Damage of composite structures: Detection technique, dynamic response and residual strength
NASA Astrophysics Data System (ADS)
Lestari, Wahyu
2001-10-01
Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.
Defect classification in sparsity-based structural health monitoring
NASA Astrophysics Data System (ADS)
Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.
2017-05-01
Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.
Localization of multiple defects using the compact phased array (CPA) method
NASA Astrophysics Data System (ADS)
Senyurek, Volkan Y.; Baghalian, Amin; Tashakori, Shervin; McDaniel, Dwayne; Tansel, Ibrahim N.
2018-01-01
Array systems of transducers have found numerous applications in detection and localization of defects in structural health monitoring (SHM) of plate-like structures. Different types of array configurations and analysis algorithms have been used to improve the process of localization of defects. For accurate and reliable monitoring of large structures by array systems, a high number of actuator and sensor elements are often required. In this study, a compact phased array system consisting of only three piezoelectric elements is used in conjunction with an updated total focusing method (TFM) for localization of single and multiple defects in an aluminum plate. The accuracy of the localization process was greatly improved by including wave propagation information in TFM. Results indicated that the proposed CPA approach can locate single and multiple defects with high accuracy while decreasing the processing costs and the number of required transducers. This method can be utilized in critical applications such as aerospace structures where the use of a large number of transducers is not desirable.
Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing
Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; ...
2014-05-20
The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-opticmore » strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.« less
Study on sensing property of one-dimensional ring mirror-defect photonic crystal
NASA Astrophysics Data System (ADS)
Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang
2018-02-01
Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.
Dispersion of Lamb waves in a honeycomb composite sandwich panel.
Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit
2015-02-01
Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schagerl, M.; Viechtbauer, C.; Hörrmann, S.
2015-07-01
Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.
Ultrasonic Signal Processing for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Michaels, Jennifer E.; Michaels, Thomas E.
2004-02-01
Permanently mounted ultrasonic sensors are a key component of systems under development for structural health monitoring. Signal processing plays a critical role in the viability of such systems due to the difficulty in interpreting signals received from structures of complex geometry. This paper describes a differential feature-based approach to classifying signal changes as either "environmental" or "structural". Data are presented from piezoelectric discs bonded to an aluminum specimen subjected to both environmental changes and introduction of artificial defects. The classifier developed as part of this study was able to correctly identify artificial defects that were not part of the initial training and evaluation data sets. Central to the success of the classifier was the use of the Short Time Cross Correlation to measure coherency between the signal and reference as a function of time.
Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing
NASA Technical Reports Server (NTRS)
Wilkerson, C.
1996-01-01
The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belle R. Upadhyaya; J. Wesley Hines
2004-09-27
Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acousticmore » time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.« less
Health monitoring of prestressing tendons in post-tensioned concrete structures
NASA Astrophysics Data System (ADS)
Salamone, Salvatore; Bartoli, Ivan; Nucera, Claudio; Phillips, Robert; Lanza di Scalea, Francesco
2011-04-01
Currently 90% of bridges built in California are post-tensioned box-girder. In such structures the steel tendons are the main load-carrying components. The loss of prestress, as well as the presence of defects or the tendon breakage, can be catastrophic for the entire structure. Unfortunately, today there is no well-established method for the monitoring of prestressing (PS) tendons that can provide simultaneous information related to the presence of defects and the level of prestress in a continuous, real time manner. If such a monitoring system were available, considerable savings would be achieved in bridge maintenance since repairs would be implemented in a timely manner without traffic disruptions. This paper presents a health monitoring system for PS tendons in post-tensioned structures of interest to Caltrans. Such a system uses ultrasonic guided waves and embedded sensors to provide simultaneously and in real time, (a) measurements of the level of applied prestress, and (b) defect detection at early grow stages. The proposed PS measurement technique exploits the sensitivity of ultrasonic waves to the inter-wire contact developing in a multi-wire strand as a function of prestress level. In particular the nonlinear ultrasonic behavior of the tendon under changing levels of prestress is monitored by tracking higher-order harmonics at (nω) arising under a fundamental guided-wave excitation at (ω). Moreover this paper also present real-time damage detection and location in post-tensioned bridge joints using Acoustic Emission techniques. Experimental tests on large-scale single-tendon PT joint specimens, subjected to multiple load cycles, will be presented to validate the monitoring of PS loads (through nonlinear ultrasonic probing) and the monitoring of damage progression and location (through acoustic emission techniques). Issues and potential for the use of such techniques to monitor post-tensioned bridges in the field will be discussed.
Application of metal magnetic memory technology on defects detection of jack-up platform
NASA Astrophysics Data System (ADS)
Xu, Changhang; Cheng, Liping; Xie, Jing; Yin, Xiaokang; Chen, Guoming
2016-02-01
Metal magnetic memory test (MMMT), which is an effective way in evaluating early damages of ferrimagnets, can determine the existence of material stresses concentration and premature defects. As one of offshore oil exploration and development equipment, jack-up platform always generate stress concentration during its life-cycle due to complicated loading condition and the hash marine environment, which will decline the bearing capacity and cause serious consequences. The paper conducts in situ experiments of defects detection on some key structural components of jack-up platform using MMMT. The signals acquired by MMM-System are processed for feature extraction to evaluate the severity of structure stress concentration. The results show that the method presented in this paper based on MMMT can provide an effective and convenient way of defect detection and structural health monitoring for Jack-up Platform.
Semiconducting molecular crystals: Bulk in-gap states modified by structural and chemical defects
NASA Astrophysics Data System (ADS)
Haas, S.; Krellner, C.; Goldmann, C.; Pernstich, K. P.; Gundlach, D. J.; Batlogg, B.
2007-03-01
Charge transport in organic molecular crystals is strongly influenced by the density of localized in-gap states (traps). Thus, a profound knowledge of the defect states' origin is essential. Temperature-dependent space-charge limited current (TD-SCLC) spectroscopy was used as a powerful tool to quantitatively study the density of states (DOS) in high-quality rubrene and pentacene single crystals. In particular, changes of the DOS due to intentionally induced chemical and structural defects were monitored. For instance, the controlled exposure of pentacene and rubrene to x-ray radiation results in a broad over-all increase of the DOS. Namely, the ionizing radiation induces a variety of both chemical and structural defects. On the other hand, exposure of rubrene to UV-excited oxygen is reflected in a sharp peak in the DOS, whereas in a similar experiment with pentacene oxygen acts as a dopant, and possible defects are metastable on the time-scale of the measurement, thus leaving the extracted DOS virtually unchanged.
Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures
NASA Astrophysics Data System (ADS)
Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.
2012-04-01
Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both with and without plaster, reinforced with basalt and glass fiber strips for full height. Beneath FRP strips were simulated defects such as poor bonding or lack of adherence By statistical and algebraic operations, performed on thermographic multitemporal dataset, an attempt was made both to reduce the uncertainties of a typical IR active and passive test, but also to reconstruct exact geometrical shape of the simulated defects that characterize wall samples examined. Results are encouraging but more research is needed on this topic to establish a correct protocol to monitor the FRP performance with time and to quantitatively asses the presence and type of defect in the reinforcing system.
Information support of monitoring of technical condition of buildings in construction risk area
NASA Astrophysics Data System (ADS)
Skachkova, M. E.; Lepihina, O. Y.; Ignatova, V. V.
2018-05-01
The paper presents the results of the research devoted to the development of a model of information support of monitoring buildings technical condition; these buildings are located in the construction risk area. As a result of the visual and instrumental survey, as well as the analysis of existing approaches and techniques, attributive and cartographic databases have been created. These databases allow monitoring defects and damages of buildings located in a 30-meter risk area from the object under construction. The classification of structures and defects of these buildings under survey is presented. The functional capabilities of the developed model and the field of it practical applications are determined.
Advanced signal processing methods applied to guided waves for wire rope defect detection
NASA Astrophysics Data System (ADS)
Tse, Peter W.; Rostami, Javad
2016-02-01
Steel wire ropes, which are usually composed of a polymer core and enclosed by twisted wires, are used to hoist heavy loads. These loads are different structures that can be clamshells, draglines, elevators, etc. Since the loading of these structures is dynamic, the ropes are working under fluctuating forces in a corrosive environment. This consequently leads to progressive loss of the metallic cross-section due to abrasion and corrosion. These defects can be seen in the forms of roughened and pitted surface of the ropes, reduction in diameter, and broken wires. Therefore, their deterioration must be monitored so that any unexpected damage or corrosion can be detected before it causes fatal accident. This is of vital importance in the case of passenger transportation, particularly in elevators in which any failure may cause a catastrophic disaster. At present, the widely used methods for thorough inspection of wire ropes include visual inspection and magnetic flux leakage (MFL). Reliability of the first method is questionable since it only depends on the operators' eyes that fails to determine the integrity of internal wires. The later method has the drawback of being a point by point and time-consuming inspection method. Ultrasonic guided wave (UGW) based inspection, which has proved its capability in inspecting plate like structures such as tubes and pipes, can monitor the cross-section of wire ropes in their entire length from a single point. However, UGW have drawn less attention for defect detection in wire ropes. This paper reports the condition monitoring of a steel wire rope from a hoisting elevator with broken wires as a result of corrosive environment and fatigue. Experiments were conducted to investigate the efficiency of using magnetostrictive based UGW for rope defect detection. The obtained signals were analyzed by two time-frequency representation (TFR) methods, namely the Short Time Fourier Transform (STFT) and the Wavelet analysis. The location of the defect and its severity were successfully identified and characterized.
NASA Astrophysics Data System (ADS)
Yu, Xudong; Fan, Zheng; Puliyakote, Sreedhar; Castaings, Michel
2018-03-01
Structural health monitoring (SHM) using ultrasonic guided waves has proven to be attractive for the identification of damage in composite plate-like structures, due to its realization of both significant propagation distances and reasonable sensitivity to defects. However, topographical features such as bends, lap joints, and bonded stiffeners are often encountered in these structures, and they are susceptible to various types of defects as a consequence of stress concentration and cyclic loading during the service life. Therefore, the health condition of such features has to be assessed effectively to ensure the safe operation of the entire structure. This paper proposes a novel feature guided wave (FGW) based SHM strategy, in which proper FGWs are exploited as a screening tool to rapidly interrogate the representative stiffener-adhesive bond-composite skin assembly. An array of sensors permanently attached to the vicinity of the feature is used to capture scattered waves from the localized damage occurring in the bond line. This technique is combined with an imaging approach, and the damage reconstruction is achieved by the synthetic focusing algorithm using these scattered signals. The proposed SHM scheme is implemented in both the 3D finite element simulation and the experiment, and the results are in good agreement, demonstrating the feasibility of such SHM strategy.
