of missiles were developed during the Cold War. Some of these strategies are applicable to regional missile control but new approaches, tailored to regional geographic and security conditions, are needed. Regional missile nonproliferation canmore » be pursued in a variety of ways: Reducing the demand for missiles by decreasing the perception of national threats; Restricting the export of missiles and associated equipment by supplier countries; Restricting information describing missile technology; Limiting missile development activities such as flight or engine tests; Restricting the operational deployment of existing missile forces; and Reducing existing missile forces by number and/or type. Even when development is complete, limits on deployment within range of potential targets or limits on operational readiness can help stabilize potential missile confrontations. Implementing these strategies often involves the collection and exchange of information about activities related to missile development or deployment. Monitoring is the process of collecting information used to for subsequent verification of commitments. A systematic approach to implementing verification is presented that identifies areas where monitoring could support missile nonproliferation agreements. The paper presents both non-technical and technical techniques for monitoring. Examples of non-technical techniques are declarations about planned test launches or on-site inspections. Examples of technical monitoring include remote monitoring (i.e., a sensor that is physically present at a facility) and remote sensing (i.e., a sensor that records activity without being physically present at a facility).« less
Melloni, Margherita; Urbistondo, Claudia; Sedeño, Lucas; Gelormini, Carlos; Kichic, Rafael; Ibanez, Agustin
2012-01-01
In this work, we explored convergent evidence supporting the fronto-striatal model of obsessive-compulsive disorder (FSMOCD) and the contribution of event-related potential (ERP) studies to this model. First, we considered minor modifications to the FSMOCD model based on neuroimaging and neuropsychological data. We noted the brain areas most affected in this disorder -anterior cingulate cortex (ACC), basal ganglia (BG), and orbito-frontal cortex (OFC) and their related cognitive functions, such as monitoring and inhibition. Then, we assessed the ERPs that are directly related to the FSMOCD, including the error-related negativity (ERN), N200, and P600. Several OCD studies present enhanced ERN and N2 responses during conflict tasks as well as an enhanced P600 during working memory (WM) tasks. Evidence from ERP studies (especially regarding ERN and N200 amplitude enhancement), neuroimaging and neuropsychological findings suggests abnormal activity in the OFC, ACC, and BG in OCD patients. Moreover, additional findings from these analyses suggest dorsolateral prefrontal and parietal cortex involvement, which might be related to executive function (EF) deficits. Thus, these convergent results suggest the existence of a self-monitoring imbalance involving inhibitory deficits and executive dysfunctions. OCD patients present an impaired ability to monitor, control, and inhibit intrusive thoughts, urges, feelings, and behaviors. In the current model, this imbalance is triggered by an excitatory role of the BG (associated with cognitive or motor actions without volitional control) and inhibitory activity of the OFC as well as excessive monitoring of the ACC to block excitatory impulses. This imbalance would interact with the reduced activation of the parietal-DLPC network, leading to executive dysfunction. ERP research may provide further insight regarding the temporal dynamics of action monitoring and executive functioning in OCD. PMID:23015786
Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives
NASA Astrophysics Data System (ADS)
Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.
2009-12-01
Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.
NASA Astrophysics Data System (ADS)
Harrild, M.; Webley, P. W.; Dehn, J.
2015-12-01
The ability to detect and monitor precursory events, thermal signatures, and ongoing volcanic activity in near-realtime is an invaluable tool. Volcanic hazards often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash to aircraft cruise altitudes. Using ground based remote sensing to detect and monitor this activity is essential, but the required equipment is often expensive and difficult to maintain, which increases the risk to public safety and the likelihood of financial impact. Our investigation explores the use of 'off the shelf' cameras, ranging from computer webcams to low-light security cameras, to monitor volcanic incandescent activity in near-realtime. These cameras are ideal as they operate in the visible and near-infrared (NIR) portions of the electromagnetic spectrum, are relatively cheap to purchase, consume little power, are easily replaced, and can provide telemetered, near-realtime data. We focus on the early detection of volcanic activity, using automated scripts that capture streaming online webcam imagery and evaluate each image according to pixel brightness, in order to automatically detect and identify increases in potentially hazardous activity. The cameras used here range in price from 0 to 1,000 and the script is written in Python, an open source programming language, to reduce the overall cost to potential users and increase the accessibility of these tools, particularly in developing nations. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures to be correlated to pixel brightness. Data collected from several volcanoes; (1) Stromboli, Italy (2) Shiveluch, Russia (3) Fuego, Guatemala (4) Popcatépetl, México, along with campaign data from Stromboli (June, 2013), and laboratory tests are presented here.
Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K
2015-04-01
Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Real-time surrogate analysis for potential oil and gas contamination of drinking water resources
NASA Astrophysics Data System (ADS)
Son, Ji-Hee; Carlson, Kenneth H.
2015-09-01
Public concerns related to the fast-growing shale oil and gas industry have increased during recent years. The major concern regarding shale gas production is the potential of fracturing fluids being injected into the well or produced fluids flowing out of the well to contaminate drinking water resources such as surface water and groundwater. Fracturing fluids contain high total dissolved solids (TDS); thus, changes in TDS concentrations in groundwater might indicate influences of fracturing fluids. An increase of methane concentrations in groundwater could also potentially be due to hydraulic fracturing activities. To understand the possible contamination of groundwater by fracturing activities, real-time groundwater monitoring is being implemented in the Denver-Julesburg basin of northeast Colorado. A strategy of monitoring of surrogate parameters was chosen instead of measuring potential contaminants directly, an approach that is not cost effective or operationally practical. Contaminant surrogates of TDS and dissolved methane were proposed in this study, and were tested for correlation and data distribution with laboratory experiments. Correlations between TDS and electrical conductivity (EC), and between methane contamination and oxidation-reduction potential (ORP) were strong at low concentrations of contaminants (1 mg/L TDS and 0.3 mg/L CH4). Dissolved oxygen (DO) was only an effective surrogate at higher methane concentrations (≥2.5 mg/L). The results indicated that EC and ORP are effective surrogates for detecting concentration changes of TDS and methane, respectively, and that a strategy of monitoring for easy to measure parameters can be effective detecting real-time, anomalous behavior relative to a predetermined baseline.
Monitoring is not enough: on the need for a model-based approach to migratory bird management
Nichols, J.D.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry
2000-01-01
Informed management requires information about system state and about effects of potential management actions on system state. Population monitoring can provide the needed information about system state, as well as information that can be used to investigate effects of management actions. Three methods for investigating effects of management on bird populations are (1) retrospective analysis, (2) formal experimentation and constrained-design studies, and (3) adaptive management. Retrospective analyses provide weak inferences, regardless of the quality of the monitoring data. The active use of monitoring data in experimental or constrained-design studies or in adaptive management is recommended. Under both approaches, learning occurs via the comparison of estimates from the monitoring program with predictions from competing management models.
Dsouza, Roshan; Subhash, Hrebesh; Neuhaus, Kai; Kantamneni, Ramakrishna; McNamara, Paul M; Hogan, Josh; Wilson, Carol; Leahy, Martin
2016-01-01
Monitoring the curing kinetics of light-activated resin is a key area of research. These resins are used in restorative applications and particularly in dental applications. They can undergo volumetric shrinkage due to poor control of the depth dependent curing process, modulated by the intensity and duration of the curing light source. This often results in the formation of marginal gaps, causing pain and damage to the restoration site. In this study, we demonstrate the capabilities of a correlation method applied using a multiple references optical coherence tomography (MR-OCT) architecture to monitor the curing of the resin. A MR-OCT system is used in this study to monitor the curing of the resin. The system operates at the center wavelength of 1310 nm with an A-scan rate of 1200 A-scans per second. The axial and lateral resolution of the system is ∼13 μm and ∼27 μm. The method to determine the intensity correlation between adjacent B-frames is based on the Pearson correlation coefficient for a region of interest. Calculating the correlation coefficient for multiple B-frames related to the first B-frame at regular spaced time points, shows for a noncured resin a reduction of the correlation coefficient over time due to Brownian motion. The time constant of the reduction of the correlation value is a measure for the progress of the polymerization during LED light irradiation of the resin. The proposed approach is potentially a low-cost, powerful and unique optical imaging modality for measuring the curing behavior of dental resin and other resins, coatings, and adhesives in medical and industrial applications. To demonstrate the proposed method to monitor the curing process, a light-activated resin composite from GRADIA DIRECT ANTERIOR (GC Corporation, Japan) is studied. The curing time of resin was measured and monitored as a function of depth. The correlation coefficient method is highly sensitive to Brownian motion. The process of curing results in a change in intensity as measured by the MR-OCT signal and hence can be monitored using this method. These results show that MR-OCT has the potential to measure the curing time and monitor the curing process as a function of depth. Moreover, MR-OCT as a product has potential to be compact, low-cost and to fit into a smartphone. Using such a device for monitoring the curing of the resin will be suitable for dentists in stationary and mobile clinical settings. © 2015 Wiley Periodicals, Inc.
Slope stability radar for monitoring mine walls
NASA Astrophysics Data System (ADS)
Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis
2001-11-01
Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.
Swendeman, Dallas; Ramanathan, Nithya; Baetscher, Laura; Medich, Melissa; Scheffler, Aaron; Comulada, W. Scott; Estrin, Deborah
2015-01-01
BACKGROUND Self-monitoring by mobile phone applications offers new opportunities to engage patients in self-management. Self-monitoring has not been examined thoroughly as a self-directed intervention strategy for self-management of multiple behaviors and states by people living with HIV (PLH). METHODS PLH (n=50), primarily African-American and Latino, were recruited from two AIDS services organizations and randomly assigned to daily smartphone (n=34) or bi-weekly web-survey only (n=16) self-monitoring for six weeks. Smartphone self-monitoring included responding to brief surveys on medication adherence, mental health, substance use, and sexual risk behaviors, and brief text diaries on stressful events. Qualitative analyses examine bi-weekly, open-ended user-experience interviews regarding perceived benefits and barriers of self-monitoring, and to elaborate a theoretical model for potential efficacy of self-monitoring to support self-management for multiple domains. RESULTS Self-monitoring functions include reflection for self-awareness, cues to action (reminders), reinforcements from self-tracking, and their potential effects on risk perceptions, motivations, skills, and behavioral activation states. Participants also reported therapeutic benefits related to self-expression for catharsis, non-judgmental disclosure, and in-the-moment support. About one-third of participants reported that surveys were too long, frequent, or tedious. Some smartphone group participants suggested that daily self-monitoring was more beneficial than bi-weekly due to frequency and in-the-moment availability. About twice as many daily self-monitoring group participants reported increased awareness and behavior change support from self-monitoring compared to bi-weekly web-survey only participants. CONCLUSION Self-monitoring is a potentially efficacious disruptive innovation for supporting self-management by PLH and for complementing other interventions, but more research is needed to confirm efficacy, adoption and sustainability. PMID:25867783
HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.
Jeong, In Cheol; Finkelstein, Joseph
2014-01-01
Spectral analysis of heart rate variability (HRV) has been widely used to investigate activity of autonomous nervous system. Previous studies demonstrated potential of analysis of short-term sequences of heart rate data in a time domain for continuous monitoring of levels of physiological stress however the value of HRV parameters in frequency domain for monitoring cycling exercise has not been established. The goal of this study was to assess whether HRV parameters in frequency domain differ depending on a stage of cycling exercise. We compared major HRV parameters in high, low and very low frequency ranges during rest, height of exercise, and recovery during cycling exercise. Our results indicated responsiveness of frequency-domain indices to different phases of cycling exercise program and their potential in monitoring autonomic balance and stress levels as a part of a tailored home-based telerehabilitation program.
Citizen Science Air Monitoring in the Ironbound Community
The Environmental Protection Agency’s (EPA) mission is to protect human health and the environment. To move toward achieving this goal, EPA is facilitating identification of potential environmental concerns, particularly in vulnerable communities. This includes actively supportin...
Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.
Robinson Willmott, Julia; Forcey, Greg M; Hooton, Lauren A
2015-11-01
A scarcity of baseline data is a significant barrier to understanding and mitigating potential impacts of offshore development on birds and bats. Difficult and sometimes unpredictable conditions coupled with high expense make gathering such data a challenge. The Acoustic and Thermographic Offshore Monitoring (ATOM) system combines thermal imaging with acoustic and ultrasound sensors to continuously monitor bird and bat abundance, flight height, direction, and speed. ATOM's development and potential capabilities are discussed, and illustrated using onshore and offshore test data obtained over 16 months in the eastern USA. Offshore deployment demonstrated birds tending to fly into winds and activity declining sharply in winds >10 km h(-1). Passerines showed distinct seasonal changes in flight bearing and flew higher than non-passerines. ATOM data could be used to automatically shut down wind turbines to minimize collision mortality while simultaneously providing information for modeling activity in relation to weather and season.
St-Pierre, François; Marshall, Jesse D; Yang, Ying; Gong, Yiyang; Schnitzer, Mark J; Lin, Michael Z
2015-01-01
Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. Here we describe Accelerated Sensor of Action Potentials 1 (ASAP1), a novel voltage sensor design in which a circularly permuted green fluorescent protein is inserted within an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrates on- and off- kinetics of 2.1 and 2.0 ms, reliably detects single action potentials and subthreshold potential changes, and tracks trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range, and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at KHz frame rates using standard epifluorescence microscopy. PMID:24755780
1988 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millard, G.; Yeager, G.; Phelan, J.
1989-05-01
Sandia National Laboratories (SNL), Albuquerque is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNL, Albuquerque has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. A total of 5.23 curies of argon-41 were released as a result of SNL, Albuquerque operations in 1988. The albuquerque population received an estimated 0.04 person-rem from airborne radioactive releases, whereas it received greater than 44,500 person-rem from naturally occurring radionuclides. A nonradioactive effluent monitoring program at SNL,more » Albuquerque includes groundwater, stormwater and sewage monitoring. Results indicate that the groundwater has not been impacted by the chemical waste landfill. Preliminary testing of stormwater showed that no pollutants were above minimum detectable levels. A program to investigate potential remedial action sites has been started. 47 refs., 12 figs., 19 tabs.« less
ERIC Educational Resources Information Center
Lee, Victor R.; DuMont, Maneksha
2010-01-01
There is a great potential opportunity to use portable physical activity monitoring devices as data collection tools for educational purposes. Using one such device, we designed and implemented a weeklong workshop with high school students to test the utility of such technology. During that intervention, students performed data investigations of…
NASA Astrophysics Data System (ADS)
Cannavo, F.; Cannata, A.; Cassisi, C.
2017-12-01
The importance of assessing the ongoing status of active volcanoes is crucial not only for exposures to the local population but due to possible presence of tephra also for airline traffic. Adequately monitoring of active volcanoes, hence, plays a key role for civil protection purposes. In last decades, in order to properly monitor possible threats, continuous measuring networks have been designed and deployed on most of potentially hazardous volcanos. Nevertheless, at the present, volcano real-time surveillance is basically delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks using their experience and non-measurable information (e.g. information from the field) to infer the volcano status. In some cases, raw data are used in some models to obtain more clues on the ongoing activity. In the last decades, with the development of volcano monitoring networks, huge amount of data of different geophysical, geochemical and volcanological types have been collected and stored in large databases. Having such big data sets with many examples of volcanic activity allows us to study volcano monitoring from a machine learning perspective. Thus, exploiting opportunities offered by the abundance of volcano monitoring time-series data we can try to address the following questions: Are the monitored parameters sufficient to discriminate the volcano status? Is it possible to infer/distinguish the volcano status only from the multivariate patterns of measurements? Are all the kind of measurements in the pattern equally useful for status assessment? How accurate would be an automatic system of status inference based only on pattern recognition of data? Here we present preliminary results of the data analysis we performed on a set of data and activity covering the period 2011-2017 at Mount Etna (Italy). In the considered period, we had 52 events of lava fountaining and long periods of Strombolian activity. We consider different state-of-the-art techniques of pattern recognition to try to answer the above questions. Results are objectively evaluated by using a cross-validation approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R
2012-05-01
Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period ofmore » 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.« less
Mass spectrometry in life science research.
Lehr, Stefan; Markgraf, Daniel
2016-12-01
Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.
Monitoring sepsis using electrical cell profiling.
Prieto, Javier L; Su, Hao-Wei; Hou, Han Wei; Vera, Miguel Pinilla; Levy, Bruce D; Baron, Rebecca M; Han, Jongyoon; Voldman, Joel
2016-11-01
Sepsis is a potentially lethal condition that may be ameliorated through early monitoring of circulating activated leukocytes for faster stratification of severity of illness and improved administration of targeted treatment. Characterization of the intrinsic electrical properties of leukocytes is label-free and can provide a quick way to quantify the number of activated cells as sepsis progresses. Iso-dielectric separation (IDS) uses dielectrophoresis (DEP) to characterize the electrical signatures of cells. Here, we use IDS to show that activated and non-activated leukocytes have different electrical properties. We then present a double-sided version of the IDS platform to increase throughput to characterize thousands of cells. This new platform is less prone to cell fouling and allows faster characterization. Using peripheral blood samples from a cecal ligation and puncture (CLP) model of polymicrobial sepsis in mice, we estimate the number of activated leukocytes by looking into differences in the electrical properties of cells. We show for the first time using animal models that electrical cell profiling correlates with flow cytometry (FC) results and that IDS is therefore a good candidate for providing rapid monitoring of sepsis by quantifying the number of circulating activated leukocytes.
A survey of social media data analysis for physical activity surveillance.
Liu, Sam; Young, Sean D
2018-07-01
Social media data can provide valuable information regarding people's behaviors and health outcomes. Previous studies have shown that social media data can be extracted to monitor and predict infectious disease outbreaks. These same approaches can be applied to other fields including physical activity research and forensic science. Social media data have the potential to provide real-time monitoring and prediction of physical activity level in a given region. This tool can be valuable to public health organizations as it can overcome the time lag in the reporting of physical activity epidemiology data faced by traditional research methods (e.g. surveys, observational studies). As a result, this tool could help public health organizations better mobilize and target physical activity interventions. The first part of this paper aims to describe current approaches (e.g. topic modeling, sentiment analysis and social network analysis) that could be used to analyze social media data to provide real-time monitoring of physical activity level. The second aim of this paper was to discuss ways to apply social media analysis to other fields such as forensic sciences and provide recommendations to further social media research. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Fiber optic evanescent wave (FOEW) microbial sensor for dental application
NASA Astrophysics Data System (ADS)
Kishen, Anil; John, M. S.; Chen, Jun-Wei; Lim, Chu S.; Hu, Xiao; Asundi, Anand K.
2001-10-01
In this work a new approach based on the fiber Optic Evanescent Wave (FOEW) Spectroscopy is developed for the effective determination of dental caries activity in human saliva. The biosensor design utilized the exponentially decaying wave that extends to the lower index region of the optical fiber's core-cladding interface. In order to achieve this, a short length of the cladding is removed and the fiber core surface is coated with a porous glass medium using sol-gel technique. The acidogenic profile resulting from the Streptococcus mutans activity in the human saliva is monitored using an indicator, which was encapsulated within the porous coating. These investigations display the potential benefits of FOEW based microbial sensor to monitor caries activity in human saliva.
[Monitoring of brain function].
Doi, Matsuyuki
2012-01-01
Despite being the most important of organs, the brain is disproportionately unmonitored compared to other systems such as cardiorespiratory in anesthesia settings. In order to optimize level of anesthesia, it is important to quantify the brain activity suppressed by anesthetic agents. Adverse cerebral outcomes remain a continued problem in patients undergoing various surgical procedures. By providing information on a range of physiologic parameters, brain monitoring may contribute to improve perioperative outcomes. This article addresses the various brain monitoring equipments including bispectral index (BIS), auditory evoked potentials (AEP), near-infrared spectroscopy (NIRS), transcranial Doppler ultrasonography (TCD) and oxygen saturation of the jugular vein (Sjv(O2)).
NASA Astrophysics Data System (ADS)
Jules, Kenol; Lin, Paul P.
2007-06-01
With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.
Global surface temperatures and the atmospheric electrical circuit
NASA Technical Reports Server (NTRS)
Price, Colin
1993-01-01
To monitor future global temperature trends, it would be extremely useful if parameters nonlinearly related to surface temperature could be found, thereby amplifying any warming signal that may exist. Evidence that global thunderstorm activity is nonlinearly related to diurnal, seasonal and interannual temperature variations is presented. Since global thunderstorm activity is also well correlated with the earth's ionospheric potential, it appears that variations of ionospheric potential, that can be measured at a single location, may be able to supply valuable information regarding global surface temperature fluctuations. The observations presented enable a prediction that a 1 percent increase in global surface temperatures may result in a 20 percent increase in ionospheric potential.
Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric
2015-01-01
The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French-German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role.
Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric
2015-01-01
The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French–German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role. PMID:26124740
Application of remote sensing to state and regional problems. [for Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.
1974-01-01
The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.
Rankin, R.A.; Kotter, D.K.
1997-05-13
The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.
Rankin, Richard A.; Kotter, Dale K.
1997-01-01
The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.
Market analysis of seismic security systems
NASA Technical Reports Server (NTRS)
Taglio, S.
1981-01-01
This report provides information on the commercialization potential of the NASA Activity Monitor. Data on current commercially available products, market size, and growth are combined with information on the NASA technology and the projected impact of this technology on the market.
Potential oil spill risk from shipping and the implications for management in the Caribbean Sea.
Singh, Asha; Asmath, Hamish; Chee, Candice Leung; Darsan, Junior
2015-04-15
The semi enclosed Caribbean Sea is ranked as having one of the most intense maritime traffic in the world. These maritime activities have led to significant oil pollution. Simultaneously, this sea supports many critical habitats functioning as a Large Marine Ecosystem (LME). While the impacts of oil pollution are recognised, a number of management challenges remain. This study applies spatial modelling to identify critical areas potentially at risk from oil spills in the form of a potential oil spill risk (POSR) model. The model indicates that approximately 83% of the sea could be potentially impacted by oil spills due to shipping. The results from this study collectively support a management framework for minimising ship generated oil pollution in the Caribbean Sea. Among the recommended components are a common policy, surveillance and monitoring controls, standards, monitoring programmes, data collection and greater rates of convention ratifications. Copyright © 2015 Elsevier Ltd. All rights reserved.
IDEEA activity monitor: validity of activity recognition for lying, reclining, sitting and standing.
Jiang, Yuyu; Larson, Janet L
2013-03-01
Recent evidence demonstrates the independent negative effects of sedentary behavior on health, but there are few objective measures of sedentary behavior. Most instruments measure physical activity and are not validated as measures of sedentary behavior. The purpose of this study was to evaluate the validity of the IDEEA system's measures of sedentary and low-intensity physical activities: lying, reclining, sitting and standing. Thirty subjects, 14 men and 16 women, aged 23 to 77 years, body mass index (BMI) between 18 to 34 kg/m(2), participated in the study. IDEEA measures were compared to direct observation for 27 activities: 10 lying in bed, 3 lying on a sofa, 1 reclining in a lawn chair, 10 sitting and 3 standing. Two measures are reported, the percentage of activities accurately identified and the percentage of monitored time that was accurately labeled by the IDEEA system for all subjects. A total of 91.6% of all observed activities were accurately identified and 92.4% of the total monitored time was accurately labeled. The IDEEA system did not accurately differentiate between lying and reclining so the two activities were combined for calculating accuracy. Using this approach the IDEEA system accurately identified 96% of sitting activities for a total of 97% of the monitored sitting time, 99% and 99% for standing, 87% and 88% for lying in bed, 87% and 88% for lying on the sofa, and 83% and 83% for reclining on a lawn chair. We conclude that the IDEEA system accurately recognizes sitting and standing positions, but it is less accurate in identifying lying and reclining positions. We recommend combining the lying and reclining activities to improve accuracy. The IDEEA system enables researchers to monitor lying, reclining, sitting and standing with a reasonable level of accuracy and has the potential to advance the science of sedentary behaviors and low-intensity physical activities.
ECUT: Energy Conversion and Utilization Technologies program - Biocatalysis research activity
NASA Technical Reports Server (NTRS)
Wilcox, R.
1984-01-01
The activities of the Biocatalysis Research Activity are organized into the Biocatalysis and Molecular Modeling work elements and a supporting planning and analysis function. In the Biocatalysis work element, progress is made in developing a method for stabilizing genetically engineered traits in microorganisms, refining a technique for monitoring cells that are genetically engineered, and identifying strains of fungi for highly efficient preprocessing of biomass for optimizing the efficiency of bioreactors. In the Molecular Modeling work element, a preliminary model of the behavior of enzymes is developed. A preliminary investigation of the potential for synthesizing enzymes for use in electrochemical processes is completed. Contact with industry and universities is made to define key biocatalysis technical issues and to broaden the range of potential participants in the activity. Analyses are conducted to identify and evaluate potential concepts for future research funding.
Ly, Sovann; Arashiro, Takeshi; Ieng, Vanra; Tsuyuoka, Reiko; Parry, Amy; Horwood, Paul; Heng, Seng; Hamid, Sarah; Vandemaele, Katelijn; Chin, Savuth; Sar, Borann; Arima, Yuzo
2017-01-01
To establish seasonal and alert thresholds and transmission intensity categories for influenza to provide timely triggers for preventive measures or upscaling control measures in Cambodia. Using Cambodia's influenza-like illness (ILI) and laboratory-confirmed influenza surveillance data from 2009 to 2015, three parameters were assessed to monitor influenza activity: the proportion of ILI patients among all outpatients, proportion of ILI samples positive for influenza and the product of the two. With these parameters, four threshold levels (seasonal, moderate, high and alert) were established and transmission intensity was categorized based on a World Health Organization alignment method. Parameters were compared against their respective thresholds. Distinct seasonality was observed using the two parameters that incorporated laboratory data. Thresholds established using the composite parameter, combining syndromic and laboratory data, had the least number of false alarms in declaring season onset and were most useful in monitoring intensity. Unlike in temperate regions, the syndromic parameter was less useful in monitoring influenza activity or for setting thresholds. Influenza thresholds based on appropriate parameters have the potential to provide timely triggers for public health measures in a tropical country where monitoring and assessing influenza activity has been challenging. Based on these findings, the Ministry of Health plans to raise general awareness regarding influenza among the medical community and the general public. Our findings have important implications for countries in the tropics/subtropics and in resource-limited settings, and categorized transmission intensity can be used to assess severity of potential pandemic influenza as well as seasonal influenza.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Charles
2003-02-12
Chlorpyrifos (CPF) is a commonly used organophosphate insecticide (OP). The primary mechanism of action for CPF involves the inhibition of acetylcholinesterase (AChE) by the active metabolite, CPF-oxon, with subsequent accumulation of acetylcholine (ACh) resulting in a wide range of neutotoxicity. CPF-oxon, can likewise inhibit other non-target cholinesterases (ChE) such as butyrylcholinesterase (BuChE), which represents a detoxification mechanism and a potential biomarker of exposure/response. Biological monitoring for OPs has focused on measuring parent chemical or metabolite in blood and urine or blood ChE inhibition. Salivary biomonitoring has recently been explored as a practical method for examination of chemical exposure; however, theremore » are a limited number of studies exploring its use for OPs. To evaluate the use of salivary ChE as a biological monitor for OP exposure, the current study characterized salivary ChE activity in Sprague-Dawley rats through its comparison with brain and plasma ChE using BW284C51 and iso-OMPA as selective inhibitors of AChE and BuChE, respectively. The study also estimated the kinetic constants describing BuChE interaction with CPF-oxon. A modified Ellman assay in conjunction with pharmacodynamic (PD) modeling was used to characterize the in vitro titration of diluted rat salivary ChE enzyme with CPF-oxon. The results indicated that, more than 95% of rat salivary ChE activity was associated with BuChE activity, total BuChE active site concentration was 0.0012 0.00013 nmol/ml saliva, reactivation rate constant (Kr) was 0.068 0.008 h-1 and inhibitory (Ki) rate constant of 8.825 and 9.80 nM-1h-1 determined experimentally and using model optimization respectively. These study results would be helpful for further evaluating the potential utility of salivary ChE as a practical tool for biological monitor of OP exposures.« less
Statistical Analysis of Time-Series from Monitoring of Active Volcanic Vents
NASA Astrophysics Data System (ADS)
Lachowycz, S.; Cosma, I.; Pyle, D. M.; Mather, T. A.; Rodgers, M.; Varley, N. R.
2016-12-01
Despite recent advances in the collection and analysis of time-series from volcano monitoring, and the resulting insights into volcanic processes, challenges remain in forecasting and interpreting activity from near real-time analysis of monitoring data. Statistical methods have potential to characterise the underlying structure and facilitate intercomparison of these time-series, and so inform interpretation of volcanic activity. We explore the utility of multiple statistical techniques that could be widely applicable to monitoring data, including Shannon entropy and detrended fluctuation analysis, by their application to various data streams from volcanic vents during periods of temporally variable activity. Each technique reveals changes through time in the structure of some of the data that were not apparent from conventional analysis. For example, we calculate the Shannon entropy (a measure of the randomness of a signal) of time-series from the recent dome-forming eruptions of Volcán de Colima (Mexico) and Soufrière Hills (Montserrat). The entropy of real-time seismic measurements and the count rate of certain volcano-seismic event types from both volcanoes is found to be temporally variable, with these data generally having higher entropy during periods of lava effusion and/or larger explosions. In some instances, the entropy shifts prior to or coincident with changes in seismic or eruptive activity, some of which were not clearly recognised by real-time monitoring. Comparison with other statistics demonstrates the sensitivity of the entropy to the data distribution, but that it is distinct from conventional statistical measures such as coefficient of variation. We conclude that each analysis technique examined could provide valuable insights for interpretation of diverse monitoring time-series.
NASA Astrophysics Data System (ADS)
Chen, Tongsheng; Xing, Da
2005-01-01
Activation of caspase-3 is a central event in apoptosis. A fluorescence techniques, fluorescence resonance energy transfer (FRET), was used to study the dynamic of caspase-3 activation during apoptosis induced by tumor necrosis factor TNF-α in living cells. The FRET probe consists a CFP (cyan fluorescent protein) and a Venus (YFP mutant, yellow fluorescent protein) with a specialized linker containing the caspase-3 cleavage sequence: DEVD (Luo et al., 2001). Human lung adenocarcinoma cell line (ASTC-a-1) were stably expressed with the FRET probe and then were treated by TNF-α, respectively. Experimental results showed that FRET could monitor more insensitively the dynamic of caspase-3 activation in real-time in vivo, and this technique will be highly useful for correlating the caspase-3 activation with other apoptotic events and for rapid-screening of potential drugs that may target the apoptotic process.
Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.
Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel
2017-04-01
Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.
Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project
NASA Technical Reports Server (NTRS)
Spaniol, Craig
1993-01-01
The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.
Cadmus-Bertram, Lisa; Marcus, Bess H; Patterson, Ruth E; Parker, Barbara A; Morey, Brittany L
2015-11-19
Direct-to-consumer trackers and devices have potential to enhance theory-based physical activity interventions by offering a simple and pleasant way to help participants self-monitor their behavior. A secondary benefit of these devices is the opportunity for investigators to objectively track adherence to physical activity goals across weeks or even months, rather than relying on self-report or a small number of accelerometry wear periods. The use of consumer trackers for continuous monitoring of adherence has considerable potential to enhance physical activity research, but few studies have been published in this rapidly developing area. The objective of the study was to assess the trajectory of physical activity adherence across a 16-week self-monitoring intervention, as measured by the Fitbit tracker. Participants were 25 overweight or obese, postmenopausal women enrolled in the intervention arm of a randomized controlled physical activity intervention trial. Each participant received a 16-week technology-based intervention that used the Fitbit physical activity tracker and website. The overall study goal was 150 minutes/week of moderate to vigorous intensity physical activity (MVPA) and 10,000 steps/day; however, goals were set individually for each participant and updated at Week 4 based on progress. Adherence data were collected by the Fitbit and aggregated by Fitabase. Participants also wore an ActiGraph GT3X+ accelerometer for 7 days prior to the intervention and again during Week 16. The median participant logged 10 hours or more/day of Fitbit wear on 95% of the 112 intervention days, with no significant decline in wear over the study period. Participants averaged 7540 (SD 2373) steps/day and 82 minutes/week (SD 43) of accumulated "fairly active" and "very active" minutes during the intervention. At Week 4, 80% (20/25) of women chose to maintain/increase their individual MVPA goal and 72% (18/25) of participants chose to maintain/increase their step goal. Physical activity levels were relatively stable after peaking at 3 weeks, with only small declines of 8% for steps (P=.06) and 14% for MVPA (P=.05) by 16 weeks. These data indicate that a sophisticated, direct-to-consumer activity tracker encouraged high levels of self-monitoring that were sustained over 16 weeks. Further study is needed to determine how to motivate additional gains in physical activity and evaluate the long-term utility of the Fitbit tracker as part of a strategy for chronic disease prevention. Clinicaltrials.gov NCT01837147; http://clinicaltrials.gov/ct2/show/NCT01837147 (Archived by WebCite at http://www.webcitation.org/6d0VeQpvB).
Lanctôt, C; Melvin, S D; Fabbro, L; Leusch, F D L; Wilson, S P
2016-05-01
Coal mining represents an important industry in many countries, but concerns exist about the possible adverse effects of minewater releases on aquatic animals and ecosystems. Coal mining generates large volumes of complex wastewater, which often contains high concentrations of dissolved solids, suspended solids, metals, hydrocarbons, salts and other compounds. Traditional toxicological testing has generally involved the assessment of acute toxicity or chronic toxicity with longer-term tests, and while such tests provide useful information, they are poorly suited to ongoing monitoring or rapid assessment following accidental discharge events. As such, there is considerable interest in developing rapid and sensitive approaches to environmental monitoring, and particularly involving the assessment of sub-lethal behavioural responses in locally relevant aquatic species. We therefore investigated behavioural responses of a native Australian fish to coal mine wastewater, to evaluate its potential use for evaluating sub-lethal effects associated with wastewater releases on freshwater ecosystems. Empire gudgeons (Hypseleotris compressa) were exposed to wastewater from two dams located at an open cut coal mine in Central Queensland, Australia and activity levels were monitored using the Multispecies Freshwater Biomonitor® (LimCo International GmbH). A general decrease in locomotor activity (i.e., low frequency movement) and increase in non-locomotor activity (i.e., high frequency movement including ventilation and small fin movement) was observed in exposed fish compared to those in control water. Altered activity levels were observable within the first hour of exposure and persisted throughout the 15-d experiment. Results demonstrate the potential for using behavioural endpoints as tools for monitoring wastewater discharges using native fish species, but more research is necessary to identify responsible compounds and response thresholds, and to understand the relevance of the observed effects for populations in natural receiving environments. Copyright © 2016 Elsevier Inc. All rights reserved.
Ecological Monitoring and Compliance Program Fiscal Year 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. A. Wills
The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2001. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species were conductedmore » for 23 NTS projects. Eleven sites were in desert tortoise habitat. These projects have the potential to disturb a total of 588 acres, where 568 acres of disturbance would be off-road driving. No tortoises were found in or displaced from project areas, and no tortoise s were accidentally injured or killed at project areas. One tortoise was crushed by a vehicle on a paved road. A topical report describing the classification of habitat types on the NTS was completed and distributed. The report is the culmination of three years of field vegetation mapping and the analysis of vegetation data from over 1,500 ecological landform units. Compilation of historical wildlife data was initiated. A long-term monitoring plan for important plant species that occur on the NTS was completed. Site-wide monitoring was conducted for the western burrowing owl, bat species of concern, wild horses, and raptor nests. Sixty-nine of 77 known owl burrows were monitored. As in previous years, some owls were present year round on the NTS. An overall decrease in active owl burrows was observed within all three ecoregions (Mojave Desert, Transition, Great Basin Desert) from October through January. An increase in active owl burrows was observed from mid March to early April. A total of 55 juvenile owls was detected from 11 breeding pairs. Pellet analysis of burrowing owls was completed which identified key prey species. A total of 272 bats, representing 10 bat species were captured in mist-nets at water sources in the Great Basin Desert ecoregion. Bats were detected with the Anabat II call-recording system at water sources and selected tunnel and mine entrances. Thirty-seven adult horses and 11 foals were counted this year. Two of the eleven foals observed last year survived to yearlings. Seven active raptor nests were found and monitored this year. These included two Great-horned Owl nests, three Barn Owl nests, and two Red-tailed Hawk nests. Selected wetlands and man-made water sources were monitored for physical parameters and wildlife use. No dead animals were observed this year in any plastic-lined sump. The chemical spill test plans for four experiments at the HAZMAT Spill Center were reviewed for their potential to impact biota downwind of spills on Frenchman Lake playa.« less
NASA Astrophysics Data System (ADS)
Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.
2017-12-01
The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop health and yield across and within fields, and improving the identification of crop areas ready for harvest.
Albeni Falls Wildlife Mitigation : Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terra-Berns, Mary
The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue tomore » center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.« less
Self-monitoring has potential for home exercise programmes in patients with haemophilia.