NASA Astrophysics Data System (ADS)
Panella, F.; Boehm, J.; Loo, Y.; Kaushik, A.; Gonzalez, D.
2018-05-01
This work presents the combination of Deep-Learning (DL) and image processing to produce an automated cracks recognition and defect measurement tool for civil structures. The authors focus on tunnel civil structures and survey and have developed an end to end tool for asset management of underground structures. In order to maintain the serviceability of tunnels, regular inspection is needed to assess their structural status. The traditional method of carrying out the survey is the visual inspection: simple, but slow and relatively expensive and the quality of the output depends on the ability and experience of the engineer as well as on the total workload (stress and tiredness may influence the ability to observe and record information). As a result of these issues, in the last decade there is the desire to automate the monitoring using new methods of inspection. The present paper has the goal of combining DL with traditional image processing to create a tool able to detect, locate and measure the structural defect.
Acoustic emission linear pulse holography
Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.
1985-01-01
Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.
Public Health Practice of Population-Based Birth Defects Surveillance Programs in the United States.
Mai, Cara T; Kirby, Russell S; Correa, Adolfo; Rosenberg, Deborah; Petros, Michael; Fagen, Michael C
2016-01-01
Birth defects remain a leading cause of infant mortality in the United States and contribute substantially to health care costs and lifelong disabilities. State population-based surveillance systems have been established to monitor birth defects, yet no recent systematic examination of their efforts in the United States has been conducted. To understand the current population-based birth defects surveillance practices in the United States. The National Birth Defects Prevention Network conducted a survey of US population-based birth defects activities that included questions about operational status, case ascertainment methodology, program infrastructure, data collection and utilization, as well as priorities and challenges for surveillance programs. Birth defects contacts in the United States, including District of Columbia and Puerto Rico, received the survey via e-mail; follow-up reminders via e-mails and telephone were used to ensure a 100% response rate. Forty-three states perform population-based surveillance for birth defects, covering approximately 80% of the live births in the United States. Seventeen primarily use an active case-finding approach and 26 use a passive case-finding approach. These programs all monitor major structural malformations; however, passive case-finding programs more often monitor a broader list of conditions, including developmental conditions and newborn screening conditions. Active case-finding programs more often use clinical reviewers, cover broader pregnancy outcomes, and collect more extensive information, such as family history. More than half of the programs (24 of 43) reported an ability to conduct follow-up studies of children with birth defects. The breadth and depth of information collected at a population level by birth defects surveillance programs in the United States serve as an important data source to guide public health action. Collaborative efforts at the state and national levels can help harmonize data collection and increase utility of birth defects programs.
Radioluminescence response of germanosilicate optical fibres
NASA Astrophysics Data System (ADS)
Khanlary, M. R.; Townsend, P. D.; Townsend, J. E.
1993-07-01
X-ray irradiation of germanosilicate optical fibres simultaneously produces signals from both the core and substrate and so the radioluminescence spectra record the defect structure of both regions. The data provide evidence for the presence of dopants and trace impurities, as well as intrinsic defects formed by thermal and radiation processing. Examples of the changes in spectra or luminescence sensitivity with radiation dose, the influence of fibre pulling conditions and post irradiation heating are noted. The temperature dependence of the radioluminescence is reported. Whilst most of the intrinsic defects produce broad emission bands, rare earth dopants show line features. However, line features have also been noted for Al doped fibres. Such studies of fibre luminescence offer a sensitive monitor of changes in the structure of the glass network.
Process monitoring of additive manufacturing by using optical tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenzinger, Guenter, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Bamberg, Joachim, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Ladewig, Alexander, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de
2015-03-31
Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure.more » A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.« less
Fatigue crack detection and identification by the elastic wave propagation method
NASA Astrophysics Data System (ADS)
Stawiarski, Adam; Barski, Marek; Pająk, Piotr
2017-05-01
In this paper the elastic wave propagation phenomenon was used to detect the initiation of the fatigue damage in isotropic plate with a circular hole. The safety and reliability of structures mostly depend on the effectiveness of the monitoring methods. The Structural Health Monitoring (SHM) system based on the active pitch-catch measurement technique was proposed. The piezoelectric (PZT) elements was used as an actuators and sensors in the multipoint measuring system. The comparison of the intact and defected structures has been used by damage detection algorithm. One part of the SHM system has been responsible for detection of the fatigue crack initiation. The second part observed the evolution of the damage growth and assess the size of the defect. The numerical results of the wave propagation phenomenon has been used to present the effectiveness and accuracy of the proposed method. The preliminary experimental analysis has been carried out during the tension test of the aluminum plate with a circular hole to determine the efficiency of the measurement technique.
Capacitance-based damage detection sensing for aerospace structural composites
NASA Astrophysics Data System (ADS)
Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.
2014-04-01
Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.
Integrated smart structures wingbox
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1993-09-01
One objective of smart structures development is to demonstrate the ability of a mechanical component to monitor its own structural integrity and health. Achievement of this objective requires the integration of different technologies, i.e.: (1) structures, (2) sensors, and (3) artificial intelligence. We coordinated a team of experts from these three fields. These experts used reliable knowledge towards the forefront of their technologies and combined the appropriate features into an integrated hardware/software smart structures wingbox (SSW) test article. A 1/4 in. hole was drilled into the SSW test article. Although the smart structure had never seen damage of this type, it correctly recognized and located the damage. Based on a knowledge-based simulation, quantification and assessment were also carried out. We have demonstrated that the SSW integrated hardware & software test article can perform six related functions: (1) identification of a defect; (2) location of the defect; (3) quantification of the amount of damage; (4) assessment of performance degradation; (5) continued monitoring in spite of damage; and (6) continuous recording of integrity data. We present the successful results of the integrated test article in this paper, along with plans for future development and deployment of the technology.
NASA Astrophysics Data System (ADS)
Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco
2005-10-01
The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.
NASA Astrophysics Data System (ADS)
Huan, Qiang; Miao, Hongchen; Li, Faxin
2018-02-01
Structural health monitoring (SHM) is of great importance for engineering structures as it may detect the early degradation and thus avoid life and financial loss. Guided wave based inspection is very useful in SHM due to its capability for long distance and wide range monitoring. The fundamental shear horizontal (SH0) wave based method should be most promising since SH0 is the unique non-dispersive wave mode in plate-like structures. In this work, a sparse array SHM system based on omnidirectional SH wave piezoelectric transducers (OSH-PT) was proposed and the multi data fusion method was used for defect inspection in a 2 mm thick aluminum plate. Firstly, the performances of three types OSH-PTs was comprehensively compared and the thickness-poled d15 mode OSH-PT used in this work was demonstrated obviously superior to the other two. Then, the signal processing method and imaging algorithm for this SHM system was presented. Finally, experiments were carried out to examine the performance of the proposed SHM system in defect localization and imaging. Results indicated that this SHM system can locate a through hole as small as 0.12λ (4 mm) in diameter (where λ is the wavelength corresponding to the central operation frequency) under frequencies from 90 to 150 kHz. It can also locate multiple defects accurately based on the baseline subtraction method. Obviously, this SHM system can detect larger areas with sparse sensors because of the adopted single mode, non-dispersive and low frequency SH0 wave which can propagate long distance with small attenuation. Considering its good performances, simple data processing and sparse array, this SH0 wave-based SHM system is expected to greatly promote the applications of guided wave inspection.
Plant photonics: application of optical coherence tomography to monitor defects and rots in onion
NASA Astrophysics Data System (ADS)
Meglinski, I. V.; Buranachai, C.; Terry, L. A.
2010-04-01
The incidence of physiological and/or pathological defects in many fresh produce types is still unacceptably high and accounts for a large proportion of waste. With increasing interest in food security their remains strong demand in developing reliable and cost effective technologies for non-destructive screening of internal defects and rots, these being deemed unacceptable by consumers. It is well recognized that the internal defects and structure of turbid scattering media can be effectively visualized by using optical coherence tomography (OCT). In the present study, the high spatial resolution and advantages of OCT have been demonstrated for imaging the skins and outer laminae (concentric tissue layers) of intact whole onion bulbs with a view to non-invasively visualizing potential incidence/severity of internal defects.
Hu, Rongrong; Wang, Chenkun; Racette, Lyne
2017-01-01
Perimetry is indispensable for the clinical management of glaucoma suspects. Our goal is to compare the performance of standard automated perimetry (SAP) and Matrix frequency-doubling technology (FDT) perimetry in monitoring the development of visual field (VF) defects in glaucoma suspect eyes. Longitudinal data of paired SAP and FDT from 221 eyes of 155 glaucoma suspects enrolled in the Diagnostic Innovations in Glaucoma Study or the African Descent and Glaucoma Evaluation Study were included. All eyes had glaucomatous optic neuropathy or ocular hypertension, but normal SAP and FDT results at baseline. The development of glaucomatous VF defects was defined as the presence of a cluster of ≥ 3 (less conservative) or ≥ 4 (more conservative) locations confirmed on ≥ 2 additional consecutive tests. Risk factors for the development of VF defects were analyzed by COX proportional hazard models. After conversion into common logarithmic units, the rates of change of global VF indices were fitted with linear mixed models. FDT detected more eyes that developed VF defects than SAP using the less conservative criterion, and no significant difference was observed using the more conservative criterion. For those eyes detected by both SAP and FDT, FDT detected the development of VF defects either earlier than SAP or simultaneously in most cases. Baseline structural measurements were not significantly associated with an increased risk for the development of glaucomatous VF defects on either SAP or FDT. Older age was significantly associated with the development of VF defects on FDT but not on SAP. Both SAP and FDT detected a progressing worsening trend of pattern standard deviation over time with a similar rate of change between these test types. Matrix FDT would be useful to monitor the onset of VF defects in glaucoma suspects and may outperform SAP in the early stage of glaucomatous VF damage.
NASA Astrophysics Data System (ADS)
Nadimpalli, Venkata K.; Nagy, Peter B.
2018-04-01
Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.
DOT National Transportation Integrated Search
2001-11-01
For concrete rehabilitation, application of fiber reinforced polymer composites continues to grow in popularity. However, performance and expected lifetime of such rehabilitation measures are greatly depending on quality of workmanship and are jeopar...
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott
2016-01-01
The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.
Na, Wongi S.; Baek, Jongdae
2017-01-01
The emergence of composite materials has revolutionized the approach to building engineering structures. With the number of applications for composites increasing every day, maintaining structural integrity is of utmost importance. For composites, adhesive bonding is usually the preferred choice over the mechanical fastening method, and monitoring for delamination is an essential factor in the field of composite materials. In this study, a non-destructive method known as the electromechanical impedance method is used with an approach of monitoring multiple areas by specifying certain frequency ranges to correspond to a certain test specimen. Experiments are conducted using various numbers of stacks created by attaching glass fiber epoxy composite plates onto one another, and two different debonding damage types are introduced to evaluate the performance of the multiple monitoring electromechanical impedance method. PMID:28629194
In-field implementation of impedance-based structural health monitoring for insulated rail joints
NASA Astrophysics Data System (ADS)
Albakri, Mohammad I.; Malladi, V. V. N. Sriram; Woolard, Americo G.; Tarazaga, Pablo A.