Goto, M; Takedani, H; Haga, N; Kubota, M; Ishiyama, M; Ito, S; Nitta, O
2014-03-01
Haemophiliacs who have had to keep a physically inactive lifestyle due to bleeding during childhood are likely to have little motivation for exercise. The purpose of this study is to clarify the effectiveness of the self-monitoring of home exercise for haemophiliacs. A randomized controlled trial was conducted with intervention over 8 weeks at four hospitals in Japan. Subjects included 32 male outpatients aged 26-64 years without an inhibitor who were randomly allocated to a self-monitoring group and a control group. Individual exercise guidance with physical activity for improvement of their knee functions was given to both groups. The self-monitoring materials included an activity monitor and a feedback system so that the self-monitoring group could send feedback via the Internet and cellular phone. The self-monitoring was performed by checking exercise adherence and physical activity levels, bleeding history and injection of a coagulation factor. Both groups showed significant improvements in exercise adherence (P < 0.001) and physical function such as the strength of knee extension (P < 0.001), range of knee extension (P < 0.001), range of ankle dorsiflexion (P < 0.01), a modified Functional Reach (P < 0.05) and 10 metre gait time (P < 0.01). In particular, improvements in exercise adherence (P < 0.05), self-efficacy (P < 0.05), and strength of knee extension (P < 0.05) were significant in the self-monitoring group compared with those in the control group. No increase in bleeding frequency and pain scale was noted. The self-monitoring of home exercise for haemophilic patients is useful for the improvement of exercise adherence, self-efficacy and knee extension strength. © 2014 John Wiley & Sons Ltd.
Dute, Denise Jantine; Bemelmans, Wanda Jose Erika; Breda, João
2016-05-05
European adolescents and students tend to have low levels of physical activity and eat unhealthy foods, and the prevalence of overweight and obesity has increased, which poses a public health challenge. Mobile apps play an important role in their daily lives, suggesting their potential to be used in health-promoting strategies. This review aimed to explore how mobile apps can contribute to the promotion of healthy nutrition, physical activity, and prevention of overweight in adolescents and students. For the apps identified, the review describes the content, the theoretical mechanisms applied, and lessons learned. The databases Scopus, MEDLINE, Embase, and PsycINFO were searched for English-language publications from January 2009 to November 2013. Studies were included if (1) the primary component of the intervention involves an app; (2) the intervention targets healthy nutrition, or physical activity, or overweight prevention; and (3) the target group included adolescents or students (aged 12-25 years). A total of 15 studies were included, which describe 12 unique apps. Ten of these apps functioned as monitoring tools for assessing dietary intake or physical activity levels. The other apps used a Web-based platform to challenge users to exercise and to allow users to list and photograph their problem foods. For 5 apps, the behavioral theory underpinning their development was clearly specified. Frequently applied behavior change techniques are prompting self-monitoring of behavior and providing feedback on performance. Apps can function self-contained, but most of them are used as part of therapy or to strengthen school programs. From the age of 10 years users may be capable of using apps. Only 4 apps were developed specifically for adolescents. All apps were tested on a small scale and for a short period. Despite large potential and abundant usage by young people, limited research is available on apps and health promotion for adolescents. Apps seem to be a promising health promotion strategy as a monitoring tool. Apps can enable users to set targets, enhance self-monitoring, and increase awareness. Three apps incorporated social features, making them "social media," but hardly any evidence appeared available about their potential.
ERIC Educational Resources Information Center
Scharfenberg, Franz-Josef; Bogner, Franz X.; Klautke, Siegfried
2008-01-01
Our research objectives focused on monitoring (i) students' activities during experimental teaching phases in an out-of-school gene technology laboratory, and (ii) potential relationships with variables such as work group size and cognitive achievement. Altogether, we videotaped 20 work groups of A-level 12th graders (n = 67) by continuous…
ERIC Educational Resources Information Center
Kirwan, Morwenna; Duncan, Mitch J.; Vandelanotte, Corneel; Mummery, W. Kerry
2013-01-01
Objectives: Limited research exists addressing the development of health-related smartphone apps, a new and potentially effective health promotion delivery strategy. This article describes the development and formative evaluation of a smartphone app associated with a physical activity promotion website. Methods: A combination of qualitative and…
Current state of active-fault monitoring in Taiwan
NASA Astrophysics Data System (ADS)
Hou, C.; Lin, C.; Chen, Y.; Liu, H.; Chen, C.; Lin, Y.; Chen, C.
2008-12-01
The earthquake is one of the major hazard sources in Taiwan where an arc-continent collision is on-going. For the purpose of seismic hazard mitigation, to understand current situation of each already-known active fault is urgently needed. After the 1999 Chi-chi earthquake shocked Taiwan, the Central Geological Survey (CGS) of Taiwan aggressively promoted the tasks on studying the activities of active faults. One of them is the deployment of miscellaneous monitoring networks to cover all the target areas, where the earthquake occurrence potentials on active faults are eager to be answered. Up to the end of 2007, CGS has already deployed over 1000 GPS campaign sites, 44 GPS stations in continuous mode, and 42 leveling transects across the major active faults with a total ground distance of 974 km. The campaign sites and leveling tasks have to be measured once a year. The resulted crustal deformation will be relied on to derive the fault slip model. The time series analysis on continuous mode of GPS can further help understand the details of the fault behavior. In addition, 12 down-hole strain meters, five stations for liquid flux and geochemical proxies, and two for water table monitoring have been also installed to seek possible anomalies related to the earthquake activities. It may help discover reliable earthquake precursors.
A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support
2017-01-01
Background Although there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical. Objective The objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step. Methods A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework’s flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health’s operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents. Results IoT4Health’s construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers. Conclusions We conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion. PMID:28347973
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
NASA Astrophysics Data System (ADS)
Pondthai, P.; Udphuay, S.
2013-05-01
The magnitude of 5.1 Mw earthquake occurred in San Sai District, Chiang Mai Province, Thailand in December 2006 was considered an uncommon event due to the fact that there was no statistical record of such significant earthquake in the area. Therefore the earthquake might have been associated with a potentially active fault zone within the area. The objective of this study is to measure soil gas radon across this unknown fault zone within the Chiang Mai Basin, northern Thailand. Two profiles traversing the expected fault zone of soil gas radon measurements have been monitored, using TASTRAK solid state track nuclear detectors (SSNTDs). Radon signals from three periods of measurement show a distinctive consistent spatial distribution pattern. Anomalous radon areas along the profiles are connected to fault locations previously interpreted from other geophysical survey results. The increased radon signal changes from the radon background level with the signal-to-background ratio above 3 are considered anomalous. Such pattern of radon anomaly supports the existence of the faults. The radon measurement, therefore is a powerful technique in mapping active fault zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A; Miller, Julianne J; McCurdy, Greg
The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff. This activity supports Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closuremore » design and post-closure monitoring program.« less
Specimen banking of marine organisms in the United States: Current status and long-term prospective
Becker, P.R.; Wise, S.A.; Thorsteinson, L.; Koster, B.J.; Rowles, T.
1997-01-01
A major part of the activities conducted over the last decade by the National Biomonitoring Specimen Bank (NBSB) has involved the archival of marine specimens collected by ongoing environmental monitoring programs. These archived specimens include bivalves, marine sediments, and fish tissues collected by the National Status and Trends and the Exxon Valdez Oil Spill Damage Assessment programs, and marine mammal tissues collected by the Marine Mammal Health and Stranding Response Program and the Alaska Marine Mammal Tissue Archival Project. In addition to supporting these programs, the specimens have been used to investigate circumpolar patterns of chlorinated hydrocarbon concentrations, genetic separation of marine animal stocks, baseline levels of essential and nonessential elements in marine mammals, and the potential risk to human consumers in the Arctic from anthropogenic contaminants found in local subsistence foods. The NBSB specimens represent a resource that has the potential for addressing future issues of marine environmental quality and ecosystem changes through retrospective analysis; however, an ecosystem-based food web approach would maximize this potential. The current status of the NBSB activities related to the banking of marine organisms is presented and discussed, the long-term prospective of these activities is presented, and the importance of an ecosystem-based food web monitoring approach to the value of specimen banking is discussed.
“Are you sure?”: Lapses in Self-Reported Activities Among Healthy Older Adults Reporting Online
Wild, Katherine V.; Mattek, Nora; Austin, Daniel; Kaye, Jeffrey A.
2015-01-01
Accurate retrospective reporting of activities and symptoms has been shown to be problematic for older adults, yet standard clinical care relies on self-reports to aid in assessment and management. Our aim was to examine the relationship between self-report and sensor-based measures of activity. We administered an online activity survey to participants in our ongoing longitudinal study of in-home ubiquitous monitoring. We found a wide range of accuracy when comparing self-report with time-stamped sensor data. Of the 95 participants who completed the two-hour activity log, nearly one quarter did not complete the task in a way that could potentially be compared with sensor data. Where comparisons were possible, agreement between self-reported and sensor-based activity was achieved by a minority of participants. The findings suggest that capture of real time events with unobtrusive activity monitoring may be a more reliable approach to describing behaviors patterns and meaningful changes in older adults. PMID:25669877
Gence, Rémi; Bouchenot, Catherine; Lajoie-Mazenc, Isabelle
2018-01-01
ABSTRACT The human Ras superfamily of small GTPases controls essential cellular processes such as gene expression and cell proliferation. As their deregulation is widely associated with human cancer, small GTPases and their regulatory proteins have become increasingly attractive for the development of novel therapeutics. Classical methods to monitor GTPase activation include pulldown assays that limit the analysis of GTP-bound form of proteins from cell lysates. Alternatively, live-cell FRET biosensors may be used to study GTPase activation dynamics in response to stimuli, but these sensors often require further optimization for high-throughput applications. Here, we describe a cell-based approach that is suitable to monitor the modulation of small GTPase activity in a high-content analysis. The assay relies on a genetically encoded tripartite split-GFP (triSFP) system that we integrated in an optimized cellular model to monitor modulation of RhoA and RhoB GTPases. Our results indicate the robust response of the reporter, allowing the interrogation of inhibition and stimulation of Rho activity, and highlight potential applications of this method to discover novel modulators and regulators of small GTPases and related protein-binding domains. PMID:29192060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-06-01
This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmentalmore » and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.« less
Witter, Leslie A; Johnson, Chris J; Croft, Bruno; Gunn, Anne; Poirier, Lisa M
2012-09-01
Climate change is occurring at an accelerated rate in the Arctic. Insect harassment may be an important link between increased summer temperature and reduced body condition in caribou and reindeer (both Rangifer tarandus). To examine the effects of climate change at a scale relevant to Rangifer herds, we developed monitoring indices using weather to predict activity of parasitic insects across the central Arctic. During 2007-2009, we recorded weather conditions and used carbon dioxide baited traps to monitor activity of mosquitoes (Culicidae), black flies (Simuliidae), and oestrid flies (Oestridae) on the post-calving and summer range of the Bathurst barren-ground caribou (Rangifer tarandus groenlandicus) herd in Northwest Territories and Nunavut, Canada. We developed statistical models representing hypotheses about effects of weather, habitat, location, and temporal variables on insect activity. We used multinomial logistic regression to model mosquito and black fly activity, and logistic regression to model oestrid fly presence. We used information theory to select models to predict activity levels of insects. Using historical weather data, we used hindcasting to develop a chronology of insect activity on the Bathurst range from 1957 to 2008. Oestrid presence and mosquito and black fly activity levels were explained by temperature. Wind speed, light intensity, barometric pressure, relative humidity, vegetation, topography, location, time of day, and growing degree-days also affected mosquito and black fly levels. High predictive ability of all models justified the use of weather to index insect activity. Retrospective analyses indicated conditions favoring mosquito activity declined since the late 1950s, while predicted black fly and oestrid activity increased. Our indices can be used as monitoring tools to gauge potential changes in insect harassment due to climate change at scales relevant to caribou herds.
Kjellerup, B V; Keiding, K; Nielsen, P H
2001-01-01
A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory had started after summer closedown. Possible reasons for the changes in floc properties in the process tanks were found by a) analysing change in wastewater composition by evaluating the different production lines in the industrial plant, b) evaluating the operation of the plant, and c) performing short-term laboratory experiments testing factors that could potentially affect floc properties (absence of oxygen, presence of sulphide, detergents, etc). Among several measured parameters, the use of floc strength measurements in particular proved useful to monitor the activated sludge floc properties at this industrial plant. The described strategy can be useful in general to find and solve many solid/liquid separation problems in activated sludge wastewater treatment plants.
Carabelli, Valentina; Marcantoni, Andrea; Picollo, Federico; Battiato, Alfio; Bernardi, Ettore; Pasquarelli, Alberto; Olivero, Paolo; Carbone, Emilio
2017-02-15
High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.
NASA Astrophysics Data System (ADS)
Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.
2015-12-01
The role of volcano tourism is recognized as an important contributor to the economy of volcanic islands in the Lesser Antilles. However, if it is to be promoted as a sustainable sector of the tourism industry, visitors, tour operators, and vendors must be made aware of the potential health hazards facing them in volcanic environments. Volcanogenic air pollutants are of primary concern in this setting. In general, no warning signs, guidelines for recreational use, or emissions monitoring currently exists to provide warning to the public to decrease their vulnerability to the potential risks, or to minimize the liability of the agencies managing these areas. Sulphur Springs Park in Saint Lucia is a popular international destination, and concerns about the volcanic emissions and its possible health effect have been raised by visitors, staff, and management of the Park. As part of the responsibility of the UWI, Seismic Research Centre (SRC) to provide volcanic surveillance through its geothermal monitoring programme, a network was established for quantifying the ambient SO2 concentrations at Sulphur Springs in order to assess the potential risk of unsafe exposure. This effort required collaboration with the National Emergency Management Organization (NEMO) of Saint Lucia, as well as the staff and management of the Soufrière Regional Development Foundation (SRDF). Local personnel were trained in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations over the monitoring period, thereby contributing to an active community-based effort. This type of approach was also thought to be an effective option for scientists to engage communities as partners in disaster risk reduction. Lessons learnt from this experience are presented for the benefit of other citizen monitoring projects, including its use as a tool for promoting volcanic hazard education, and enhancing communication and understanding between geoscientists and the community they serve.
Biomonitors of atmospheric nitrogen deposition: potential uses and limitations.
Díaz-Álvarez, Edison A; Lindig-Cisneros, Roberto; de la Barrera, Erick
2018-01-01
Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha -1 year -1 , well above the threshold for physiological damage of 12-20 kg of N ha -1 year -1 , depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha -1 year -1 . The isotopic signature, δ 15 N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (-11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments or passive monitoring is not feasible or can be complementary.
Biomonitors of atmospheric nitrogen deposition: potential uses and limitations
Díaz-Álvarez, Edison A; Lindig-Cisneros, Roberto
2018-01-01
Abstract Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha−1 year−1, well above the threshold for physiological damage of 12–20 kg of N ha−1 year−1, depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha−1 year−1. The isotopic signature, δ15N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (−11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments or passive monitoring is not feasible or can be complementary. PMID:29564134
Development and evaluation of a technique for in vivo monitoring of 60Co in human lungs
NASA Astrophysics Data System (ADS)
de Mello, J. Q.; Lucena, E. A.; Dantas, A. L. A.; Dantas, B. M.
2016-07-01
60Co is a fission product of 235U and represents a risk of internal exposure of workers in nuclear power plants, especially those involved in the maintenance of potentially contaminated parts and equipment. The control of 60Co intake by inhalation can be performed through in vivo monitoring. This work describes the evaluation of a technique through the minimum detectable activity and the corresponding minimum detectable effective doses, based on biokinetic and dosimetric models of 60Co in the human body. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intake.
Allen, Nancy; Whittemore, Robin; Melkus, Gail
2011-11-01
Diabetes technology has the potential to provide useful data for theory-based behavioral counseling. The aims of this study are to evaluate the feasibility, acceptability, and preliminary efficacy of a continuous glucose monitoring and problem-solving counseling intervention to change physical activity (PA) behavior in women with type 2 diabetes. Women (n=29) with type 2 diabetes were randomly assigned to one of two treatment conditions: continuous glucose counseling and problem-solving skills or continuous glucose monitoring counseling and general diabetes education. Feasibility data were obtained on intervention dose, implementation, and satisfaction. Preliminary efficacy data were collected at baseline and 12 weeks on the following measures: PA amount and intensity, diet, problem-solving skills, self-efficacy for PA, depression, hemogoloin A1c, weight, and blood pressure. Demographic and implementation variables were described using frequency distributions and summary statistics. Satisfaction data were analyzed using Wilcoxon rank. Differences between groups were analyzed using linear mixed-modeling. Women were mostly white/non-Latina with a mean age of 53 years, a 6.5-year history of diabetes, and suboptimal glycemic control. Continuous glucose monitoring plus problem-solving group participants had significantly greater problem-solving skills and had greater, although not statistically significant, dietary adherence, moderate activity minutes, weight loss, and higher intervention satisfaction pre- to post-intervention than did participants in the continuous glucose monitoring plus education group. A continuous glucose monitoring plus problem-solving intervention was feasible and acceptable, and participants had greater problem-solving skills than continuous glucose monitoring plus education group participants.
Dixon, Louise C; Ward, Derek J; Smith, Joanna; Holmes, Steve; Mahadeva, Ravi
2016-03-11
There is a need for straightforward, novel diagnostic and monitoring technologies to enable the early diagnosis of COPD and its differentiation from other respiratory diseases, to establish the cause of acute exacerbations and to monitor disease progression. We sought to establish whether technologies already in development could potentially address these needs. A systematic horizon scanning review was undertaken to identify technologies in development from a wide range of commercial and non-commercial sources. Technologies were restricted to those likely to be available within 18 months, and then evaluated for degree of innovation, potential for impact, acceptability to users and likelihood of adoption by clinicians and patients with COPD. Eighty technologies were identified, of which 25 were considered particularly promising. Biomarker tests, particularly those using sputum or saliva samples and/or available at the point of care, were positively evaluated, with many offering novel approaches to early diagnosis and to determining the cause for acute exacerbations. Several wrist-worn devices and smartphone-based spirometers offering the facility for self-monitoring and early detection of exacerbations were also considered promising. The most promising identified technologies have the potential to improve COPD care and patient outcomes. Further research and evaluation activities should be focused on these technologies. © The Author(s) 2016.
Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs
Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham
2015-01-01
The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136
Mitchell, Lauren L; Peterson, Colleen M; Rud, Shaina R; Jutkowitz, Eric; Sarkinen, Andrielle; Trost, Sierra; Porta, Carolyn M; Finlay, Jessica M; Gaugler, Joseph E
2018-03-01
Technologies have emerged that aim to help older persons with Alzheimer's disease and related dementias (ADRDs) remain at home while also supporting their caregiving family members. However, the usefulness of these innovations, particularly in home-based care contexts, remains underexplored. The current study evaluated the acceptability and utility of an in-home remote activity monitoring (RAM) system for 30 family caregivers of persons with ADRD via quantitative survey data collected over a 6-month period and qualitative survey and interview data collected for up to 18 months. A parallel convergent mixed methods design was employed. The integrated qualitative and quantitative data suggested that RAM technology offered ongoing monitoring and provided caregivers with a sense of security. Considerable customization was needed so that RAM was most appropriate for persons with ADRD. The findings have important clinical implications when considering how RAM can supplement, or potentially substitute for, ADRD family care.
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping
2017-09-01
Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (˜60 ms), temperature independence, and superior stability and reproducibility during ˜1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.
Botto, Lorenzo D.; Robert-Gnansia, Elisabeth; Siffel, Csaba; Harris, John; Borman, Barry; Mastroiacovo, Pierpaolo
2006-01-01
The International Clearing-house for Birth Defects Surveillance and Research, formerly known as International Clearinghouse of Birth Defects Monitoring Systems, consists of 40 registries worldwide that collaborate in monitoring 40 types of birth defects. Clearinghouse activities include the sharing and joint monitoring of birth defect data, epidemiologic and public health research, and capacity building, with the goal of reducing disease and promoting healthy birth outcomes through primary prevention. We discuss 3 of these activities: the collaborative assessment of the potential teratogenicity of first-trimester use of medications (the MADRE project), an example of the intersection of surveillance and research; the international databases of people with orofacial clefts, an example of the evolution from surveillance to outcome research; and the study of genetic polymorphisms, an example of collaboration in public health genetics. PMID:16571708
Micro-patterned graphene-based sensing skins for human physiological monitoring
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik
2018-03-01
Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.
Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD
NASA Astrophysics Data System (ADS)
Calcagnile, L.; Quarta, G.
2012-04-01
Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.
Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption
NASA Astrophysics Data System (ADS)
Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.; Zago, V.
2017-12-01
The integration of satellite data and modeling represents an efficient strategy that may provide immediate answers to the main issues raised at the onset of a new effusive eruption. Satellite-based thermal remote sensing of hotspots related to effusive activity can effectively provide a variety of products suited to timing, locating, and tracking the radiant character of lava flows. Hotspots show the location and occurrence of eruptive events (vents). Discharge rate estimates may indicate the current intensity (effusion rate) and potential magnitude (volume). High-spatial resolution multispectral satellite data can complement field observations for monitoring the front position (length) and extension of flows (area). Physics-based models driven, or validated, by satellite-derived parameters are now capable of fast and accurate forecast of lava flow inundation scenarios (hazard). Here, we demonstrate the potential of the integrated application of satellite remote-sensing techniques and lava flow models during the 2017 effusive eruption at Mount Etna in Italy. This combined approach provided insights into lava flow field evolution by supplying detailed views of flow field construction (e.g., the opening of ephemeral vents) that were useful for more accurate and reliable forecasts of eruptive activity. Moreover, we gave a detailed chronology of the lava flow activity based on field observations and satellite images, assessed the potential extent of impacted areas, mapped the evolution of lava flow field, and executed hazard projections. The underside of this combination is the high sensitivity of lava flow inundation scenarios to uncertainties in vent location, discharge rate, and other parameters, which can make interpreting hazard forecasts difficult during an effusive crisis. However, such integration at last makes timely forecasts of lava flow hazards during effusive crises possible at the great majority of volcanoes for which no monitoring exists.
Wearable Activity Tracker Use Among Australian Adolescents: Usability and Acceptability Study
Timperio, Anna; Brown, Helen; Ball, Kylie; Macfarlane, Susie; Lai, Samuel K; Richards, Kara; Mackintosh, Kelly A; McNarry, Melitta A; Foster, Megan; Salmon, Jo
2018-01-01
Background Wearable activity trackers have the potential to be integrated into physical activity interventions, yet little is known about how adolescents use these devices or perceive their acceptability. Objective The aim of this study was to examine the usability and acceptability of a wearable activity tracker among adolescents. A secondary aim was to determine adolescents’ awareness and use of the different functions and features in the wearable activity tracker and accompanying app. Methods Sixty adolescents (aged 13-14 years) in year 8 from 3 secondary schools in Melbourne, Australia, were provided with a wrist-worn Fitbit Flex and accompanying app, and were asked to use it for 6 weeks. Demographic data (age, sex) were collected via a Web-based survey completed during week 1 of the study. At the conclusion of the 6-week period, all adolescents participated in focus groups that explored their perceptions of the usability and acceptability of the Fitbit Flex, accompanying app, and Web-based Fitbit profile. Qualitative data were analyzed using pen profiles, which were constructed from verbatim transcripts. Results Adolescents typically found the Fitbit Flex easy to use for activity tracking, though greater difficulties were reported for monitoring sleep. The Fitbit Flex was perceived to be useful for tracking daily activities, and adolescents used a range of features and functions available through the device and the app. Barriers to use included the comfort and design of the Fitbit Flex, a lack of specific feedback about activity levels, and the inability to wear the wearable activity tracker for water-based sports. Conclusions Adolescents reported that the Fitbit Flex was easy to use and that it was a useful tool for tracking daily activities. A number of functions and features were used, including the device’s visual display to track and self-monitor activity, goal-setting in the accompanying app, and undertaking challenges against friends. However, several barriers to use were identified, which may impact on sustained use over time. Overall, wearable activity trackers have the potential to be integrated into physical activity interventions targeted at adolescents, but both the functionality and wearability of the monitor should be considered. PMID:29643054
Monitoring Peptidase Activities in Complex Proteomes by MALDI-TOF Mass Spectrometry
Villanueva, Josep; Nazarian, Arpi; Lawlor, Kevin; Tempst, Paul
2009-01-01
Measuring enzymatic activities in biological fluids is a form of activity-based proteomics and may be utilized as a means of developing disease biomarkers. Activity-based assays allow amplification of output signals, thus potentially visualizing low-abundant enzymes on a virtually transparent whole-proteome background. The protocol presented here describes a semi-quantitative in vitro assay of proteolytic activities in complex proteomes by monitoring breakdown of designer peptide-substrates using robotic extraction and a MALDI-TOF mass spectrometric read-out. Relative quantitation of the peptide metabolites is done by comparison with spiked internal standards, followed by statistical analysis of the resulting mini-peptidome. Partial automation provides reproducibility and throughput essential for comparing large sample sets. The approach may be employed for diagnostic or predictive purposes and enables profiling of 96 samples in 30 hours. It could be tailored to many diagnostic and pharmaco-dynamic purposes, as a read-out of catalytic and metabolic activities in body fluids or tissues. PMID:19617888
Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito
2013-12-01
Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.
Electrical Tomography for seismic hazard monitoring: state-of-the-art and future challenges.
NASA Astrophysics Data System (ADS)
Lapenna, Vincenzo; Piscitelli, Sabatino
2010-05-01
The Self-Potential (passive) and DC resistivity (active) methods have been considered for a long period as ancillary and/or secondary tools in geophysical exploration, simplified procedures for data processing and purely qualitative techniques for data inversion were the main drawbacks. Recently, innovative algorithms for tomographic data inversion, new models for describing the electrokinetic phenomena associated to the subsurface fluid migration and modern technologies for the field surveying have rapidly transformed these geoelectrical methods in powerful tools for geo-hazard monitoring. These technological and methodological improvements disclose the way for a wide spectra of interesting and challenging applications: mapping of the water content in landslide bodies; identification of fluid and gas emissions in volcanic areas; search of earthquake precursors. In this work we briefly resume the current start-of-the-art and analyse the new applications of the Electrical Tomography in the seismic hazard monitoring. An overview of the more interesting results obtained in different worldwide areas (i.e. Mediterranean Basin, California, Japan) is presented and discussed. To-date, combining novel techniques for data inversion and new strategies for the field data acquisition is possible to obtain high-resolution electrical images of complex geological structures. One of the key challenges for the near-future will be the integration of active (DC resistivity) and passive (Self-Potential) measurements for obtaining 2D, 3D and 4D electrical tomographies able to follow the spatial and temporal dynamics of electrical parameters (i.e. resistivity, self-potential). This approach could reduce the ambiguities related to the interpretation of anomalous SP signals in seismic active areas and their applicability for short-term earthquake prediction. The resistivity imaging can be applied for illuminating the fault geometry, while the SP imaging is the key instrument for capturing the fingerprints of the electrokinetic phenomena potentially generated in focal regions.
Physiological changes induced in four bacterial strains following oxidative stress.
Baatout, S; De Boever, P; Mergeay, M
2006-01-01
In order to study the behaviour and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential usefulness in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123, 3,3'-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxyflurorescein diacetate succinimidyl ester (5(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. Membrane potential, esterase activity, intracellular pH and production of superoxide anion production were considerably modified at high H2O2 concentrations in all four strains. In conclusion, we show that a range of significant physiological alterations occurs when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are useful for monitoring the changes induced not only by oxidative stress but also by other stresses like temperature, radiation, pressure, pH, etc....
NASA Astrophysics Data System (ADS)
Walters, R. J.; Zoback, M. D.; Gupta, A.; Baker, J.; Beroza, G. C.
2014-12-01
Regulatory and governmental agencies, individual companies and industry groups and others have recently proposed, or are developing, guidelines aimed at reducing the risk associated with earthquakes triggered by waste water injection or hydraulic fracturing. While there are a number of elements common to the guidelines proposed, not surprisingly, there are also some significant differences among them and, in a number of cases, important considerations that are not addressed. The goal of this work is to develop a comprehensive protocol for site characterization based on a rigorous scientific understanding of the responsible processes. Topics addressed will include the geologic setting (emphasizing faults that might be affected), historical seismicity, hydraulic characterization of injection and adjacent intervals, geomechanical characterization to identify potentially active faults, plans for seismic monitoring and reporting, plans for monitoring and reporting injection (pressure, volumes, and rates), other factors contributing to risk (potentially affected population centers, structures, and facilities), and implementing a modified Probabilistic Seismic Hazard Analysis (PSHA). The guidelines will be risk based and adaptable, rather than prescriptive, for a proposed activity and region of interest. They will be goal oriented and will rely, to the degree possible, on established best practice procedures, referring to existing procedures and recommendations. By developing a risk-based site characterization protocol, we hope to contribute to the development of rational and effective measures for reducing the risk posed by activities that potentially trigger earthquakes.
NASA Astrophysics Data System (ADS)
Kemna, A.; Weigand, M.; Wagner, F.; Hilbich, C.; Hauck, C.
2016-12-01
Flow of (liquid) water plays a crucial role in the dynamics of coupled thermo-hydro-mechanical processes in terrestrial permafrost systems. To better understand these processes in the active layer of permafrost regions, with the ultimate goal of adequately incorporating them in numerical models for improved scenario prediction, monitoring approaches offering high spatial and temporal resolution, areal coverage, and especially sensitivity to subsurface water flow, are highly desired. This particularly holds for high-mountain slopes, where strong variability in topography, precipitation, and snow cover, along with significant subsurface soil/rock heterogeneity, gives rise to complex spatio-temporal patterns of water flow during seasonal thawing and freezing periods. The electrical self-potential (SP) method is well known to, in theory, meeting the above monitoring demands by measuring the electrical streaming potential which is generated at the microscopic scale when water flows along electrically non-neutral interfaces. Despite its inherent sensitivity to subsurface water flow, the SP method has not yet been used for the monitoring of high-mountain permafrost sites. We here present first results from an SP monitoring survey conducted at the Schilthorn (2970 m asl) in the Bernese Alps, Switzerland, where SP data have been collected since September 2013 at a sampling rate of 10 min on a permanently installed array of 12 non-polarizing electrodes covering an area of 35 m by 15 m. While the SP time series exhibit systematic daily variations, with part of the signal clearly correlated with temperature, in particular in the snow-free periods, the largest temporal changes in the SP signal occur in spring, when the snow cover melts and thawing sets on in the active layer. The period of higher temporal SP variations continues until autumn, when the signal gradually returns to relatively low variations, coinciding with the freezing of the ground. Our results suggest that the SP method is a suitable tool for the monitoring of seasonal water flow dynamics at high-mountain permafrost sites. Current work is directed towards an improved field setup, as well as the quantitative analysis of the SP data based on laboratory calibration measurements.
Chadwell, Alix; Kenney, Laurence; Granat, Malcolm; Thies, Sibylle; Head, John S; Galpin, Adam
2018-02-01
Current outcome measures used in upper limb myoelectric prosthesis studies include clinical tests of function and self-report questionnaires on real-world prosthesis use. Research in other cohorts has questioned both the validity of self-report as an activity assessment tool and the relationship between clinical functionality and real-world upper limb activity. Previously, 1 we reported the first results of monitoring upper limb prosthesis use. However, the data visualisation technique used was limited in scope. Methodology development. To introduce two new methods for the analysis and display of upper limb activity monitoring data and to demonstrate the potential value of the approach with example real-world data. Upper limb activity monitors, worn on each wrist, recorded data on two anatomically intact participants and two prosthesis users over 1 week. Participants also filled in a diary to record upper limb activity. Data visualisation was carried out using histograms, and Archimedean spirals to illustrate temporal patterns of upper limb activity. Anatomically intact participants' activity was largely bilateral in nature, interspersed with frequent bursts of unilateral activity of each arm. At times when the prosthesis was worn prosthesis users showed very little unilateral use of the prosthesis (≈20-40 min/week compared to ≈350 min/week unilateral activity on each arm for anatomically intact participants), with consistent bias towards the intact arm throughout. The Archimedean spiral plots illustrated participant-specific patterns of non-use in prosthesis users. The data visualisation techniques allow detailed and objective assessment of temporal patterns in the upper limb activity of prosthesis users. Clinical relevance Activity monitoring offers an objective method for the assessment of upper limb prosthesis users' (PUs) activity outside of the clinic. By plotting data using Archimedean spirals, it is possible to visualise, in detail, the temporal patterns of upper limb activity. Further work is needed to explore the relationship between traditional functional outcome measures and real-world prosthesis activity.
Tiberio, Stacey S; Kerr, David C R; Capaldi, Deborah M; Pears, Katherine C; Kim, Hyoun K; Nowicka, Paulina
2014-05-01
Although children's media consumption has been one of the most robust risk factors for childhood obesity, effects of specific parenting influences, such as parental media monitoring, have not been effectively investigated. To examine the potential influences of maternal and paternal monitoring of child media exposure and children's general activities on body mass index (BMI) in middle childhood. A longitudinal study, taken from a subsample of the Three Generational Study, a predominantly white, Pacific Northwest community sample (overall participation rate, 89.6%), included assessments performed from June 1998 to September 2012. Analyses included 112 mothers, 103 fathers, and their 213 children (55.4% girls) at age 5, 7, and/or 9 years. Participation rates ranged from 66.7% to 72.0% of all eligible Three Generational Study children across the 3 assessments. Parents reported on their general monitoring of their children (whereabouts and activities), specific monitoring of child media exposure, children's participation in sports and recreational activities, children's media time (hours per week), annual income, and educational level. Parental BMI was recorded. Predictions to level and change in child BMI z scores were tested. Linear mixed-effects modeling indicated that more maternal, but not paternal, monitoring of child media exposure predicted lower child BMI z scores at age 7 years (95% CI, -0.39 to -0.07) and less steeply increasing child BMI z scores from 5 to 9 years (95% CI, -0.11 to -0.01). These effects held when more general parental monitoring, and parent BMI, annual income, and educational level were controlled for. The significant negative effect of maternal media monitoring on children's BMI z scores at age 7 years was marginally accounted for by the effect of child media time. The maternal media monitoring effect on children's BMI z score slopes remained significant after adjustment for children's media time and sports and recreational activity. These findings suggest that parental behaviors related to children's media consumption may have long-term effects on children's BMI in middle childhood. They underscore the importance of targeting parental media monitoring in efforts to prevent childhood obesity.
NASA Astrophysics Data System (ADS)
Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.
2014-12-01
To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of gravimetric moisture content (derived from the ERT data) that highlight the reasons for the differential behaviour and indicate precursors for landslide reactivation.
Podor, Borbala; Hu, Yi-ling; Ohkura, Masamichi; Nakai, Junichi; Croll, Roger; Fine, Alan
2015-01-01
Abstract. Imaging calcium transients associated with neuronal activity has yielded important insights into neural physiology. Genetically encoded calcium indicators (GECIs) offer conspicuous potential advantages for this purpose, including exquisite targeting. While the catalogue of available GECIs is steadily growing, many newly developed sensors that appear promising in vitro or in model cells appear to be less useful when expressed in mammalian neurons. We have, therefore, evaluated the performance of GECIs from two of the most promising families of sensors, G-CaMPs [Nat. Biotechnol. 19(2), 137–141 (2001)11175727] and GECOs [Science 333(6051), 1888–1891 (2011)21903779], for monitoring action potentials in rat brain. Specifically, we used two-photon excitation fluorescence microscopy to compare calcium transients detected by G-CaMP3; GCaMP6f; G-CaMP7; Green-GECO1.0, 1.1 and 1.2; Blue-GECO; Red-GECO; Rex-GECO0.9; Rex-GECO1; Carmine-GECO; Orange-GECO; and Yellow-GECO1s. After optimizing excitation wavelengths, we monitored fluorescence signals associated with increasing numbers of action potentials evoked by current injection in CA1 pyramidal neurons in rat organotypic hippocampal slices. Some GECIs, particularly Green-GECO1.2, GCaMP6f, and G-CaMP7, were able to detect single action potentials with high reliability. By virtue of greatest sensitivity and fast kinetics, G-CaMP7 may be the best currently available GECI for monitoring calcium transients in mammalian neurons. PMID:26158004
Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman
2017-07-13
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Brenda Ringe; Gilbert, Hollie Kae
2015-05-01
This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known culturalmore » resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.« less
Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman
2017-01-01
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744
Forster, Marie-Therese; Hoecker, Alexander Claudius; Kang, Jun-Suk; Quick, Johanna; Seifert, Volker; Hattingen, Elke; Hilker, Rüdiger; Weise, Lutz Martin
2015-06-01
Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures. To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking. Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift. Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation. The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.
Åkerberg, Anna; Söderlund, Anne; Lindén, Maria
2017-01-01
Background Different kinds of physical activity (PA) self-monitoring technologies are used today to monitor and motivate PA behavior change. The user focus is essential in the development process of this technology, including potential future users such as representatives from the group of non-users. There is also a need to study whether there are differences between the groups of users and non-users. The aims of this study were to investigate possible differences between users and non-users regarding their opinions about PA self-monitoring technologies and to investigate differences in demographic variables between the groups. Materials and methods Participants were randomly selected from seven municipalities in central Sweden. In total, 107 adults responded to the Physical Activity Products Questionnaire, which consisted of 22 questions. Results Significant differences between the users and non-users were shown for six of the 20 measurement-related items: measures accurately (p=0.007), measures with high precision (p=0.024), measures distance (p=0.020), measures speed (p=0.003), shows minutes of activity (p=0.004), and shows geographical position (p=0.000). Significant differences between the users and non-users were also found for two of the 29 encouragement items: measures accurately (p=0.001) and has long-term memory (p=0.019). Significant differences between the groups were also shown for level of education (p=0.030) and level of physical exercise (p=0.037). Conclusion With a few exceptions, the users and the non-users in this study had similar opinions about PA self-monitoring technologies. Because this study showed significant differences regarding level of education and level of physical exercise, these demographic variables seemed more relevant to investigate than differences in opinions about the PA self-monitoring technologies. PMID:28280399
Henrichs, K
2011-03-01
Besides ongoing developments in the dosimetry of incorporated radionuclides, there are various efforts to improve the monitoring of workers for potential or real intakes of radionuclides. The disillusioning experience with numerous intercomparison projects identified substantial differences between national regulations, concepts, applied programmes and methods, and dose assessment procedures. Measured activities were not directly comparable because of significant differences between measuring frequencies and methods, but also results of case studies for dose assessments revealed differences of orders of magnitude. Besides the general common interest in reliable monitoring results, at least the cross-border activities of workers (e.g. nuclear power plant services) require consistent approaches and comparable results. The International Standardization Organization therefore initiated projects to standardise programmes for the monitoring of workers, the requirements for measuring laboratories and the processes for the quantitative evaluation of monitoring results in terms of internal assessed doses. The strength of the concepts applied by the international working group consists in a unified approach defining the requirements, databases and processes. This paper is intended to give a short introduction into the standardization project followed by a more detailed description of the dose assessment standard, which will be published in the very near future.
NASA Technical Reports Server (NTRS)
Wells, Nathan D.; Madaras, Eric I.
2017-01-01
Expandable modules for use in space and on the Moon or Mars offer a great opportunity for volume and mass savings in future space exploration missions. This type of module can be compressed into a relatively small shape on the ground, allowing them to fit into space vehicles with a smaller cargo/fairing size than a traditional solid, metallic structure based module would allow. In April 2016, the Bigelow Expandable Activity Module (BEAM) was berthed to the International Space Station (ISS). BEAM is the first human-rated expandable habitat/module to be deployed and crewed in space. BEAM is a NASA managed ISS payload project in partnership with Bigelow Aerospace. BEAM is intended to stay attached to ISS for an operational period of 2 years to help advance the technology readiness for future expandable modules. BEAM has been instrumented with a suite of space flight certified sensors systems which will help characterize the module's performance for thermal, radiation shielding and impact monitoring against potential Micro Meteoroid/Orbital Debris (MM/OD) providing fundamental information on the BEAM environment for potential health monitoring requirements and capabilities. This paper will provide an overview of how the sensors/instrumentation systems were developed, tested, installed and an overview of the current sensor system operations. It will also discuss how the MM/OD impact detection system referred to as the Distributed Impact Detection System (DIDS) data is being processed and reviewed on the ground by the principle investigators.
The quantitative assessment of motor activity in mania and schizophrenia
Minassian, Arpi; Henry, Brook L.; Geyer, Mark A.; Paulus, Martin P.; Young, Jared W.; Perry, William
2009-01-01
Background Increased motor activity is a cardinal feature of the mania of Bipolar Disorder (BD), and is thought to reflect dopaminergic dysregulation. Motor activity in BD has been studied almost exclusively with self-report and observer-rated scales, limiting the ability to objectively quantify this behavior. We used an ambulatory monitoring device to quantify motor activity in BD and schizophrenia (SCZ) patients in a novel exploratory paradigm, the human Behavioral Pattern Monitor (BPM). Method 28 patients in the manic phase of BD, 17 SCZ patients, and 21 nonpatient (NC) subjects were tested in the BPM, an unfamiliar room containing novel objects. Motor activity was measured with a wearable ambulatory monitoring device (LifeShirt). Results Manic BD patients exhibited higher levels of motor activity when exploring the novel environment than SCZ and NC groups. Motor activity showed some modest relationships with symptom ratings of mania and psychosis and was not related to smoking or body mass index. Limitations Although motor activity did not appear to be impacted significantly by antipsychotic or mood-stabilizing medications, this was a naturalistic study and medications were not controlled, thus limiting conclusions about potential medication effects on motor activity. Conclusion Manic BD patients exhibit a unique signature of motoric overactivity in a novel exploratory environment. The use of an objective method to quantify exploration and motor activity may help characterize the unique aspects of BD and, because it is amenable to translational research, may further the study of the biological and genetic bases of the disease. PMID:19435640
The quantitative assessment of motor activity in mania and schizophrenia.
Minassian, Arpi; Henry, Brook L; Geyer, Mark A; Paulus, Martin P; Young, Jared W; Perry, William
2010-01-01
Increased motor activity is a cardinal feature of the mania of Bipolar Disorder (BD), and is thought to reflect dopaminergic dysregulation. Motor activity in BD has been studied almost exclusively with self-report and observer-rated scales, limiting the ability to objectively quantify this behavior. We used an ambulatory monitoring device to quantify motor activity in BD and schizophrenia (SCZ) patients in a novel exploratory paradigm, the human Behavioral Pattern Monitor (BPM). 28 patients in the manic phase of BD, 17 SCZ patients, and 21 nonpatient (NC) subjects were tested in the BPM, an unfamiliar room containing novel objects. Motor activity was measured with a wearable ambulatory monitoring device (LifeShirt). Manic BD patients exhibited higher levels of motor activity when exploring the novel environment than SCZ and NC groups. Motor activity showed some modest relationships with symptom ratings of mania and psychosis and was not related to smoking or body mass index. Although motor activity did not appear to be impacted significantly by antipsychotic or mood-stabilizing medications, this was a naturalistic study and medications were not controlled, thus limiting conclusions about potential medication effects on motor activity. Manic BD patients exhibit a unique signature of motoric overactivity in a novel exploratory environment. The use of an objective method to quantify exploration and motor activity may help characterize the unique aspects of BD and, because it is amenable to translational research, may further the study of the biological and genetic bases of the disease.
Rawstorn, Jonathan C; Gant, Nicholas; Warren, Ian; Doughty, Robert Neil; Lever, Nigel; Poppe, Katrina K; Maddison, Ralph
2015-03-20
Remote telemonitoring holds great potential to augment management of patients with coronary heart disease (CHD) and atrial fibrillation (AF) by enabling regular physiological monitoring during physical activity. Remote physiological monitoring may improve home and community exercise-based cardiac rehabilitation (exCR) programs and could improve assessment of the impact and management of pharmacological interventions for heart rate control in individuals with AF. Our aim was to evaluate the measurement validity and data transmission reliability of a remote telemonitoring system comprising a wireless multi-parameter physiological sensor, custom mobile app, and middleware platform, among individuals in sinus rhythm and AF. Participants in sinus rhythm and with AF undertook simulated daily activities, low, moderate, and/or high intensity exercise. Remote monitoring system heart rate and respiratory rate were compared to reference measures (12-lead ECG and indirect calorimeter). Wireless data transmission loss was calculated between the sensor, mobile app, and remote Internet server. Median heart rate (-0.30 to 1.10 b∙min -1 ) and respiratory rate (-1.25 to 0.39 br∙min -1 ) measurement biases were small, yet statistically significant (all P≤.003) due to the large number of observations. Measurement reliability was generally excellent (rho=.87-.97, all P<.001; intraclass correlation coefficient [ICC]=.94-.98, all P<.001; coefficient of variation [CV]=2.24-7.94%), although respiratory rate measurement reliability was poor among AF participants (rho=.43, P<.001; ICC=.55, P<.001; CV=16.61%). Data loss was minimal (<5%) when all system components were active; however, instability of the network hosting the remote data capture server resulted in data loss at the remote Internet server during some trials. System validity was sufficient for remote monitoring of heart and respiratory rates across a range of exercise intensities. Remote exercise monitoring has potential to augment current exCR and heart rate control management approaches by enabling the provision of individually tailored care to individuals outside traditional clinical environments. ©Jonathan C Rawstorn, Nicholas Gant, Ian Warren, Robert Neil Doughty, Nigel Lever, Katrina K Poppe, Ralph Maddison. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 20.03.2015.
Isotopic Recorders of Pollution in Heterogeneous Urban Areas
NASA Astrophysics Data System (ADS)
Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.
2017-12-01
A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.
NASA Astrophysics Data System (ADS)
Alam, M.
2010-12-01
The San José and Tupungatito volcanoes, located near Santiago (Chile), are the potential hazards, given their geological and historical record of explosive eruptions with pyroclastic flows, most recently in 1960 and 1987 respectively (Global Volcanism Program, Smithsonian Institution). What aggravates the potential risk of these very high (>5290m elevation) snow- and ice-covered volcanoes is their location at the source of relatively narrow mountain drainage systems that feed into the Maipo River, flowing through the southern outskirts of Santiago. Sector-collapse and debris-flow, as a result of volcano-ice/snow interaction, can form lahars causing immense destruction to the life and property in the Maipo Valley (Cajón del Maipo). These lahars can cause submergence and burial of vast downstream areas under several meters thick sediment, as in the case of 1980 eruption of Mount St. Helens, USA. In the event of a major eruption, Santiago city will be at peril, with all the drinking water supply installations either destroyed or contaminated to the extent of being abandoned. Besides, ash and tephra will halt the air traffic in the region, particularly in Santiago-Mendoza sector between Chile and Argentina. In a proposed research project (for which funding is awaited from CONICYT, Chile under its Initiation into Research Funding Competition), hydrothermal systems associated with the aforementioned volcanoes will be periodically studied to monitor these volcanoes, in order to develop a Systematics for using the peripheral hydrothermal manifestations, together with nearby surface water bodies, as means for monitoring the activities of the volcano(es). Basic premise of this proposal is to use the relationship between volcanic and hydrothermal activities. Although this association has been observed at many volcanic centers, no attempt has been made to use this relation effectively as a tool for monitoring the volcanoes. Before an eruption or even with increased solfataric activities, the geochemical signatures of the peripheral hydrothermal systems and nearby surface water bodies change significantly. These geochemical changes can be correlated and verified with the observed volcanic activities. Ground deformation of the volcanoes will be studied through Synthetic Aperture Radar (SAR) Interferometry (InSAR), while thermal infrared remote sensing will be used for monitoring thermal anomalies. The reason for choosing these remote methods over the conventional ground based on-site monitoring, is the difficulty in accessing the aforementioned volcanic centers and risk involved in carrying such instruments for frequent observations, as required for the proposed work. In fact, the idea of developing such a Systematics is because of the risk involved in ground based monitoring of these volcanoes. However, microgravity study, which is relatively easier and safer, will be done to validate the results of the remote sensing studies. The expected outcome of the proposed work will not only help in the mitigation of potential hazard of the aforementioned volcanoes, which are currently unmonitored for the reasons mentioned earlier; but will also serve as a model for monitoring remote and largely ‘inaccessible’ volcanoes elsewhere.
ERPS to Monitor Non-conscious Mentation
NASA Technical Reports Server (NTRS)
Donchin, E.
1984-01-01
Event Related Brain Potentials (or ERPs) are extracted from the EEG that can be recorded between a pair of electrodes placed on a person's scalp. The EEG is recorded as a continual fluctuation in voltage. It is the results of the integration of the potential fields generated by a multitude of neuronal ensembles that are active as the brain goes about its business. Within this ongoing signal it is possible to distinguish voltage fluctuations that are triggered in neural structures by the occurrence of specific events. This activity, evoked as it is by an external event, is known as the Evoked, or Event Related, Potential. The ERPs provide a unique opportunity to monitor non-conscious mentation. The inferences that can be based on ERP data are described and the limits of these inferences are emphasized. This, however, will not be an exhaustive review of the use of ERPs in Engineering Psychology. The application, its scope, and its limitations will be illustrated by means of one example. This example is preceded by a brief technical introduction to the methodology used in the study of ERPs. The manner in which ERPs are used to study cognition is described.
Online monitoring of Mezcal fermentation based on redox potential measurements.
Escalante-Minakata, P; Ibarra-Junquera, V; Rosu, H C; De León-Rodríguez, A; González-García, R
2009-01-01
We describe an algorithm for the continuous monitoring of the biomass and ethanol concentrations as well as the growth rate in the Mezcal fermentation process. The algorithm performs its task having available only the online measurements of the redox potential. The procedure combines an artificial neural network (ANN) that relates the redox potential to the ethanol and biomass concentrations with a nonlinear observer-based algorithm that uses the ANN biomass estimations to infer the growth rate of this fermentation process. The results show that the redox potential is a valuable indicator of the metabolic activity of the microorganisms during Mezcal fermentation. In addition, the estimated growth rate can be considered as a direct evidence of the presence of mixed culture growth in the process. Usually, mixtures of microorganisms could be intuitively clear in this kind of processes; however, the total biomass data do not provide definite evidence by themselves. In this paper, the detailed design of the software sensor as well as its experimental application is presented at the laboratory level.
NASA Astrophysics Data System (ADS)
Cigolini, Corrado; Laiolo, Marco; Coppola, Diego
2017-04-01
The behavior of fluids in hydrothermal systems is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and hydrothermal fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of hydrothermal fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic hydrothermal systems and can be used as a proxy to analyze geothermal reservoirs.
NASA Astrophysics Data System (ADS)
Harrild, M.; Webley, P.; Dehn, J.
2014-12-01
Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.
NASA Astrophysics Data System (ADS)
Harrild, Martin; Webley, Peter; Dehn, Jonathan
2015-04-01
Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.
Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.
2011-01-01
There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071
Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D
2011-03-01
There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.
Aerospace safety advisory panel
NASA Technical Reports Server (NTRS)
1995-01-01
The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).
AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1
The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...
Equivalency Programmes (EPs) for Promoting Lifelong Learning
ERIC Educational Resources Information Center
Haddad, Caroline, Ed.
2006-01-01
Equivalency programmes (EPs) refers to alternative education programmes that are equivalent to the formal education system in terms of curriculum and certification, policy support mechanisms, mode of delivery, staff training, and other support activities such as monitoring, evaluation and assessment. The development of EPs is potentially an…
Neuronal assemblies within the Central Nervous System (CNS) produce spontaneous or stimulus-evoked electrophysiological activity that can be monitored and quantified in terms of action potential patterns. Such patterns provide a sensitive endpoint to detect effects of chemicals, ...
Dual pathways to prospective remembering
McDaniel, Mark A.; Umanath, Sharda; Einstein, Gilles O.; Waldum, Emily R.
2015-01-01
According to the multiprocess framework (McDaniel and Einstein, 2000), the cognitive system can support prospective memory (PM) retrieval through two general pathways. One pathway depends on top–down attentional control processes that maintain activation of the intention and/or monitor the environment for the triggering or target cues that indicate that the intention should be executed. A second pathway depends on (bottom–up) spontaneous retrieval processes, processes that are often triggered by a PM target cue; critically, spontaneous retrieval is assumed not to require monitoring or active maintenance of the intention. Given demand characteristics associated with experimental settings, however, participants are often inclined to monitor, thereby potentially masking discovery of bottom–up spontaneous retrieval processes. In this article, we discuss parameters of laboratory PM paradigms to discourage monitoring and review recent behavioral evidence from such paradigms that implicate spontaneous retrieval in PM. We then re-examine the neuro-imaging evidence from the lens of the multiprocess framework and suggest some critical modifications to existing neuro-cognitive interpretations of the neuro-imaging results. These modifications illuminate possible directions and refinements for further neuro-imaging investigations of PM. PMID:26236213
Manzano-Szalai, Krisztina; Pali-Schöll, Isabella; Krishnamurthy, Durga; Stremnitzer, Caroline; Flaschberger, Ingo; Jensen-Jarolim, Erika
2016-01-01
In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i) milk allergy, ii) peanut allergy and iii) egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour. PMID:26963393
Automating ATLAS Computing Operations using the Site Status Board
NASA Astrophysics Data System (ADS)
J, Andreeva; Iglesias C, Borrego; S, Campana; Girolamo A, Di; I, Dzhunov; Curull X, Espinal; S, Gayazov; E, Magradze; M, Nowotka M.; L, Rinaldi; P, Saiz; J, Schovancova; A, Stewart G.; M, Wright
2012-12-01
The automation of operations is essential to reduce manpower costs and improve the reliability of the system. The Site Status Board (SSB) is a framework which allows Virtual Organizations to monitor their computing activities at distributed sites and to evaluate site performance. The ATLAS experiment intensively uses the SSB for the distributed computing shifts, for estimating data processing and data transfer efficiencies at a particular site, and for implementing automatic exclusion of sites from computing activities, in case of potential problems. The ATLAS SSB provides a real-time aggregated monitoring view and keeps the history of the monitoring metrics. Based on this history, usability of a site from the perspective of ATLAS is calculated. The paper will describe how the SSB is integrated in the ATLAS operations and computing infrastructure and will cover implementation details of the ATLAS SSB sensors and alarm system, based on the information in the SSB. It will demonstrate the positive impact of the use of the SSB on the overall performance of ATLAS computing activities and will overview future plans.
NASA Astrophysics Data System (ADS)
Todd, James; Legler, David; Piotrowicz, Stephen; Raymond, Megan; Smith, Emily; Tedesco, Kathy; Thurston, Sidney
2017-04-01
The Ocean Observing and Monitoring Division (OOMD, formerly the Climate Observation Division) of the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office provides long-term, high-quality global observations, climate information and products for researchers, forecasters, assessments and other users of environmental information. In this context, OOMD-supported activities serve a foundational role in an enterprise that aims to advance 1) scientific understanding, 2) monitoring and prediction of climate and 3) understanding of potential impacts to enable a climate resilient society. Leveraging approximately 50% of the Global Ocean Observing System, OOMD employs an internationally-coordinated, multi-institution global strategy that brings together data from multiple platforms including surface drifting buoys, Argo profiling floats, flux/transport moorings (RAMA, PIRATA, OceanSITES), GLOSS tide gauges, SOOP-XBT and SOOP-CO2, ocean gliders and repeat hydrographic sections (GO-SHIP). OOMD also engages in outreach, education and capacity development activities to deliver training on the social-economic applications of ocean data. This presentation will highlight recent activities and plans for 2017 and beyond.
Active damage interrogation system for structural health monitoring
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Dunne, James P.; Becker, Ronald S.; Baumann, Erwin W.
1997-05-01
An integrated and automated smart structures approach for in situ damage assessment has been implemented and evaluated in a laboratory environment for health monitoring of a realistic aerospace structural component. This approach, called Active Damage Interrogation (ADI), utilizes an array of piezoelectric transducers attached to or embedded within the structure for both actuation and sensing. The ADI system, which is model independent, actively interrogates the structure through broadband excitation of multiple actuators across the desired frequency range. Statistical analysis of the changes in transfer functions between actuator/sensor pairs is used to detect, localize, and assess the severity of damage in the structure. This paper presents the overall concept of the ADI system and provides experimental results of damage assessment studies conducted for a composite structural component of the MD-900 Explorer helicopter rotor system. The potential advantages of this approach include simplicity (no need for a model), sensitivity, and low cost implementation. The results obtained thus far indicate considerably promise for integrated structural health monitoring of aerospace vehicles, leading to the practice of condition-based maintenance and consequent reduction in life cycle costs.
Koseki, Naoteru; Deguchi, Jiro; Yamashita, Akihito; Miyawaki, Izuru; Funabashi, Hitoshi
2014-08-01
As drug-induced seizures have severe impact on drug development, evaluating seizure induction potential of candidate drugs at the early stages of drug discovery is important. A novel assay system using zebrafish has attracted interest as a high throughput toxicological in vivo assay system, and we tried to establish an experimental method for drug-induced seizure liability on the basis of locomotor activity in zebrafish. We monitored locomotor activity at high-speed movement (> 20 mm/sec) for 60 min immediately after exposure, and assessed seizure liability potential in some drugs using locomotor activity. However this experimental procedure was not sufficient for predicting seizures because the potential of several drugs with demonstrated seizure potential in mammals was not detected. We, therefore, added other parameters for locomotor activity such as extending exposure time or conducting flashlight stimulation (10 Hz) which is a known seizure induction stimulus, and these additional parameters improved seizure potential detection in some drugs. The validation study using the improved methodology was used to assess 52 commercially available drugs, and the prediction rate was approximately 70%. The experimental protocol established in this present study is considered useful for seizure potential screening during early stages of drug discovery.
2014-01-01
Background The monitoring and evaluation of health research capacity strengthening (health RCS) commonly involves documenting activities and outputs using indicators or metrics. We sought to catalogue the types of indicators being used to evaluate health RCS and to assess potential gaps in quality and coverage. Methods We purposively selected twelve evaluations to maximize diversity in health RCS, funders, countries, and approaches to evaluation. We explored the quality of the indicators and extracted them into a matrix across individual, institutional, and national/regional/network levels, based on a matrix in the ESSENCE Planning, Monitoring and Evaluation framework. We synthesized across potential impact pathways (activities to outputs to outcomes) and iteratively checked our findings with key health RCS evaluation stakeholders. Results Evaluations varied remarkably in the strengths of their evaluation designs. The validity of indicators and potential biases were documented in a minority of reports. Indicators were primarily of activities, outputs, or outcomes, with little on their inter-relationships. Individual level indicators tended to be more quantitative, comparable, and attentive to equity considerations. Institutional and national–international level indicators were extremely diverse. Although linkage of activities through outputs to outcomes within evaluations was limited, across the evaluations we were able to construct potential pathways of change and assemble corresponding indicators. Conclusions Opportunities for improving health RCS evaluations include work on indicator measurement properties and development of indicators which better encompass relationships with knowledge users. Greater attention to evaluation design, prospective indicator measurement, and systematic linkage of indicators in keeping with theories of change could provide more robust evidence on outcomes of health RCS. PMID:24725961
GOSAT/TANSO-FTS Measurement of Volcanic and Geothermal CO2 Emissions
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Carn, Simon A.; Newhall, Christopher G.
2010-05-01
Approximately one tenth of the Earth's human population lives in direct reach of volcanic hazards. Being able to provide sufficiently early and scientifically sound warning is a key to volcanic hazard mitigation. Quantitative time-series monitoring of volcanic CO2 emissions will likely play a key role in such early warning activities in the future. Impending volcanic eruptions or any potentially disastrous activity that involves movement of magma in the subsurface, is often preceded by an early increase of CO2 emissions. Conventionally, volcanic CO2 monitoring is done either in campaigns of soil emission measurements (grid of one-time measuring points) that are labor intensive and slow, or by ground-based remote FTIR measurements in emission plumes. These methods are not easily available at all sites of potential activity and prohibitively costly to employ on a large number of volcanoes. In addition, both of these ground-based approaches pose a significant risk to the workers conducting these measurements. Some aircraft-based measurements have been conducted as well in the past, however these are limited by the usually meager funding situation of individual observatories, the hazard such flights pose to equipment and crew, and by the inaccessibility of parts of the plume due to ash hazards. The core motivation for this study is therefore to develop a method for volcanic CO2 monitoring from space that will provide sufficient coverage, resolution, and data quality for an application to quantitative time series monitoring and correlation with other available datasets, from a safe distance and with potentially global reach. In summary, the purpose of the proposed research is to quantify volcanic CO2 emissions using satellite-borne observations. Quantitative estimates will be useful for warning of impending volcanic eruptions, and assessing the contribution of volcanic CO2 to global GHG. Our approach encompasses method development and testing for the detection of volcanic CO2 anomalies using GOSAT and correlation with Aura/OMI, AIRS, and ASTER determined SO2 fluxes and ground based monitoring of CO2 and other geophysical and geochemical parameters. This will provide the ground work for future higher spatial resolution satellite missions. This is a joint effort from two GOSAT-IBUKI data application projects: "Satellite-Borne Quantification of Carbon Dioxide Emissions from Volcanoes and Geothermal Areas" (PI Schwandner), and "Application of GOSAT/TANSO-FTS to the Measurement of Volcanic CO2 Emissions" (PI Carn).
FINDING POTENTIALLY UNSAFE NUTRITIONAL SUPPLEMENTS FROM USER REVIEWS WITH TOPIC MODELING.
Sullivan, Ryan; Sarker, Abeed; O'Connor, Karen; Goodin, Amanda; Karlsrud, Mark; Gonzalez, Graciela
2016-01-01
Although dietary supplements are widely used and generally are considered safe, some supplements have been identified as causative agents for adverse reactions, some of which may even be fatal. The Food and Drug Administration (FDA) is responsible for monitoring supplements and ensuring that supplements are safe. However, current surveillance protocols are not always effective. Leveraging user-generated textual data, in the form of Amazon.com reviews for nutritional supplements, we use natural language processing techniques to develop a system for the monitoring of dietary supplements. We use topic modeling techniques, specifically a variation of Latent Dirichlet Allocation (LDA), and background knowledge in the form of an adverse reaction dictionary to score products based on their potential danger to the public. Our approach generates topics that semantically capture adverse reactions from a document set consisting of reviews posted by users of specific products, and based on these topics, we propose a scoring mechanism to categorize products as "high potential danger", "average potential danger" and "low potential danger." We evaluate our system by comparing the system categorization with human annotators, and we find that the our system agrees with the annotators 69.4% of the time. With these results, we demonstrate that our methods show promise and that our system represents a proof of concept as a viable low-cost, active approach for dietary supplement monitoring.
Wixted, Fiona; O'Riordan, Cliona; O'Sullivan, Leonard
2018-01-11
The objective of this study was to investigate if a breathing technique could counteract the effects of hyperventilation due to a sustained attention task on shoulder muscle activity. The trend towards higher levels of automation in industry is increasing. Consequently, manufacturing operators often monitor automated process for long periods of their work shift. Prolonged monitoring work requires sustained attention, which is a cognitive process that humans are typically poor at and find stressful. As sustained attention becomes an increasing requirement of manufacturing operators' job content, the resulting stress experienced could contribute to the onset of many health problems, including work related musculoskeletal disorders (WRMSDs). The SART attention test was completed by a group of participants before and after a breathing intervention exercise. The effects of the abdominal breathing intervention on breathing rate, upper trapezius muscle activity and end-tidal CO₂ were evaluated. The breathing intervention reduced the moderation effect of end-tidal CO₂ on upper trapezius muscle activity. Abdominal breathing could be a useful technique in reducing the effects of sustained attention work on muscular activity. This research can be applied to highly-automated manufacturing industries, where prolonged monitoring of work is widespread and could, in its role as a stressor, be a potential contributor to WRMSDs.
Crocker, Jonny; Bartram, Jamie
2014-07-18
Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.
Kaipainen, Kirsikka; Korhonen, Ilkka; Wansink, Brian
2014-01-01
Background Healthy eating interventions that use behavior change techniques such as self-monitoring and feedback have been associated with stronger effects. Mobile apps can make dietary self-monitoring easy with photography and potentially reach huge populations. Objective The aim of the study was to assess the factors related to sustained use of a free mobile app (“The Eatery”) that promotes healthy eating through photographic dietary self-monitoring and peer feedback. Methods A retrospective analysis was conducted on the sample of 189,770 people who had downloaded the app and used it at least once between October 2011 and April 2012. Adherence was defined based on frequency and duration of self-monitoring. People who had taken more than one picture were classified as “Users” and people with one or no pictures as “Dropouts”. Users who had taken at least 10 pictures and used the app for at least one week were classified as “Actives”, Users with 2-9 pictures as “Semi-actives”, and Dropouts with one picture as “Non-actives”. The associations between adherence, registration time, dietary preferences, and peer feedback were examined. Changes in healthiness ratings over time were analyzed among Actives. Results Overall adherence was low—only 2.58% (4895/189,770) used the app actively. The day of week and time of day the app was initially used was associated with adherence, where 20.28% (5237/25,820) of Users had started using the app during the daytime on weekdays, in comparison to 15.34% (24,718/161,113) of Dropouts. Users with strict diets were more likely to be Active (14.31%, 900/6291) than those who had not defined any diet (3.99%, 742/18,590), said they ate everything (9.47%, 3040/32,090), or reported some other diet (11.85%, 213/1798) (χ2 3=826.6, P<.001). The average healthiness rating from peers for the first picture was higher for Active users (0.55) than for Semi-actives (0.52) or Non-actives (0.49) (F 2,58167=225.9, P<.001). Actives wrote more often a textual description for the first picture than Semi-actives or Non-actives (χ2 2=3515.1, P<.001). Feedback beyond ratings was relatively infrequent: 3.83% (15,247/398,228) of pictures received comments and 15.39% (61,299/398,228) received “likes” from other users. Actives were more likely to have at least one comment or one “like” for their pictures than Semi-actives or Non-actives (χ2 2=343.6, P<.001, and χ2 2=909.6, P<.001, respectively). Only 9.89% (481/4863) of Active users had a positive trend in their average healthiness ratings. Conclusions Most people who tried out this free mobile app for dietary self-monitoring did not continue using it actively and those who did may already have been healthy eaters. Hence, the societal impact of such apps may remain small if they fail to reach those who would be most in need of dietary changes. Incorporating additional self-regulation techniques such as goal-setting and intention formation into the app could potentially increase user engagement and promote sustained use. PMID:24735567
Arciszewski, Tim J; Munkittrick, Kelly R; Scrimgeour, Garry J; Dubé, Monique G; Wrona, Fred J; Hazewinkel, Rod R
2017-09-01
The primary goals of environmental monitoring are to indicate whether unexpected changes related to development are occurring in the physical, chemical, and biological attributes of ecosystems and to inform meaningful management intervention. Although achieving these objectives is conceptually simple, varying scientific and social challenges often result in their breakdown. Conceptualizing, designing, and operating programs that better delineate monitoring, management, and risk assessment processes supported by hypothesis-driven approaches, strong inference, and adverse outcome pathways can overcome many of the challenges. Generally, a robust monitoring program is characterized by hypothesis-driven questions associated with potential adverse outcomes and feedback loops informed by data. Specifically, key and basic features are predictions of future observations (triggers) and mechanisms to respond to success or failure of those predictions (tiers). The adaptive processes accelerate or decelerate the effort to highlight and overcome ignorance while preventing the potentially unnecessary escalation of unguided monitoring and management. The deployment of the mutually reinforcing components can allow for more meaningful and actionable monitoring programs that better associate activities with consequences. Integr Environ Assess Manag 2017;13:877-891. © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
NASA Astrophysics Data System (ADS)
Koschuch, Richard; Brauner, Michael; Hu, Kaiheng; Hübl, Johannes
2016-04-01
Automatic monitoring of alpine mass movement is a major challenge in dealing with natural hazards. The presented research project shows a new approach in measurment and alarming technology for water level changes an debris flow by using a high-frequency Pulse Doppler RADAR. The detection system was implemented on 3 places (2 in Tirol/Austria within the monitoring systems of the IAN/BOKU; 1 in Dongchuan/China within the monitoring systems of the IMHE/Chinese Academy of Science) in order to prove the applicability of the RADAR in monitoring torrential activities (e.g. debris-flows, mudflows, flash floods, etc.). The main objective is to illustrate the principles and the potential of an innovative RADAR system and its versatility as an automatic detection system for fast (> 1 km/h - 300 km/h) alpine mass movements of any kind. The high frequency RADAR device was already successfully tested for snow avalanches in Sedrun/Switzerland (Lussi et al., 2012), in Ischgl/Austria (Kogelnig et al., 2012). The experience and the data of the five year showed the enormous potential of the presented RADAR technology in use as an independent warning and monitoring system in the field of natural hazard. We have been able to measure water level changes, surface velocities and several debris flows and can compare this data with the other installed systems.
A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support.
Fernandes, Chrystinne Oliveira; Lucena, Carlos José Pereira De
2017-03-27
Although there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical. The objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step. A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework's flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health's operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents. IoT4Health's construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers. We conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion. ©Chrystinne Oliveira Fernandes, Carlos José Pereira De Lucena. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.03.2017.
The 'Room within a Room' Concept for Monitored Warhead Dismantlement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanner, Jennifer E.; Benz, Jacob M.; White, Helen
2014-12-01
Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deploymentmore » of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but the individual technologies used to create the system deployed during this exercise required further development.« less
On the importance of measurement system calibration for underwater passive monitoring
NASA Astrophysics Data System (ADS)
Miqueleti, S. A.; Costa-Félix, R. P. B.
2016-07-01
The underwater passive acoustic monitoring of sound in oceans is growing in recent years and has served as a source of information on marine life and the interference of human activities on the environment. The recordings are used for species identification and prevention of potential adverse effects of vessel traffic, sonar and offshore activities as a whole. However, not much attention is given to the calibration of the hydrophone used to ensure the validity of the information collected. The resulting sound depends on the input audio, and the transfer function of the intensity of the input signal. This paper presents an assessment of how the lack of calibration of hydroacoustic systems might compromise the evaluation of the marine environment.
Wearable physiological systems and technologies for metabolic monitoring.
Gao, Wei; Brooks, George A; Klonoff, David C
2018-03-01
Wearable sensors allow continuous monitoring of metabolites for diabetes, sports medicine, exercise science, and physiology research. These sensors can continuously detect target analytes in skin interstitial fluid (ISF), tears, saliva, and sweat. In this review, we will summarize developments on wearable devices and their potential applications in research, clinical practice, and recreational and sporting activities. Sampling skin ISF can require insertion of a needle into the skin, whereas sweat, tears, and saliva can be sampled by devices worn outside the body. The most widely sampled metabolite from a wearable device is glucose in skin ISF for monitoring diabetes patients. Continuous ISF glucose monitoring allows estimation of the glucose concentration in blood without the pain, inconvenience, and blood waste of fingerstick capillary blood glucose testing. This tool is currently used by diabetes patients to provide information for dosing insulin and determining a diet and exercise plan. Similar technologies for measuring concentrations of other analytes in skin ISF could be used to monitor athletes, emergency responders, warfighters, and others in states of extreme physiological stress. Sweat is a potentially useful substrate for sampling analytes for metabolic monitoring during exercise. Lactate, sodium, potassium, and hydrogen ions can be measured in sweat. Tools for converting the concentrations of these analytes sampled from sweat, tears, and saliva into blood concentrations are being developed. As an understanding of the relationships between the concentrations of analytes in blood and easily sampled body fluid increases, then the benefits of new wearable devices for metabolic monitoring will also increase.
In situ label-free quantification of human pluripotent stem cells with electrochemical potential.
Yea, Cheol-Heon; Jeong, Ho-Chang; Moon, Sung-Hwan; Lee, Mi-Ok; Kim, Kyeong-Jun; Choi, Jeong-Woo; Cha, Hyuk-Jin
2016-01-01
Conventional methods for quantification of undifferentiated pluripotent stem cells such as fluorescence-activated cell sorting and real-time PCR analysis have technical limitations in terms of their sensitivity and recyclability. Herein, we designed a real-time in situ label-free monitoring system on the basis of a specific electrochemical signature of human pluripotent stem cells in vitro. The intensity of the signal of hPSCs highly corresponded to the cell number and remained consistent in a mixed population with differentiated cells. The electrical charge used for monitoring did not markedly affect the proliferation rate or molecular characteristics of differentiated human aortic smooth muscle cells. After YM155 treatment to ablate undifferentiated hPSCs, their specific signal was significantly reduced. This suggests that detection of the specific electrochemical signature of hPSCs would be a valid approach to monitor potential contamination of undifferentiated hPSCs, which can assess the risk of teratoma formation efficiently and economically. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bozkurt, Gokhan; Ayhan, Selim; Dericioglu, Nese; Saygi, Serap; Akalan, Nejat
2010-08-01
The potential complications of the subdural electrode implantation providing identification of the seizure focus and direct stimulation of the cerebral cortex for defining the eloquent cortical areas are epidural and subdural hematoma, cortical contusions, infection, brain edema, raised intracranial pressure, CSF leakage, and venous infarction have been previously reported in the literature. To present the first case of subelectrode hematoma without subdural component that was detected during invasive EEG monitoring after subdural electrode implantation. A 19-year-old female with drug resistant seizures was decided to undergo invasive monitoring with subdural electrodes. While good quality recordings had been initially obtained from all electrodes placed on the right parietal convexity, no cerebral cortical activity could be obtained from one electrode 2 days after the first operation. Explorative surgery revealed a circumscribed subelectrode hematoma without a subdural component. Awareness of the potential complications of subdural electrode implantation and close follow-up of the clinical findings of the patient are of highest value for early detection and successful management.