2017-04-01
Track defects are a major safety concern for the railroad industry. Among different track components, insulated rail joints, which are widely used for signaling purposes, are considered a weak link in the railroad track. Several joint-related defects have been identified by the railroad community, including rail wear, torque loss, and joint bar breakage. Current track inspection techniques rely on manual and visual inspection or on specially equipped testing carts, which are costly, timeconsuming, traffic disturbing, and prone to human error. To overcome the aforementioned limitations, the feasibility of utilizing impedance-based structural health monitoring for insulated rail joints is investigated in this work. For this purpose, an insulated joint, provided by Koppers Inc., is instrumented with piezoelectric transducers and assembled with 136 AREA rail plugs. The instrumented joint is then installed and tested at the Facility for Accelerated Service Testing, Transportation Technology Center Inc. The effects of environmental and operating conditions on the measured impedance signatures are investigated through a set of experiments conducted at different temperatures and loading conditions. The capabilities of impedance-based SHM to detect several joint-related damage types are also studied by introducing reversible mechanical defects to different joint components.
NASA Astrophysics Data System (ADS)
Riahi, Mohammad; Ahmadi, Alireza
2016-04-01
Role of air transport in the development and expansion of world trade leading to economic growth of different countries is undeniable. Continuing the world's trade sustainability without expansion of aerospace is next to impossible. Based on enormous expenses for design, manufacturing and maintenance of different aerospace structures, correct and timely diagnosis of defects in those structures to provide for maximum safety has the highest importance. Amid all this, manufacturers of commercial and even military aircrafts are after production of less expensive, lighter, higher fuel economy and nonetheless, higher safety. As such, two events has prevailed in the aerospace industries: (1) Utilization of composites for the fuselage as well as other airplane parts, (2) using modern manufacturing methods. Arrival of two these points have created the need for upgrading of the present systems as well as innovating newer methods in diagnosing and detection of defects in aerospace structures. Despite applicability of nondestructive testing (NDT) methods in aerospace for decades, due to some limitations in the defect detection's certainty, particularly for composite material and complex geometries, shadow of doubt has fallen on maintaining complete confidence in using NDT. These days, two principal approach are ahead to tackle the above mentioned problems. First, approach for the short range is the creative and combinational mean to increase the reliability of NDT and for the long run, innovation of new methods on the basis of structural health monitoring (SHM) is in order. This has led to new philosophy in the maintenance area and in some instances; field of design has also been affected by it.
Design and performance of optimal detectors for guided wave structural health monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dib, G.; Udpa, L.
2016-01-01
Ultrasonic guided wave measurements in a long term structural health monitoring system are affected by measurement noise, environmental conditions, transducer aging and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This paper derives the optimal detector structure, within the framework of detection theory, where a guided wave signal at the sensor is represented by a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure’s complexity: (i) Simple structures where defect reflections can bemore » identified without the need for baseline data; (ii) Simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; (iii) Complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model is used to generate guided wave signals and the performance results of a Monte-Carlo simulation are compared with the theoretical performance. initial results demonstrate that the problems of signal complexity and environmental variability can in fact be exploited to improve detection performance.« less
Meier, Frederick A; Souers, Rhona J; Howanitz, Peter J; Tworek, Joseph A; Perrotta, Peter L; Nakhleh, Raouf E; Karcher, Donald S; Bashleben, Christine; Darcy, Teresa P; Schifman, Ron B; Jones, Bruce A
2015-06-01
Many production systems employ standardized statistical monitors that measure defect rates and cycle times, as indices of performance quality. Clinical laboratory testing, a system that produces test results, is amenable to such monitoring. To demonstrate patterns in clinical laboratory testing defect rates and cycle time using 7 College of American Pathologists Q-Tracks program monitors. Subscribers measured monthly rates of outpatient order-entry errors, identification band defects, and specimen rejections; median troponin order-to-report cycle times and rates of STAT test receipt-to-report turnaround time outliers; and critical values reporting event defects, and corrected reports. From these submissions Q-Tracks program staff produced quarterly and annual reports. These charted each subscriber's performance relative to other participating laboratories and aggregate and subgroup performance over time, dividing participants into best and median performers and performers with the most room to improve. Each monitor's patterns of change present percentile distributions of subscribers' performance in relation to monitoring durations and numbers of participating subscribers. Changes over time in defect frequencies and the cycle duration quantify effects on performance of monitor participation. All monitors showed significant decreases in defect rates as the 7 monitors ran variously for 6, 6, 7, 11, 12, 13, and 13 years. The most striking decreases occurred among performers who initially had the most room to improve and among subscribers who participated the longest. All 7 monitors registered significant improvement. Participation effects improved between 0.85% and 5.1% per quarter of participation. Using statistical quality measures, collecting data monthly, and receiving reports quarterly and yearly, subscribers to a comparative monitoring program documented significant decreases in defect rates and shortening of a cycle time for 6 to 13 years in all 7 ongoing clinical laboratory quality monitors.
Wafer level reliability for high-performance VLSI design
NASA Technical Reports Server (NTRS)
Root, Bryan J.; Seefeldt, James D.
1987-01-01
As very large scale integration architecture requires higher package density, reliability of these devices has approached a critical level. Previous processing techniques allowed a large window for varying reliability. However, as scaling and higher current densities push reliability to its limit, tighter control and instant feedback becomes critical. Several test structures developed to monitor reliability at the wafer level are described. For example, a test structure was developed to monitor metal integrity in seconds as opposed to weeks or months for conventional testing. Another structure monitors mobile ion contamination at critical steps in the process. Thus the reliability jeopardy can be assessed during fabrication preventing defective devices from ever being placed in the field. Most importantly, the reliability can be assessed on each wafer as opposed to an occasional sample.
NASA Astrophysics Data System (ADS)
Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise
2012-04-01
Fabric's smoothness is a key factor in determining the quality of finished textile products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the zero defect industrial concept, identifying and measuring defective material in the early stage of production is of great interest to the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. We propose a computer vision approach to compute epipole by using variable homography, which can be used to measure emergent fiber length on textile fabrics. The main challenges addressed in this paper are the application of variable homography on textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure, and then we show how variable homography combined with epipolar geometry can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method. The true length of selected fibers is measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method of quality control for important industrial fabrics.
Using variable homography to measure emergent fibers on textile fabrics
NASA Astrophysics Data System (ADS)
Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise
2011-07-01
A fabric's smoothness is a key factor to determine the quality of textile finished products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the 'zero defect' industrial concept, identifying and measuring defective material in the early stage of production is of great interest for the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. In this paper we propose a computer vision approach, based on variable homography, which can be used to measure the emergent fiber's length on textile fabrics. The main challenges addressed in this paper are the application of variable homography to textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure and then show how variable homography can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method to measure the emergent fiber's length. The true lengths of selected fibers are measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method for quality control of important industrially fabrics.
NASA Astrophysics Data System (ADS)
Ham, Suyun; Popovics, John S.
2015-03-01
Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.
Advanced in In Situ Inspection of Automated Fiber Placement Systems
NASA Technical Reports Server (NTRS)
Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.
2016-01-01
Automated Fiber Placement (AFP) systems have been developed to help take advantage of the tailorability of composite structures in aerospace applications. AFP systems allow the repeatable placement of uncured, spool fed, preimpregnated carbon fiber tape (tows) onto substrates in desired thicknesses and orientations. This automated process can incur defects, such as overlapping tow lines, which can severely undermine the structural integrity of the part. Current defect detection and abatement methods are very labor intensive, and still mostly rely on human manual inspection. Proposed is a thermographic in situ inspection technique which monitors tow placement with an on board thermal camera using the preheated substrate as a through transmission heat source. An investigation of the concept is conducted, and preliminary laboratory results are presented. Also included will be a brief overview of other emerging technologies that tackle the same issue. Keywords: Automated Fiber Placement, Manufacturing defects, Thermography
NASA Astrophysics Data System (ADS)
Slyusarev, Yu. K.; Braga, A. V.; Slyusarev, I. Yu.
2017-09-01
The effect of the chemical composition of high-strength cast iron VCh35 on the content, shape and diameter of graphite inclusions and on the presence of structurally-free cementite and defects is studied. A relationship is determined between the structure and metallurgical defects and characteristics of the mechanical and magnetic rigidity of cast samples. Relationships are established in a group of factors and property characteristics: chemical composition - microstructure - mechanical rigidity - magnetic stiffness. The basis of a method is established making it possible to perform operative non-destructive monitoring of the melt quality preparation for high-strength iron casting.
NASA Astrophysics Data System (ADS)
Parisi, P.; Mani, A.; Perry-Sullivan, C.; Kopp, J.; Simpson, G.; Renis, M.; Padovani, M.; Severgnini, C.; Piacentini, P.; Piazza, P.; Beccalli, A.
2009-12-01
After-develop inspection (ADI) and photo-cell monitoring (PM) are part of a comprehensive lithography process monitoring strategy. Capturing defects of interest (DOI) in the lithography cell rather than at later process steps shortens the cycle time and allows for wafer re-work, reducing overall cost and improving yield. Low contrast DOI and multiple noise sources make litho inspection challenging. Broadband brightfield inspectors provide the highest sensitivity to litho DOI and are traditionally used for ADI and PM. However, a darkfield imaging inspector has shown sufficient sensitivity to litho DOI, providing a high-throughput option for litho defect monitoring. On the darkfield imaging inspector, a very high sensitivity inspection is used in conjunction with advanced defect binning to detect pattern issues and other DOI and minimize nuisance defects. For ADI, this darkfield inspection methodology enables the separation and tracking of 'color variation' defects that correlate directly to CD variations allowing a high-sampling monitor for focus excursions, thereby reducing scanner re-qualification time. For PM, the darkfield imaging inspector provides sensitivity to critical immersion litho defects at a lower cost-of-ownership. This paper describes litho monitoring methodologies developed and implemented for flash devices for 65nm production and 45nm development using the darkfield imaging inspector.
Automatic cross-sectioning and monitoring system locates defects in electronic devices
NASA Technical Reports Server (NTRS)
Jacobs, G.; Slaughter, B.
1971-01-01
System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.