Bhalodia, Vidya M; Schwartz, Daniel M; Sestokas, Anthony K; Bloomgarden, Gary; Arkins, Thomas; Tomak, Patrick; Gorelick, Judith; Wijesekera, Shirvinda; Beiner, John; Goodrich, Isaac
2013-10-01
Deltoid muscle weakness due to C-5 nerve root injury following cervical spine surgery is an uncommon but potentially debilitating complication. Symptoms can manifest upon emergence from anesthesia or days to weeks following surgery. There is conflicting evidence regarding the efficacy of spontaneous electromyography (spEMG) monitoring in detecting evolving C-5 nerve root compromise. By contrast, transcranial electrical stimulation-induced motor evoked potential (tceMEP) monitoring has been shown to be highly sensitive and specific in identifying impending C-5 injury. In this study the authors sought to 1) determine the frequency of immediate versus delayed-onset C-5 nerve root injury following cervical spine surgery, 2) identify risk factors associated with the development of C-5 palsies, and 3) determine whether tceMEP and spEMG neuromonitoring can help to identify acutely evolving C-5 injury as well as predict delayed-onset deltoid muscle paresis. The authors retrospectively reviewed the neuromonitoring and surgical records of all patients who had undergone cervical spine surgery involving the C-4 and/or C-5 level in the period from 2006 to 2008. Real-time tceMEP and spEMG monitoring from the deltoid muscle was performed as part of a multimodal neuromonitoring protocol during all surgeries. Charts were reviewed to identify patients who had experienced significant changes in tceMEPs and/or episodes of neurotonic spEMG activity during surgery, as well as those who had shown new-onset deltoid weakness either immediately upon emergence from the anesthesia or in a delayed fashion. Two hundred twenty-nine patients undergoing 235 cervical spine surgeries involving the C4-5 level served as the study cohort. The overall incidence of perioperative C-5 nerve root injury was 5.1%. The incidence was greatest (50%) in cases with dual corpectomies at the C-4 and C-5 spinal levels. All patients who emerged from anesthesia with deltoid weakness had significant and unresolved changes in tceMEPs during surgery, whereas only 1 had remarkable spEMG activity. Sensitivity and specificity of tceMEP monitoring for identifying acute-onset deltoid weakness were 100% and 99%, respectively. By contrast, sensitivity and specificity for spEMG were only 20% and 92%, respectively. Neither modality was effective in identifying patients who demonstrated delayed-onset deltoid weakness. The risk of new-onset deltoid muscle weakness following cervical spine surgery is greatest for patients undergoing 2-level corpectomies involving C-4 and C-5. Transcranial electrical stimulation-induced MEP monitoring is a highly sensitive and specific technique for detecting C-5 radiculopathy that manifests immediately upon waking from anesthesia. While the absence of sustained spEMG activity does not rule out nerve root irritation, the presence of excessive neurotonic discharges serves both to alert the surgeon of such potentially injurious events and to prompt neuromonitoring personnel about the need for additional tceMEP testing. Delayed-onset C-5 nerve root injury cannot be predicted by intraoperative neuromonitoring via either modality.
NASA Astrophysics Data System (ADS)
Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang
2008-11-01
The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.
In the loop: Practices of self-monitoring from accounts by trial participants
Lynch, Rebecca; Cohn, Simon
2015-01-01
Self-monitoring, by which individuals record and appraise ongoing information about the status of their body in order to improve their health, has been a key element in the personal management of conditions such as diabetes, but it is now also increasingly used in relation to health-associated behaviours. The introduction of self-monitoring as an intervention to change behaviour is intended to provide feedback that can be used by individuals to both assess their status and provide ongoing support towards a goal that may be formally set or remains implicit. However, little attention has been paid to how individuals actually engage in the process or act upon the information they receive. This article addresses this by exploring how participants in a particular trial (‘Get Moving’) experienced the process and nature of feedback. Although the trial aimed to compare the potential efficacy of three different monitoring activities designed to encourage greater physical activity, participants did not present distinctly different accounts of each intervention and the specifics of the feedback provided. Instead, their accounts took the form of much more extended and personal narratives that included other people and features of the environment. We draw on these broader descriptions to problematise the notion of self-monitoring and conclude that self-monitoring is neither solely about ‘self’ nor is it exclusively about ‘monitoring’. We suggest that a more expansive social and material understanding of feedback can give insight into the ways information is made active and meaningful for individuals in their everyday contexts. PMID:26466601
Neuropharmacology of performance monitoring.
Jocham, Gerhard; Ullsperger, Markus
2009-01-01
Adaptive, goal-directed behavior requires that organisms evaluate their actions in terms of their outcomes. Neuroimaging studies show that unfavorable outcomes or situations with high level of conflict engage the posterior medial frontal cortex (pMFC). Recording of event-related potentials revealed that these situations are accompanied by a negative deflection, the so-called error-related negativity (ERN), which appears after an erroneous response or after negative feedback. Both activation of the pMFC and the ERN are thought to represent a signal that indicates the need for behavioral adjustment, and to recruit other brain regions that implement these adjustments. While many fMRI and EEG studies have shed light on the anatomical structures and the cognitive processes involved in performance monitoring, only very recently have researchers begun to investigate the underlying neurochemical mechanisms. Drawing on the putative involvement of dopamine (DA) neurons in coding a reward prediction error, an influential theory has ascribed a pivotal role to DA in performance monitoring. However, although important, DA is certainly not the only neuromodulator involved. Recent studies point to a role for serotonin, norepinephrine and GABA, but also for adenosine in performance monitoring. Here, we review the evidence for neurotransmitter effects on this function in humans. In this light, we critically discuss currently debated models of performance monitoring and potential alternatives.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.
2006-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2005; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2005.
2012-07-24
neurotechnologies , such as monitoring neurological conditions, and would greatly contribute to the understanding of the control of human movement...real time. This would facilitate neurotechnology development that could be deployed outside the laboratory. To test the potential of WPLI for the on
Western states contain vast amounts of oil and gas production. For example, Weld County Colorado contains approximately 25,000 active oil and gas well sites with associated production operations. There is little information on the air pollutant emission potential from this source...
The Covariation between Parental and Expert Evaluations of Early Language Skills
ERIC Educational Resources Information Center
Björn, Piia M.; Kakkuri, Irma; Leppänen, Paavo H. T.
2014-01-01
This study investigated the potential interrelationship between parental (maternal) and expert assessments of the expressive and receptive language skills of 12- to 18-month-old children. The language activities of 27 children were monitored by their mothers (MCDI scale: Lyytinen, 2000. "Varhaisen kommunikaation ja kielen kehityksen…
Prefrontal Cortex Contributions to Episodic Retrieval Monitoring and Evaluation
ERIC Educational Resources Information Center
Cruse, Damian; Wilding, Edward L.
2009-01-01
Although the prefrontal cortex (PFC) plays roles in episodic memory judgments, the specific processes it supports are not understood fully. Event-related potential (ERP) studies of episodic retrieval have revealed an electrophysiological modulation--the right-frontal ERP old/new effect--which is thought to reflect activity in PFC. The functional…
7 CFR 3560.352 - Agency monitoring scope, purpose, and borrower responsibilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... monitoring activities. The Agency will review reports, records, and other materials related to the housing...) Purpose of Agency monitoring activities. Agency monitoring activities are designed to assess borrower and... responsible for cooperating fully and promptly with Agency monitoring activities. Agency monitoring activities...
7 CFR 3560.352 - Agency monitoring scope, purpose, and borrower responsibilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... monitoring activities. The Agency will review reports, records, and other materials related to the housing...) Purpose of Agency monitoring activities. Agency monitoring activities are designed to assess borrower and... responsible for cooperating fully and promptly with Agency monitoring activities. Agency monitoring activities...
7 CFR 3560.352 - Agency monitoring scope, purpose, and borrower responsibilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... monitoring activities. The Agency will review reports, records, and other materials related to the housing...) Purpose of Agency monitoring activities. Agency monitoring activities are designed to assess borrower and... responsible for cooperating fully and promptly with Agency monitoring activities. Agency monitoring activities...
7 CFR 3560.352 - Agency monitoring scope, purpose, and borrower responsibilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... monitoring activities. The Agency will review reports, records, and other materials related to the housing...) Purpose of Agency monitoring activities. Agency monitoring activities are designed to assess borrower and... responsible for cooperating fully and promptly with Agency monitoring activities. Agency monitoring activities...
7 CFR 3560.352 - Agency monitoring scope, purpose, and borrower responsibilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... monitoring activities. The Agency will review reports, records, and other materials related to the housing...) Purpose of Agency monitoring activities. Agency monitoring activities are designed to assess borrower and... responsible for cooperating fully and promptly with Agency monitoring activities. Agency monitoring activities...
Dute, Denise Jantine; Breda, João
2016-01-01
Background European adolescents and students tend to have low levels of physical activity and eat unhealthy foods, and the prevalence of overweight and obesity has increased, which poses a public health challenge. Mobile apps play an important role in their daily lives, suggesting their potential to be used in health-promoting strategies. Objective This review aimed to explore how mobile apps can contribute to the promotion of healthy nutrition, physical activity, and prevention of overweight in adolescents and students. For the apps identified, the review describes the content, the theoretical mechanisms applied, and lessons learned. Methods The databases Scopus, MEDLINE, Embase, and PsycINFO were searched for English-language publications from January 2009 to November 2013. Studies were included if (1) the primary component of the intervention involves an app; (2) the intervention targets healthy nutrition, or physical activity, or overweight prevention; and (3) the target group included adolescents or students (aged 12-25 years). Results A total of 15 studies were included, which describe 12 unique apps. Ten of these apps functioned as monitoring tools for assessing dietary intake or physical activity levels. The other apps used a Web-based platform to challenge users to exercise and to allow users to list and photograph their problem foods. For 5 apps, the behavioral theory underpinning their development was clearly specified. Frequently applied behavior change techniques are prompting self-monitoring of behavior and providing feedback on performance. Apps can function self-contained, but most of them are used as part of therapy or to strengthen school programs. From the age of 10 years users may be capable of using apps. Only 4 apps were developed specifically for adolescents. All apps were tested on a small scale and for a short period. Conclusions Despite large potential and abundant usage by young people, limited research is available on apps and health promotion for adolescents. Apps seem to be a promising health promotion strategy as a monitoring tool. Apps can enable users to set targets, enhance self‐monitoring, and increase awareness. Three apps incorporated social features, making them “social media,” but hardly any evidence appeared available about their potential. PMID:27150850
NASA Technical Reports Server (NTRS)
Llanos, Pedro J.; Hintz, Gerald R.; Lo, Martin W.; Miller, James K.
2013-01-01
Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L(sub 4) and L(sub 5) and the collinear point L(sub 3) of the Circular Restricted Three-Body Problem (CRTBP) in the Sun-Earth system.
NASA Astrophysics Data System (ADS)
Marie, Tiphanie; Lai, Xijun; Huber, Claire; Chen, Xiaoling; Uribe, Carlos; Huang, Shifeng; LaCaux, Jean-Pierre; LaFaye, Murielle; Yesou, Herve
2010-12-01
Earth Observation data were used for mapping potential Schistosomiasis japonica distribution, within Poyang Lake (Jiangxi Province, PR China), as well as transmission risk associated with fishing activities. Areas suitable for the development of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum, were derived from submersion time parameters and vegetation community indicators. Monthly maps showing the annual dynamic of potential O. hupensis presence areas were obtained from December 2005 to December 2008. Human potential transmission risk was handled through the mapping of settlements and the identification of the principal human activity sensitive to transmission: fishing in the central part of Poyang Lake. Finally, data crossing of the different parameters highlight the potential risk of transmission in most of the fishing nets areas.
Real-time estimation and biofeedback of single-neuron firing rates using local field potentials
Hall, Thomas M.; Nazarpour, Kianoush; Jackson, Andrew
2014-01-01
The long-term stability and low-frequency composition of local field potentials (LFPs) offer important advantages for robust and efficient neuroprostheses. However, cortical LFPs recorded by multi-electrode arrays are often assumed to contain only redundant information arising from the activity of large neuronal populations. Here we show that multichannel LFPs in monkey motor cortex each contain a slightly different mixture of distinctive slow potentials that accompany neuronal firing. As a result, the firing rates of individual neurons can be estimated with surprising accuracy. We implemented this method in a real-time biofeedback brain–machine interface, and found that monkeys could learn to modulate the activity of arbitrary neurons using feedback derived solely from LFPs. These findings provide a principled method for monitoring individual neurons without long-term recording of action potentials. PMID:25394574
Wear rate quantifying in real-time using the charged particle surface activation
NASA Astrophysics Data System (ADS)
Alexandreanu, B.; Popa-Simil, L.; Voiculescu, D.; Racolta, P. M.
1997-02-01
Surface activation, commonly known as Thin Layer Activation (TLA), is currently employed in over 30 accelerator laboratories around the world for wear and/or corrosion monitoring in industrial plants [1-6]. TLA was primarily designed and developed to meet requirements of potential industrial partners, in order to transfer this technique from research to industry. The method consists of accelerated ion bombardment of a surface of interest, e.g., a machine part subjected to wear. Loss of material owing to wear, erosive corrosion or abrasion is characterized by monitoring the resultant changes in radioactivity. In principle, depending upon the case at hand, one may choose to measure either the remnant activity of the component of interest or to monitor the activity of the debris. For applications of the second type, especially when a lubricating agent is involved, dedicated installations have been constructed and adapted to an engine or a tribological testing stand in order to assure oil circulation around an externally placed detection gauge. This way, the wear particles suspended in the lubricant can be detected and the material loss rates quantified in real time. Moreover, in specific cases, such as the one presented in this paper, remnant activity measurements prove to be useful tools for complementary results. This paper provides a detailed presentation of such a case: in situ resistance-to-wear testing of two types of piston rings.
Lyons, Elizabeth J; Baranowski, Tom; Basen-Engquist, Karen M; Lewis, Zakkoyya H; Swartz, Maria C; Jennings, Kristofer; Volpi, Elena
2016-03-09
Physical activity reduces risk for numerous negative health outcomes, but postmenopausal breast cancer survivors do not reach recommended levels. Many interventions encourage self-monitoring of steps, which can increase physical activity in the short term. However, these interventions appear insufficient to increase motivation for sustained change. There is a need for innovative strategies to increase physical activity motivation in this population. Narratives are uniquely persuasive, and video games show promise for increasing motivation. This study will determine the effectiveness of an intervention that combines narrative and gaming to encourage sustained physical activity. SMARTGOAL (Self-Monitoring Activity: a Randomized Trial of Game-Oriented AppLications) is a randomized controlled intervention trial. The intervention period is six months, followed by a six month maintenance period. Participants (overweight, sedentary postmenopausal breast cancer survivors aged 45-75) will be randomized to a self-monitoring group or an enhanced narrative game group. The self-monitoring group will be encouraged to use a mobile application for self-monitoring and feedback and will receive 15 counseling phone calls emphasizing self-regulation. The narrative game group will be encouraged to use a mobile application that includes self-monitoring and feedback as well as a narrative-based active video game. The 15 calls for this group will emphasize concepts related to the game storyline. Counseling calls in both groups will occur weekly in months 1 - 3 and monthly in months 4 - 6. No counseling calls will occur after month 6, but both groups will be encouraged to continue using their apps. The primary outcome of the study is minutes of moderate to vigorous physical activity at six months. Other objectively measured outcomes include fitness and physical function. Self-reported outcomes include quality of life, depression, and motivation. This protocol will result in implementation and evaluation of two technology-based physical activity interventions among breast cancer survivors. Both interventions hold promise for broad dissemination. Understanding the potential benefit of adding narrative and game elements to interventions will provide critical information to interventionists, researchers, clinicians, and policymakers. This study is uniquely suited to investigate not just whether but how and why game elements may improve breast cancer survivors' health. clinicaltrials.gov NCT02341235 (January 9, 2015).
Monitoring and Modeling: The Future of Volcanic Eruption Forecasting
NASA Astrophysics Data System (ADS)
Poland, M. P.; Pritchard, M. E.; Anderson, K. R.; Furtney, M.; Carn, S. A.
2016-12-01
Eruption forecasting typically uses monitoring data from geology, gas geochemistry, geodesy, and seismology, to assess the likelihood of future eruptive activity. Occasionally, months to years of warning are possible from specific indicators (e.g., deep LP earthquakes, elevated CO2 emissions, and aseismic deformation) or a buildup in one or more monitoring parameters. More often, observable changes in unrest occur immediately before eruption, as magma is rising toward the surface. In some cases, little or no detectable unrest precedes eruptive activity. Eruption forecasts are usually based on the experience of volcanologists studying the activity, but two developing fields offer a potential leap beyond this practice. First, remote sensing data, which can track thermal, gas, and ash emissions, as well as surface deformation, are increasingly available, allowing statistically significant research into the characteristics of unrest. For example, analysis of hundreds of volcanoes indicates that deformation is a more common pre-eruptive phenomenon than thermal anomalies, and that most episodes of satellite-detected unrest are not immediately followed by eruption. Such robust datasets inform the second development—probabilistic models of eruption potential, especially those that are based on physical-chemical models of the dynamics of magma accumulation and ascent. Both developments are essential for refining forecasts and reducing false positives. For example, many caldera systems have not erupted but are characterized by unrest that, in another context, would elicit strong concern from volcanologists. More observations of this behavior and better understanding of the underlying physics of unrest will improve forecasts of such activity. While still many years from implementation as a forecasting tool, probabilistic physio-chemical models incorporating satellite data offer a complement to expert assessments that, together, can form a powerful forecasting approach.
NASA Astrophysics Data System (ADS)
Mirus, B. B.; Baum, R. L.; Stark, B.; Smith, J. B.; Michel, A.
2015-12-01
Previous USGS research on landslide potential in hillside areas and coastal bluffs around Puget Sound, WA, has identified rainfall thresholds and antecedent moisture conditions that correlate with heightened probability of shallow landslides. However, physically based assessments of temporal and spatial variability in landslide potential require improved quantitative characterization of the hydrologic controls on landslide initiation in heterogeneous geologic materials. Here we present preliminary steps towards integrating monitoring of hydrologic response with physically based numerical modeling to inform the development of a landslide warning system for a railway corridor along the eastern shore of Puget Sound. We instrumented two sites along the steep coastal bluffs - one active landslide and one currently stable slope with the potential for failure - to monitor rainfall, soil-moisture, and pore-pressure dynamics in near-real time. We applied a distributed model of variably saturated subsurface flow for each site, with heterogeneous hydraulic-property distributions based on our detailed site characterization of the surficial colluvium and the underlying glacial-lacustrine deposits that form the bluffs. We calibrated the model with observed volumetric water content and matric potential time series, then used simulated pore pressures from the calibrated model to calculate the suction stress and the corresponding distribution of the factor of safety against landsliding with the infinite slope approximation. Although the utility of the model is limited by uncertainty in the deeper groundwater flow system, the continuous simulation of near-surface hydrologic response can help to quantify the temporal variations in the potential for shallow slope failures at the two sites. Thus the integration of near-real time monitoring and physically based modeling contributes a useful tool towards mitigating hazards along the Puget Sound railway corridor.
Back-Projection Cortical Potential Imaging: Theory and Results.
Haor, Dror; Shavit, Reuven; Shapiro, Moshe; Geva, Amir B
2017-07-01
Electroencephalography (EEG) is the single brain monitoring technique that is non-invasive, portable, passive, exhibits high-temporal resolution, and gives a directmeasurement of the scalp electrical potential. Amajor disadvantage of the EEG is its low-spatial resolution, which is the result of the low-conductive skull that "smears" the currents coming from within the brain. Recording brain activity with both high temporal and spatial resolution is crucial for the localization of confined brain activations and the study of brainmechanismfunctionality, whichis then followed by diagnosis of brain-related diseases. In this paper, a new cortical potential imaging (CPI) method is presented. The new method gives an estimation of the electrical activity on the cortex surface and thus removes the "smearing effect" caused by the skull. The scalp potentials are back-projected CPI (BP-CPI) onto the cortex surface by building a well-posed problem to the Laplace equation that is solved by means of the finite elements method on a realistic head model. A unique solution to the CPI problem is obtained by introducing a cortical normal current estimation technique. The technique is based on the same mechanism used in the well-known surface Laplacian calculation, followed by a scalp-cortex back-projection routine. The BP-CPI passed four stages of validation, including validation on spherical and realistic head models, probabilistic analysis (Monte Carlo simulation), and noise sensitivity tests. In addition, the BP-CPI was compared with the minimum norm estimate CPI approach and found superior for multi-source cortical potential distributions with very good estimation results (CC >0.97) on a realistic head model in the regions of interest, for two representative cases. The BP-CPI can be easily incorporated in different monitoring tools and help researchers by maintaining an accurate estimation for the cortical potential of ongoing or event-related potentials in order to have better neurological inferences from the EEG.
Mialon, M; Swinburn, B; Sacks, G
2015-07-01
Unhealthy diets represent one of the major risk factors for non-communicable diseases. There is currently a risk that the political influence of the food industry results in public health policies that do not adequately balance public and commercial interests. This paper aims to develop a framework for categorizing the corporate political activity of the food industry with respect to public health and proposes an approach to systematically identify and monitor it. The proposed framework includes six strategies used by the food industry to influence public health policies and outcomes: information and messaging; financial incentive; constituency building; legal; policy substitution; opposition fragmentation and destabilization. The corporate political activity of the food industry could be identified and monitored through publicly available data sourced from the industry itself, governments, the media and other sources. Steps for country-level monitoring include identification of key food industry actors and related sources of information, followed by systematic data collection and analysis of relevant documents, using the proposed framework as a basis for classification of results. The proposed monitoring approach should be pilot tested in different countries as part of efforts to increase the transparency and accountability of the food industry. This approach has the potential to help redress any imbalance of interests and thereby contribute to the prevention and control of non-communicable diseases. © 2015 World Obesity.
2009-01-01
lactate, citric acid , or ethanol have been used in field applications. Biomass grows rapidly during the active phase when high concentrations of...6.7.4 Results of Oxidation Reduction Potential (ORP) Monitoring.............39 6.7.5 Results of Volatile Fatty Acids (VFA) Analysis...trinitrotoluene USEPA U.S. Environmental Protection Agency VC vinyl chloride VFA volatile fatty acid VOC volatile organic compounds Technical
The Neural Bases of Event Monitoring across Domains: a Simultaneous ERP-fMRI Study
Tarantino, Vincenza; Mazzonetto, Ilaria; Formica, Silvia; Causin, Francesco; Vallesi, Antonino
2017-01-01
The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained attentional control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, this transient component relies on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts. PMID:28785212
NASA Astrophysics Data System (ADS)
Rodes, C. E.; Chillrud, S. N.; Haskell, W. L.; Intille, S. S.; Albinali, F.; Rosenberger, M. E.
2012-09-01
BackgroundMetabolic functions typically increase with human activity, but optimal methods to characterize activity levels for real-time predictions of ventilation volume (l min-1) during exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated into personal level monitors to define periods of acceptable wearing compliance, and allow the exposures (μg m-3) to be extended to potential doses in μg min-1 kg-1 of body weight? ObjectivesIn a pilot effort, we tested: 1) whether appropriately-processed accelerometer data could be utilized to predict compliance and in linear regressions to predict ventilation volumes in real-time as an on-board component of personal level exposure sensor systems, and 2) whether locating the exposure monitors on the chest in the breathing zone, provided comparable accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.). MethodsPrototype exposure monitors from RTI International and Columbia University were worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all <10 METS), spanning common recumbent, sedentary, and ambulatory activity categories. Referee Wocket accelerometers that were placed at various body locations allowed comparison with the chest-located exposure sensor accelerometers. An Oxycon Mobile mask was used to measure oral-nasal ventilation volumes in-situ. For the subset of participants with complete data (n = 22), linear regressions were constructed (processed accelerometric variable versus ventilation rate) for each participant and exposure monitor type, and Pearson correlations computed to compare across scenarios. ResultsTriaxial accelerometer data were demonstrated to be adequately sensitive indicators for predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77 to 0.99) were observed for all participants for both exposure sensor accelerometer variables against ventilation volume for recumbent, sedentary, and ambulatory activities with MET values ˜<6. The RTI monitors mean R value of 0.91 was slightly higher than the Columbia monitors mean of 0.86 due to utilizing a 20 Hz data rate instead of a slower 1 Hz rate. A nominal mean regression slope was computed for the RTI system across participants and showed a modest RSD of +/-36.6%. Comparison of the correlation values of the exposure monitors with the Wocket accelerometers at various body locations showed statistically identical regressions for all sensors at alternate hip, ankle, upper arm, thigh, and pocket locations, but not for the Wocket accelerometer located at the dominant side wrist location (R = 0.57; p = 0.016). ConclusionsEven with a modest number of adult volunteers, the consistency and linearity of regression slopes for all subjects were very good with excellent within-person Pearson correlations for the accelerometer versus ventilation volume data. Computing accelerometric standard deviations allowed good sensitivity for compliance assessments even for sedentary activities. These pilot findings supported the hypothesis that a common linear regression is likely to be usable for a wider range of adults to predict ventilation volumes from accelerometry data over a range of low to moderate energy level activities. The predicted volumes would then allow real-time estimates of potential dose, enabling more robust panel studies. The poorer correlation in predicting ventilation rate for an accelerometer located on the wrist suggested that this location should not be considered for predictions of ventilation volume.
Treatment and disease management of multiple sclerosis patients: A review for nurse practitioners.
Roman, Cortnee; Menning, Kara
2017-10-01
This review discusses the role of the nurse practitioner (NP) in evaluating the clinical effects, potential side effects, and monitoring requirements for treatment options in multiple sclerosis (MS) and provides guidance on how to help patients understand these issues. A literature search was conducted on PubMed to identify publications on monitoring and disease management of MS patients. Additional resources included drug information web sites and package inserts. NPs play an active role in the management of MS patients via effective monitoring and communication throughout the patient's treatment regimen and disease course. In the shared decision-making model of MS treatment, NPs ensure that patients understand the implications of their disease-modifying therapies (DMTs). As patients move through treatments during the course of their disease, the importance of this role increases, and it is critical that NPs follow the guidelines in each medication's product label and take into account any potential lingering effects of prior medications. It is critical for NPs to promote patient adherence, to ensure that patients understand treatment side effects and monitoring requirements, and to take sequencing and reversibility implications of DMTs into account when making clinical decisions. ©2017 American Association of Nurse Practitioners.
Data Mining Twitter for Science Applications
NASA Astrophysics Data System (ADS)
Teng, W. L.; Albayrak, A.; Huffman, G. J.
2016-12-01
The Twitter social microblogging database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications (beyond the by-now fairly familiar use of Twitter for natural hazards monitoring). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. In the passive case, we have experimented with listening to the Twitter stream in real time for "precipitation" and related tweets (in different languages), applying basic filters for exact phrases, extracting location information, and mapping the resulting tweet distributions. In the active case, we have conducted preliminary experiments to evaluate different methods of engaging with potential participants. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Though exploratory, our efforts thus far could significantly extend the application realm of Twitter, as a platform for citizen science, beyond natural hazards monitoring to science applications.
Assessing anesthetic activity through modulation of the membrane dipole potential.
Davis, Benjamin Michael; Brenton, Jonathan; Davis, Sterenn; Shamsher, Ehtesham; Sisa, Claudia; Grgic, Ljuban; Cordeiro, M Francesca
2017-10-01
There is great individual variation in response to general anesthetics (GAs) leading to difficulties in optimal dosing and sometimes even accidental awareness during general anesthesia (AAGA). AAGA is a rare, but potentially devastating, complication affecting between 0.1% and 2% of patients undergoing surgery. The development of novel personalized screening techniques to accurately predict a patient's response to GAs and the risk of AAGA remains an unmet clinical need. In the present study, we demonstrate the principle of using a fluorescent reporter of the membrane dipole potential, di-8-ANEPPs, as a novel method to monitor anesthetic activity using a well-described inducer/noninducer pair. The membrane dipole potential has previously been suggested to contribute a novel mechanism of anesthetic action. We show that the fluorescence ratio of di-8-ANEPPs changed in response to physiological concentrations of the anesthetic, 1-chloro-1,2,2-trifluorocyclobutane (F 3 ), but not the structurally similar noninducer, 1,2-dichlorohexafluorocyclobutane (F 6 ), to artificial membranes and in vitro retinal cell systems. Modulation of the membrane dipole provides an explanation to overcome the limitations associated with the alternative membrane-mediated mechanisms of GA action. Furthermore, by combining this technique with noninvasive retinal imaging technologies, we propose that this technique could provide a novel and noninvasive technique to monitor GA susceptibility and identify patients at risk of AAGA. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Applications of wireless sensor networks in marine environment monitoring: a survey.
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-09-11
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.
Clausell, Mathis; Fang, Zhihui; Chen, Wei
2014-07-01
Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.
1995-06-01
On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP formore » PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.« less
Lee, Joong Hoon; Hwang, Ji-Young; Zhu, Jia; Hwang, Ha Ryeon; Lee, Seung Min; Cheng, Huanyu; Lee, Sang-Hoon; Hwang, Suk-Won
2018-06-14
We introduce optimized elastomeric conductive electrodes using a mixture of silver nanowires (AgNWs) with carbon nanotubes/polydimethylsiloxane (CNTs/PDMS), to build a portable earphone type of wearable system that is designed to enable recording electrophysiological activities as well as listening to music at the same time. A custom-built, plastic frame integrated with soft, deformable fabric-based memory foam of earmuffs facilitates essential electronic components, such as conductive elastomers, metal strips, signal transducers and a speaker. Such platform incorporates with accessory cables to attain wireless, real-time monitoring of electrical potentials whose information can be displayed on a cell phone during outdoor activities and music appreciation. Careful evaluations on experimental results reveal that the performance of fabricated dry electrodes are comparable to that of commercial wet electrodes, and position-dependent signal behaviors provide a route toward accomplishing maximized signal quality. This research offers a facile approach for a wearable healthcare monitor via integration of soft electronic constituents with personal belongings.
Detecting Gunshots Using Wearable Accelerometers
Loeffler, Charles E.
2014-01-01
Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges. PMID:25184416
Detecting gunshots using wearable accelerometers.
Loeffler, Charles E
2014-01-01
Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.
Monitoring asthma in childhood: symptoms, exacerbations and quality of life.
Brand, Paul L P; Mäkelä, Mika J; Szefler, Stanley J; Frischer, Thomas; Price, David
2015-06-01
Monitoring asthma in children in clinical practice is primarily performed by reviewing disease activity (daytime and night-time symptoms, use of reliever medication, exacerbations requiring frequent use of reliever medication and urgent visits to the healthcare professional) and the impact of the disease on children's daily activities, including sports and play, in a clinical interview. In such an interview, most task force members also discuss adherence to maintenance therapy and the patients' (and parents') views and beliefs on the goals of treatment and the amount of treatment required to achieve those goals. Composite asthma control and quality of life measures, although potentially useful in research, have limited value in clinical practice because they have a short recall window and do not cover the entire spectrum of asthma control. Telemonitoring of children with asthma cannot replace face-to-face follow-up and monitoring because there is no evidence that it is associated with improved health outcomes. Copyright ©ERS 2015.
Rodríguez-Rodríguez, Carlos E; Marco-Urrea, Ernest; Caminal, Gloria
2010-07-15
The white-rot fungus Trametes versicolor has been studied as a potential agent for the removal of environmental pollutants. For long-time solid-phase bioremediation systems a test is required to monitor the metabolic status of T. versicolor and its degradation capability at different stages. A biodegradation test based on the percentage of degradation of a spiked model pharmaceutical (anti-inflammatory naproxen) in 24 h (ND24) is proposed to monitor the removal of pharmaceuticals and personal care products in sewage sludge. ND24 is intended to act as a test complementary to ergosterol quantification as specific fungal biomarker, and laccase activity as extracellular oxidative capacity of T. versicolor. For samples collected over 45 d, ND24 values did not necessarily correlate with ergosterol or laccase amounts but in most cases, they were over 30% degradation, indicating that T. versicolor may be suitable for bioremediation of sewage sludge in the studied period. 2010 Elsevier B.V. All rights reserved.
Stefaniak, Katarzyna; Wróżyńska, Magdalena
2018-02-01
Protection of common natural goods is one of the greatest challenges man faces every day. Extracting and processing natural resources such as mineral deposits contributes to the transformation of the natural environment. The number of activities designed to keep balance are undertaken in accordance with the concept of integrated order. One of them is the use of comprehensive systems of tailings storage facility monitoring. Despite the monitoring, system failures still occur. The quantitative aspect of the failures illustrates both the scale of the problem and the quantitative aspect of the consequences of tailings storage facility failures. The paper presents vast possibilities provided by the global monitoring in the effective prevention of these failures. Particular attention is drawn to the potential of using multidirectional monitoring, including technical and environmental monitoring by the example of one of the world's biggest hydrotechnical constructions-Żelazny Most Tailings Storage Facility (TSF), Poland. Analysis of monitoring data allows to take preventive action against construction failures of facility dams, which can have devastating effects on human life and the natural environment.
Wearable sensors for human health monitoring
NASA Astrophysics Data System (ADS)
Asada, H. Harry; Reisner, Andrew
2006-03-01
Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.
Chmielewski, Witold X; Roessner, Veit; Beste, Christian
2015-10-01
The ability to link contextual information to actions is an important aspect of conflict monitoring and response selection. These mechanisms depend on medial prefrontal networks. Although these areas undergo a protracted development from adolescence to adulthood, it has remained elusive how the influence of contextual information on conflict monitoring is modulated between adolescence and adulthood. Using event-related potentials (ERPs) and source localization techniques we show that the ability to link contextual information to actions is altered and that the predictability of upcoming events is an important factor to consider in this context. In adolescents, conflict monitoring functions are not as much modulated by predictability factors as in adults. It seems that adults exhibit a stronger anticipation of upcoming events than adolescents. This results in disadvantages for adults when the upcoming context is not predictable. In adolescents, problems to predict upcoming events therefore turn out to be beneficial. Two cognitive-neurophysiological factors are important for this: The first factor is related to altered conflict monitoring functions associated with modulations of neural activity in the medial frontal cortex. The second factor is related to altered perceptual processing of target stimuli associated with modulations of neural activity in parieto-occipital areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Wearable Activity Tracker Use Among Australian Adolescents: Usability and Acceptability Study.
Ridgers, Nicola D; Timperio, Anna; Brown, Helen; Ball, Kylie; Macfarlane, Susie; Lai, Samuel K; Richards, Kara; Mackintosh, Kelly A; McNarry, Melitta A; Foster, Megan; Salmon, Jo
2018-04-11
Wearable activity trackers have the potential to be integrated into physical activity interventions, yet little is known about how adolescents use these devices or perceive their acceptability. The aim of this study was to examine the usability and acceptability of a wearable activity tracker among adolescents. A secondary aim was to determine adolescents' awareness and use of the different functions and features in the wearable activity tracker and accompanying app. Sixty adolescents (aged 13-14 years) in year 8 from 3 secondary schools in Melbourne, Australia, were provided with a wrist-worn Fitbit Flex and accompanying app, and were asked to use it for 6 weeks. Demographic data (age, sex) were collected via a Web-based survey completed during week 1 of the study. At the conclusion of the 6-week period, all adolescents participated in focus groups that explored their perceptions of the usability and acceptability of the Fitbit Flex, accompanying app, and Web-based Fitbit profile. Qualitative data were analyzed using pen profiles, which were constructed from verbatim transcripts. Adolescents typically found the Fitbit Flex easy to use for activity tracking, though greater difficulties were reported for monitoring sleep. The Fitbit Flex was perceived to be useful for tracking daily activities, and adolescents used a range of features and functions available through the device and the app. Barriers to use included the comfort and design of the Fitbit Flex, a lack of specific feedback about activity levels, and the inability to wear the wearable activity tracker for water-based sports. Adolescents reported that the Fitbit Flex was easy to use and that it was a useful tool for tracking daily activities. A number of functions and features were used, including the device's visual display to track and self-monitor activity, goal-setting in the accompanying app, and undertaking challenges against friends. However, several barriers to use were identified, which may impact on sustained use over time. Overall, wearable activity trackers have the potential to be integrated into physical activity interventions targeted at adolescents, but both the functionality and wearability of the monitor should be considered. ©Nicola D Ridgers, Anna Timperio, Helen Brown, Kylie Ball, Susie Macfarlane, Samuel K Lai, Kara Richards, Kelly A Mackintosh, Melitta A McNarry, Megan Foster, Jo Salmon. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 11.04.2018.
Postharvest Monitoring of Tomato Ripening Using the Dynamic Laser Speckle
Pieczywek, Piotr Mariusz; Nowacka, Małgorzata; Dadan, Magdalena; Wiktor, Artur; Rybak, Katarzyna; Witrowa-Rajchert, Dorota; Zdunek, Artur
2018-01-01
The dynamic laser speckle (biospeckle) method was tested as a potential tool for the assessment and monitoring of the maturity stage of tomatoes. Two tomato cultivars—Admiro and Starbuck—were tested. The process of climacteric maturation of tomatoes was monitored during a shelf life storage experiment. The biospeckle phenomena were captured using 640 nm and 830 nm laser light wavelength, and analysed using two activity descriptors based on biospeckle pattern decorrelation—C4 and ε. The well-established optical parameters of tomatoes skin were used as a reference method (luminosity, a*/b*, chroma). Both methods were tested with respect to their prediction capabilities of the maturity and destructive indicators of tomatoes—firmness, chlorophyll and carotenoids content. The statistical significance of the tested relationships were investigated by means of linear regression models. The climacteric maturation of tomato fruit was associated with an increase in biospckle activity. Compared to the 830 nm laser wavelength the biospeckle activity measured at 640 nm enabled more accurate predictions of firmness, chlorophyll and carotenoids content. At 640 nm laser wavelength both activity descriptors (C4 and ε) provided similar results, while at 830 nm the ε showed slightly better performance. The linear regression models showed that biospeckle activity descriptors had a higher correlation with chlorophyll and carotenoids content than the a*/b* ratio and luminosity. The results for chroma were comparable with the results for both biospeckle activity indicators. The biospeckle method showed very good results in terms of maturation monitoring and the prediction of the maturity indices of tomatoes, proving the possibility of practical implementation of this method for the determination of the maturity stage of tomatoes. PMID:29617343
NASA Astrophysics Data System (ADS)
Crosta, G. B.; Agliardi, F.; Sosio, R.; Rivolta, C.; Leva, D.; Dei Cas, L.