Pattern centric design based sensitive patterns and process monitor in manufacturing
NASA Astrophysics Data System (ADS)
Hsiang, Chingyun; Cheng, Guojie; Wu, Kechih
2017-03-01
When design rule is mitigating to smaller dimension, process variation requirement is tighter than ever and challenges the limits of device yield. Masks, lithography, etching and other processes have to meet very tight specifications in order to keep defect and CD within the margins of the process window. Conventionally, Inspection and metrology equipments are utilized to monitor and control wafer quality in-line. In high throughput optical inspection, nuisance and review-classification become a tedious labor intensive job in manufacturing. Certain high-resolution SEM images are taken to validate defects after optical inspection. These high resolution SEM images catch not only optical inspection highlighted point, also its surrounding patterns. However, this pattern information is not well utilized in conventional quality control method. Using this complementary design based pattern monitor not only monitors and analyzes the variation of patterns sensitivity but also reduce nuisance and highlight defective patterns or killer defects. After grouping in either single or multiple layers, systematic defects can be identified quickly in this flow. In this paper, we applied design based pattern monitor in different layers to monitor process variation impacts on all kinds of patterns. First, the contour of high resolutions SEM image is extracted and aligned to design with offset adjustment and fine alignment [1]. Second, specified pattern rules can be applied on design clip area, the same size as SEM image, and form POI (pattern of interest) areas. Third, the discrepancy of contour and design measurement at different pattern types in measurement blocks. Fourth, defective patterns are reported by discrepancy detection criteria and pattern grouping [4]. Meanwhile, reported pattern defects are ranked by number and severity by discrepancy. In this step, process sensitive high repeatable systematic defects can be identified quickly Through this design based process pattern monitor method, most of optical inspection nuisances can be filtered out at contour to design discrepancy measurement. Daily analysis results are stored at database as reference to compare with incoming data. Defective pattern library contains existing and known systematic defect patterns which help to catch and identify new pattern defects or process impacts. On the other hand, this defect pattern library provides extra valuable information for mask, pattern and defects verification, inspection care area generation, further OPC fix and process enhancement and investigation.
A formula for evaluating colour differences for thread sewn into fabric samples
NASA Astrophysics Data System (ADS)
Steder, Thorsten
In-service rails can develop several types of structural defects due to fatigue and wear caused by rolling stock passing over them. Most rail defects will develop gradually over time thus permitting inspection engineers to detect them in time before final failure occurs. In the UK, certain types of severe rail defects such as tache ovales, require the fitting of emergency clamps and the imposing of an Emergency Speed Restriction (ESR) until the defects are removed. Acoustic emission (AE) techniques can be applied for the detection and continuous monitoring of defect growth therefore removing the need of imposing strict ESRs. The work reported herewith aims to develop a sound methodology for the application of AE in order to detect and subsequently monitor damage evolution in rails. To validate the potential of the AE technique, tests have been carried out under laboratory conditions on three and four-point bending samples manufactured from 260 grade rail steel. Further tests, simulating the background noise conditions caused by passing rolling stock have been carried out using special experimental setups. The crack growth events have been simulated using a pencil tip break..
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas
2012-02-01
Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old andmore » classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.« less
Multimodal sparse reconstruction in guided wave imaging of defects in plates
NASA Astrophysics Data System (ADS)
Golato, Andrew; Santhanam, Sridhar; Ahmad, Fauzia; Amin, Moeness G.
2016-07-01
A multimodal sparse reconstruction approach is proposed for localizing defects in thin plates in Lamb wave-based structural health monitoring. The proposed approach exploits both the sparsity of the defects and the multimodal nature of Lamb wave propagation in plates. It takes into account the variation of the defects' aspect angles across the various transducer pairs. At low operating frequencies, only the fundamental symmetric and antisymmetric Lamb modes emanate from a transmitting transducer. Asymmetric defects scatter these modes and spawn additional converted fundamental modes. Propagation models are developed for each of these scattered and spawned modes arriving at the various receiving transducers. This enables the construction of modal dictionary matrices spanning a two-dimensional array of pixels representing potential defect locations in the region of interest. Reconstruction of the region of interest is achieved by inverting the resulting linear model using the group sparsity constraint, where the groups extend across the various transducer pairs and the different modes. The effectiveness of the proposed approach is established with finite-element scattering simulations of the fundamental Lamb wave modes by crack-like defects in a plate. The approach is subsequently validated with experimental results obtained from an aluminum plate with asymmetric defects.
Exploring infrared sensoring for real time welding defects monitoring in GTAW.
Alfaro, Sadek C A; Franco, Fernand Díaz
2010-01-01
This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor.
Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in GTAW
Alfaro, Sadek C. A.; Franco, Fernand Díaz
2010-01-01
This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor. PMID:22219697
Light scattering techniques for the characterization of optical components
NASA Astrophysics Data System (ADS)
Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.
2017-11-01
The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.
Laser based structural health monitoring for civil, mechanical, and aerospace systems
NASA Astrophysics Data System (ADS)
Sohn, Hoon
2012-04-01
This paper provides an overview of ongoing laser ultrasonics based structural health monitoring (SHM) activities being performed by the author. Particular focus is given to (1) the development of a fully noncontact laser ultrasonic system that can easily visualize defects with high spatial resolution, (2) laser based wireless power and data transmission schemes for remote guided waves and impedance measurements, (3) minimization of false alarms due to varying operational and environmental conditions, and (4) extension to embedded laser ultrasonic excitation and sensing. SHM examples ranging from bridges to airplanes, as well as nuclear power plants, high-speed rails and wind turbines are also presented.
Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F.; Dahmene, Fethi
2017-01-01
This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement. PMID:28925961
Fiber optic system for deflection and damage detection in morphing wing structures
NASA Astrophysics Data System (ADS)
Scheerer, M.; Djinovic, Z.; Schüller, M.
2013-04-01
Within the EC Clean Sky - Smart Fixed Wing Aircraft initiative concepts for actuating morphing wing structures are under development. In order for developing a complete integrated system including the actuation, the structure to be actuated and the closed loop control unit a hybrid deflection and damage monitoring system is required. The aim of the project "FOS3D" is to develop and validate a fiber optic sensing system based on low-coherence interferometry for simultaneous deflection and damage monitoring. The proposed system uses several distributed and multiplexed fiber optic Michelson interferometers to monitor the strain distribution over the actuated part. In addition the same sensor principle will be used to acquire and locate the acoustic emission signals originated from the onset and growth of defects like impact damages, cracks and delamination's. Within this paper the authors present the concept, analyses and first experimental results of the mentioned system.
Holst, Kimberly A; Said, Sameh M; Nelson, Timothy J; Cannon, Bryan C; Dearani, Joseph A
2017-03-17
Successful outcome in the care of patients with congenital heart disease depends on a comprehensive multidisciplinary team. Surgery is offered for almost every heart defect, despite complexity. Early mortality for cardiac surgery in the neonatal period is ≈10% and beyond infancy is <5%, with 90% to 95% of patients surviving with a good quality of life into the adult years. Advances in imaging have facilitated accurate diagnosis and planning of interventions and surgical procedures. Similarly, advances in the perioperative medical management of patients, particularly with intensive care, has also contributed to improving outcomes. Arrhythmias and heart failure are the most common late complications for the majority of defects, and reoperation for valvar problems is common. Lifelong surveillance for monitoring of recurrent or residual structural heart defects, as well as periodic assessment of cardiac function and arrhythmia monitoring, is essential for all patients. The field of congenital heart surgery is poised to incorporate new innovations such as bioengineered cells and scaffolds that will iteratively move toward bioengineered patches, conduits, valves, and even whole organs. © 2017 American Heart Association, Inc.
Vandenberg, Laura N.; Adams, Dany S.; Levin, Michael
2012-01-01
Background Embryonic development can often adjust its morphogenetic processes to counteract external perturbation. The existence of self-monitoring responses during pattern formation is of considerable importance to the biomedicine of birth defects, but has not been quantitatively addressed. To understand the computational capabilities of biological tissues in a molecularly-tractable model system, we induced craniofacial defects in Xenopus embryos, then tracked tadpoles with craniofacial deformities and used geometric morphometric techniques to characterize changes in the shape and position of the craniofacial structures. Results Canonical variate analysis revealed that the shapes and relative positions of perturbed jaws and branchial arches were corrected during the first few months of tadpole development. Analysis of the relative movements of the anterior-most structures indicates that misplaced structures move along the anterior-posterior and left-right axes in ways that are significantly different from their normal movements. Conclusions Our data suggest a model in which craniofacial structures utilize a measuring mechanism to assess and adjust their location relative to other local organs. Understanding the correction mechanisms at work in this system could lead to the better understanding of the adaptive decision-making capabilities of living tissues and suggest new approaches to correct birth defects in humans. PMID:22411736
Electromagnetic pulsed thermography for natural cracks inspection
NASA Astrophysics Data System (ADS)
Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing
2017-02-01
Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).
Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime
NASA Astrophysics Data System (ADS)
Cheng, Tin Kei; Lau, Denvid
2014-04-01
As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.
Nondestructive online testing method for friction stir welding using acoustic emission
NASA Astrophysics Data System (ADS)
Levikhina, Anastasiya
2017-12-01
The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arenal, Raul; Lopez-Bezanilla, Alejandro
2014-07-25
We report experimental evidence of the formation by in situ electron-irradiation of single-walled carbon nanotubes (C NT) confined within boron nitride nanotubes (BN-NT). The electron radiation stemming from the microscope supplies the energy required by the amorphous carbonaceous structures to crystallize in a tubular form in a catalyst free procedure, at room temperature and high vacuum. The structural defects resulting from the interaction of the shapeless carbon with the BN nanotube are corrected in a self-healing process throughout the crystallinization. Structural changes developed during the irradiation process such as defects formation and evolution, shrinkage, and shortness of the BN-NT weremore » in situ monitored. The outer BN wall provides a protective and insulating shell against environmental Perturbations to the inner C-NT without affecting their electronic properties, as demonstrated by first principles calculations.« less
NASA Astrophysics Data System (ADS)
Donskoy, Dmitri; Ekimov, Alexander; Luzzato, Emile; Lottiaux, Jean-Louis; Stoupin, Stanislav; Zagrai, Andrei
2003-08-01
In recent years, innovative vibro-modulation technique has been introduced for detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies on the contact area of the interface modulating passing through ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for detection and differentiation of the contact-type defects from other structural and material inhomogeneities. Vibro-modulation technique has been implemented in N-SCAN damage detection system. The system consists of a digital synthesizer, high and low frequency amplifiers, a magnetostrictive shaker, ultrasonic transducers and a PC-based data acquisition/processing station with N-SCAN software. The ability of the system to detect contact-type defects was experimentally verified using specimens of simple and complex geometries made of steel, aluminum, composites and other structural materials. N-SCAN proved to be very effective for nondestructive testing of full-scale structures ranging from 24 foot-long gun barrels to stainless steel pipes used in nuclear power plants. Among advantages of the system are applicability for the wide range of structural materials and for structures with complex geometries, real time data processing, convenient interface for system operation, simplicity of interpretation of results, no need for sensor scanning along structure, onsite inspection of large structures at a fraction of time as compared with conventional techniques. This paper describes the basic principles of nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction and justification of signal processing algorithm. It is also presents examples of practical implementation and application of the technique.
Wind Turbine Bearing Diagnostics Based on Vibration Monitoring
NASA Astrophysics Data System (ADS)
Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.
2018-05-01
Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.
Botto, Lorenzo D.; Robert-Gnansia, Elisabeth; Siffel, Csaba; Harris, John; Borman, Barry; Mastroiacovo, Pierpaolo
2006-01-01
The International Clearing-house for Birth Defects Surveillance and Research, formerly known as International Clearinghouse of Birth Defects Monitoring Systems, consists of 40 registries worldwide that collaborate in monitoring 40 types of birth defects. Clearinghouse activities include the sharing and joint monitoring of birth defect data, epidemiologic and public health research, and capacity building, with the goal of reducing disease and promoting healthy birth outcomes through primary prevention. We discuss 3 of these activities: the collaborative assessment of the potential teratogenicity of first-trimester use of medications (the MADRE project), an example of the intersection of surveillance and research; the international databases of people with orofacial clefts, an example of the evolution from surveillance to outcome research; and the study of genetic polymorphisms, an example of collaboration in public health genetics. PMID:16571708
NASA Astrophysics Data System (ADS)
Chen, Wen; Tang, Ming
2017-04-01
The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.
Health Monitoring of a Rotating Disk Using a Combined Analytical-Experimental Approach
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Woike, Mark R.; Lekki, John D.; Baaklini, George Y.
2009-01-01
Rotating disks undergo rigorous mechanical loading conditions that make them subject to a variety of failure mechanisms leading to structural deformities and cracking. During operation, periodic loading fluctuations and other related factors cause fractures and hidden internal cracks that can only be detected via noninvasive types of health monitoring and/or nondestructive evaluation. These evaluations go further to inspect material discontinuities and other irregularities that have grown to become critical defects that can lead to failure. Hence, the objectives of this work is to conduct a collective analytical and experimental study to present a well-rounded structural assessment of a rotating disk by means of a health monitoring approach and to appraise the capabilities of an in-house rotor spin system. The analyses utilized the finite element method to analyze the disk with and without an induced crack at different loading levels, such as rotational speeds starting at 3000 up to 10 000 rpm. A parallel experiment was conducted to spin the disk at the desired speeds in an attempt to correlate the experimental findings with the analytical results. The testing involved conducting spin experiments which, covered the rotor in both damaged and undamaged (i.e., notched and unnotched) states. Damaged disks had artificially induced through-thickness flaws represented in the web region ranging from 2.54 to 5.08 cm (1 to 2 in.) in length. This study aims to identify defects that are greater than 1.27 cm (0.5 in.), applying available means of structural health monitoring and nondestructive evaluation, and documenting failure mechanisms experienced by the rotor system under typical turbine engine operating conditions.
Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.
2009-01-01
A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.
Net Shape Technology in Aerospace Structures. Volume 1.
1986-11-01
ofI nIo n- destructive evaluation methods, such a s ult rasonic inspection, in detecting otherwise hidden defects in parts made of the material. Pratt...SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER( S ) 5. MONITORING ORGANIZATION REPORT NUMBER( S ) n/a n/a 6a. NAME OF PERFORMING ORGANIZATION 6b...a n/a n/a 11 TITLE (Include Security Classification) Net Shape Technology in Aerospace Structures, Vol. I (U) 12. PERSONAL AUTHOR( S ) 13a. TYPE OF
A novel ultrasonic NDE for shrink fit welded structures using interface waves.
Lee, Jaesun; Park, Junpil; Cho, Younho
2016-05-01
Reactor vessel inspection is a critical part of safety maintenance in a nuclear power plant. The inspection of shrink fit welded structures in a reactor nozzle can be a challenging task due to the complicated geometry. Nozzle inspection using pseudo interface waves allows us to inspect the nozzle from outside of the nuclear reactor. In this study, layered concentric pipes were manufactured with perfect shrink fit conditions using stainless steel 316. The displacement distributions were calculated with boundary conditions for a shrink fit welded structure. A multi-transducer guided wave phased array system was employed to monitor the welding quality of the nozzle end at a distance from a fixed position. The complicated geometry of a shrink fit welded structure can be overcome by using the pseudo interface waves in identifying the location and size of defects. The experimental results demonstrate the feasibility of detecting weld delamination and defects. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James
2017-04-01
Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.
Reliable critical sized defect rodent model for cleft palate research.
Mostafa, Nesrine Z; Doschak, Michael R; Major, Paul W; Talwar, Reena
2014-12-01
Suitable animal models are necessary to test the efficacy of new bone grafting therapies in cleft palate surgery. Rodent models of cleft palate are available but have limitations. This study compared and modified mid-palate cleft (MPC) and alveolar cleft (AC) models to determine the most reliable and reproducible model for bone grafting studies. Published MPC model (9 × 5 × 3 mm(3)) lacked sufficient information for tested rats. Our initial studies utilizing AC model (7 × 4 × 3 mm(3)) in 8 and 16 weeks old Sprague Dawley (SD) rats revealed injury to adjacent structures. After comparing anteroposterior and transverse maxillary dimensions in 16 weeks old SD and Wistar rats, virtual planning was performed to modify MPC and AC defects dimensions, taking the adjacent structures into consideration. Modified MPC (7 × 2.5 × 1 mm(3)) and AC (5 × 2.5 × 1 mm(3)) defects were employed in 16 weeks old Wistar rats and healing was monitored by micro-computed tomography and histology. Maxillary dimensions in SD and Wistar rats were not significantly different. Preoperative virtual planning enhanced postoperative surgical outcomes. Bone healing occurred at defect margin leaving central bone void confirming the critical size nature of the modified MPC and AC defects. Presented modifications for MPC and AC models created clinically relevant and reproducible defects. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
The research of knitting needle status monitoring setup
NASA Astrophysics Data System (ADS)
Liu, Lu; Liao, Xiao-qing; Zhu, Yong-kang; Yang, Wei; Zhang, Pei; Zhao, Yong-kai; Huang, Hui-jie
2013-09-01
In textile production, quality control and testing is the key to ensure the process and improve the efficiency. Defect of the knitting needles is the main factor affecting the quality of the appearance of textiles. Defect detection method based on machine vision and image processing technology is universal. This approach does not effectively identify the defect generated by damaged knitting needles and raise the alarm. We developed a knitting needle status monitoring setup using optical imaging, photoelectric detection and weak signal processing technology to achieve real-time monitoring of weaving needles' position. Depending on the shape of the knitting needle, we designed a kind of Glass Optical Fiber (GOF) light guides with a rectangular port used for transmission of the signal light. To be able to capture the signal of knitting needles accurately, we adopt a optical 4F system which has better imaging quality and simple structure and there is a rectangle image on the focal plane after the system. When a knitting needle passes through position of the rectangle image, the reflected light from needle surface will back to the GOF light guides along the same optical system. According to the intensity of signals, the computer control unit distinguish that the knitting needle is broken or curving. The experimental results show that this system can accurately detect the broken needles and the curving needles on the knitting machine in operating condition.
Tran, Quang Huy; Han, Dongyeob; Kang, Choonghyun; Haldar, Achintya; Huh, Jungwon
2017-07-26
Active thermal imaging is an effective nondestructive technique in the structural health monitoring field, especially for concrete structures not exposed directly to the sun. However, the impact of meteorological factors on the testing results is considerable and should be studied in detail. In this study, the impulse thermography technique with halogen lamps heat sources is used to detect defects in concrete structural components that are not exposed directly to sunlight and not significantly affected by the wind, such as interior bridge box-girders and buildings. To consider the effect of environment, ambient temperature and relative humidity, these factors are investigated in twelve cases of testing on a concrete slab in the laboratory, to minimize the influence of wind. The results showed that the absolute contrast between the defective and sound areas becomes more apparent with an increase of ambient temperature, and it increases at a faster rate with large and shallow delaminations than small and deep delaminations. In addition, the absolute contrast of delamination near the surface might be greater under a highly humid atmosphere. This study indicated that the results obtained from the active thermography technique will be more apparent if the inspection is conducted on a day with high ambient temperature and humidity.
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2017-11-01
Severe plastic deformation by equal channel angular pressing has been performed to produce light aluminum and magnesium alloy billets with ultrafine-grained structure. The physical and mechanical properties of the processed alloys are examined by studying their microstructure, measuring microhardness, yield strength, and uniaxial tensile strength. A nondestructive testing technique using three-dimensional X-ray tomography is proposed for detecting internal structural defects and monitoring damage formation in the structure of alloys subjected to severe plastic deformation. The investigation results prove the efficiency of the chosen method and selected mode of producing ultrafine-grained light alloys.
Strategy For Yield Control And Enhancement In VLSI Wafer Manufacturing
NASA Astrophysics Data System (ADS)
Neilson, B.; Rickey, D.; Bane, R. P.
1988-01-01
In most fully utilized integrated circuit (IC) production facilities, profit is very closely linked with yield. In even the most controlled manufacturing environments, defects due to foreign material are a still major contributor to yield loss. Ideally, an IC manufacturer will have ample engineering resources to address any problem that arises. In the real world, staffing limitations require that some tasks must be left undone and potential benefits left unrealized. Therefore, it is important to prioritize problems in a manner that will give the maximum benefit to the manufacturer. When offered a smorgasbord of problems to solve, most people (engineers included) will start with what is most interesting or the most comfortable to work on. By providing a system that accurately predicts the impact of a wide variety of defect types, a rational method of prioritizing engineering effort can be made. To that effect, a program was developed to determine and rank the major yield detractors in a mixed analog/digital FET manufacturing line. The two classical methods of determining yield detractors are chip failure analysis and defect monitoring on drop in test die. Both of these methods have short comings: 1) Chip failure analysis is painstaking and very time consuming. As a result, the sample size is very small. 2) Drop in test die are usually designed for device parametric analysis rather than defect analysis. To provide enough wafer real estate to do meaningful defect analysis would render the wafer worthless for production. To avoid these problems, a defect monitor was designed that provided enough area to detect defects at the same rate or better than the NMOS product die whose yield was to be optimized. The defect monitor was comprehensive and electrically testable using such equipment as the Prometrix LM25 and other digital testers. This enabled the quick accumulation of data which could be handled statistically and mapped individually. By scaling the defect densities found on the monitors to the known sensitivities of the product wafer, the defect types were ranked by defect limiting yield. (Limiting yield is the resultant product yield if there were no other failure mechanisms other than the type being considered.) These results were then compared to the product failure analysis results to verify that the monitor was finding the same types of defects in the same proportion which were troubling our product. Finally, the major defect types were isolated and reduced using the short loop capability of the monitor.