2012-04-01
Large rockslides in alpine valleys can undergo catastrophic evolution, posing extraordinary risks to settlements, lives and critical infrastructures. These phenomena are controlled by a complex interplay of lithological, structural, hydrological and meteo-climatic factors, which eventually result in: complex triggering mechanisms and kinematics, highly variable activity, regressive to progressive trends with superimposed acceleration and deceleration periods related to rainfall and snowmelt. Managing large rockslide risk remains challenging, due the high uncertainty related to their geological model and dynamics. In this context, the most promising approach to constrain rockslide kinematics, establish correlations with triggering factors, and predict future displacements, velocity and acceleration, and eventually possible final collapse is based on the analysis and modelling of long-term series of monitoring data. More than traditional monitoring activities, remote sensing represents an important tool aimed at describing local rockslide displacements and kinematics, at distinguishing rates of activity, and providing real time data suitable for early warning. We analyze a long term monitoring dataset collected for a deep-seated rockslide (Ruinon, Lombardy, Italy), actively monitored since 1997 through an in situ monitoring network (topographic and GPS, wire extensometers and distometer baselines) and since 2006 by a ground based radar (GB-InSAR). Monitoring allowed to set-up and update the geological model, identify rockslide extent and geometry, analyze its sensitivity to seasonal changes and their impact on the reliability and EW potential of monitoring data. GB-InSAR data allowed to identify sub-areas with different behaviors associated to outcropping bedrock and thick debris cover, and to set-up a "virtual monitoring network" by a posteriori selection of critical locations. Resulting displacement time series provide a large amount of information even in debris-covered areas, where traditional monitoring fails. Such spatially-distributed, improved information, validated by selected ground-based measurements, allowed to establish new velocity thresholds for EW purposes. Relationships between rainfall and displacement rates allowed to identify different possible failure mechanisms and to constrain the applicability of rainfall EW thresholds. Comparison with temperature and snow melting time series allowed to clarify the sensitivity of the rockslide movement to these controlling factors. Finally, the recognition of the sensitivity to all these factors allowed us to accomplish a more complete hazard assessment by defining different failure scenarios and the associated triggering thresholds.
7 CFR 800.216 - Activities that shall be monitored.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...
7 CFR 800.216 - Activities that shall be monitored.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...
7 CFR 800.216 - Activities that shall be monitored.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...
7 CFR 800.216 - Activities that shall be monitored.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...
Crocker, Jonny; Bartram, Jamie
2014-01-01
Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries. PMID:25046632
Patrick, Matthew R.; Kauahikaua, James P.; Antolik, Loren
2010-01-01
Webcams are now standard tools for volcano monitoring and are used at observatories in Alaska, the Cascades, Kamchatka, Hawai'i, Italy, and Japan, among other locations. Webcam images allow invaluable documentation of activity and provide a powerful comparative tool for interpreting other monitoring datastreams, such as seismicity and deformation. Automated image processing can improve the time efficiency and rigor of Webcam image interpretation, and potentially extract more information on eruptive activity. For instance, Lovick and others (2008) provided a suite of processing tools that performed such tasks as noise reduction, eliminating uninteresting images from an image collection, and detecting incandescence, with an application to dome activity at Mount St. Helens during 2007. In this paper, we present two very simple automated approaches for improved characterization and quantification of volcanic incandescence in Webcam images at Kilauea Volcano, Hawai`i. The techniques are implemented in MATLAB (version 2009b, Copyright: The Mathworks, Inc.) to take advantage of the ease of matrix operations. Incandescence is a useful indictor of the location and extent of active lava flows and also a potentially powerful proxy for activity levels at open vents. We apply our techniques to a period covering both summit and east rift zone activity at Kilauea during 2008?2009 and compare the results to complementary datasets (seismicity, tilt) to demonstrate their integrative potential. A great strength of this study is the demonstrated success of these tools in an operational setting at the Hawaiian Volcano Observatory (HVO) over the course of more than a year. Although applied only to Webcam images here, the techniques could be applied to any type of sequential images, such as time-lapse photography. We expect that these tools are applicable to many other volcano monitoring scenarios, and the two MATLAB scripts, as they are implemented at HVO, are included in the appendixes. These scripts would require minor to moderate modifications for use elsewhere, primarily to customize directory navigation. If the user has some familiarity with MATLAB, or programming in general, these modifications should be easy. Although we originally anticipated needing the Image Processing Toolbox, the scripts in the appendixes do not require it. Thus, only the base installation of MATLAB is needed. Because fairly basic MATLAB functions are used, we expect that the script can be run successfully by versions earlier than 2009b.
A longitudinal particulate matter (PM) exposure study was conducted in the Research Triangle Park, NC area between June 2000 and June 2001. Participants were selected from two groups of potentially susceptible sub-populations: a group of African-Americans living in an environme...
In the days following the September 11, 2001, terrorist attack on New York City's World Trade Center (WTC) towers, EPA, other federal agencies, and New York City and New York State public health and environmental authorities initiated numerous air monitoring activities to better ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... regulations regarding scheduling, segmentation and flexible point rights, penalties, and reporting... needed to make informed decisions in a competitive market as well as to improve shipper's and the Commission's ability to monitor the market for potential abuses. This order also required company postings to...
Epidemiological studies have observed between city heterogeneity in PM2.5-mortality risk estimates. These differences could potentially be due to the use of central-site monitors as a surrogate for exposure which do not account for an individual's activities or ambient pollutant ...
A technique has been developed which has the potential to map regions of concern for increased drug usage and/or production by monitoring the input of chemical into the waterways. This approach can provide near "real-time" data on illegal activities. Determination of illicit drug...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... Vaccine Safety Monitoring and Post-Marketing Surveillance 4. Building Global Immunization Research and... activities not represented in the report where HHS efforts can offer a comparative advantage or where HHS... global immunization efforts and the role of HHS in enhancing those efforts. Examples of potential...
76 FR 9375 - Proposed Extension of Existing Information Collection; Sealing of Abandoned Areas
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... prevent potentially explosive or toxic gases from migrating into the active working areas of underground... behind the seal must be monitored to prevent methane from reaching the explosive range. Miners rely on... used; Enhance the quality, utility, and clarity of the information to be collected; and Minimize the...
USDA-ARS?s Scientific Manuscript database
A very promising technique for spatial disaggregation of soil moisture is on the combination of radiometer and radar observations. Despite their demonstrated potential for long term large scale monitoring of soil moisture, passive and active have their disadvantages in terms of temporal and spatial ...
The use of an Energy Monitor in the management of diabetes: a pilot study.
Voon, Rudi; Celler, Branko G; Lovell, Nigel H
2009-02-01
This study evaluated the use of an accelerometer-based device in helping to manage blood glucose levels (BGLs) in people with diabetes mellitus. Five people with diabetes were given a triaxial accelerometer-based device (Energy Monitor) that measured energy levels associated with activities of daily living. For 3 months, they were required to wear the device and to continue with their usual diabetes therapy. The body mass index (BMI) and glycosylated hemoglobin (HbA(1c)) were recorded to assess any potential improvement in blood glucose control. The relationship between BGL and measured energy level was also investigated. Overall, there was a significant reduction of HbA(1c) from 7.48 +/- 1.21% to 6.98 +/- 1.44% (P < 0.05). There was no significant change in BMI. It was also found that higher energy levels resulted in much lower fluctuations in BGL change between meals compared to low energy levels. Moreover, the weekly mean activity score showed an increase in activity levels from the second week to the final week. This pilot study demonstrated that the Energy Monitor could improve the management of diabetes by allowing people with diabetes to view and manage daily physical activity in addition to their usual diabetes therapy.
Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.
Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong
2016-02-01
A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, F.J.
1982-01-01
To investigate normal ambient seismicity as well as potentially enhanced seismic activity induced by brine production, a seismic monitoring program has been conducted in the vicinity of the Chocolate Bayou geopressured test well (the Pleasant Bayou No. 2) since September 1978. The Pleasant Bayou No. 2 well has been completed and perforated at depths of 14,467-14,707 feet (4464.4-4482.7m). The brines produced from the Pleasant Bayou No. 2 well are reinjected at a depth of 6226-6538 feet (1897.7-1992.8m) in the Pleasant Bayou No. 1 well. The seismic monitoring network and results obtained from January through November 1981 are described.
Hu, Kai; Dars, Abdul Ghani; Liu, Qiudou; Xie, Bijun; Sun, Zhida
2018-08-01
Maturity has important effects on the phytochemical and biochemical characteristics of fruits. It affects the quality, nutritional value, harvest time and commercial operations. In this study, Keitt, Sensation and Xiangya mango cultivars in four distinct stages from southwest China were evaluated for their phytochemical profiling and antioxidant activities in real time. Furthermore, the biochemical characteristics indices polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD) and pectin methylesterase (PME) activities were determined. Antioxidant compounds such as vitamin C, total phenolic, total flavonoid and total carotenoid content were also analysed. A total of 34 phenolic compounds were identified and quantitatively monitored by UPLC-ESI-QTOF-MS. Consecutive degradation of phenolic acids and its derivatives were observed upon maturity. We found that in addition to carotenoids, phenolic acids could also be used as a measurement index of maturity in mango. Mango juices and its phenolic extracts may be used as potential prebiotics for modulating probiotic proliferation. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Petropoulos, G.; Partsinevelos, P.; Mitraka, Z.
2012-04-01
Surface mining has been shown to cause intensive environmental degradation in terms of landscape, vegetation and biological communities. Nowadays, the commercial availability of remote sensing imagery at high spatiotemporal scales, has improved dramatically our ability to monitor surface mining activity and evaluate its impact on the environment and society. In this study we investigate the potential use of Landsat TM imagery combined with diverse classification techniques, namely artificial neural networks and support vector machines for delineating mining exploration and assessing its effect on vegetation in various surface mining sites in the Greek island of Milos. Assessment of the mining impact in the study area is validated through the analysis of available QuickBird imagery acquired nearly concurrently to the TM overpasses. Results indicate the capability of the TM sensor combined with the image analysis applied herein as a potential economically viable solution to provide rapidly and at regular time intervals information on mining activity and its impact to the local environment. KEYWORDS: mining environmental impact, remote sensing, image classification, change detection, land reclamation, support vector machines, neural networks
Sofonia, Jeremy J; Unsworth, Richard K F
2010-01-01
Given the potential for adverse effects of ocean dredging on marine organisms, particularly benthic primary producer communities, the management and monitoring of those activities which cause elevated turbidity and sediment loading is critical. In practice, however, this has proven challenging as the development of water quality threshold values, upon which management responses are based, are subject to a large number of physical and biological parameters that are spatially and temporally specific. As a consequence, monitoring programs to date have taken a wide range of different approaches, most focusing on measures of turbidity reported as nephelometric turbidity units (NTU). This paper presents a potential approach in the determination of water quality thresholds which utilises data gathered through the long-term deployment of in situ water instruments, but suggests a focus on photosynthetic active radiation (PAR) rather than NTU as it is more relevant biologically and inclusive of other site conditions. A simple mathematical approach to data interpretation is also presented which facilitates threshold value development, not individual values of concentrations over specific intervals, but as an equation which may be utilized in numerical modelling.
Luzak, Boguslawa; Golanski, Jacek; Rozalski, Marek; Krajewska, Urszula; Olas, Beata
2010-01-01
Introduction Some polyphenolic compounds extracted from Aronia melanocarpa fruits (AM) have been reported to be cardioprotective agents. In this study we evaluated the ability of AM extract to increase the efficacy of human umbilical vein endothelial cells (HUVECs) to inhibit platelet functions in vitro. Material and methods This study encompasses two models of monitoring platelet reactivity: optical aggregation and platelet degranulation (monitored as the surface CD62P expression) in PRP upon the stimulation with ADP. Results We observed that only at low concentrations (5 µg/ml) did AM extract significantly improve antiplatelet action of HUVECs towards ADP-activated platelets in the aggregation test. Conclusions It is concluded that the potentiating effect of AM extract on the endothelial cell-mediated inhibition of platelet aggregation clearly depends on the used concentrations of Aronia-derived active compounds. Therefore, despite these encouraging preliminary outcomes on the beneficial effects of AM extract polyphenols, more profound dose-effect studies should certainly be considered before the implementation of Aronia-originating compounds in antiplatelet therapy and the prevention of cardiovascular diseases. PMID:22371737
Dunton, Genevieve Fridlund; Dzubur, Eldin; Kawabata, Keito; Yanez, Brenda; Bo, Bin; Intille, Stephen
2014-01-01
Despite the known advantages of objective physical activity monitors (e.g., accelerometers), these devices have high rates of non-wear, which leads to missing data. Objective activity monitors are also unable to capture valuable contextual information about behavior. Adolescents recruited into physical activity surveillance and intervention studies will increasingly have smartphones, which are miniature computers with built-in motion sensors. This paper describes the design and development of a smartphone application ("app") called Mobile Teen that combines objective and self-report assessment strategies through (1) sensor-informed context-sensitive ecological momentary assessment (CS-EMA) and (2) sensor-assisted end-of-day recall. The Mobile Teen app uses the mobile phone's built-in motion sensor to automatically detect likely bouts of phone non-wear, sedentary behavior, and physical activity. The app then uses transitions between these inferred states to trigger CS-EMA self-report surveys measuring the type, purpose, and context of activity in real-time. The end of the day recall component of the Mobile Teen app allows users to interactively review and label their own physical activity data each evening using visual cues from automatically detected major activity transitions from the phone's built-in motion sensors. Major activity transitions are identified by the app, which cues the user to label that "chunk," or period, of time using activity categories. Sensor-driven CS-EMA and end-of-day recall smartphone apps can be used to augment physical activity data collected by objective activity monitors, filling in gaps during non-wear bouts and providing additional real-time data on environmental, social, and emotional correlates of behavior. Smartphone apps such as these have potential for affordable deployment in large-scale epidemiological and intervention studies.
Dunton, Genevieve Fridlund; Dzubur, Eldin; Kawabata, Keito; Yanez, Brenda; Bo, Bin; Intille, Stephen
2013-01-01
Introduction: Despite the known advantages of objective physical activity monitors (e.g., accelerometers), these devices have high rates of non-wear, which leads to missing data. Objective activity monitors are also unable to capture valuable contextual information about behavior. Adolescents recruited into physical activity surveillance and intervention studies will increasingly have smartphones, which are miniature computers with built-in motion sensors. Methods: This paper describes the design and development of a smartphone application (“app”) called Mobile Teen that combines objective and self-report assessment strategies through (1) sensor-informed context-sensitive ecological momentary assessment (CS-EMA) and (2) sensor-assisted end-of-day recall. Results: The Mobile Teen app uses the mobile phone’s built-in motion sensor to automatically detect likely bouts of phone non-wear, sedentary behavior, and physical activity. The app then uses transitions between these inferred states to trigger CS-EMA self-report surveys measuring the type, purpose, and context of activity in real-time. The end of the day recall component of the Mobile Teen app allows users to interactively review and label their own physical activity data each evening using visual cues from automatically detected major activity transitions from the phone’s built-in motion sensors. Major activity transitions are identified by the app, which cues the user to label that “chunk,” or period, of time using activity categories. Conclusion: Sensor-driven CS-EMA and end-of-day recall smartphone apps can be used to augment physical activity data collected by objective activity monitors, filling in gaps during non-wear bouts and providing additional real-time data on environmental, social, and emotional correlates of behavior. Smartphone apps such as these have potential for affordable deployment in large-scale epidemiological and intervention studies. PMID:24616888
Cost efficient environmental survey paths for detecting continuous tracer discharges
NASA Astrophysics Data System (ADS)
Alendal, G.
2017-07-01
Designing monitoring programs for detecting potential tracer discharges from unknown locations is challenging. The high variability of the environment may camouflage the anticipated anisotropic signal from a discharge, and there are a number of discharge scenarios. Monitoring operations may also be costly, constraining the number of measurements taken. By assuming that a discharge is active, and a prior belief on the most likely seep location, a method that uses Bayes' theorem combined with discharge footprint predictions is used to update the probability map. Measurement locations with highest reduction in the overall probability of a discharge to be active can be identified. The relative cost between reallocating and measurements can be taken into account. Three different strategies are suggested to enable cost efficient paths for autonomous vessels.
NASA Technical Reports Server (NTRS)
Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.
2001-01-01
Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.
Applications of geophysical methods to volcano monitoring
Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.
2006-01-01
The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley caldera in collaboration with the US Forest Service.
Russian eruption warning systems for aviation
Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.
2009-01-01
More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.
Cultured neuronal networks as environmental biosensors.
O'Shaughnessy, Thomas J; Gray, Samuel A; Pancrazio, Joseph J
2004-01-01
Contamination of water by toxins, either intentionally or unintentionally, is a growing concern for both military and civilian agencies and thus there is a need for systems capable of monitoring a wide range of natural and industrial toxicants. The EILATox-Oregon Workshop held in September 2002 provided an opportunity to test the capabilities of a prototype neuronal network-based biosensor with unknown contaminants in water samples. The biosensor is a portable device capable of recording the action potential activity from a network of mammalian neurons grown on glass microelectrode arrays. Changes in the action potential fi ring rate across the network are monitored to determine exposure to toxicants. A series of three neuronal networks derived from mice was used to test seven unknown samples. Two of these unknowns later were revealed to be blanks, to which the neuronal networks did not respond. Of the five remaining unknowns, a significant change in network activity was detected for four of the compounds at concentrations below a lethal level for humans: mercuric chloride, sodium arsenite, phosdrin and chlordimeform. These compounds--two heavy metals, an organophosphate and an insecticide--demonstrate the breadth of detection possible with neuronal networks. The results generated at the workshop show the promise of the neuronal network biosensor as an environmental detector but there is still considerable effort needed to produce a device suitable for routine environmental threat monitoring.
The potential of crowdsourcing and mobile technology to support flood disaster risk reduction
NASA Astrophysics Data System (ADS)
See, Linda; McCallum, Ian; Liu, Wei; Mechler, Reinhard; Keating, Adriana; Hochrainer-Stigler, Stefan; Mochizuki, Junko; Fritz, Steffen; Dugar, Sumit; Arestegui, Michael; Szoenyi, Michael; Laso-Bayas, Juan-Carlos; Burek, Peter; French, Adam; Moorthy, Inian
2016-04-01
The last decade has seen a rise in citizen science and crowdsourcing for carrying out a variety of tasks across a number of different fields, most notably the collection of data such as the identification of species (e.g. eBird and iNaturalist) and the classification of images (e.g. Galaxy Zoo and Geo-Wiki). Combining human computing with the proliferation of mobile technology has resulted in vast amounts of geo-located data that have considerable value across multiple domains including flood disaster risk reduction. Crowdsourcing technologies, in the form of online mapping, are now being utilized to great effect in post-disaster mapping and relief efforts, e.g. the activities of Humanitarian OpenStreetMap, complementing official channels of relief (e.g. Haiti, Nepal and New York). Disaster event monitoring efforts have been further complemented with the use of social media (e.g. twitter for earthquakes, flood monitoring, and fire detection). Much of the activity in this area has focused on ex-post emergency management while there is considerable potential for utilizing crowdsourcing and mobile technology for vulnerability assessment, early warning and to bolster resilience to flood events. This paper examines the use of crowdsourcing and mobile technology for measuring and monitoring flood hazards, exposure to floods, and vulnerability, drawing upon examples from the literature and ongoing projects on flooding and food security at IIASA.
Haas, Bruno; Grenier, Daniel
2016-04-19
Streptococcus suis is an important swine pathogen and emerging zoonotic agent worldwide causing meningitis, endocarditis, arthritis and septicemia. Among the 29 serotypes identified to date, serotype 2 is mostly isolated from diseased pigs. Although several virulence mechanisms have been characterized in S. suis, the pathogenesis of S. suis infections remains only partially understood. This study focuses on the response of S. suis P1/7 to sub-inhibitory concentrations of amoxicillin. First, capsule expression was monitored by qRT-PCR when S. suis was cultivated in the presence of amoxicillin. Then, the pro-inflammatory potential of S. suis P1/7 culture supernatants or whole cells conditioned with amoxicillin was evaluated by monitoring the activation of the NF-κB pathway in monocytes and quantifying pro-inflammatory cytokines secreted by macrophages. It was found that amoxicillin decreased capsule expression in S. suis. Moreover, conditioning the bacterium with sub-inhibitory concentrations of amoxicillin caused an increased activation of the NF-κB pathway in monocytes following exposure to bacterial culture supernatants and to a lesser extent to whole bacterial cells. This was associated with an increased secretion of pro-inflammatory cytokines (CXCL8, IL-6, IL-1β) by macrophages. This study identified a new mechanism by which S. suis may increase its inflammatory potential in the presence of sub-inhibitory concentrations of amoxicillin, a cell wall-active antibiotic, thus challenging its use for preventive treatments or as growth factor.
NASA Technical Reports Server (NTRS)
1984-01-01
L & M Electronics, Inc.'s telemetry system is used to measure degree and location of abnormal muscle activity. This telemetry was originally used to monitor astronauts vital functions. Leg sensors send wireless signals to computer which develops pictures of gait patterns. System records, measures and analyzes muscle activities in limbs and spine. Computer developed pictures of gait patterns help physicians determine potential of corrective surgery, evaluate various types of braces, or decide whether physical therapy may improve motor functions.
Active assistance technology for health-related behavior change: an interdisciplinary review.
Kennedy, Catriona M; Powell, John; Payne, Thomas H; Ainsworth, John; Boyd, Alan; Buchan, Iain
2012-06-14
Information technology can help individuals to change their health behaviors. This is due to its potential for dynamic and unbiased information processing enabling users to monitor their own progress and be informed about risks and opportunities specific to evolving contexts and motivations. However, in many behavior change interventions, information technology is underused by treating it as a passive medium focused on efficient transmission of information and a positive user experience. To conduct an interdisciplinary literature review to determine the extent to which the active technological capabilities of dynamic and adaptive information processing are being applied in behavior change interventions and to identify their role in these interventions. We defined key categories of active technology such as semantic information processing, pattern recognition, and adaptation. We conducted the literature search using keywords derived from the categories and included studies that indicated a significant role for an active technology in health-related behavior change. In the data extraction, we looked specifically for the following technology roles: (1) dynamic adaptive tailoring of messages depending on context, (2) interactive education, (3) support for client self-monitoring of behavior change progress, and (4) novel ways in which interventions are grounded in behavior change theories using active technology. The search returned 228 potentially relevant articles, of which 41 satisfied the inclusion criteria. We found that significant research was focused on dialog systems, embodied conversational agents, and activity recognition. The most covered health topic was physical activity. The majority of the studies were early-stage research. Only 6 were randomized controlled trials, of which 4 were positive for behavior change and 5 were positive for acceptability. Empathy and relational behavior were significant research themes in dialog systems for behavior change, with many pilot studies showing a preference for those features. We found few studies that focused on interactive education (3 studies) and self-monitoring (2 studies). Some recent research is emerging in dynamic tailoring (15 studies) and theoretically grounded ontologies for automated semantic processing (4 studies). The potential capabilities and risks of active assistance technologies are not being fully explored in most current behavior change research. Designers of health behavior interventions need to consider the relevant informatics methods and algorithms more fully. There is also a need to analyze the possibilities that can result from interaction between different technology components. This requires deep interdisciplinary collaboration, for example, between health psychology, computer science, health informatics, cognitive science, and educational methodology.
Active Assistance Technology for Health-Related Behavior Change: An Interdisciplinary Review
Kennedy, Catriona M; Powell, John; Payne, Thomas H; Ainsworth, John; Boyd, Alan
2012-01-01
Background Information technology can help individuals to change their health behaviors. This is due to its potential for dynamic and unbiased information processing enabling users to monitor their own progress and be informed about risks and opportunities specific to evolving contexts and motivations. However, in many behavior change interventions, information technology is underused by treating it as a passive medium focused on efficient transmission of information and a positive user experience. Objective To conduct an interdisciplinary literature review to determine the extent to which the active technological capabilities of dynamic and adaptive information processing are being applied in behavior change interventions and to identify their role in these interventions. Methods We defined key categories of active technology such as semantic information processing, pattern recognition, and adaptation. We conducted the literature search using keywords derived from the categories and included studies that indicated a significant role for an active technology in health-related behavior change. In the data extraction, we looked specifically for the following technology roles: (1) dynamic adaptive tailoring of messages depending on context, (2) interactive education, (3) support for client self-monitoring of behavior change progress, and (4) novel ways in which interventions are grounded in behavior change theories using active technology. Results The search returned 228 potentially relevant articles, of which 41 satisfied the inclusion criteria. We found that significant research was focused on dialog systems, embodied conversational agents, and activity recognition. The most covered health topic was physical activity. The majority of the studies were early-stage research. Only 6 were randomized controlled trials, of which 4 were positive for behavior change and 5 were positive for acceptability. Empathy and relational behavior were significant research themes in dialog systems for behavior change, with many pilot studies showing a preference for those features. We found few studies that focused on interactive education (3 studies) and self-monitoring (2 studies). Some recent research is emerging in dynamic tailoring (15 studies) and theoretically grounded ontologies for automated semantic processing (4 studies). Conclusions The potential capabilities and risks of active assistance technologies are not being fully explored in most current behavior change research. Designers of health behavior interventions need to consider the relevant informatics methods and algorithms more fully. There is also a need to analyze the possibilities that can result from interaction between different technology components. This requires deep interdisciplinary collaboration, for example, between health psychology, computer science, health informatics, cognitive science, and educational methodology. PMID:22698679
McLeod, M.A.; Andersen, D.E.
1998-01-01
Forest-nesting raptors are often difficult to detect and monitor because they can be secretive, and their nests can be difficult to locate. Some species, however, respond to broadcasts of taped calls, and these responses may be useful both in monitoring population trends and in locating nests. We conducted broadcast surveys on roads and at active red-shouldered hawk (Buteo lineatus) nests in northcentral Minnesota to determine effects of type of call (conspecific or great horned owl [Bubo virginianus]), time of day, and phase of the breeding cycle on red-shouldered hawk response behavior and to evaluate usefulness of broadcasts as a population monitoring tool using area occupied-probability-of-detection techniques. During the breeding seasons of 1994 and 1995, we surveyed 4 10-station road transects 59 times and conducted 76 surveys at 24 active nests. Results of these surveys indicated conspecific calls broadcast prior to hatch and early in the day were the most effective method of detecting red-shouldered hawks. Probability of detection via conspecific calls averaged 0.25, and area occupied was 100%. Computer simulations using these field data indicated broadcast surveys have the potential to be used as a population monitoring tool.
Applications of health information exchange information to public health practice.
Kierkegaard, Patrick; Kaushal, Rainu; Vest, Joshua R
2014-01-01
Increased information availability, timeliness, and comprehensiveness through health information exchange (HIE) can support public health practice. The potential benefits to disease monitoring, disaster response, and other public health activities served as an important justification for the US' investments in HIE. After several years of HIE implementation and funding, we sought to determine if any of the anticipated benefits of exchange participation were accruing to state and local public health practitioners participating in five different exchanges. Using qualitative interviews and template analyses, we identified public health efforts and activities that were improved by participation in HIE. HIE supported public health activities consistent with expectations in the literature. However, no single department realized all the potential benefits of HIE identified. These findings suggest ways to improve HIE usage in public health.
Applications of Health Information Exchange Information to Public Health Practice
Kierkegaard, Patrick; Kaushal, Rainu; Vest, Joshua R
2014-01-01
Increased information availability, timeliness, and comprehensiveness through health information exchange (HIE) can support public health practice. The potential benefits to disease monitoring, disaster response, and other public health activities served as an important justification for the US’ investments in HIE. After several years of HIE implementation and funding, we sought to determine if any of the anticipated benefits of exchange participation were accruing to state and local public health practitioners participating in five different exchanges. Using qualitative interviews and template analyses, we identified public health efforts and activities that were improved by participation in HIE. HIE supported public health activities consistent with expectations in the literature. However, no single department realized all the potential benefits of HIE identified. These findings suggest ways to improve HIE usage in public health. PMID:25954386
Cd pollution and ecological risk assessment for mining activity zone in Karst Area
NASA Astrophysics Data System (ADS)
Yang, B.; He, J. L.; Wen, X. M.; Tan, H.
2017-08-01
The monitored soil samples were collected from farmland in the area with mining activity in Karst area in Liupanshui. In this article, moss bag technology and TSP were used simultaneously for Cd transportation and deposition in the study area. Geostatistics and GIS were then used for the spatial distribution of Cd in the soil. Afterwards, Cd pollution to the soil environment and human health was studied by using the geo-accumulation index and potential ecological risk index methods. The results indicated that atmospheric deposition is the major route of Cd pollution. A moderate to strong pollution of Cd in the area and the degree of potential ecological risk was in a high level in the study area. Furthermore, Cd pollution in Liupanshui may originate from mining activity and atmospheric deposition.
Cappellin, Luca; Loreto, Francesco; Aprea, Eugenio; Romano, Andrea; del Pulgar, José Sánchez; Gasperi, Flavia; Biasioli, Franco
2013-01-01
Proton Transfer Reaction Mass Spectrometry (PTR-MS) has evolved in the last decade as a fast and high sensitivity sensor for the real-time monitoring of volatile compounds. Its applications range from environmental sciences to medical sciences, from food technology to bioprocess monitoring. Italian scientists and institutions participated from the very beginning in fundamental and applied research aiming at exploiting the potentialities of this technique and providing relevant methodological advances and new fundamental indications. In this review we describe this activity on the basis of the available literature. The Italian scientific community has been active mostly in food science and technology, plant physiology and environmental studies and also pioneered the applications of the recently released PTR-ToF-MS (Proton Transfer Reaction-Time of Flight-Mass Spectrometry) in food science and in plant physiology. In the very last years new results related to bioprocess monitoring and health science have been published as well. PTR-MS data analysis, particularly in the case of the ToF based version, and the application of advanced chemometrics and data mining are also aspects characterising the activity of the Italian community. PMID:24021966
Acoustic monitoring of coastal dolphins and their response to naval mine neutralization exercises.
Lammers, Marc O; Howe, Marian; Zang, Eden; McElligott, Megan; Engelhaupt, Amy; Munger, Lisa
2017-12-01
To investigate the potential impacts of naval mine neutralization exercises (MINEX) on odontocete cetaceans, a long-term passive acoustic monitoring study was conducted at a US Navy training range near Virginia Beach, USA. Bottom-moored acoustic recorders were deployed in 2012-2016 near the epicentre of MINEX training activity and were refurbished every 2-4 months. Recordings were analysed for the daily presence/absence of dolphins, and dolphin acoustic activity was quantified in detail for the hours and days before and after 31 MINEX training events. Dolphins occurred in the area year-round, but there was clear seasonal variability, with lower presence during winter months. Dolphins exhibited a behavioural response to underwater detonations. Dolphin acoustic activity near the training location was lower during the hours and days following detonations, suggesting that animals left the area and/or reduced their signalling. Concurrent acoustic monitoring farther away from the training area suggested that the radius of response was between 3 and 6 km. A generalized additive model indicated that the predictors that explained the greatest amount of deviance in the data were the day relative to the training event, the hour of the day and circumstances specific to each training event.
Heiger-Bernays, Wendy J; Wegner, Susanna; Dix, David J
2018-01-16
The presence of industrial chemicals, consumer product chemicals, and pharmaceuticals is well documented in waters in the U.S. and globally. Most of these chemicals lack health-protective guidelines and many have been shown to have endocrine bioactivity. There is currently no systematic or national prioritization for monitoring waters for chemicals with endocrine disrupting activity. We propose ambient water bioactivity concentrations (AWBCs) generated from high throughput data as a health-based screen for endocrine bioactivity of chemicals in water. The U.S. EPA ToxCast program has screened over 1800 chemicals for estrogen receptor (ER) and androgen receptor (AR) pathway bioactivity. AWBCs are calculated for 110 ER and 212 AR bioactive chemicals using high throughput ToxCast data from in vitro screening assays and predictive pathway models, high-throughput toxicokinetic data, and data-driven assumptions about consumption of water. Chemical-specific AWBCs are compared with measured water concentrations in data sets from the greater Denver area, Minnesota lakes, and Oregon waters, demonstrating a framework for identifying endocrine bioactive chemicals. This approach can be used to screen potential cumulative endocrine activity in drinking water and to inform prioritization of future monitoring, chemical testing and pollution prevention efforts.
Otsu, Yo; Bormuth, Volker; Wong, Jerome; Mathieu, Benjamin; Dugué, Guillaume P; Feltz, Anne; Dieudonné, Stéphane
2008-08-30
Two-photon microscopy offers the promise of monitoring brain activity at multiple locations within intact tissue. However, serial sampling of voxels has been difficult to reconcile with millisecond timescales characteristic of neuronal activity. This is due to the conflicting constraints of scanning speed and signal amplitude. The recent use of acousto-optic deflector scanning to implement random-access multiphoton microscopy (RAMP) potentially allows to preserve long illumination dwell times while sampling multiple points-of-interest at high rates. However, the real-life abilities of RAMP microscopy regarding sensitivity and phototoxicity issues, which have so far impeded prolonged optical recordings at high frame rates, have not been assessed. Here, we describe the design, implementation and characterisation of an optimised RAMP microscope. We demonstrate the application of the microscope by monitoring calcium transients in Purkinje cells and cortical pyramidal cell dendrites and spines. We quantify the illumination constraints imposed by phototoxicity and show that stable continuous high-rate recordings can be obtained. During these recordings the fluorescence signal is large enough to detect spikes with a temporal resolution limited only by the calcium dye dynamics, improving upon previous techniques by at least an order of magnitude.
Space Weather Monitoring for ISS Geomagnetic Storm Studies
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Neergaard
2013-01-01
The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.
Yu, Yun; Zhang, Kaiying; Zhang, Ling; Zong, Huantao; Meng, Lingzhong; Han, Ruquan
2018-01-17
Various techniques have been employed for the early detection of perioperative cerebral ischaemia and hypoxia. Cerebral near-infrared spectroscopy (NIRS) is increasingly used in this clinical scenario to monitor brain oxygenation. However, it is unknown whether perioperative cerebral NIRS monitoring and the subsequent treatment strategies are of benefit to patients. To assess the effects of perioperative cerebral NIRS monitoring and corresponding treatment strategies in adults and children, compared with blinded or no cerebral oxygenation monitoring, or cerebral oxygenation monitoring based on non-NIRS technologies, on the detection of cerebral oxygen desaturation events (CDEs), neurological outcomes, non-neurological outcomes and socioeconomic impact (including cost of hospitalization and length of hospital stay). We searched the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 12), Embase (1974 to 20 December 2016) and MEDLINE (PubMed) (1975 to 20 December 2016). We also searched the World Health Organization (WHO) International Clinical Trials Registry Platform for ongoing studies on 20 December 2016. We updated this search in November 2017, but these results have not yet been incorporated in the review. We imposed no language restriction. We included all relevant randomized controlled trials (RCTs) dealing with the use of cerebral NIRS in the perioperative setting (during the operation and within 72 hours after the operation), including the operating room, the postanaesthesia care unit and the intensive care unit. Two authors independently selected studies, assessed risk of bias and extracted data. For binary outcomes, we calculated the risk ratio (RR) and its 95% confidence interval (CI). For continuous data, we estimated the mean difference (MD) between groups and its 95% CI. As we expected clinical and methodological heterogeneity between studies, we employed a random-effects model for analyses and we examined the data for heterogeneity (I 2 statistic). We created a 'Summary of findings' table using GRADEpro. We included 15 studies in the review, comprising a total of 1822 adult participants. There are 12 studies awaiting classification, and eight ongoing studies.None of the 15 included studies considered the paediatric population. Four studies were conducted in the abdominal and orthopaedic surgery setting (lumbar spine, or knee and hip replacement), one study in the carotid endarterectomy setting, and the remaining 10 studies in the aortic or cardiac surgery setting. The main sources of bias in the included studies related to potential conflict of interest from industry sponsorship, unclear blinding status or missing participant data.Two studies with 312 participants considered postoperative neurological injury, however no pooled effect estimate could be calculated due to discordant direction of effect between studies (low-quality evidence). One study (N = 126) in participants undergoing major abdominal surgery reported that 4/66 participants experienced neurological injury with blinded monitoring versus 0/56 in the active monitoring group. A second study (N = 195) in participants having coronary artery bypass surgery reported that 1/96 participants experienced neurological injury in the blinded monitoring group compared with 4/94 participants in the active monitoring group.We are uncertain whether active cerebral NIRS monitoring has an important effect on the risk of postoperative stroke because of the low number of events and wide confidence interval (RR 0.25, 95% CI 0.03 to 2.20; 2 studies, 240 participants; low-quality evidence).We are uncertain whether active cerebral NIRS monitoring has an important effect on postoperative delirium because of the wide confidence interval (RR 0.63, 95% CI 0.27 to 1.45; 1 study, 190 participants; low-quality evidence).Two studies with 126 participants showed that active cerebral NIRS monitoring may reduce the incidence of mild postoperative cognitive dysfunction (POCD) as defined by the original studies at one week after surgery (RR 0.53, 95% CI 0.30 to 0.95, I 2 = 49%, low-quality evidence).Based on six studies with 962 participants, there was moderate-quality evidence that active cerebral oxygenation monitoring probably does not decrease the occurrence of POCD (decline in cognitive function) at one week after surgery (RR 0.62, 95% CI 0.37 to 1.04, I 2 = 80%). The different type of monitoring equipment in one study could potentially be the cause of the heterogeneity.We are uncertain whether active cerebral NIRS monitoring has an important effect on intraoperative mortality or postoperative mortality because of the low number of events and wide confidence interval (RR 0.63, 95% CI 0.08 to 5.03, I 2 = 0%; 3 studies, 390 participants; low-quality evidence). There was no evidence to determine whether routine use of NIRS-based cerebral oxygenation monitoring causes adverse effects. The effects of perioperative active cerebral NIRS monitoring of brain oxygenation in adults for reducing the occurrence of short-term, mild POCD are uncertain due to the low quality of the evidence. There is uncertainty as to whether active cerebral NIRS monitoring has an important effect on postoperative stroke, delirium or death because of the low number of events and wide confidence intervals. The conclusions of this review may change when the eight ongoing studies are published and the 12 studies awaiting assessment are classified. More RCTs performed in the paediatric population and high-risk patients undergoing non-cardiac surgery (e.g. neurosurgery, carotid endarterectomy and other surgery) are needed.