Ultra fine grained Ti prepared by severe plastic deformation
NASA Astrophysics Data System (ADS)
Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.
2016-01-01
The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.
Using process monitor wafers to understand directed self-assembly defects
NASA Astrophysics Data System (ADS)
Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.
2013-03-01
As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.
Gonzalo, Susana; Kreienkamp, Ray
2016-01-01
The organization of the genome within the nuclear space is viewed as an additional level of regulation of genome function, as well as a means to ensure genome integrity. Structural proteins associated with the nuclear envelope, in particular lamins (A- and B-type) and lamin-associated proteins, play an important role in genome organization. Interestingly, there is a whole body of evidence that links disruptions of the nuclear lamina with DNA repair defects and genomic instability. Here, we describe a few standard techniques that have been successfully utilized to identify mechanisms behind DNA repair defects and genomic instability in cells with an altered nuclear lamina. In particular, we describe protocols to monitor changes in the expression of DNA repair factors (Western blot) and their recruitment to sites of DNA damage (immunofluorescence); kinetics of DNA double-strand break repair after ionizing radiation (neutral comet assays); frequency of chromosomal aberrations (FISH, fluorescence in situ hybridization); and alterations in telomere homeostasis (Quantitative-FISH). These techniques have allowed us to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability, which could contribute to the pathophysiology of aging and aging-related diseases.
Preliminary study of ultrasonic structural quality control of Swiss-type cheese.
Eskelinen, J J; Alavuotunki, A P; Haeggström, E; Alatossava, T
2007-09-01
There is demand for a new nondestructive cheese-structure analysis method for Swiss-type cheese. Such a method would provide the cheese-making industry the means to enhance process control and quality assurance. This paper presents a feasibility study on ultrasonic monitoring of the structural quality of Swiss cheese by using a single-transducer 2-MHz longitudinal mode pulse-echo setup. A volumetric ultrasonic image of a cheese sample featuring gas holes (cheese-eyes) and defects (cracks) in the scan area is presented. The image is compared with an optical reference image constructed from dissection images of the same sample. The results show that the ultrasonic method is capable of monitoring the gas-solid structure of the cheese during the ripening process. Moreover, the method can be used to detect and to characterize cheese-eyes and cracks in ripened cheese. Industrial application demands were taken into account when conducting the measurements.
Advances in in situ inspection of automated fiber placement systems
NASA Astrophysics Data System (ADS)
Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.
2016-05-01
Automated Fiber Placement (AFP) systems have been developed to help take advantage of the tailorability of composite structures in aerospace applications. AFP systems allow the repeatable placement of uncured, spool fed, preimpregnated carbon fiber tape (tows) onto substrates in desired thicknesses and orientations. This automated process can incur defects, such as overlapping tow lines, which can severely undermine the structural integrity of the part. Current defect detection and abatement methods are very labor intensive, and still mostly rely on human manual inspection. Proposed is a thermographic in situ inspection technique which monitors tow placement with an on board thermal camera using the preheated substrate as a through transmission heat source. An investigation of the concept is conducted, and preliminary laboratory results are presented. Also included will be a brief overview of other emerging technologies that tackle the same issue.
NASA Astrophysics Data System (ADS)
Nalladega, V.; Na, J. K.; Druffner, C.
2011-06-01
Interdigital transducers (IDT) generate and receive ultrasonic surface waves without the complexity involved with secondary devices such as angled wedges or combs. The IDT sensors have been successfully applied for the NDE of homogeneous materials like metals in order to detect cracks and de-bond. However, these transducers have not been yet adapted for complex and anisotropic materials like fiber-reinforced composites. This work presents the possibility of using IDT sensors for monitoring structural damages in wind turbine blades, typically made of fiberglass composites. IDT sensors with a range of operating frequency between 250 kHz and 1 MHz are initially tested on representative composite test panels for ultrasonic surface wave properties including beam spread, propagation distance and effect of material's anisotropy. Based on these results, an optimum frequency range for the IDT sensor is found to be 250-500 kHz. Subsequently, IDT sensors with operating frequency 500 kHz are used to detect and quantify artificial defects created in the composite test samples. Discussions are made on the interaction of ultrasonic fields with these defects along with the effects of fiber directionality and composite layer stacking.
Electromagnetic pulsed thermography for natural cracks inspection
Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing
2017-01-01
Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361
NASA Astrophysics Data System (ADS)
Bykov, A. A.; Matveenko, B. P.; Serovaev, G. S.; Shardakov, I. N.; Shestakov, A. P.
2015-03-01
The contemporary construction industry is based on the use of reinforced concrete structures, but emergency situations resulting in fracture can arise in their exploitation. In a majority of cases, reinforced concrete fracture is realized as the process of crack formation and development. As a rule, the appearance of the first cracks does not lead to the complete loss of the carrying capacity but is a fracture precursor. One method for ensuring the safe operation of building structures is based on crack initiation monitoring. A vibration method for the monitoring of reinforced concrete structures is justified in this paper. An example of a reinforced concrete beam is used to consider all stages related to the analysis of the behavior of natural frequencies in the development of a crack-shaped defect and the use of the obtained numerical results for the vibration test method. The efficiency of the method is illustrated by the results of modeling of the physical part of the method related to the analysis of the natural frequency evolution as a response to the impact action in the crack development process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogan, Pinar; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr; Polat, Emre O.
The progress in the development of graphene devices is promising, and they are now considered as an option for the current Si-based electronics. However, the structural defects in graphene may strongly influence the local electronic and mechanical characteristics. Although there are well-established analytical characterization methods to analyze the chemical and physical parameters of this material, they remain incapable of fully understanding of the morphological disorders. In this study, x-ray photoelectron spectroscopy (XPS) with an external voltage bias across the sample is used for the characterization of morphological defects in large area of a few layers graphene in a chemically specificmore » fashion. For the XPS measurements, an external +6 V bias applied between the two electrodes and areal analysis for three different elements, C1s, O1s, and Au4f, were performed. By monitoring the variations of the binding energy, the authors extract the voltage variations in the graphene layer which reveal information about the structural defects, cracks, impurities, and oxidation levels in graphene layer which are created purposely or not. Raman spectroscopy was also utilized to confirm some of the findings. This methodology the authors offer is simple but provides promising chemically specific electrical and morphological information.« less
Process defects and in situ monitoring methods in metal powder bed fusion: a review
NASA Astrophysics Data System (ADS)
Grasso, Marco; Colosimo, Bianca Maria
2017-04-01
Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.
Layer-by-layer epitaxial growth of defect-engineered strontium cobaltites
Andersen, Tassie K.; Cook, Seyoung; Wan, Gang; ...
2018-01-18
Here, control over structure and composition of (ABO 3) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cation’s stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentrationmore » as a function of film thickness. Experimental results are compared to kinetically-limited thermodynamic predictions, in particular, solute trapping, with semi-quantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less
Layer-by-layer epitaxial growth of defect-engineered strontium cobaltites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Tassie K.; Cook, Seyoung; Wan, Gang
Here, control over structure and composition of (ABO 3) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cation’s stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentrationmore » as a function of film thickness. Experimental results are compared to kinetically-limited thermodynamic predictions, in particular, solute trapping, with semi-quantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less
Layer-by-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Tassie K.; Cook, Seyoung; Wan, Gang
Control over structure and composition of (ABO(3)) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cations stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentration as amore » function of film thickness. Experimental results are compared to kinetically limited thermodynamic predictions, in particular, solute trapping, with semiquantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less
Printed strain sensors for early damage detection in engineering structures
NASA Astrophysics Data System (ADS)
Zymelka, Daniel; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi
2018-05-01
In this paper, we demonstrate the analysis of strain measurements recorded using a screen-printed sensors array bonded to a metal plate and subjected to high strains. The analysis was intended to evaluate the capabilities of the printed strain sensors to detect abnormal strain distribution before actual defects (cracks) in the analyzed structures appear. The results demonstrate that the developed device can accurately localize the enhanced strains at the very early stage of crack formation. The promising performance and low fabrication cost confirm the potential suitability of the printed strain sensors for applications within the framework of structural health monitoring (SHM).
A guided-wave system for monitoring the wing skin-to-spar bond in unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco; Marzani, Alessandro; Coccia, Stefano; Oliver, Joseph; Kosmatka, John; Rizzo, Piervincenzo; Restivo, Gaetano
2005-05-01
Unmanned Aerial Vehicles (UAVs) are being increasingly used in military as well as civil applications. A critical part of the structure is the adhesive bond between the wing skin and the supporting spar. If not detected early, bond defects originating during manufacturing or in service flight can lead to inefficient flight performance and eventual global failure. This paper will present results from a bond inspection system based on attached piezoelectric disks probing the skin-to-spar bondline with ultrasonic guided waves in the hundreds of kilohertz range. The test components were CFRP composite panels of two different fiber layups bonded to a CFRP composite tube using epoxy adhesive. Three types of bond conditions were simulated, namely regions of poor cohesive strength, regions with localized disbonds and well bonded regions. The root mean square and variance of the received time-domain signals and their discrete wavelet decompositions were computed for the dominant modes propagating through the various bond regions in two different inspection configurations. Semi-analytical finite element analysis of the bonded multilayer joint was also carried out to identify and predict the sensitivity of the predominant carrier modes to the different bond defects. Emphasis of this research is based upon designing a built-in system for monitoring the structural integrity of bonded joints in UAVs and other aerospace structures.
Reconstruction of structural damage based on reflection intensity spectra of fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Huang, Guojun; Wei, Changben; Chen, Shiyuan; Yang, Guowei
2014-12-01
We present an approach for structural damage reconstruction based on the reflection intensity spectra of fiber Bragg gratings (FBGs). Our approach incorporates the finite element method, transfer matrix (T-matrix), and genetic algorithm to solve the inverse photo-elastic problem of damage reconstruction, i.e. to identify the location, size, and shape of a defect. By introducing a parameterized characterization of the damage information, the inverse photo-elastic problem is reduced to an optimization problem, and a relevant computational scheme was developed. The scheme iteratively searches for the solution to the corresponding direct photo-elastic problem until the simulated and measured (or target) reflection intensity spectra of the FBGs near the defect coincide within a prescribed error. Proof-of-concept validations of our approach were performed numerically and experimentally using both holed and cracked plate samples as typical cases of plane-stress problems. The damage identifiability was simulated by changing the deployment of the FBG sensors, including the total number of sensors and their distance to the defect. Both the numerical and experimental results demonstrate that our approach is effective and promising. It provides us with a photo-elastic method for developing a remote, automatic damage-imaging technique that substantially improves damage identification for structural health monitoring.