2002-08-01
an increase in estrogen receptor activity. A second objective is to understand the potential role of Src in estrogen induced mammary ductal development ...bPcis i on to The Ser-ilS-dependent link wt GR- t KaroBio AB, a Swedish pharmaceutical development company with CBP is in addition to the Ser-1l8...the ECL detection kit (Amersham Pharmacia Biotech ). phoresis, stained with Coomassic Blue to monitor expression, and sub- Fluorescence Microscopy
An 'Early Warning System' for the prevention of dredging potential impacts on sensitive areas
NASA Astrophysics Data System (ADS)
Piermattei, Viviana; Martellucci, Riccardo; Pierattini, Alberto; Bonamano, Simone; Paladini de Mendoza, Francesco; Albani, Marta; Stefanì, Chiara; Madonia, Alice; Fersini, Giorgio; Marcelli, Marco
2016-04-01
Coastal marine ecosystems are increasingly subject to multiple pressures and stressors produced by the effects of human activities. Intense and frequent disturbances which affect marine environment can derive from dredging activity, which is a fundamental management for most ports and harbours. The potential environmental effects of dredging procedures are generally due to the excavation of material from the sea bottom and the relocation elsewhere for disposal, overflow from the dredger and loss of material from pipelines during transport. Depending on the location and the intensity of these activities the marine environment, particularly sensitive areas, may be affected by dredging. The main environmental effects can be associated with suspended sediments and increases in turbidity into the water column, which can have adverse effects on marine animals and plants by reducing light penetration and by physical disturbance. For this reason it is fundamental to implement a real time monitoring system to control and prevent negative effects, enabling a rapid response to adverse water quality conditions and a fast activation of mitigation procedures, in agreement with all the reference authorities. In this work we present the development of an innovative 'Early Warning System' based on fixed stations, ad hoc in situ surveys and forecasting models, which was applied to a dredging activity carried out in the Gulf of Gaeta (Latium, Italy). It represents an extension of the C-CEMS (Civitavecchia Coastal Environmental Monitoring System) network, which is operative in the Tyrrhenian sea since 2005.
Jridi, Mourad; Lassoued, Imen; Nasri, Rim; Ayadi, Mohamed Ali; Nasri, Moncef; Souissi, Nabil
2014-01-01
Composition, functional properties, and in vitro antioxidant activities of gelatin hydrolysates prepared from cuttlefish skin were investigated. Cuttlefish skin gelatin hydrolysates (CSGHs) were obtained by treatment with crude enzyme preparations from Bacillus licheniformis NH1, Bacillus mojavensis A21, Bacillus subtilis A26, and commercial alcalase. All CSGHs had high protein contents, 74.3-78.3%, and showed excellent solubility (over 90%). CSGH obtained by alcalase demonstrated high antioxidant activities monitored by β-carotene bleaching, DPPH radical scavenging, lipid peroxidation inhibition, and reducing power activity. Its antioxidant activity remained stable or increased in a wide range of pH (1-9), during heating treatment (100°C for 240 min) and after gastrointestinal digestion simulation. In addition, alcalase-CSGH was incorporated into turkey meat sausage to determine its effect on lipid oxidation during 35 days of storage period. At 0.5 mg/g, alcalase-CSGH delayed lipid oxidation monitored by TBARS and conjugated diene up to 10 days compared to vitamin C. The results reveal that CSGHs could be used as food additives possessing both antioxidant activity and functional properties.
Long term variability of Cygnus X-1. V. State definitions with all sky monitors
NASA Astrophysics Data System (ADS)
Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.
2013-06-01
We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., month- to year-long hard-state periods or phases during which numerous transitions occur). It also shows that the hard and soft states are stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.
NASA Astrophysics Data System (ADS)
Giordan, Daniele; Manconi, Andrea; Allasia, Paolo
2015-04-01
In the last decades, technological evolution has strongly increased the number of instruments that can be used to monitor landslide phenomena. Robotized Total Stations, GB-InSAR, and GPS are only few examples of the systems that can be used for the control of the topographic changes due to the landslide activity. These monitoring systems are often merged in a complex network, aimed at controlling the most important physical parameters influencing the evolution of landslide activity. The technological level reached by these systems allows us to use them for early warning purposes. Critical thresholds are identified and, when overcome, emergency actions are associated to protect population living in areas potentially involved by landslide failure. The use of these early warning systems can be very useful for the decision makers, which have to manage emergency conditions due to a landslide acceleration likely precursor of a collapse. At this stage, every instrument has a proper management system and the dataset obtained is often not compatible with the results of the others systems. The level of complexity increases with the number of monitoring systems and often could generate a paradox: the source of data are so numerous and difficult to interpret that a full understanding of the phenomenon could be hampered. Nowadays, a correct divulgation of the recent evolution of a landslide potentially dangerous for the population is very important. The Geohazard Monitoring Group of CNR IRPI developed a communication strategy to divulgate the monitoring network results based on both, a dedicated web page (for the publication in near real time of last updates), and periodical bulletins (for a deeper analysis of the available dataset). To manage the near real time application we developed a system called ADVICE (ADVanced dIsplaCement monitoring system for Early warning) that collects all the available data of a monitoring network and creates user-friendly representations of the recent landslide evolution. The system is also able to manage early warnings based on pre-defined thresholds (usually related to the analysis of displacement and/or velocity) sending emails and SMS. Starting from the same dataset, the representations are different if the information has to be delivered to the population or the technicians involved in the landslide emergency. Our communication strategy considers three different levels of representations of the acquired dataset to be able to communicate the results to the different stakeholders potentially involved in the emergency. This communication scheme has been achieved over time, thank to the experience acquired during the management of monitoring networks relevant to different case studies, such as: Mt. de La Saxe Landslide (Aosta Valley, NW Italy), Ripoli landslide (Emilia Romagna region, central Italy), Montaguto landslide (Campania region, south Italy). Here we present how the correct and user-friendly communication of the monitoring results has been an important added value to support decision makers and population during emergency scenarios.
Potentiometric and electrokinetic signatures of iron(II) interactions with (α,γ)-Fe2O3.
Toczydłowska, Diana; Kędra-Królik, Karolina; Nejbert, Krzysztof; Preočanin, Tajana; Rosso, Kevin M; Zarzycki, Piotr
2015-10-21
The electrochemical signatures of Fe(II) interactions with iron(III) oxides are poorly understood, despite their importance in controlling the amount of mobilized iron. Here, we report the potentiometric titration of α,γ-Fe2O3 oxides exposed to Fe(II) ions. We monitored in situ surface and ζ potentials, the ratio of mobilized ferric to ferrous, and the periodically analyzed nanoparticle crystal structure using X-ray diffraction. Electrokinetic potential reveals weak but still noticeable specific sorption of Fe(II) to the oxide surface under acidic conditions, and pronounced adsorption under alkaline conditions that results in a surface potential reversal. By monitoring the aqueous iron(II/III) fraction, we found that the addition of Fe(II) ions produces platinum electrode response consistent with the iron solubility-activity curve. Although, XRD analysis showed no evidence of γ-Fe2O3 transformations along the titration pathway despite iron cycling between aqueous and solid reservoirs, the magnetite formation cannot be ruled out.
Earth Observation Data Quality Monitoring and Control: A Case Study of STAR Central Data Repository
NASA Astrophysics Data System (ADS)
Han, W.; Jochum, M.
2017-12-01
Earth observation data quality is very important for researchers and decision makers involved in weather forecasting, severe weather warning, disaster and emergency response, environmental monitoring, etc. Monitoring and control earth observation data quality, especially accuracy, completeness, and timeliness, is very useful in data management and governance to optimize data flow, discover potential transmission issues, and better connect data providers and users. Taking a centralized near real-time satellite data repository, STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR), as an example, this paper describes how to develop new mechanism to verify data integrity, check data completeness, and monitor data latency in an operational data management system. Such quality monitoring and control of large volume satellite data help data providers and managers improve data transmission of near real-time satellite data, enhance its acquisition and management, and overcome performance and management issues to better serve research and development activities.
Space and energy. [space systems for energy generation, distribution and control
NASA Technical Reports Server (NTRS)
Bekey, I.
1976-01-01
Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.
Alexander, Jeffrey A; Lee, Shoou-Yih D; Wang, Virginia; Margolin, Frances S
2009-04-01
Despite the legal and practical importance of monitoring and oversight of management by hospital governing boards, there is little empirical evidence of how hospital boards fulfill these roles and the extent to which these practices have changed over time. We utilize data from three national surveys of hospital governance to examine how oversight and monitoring practices in public and private not-for-profit (NFP) hospital boards have changed over time. Findings suggest that board relations with CEOs in NFP hospitals display important but potentially contradictory patterns. On the one hand, NFP hospital boards appear to be exercising more stringent oversight of management and hospital performance. On the other hand, management is more actively involved with governance matters with less separation of board and management. This general pattern varies by the dimension of oversight and monitoring practice and by specific characteristics of NFP hospitals.
Monitoring Physical and Biogeochemical Dynamics of Uranium Bioremediation at the Intermediate Scale
NASA Astrophysics Data System (ADS)
Tarrell, A. N.; Figueroa, L. A.; Rodriguez, D.; Haas, A.; Revil, A.
2011-12-01
Subsurface uranium above desired levels for aquifer use categories exists naturally and from historic mining and milling practices. In situ bioimmobilization offers a cost effective alternative to conventional pump and treat methods by stimulating growth of microorganisms that lead to the reduction and precipitation of uranium. Vital to the long-term success of in situ bioimmobilization is the ability to successfully predict and demonstrate treatment effectiveness to assure that regulatory goals are met. However, successfully monitoring the progress over time is difficult and requires long-term stewardship to ensure effective treatment due to complex physical and biogeochemical heterogeneity. In order to better understand these complexities and the resultant effect on uranium immobilization, innovative systematic monitoring approaches with multiple performance indicators must be investigated. A key issue for uranium bioremediation is the long term stability of solid-phase reduction products. It has been shown that a combination of data from electrode-based monitoring, self-potential monitoring, oxidation reduction potential (ORP), and water level sensors provides insight for identifying and localizing bioremediation activity and can provide better predictions of deleterious biogeochemical change such as pore clogging. In order to test the proof-of-concept of these sensing techniques and to deconvolve redox activity from other electric potential changing events, an intermediate scale 3D tank experiment has been developed. Well-characterized materials will be packed into the tank and an artificial groundwater will flow across the tank through a constant-head boundary. The experiment will utilize these sensing methods to image the electrical current produced by bacteria as well as indications of when and where electrical activity is occurring, such as with the reduction of radionuclides. This work will expand upon current knowledge by exploring the behavior of uranium bioremediation at an intermediate scale, as well as examining the effects from introducing a flow field in a laboratory setting. Data collected from this experiment will help further characterize which factors are contributing to current increases. Additional information concerning the effect of geochemical changes in porosity may also be observed. The results of this work will allow the creation of a new data set collected from a more comprehensive laboratory monitoring network and will allow stakeholders to develop effective decision-making tools on the long-term remediation management at uranium contaminated sites. The data will also aid in the long-term prediction abilities of a reactive transport models. As in situ bioremediation offers a low cost alternative to ex situ treatment methods, the results of this work will help to both reduce cost at existing sites and enable treatment of sites that otherwise have no clear solution.
NASA Astrophysics Data System (ADS)
Bohórquez, Jorge; Özdamar, Özcan; Morawski, Krzysztof; Telischi, Fred F.; Delgado, Rafael E.; Yavuz, Erdem
2005-06-01
A system capable of comprehensive and detailed monitoring of the cochlea and the auditory nerve during intraoperative surgery was developed. The cochlear blood flow (CBF) and the electrocochleogram (ECochGm) were recorded at the round window (RW) niche using a specially designed otic probe. The ECochGm was further processed to obtain cochlear microphonics (CM) and compound action potentials (CAP).The amplitude and phase of the CM were used to quantify the activity of outer hair cells (OHC); CAP amplitude and latency were used to describe the auditory nerve and the synaptic activity of the inner hair cells (IHC). In addition, concurrent monitoring with a second electrophysiological channel was achieved by recording compound nerve action potential (CNAP) obtained directly from the auditory nerve. Stimulation paradigms, instrumentation and signal processing methods were developed to extract and differentiate the activity of the OHC and the IHC in response to three different frequencies. Narrow band acoustical stimuli elicited CM signals indicating mainly nonlinear operation of the mechano-electrical transduction of the OHCs. Special envelope detectors were developed and applied to the ECochGm to extract the CM fundamental component and its harmonics in real time. The system was extensively validated in experimental animal surgeries by performing nerve compressions and manipulations.
NASA Astrophysics Data System (ADS)
Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.
2015-11-01
In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.
Jahnke, Heinz-Georg; Steel, Daniella; Fleischer, Stephan; Seidel, Diana; Kurz, Randy; Vinz, Silvia; Dahlenborg, Kerstin; Sartipy, Peter; Robitzki, Andrea A.
2013-01-01
Unexpected adverse effects on the cardiovascular system remain a major challenge in the development of novel active pharmaceutical ingredients (API). To overcome the current limitations of animal-based in vitro and in vivo test systems, stem cell derived human cardiomyocyte clusters (hCMC) offer the opportunity for highly predictable pre-clinical testing. The three-dimensional structure of hCMC appears more representative of tissue milieu than traditional monolayer cell culture. However, there is a lack of long-term, real time monitoring systems for tissue-like cardiac material. To address this issue, we have developed a microcavity array (MCA)-based label-free monitoring system that eliminates the need for critical hCMC adhesion and outgrowth steps. In contrast, feasible field potential derived action potential recording is possible immediately after positioning within the microcavity. Moreover, this approach allows extended observation of adverse effects on hCMC. For the first time, we describe herein the monitoring of hCMC over 35 days while preserving the hCMC structure and electrophysiological characteristics. Furthermore, we demonstrated the sensitive detection and quantification of adverse API effects using E4031, doxorubicin, and noradrenaline directly on unaltered 3D cultures. The MCA system provides multi-parameter analysis capabilities incorporating field potential recording, impedance spectroscopy, and optical read-outs on individual clusters giving a comprehensive insight into induced cellular alterations within a complex cardiac culture over days or even weeks. PMID:23861955
Potential of plant genetic systems for monitoring and screening mutagens
Nilan, R. A.
1978-01-01
Plants have too long been ignored as useful screening and monitoring systems of environmental mutagens. However, there are about a dozen reliable, some even unique, plant genetic systems that can increase the scope and effectiveness of chemical and physical mutagen screening and monitoring procedures. Some of these should be included in the Tier II tests. Moreover, plants are the only systems now in use as monitors of genetic effects caused by polluted atmosphere and water and by pesticides. There are several major advantages of the plant test systems which relate to their reproductive nature, easy culture and growth habits that should be considered in mutagen screening and monitoring. In addition to these advantages, the major plant test systems exhibit numerous genetic and chromosome changes for determining the effects of mutagens. Some of these have not yet been detected in other nonmammalian and mammalian test systems, but probably occur in the human organism. Plants have played major roles in various aspects of mutagenesis research, primarily in mutagen screening (detection and verification of mutagenic activity), mutagen monitoring, and determining mutagen effects and mechanisms of mutagen action. They have played lesser roles in quantification of mutagenic activity and understanding the nature of induced mutations. Mutagen monitoring with plants, especially in situ on land or in water, will help determine potential genetic hazards of air and water pollutants and protect the genetic purity of crop plants and the purity of the food supply. The Tradescantia stamen-hair system is used in a mobile laboratory for determining the genetic effects of industrial and automobile pollution in a number of sites in the U.S.A. The fern is employed for monitoring genetic effects of water pollution in the Eastern states. The maize pollen system and certain weeds have monitored genetic effects of pesticides. Several other systems that have considerable value and should be developed and more widely used in mutagen monitoring and screening, especially for in situ monitoring, are discussed. Emphasis is placed on pollen systems in which changes in pollen structure, chemistry, and chromosomes can be scored for monitoring; and screening systems which can record low levels of genetic effects as well as provide information on the nature of induced mutations. The value of plant systems for monitoring and screening mutagens can be improved by: greater knowledge of plant cell processes at the molecular and ultrastructural levels; relating these processes to mutagen effects and plant cell responses; improving current systems for increased sensitivity, ease of detecting genetic and chromosome changes, recording of data (including automation), and for extending the range of genetic and chromosome end points; and designing and developing new systems with the aid of previous and current botanical and genetic knowledge. PMID:367768
Gibson, Carolyn; Matthews, Karen; Thurston, Rebecca
2014-01-01
Objective To examine the role of physical activity in menopausal hot flashes. Competing models conceptualize physical activity as a risk or protective factor for hot flashes. Few studies have examined this relationship prospectively using physiologic measures of hot flashes and physical activity. Design Over two 48 hour-periods, 51 participants wore a physiologic hot flash monitor and activity monitor, and reported their hot flashes in an electronic diary. Physiologic hot flashes, reported hot flashes and reported hot flashes without physiological corroboration were related to activity changes using hierarchical generalized linear modeling, adjusting for potential confounders. Setting Community. Patients Midlife women. Interventions None. Main Outcome Measures Physiologically-detected hot flashes and reported hot flashes with and without physiologic corroboration. Results Hot flash reports without physiologic corroboration were more likely after activity increases (OR 1.04, 95% CI: 1.00-1.10, p=.01), particularly among women with higher levels of depressive symptoms (interaction p=.02). No other types of hot flashes were related to physical activity. Conclusion Acute increases in physical activity were associated with increased reporting of hot flashes lacking physiologic corroboration, particularly among women with depressive symptoms. Clinicians should consider the role of symptom perception and reporting in relations between physical activity and hot flashes. PMID:24491454
Logan, Miranda V; Reardon, Kenneth F; Figueroa, Linda A; McLain, Jean E T; Ahmann, Dianne M
2005-11-01
Permeable reactive barrier (PRB) technology, in which sulfate-reducing bacteria (SRB) facilitate precipitation of metal sulfides, is a promising approach for remediation of sulfate- and metal-laden mine drainage. While PRBs are easily established, they often decline for reasons not well understood. SRB depend on or compete with multiple dynamic microbial populations within a PRB; as a result, performance depends on the changing PRB chemical composition and on succession and competition within the microbial community. To investigate these interactions, we constructed and monitored eight bench-scale PRBs to define periods of establishment, performance, and decline. We then conducted short-term batch studies, using substrate-supplemented column materials, on Days 0 (pre-establishment), 27 (establishment), 41 (performance), and 99 (decline) to reveal potential activities of cellulolytic bacteria, fermenters + anaerobic respirers, SRB, and methanogens. PRBs showed active sulfate reduction, with sulfate removal rates (SRR) of approximately 1-3 mol/m3/d, as well as effective removal of Zn2+. Potential activities of fermentative + anaerobic respiratory bacteria were initially high but diminished greatly during establishment and dropped further during performance and decline. In contrast, potential SRB activity rose during establishment, peaked during performance, and diminished as performance declined. Potential methanogen activity was low; in addition, SRB-methanogen substrate competition was shown not to limit SRB activity. Cellulolytic bacteria showed no substrate limitation at any time. However, fermenters experienced substrate limitation by Day 0, SRB by Day 27, and methanogens by Day 41, showing the dependence of each group on upstream populations to provide substrates. All potential activities, except methanogenesis, were ultimately limited by cellulose hydrolysis; in addition, all potential activities except methanogenesis declined substantially by Day 99, showing that long-term substrate deprivation strongly diminished the intrinsic capacity of the PRB community to perform.
Neural circuit activity in freely behaving zebrafish (Danio rerio).
Issa, Fadi A; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L; Papazian, Diane M
2011-03-15
Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions.
Neural circuit activity in freely behaving zebrafish (Danio rerio)
Issa, Fadi A.; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L.; Papazian, Diane M.
2011-01-01
Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions. PMID:21346131
Monitoring on Xi'an ground fissures deformation with TerraSAR-X data
Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Z.
2012-01-01
Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.
2006-01-01
One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
Ethical considerations in adherence research.
Patel, Nupur U; Moore, Blake A; Craver, Rebekah F; Feldman, Steven R
2016-01-01
Poor adherence to treatment is a common cause of medical treatment failure. Studying adherence is complicated by the potential for the study environment to impact adherence behavior. Studies performed without informing patients about adherence monitoring must balance the risks of deception against the potential benefits of the knowledge to be gained. Ethically monitoring a patient's adherence to a treatment plan without full disclosure of the monitoring plan requires protecting the patient's rights and upholding the fiduciary obligations of the investigator. Adherence monitoring can utilize different levels of deception varying from stealth monitoring, debriefing after the study while informing the subject that some information had been withheld in regard to the use of adherence monitoring (withholding), informed consent that discloses some form of adherence monitoring is being used and will be disclosed at the end of the study (authorized deception), and full disclosure. Different approaches offer different benefits and potential pitfalls. The approach used must balance the risk of nondisclosure against the potential for confounding the adherence monitoring data and the potential benefits that adherence monitoring data will have for the research subjects and/or other populations. This commentary aims to define various methods of adherence monitoring and to provide a discussion of the ethical considerations that accompany the use of each method and adherence monitoring in general as it is used in clinical research.
Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Vassal, Gilles; Farace, Françoise
2010-07-01
Antiangiogenic strategies are affording considerable interest and have become a major milestone in therapeutics of various adult cancers. However, progress has been slow to expand such therapies to patients with pediatric solid malignancies. This review discusses the principal pathways for angiogenesis in pediatric solid malignancies and summarizes recent preclinical and clinical data on antiangiogenesis strategies in these tumors. The reader will gain state-of-the-art knowledge in the current advancements of antiangiogenic therapies in pediatric clinical trials in regard to supporting preclinical data, and in the status of potential biomarkers investigated for monitoring angiogenesis inhibitors. Mechanisms of resistance to antiangiogenic therapy will also be discussed. Finally, we describe our experience in the monitoring of circulating endothelial cells and progenitors and their potential role as biomarkers of metastatic disease and resistance to antiangiogenic therapies. Evaluation and development of antiangiogenesis protocols are starting and represent a crucial step in the management of pediatric solid malignancies today. Emphasis should be placed on the development of proper surrogate markers to monitor antiangiogenic activity and on the possible long-term effects of these therapies in a pediatric population.
NASA Astrophysics Data System (ADS)
Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A.
2012-06-01
Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization techniques, which have potential in many environmental and hydrogeological applications. They provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of electrical current due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redox-active species. Under some conditions, this method can be used to visualize groundwater flow, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Time-lapse resistivity can be used to assess the permeability and dispersivity distributions and to monitor contaminant plumes. Induced polarization characterizes the ability of rocks to reversibly store electrical energy. It can be used to image permeability and to monitor chemistry of the pore water-minerals interface. These geophysical methods, reviewed in this paper, should always be used in concert with additional in-situ measurements (e.g. in-situ pumping tests, chemical measurements of the pore water), for instance through joint inversion schemes, which is an area of fertile on-going research.
Eldridge, Sara L. Caldwell; Wherry, Susan A.; Wood, Tamara M.
2014-01-01
Upper Klamath Lake in south-central Oregon has become increasingly eutrophic over the past century and now experiences seasonal cyanobacteria-dominated and potentially toxic phytoplankton blooms. Growth and decline of these blooms create poor water-quality conditions that can be detrimental to fish, including two resident endangered sucker species. Upper Klamath Lake is the primary water supply to agricultural areas within the upper Klamath Basin. Water from the lake is also used to generate power and to enhance and sustain downstream flows in the Klamath River. Water quality in Upper Klamath Lake has been monitored by the Klamath Tribes since the early 1990s and by the U.S. Geological Survey (USGS) since 2002. Management agencies and other stakeholders have determined that a re-evaluation of the goals for water-quality monitoring is warranted to assess whether current data-collection activities will continue to adequately provide data for researchers to address questions of interest and to facilitate future natural resource management decisions. The purpose of this study was to (1) compile an updated list of the goals and objectives for long-term water-quality monitoring in Upper Klamath Lake with input from upper Klamath Basin stakeholders, (2) assess the current water-quality monitoring programs in Upper Klamath Lake to determine whether existing data-collection strategies can fulfill the updated goals and objectives for monitoring, and (3) identify potential modifications to future monitoring plans in accordance with the updated monitoring objectives and improve stakeholder cooperation and data-collection efficiency. Data collected by the Klamath Tribes and the USGS were evaluated to determine whether consistent long-term trends in water-quality variables can be described by the dataset and whether the number and distribution of currently monitored sites captures the full range of environmental conditions and the multi-scale variability of water-quality parameters in the lake. Also, current monitoring strategies were scrutinized for unnecessary redundancy within the overall network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ying; Fu, Rong; Dickinson, Robert
This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. Inmore » contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. Here, we conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.« less
Sun, Ying; Fu, Rong; Dickinson, Robert; ...
2015-11-02
This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. Inmore » contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. Here, we conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.« less
Lanzén, Anders; Lekang, Katrine; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer
2016-09-01
As global exploitation of available resources increases, operations extend towards sensitive and previously protected ecosystems. It is important to monitor such areas in order to detect, understand and remediate environmental responses to stressors. The natural heterogeneity and complexity of communities means that accurate monitoring requires high resolution, both temporally and spatially, as well as more complete assessments of taxa. Increased resolution and taxonomic coverage is economically challenging using current microscopy-based monitoring practices. Alternatively, DNA sequencing-based methods have been suggested for cost-efficient monitoring, offering additional insights into ecosystem function and disturbance. Here, we applied DNA metabarcoding of eukaryotic communities in marine sediments, in areas of offshore drilling on the Norwegian continental shelf. Forty-five samples, collected from seven drilling sites in the Troll/Oseberg region, were assessed, using the small subunit ribosomal RNA gene as a taxonomic marker. In agreement with results based on classical morphology-based monitoring, we were able to identify changes in sediment communities surrounding oil platforms. In addition to overall changes in community structure, we identified several potential indicator taxa, responding to pollutants associated with drilling fluids. These included the metazoan orders Macrodasyida, Macrostomida and Ceriantharia, as well as several ciliates and other protist taxa, typically not targeted by environmental monitoring programmes. Analysis of a co-occurrence network to study the distribution of taxa across samples provided a framework for better understanding the impact of anthropogenic activities on the benthic food web, generating novel, testable hypotheses of trophic interactions structuring benthic communities. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Burke, Lora E.; Styn, Mindi A.; Glanz, Karen; Ewing, Linda J.; Elci, Okan U.; Conroy, Margaret B.; Sereika, Susan M.; Acharya, Sushama D.; Music, Edvin; Keating, Alison L.; Sevick, Mary Ann
2009-01-01
Background The primary form of treatment for obesity today is behavioral therapy. Self-monitoring diet and physical activity plays an important role in interventions targeting behavior and weight change. The SMART weight loss trial examined the impact of replacing the standard paper record used for self-monitoring with a personal digital assistant (PDA). This paper describes the design, methods, intervention, and baseline sample characteristics of the SMART trial. Methods The SMART trial used a 3-group design to determine the effects of different modes of self-monitoring on short- and long-term weight loss and on adherence to self-monitoring in a 24-month intervention. Participants were randomized to one of three conditions (1) use of a standard paper record (PR); (2) use of a PDA with dietary and physical activity software (PDA); or (3), use of a PDA with the same software plus a customized feedback program (PDA + FB). Results We screened 704 individuals and randomized 210. There were statistically but not clinically significant differences among the three cohorts in age, education, HDL cholesterol, blood glucose and systolic blood pressure. At 24 months, retention rate for the first of three cohorts was 90%. Conclusions To the best of our knowledge, the SMART trial is the first large study to compare different methods of self-monitoring in a behavioral weight loss intervention and to compare the use of PDAs to conventional paper records. This study has the potential to reveal significant details about self-monitoring patterns and whether technology can improve adherence to this vital intervention component. PMID:19665588
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehfeldt, Ken; Haight, Brian
Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are monitoredmore » to determine whether the URs remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Monitoring data will be used in the future, once multiple years of data are available, to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries calculated with the models are the primary basis of the UR boundaries. Six wells were sampled for water-quality monitoring in 2017. Contaminants of concern were detected only in the two source/plume wells already known to contain contamination as a result of a radionuclide migration experiment. The 86,000-picocuries-per-liter (pCi/L) tritium concentration in one of the wells is about 12 percent higher than measured in 2016 but is over an order of magnitude less than the peak value measured in the well in 1980. The concentration in the other source/plume well is lower than measured in 2016. The water-level monitoring network includes 16 wells. Depth to water measured in 2017 is generally consistent with recent measurements for most wells. Water-level declines differing from long-term trends were observed in four wells. Three of these (WW-4, WW-4A, and WW-5B) are water-supply wells that experienced increases in pumping during the year. No definitive cause for the sharp decline in the fourth well (ER-5-3-2) in 2016 is known as yet. Institutional control monitoring confirmed the URs are recorded in U.S. Department of Energy and U.S. Air Force land management systems, and that no activities within Frenchman Flat basin are occurring that could potentially affect the contaminant boundaries. Survey of groundwater resources in basins surrounding Frenchman Flat similarly identify no current or pending development that would indicate the need to increase monitoring activities or would otherwise cause concern for the closure decision. The URs continue to prevent exposure of the public, workers, and the environment to contaminants of concern by preventing use of potentially contaminated groundwater.« less
Increased Error-Related Negativity (ERN) in Childhood Anxiety Disorders: ERP and Source Localization
ERIC Educational Resources Information Center
Ladouceur, Cecile D.; Dahl, Ronald E.; Birmaher, Boris; Axelson, David A.; Ryan, Neal D.
2006-01-01
Background: In this study we used event-related potentials (ERPs) and source localization analyses to track the time course of neural activity underlying response monitoring in children diagnosed with an anxiety disorder compared to age-matched low-risk normal controls. Methods: High-density ERPs were examined following errors on a flanker task…
Neural Correlates of Encoding Predict Infants' Memory in the Paired-Comparison Procedure
ERIC Educational Resources Information Center
Snyder, Kelly A.
2010-01-01
The present study used event-related potentials (ERPs) to monitor infant brain activity during the initial encoding of a previously novel visual stimulus, and examined whether ERP measures of encoding predicted infants' subsequent performance on a visual memory task (i.e., the paired-comparison task). A late slow wave component of the ERP measured…
Remote sensing of volcanos and volcanic terrains
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.
1989-01-01
The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.
In the days following the collapse of the World Trade Center (WTC) towers on September 11, 2001 (9/11), the U.S. Environmental Protection Agency (EPA) initiated numerous air monitoring activities to better understand the ongoing impact of emissions from that disaster. Using these...
Neurofeedback Training for BCI Control
NASA Astrophysics Data System (ADS)
Neuper, Christa; Pfurtscheller, Gert
Brain-computer interface (BCI) systems detect changes in brain signals that reflect human intention, then translate these signals to control monitors or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neural activity into the required control signals. BCI research has focused heavily on developing powerful signal processing and machine learning techniques to accurately classify neural activity [2-4].
Wahl, Markus; Stöhr, Meike; Spillmann, Hannes; Jung, Thomas A; Gade, Lutz H
2007-04-07
Fourfold symmetric zinc-octaethylporphyrin (OEP) has been incorporated in the holes of the hexagonal molecular network generated by thermal dehydrogenation of 4,9-diaminoperylene-quinone-3,10-diimine (DPDI) on a Cu(111) surface and displayed hindered rotation; the reorganization between the potential minima, a rotation-libration, which is characterized by an activation energy of ED=0.17+/-0.03 eV, has been monitored in the STM tunnelling currents as a bi-state "switching".
Global thunderstorm activity research survey
NASA Technical Reports Server (NTRS)
Coroniti, S. C.
1982-01-01
The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.
2012-08-01
EOL ) notices or other indicators of potential discontinuance. DMSMS monitoring and surveil- lance should begin as early as possible during the...throughout the duration of the program, when either the program receives a new EOL notice di- rectly, or the output of the program’s predictive tools or...OEM DMSMS mitigation efforts underway • OCM part number • Sources of active manufacturing • Actual or projected EOL • Function (active versus
Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-01-01
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942
Long-term care services and support systems for older adults: The role of technology.
Czaja, Sara J
2016-01-01
The aging of the population, especially the increase in the "oldest old," is a remarkable achievement that presents both opportunities and challenges for policymakers, researchers, and society. Although many older adults enjoy relatively good health into their later years, many have one or more chronic conditions or diseases and need help with disease management activities or activities important to independent living. Technology is playing an increasingly important role in the health care arena and is becoming ubiquitous in health management activities. There are a variety of technology applications that can be used to enhance the mobility and quality of life of people who have limitations and help to foster the ability of those with chronic conditions to remain at home. Technology applications can also provide a central role in providing support to family caregivers in terms of enhancing access to information and community resources and connections to formal and informal support services. Monitoring technologies may also allow caregivers to check on the status or activities of their loved one while they are at work or at a distant location. Furthermore, telemedicine applications can aid the ability of care providers to monitor patients and deliver health services. The objective of this article is to highlight the potential role that technology can play in the provision of long-term support for older adults and their families. Challenges and barriers that currently limit the full potential of technology to be realized for these populations will also be discussed. Finally the role of psychological science toward maximizing the potential of technology applications in enhancing long term care and support services will be highlighted. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Simultaneous measurement of skin potential and conductance in electrodermal response monitoring
NASA Astrophysics Data System (ADS)
Jabbari, A.; Johnsen, B.; Grimnes, S.; Martinsen, Ø. G.
2010-04-01
Measurement of electrodermal activity (EDA) has been an important tool in psychophysiological research. The emotional sweat activity is very sensitive to psychological stimuli or conditions. The changes are easily detected by means of electrical measurements and since the sweat ducts are predominantly resistive, a low-frequency conductance measurement is appropriate for measurement of skin conductance in electrodermal response. The main purpose of this study was to develop a measuring system where DC current was replaced by a small AC current in a system so the DC potential and AC conductance could be measured simultaneously at the same skin site. A small, battery operated, PDA based instrument has been developed. The preliminary results of this ongoing study show that there is additional information in the DC potential channel and that different stimuli seem to produce slightly different response patterns.
Small Active Radiation Monitor
NASA Technical Reports Server (NTRS)
Badhwar, Gautam D.
2004-01-01
A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the number of particles passing through a unit area. Better still, the monitor can be used anywhere.
Detecting European Rabbit ( Oryctolagus cuniculus) Disease Outbreaks by Monitoring Digital Media.
Peacock, David E; Grillo, Tiggy L
2018-04-18
Digital media and digital search tools offer simple and effective means to monitor for pathogens and disease outbreaks in target organisms. Using tools such as Rich Site Summary feeds, and Google News and Google Scholar specific key word searches, international digital media were actively monitored from 2012 to 2016 for pathogens and disease outbreaks in the taxonomic order Lagomorpha, with a specific focus on the European rabbit ( Oryctolagus cuniculus). The primary objective was identifying pathogens for assessment as potential new biocontrol agents for Australia's pest populations of the European rabbit. A number of pathogens were detected in digital media reports. Additional benefits arose in the regular provision of case reports and research on myxomatosis and rabbit haemorrhagic disease virus that assisted with current research.
[Conservative calibration of a clearance monitor system for waste material from nuclear medicine].
Wanke, Carsten; Geworski, Lilli
2014-09-01
Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards. Copyright © 2014. Published by Elsevier GmbH.
Estimating occupancy probability of moose using hunter survey data
Crum, Nathan J.; Fuller, Angela K.; Sutherland, Christopher S.; Cooch, Evan G.; Hurst, Jeremy E.
2017-01-01
Monitoring rare species can be difficult, especially across large spatial extents, making conventional methods of population monitoring costly and logistically challenging. Citizen science has the potential to produce observational data across large areas that can be used to monitor wildlife distributions using occupancy models. We used citizen science (i.e., hunter surveys) to facilitate monitoring of moose (Alces alces) populations, an especially important endeavor because of their recent apparent declines in the northeastern and upper midwestern regions of the United States. To better understand patterns of occurrence of moose in New York, we used data collected through an annual survey of approximately 11,000 hunters between 2012 and 2014 that recorded detection–non-detection data of moose and other species. We estimated patterns of occurrence of moose in relation to land cover characteristics, climate effects, and interspecific interactions using occupancy models to analyze spatially referenced moose observations. Coniferous and deciduous forest with low prevalence of white-tailed deer (Odocoileus virginianus) had the highest probability of moose occurrence. This study highlights the potential of data collected using citizen science for understanding the spatial distribution of low-density species across large spatial extents and providing key information regarding where and when future research and management activities should be focused.
Geary, Phillip; Lucas, Steven
2018-02-03
Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.
GEP, A Geophysical and Environemental integrated payload for ExoMars
NASA Astrophysics Data System (ADS)
Spohn, T.; Lognonne, P.; Dehant, V.; Giardini, D.; Friis-Christensen, E.; Calcutt, S.; GEP Team
The goal of the GEP proposed onboard the ExoMars mission is to provide the first complete set of geophysical and environmental data of Mars. A full mass of 20 kg is envisaged, enabling a payload of about 5 kg serviced by common integrated subsystems. GEP will first monitor the present Martian climate and meteorology by providing a unique monitoring on potential hazards for future human exploration missions (radiations, atmospheric electricity, dust) and on atmospheric parameters (wind, pressure, temperature, humidity). Such a long term monitoring has never been performed since the Viking landers. GEP will then provide, for the first time, a complete geophysical monitoring of Mars. It will search for remote and regional seismic activity, will measure the heat flux of the planets, will monitor the rotation of Mars and will study the magnetic field at the surface and finally will constrain the subsurface in the vicinity of the ExoMars landing site and the deep interior. By providing these new geophysical data and associated constraints on the interior and on the actual geologic activity of the surface, GEP will provide a major step in our understanding of the geological evolution of the planet and the habitability conditions during the first billion years, enabling a full understanding of the surface and mineralogical observations performed by the Pasteur payload onboard the ExoMars rover and by the payload onboard the MSL NASA 2009 mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbrook, R.S.; Shugart, L.R.; Watson, A.P.
1992-09-01
A biomonitoring protocol, using blood cholinesterase (ChE) activity in livestock as a monitor of potential organophosphate nerve agent exposure during the planned destruction of US unitary chemical warfare agent stockpiles, is described. The experimental design included analysis of blood ChE activity in individual healthy sheep, horses, and dairy and beef cattle during a 10- to 12-month period. Castrated and sexually intact males, pregnant and lactating females, and adult and immature animals were examined through at least one reproductive cycle. The same animals were used throughout the period of observation and were not exposed to ChE-inhibiting organophosphate or carbamate compounds. Amore » framework for an effective biomonitoring protocol within a monitoring area includes establishing individual baseline blood ChE activity for a sentinel group of 6 animals on the bases of blood samples collected over a 6-month period, monthly collection of blood samples for ChE-activity determination during monitoring, and selection of adult animals as sentinels. Exposure to ChE-inhibiting compounds would be suspected when all blood ChE activity of all animals within the sentinel group are decreased greater than 20% from their own baseline value. Sentinel species selection is primarily a logistical and operational concern; however, sheep appear to be the species of choice because within-individual baseline ChE activity and among age and gender group ChE activity in sheep had the least variability, compared with data from other species. This protocol provides an effective and efficient means for detecting abnormal depressions in blood ChE activity in livestock and can serve as a valuable indicator of the extent of actual plume movement and/or deposition in the event of organophosphate nerve agent release.« less
Early Oxygen-Utilization and Brain Activity in Preterm Infants
de Vries, Linda S.; Groenendaal, Floris; Toet, Mona C.; Lemmers, Petra M. A.; Vosse van de, Renè E.; van Bel, Frank; Benders, Manon J. N. L.
2015-01-01
The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343
Applications of chemiluminescence to bacterial analysis
NASA Technical Reports Server (NTRS)
Searle, N. D.
1975-01-01
Luminol chemiluminescence method for detecting bacteria was based on microbial activation of the oxidation of the luminol monoanion by hydrogen peroxide. Elimination of the prior lysing step, previously used in the chemiluminescence technique, was shown to improve considerably the reproducibility and accuracy of the method in addition to simplifying it. An inexpensive, portable photomultiplier detector was used to measure the maximum light intensity produced when the sample is added to the reagent. Studies of cooling tower water show that the luminol chemiluminescence technique can be used to monitor changes in viable cell population both under normal conditions and during chlorine treatment. Good correlation between chemiluminescence and plate counts was also obtained in the analysis of process water used in paper mills. This method showed good potential for monitoring the viable bacteria populations in activated sludge used in waste treatment plants to digest organic matter.
2007-2008 Annual Progress Report for BPA Grant Exp Restore Walla Walla River Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, Bob
WWBWC and its partners have been working on a wide variety of conservation and aquifer recharge related activities including: monitoring groundwater and surface water conditions, creating a geospatial database for the Walla Walla River valley (project focal area), expanding aquifer recharge testing at the HBDIC site and conducting an extensive outreach/education program by which to share the information, ideas and potential solutions to our current water management issues in this basin. This report is an outline of those activities and is accompanied by individual program-component (attached as appendices) reports for the areas that BPA is assisting to fund these on-the-groundmore » projects along with the innovative research and monitoring being done to further aquifer recharge as a water management tool for the Pacific Northwest.« less
The US national antimicrobial resistance monitoring system.
Gilbert, Jeffrey M; White, David G; McDermott, Patrick F
2007-10-01
The use of antimicrobial agents in food animals can select for resistant bacterial pathogens that may be transmitted to humans via the commercial meat supply. In the USA, the FDA's Center for Veterinary Medicine regulatory duties require a determination that antimicrobial drugs are safe and effective for use in food animals. In addition, a qualitative assessment of risks to human health from antimicrobial resistance requires development. This risk assessment process is supported by data generated by the FDA's National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria. NARMS data on antimicrobial susceptibility among Salmonella, Campylobacter, Escherichia coli and Enterococcus is collected. Research activities defining the genetic bases of resistance helps to understand the potential public health risks posed by the spread of antimicrobial resistance from food animal antimicrobial use. These activities help insure that antimicrobials are used judiciously to promote human and animal health.
NASA Astrophysics Data System (ADS)
Nguyen, A. D.; Page, C.; Wilson, C. L.
2016-04-01
This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.
Gomez, E; Tuohy, K M; Gibson, G R; Klinder, A; Costabile, A
2010-06-01
This study was carried out to evaluate in vitro the fermentation properties and the potential prebiotic activity of Agave-fructans extracted from Agave tequilana (Predilife). Five different commercial prebiotics were compared using 24-h pH-controlled anaerobic batch cultures inoculated with human faecal slurries. Measurement of prebiotic efficacy was obtained by comparing bacterial changes, and the production of short-chain fatty acids (SCFA) was also determined. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridization. SCFA were measured by HPLC. Fermentation of the Agave fructans (Predilife) resulted in a large increase in numbers of bifidobacteria and lactobacilli. Under the in vitro conditions used, this study has shown the differential impact of Predilife on the microbial ecology of the human gut. This is the first study reporting of a potential prebiotic mode of activity for Agave fructans investigated which significantly increased populations of bifidobacteria and lactobacilli compared to cellulose used as a control.
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Becker, James M.
This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed atmore » a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600 plants/ha.« less
Leveraging hospital big data to monitor flu epidemics.
Bouzillé, Guillaume; Poirier, Canelle; Campillo-Gimenez, Boris; Aubert, Marie-Laure; Chabot, Mélanie; Chazard, Emmanuel; Lavenu, Audrey; Cuggia, Marc
2018-02-01
Influenza epidemics are a major public health concern and require a costly and time-consuming surveillance system at different geographical scales. The main challenge is being able to predict epidemics. Besides traditional surveillance systems, such as the French Sentinel network, several studies proposed prediction models based on internet-user activity. Here, we assessed the potential of hospital big data to monitor influenza epidemics. We used the clinical data warehouse of the Academic Hospital of Rennes (France) and then built different queries to retrieve relevant information from electronic health records to gather weekly influenza-like illness activity. We found that the query most highly correlated with Sentinel network estimates was based on emergency reports concerning discharged patients with a final diagnosis of influenza (Pearson's correlation coefficient (PCC) of 0.931). The other tested queries were based on structured data (ICD-10 codes of influenza in Diagnosis-related Groups, and influenza PCR tests) and performed best (PCC of 0.981 and 0.953, respectively) during the flu season 2014-15. This suggests that both ICD-10 codes and PCR results are associated with severe epidemics. Finally, our approach allowed us to obtain additional patients' characteristics, such as the sex ratio or age groups, comparable with those from the Sentinel network. Conclusions: Hospital big data seem to have a great potential for monitoring influenza epidemics in near real-time. Such a method could constitute a complementary tool to standard surveillance systems by providing additional characteristics on the concerned population or by providing information earlier. This system could also be easily extended to other diseases with possible activity changes. Additional work is needed to assess the real efficacy of predictive models based on hospital big data to predict flu epidemics. Copyright © 2017 Elsevier B.V. All rights reserved.
Active photo-thermal self-healing of shape memory polyurethanes
NASA Astrophysics Data System (ADS)
Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.
2017-05-01
Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.
2008-03-04
whereby the depletion of calcium from intracellular stores (e.g., via IP3 or ryanodine receptor activation ) signals the opening of calcium permeable TRP...system and allowed at least 30 min to acclimate. Baseline ECoG activity and behavior were monitored for at least 15 min. Following baseline recordings...used because the former does not cross the blood-brain-barrier and will not diminish seizure activity or interfere with central effects of the
Catalase-peroxidase activity has no influence on virulence in a murine model of tuberculosis.
Cardona, Pere Joan; Gordillo, Sergi; Amat, Isabel; Díaz, Jorge; Lonca, Joan; Vilaplana, Cristina; Pallarés, Angeles; Llatjós, Roger; Ariza, Aurelio; Ausina, Vicenç
2003-01-01
The capacity to generate a chronic and persistent infection in the experimental murine model of tuberculosis induced aerogenically by a low-dose inoculum was determined in eight isoniazid-resistant clinical strains of Mycobacterium tuberculosis showing different catalase-peroxidase (C-P) activities. Determination of bacillary concentration in lung and spleen and the percentage of pulmonary parenchyma occupied by granulomas were monitored. Data showed no relation between the lack of C-P activity and the ability to develop a persistent infection, highlighting the potential of C-P negative strains to spread through the community.
NASA Astrophysics Data System (ADS)
Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.
Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).
Monitoring Mount Baker Volcano
Malone, S.D.; Frank, D.
1976-01-01
Hisotrically active volcanoes in the conterminous United States are restricted to the Cascade Range and extend to the Cascade Range and extend from Mount Baker near the Canadian border to Lassen Peak in northern California. Since 1800 A.D, most eruptive activity has been on a relatively small scale and has not caused loss of life or significant property damage. However, future volcanism predictably will have more serious effects because of greatly increased use of land near volcanoes during the present century. (See "Appraising Volcanic Hazards of the Cascade Range of the Northwestern United States," Earthquake Inf. Bull., Sept.-Oct. 1974.) The recognition an impending eruption is highly important in order to minimize the potential hazard to people and property. Thus, a substantial increase in hydrothermal activity at Mount Baker in March 1975 ( see "Mount Baker Heating Up," July-Aug. 1975 issue) was regarded as a possible first signal that an eruption might occur, and an intensive monitoring program was undertaken.
Toxin detection using a tyrosinase-coupled oxygen electrode.
Smit, M H; Rechnitz, G A
1993-02-15
An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.
Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; ...
2016-03-04
Here, the capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li 1.03(Ni 0.5Co 0.2Mn 0.3) 0.97O 2–based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials aremore » used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a Li xSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0–4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.
1997-06-01
On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation ofmore » fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.« less
Ben Salem, Intidhar; Boussabbeh, Manel; Kantaoui, Hiba; Bacha, Hassen; Abid-Essefi, Salwa
2016-08-01
The protective effects of Crocin (CRO), a carotenoid with wide spectrum of pharmacological effects, against the cytotoxicity and the apoptosis produced by exposure to Dichlorvos (DDVP) in HCT116 cells were investigated in this work. The cytotoxicity was monitored by cell viability, ROS generation, antioxidant enzymes activities, malondialdehyde (MDA) production and DNA fragmentation. The apoptosis was assessed through the measurement of the mitochondrial transmembrane potential (ΔΨm) and caspases activation. The results indicated that pretreatment of HCT116 cells with CRO, 2h prior to DDVP exposure, significantly increased the survival of cells, inhibited the ROS generation, modulated the activities of catalase (CAT) and superoxide dismutase (SOD) and reduced the MDA level. The reduction in mitochondrial membrane potential, DNA fragmentation and caspases activation were also inhibited by CRO. These findings suggest that CRO can protect HCT116 cells from DDVP-induced oxidative stress and apoptosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity
NASA Technical Reports Server (NTRS)
Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.
2014-01-01
The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists' inputs. The software framework uses multiple source languages and is a general framework for combining inputs and incrementally submitting observation requests/reconfigurations, accounting for prior requests. The autonomous aspect of operations is unique, especially in the context of the wide range of inputs that includes manually inputted electronic reports (such as the Air Force Weather Advisories), automated satellite-based detection methods (such as MODVOLC and GOESVOLC), and in situ sensor networks.
Razjouyan, Javad; Grewal, Gurtej Singh; Rishel, Cindy; Parthasarathy, Sairam; Mohler, Jane; Najafi, Bijan
2017-07-01
Growing concern for falls in acute care settings could be addressed with objective evaluation of fall risk. The current proof-of-concept study evaluated the feasibility of using a chest-worn sensor during hospitalization to determine fall risk. Physical activity and heart rate variability (HRV) of 31 volunteers admitted to a 29-bed adult inpatient unit were recorded using a single chest-worn sensor. Sensor data during the first 24-hour recording were analyzed. Participants were stratified using the Hendrich II fall risk assessment into high and low fall risk groups. Univariate analysis revealed age, daytime activity, nighttime side lying posture, and HRV were significantly different between groups. Results suggest feasibility of wearable technology to consciously monitor physical activity, sleep postures, and HRV as potential markers of fall risk in the acute care setting. Further study is warranted to confirm the results and examine the efficacy of the proposed wearable technology to manage falls in hospitals. [Journal of Gerontological Nursing, 43(7), 53-62.]. Copyright 2017, SLACK Incorporated.
Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i
Patrick, Matthew R.; Swanson, Don; Orr, Tim R.
2016-01-01
Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.
Computer mouse movement patterns: A potential marker of mild cognitive impairment.
Seelye, Adriana; Hagler, Stuart; Mattek, Nora; Howieson, Diane B; Wild, Katherine; Dodge, Hiroko H; Kaye, Jeffrey A
2015-12-01
Subtle changes in cognitively demanding activities occur in MCI but are difficult to assess with conventional methods. In an exploratory study, we examined whether patterns of computer mouse movements obtained from routine home computer use discriminated between older adults with and without MCI. Participants were 42 cognitively intact and 20 older adults with MCI enrolled in a longitudinal study of in-home monitoring technologies. Mouse pointer movement variables were computed during one week of routine home computer use using algorithms that identified and characterized mouse movements within each computer use session. MCI was associated with making significantly fewer total mouse moves ( p <.01), and making mouse movements that were more variable, less efficient, and with longer pauses between movements ( p <.05). Mouse movement measures were significantly associated with several cognitive domains ( p 's<.01-.05). Remotely monitored computer mouse movement patterns are a potential early marker of real-world cognitive changes in MCI.
Mdege, Noreen Dadirai; Chevo, Tafadzwa; Toner, Paul
There is increasing recognition of the potential significant contribution that pharmacy personnel can make to improve the public's health. However, there is an evidence gap in developing countries on the public health role of pharmacy personnel. This study aimed to explore the current public health activities that pharmacy professionals in Zimbabwe are currently involved in, and the potential of expanding this role. The study utilized individual, face-to-face, semi-structured qualitative interviews with 9 key informants. The sample reflected the diversity of pharmacy practice groups and levels as well as professional experience, and included a representative from a patient group, and a non-pharmacist national level public health expert. Data collection and analysis was an iterative process informed both by the currently available literature on the topic, as well as themes emerging from the data. Framework analysis was utilized with two independent analyses performed. There was a general consensus among participants that pharmacy practice in Zimbabwe was mainly focused on curative services, with very limited involvement in public health oriented activities. The following were identified as pharmacists' current public health activities: supply chain management of pharmaceutical products, provision of medications and other pharmaceutical products to patients, therapy monitoring, identification and monitoring of chronic illnesses, information provision and training of pharmacists. Nevertheless, there were concerns regarding the quality of some of these services, and lack of consistency in provision across pharmacies. Other potential areas for pharmacists' public health practice were identified as emergency response, drug abuse, addressing social determinants of health particularly promoting healthy lifestyles, applied health research, counterfeit and substandard medicines, and advocacy. There is perceived potential for Zimbabwean pharmacists to become more involved in public health oriented services. However, concerns regarding the quality of services and lack of consistency in provision need to be addressed. Copyright © 2015 Elsevier Inc. All rights reserved.
The method of attachment influences accelerometer-based activity data in dogs.
Martin, Kyle W; Olsen, Anastasia M; Duncan, Colleen G; Duerr, Felix M
2017-02-10
Accelerometer-based activity monitoring is a promising new tool in veterinary medicine used to objectively assess activity levels in dogs. To date, it is unknown how device orientation, attachment method, and attachment of a leash to the collar holding an accelerometer affect canine activity data. It was our goal to evaluate whether attachment methods of accelerometers affect activity counts. Eight healthy, client-owned dogs were fitted with two identical neck collars to which two identical activity monitors were attached using six different methods of attachment. These methods of attachment evaluated the use of a protective case, positioning of the activity monitor and the tightness of attachment of the accelerometer. Lastly, the effect of leash attachment to the collar was evaluated. For trials where the effect of leash attachment to the collar was not being studied, the leash was attached to a harness. Activity data obtained from separate monitors within a given experiment were compared using Pearson correlation coefficients and across all experiments using the Kruskal-Wallis Test. There was excellent correlation and low variability between activity monitors on separate collars when the leash was attached to a harness, regardless of their relative positions. There was good correlation when activity monitors were placed on the same collar regardless of orientation. There were poor correlations between activity monitors in three experiments: when the leash was fastened to the collar that held an activity monitor, when one activity monitor was housed in the protective casing, and when one activity monitor was loosely zip-tied to the collar rather than threaded on using the provided metal loop. Follow-up, pair-wise comparisons identified the correlation associated with these three methods of attachment to be statistically different from the level of correlation when monitors were placed on separate collars. While accelerometer-based activity monitors are useful tools to objectively assess physical activity in dogs, care must be taken when choosing a method to attach the device. The attachment of the activity monitor to the collar should utilize a second, dedicated collar that is not used for leash attachment and the attachment method should remain consistent throughout a study period.
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.
2015-04-01
Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration. This has large ramifications for the restoration of aquatic ecosystems and spatial heterogeneity of fish assemblages all over the world.
Urban remote sensing applications: TIMS observations of the City of Scottsdale
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Melendrez, David E.; Anderson, Donald L.; Hamilton, Victoria E.; Wenrich, Melissa L.; Howard, Douglas
1995-01-01
A research program has been initiated between Arizona State University and the City of Scottsdale, Arizona to study the potential applications of TIMS (Thermal Infrared Multispectral Scanner) data for urban scene classification, desert environmental assessment, and change detection. This program is part of a long-term effort to integrate remote sensing observations into state and local planning activities to improve decision making and future planning. Specific test sites include a section of the downtown Scottsdale region that has been mapped in very high detail as part of a pilot program to develop an extensive GIS database. This area thus provides excellent time history of the evolution of the city infrastructure, such as the timing and composition of street repavement. A second area of study includes the McDowell intensive study by state and local agencies to assess potential sites for urban development as well as preservation. These activities are of particular relevance as the Phoenix metropolitan area undergoes major expansion into the surrounding desert areas. The objectives of this study in urban areas are aimed at determining potential applications of TIMS data for classifying and assessing land use and surface temperatures. Land use centers on surface impermeability studies for storm runoff assessment and pollution control. These studies focus on determining the areal abundance of urban vegetation and undeveloped soil. Highly experimental applications include assessment and monitoring of pavement condition. Temperature studies focus on determining swimming pool area and temperature for use in monitoring evaporating and urban water consumption. These activities are of particular relevance as the Phoenix metropolitan area undergoes major expansion into the surrounding desert area.
The validity of activity monitors for measuring sleep in elite athletes.
Sargent, Charli; Lastella, Michele; Halson, Shona L; Roach, Gregory D
2016-10-01
There is a growing interest in monitoring the sleep of elite athletes. Polysomnography is considered the gold standard for measuring sleep, however this technique is impractical if the aim is to collect data simultaneously with multiple athletes over consecutive nights. Activity monitors may be a suitable alternative for monitoring sleep, but these devices have not been validated against polysomnography in a population of elite athletes. Participants (n=16) were endurance-trained cyclists participating in a 6-week training camp. A total of 122 nights of sleep were recorded with polysomnography and activity monitors simultaneously. Agreement, sensitivity, and specificity were calculated from epoch-for-epoch comparisons of polysomnography and activity monitor data. Sleep variables derived from polysomnography and activity monitors were compared using paired t-tests. Activity monitor data were analysed using low, medium, and high sleep-wake thresholds. Epoch-for-epoch comparisons showed good agreement between activity monitors and polysomnography for each sleep-wake threshold (81-90%). Activity monitors were sensitive to sleep (81-92%), but specificity differed depending on the threshold applied (67-82%). Activity monitors underestimated sleep duration (18-90min) and overestimated wake duration (4-77min) depending on the threshold applied. Applying the correct sleep-wake threshold is important when using activity monitors to measure the sleep of elite athletes. For example, the default sleep-wake threshold (>40 activity counts=wake) underestimates sleep duration by ∼50min and overestimates wake duration by ∼40min. In contrast, sleep-wake thresholds that have a high sensitivity to sleep (>80 activity counts=wake) yield the best combination of agreement, sensitivity, and specificity. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Potential Applications of Smart Multifunctional Wearable Materials to Gerontology.
Armstrong, David G; Najafi, Bijan; Shahinpoor, Mohsen
2017-01-01
Smart multifunctional materials can play a constructive role in addressing some very important aging-related issues. Aging affects the ability of older adults to continue to live safely and economically in their own residences for as long as possible. Thus, there will be a greater need for preventive, acute, rehabilitative, and long-term health care services for older adults as well as a need for tools to enable them to function independently during daily activities. The objective of this paper is, thus, to present a comprehensive review of some potential smart materials and their areas of applications to gerontology. Thus, brief descriptions of various currently available multifunctional smart materials and their possible applications to aging-related problems are presented. It is concluded that some of the most important applications to geriatrics may be in various sensing scenarios to collect health-related feedback or information and provide personalized care. Further described are the applications of wearable technologies to aging-related needs, including devices for home rehabilitation, remote monitoring, social well-being, frailty monitoring, monitoring of diabetes and wound healing and fall detection or prediction. It is also concluded that wearable technologies, when combined with an appropriate application and with appropriate feedback, may help improve activities and functions of older patients with chronic diseases. Finally, it is noted that methods developed to measure what one collectively manages in this population may provide a foundation to establish new definitions of quality of life. © 2017 S. Karger AG, Basel.
A Social Domain Approach to Informant Discrepancies in Parental Solicitation and Family Rules.
Metzger, Aaron; Babskie, Elizabeth; Olson, Rebecca; Romm, Katelyn
2016-10-01
An extensive body of research has explored the effects of parental monitoring on adolescent outcomes, but studies consistently find substantial discrepancies between parent and adolescent reports of different monitoring behaviors. Little research has examined whether parents and adolescents are more or less discrepant when reporting on parents' rules or solicitation for different adolescent problem and health risk behaviors and few studies have explored potential explanatory variables to explicate individual variability in parent-adolescent discrepant reporting. To address this gap in the literature, the current study examined discrepancies in mother-adolescent reports of family rules and solicitation across five distinct adolescent behaviors: personal behaviors and four different risk behaviors (alcohol-related, cyber, over- and under-eating). Participants were 143 mother-adolescent dyads (Adolescent M age = 14.42, SD = 1.73, range = 12-18, 81 % white, 60 % female). Mean-level discrepancies between maternal and adolescent reports significantly differed by category of adolescent behavior and also varied as a function of reported parental monitoring behavior (rules vs. solicitation). Discrepancies in mother-adolescent reports of behavior-specific rules and solicitation were positively associated with discrepancies in mother and adolescent judgments of the harmfulness of the activities. The results demonstrate that discrepancies in mother-adolescent reports of family process differ by category of adolescent behavior and may be undergirded by differences in mother and adolescent informational assumptions about the potential harm involved with different activities.
AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities
NASA Astrophysics Data System (ADS)
Kogan, F.
From all natural disaster, drought is the least understandable and the most damaging environmental phenomenon. Although in pre-satellite era, climate data were used for drought monitoring, drought specifics created problems in early drought detection start/end, monitoring its expansion/contraction, intensity and area coverage and the most important, timely estimation of the impacts on the environment and socioeconomic activities. The latest prevented to take prompt measures in mitigating negative consequences of drought for the society. Advances in remote sensing of the past ten years, contributed to the development of comprehensive drought monitoring system and numerous applications, which helped to make decisions for monitoring the environment and predicting sustainable socioeconomic activities. This paper discusses satellite-based land-surface observing system, which provides wells of information used for monitoring such unusual natural disaster as drought. This system was developed from the observations of the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. The AVHRR data were packed into the Global Vegetation Index (GVI) product, which have served the global community since 1981. The GVI provided reflectances and indices (4 km spacial resolution) every seven days for each 16 km map cell between 75EN and 55ES covering all land ecosystems. The data includes raw and calibrated radiances in the visible, near infrared and infrared spectral bands, processed (with eliminated high frequency noise) radiances, normalized difference vegetation index (NDVI), 20-year climatology, vegetation condition indices and also products, such as vegetation health, drought, vegetation fraction, fire risk etc. In the past ten years, users around the world used this information addressing different issues of drought impacts on socioeconomic activities and responded positively to real time drought information place regularly on the following web site http://orbit-net.nesdis.noaa.gov/crad/sat/surf/vci/. Drought assessments were compared with ground observations in twenty two countries around the world and showed good results in early drought detection and monitoring its development and impacts on the environment and socioeconomic activities, for assessment of biomass/crop production losses and fire risk. In addition, the AVHRR-based products showed potential in monitoring mosquito-born epidemics, amount of water required for irrigation, and predicting ENSO impacts on productivity of land ecosystems. These applications were used in agriculture, forestry, weather models, climatology. This presentation will be illustrated with many examples of data applications and also with explanations of data structure and use.
Electromotive force measurements on cells involving beta-alumina solid electrolyte
NASA Technical Reports Server (NTRS)
Choudhury, N. S.
1973-01-01
Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.
Walsh, Daniel P.
2012-01-01
The purpose of this document is to provide wildlife management agencies with the foundation upon which they can build scientifically rigorous and cost-effective surveillance and monitoring programs for chronic wasting disease (CWD) or refine their existing programs. The first chapter provides an overview of potential demographic and spatial risk factors of susceptible wildlife populations that may be exploited for CWD surveillance and monitoring. The information contained in this chapter explores historic as well as recent developments in our understanding of CWD disease dynamics. It also contains many literature references for readers who may desire a more thorough review of the topics or CWD in general. The second chapter examines methods for enhancing efforts to detect CWD on the landscape where it is not presently known to exist and focuses on the efficiency and cost-effectiveness of the surveillance program. Specifically, it describes the means of exploiting current knowledge of demographic and spatial risk factors, as described in the first chapter, through a two-stage surveillance scheme that utilizes traditional design-based sampling approaches and novel statistical methods to incorporate information about the attributes of the landscape, environment, populations and individual animals into CWD surveillance activities. By accounting for these attributes, efficiencies can be gained and cost-savings can be realized. The final chapter is unique in relation to the first two chapters. Its focus is on designing programs to monitor CWD once it is discovered within a jurisdiction. Unlike the prior chapters that are more detailed or prescriptive, this chapter by design is considerably more general because providing comprehensive direction for creating monitoring programs for jurisdictions without consideration of their monitoring goals, sociopolitical constraints, or their biological systems, is not possible. Therefore, the authors draw upon their collective experiences implementing disease-monitoring programs to present the important questions to consider, potential tools, and various strategies for those wildlife management agencies endeavoring to create or maintain a CWD monitoring program. Its intent is to aid readers in creating efficient and cost-effective monitoring programs, while avoiding potential pitfalls. It is hoped that these three chapters will be useful tools for wildlife managers struggling to implement efficient and effective CWD disease management programs.
24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...
24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...
24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?
Code of Federal Regulations, 2014 CFR
2014-04-01
..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...
24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?
Code of Federal Regulations, 2012 CFR
2012-04-01
..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...
24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...
NASA Astrophysics Data System (ADS)
Thiebes, Benni; Glade, Thomas; Schweigl, Joachim; Jäger, Stefan; Canli, Ekrem
2014-05-01
Landslides represent significant hazards in the mountainous areas of Austria. The Regional Geological Surveys are responsible to inform and protect the population, and to mitigate damage to infrastructure. Efforts of the Regional Geological Survey of Lower Austria include detailed site investigations, the planning and installation of protective structures (e.g. rock fall nets) as well as preventive measures such as regional scale landslide susceptibility assessments. For potentially endangered areas, where protection works are not feasible or would simply be too costly, monitoring systems have been installed. However, these systems are dominantly not automatic and require regular field visits to take measurements. Therefore, it is difficult to establish any relation between initiating and controlling factors, thus to fully understand the underlying process mechanism which is essential for any early warning system. Consequently, the implementation of new state-of-the-art monitoring and early warning systems has been started. In this presentation, the design of four landslide monitoring and early warning systems is introduced. The investigated landslide process types include a deep-seated landslide, a rock fall site, a complex earth flow, and a debris flow catchment. The monitoring equipment was chosen depending on the landslide processes and their activity. It aims to allow for a detailed investigation of process mechanisms in relation to its triggers and for reliable prediction of future landslide activities. The deep-seated landslide will be investigated by manual and automatic inclinometers to get detailed insights into subsurface displacements. In addition, TDR sensors and a weather station will be employed to get a better understanding on the influence of rainfall on sub-surface hydrology. For the rockfall site, a wireless sensor network will be installed to get real-time information on acceleration and inclination of potentially unstable blocks. The movement of the earth flow site will be monitored by differential GPS to get high precision information on displacements of marked points. Photogrammtetry based on octocopter surveys will provide spatial information on movement patterns. A similar approach will be followed for the debris flow catchment. Here, the focus lies on a monitoring of the landslide failures in the source area which prepares the material for subsequent debris flow transport. In addition to the methods already mentioned, repeated terrestrial laserscanning campaigns will be used to monitor geomorphological changes at all sites. All important data, which can be single measurements, episodic or continuous monitoring data for a given point (e.g. rainfall, inclination) or of spatial character (e.g. LiDAR measurements), are collected and analysed on an external server. Automatic data analysis methods, such as progressive failure analysis, are carried out automatically based on field measurements. The data and results from all monitoring sites are visualised on a web-based platform which enables registered users to analyse the respective information in near-real-time. Moreover, thresholds can be determined which trigger automated warning messages to the involved scientists if thresholds are exceeded by field measurements. The described system will enable scientists and decision-makers to access the latest data from the monitoring systems. Automatic alarms are raised when thresholds are exceeded to inform them about potentially hazardous changes. Thereby, a more efficient hazard management and early warning can be achieved. Keywords: landslide, rockfall, debris flow, earth flow, monitoring, early warning system.
Bočková, Martina; Chládek, Jan; Jurák, Pavel; Halámek, Josef; Štillová, Klára; Baláž, Marek; Chrastina, Jan; Rektor, Ivan
2015-03-01
Cognitive adverse effects were reported after the deep brain stimulation (DBS) of the anterior nucleus of the thalamus (AN) in epilepsy. As the AN may have an influence on widespread neocortical networks, we hypothesized that the AN, in addition to its participation in memory processing, may also participate in cognitive activities linked with the frontal neocortical structures. The aim of this study was to investigate whether the AN might participate in complex motor-cognitive activities. Three pharmacoresistant epilepsy patients implanted with AN-DBS electrodes performed two tasks involving the writing of single letters: (1) copying letters from a monitor; and (2) writing of any letter other than that appearing on the monitor. The cognitive load of the second task was increased. The task-related oscillatory changes and evoked potentials were assessed. Local event-related alpha and beta desynchronization were more expressed during the second task while the lower gamma synchronization decreased. The local field event-related potentials were elicited by the two tasks without any specific differences. The AN participates in cognitive networks processing complex motor-cognitive tasks. Attention should be paid to executive functions in subjects undergoing AN-DBS.
Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A.; Campbell, Scott A.; McCurdy, Greg
The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Site Contamination Area (CA) as a result of storm runoff. This activity supports U.S. Department of Energy (DOE) Environmental Management Nevada Program (EM-NV) efforts to establish post-closure monitoring plans for the Smoky Site Soils Corrective Action Unit (CAU) 550. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause the movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transportedmore » radionuclide-contaminated soils. These data will facilitate the design of the appropriate post-closure monitoring program. In 2011, DRI installed a meteorological monitoring station on the west side of the Smoky Site CA and a hydrologic (runoff) monitoring station within the CA, near the east side. Air temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and soil water content are collected at the meteorological station. The maximum, minimum, and average or total values (as appropriate) for each of these parameters are recorded for each 10-minute interval. The maximum, minimum, and average water depth in the flume installed at the hydrology station are also recorded for every 10-minute interval. This report presents data collected from these stations during fiscal year (FY) 2017.« less
O’Donnell, Matthew Brook; Strecher, Victor J.; Falk, Emily B.
2016-01-01
Feelings can shape how people respond to persuasive messages. In health communication, adaptive affective responses to potentially threating messages constitute one key to intervention success. The current study tested dispositional mindfulness, characterized by awareness of the present moment, as a predictor of adaptive affective responses to potentially threatening health messages and desirable subsequent health outcomes. Both general and discrete negative affective states (i.e., shame) were examined in relation to mindfulness and intervention success. Individuals (n=67) who reported less than 195 weekly minutes of exercise were recruited. At baseline, participants’ dispositional mindfulness and exercise outcomes were assessed, including self-reported exercise motivation and physical activity. A week later, all participants were presented with potentially threatening and self-relevant health messages encouraging physical activity and discouraging sedentary lifestyle, and their subsequent affective response and exercise motivation were assessed. Approximately one month later, changes in exercise motivation and physical activity were assessed again. In addition, participants’ level of daily physical activity was monitored by a wrist worn accelerometer throughout the entire duration of the study. Higher dispositional mindfulness predicted greater increases in exercise motivation one month after the intervention. Importantly, this effect was fully mediated by lower negative affect and shame specifically, in response to potentially threatening health messages among highly mindful individuals. Baseline mindfulness was also associated with increased self-reported vigorous activity, but not with daily physical activity as assessed by accelerometers. These findings suggest potential benefits of considering mindfulness as an active individual difference variable in theories of affective processing and health communication. PMID:28344683
Kang, Yoona; O'Donnell, Matthew Brook; Strecher, Victor J; Falk, Emily B
2017-04-01
Feelings can shape how people respond to persuasive messages. In health communication, adaptive affective responses to potentially threating messages constitute one key to intervention success. The current study tested dispositional mindfulness, characterized by awareness of the present moment, as a predictor of adaptive affective responses to potentially threatening health messages and desirable subsequent health outcomes. Both general and discrete negative affective states (i.e., shame) were examined in relation to mindfulness and intervention success. Individuals (n=67) who reported less than 195 weekly minutes of exercise were recruited. At baseline, participants' dispositional mindfulness and exercise outcomes were assessed, including self-reported exercise motivation and physical activity. A week later, all participants were presented with potentially threatening and self-relevant health messages encouraging physical activity and discouraging sedentary lifestyle, and their subsequent affective response and exercise motivation were assessed. Approximately one month later, changes in exercise motivation and physical activity were assessed again. In addition, participants' level of daily physical activity was monitored by a wrist worn accelerometer throughout the entire duration of the study. Higher dispositional mindfulness predicted greater increases in exercise motivation one month after the intervention. Importantly, this effect was fully mediated by lower negative affect and shame specifically, in response to potentially threatening health messages among highly mindful individuals. Baseline mindfulness was also associated with increased self-reported vigorous activity, but not with daily physical activity as assessed by accelerometers. These findings suggest potential benefits of considering mindfulness as an active individual difference variable in theories of affective processing and health communication.