Research of real-time video processing system based on 6678 multi-core DSP
NASA Astrophysics Data System (ADS)
Li, Xiangzhen; Xie, Xiaodan; Yin, Xiaoqiang
2017-10-01
In the information age, the rapid development in the direction of intelligent video processing, complex algorithm proposed the powerful challenge on the performance of the processor. In this article, through the FPGA + TMS320C6678 frame structure, the image to fog, merge into an organic whole, to stabilize the image enhancement, its good real-time, superior performance, break through the traditional function of video processing system is simple, the product defects such as single, solved the video application in security monitoring, video, etc. Can give full play to the video monitoring effectiveness, improve enterprise economic benefits.
Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...
2014-11-19
To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, J. D.; Gedvilas, L.; Kiriluk, K.
Deep oxygen related defects form in hydrogenated nanocrystalline silicon (nc-Si:H) as a consequence of thermal annealing, but their microscopic origins and formation mechanisms are not well understood. To gain insight to this behavior we intentionally drive-out hydrogen from nc-Si:H films by thermal annealing and monitor accompanying changes in the electronic and vibrational structure of the films with photoluminescence (PL) and Fourier transform infrared (FTIR) absorption spectroscopy. Hydrogen effusion (HE) data provide additional insight, because the annealing temperature range shown to induce a defect band, centered at {approx}0.7 eV in PL studies, and that corresponding to the onset of thermally activatedmore » hydrogen desorption from grain boundaries, coincide. This coincidence suggests a probable link between the two processes. The activation energy obtained from correlated annealing-PL experiments, of {approx}0.6 eV, for defect formation with thermal exposure, provides substantial insight regarding the mechanism.« less
Chirality-controlled crystallization via screw dislocations.
Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric
2018-04-11
Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.
NASA Astrophysics Data System (ADS)
Su, Zhongqing; Ye, Lin
2004-08-01
The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.
Kawchuk, Gregory Neil; Decker, Colleen; Dolan, Ryan; Carey, Jason
2009-01-19
Structural health monitoring has been used successfully to identify defects in civil infrastructure and aerospace applications. Given that the majority of low back pain is thought to be mechanical in nature, our objective was to determine if structural health monitoring techniques could be employed successfully to identify the presence, location and magnitude of structural alterations within the spine. In six eviscerated cadaveric pigs, bone screws were drilled into the anterior bodies of L1-L5 and tri-axial accelerometers fixed to each spinous process. Vibration was then applied to the L3 spinous and frequency response functions obtained from each sensor axis before and after specific alterations of spinal structure. These alterations were produced at four unique locations and included (1) use of a cable tie to link anterior bone pins together and (2) progressive disc sectioning. Eighty percent of all data were used to train a neural network while the remaining data were used to test the network's ability to distinguish between structural states. The presence, location and magnitude of structural change within the spine was identified correctly in 5030/5040 possible neural network decisions. The diagnostic sensitivity and specificity of this technique ranged from 0.994 to 1.000. These results indicate that there is sufficient information embedded in frequency response data to identify the presence, location and magnitude of specific structural changes in the spine. If these techniques can be evolved for human use, structural health monitoring may provide a new approach toward understanding the underlying relations between spinal structure and function.
NASA Astrophysics Data System (ADS)
Holford, Karen M.; Eaton, Mark J.; Hensman, James J.; Pullin, Rhys; Evans, Sam L.; Dervilis, Nikolaos; Worden, Keith
2017-04-01
The acoustic emission (AE) phenomenon has many attributes that make it desirable as a structural health monitoring or non-destructive testing technique, including the capability to continuously and globally monitor large structures using a sparse sensor array and with no dependency on defect size. However, AE monitoring is yet to fulfil its true potential, due mainly to limitations in location accuracy and signal characterisation that often arise in complex structures with high levels of background noise. Furthermore, the technique has been criticised for a lack of quantitative results and the large amount of operator interpretation required during data analysis. This paper begins by introducing the challenges faced in developing an AE based structural health monitoring system and then gives a review of previous progress made in addresing these challenges. Subsequently an overview of a novel methodology for automatic detection of fatigue fractures in complex geometries and noisy environments is presented, which combines a number of signal processing techniques to address the current limitations of AE monitoring. The technique was developed for monitoring metallic landing gear components during pre-flight certification testing and results are presented from a full-scale steel landing gear component undergoing fatigue loading. Fracture onset was successfully identify automatically at 49,000 fatigue cycles prior to final failure (validated by the use of dye penetrant inspection) and the fracture position was located to within 10 mm of the actual location.
Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment
NASA Astrophysics Data System (ADS)
Alani, Amir M.; Aboutalebi, Morteza; Kilic, Gokhan
2013-10-01
This paper presents the essence of two case studies by the authors on two major bridges in the UK. The first case study reports on the applications of GPR and associated work carried out on the Forth Road Bridge near Edinburgh, Scotland, with the main objective of identifying possible structural defects including damaged rebar and moisture ingress at specific locations of the bridge deck. The second case study focuses on a full assessment of the Pentagon Road Bridge, in Chatham, Kent, England with particular emphasis on the identification of possible defects including structural cracks within the deck structure and establishing the layout of the upper and lower rebar positions throughout the bridge. These studies present interesting results in terms of locations of rebar and an accurate estimate of concrete cover condition as well as reporting on a remarkable similarity in the processed data concerning areas affected by ingress of moisture within the deck structures of the two bridges under investigation. It is believed that this paper will be of particular interest to bridge engineers and structural engineering practitioners with enthusiasm for adopting non-destructive testing methods such as GPR in the health monitoring and assessment of bridge structures. The observed similarities in the processed data between the two reported case studies present an interesting concept within the general context of the interpretation of GPR data, with the potential for use in many other forthcoming cases. The paper also reports on the adopted method for the GPR survey with emphasis on difficulties and challenges encountered during the actual survey. The presented results benefit from advanced processing and presentation techniques.
Fiber Optic Thermal Health Monitoring of Composites
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.
2010-01-01
A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.
Nondestructive Evaluation and Health Monitoring of Adhesively Bonded Composite Structures
NASA Astrophysics Data System (ADS)
Roth, William Walker
As the growth of fiber reinforced composite materials continues in many industries, structural designers will have to look to new methods of joining components. In order to take full advantage of composite materials, such as increased stiffness, decreased weight, tailored material properties and increased fatigue life, mechanical fasteners will need to be replaced by adhesive bonding or welding, when possible. Mechanical fasteners require the drilling of holes, which damages the laminate and becomes the source of further fatigue damage. Also, an increase in laminate thickness or inclusion of other features is required for the material to withstand the bearing stress needed to preload fasteners. Adhesives transfer the load over a large area, do not require additional machining operations, provide increased stiffness through the joint, provide corrosion protection when joining dissimilar materials, and provide vibrational damping. Additionally, the repair of composite structures, which will become a major concern in the near future, will require the use of adhesive bonding for thermoset composites. In order for adhesives to be used to join primary aerospace structures they must meet certification requirements, which includes proof that the joint can withstand the required ultimate load without structural failure. For most components, nondestructive inspection is used to find critical flaws, which is combined with fracture mechanics to ensure that the structure can meet the requirements. This process works for some of the adhesive flaws, but other critical defects are not easily detected. Weak interface bonding is particularly challenging. This type of defect results in an interphase zone that may be only a dozen microns in thickness. Traditional bulk wave ultrasonic techniques cannot easily distinguish this zone from the interface between adherend and adhesive. This work considers two approaches to help solve this problem. Guided elastic wave propagation along laminate structures is highly dependent on the boundary conditions at the surface and between plies, especially at high frequencies. This work investigates how interfacial defects can alter the propagation of guided waves through bonded fiber reinforced composite materials. As well as how this information can be used to determine the interface properties and correlate the results with fracture parameters. The second approach investigates how structural health monitoring can be used to detect the growth of disbonds from service loads. A mode selection technique is proposed for selecting frequency ranges for electromechanical impedance spectroscopy.
Understand Your Risk for Heart Failure
... Heart.org Arrhythmia About Arrhythmia Why Arrhythmia Matters Understand Your Risk for Arrhythmia Symptoms, Diagnosis & Monitoring of ... Heart Defects The Impact of Congenital Heart Defects Understand Your Risk for Congenital Heart Defects Symptoms & Diagnosis ...
Smart acoustic emission system for wireless monitoring of concrete structures
NASA Astrophysics Data System (ADS)
Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol
2008-03-01
Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical AE diagnosis was demonstrated for assessing the conditions of damage and distress in concrete structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H., E-mail: lhlewis@neu.edu
To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO{sub 2} nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O{sub 2} (oxidizing), Ar (inert), and H{sub 2} (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO{submore » 2} nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (∼5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO{sub 2} nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H{sub 2}-annealed nanotubes than with the Ar- and O{sub 2}-annealed nanotube samples. This enhanced photocatalytic response of the H{sub 2}-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti{sup 3+} and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less
Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept
NASA Technical Reports Server (NTRS)
Kennedy, J. J.
1970-01-01
Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.
NASA Technical Reports Server (NTRS)
Saulsberry, Regor; Nichols, Charles; Waller, Jess
2012-01-01
Currently there are no integrated NDE methods for baselining and monitoring defect levels in fleet for Composite Overwrapped Pressure Vessels (COPVs) or related fracture critical composites, or for performing life-cycle maintenance inspections either in a traditional remove-and-inspect mode or in a more modern in situ inspection structural health monitoring (SHM) mode. Implicit in SHM and autonomous inspection is the existence of quantitative accept-reject criteria. To be effective, these criteria must correlate with levels of damage known to cause composite failure. Furthermore, implicit in SHM is the existence of effective remote sensing hardware and automated techniques and algorithms for interpretation of SHM data. SHM of facture critical composite structures, especially high pressure COPVs, is critical to the success of nearly every future NASA space exploration program as well as life extension of the International Space Station. It has been clearly stated that future NASA missions may not be successful without SHM [1]. Otherwise, crews will be busy addressing subsystem health issues and not focusing on the real NASA mission
Defects diagnosis in laser brazing using near-infrared signals based on empirical mode decomposition
NASA Astrophysics Data System (ADS)
Cheng, Liyong; Mi, Gaoyang; Li, Shuo; Wang, Chunming; Hu, Xiyuan
2018-03-01
Real-time monitoring of laser welding plays a very important role in the modern automated production and online defects diagnosis is necessary to be implemented. In this study, the status of laser brazing was monitored in real time using an infrared photoelectric sensor. Four kinds of braze seams (including healthy weld, unfilled weld, hole weld and rough surface weld) along with corresponding near-infrared signals were obtained. Further, a new method called Empirical Mode Decomposition (EMD) was proposed to analyze the near-infrared signals. The results showed that the EMD method had a good performance in eliminating the noise on the near-infrared signals. And then, the correlation coefficient was developed for selecting the Intrinsic Mode Function (IMF) more sensitive to the weld defects. A more accurate signal was reconstructed with the selected IMF components. Simultaneously, the spectrum of selected IMF components was solved using fast Fourier transform, and the frequency characteristics were clearly revealed. The frequency energy of different frequency bands was computed to diagnose the defects. There was a significant difference in four types of weld defects. This approach has been proved to be an effective and efficient method for monitoring laser brazing defects.