40 CFR 63.7535 - Is there a minimum amount of monitoring data I must obtain?
Code of Federal Regulations, 2014 CFR
2014-07-01
...-control periods, or required monitoring system quality assurance or control activities in data averages... required monitoring system quality assurance or quality control activities (including, as applicable... control activities. You must calculate monitoring results using all other monitoring data collected while...
40 CFR 63.7535 - Is there a minimum amount of monitoring data I must obtain?
Code of Federal Regulations, 2013 CFR
2013-07-01
...-control periods, or required monitoring system quality assurance or control activities in data averages... required monitoring system quality assurance or quality control activities (including, as applicable... control activities. You must calculate monitoring results using all other monitoring data collected while...
Quantifying the multiple, environmental benefits of reintroducing the Eurasian Beaver
NASA Astrophysics Data System (ADS)
Brazier, Richard; Puttock, Alan; Graham, Hugh; Anderson, Karen; Cunliffe, Andrew; Elliott, Mark
2016-04-01
Beavers are ecological engineers with an ability to modify the structure and flow of fluvial systems and create complex wetland environments with dams, ponds and canals. Consequently, beaver activity has potential for river restoration, management and the provision of multiple environmental ecosystem services including biodiversity, flood risk mitigation, water quality and sustainable drinking water provision. With the current debate surrounding the reintroduction of beavers into the United Kingdom, it is critical to monitor the impact of beavers upon the environment. We have developed and implemented a monitoring strategy to quantify the impact of reintroducing the Eurasian Beaver on multiple environmental ecosystem services and river systems at a range of scales. First, the experimental design and preliminary results will be presented from the Mid-Devon Beaver Trial, where a family of beavers has been introduced to a 3 ha enclosure situated upon a first order tributary of the River Tamar. The site was instrumented to monitor the flow rate and quality of water entering and leaving the site. Additionally, the impacts of beavers upon riparian vegetation structure, water/carbon storage were investigated. Preliminary results indicate that beaver activity, particularly the building of ponds and dams, increases water storage within the landscape and moderates the river response to rainfall. Baseflow is enhanced during dry periods and storm flow is attenuated, potentially reducing the risk of flooding downstream. Initial analysis of water quality indicates that water entering the site (running off intensively managed grasslands upslope), has higher suspended sediment loads and nitrate levels, than that leaving the site, after moving through the series of beaver ponds. These results suggest beaver activity may also act as a means by which the negative impact of diffuse water pollution from agriculture can be mitigated thus providing cleaner water in rivers downstream. Secondly, the River Otter Beaver Trial will be discussed. In 2015 Natural England granted a five year licence to monitor beavers living wild upon the River Otter, Devon. The River Otter, ca. 280 km2, is a dynamic, spatey system with downstream areas exhibiting poor ecological status, primarily due to sediment and phosphorus loading, which both impact on fish numbers. The impacts of Eurasian Beaver upon English river systems are currently poorly understood, with the outcome of this pilot study having significant implications for river restoration and management. This project, the first of its kind in England, is monitoring the impacts of beavers upon the River Otter catchment with three main scientific objectives: (1) Characterise the existing structure of the River Otter riparian zone and quantify any changes during the 2015-2019 period; (2) Quantify the impact of beaver activity on water flow at a range of scales in the Otter catchment; (3) Evaluate the impact of beaver activity on water quality. Finally, lessons learnt from these monitoring programs will be discussed in light of the need for more natural solutions to flood and diffuse pollution management. We conclude that whilst our work demonstrates multiple positive benefits of Beaver reintroduction, considerably more, scale-appropriate monitoring is required before such results could be extrapolated to landscape scales.
Leveraging technology: creating and sustaining changes for health.
Teyhen, Deydre S; Aldag, Matt; Edinborough, Elton; Ghannadian, Jason D; Haught, Andrea; Kinn, Julie; Kunkler, Kevin J; Levine, Betty; McClain, James; Neal, David; Stewart, Tiffany; Thorndike, Frances P; Trabosh, Valerie; Wesensten, Nancy; Parramore, David J
2014-09-01
The rapid growth and evolution of health-related technology capabilities are driving an established presence in the marketplace and are opening up tremendous potential to minimize and/or mitigate barriers associated with achieving optimal health, performance, and readiness. This article summarizes technology-based strategies that promote healthy habits related to physical activity, nutrition, and sleep. The Telemedicine and Advanced Technology Research Center convened a workshop titled "Leveraging Technology: Creating & Sustaining Changes for Health" (May 29-30, 2013, Fort Detrick, MD). Participants included experts from academia (n=3), government (n=33), and industry (n=16). A modified Delphi method was used to establish expert consensus in six topic areas: (1) physical activity, (2) nutrition, (3) sleep, (4) incentives for behavior change, (5) usability/interoperability, and (6) mobile health/open platform. Overall, 162 technology features, constructs, and best practices were reviewed and prioritized for physical activity monitors (n=29), nutrition monitors (n=35), sleep monitors (n=24), incentives for change (n=36), usability and interoperability (n=25), and open data (n=13). Leading practices, gaps, and research needs for technology-based strategies were identified and prioritized. This information can be used to provide a research and development road map for (1) leveraging technology to minimize barriers to enhancing health and (2) facilitating evidence-based techniques to create and sustain healthy behaviors.
Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaulding, Scott
1993-05-01
This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring andmore » adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.« less
Acoustic monitoring of coastal dolphins and their response to naval mine neutralization exercises
Howe, Marian; Zang, Eden; McElligott, Megan; Engelhaupt, Amy; Munger, Lisa
2017-01-01
To investigate the potential impacts of naval mine neutralization exercises (MINEX) on odontocete cetaceans, a long-term passive acoustic monitoring study was conducted at a US Navy training range near Virginia Beach, USA. Bottom-moored acoustic recorders were deployed in 2012–2016 near the epicentre of MINEX training activity and were refurbished every 2–4 months. Recordings were analysed for the daily presence/absence of dolphins, and dolphin acoustic activity was quantified in detail for the hours and days before and after 31 MINEX training events. Dolphins occurred in the area year-round, but there was clear seasonal variability, with lower presence during winter months. Dolphins exhibited a behavioural response to underwater detonations. Dolphin acoustic activity near the training location was lower during the hours and days following detonations, suggesting that animals left the area and/or reduced their signalling. Concurrent acoustic monitoring farther away from the training area suggested that the radius of response was between 3 and 6 km. A generalized additive model indicated that the predictors that explained the greatest amount of deviance in the data were the day relative to the training event, the hour of the day and circumstances specific to each training event. PMID:29308219
Lopalco, Pier Luigi; DeStefano, Frank
2015-01-01
Vaccines have led to significant reductions in morbidity and saved countless lives from many infectious diseases and are one of the most important public health successes of the modern era. Both vaccines' effectiveness and safety are keys for the success of immunisation programmes. The role of post-licensure surveillance has become increasingly recognised by regulatory authorities in the overall vaccine development process. Safety, purity, and effectiveness of vaccines are carefully assessed before licensure, but some safety and effectiveness aspects need continuing monitoring after licensure; Post-marketing activities are a necessary complement to pre-licensure activities for monitoring vaccine quality and to inform public health programmes. In the recent past, the availability of large databases together with data-mining and cross-linkage techniques have significantly improved the potentialities of post-licensure surveillance. The scope of this review is to present challenges and opportunities offered by vaccine post-licensure surveillance. While pre-licensure activities form the foundation for the development of effective and safe vaccines, post-licensure monitoring and assessment, are necessary to assure that vaccines are effective and safe when translated in real world settings. Strong partnerships and collaboration at an international level between different stakeholders is necessary for finding and optimally allocating resources and establishing robust post-licensure processes. PMID:25444788
Geoelectrical Tomography for landslide monitoring: state-of-the-art and future challenges.
NASA Astrophysics Data System (ADS)
Lapenna, V.; Perrone, A.; Piscitelli, S.
2011-12-01
Recently, novel algorithms for tomographic data inversion, robust models for describing the hydrogeophysical processes and new sensor networks for the field data acquisition have rapidly transformed the geoelectrical methods in a powerful and cost-effective tool for geo-hazard monitoring. These technological and methodological improvements disclose the way for a wide spectra of interesting and challenging applications in geo-hazards monitoring: reconstruction of landslide geometry; identification of fluid and gas uprising in volcanic areas; electrical imaging of seismic faults etc.. We briefly resume the current state-of-the-art of the geoelectrical methods in landslide monitoring and introduce new and emerging applications of the geoelectrical tomographic methods. An overview of the more interesting results obtained in different areas of Italian territory affected by wide and diffuse hydrogeological instability phenomena will be presented and discussed. We will focus the attention to some recent results obtained in the frame of national and international projects (Morfeo, Eurorisk/Preview, DORIS). One of the key challenges for the future will be the integration of active (Resistivity) and passive (Self-Potential) measurements for obtaining 2D, 3D and 4D (time-lapse) electrical tomographies able to follow the spatial and temporal dynamics of electrical parameters (i.e. resistivity, self-potential) inside the landslide body. The resistivity imaging can be applied for illuminating the sliding surfaces and for mapping the time-dependent changes of water content in vadose zones, while the Self Potential imaging could give a significant contribute for delineating the groundwater circulation patterns and to the early identification of triggering factors.
Mairs, Lucinda; Mullan, Barbara
2015-10-01
This study seeks to investigate and compare the efficacy of self-monitoring and implementation intentions-two post-intentional behaviour change techniques-for improving sleep hygiene behaviours and sleep outcomes in university students. Seventy-two undergraduate students completed baseline measures of four sleep hygiene behaviours (making the sleep environment restful, avoiding going to bed hungry/thirsty, avoiding stress/anxiety-provoking activities near bed time and avoiding caffeine in the evening), as well as the Pittsburgh sleep quality index (PSQI) and the insomnia severity index (ISI). Participants were randomly assigned to an active-control diary-keeping, self-monitoring condition or completed implementation intentions for each behaviour. Post-intervention measurement was completed 2 weeks after baseline. Repeated measures analyses of variance found significant main effects of time for improvements in making the sleep environment restful and avoiding going to bed hungry or thirsty, as well as PSQI and ISI scores. Non-significant interactions suggested no group differences on any variable, except for increasing avoidance of stress and anxiety-provoking activities before bed time, for which only implementation intentions were found to be effective. Attrition was higher amongst self-monitoring participants. Both self-monitoring and implementation intentions appear to be promising behaviour change techniques for improving sleep hygiene and sleep. Future research should examine the acceptability of the two behaviour change techniques and the relationship with differential attrition, as well as effect size variations according to behaviour and technique. Researchers should investigate potential additive or interactive effects of the techniques, as they could be utilised in a complementary manner to target different processes in effecting behaviour change.
Hanford Site near-facility environmental monitoring annual report, calendar year 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, C.J.
1998-07-28
Near-facility environmental monitoring provides a means to measure the impacts of operations, waste management, and remediation activities on the environment adjacent to facilities and ensure compliance with local, state, and federal environmental regulations. Specifically, near-facility environmental monitoring monitors new and existing sites, processes, and facilities for potential impacts and releases; fugitive emissions and diffuse sources associated with contaminated areas, facilities (both active and those undergoing surveillance and maintenance), and environmental restoration activities. External radiation, ambient air particulates, ground and surface water, soil, sediment, and biota (plants and animals) are sampled or monitored. Parameters include, as appropriate, radionuclides; radiation fields; chemicalmore » or physical constituents, such as nitrates; pH; and water temperature. All ambient air results were below the US Department of Energy (DOE) Derived Concentration Guides (DCGs). Groundwater concentrations at the two wells at the 107-N Facility were below both the DOE DCG and US Environmental Protection Agency Interim Drinking Water Standards for gamma emitting radionuclides. Soil and vegetation results were generally within historic ranges and mostly below the Accessible Soil Concentration limits (included in HNF-PRO-454, Inactive Waste Sites) with the exception of one soil sampling location at 1 00 N Area. External radiation fields continued an overall downward trend. Surface water disposal unit samples (water, sediment, and aquatic vegetation) showed radionuclide concentrations below their respective DCG and Accessible Soil Concentration limits. The 100 N Area Columbia river shoreline springs results were below DCGs with the exception of one Sr concentration. More than 4,600 ha (11,300 acres) of radiologically controlled areas were surveyed in 1997, approximately the same as in 1996.« less
Gwynn, Justin P; Heldal, Hilde Elise; Flo, Janita K; Sværen, Ingrid; Gäfvert, Torbjörn; Haanes, Hallvard; Føyn, Lars; Rudjord, Anne Liv
2018-02-01
Norway has monitored the marine environment around the sunken Russian nuclear submarine Komsomolets since 1990. This study presents an overview of 25 years of Norwegian monitoring data (1990-2015). Komsomolets sank in 1989 at a depth of 1680 m in the Norwegian Sea while carrying two nuclear torpedoes in its armament. Subsequent Soviet and Russian expeditions to Komsomolets have shown that releases from the reactor have occurred and that the submarine has suffered considerable damage to its hulls. Norwegian monitoring detected 134 Cs in surface sediments around Komsomolets in 1993 and 1994 and elevated activity concentrations of 137 Cs in bottom seawater between 1991 and 1993. Since then and up to 2015, no increased activity concentrations of radionuclides above values typical for the Norwegian Sea have been observed in any environmental sample collected by Norwegian monitoring. In 2013 and 2015, Norwegian monitoring was carried out using an acoustic transponder on the sampling gear that allowed samples to be collected at precise locations, ∼20 m from the hull of Komsomolets. The observed 238 Pu/ 239,240 Pu activity ratios and 240 Pu/ 239 Pu atom ratios in surface sediments sampled close to Komsomolets in 2013 did not indicate any releases of Pu isotopes from reactor or the torpedo warheads. Rather, these values probably reflect the overprinting of global fallout ratios with fluxes of these Pu isotopes from long-range transport of authorised discharges from nuclear reprocessing facilities in Northern Europe. However, due to the depth at which Komsomolets lies, the collection of seawater and sediment samples in the immediate area around the submarine using traditional sampling techniques from surface vessels is not possible, even with the use of acoustic transponders. Further monitoring is required in order to have a clear understanding of the current status of Komsomolets as a potential source of radioactive contamination to the Norwegian marine environment. Such monitoring should involve the use of ROVs or submersibles in order to obtain samples next to and within the different compartments of the submarine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tullo, E; Fontana, I; Gottardo, D; Sloth, K H; Guarino, M
2016-09-01
Current farm sizes do not allow the precise identification and tracking of individual cows and their health and behavioral records. Currently, the application of information technology within intensive dairy farming takes a key role in proper routine management to improve animal welfare and to enhance the comfort of dairy cows. An existing application based on information technology is represented by the GEA CowView system (GEA Farm Technologies, Bönen, Germany). This system is able to detect and monitor animal behavioral activities based on positioning, through the creation of a virtual map of the barn that outlines all the areas where cows have access. The aim of this study was to validate the accuracy, sensitivity, and specificity of data provided by the CowView system. The validation was performed by comparing data automatically obtained from the CowView system with those obtained by a manual labeling procedure performed on video recordings. Data used for the comparisons were represented by the zone-related activities performed by the selected dairy cows and were classified into 2 categories: activity and localization. The duration in seconds of each of the activities/localizations detected both with the manual labeling and with the automated system were used to evaluate the correlation coefficients among data; and subsequently the accuracy, sensitivity, specificity, and positive and negative predictive values of the automated monitoring system were calculated. The results of this validation study showed that the CowView automated monitoring system is able to identify the cow localization/position (alley, trough, cubicles) with high reliability in relation to the zone-related activities performed by dairy cows (accuracy higher than 95%). The results obtained support the CowView system as an innovative potential solution for the easier management of dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Parker, Tony J.; Sampson, Dayle L.; Broszczak, Daniel; Chng, Yee L.; Carter, Shea L.; Leavesley, David I.; Parker, Anthony W.; Upton, Zee
2012-01-01
Biomarker analysis has been implemented in sports research in an attempt to monitor the effects of exertion and fatigue in athletes. This study proposed that while such biomarkers may be useful for monitoring injury risk in workers, proteomic approaches might also be utilised to identify novel exertion or injury markers. We found that urinary urea and cortisol levels were significantly elevated in mining workers following a 12 hour overnight shift. These levels failed to return to baseline over 24 h in the more active maintenance crew compared to truck drivers (operators) suggesting a lack of recovery between shifts. Use of a SELDI-TOF MS approach to detect novel exertion or injury markers revealed a spectral feature which was associated with workers in both work categories who were engaged in higher levels of physical activity. This feature was identified as the LG3 peptide, a C-terminal fragment of the anti-angiogenic/anti-tumourigenic protein endorepellin. This finding suggests that urinary LG3 peptide may be a biomarker of physical activity. It is also possible that the activity mediated release of LG3/endorepellin into the circulation may represent a biological mechanism for the known inverse association between physical activity and cancer risk/survival. PMID:22457785
Parker, Tony J; Sampson, Dayle L; Broszczak, Daniel; Chng, Yee L; Carter, Shea L; Leavesley, David I; Parker, Anthony W; Upton, Zee
2012-01-01
Biomarker analysis has been implemented in sports research in an attempt to monitor the effects of exertion and fatigue in athletes. This study proposed that while such biomarkers may be useful for monitoring injury risk in workers, proteomic approaches might also be utilised to identify novel exertion or injury markers. We found that urinary urea and cortisol levels were significantly elevated in mining workers following a 12 hour overnight shift. These levels failed to return to baseline over 24 h in the more active maintenance crew compared to truck drivers (operators) suggesting a lack of recovery between shifts. Use of a SELDI-TOF MS approach to detect novel exertion or injury markers revealed a spectral feature which was associated with workers in both work categories who were engaged in higher levels of physical activity. This feature was identified as the LG3 peptide, a C-terminal fragment of the anti-angiogenic/anti-tumourigenic protein endorepellin. This finding suggests that urinary LG3 peptide may be a biomarker of physical activity. It is also possible that the activity mediated release of LG3/endorepellin into the circulation may represent a biological mechanism for the known inverse association between physical activity and cancer risk/survival.
The Effect of Simulated Flash-Heat Pasteurization on Immune Components of Human Milk.
Daniels, Brodie; Schmidt, Stefan; King, Tracy; Israel-Ballard, Kiersten; Amundson Mansen, Kimberly; Coutsoudis, Anna
2017-02-22
A pasteurization temperature monitoring system has been designed using FoneAstra, a cellphone-based networked sensing system, to monitor simulated flash-heat (FH) pasteurization. This study compared the effect of the FoneAstra FH (F-FH) method with the Sterifeed Holder method currently used by human milk banks on human milk immune components (immunoglobulin A (IgA), lactoferrin activity, lysozyme activity, interleukin (IL)-8 and IL-10). Donor milk samples ( N = 50) were obtained from a human milk bank, and pasteurized. Concentrations of IgA, IL-8, IL-10, lysozyme activity and lactoferrin activity were compared to their controls using the Student's t -test. Both methods demonstrated no destruction of interleukins. While the Holder method retained all lysozyme activity, the F-FH method only retained 78.4% activity ( p < 0.0001), and both methods showed a decrease in lactoferrin activity (71.1% Holder vs. 38.6% F-FH; p < 0.0001) and a decrease in the retention of total IgA (78.9% Holder vs. 25.2% F-FH; p < 0.0001). Despite increased destruction of immune components compared to Holder pasteurization, the benefits of F-FH in terms of its low cost, feasibility, safety and retention of immune components make it a valuable resource in low-income countries for pasteurizing human milk, potentially saving infants' lives.
DS Sentry: an acquisition ASIC for smart, micro-power sensing applications
NASA Astrophysics Data System (ADS)
Liobe, John; Fiscella, Mark; Moule, Eric; Balon, Mark; Bocko, Mark; Ignjatovic, Zeljko
2011-06-01
Unattended ground monitoring that combines seismic and acoustic information can be a highly valuable tool in intelligence gathering; however there are several prerequisites for this approach to be viable. The first is high sensitivity as well as the ability to discriminate real threats from noise and other spurious signals. By combining ground sensing with acoustic and image monitoring this requirement may be achieved. Moreover, the DS Sentry®provides innate spurious signal rejection by the "active-filtering" technique employed as well as embedding some basic statistical analysis. Another primary requirement is spatial and temporal coverage. The ideal is uninterrupted, long-term monitoring of an area. Therefore, sensors should be densely deployed and consume very little power. Furthermore, sensors must be inexpensive and easily deployed to allow dense placements in critical areas. The ADVIS DS Sentry®, which is a fully-custom integrated circuit that enables smart, micro-power monitoring of dynamic signals, is the foundation of the proposed system. The core premise behind this technology is the use of an ultra-low power front-end for active monitoring of dynamic signals in conjunction with a highresolution, Σ Δ-based analog-to-digital converter, which utilizes a novel noise rejection technique and is only employed when a potential threat has been detected. The DS Sentry® can be integrated with seismic accelerometers and microphones and user-programmed to continuously monitor for signals with specific signatures such as impacts, footsteps, excavation noise, vehicle-induced ground vibrations, or speech, while consuming only microwatts of power. This will enable up to several years of continuous monitoring on a single small battery while concurrently mitigating false threats.
Axillary nerve monitoring during arthroscopic shoulder stabilization.
Esmail, Adil N; Getz, Charles L; Schwartz, Daniel M; Wierzbowski, Lawrence; Ramsey, Matthew L; Williams, Gerald R
2005-06-01
This study evaluated the ability of a novel intraoperative neurophysiologic monitoring method used to locate the axillary nerve, predict relative capsule thickness, and identify impending injury to the axillary nerve during arthroscopic thermal capsulorrhaphy of the shoulder. Prospective cohort study. Twenty consecutive patients with glenohumeral instability were monitored prospectively during arthroscopic shoulder surgery. Axillary nerve mapping and relative capsule thickness estimates were recorded before the stabilization portion of the procedure. During labral repair and/or thermal capsulorrhaphy, continuous and spontaneous electromyography recorded nerve activity. In addition, trans-spinal motor-evoked potentials of the fourth and fifth cervical roots and brachial plexus electrical stimulation, provided real-time information about nerve integrity. Axillary nerve mapping and relative capsule thickness were recorded in all patients. Continuous axillary nerve monitoring was successfully performed in all patients. Eleven of the 20 patients underwent thermal capsulorrhaphy alone or in combination with arthroscopic labral repair. Nine patients underwent arthroscopic labral repair alone. In 4 of the 11 patients who underwent thermal capsulorrhaphy, excessive spontaneous neurotonic electromyographic activity was noted, thereby altering the pattern of heat application by the surgeon. In 1 of these 4 patients, a small increase in the motor latency was noted after the procedure but no clinical deficit was observed. There were no neuromonitoring or clinical neurologic changes observed in the labral repair group without thermal application. At last follow-up, no patient in either group had any clinical evidence of nerve injury or complications from neurophysiologic monitoring. We successfully evaluated the use of intraoperative nerve monitoring to identify axillary nerve position, capsule thickness, and provide real-time identification of impending nerve injury and function during shoulder thermal capsulorrhaphy. The use of intraoperative nerve monitoring altered the heat application technique in 4 of 11 patients and may have prevented nerve injury. Level II, prospective cohort study.
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
21 CFR 884.2730 - Home uterine activity monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...
Jridi, Mourad; Lassoued, Imen; Nasri, Rim; Ayadi, Mohamed Ali; Nasri, Moncef
2014-01-01
Composition, functional properties, and in vitro antioxidant activities of gelatin hydrolysates prepared from cuttlefish skin were investigated. Cuttlefish skin gelatin hydrolysates (CSGHs) were obtained by treatment with crude enzyme preparations from Bacillus licheniformis NH1, Bacillus mojavensis A21, Bacillus subtilis A26, and commercial alcalase. All CSGHs had high protein contents, 74.3–78.3%, and showed excellent solubility (over 90%). CSGH obtained by alcalase demonstrated high antioxidant activities monitored by β-carotene bleaching, DPPH radical scavenging, lipid peroxidation inhibition, and reducing power activity. Its antioxidant activity remained stable or increased in a wide range of pH (1–9), during heating treatment (100°C for 240 min) and after gastrointestinal digestion simulation. In addition, alcalase-CSGH was incorporated into turkey meat sausage to determine its effect on lipid oxidation during 35 days of storage period. At 0.5 mg/g, alcalase-CSGH delayed lipid oxidation monitored by TBARS and conjugated diene up to 10 days compared to vitamin C. The results reveal that CSGHs could be used as food additives possessing both antioxidant activity and functional properties. PMID:25025053
Di Fabio, Giovanni; Romanucci, Valeria; Di Marino, Cinzia; Pisanti, Antonio; Zarrelli, Armando
2015-01-01
Gymnema sylvestre R. Br. is one of the most important medicinal plants that grows in tropical forests in India and South East Asia. Its active ingredients and extracts of leaves and roots are used in traditional medicine to treat various ailments and they are present in the market for pharmaceutical and parapharmaceutical products. Commercial products based on substances of plant origin that are generally connoted as natural have to be subjected to monitoring and evaluation by health authorities for their potential impacts on public health. The monitoring and evaluation of these products are critical because the boundary between a therapeutic action and a functional or healthy activity has not yet been defined in a clear and unambiguous way. Therefore, these products are considered borderline products, and they require careful and rigorous studies, in order to use them as complement and/or even replacement of synthetic drugs that are characterized by side effects and high economic costs. This review explores the traditional uses, chemical composition and biological activity of G. sylvestre extracts, providing a general framework on the most interesting extracts and what are the necessary studies for a complete definition of the range of activities.
75 FR 18825 - Advantage Electronic Product Development Incorporated/Utility Crew Safety LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... described in U.S. Patent Application No. 12/401,033, entitled ``Ground Potential Rise Monitor,'' and PCT/US10/26189, entitled ``Ground Potential Rise Monitor,'' in the United States and in foreign countries... embodied in U.S. Patent Application No. 12/401,033, entitled ``Ground Potential Rise Monitor'' and PCT...
NASA Astrophysics Data System (ADS)
Casey, J. G.; Ilie, A. M. C.; Coffey, E.; Collier-Oxandale, A. M.; Hannigan, M.; Vaccaro, C.
2017-12-01
In Colorado and elsewhere in North America, the oil and gas production industry has been growing alongside and in the midst of increasing urban and rural populations. These coinciding trends have resulted in a growing number of people living in close proximity to petroleum production and processing activities, leading to potential public health impacts. Combustion-related emissions from heavy-duty diesel vehicle traffic, generators, compressors, and production stream flaring can potentially lead to locally enhanced levels of nitrogen oxides (NOx), carbon monoxide (CO), and carbon dioxide (CO2). Venting and fugitive emissions of production stream constituents can potentially lead to locally enhanced levels of methane (CH4) and volatile organic compounds (VOCs), some of which (like benzene) are known carcinogens. NOx and VOC emissions can also potentially increase local ozone (O3) production. After learning of a large new multiwell pad on the outskirts of Greeley, Colorado, we were able to quickly mobilize portable air quality monitors outfitted with low-cost gas sensors that respond to CH4, CO2, CO, and O3. The air quality monitors were installed outside homes adjacent to the new multiwell pad several weeks prior to the first spud date. An anemometer was also installed outside one of the homes in order to monitor wind speed and direction. Measurements continued during drilling, hydraulic fracturing, and production phases. The sensors were periodically collocated with reference instruments at a nearby regulatory air quality monitoring site towards calibration via field normalization and validation. Artificial Neural Networks were employed to map sensor signals to trace gas mole fractions during collocation periods. We present measurements of CH4, CO2, CO, and O3 in context with wellpad activities and local meteorology. CO and O3 observations are presented in context with regional measurements and National Ambient Air Quality Standards for each. Wind speed and direction measurements were used to indicate when air masses originated from the direction of the multiwell pad. CO2 mole fractions were used to estimate planetary boundary layer height and CH4 mole fractions were used to identify periods conducive to the pooling and accumulation of production stream venting and fugitive emissions.
Community radiation monitoring program. Annual report, October 1, 1992--September 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, E.N.
1994-08-01
The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (UUNEL). The thirteenth year of this program began in the fall of 1992, and the work continues as an integral part of the DOE--sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). Themore » CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the then-existing EPA monitoring network around the NTS, and has since expanded to 19 locations in Nevada, Utah, and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with the people in the potentially impacted area has been the hiring and training of local citizens as Station Managers and program representatives in those selected communities in the offsite area. These mangers, active science teachers wherever possible, have succeeded through their training, experience, community standing, and effort in becoming a very visible, able, and valuable asset in this link.« less
Duncan, Benet; Higgason, Kelley; Suchanek, Tom; Largier, John; Stachowicz, Jay; Allen, Sarah; Bograd, Steven; Breen, R.; Gellerman, Holly; Hill, Tessa; Jahncke, Jaime; Johnson, Rebecca L.; Lonhart, Steve I.; Morgan, Steven; Wilkerson, Frances; Roletto, Jan
2013-01-01
The impacts of climate change, defined as increasing atmospheric and oceanic carbon dioxide and associated increases in average global temperature and oceanic acidity, have been observed both globally and on regional scales, such as in the North-central California coast and ocean, a region that extends from Point Arena to Point Año Nuevo and includes the Pacific coastline of the San Francisco Bay Area. Because of the high economic and ecological value of the region’s marine environment, the Gulf of the Farallones National Marine Sanctuary (GFNMS) and other agencies and organizations have recognized the need to evaluate and plan for climate change impacts. Climate change indicators can be developed on global, regional, and site-specific spatial scales, and they provide information about the presence and potential impacts of climate change. While indicators exist for the nation and for the state of California as a whole, no system of ocean climate indicators exist that specifically consider the unique characteristics of the California coast and ocean region. To that end, GFNMS collaborated with over 50 regional, federal, and state natural resource managers, research scientists, and other partners to develop a set of 2 ocean climate indicators specific to this region. A smaller working group of 13 regional partners developed monitoring goals, objectives, strategies, and activities for the indicators and recommended selected species for biological indicators, resulting in the Ocean Climate Indicators Monitoring Inventory and Plan. The working group considered current knowledge of ongoing monitoring, feasibility of monitoring, costs, and logistics in selecting monitoring activities and selected species.
Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M
2014-12-01
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.
NASA Astrophysics Data System (ADS)
Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio
2016-04-01
Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous passive seismic monitoring at the site, from October 2013 to present, systematically highlighted clear energy peaks in the spectral content of seismic noise on the unstable sector, interpreted as resonant frequencies of the investigated volume. Both spectral analysis and cross-correlation of seismic noise showed seasonal reversible variation trends related to air temperature fluctuations. No irreversible changes, resulting from serious damage processes within the rock mass, were detected so far. Modal analysis and geomechanical modeling of the unstable cliff are currently under investigation to better understand the vibration modes that could explain the measured amplitude and orientation of ground motion at the first resonant frequencies. Classification and location of microseismic events still remains the most challenging task, due to the complex structural and morphological setting of the site.
NASA Astrophysics Data System (ADS)
Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.
2015-12-01
Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.
Spencer, Paula; Bowman, Michelle F; Dubé, Monique G
2008-07-01
It is not known if current chemical and biological monitoring methods are appropriate for assessing the impacts of growing industrial development on ecologically sensitive northern waters. We used a multitrophic level approach to evaluate current monitoring methods and to determine whether metal-mining activities had affected 2 otherwise pristine rivers that flow into the South Nahanni River, Northwest Territories, a World Heritage Site. We compared upstream reference conditions in the rivers to sites downstream and further downstream of mines. The endpoints we evaluated included concentrations of metals in river water, sediments, and liver and flesh of slimy sculpin (Cottus cognatus); benthic algal and macroinvertebrate abundance, richness, diversity, and community composition; and various slimy sculpin measures, our sentinel forage fish species. Elevated concentrations of copper and iron in liver tissue of sculpin from the Flat River were associated with high concentrations of mine-derived iron in river water and copper in sediments that were above national guidelines. In addition, sites downstream of the mine on the Flat River had increased algal abundances and altered benthic macroinvertebrate communities, whereas the sites downstream of the mine on Prairie Creek had increased benthic macroinvertebrate taxa richness and improved sculpin condition. Biological differences in both rivers were consistent with mild enrichment of the rivers downstream of current and historical mining activity. We recommend that monitoring in these northern rivers focus on indicators in epilithon and benthic macroinvertebrate communities due to their responsiveness and as alternatives to lethal fish sampling in habitats with low fish abundance. We also recommend monitoring of metal burdens in periphyton and benthic invertebrates for assessment of exposure to mine effluent and causal association. Although the effects of mining activities on riverine biota currently are limited, our results show that there is potential for effects to occur with proposed growth in mining activities.
Teasdale, Rachel; Kraft, Katrien van der Hoeven; Poland, Michael P.
2015-01-01
Training non-scientists in the use of volcano-monitoring data is critical preparation in advance of a volcanic crisis, but it is currently unclear which methods are most effective for improving the content-knowledge of non-scientists to help bridge communications between volcano experts and non-experts. We measured knowledge gains for beginning-(introductory-level students) and novice-level learners (students with a basic understanding of geologic concepts) engaged in the Volcanoes Exploration Program: Pu‘u ‘Ō‘ō (VEPP) “Monday Morning Meeting at the Hawaiian Volcano Observatory” classroom activity that incorporates authentic Global Positioning System (GPS), tilt, seismic, and webcam data from the Pu‘u ‘Ō‘ō eruptive vent on Kīlauea Volcano, Hawai‘i (NAGT website, 2010), as a means of exploring methods for effectively advancing non-expert understanding of volcano monitoring. Learner groups consisted of students in introductory and upper-division college geology courses at two different institutions. Changes in their content knowledge and confidence in the use of data were assessed before and after the activity using multiple-choice and open-ended questions. Learning assessments demonstrated that students who took part in the exercise increased their understanding of volcano-monitoring practices and implications, with beginners reaching a novice stage, and novices reaching an advanced level (akin to students who have completed an upper-division university volcanology class). Additionally, participants gained stronger confidence in their ability to understand the data. These findings indicate that training modules like the VEPP: Monday Morning Meeting classroom activity that are designed to prepare non-experts for responding to volcanic activity and interacting with volcano scientists should introduce real monitoring data prior to proceeding with role-paying scenarios that are commonly used in such courses. The learning gains from the combined approach will help improve effective communications between volcano experts and non-experts during times of crisis, thereby reducing the potential for confusion and misinterpretation of data.
NASA Astrophysics Data System (ADS)
De Siena, Luca; Rawlinson, Nicholas
2016-04-01
Non-standard seismic imaging (velocity, attenuation, and scattering tomography) of the North Sea basins by using unexploited seismic intensities from previous passive and active surveys are key for better imaging and monitoring fluid under the subsurface. These intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the crust and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability with as key output a novel computational code with strong commercial potential.
NASA Astrophysics Data System (ADS)
Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; McGreer, Ian; Schneider, Donald; Shen, Yue; Tao, Charling
2018-05-01
Previous Spitzer reverberation monitoring projects searching for UV/optical light absorbed and re-emitted in the IR by dust have been limited to low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle ( 1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high-luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We continued this monitoring in Cycle 13 and now propose to extend this program in Cycle 14. By combining ground-based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. By continuing observations with this unqiue combination of resources we should detect reverberation in more objects and reduce the uncertainties for the remaining sources.
Monitoring of mass measles campaign in AILA-affected areas of West Bengal.
Dasgupta, Samir; Bagchi, Saumendra Nath; Ghosh, Pramit; Sardar, Jadab Chandra; Roy, Amal Sinha; Sau, Manabendra
2010-01-01
A mass measles campaign was organized in AILA-affected areas of West Bengal in July-August 2009. The present cross-sectional study was conducted with the objectives to monitor and assess the cold chain maintenance, safe injection practices, IEC methods adopted, and to observe the conduction of the sessions in the campaign. All the cold chain points at the block level had adequate vaccines and equipments, twice monitoring of temperature which was in optimal range. 82% sessions had team according to microplan, AWW was present and team members were actively mobilizing the children in 83% sessions, puncture proof container was used and vaccines were given in correct sites in more than 95% sessions. The study observed satisfactory conduction of the whole campaign, still the injection safety procedures should be strengthened considering the potential harm to the health care providers.
Moseley, Peter; Fernyhough, Charles; Ellison, Amanda
2013-01-01
Auditory verbal hallucinations (AVHs) are the experience of hearing voices in the absence of any speaker, often associated with a schizophrenia diagnosis. Prominent cognitive models of AVHs suggest they may be the result of inner speech being misattributed to an external or non-self source, due to atypical self- or reality monitoring. These arguments are supported by studies showing that people experiencing AVHs often show an externalising bias during monitoring tasks, and neuroimaging evidence which implicates superior temporal brain regions, both during AVHs and during tasks that measure verbal self-monitoring performance. Recently, efficacy of noninvasive neurostimulation techniques as a treatment option for AVHs has been tested. Meta-analyses show a moderate effect size in reduction of AVH frequency, but there has been little attempt to explain the therapeutic effect of neurostimulation in relation to existing cognitive models. This article reviews inner speech models of AVHs, and argues that a possible explanation for reduction in frequency following treatment may be modulation of activity in the brain regions involving the monitoring of inner speech. PMID:24125858