High throughput wafer defect monitor for integrated metrology applications in photolithography
NASA Astrophysics Data System (ADS)
Rao, Nagaraja; Kinney, Patrick; Gupta, Anand
2008-03-01
The traditional approach to semiconductor wafer inspection is based on the use of stand-alone metrology tools, which while highly sensitive, are large, expensive and slow, requiring inspection to be performed off-line and on a lot sampling basis. Due to the long cycle times and sparse sampling, the current wafer inspection approach is not suited to rapid detection of process excursions that affect yield. The semiconductor industry is gradually moving towards deploying integrated metrology tools for real-time "monitoring" of product wafers during the manufacturing process. Integrated metrology aims to provide end-users with rapid feedback of problems during the manufacturing process, and the benefit of increased yield, and reduced rework and scrap. The approach of monitoring 100% of the wafers being processed requires some trade-off in sensitivity compared to traditional standalone metrology tools, but not by much. This paper describes a compact, low-cost wafer defect monitor suitable for integrated metrology applications and capable of detecting submicron defects on semiconductor wafers at an inspection rate of about 10 seconds per wafer (or 360 wafers per hour). The wafer monitor uses a whole wafer imaging approach to detect defects on both un-patterned and patterned wafers. Laboratory tests with a prototype system have demonstrated sensitivity down to 0.3 µm on un-patterned wafers and down to 1 µm on patterned wafers, at inspection rates of 10 seconds per wafer. An ideal application for this technology is preventing photolithography defects such as "hot spots" by implementing a wafer backside monitoring step prior to exposing wafers in the lithography step.
Develop an piezoelectric sensing based on SHM system for nuclear dry storage system
NASA Astrophysics Data System (ADS)
Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu
2016-04-01
In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.
Damage Tolerance of Large Shell Structures
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Chamis, C. C.
1999-01-01
Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.
Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure
NASA Astrophysics Data System (ADS)
Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris
2017-02-01
Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice
2014-03-01
In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.
Rappazzo, Kristen M; Warren, Joshua L; Meyer, Robert E; Herring, Amy H; Sanders, Alison P; Brownstein, Naomi C; Luben, Thomas J
2016-04-01
Birth defects are responsible for a large proportion of disability and infant mortality. Exposure to a variety of pesticides have been linked to increased risk of birth defects. We conducted a case-control study to estimate the associations between a residence-based metric of agricultural pesticide exposure and birth defects. We linked singleton live birth records for 2003 to 2005 from the North Carolina (NC) State Center for Health Statistics to data from the NC Birth Defects Monitoring Program. Included women had residence at delivery inside NC and infants with gestational ages from 20 to 44 weeks (n = 304,906). Pesticide exposure was assigned using a previously constructed metric, estimating total chemical exposure (pounds of active ingredient) based on crops within 500 meters of maternal residence, specific dates of pregnancy, and chemical application dates based on the planting/harvesting dates of each crop. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals for four categories of exposure (<10(th) , 10-50(th) , 50-90(th) , and >90(th) percentiles) compared with unexposed. Models were adjusted for maternal race, age at delivery, education, marital status, and smoking status. We observed elevated ORs for congenital heart defects and certain structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems (e.g., OR [95% confidence interval] [highest exposure vs. unexposed] for tracheal esophageal fistula/esophageal atresia = 1.98 [0.69, 5.66], and OR for atrial septal defects: 1.70 [1.34, 2.14]). Our results provide some evidence of associations between residential exposure to agricultural pesticides and several birth defects phenotypes. Birth Defects Research (Part A) 106:240-249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Masera, D.; Bocca, P.; Grazzini, A.
2011-07-01
In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.
Local Guided Wavefield Analysis for Characterization of Delaminations in Composites
NASA Technical Reports Server (NTRS)
Rogge, Matthew D.; Campbell Leckey, Cara A.
2012-01-01
Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations. Keywords: Ultrasonic wavefield imaging, Windowed Fourier transforms, Guided waves, Structural health monitoring, Nondestructive evaluation
Novel self-sensing carbon nanotube-based composites for rehabilitation of structural steel members
NASA Astrophysics Data System (ADS)
Ahmed, Shafique; Doshi, Sagar; Schumacher, Thomas; Thostenson, Erik T.; McConnell, Jennifer
2016-02-01
Fatigue and fracture are among the most critical forms of damage in metal structures. Fatigue damage can initiate from microscopic defects (e.g., surface scratches, voids in welds, and internal defects) and initiate a crack. Under cyclic loading, these cracks can grow and reach a critical level to trigger fracture of the member which leads to compromised structural integrity and, in some cases, catastrophic failure of the entire structure. In our research, we are investigating a solution using carbon nanotube-based sensing composites, which have the potential to simultaneously rehabilitate and monitor fatigue-cracked structural members. These composites consist of a fiber-reinforced polymer (FRP) layer and a carbon nanotube-based sensing layer, which are integrated to form a novel structural self-sensing material. The sensing layer is composed of a non-woven aramid fabric that is coated with carbon nanotubes (CNT) to form an electrically conductive network that is extremely sensitive to detecting deformation as well as damage accumulation via changes in the resistance of the CNT network. In this paper, we introduce the sensing concept, describe the manufacturing of a model sensing prototype, and discuss a set of small-scale laboratory experiments to examine the load-carrying capacity and damage sensing response.
Maternal Residential Exposure to Agricultural Pesticides and ...
Birth defects are responsible for a large proportion of disability and infant mortality. Exposure to a variety of pesticides have been linked to increased risk of birth defects. We conducted a case-control study to estimate the associations between a residence-based metric of agricultural pesticide exposure and birth defects. We linked singleton live birth records for 2003-2005 from the North Carolina (NC) State Center for Health Statistics to data from the NC Birth Defects Monitoring Program. Included women had residence at delivery inside NC and infants with gestational ages from 20-44 weeks (n=304,906). Pesticide exposure was assigned using a previously constructed metric, estimating total chemical exposure (pounds of active ingredient) based on crops within 500 meters of maternal residence, specific dates of pregnancy, and chemical application dates based on the planting/harvesting dates of each crop. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for four categories of exposure (90th percentiles) compared to unexposed. Models were adjusted for maternal race, age at delivery, education, marital status, and smoking status. We observed elevated ORs for congenital heart defects and certain structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems (e.g., OR (95% CI) (highest exposure vs. unexposed) for tracheal esophageal fistula/esophageal atresia = 1.98 (0.69, 5.66), and OR for atr
Rescalvo, Francisco J.; Valverde-Palacios, Ignacio; Gallego, Antolino
2018-01-01
This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures. PMID:29673155
Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino
2018-04-17
This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.
NASA Astrophysics Data System (ADS)
Kang, Jidong; Gianetto, James A.; Tyson, William R.
2018-03-01
Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edgenotched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.
Application of the automated spatial surveillance program to birth defects surveillance data.
Gardner, Bennett R; Strickland, Matthew J; Correa, Adolfo
2007-07-01
Although many birth defects surveillance programs incorporate georeferenced records into their databases, practical methods for routine spatial surveillance are lacking. We present a macroprogram written for the software package R designed for routine exploratory spatial analysis of birth defects data, the Automated Spatial Surveillance Program (ASSP), and present an application of this program using spina bifida prevalence data for metropolitan Atlanta. Birth defects surveillance data were collected by the Metropolitan Atlanta Congenital Defects Program. We generated ASSP maps for two groups of years that correspond roughly to the periods before (1994-1998) and after (1999-2002) folic acid fortification of flour. ASSP maps display census tract-specific spina bifida prevalence, smoothed prevalence contours, and locations of statistically elevated prevalence. We used these maps to identify areas of elevated prevalence for spina bifida. We identified a large area of potential concern in the years following fortification of grains and cereals with folic acid. This area overlapped census tracts containing large numbers of Hispanic residents. The potential utility of ASSP for spatial disease monitoring was demonstrated by the identification of areas of high prevalence of spina bifida and may warrant further study and monitoring. We intend to further develop ASSP so that it becomes practical for routine spatial monitoring of birth defects. (c) 2007 Wiley-Liss, Inc.
System and process for detecting and monitoring surface defects
NASA Technical Reports Server (NTRS)
Mueller, Mark K. (Inventor)
1994-01-01
A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.
Guided wave crack detection and size estimation in stiffened structures
NASA Astrophysics Data System (ADS)
Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor
2018-03-01
Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.
NASA Astrophysics Data System (ADS)
Lee, Jung-Youl; Seo, Il-Seok; Ma, Seong-Min; Kim, Hyeon-Soo; Kim, Jin-Woong; Kim, DoOh; Cross, Andrew
2013-03-01
The migration to a 3D implementation for NAND flash devices is seen as the leading contender to replace traditional planar NAND architectures. However the strategy of replacing shrinking design rules with greater aspect ratios is not without its own set of challenges. The yield-limiting defect challenges for the planar NAND front end were primarily bridges, protrusions and residues at the bottom of the gates, while the primary challenges for front end 3D NAND is buried particles, voids and bridges in the top, middle and bottom of high aspect ratio structures. Of particular interest are the yield challenges in the channel hole process module and developing an understanding of the contribution of litho and etch defectivity for this challenging new integration scheme. The key defectivity and process challenges in this module are missing, misshapen channel holes or under-etched channel holes as well as reducing noise sources related to other none yield limiting defect types and noise related to the process integration scheme. These challenges are expected to amplify as the memory density increases. In this study we show that a broadband brightfield approach to defect monitoring can be uniquely effective for the channel hole module. This approach is correlated to end-of-line (EOL) Wafer Bin Map for verification of capability.
Sheets, Cherilyn G; Wu, Jean C; Earthman, James C
2017-11-29
Structural damage may remain even after a tooth is restored. Conventional diagnostic aids do not quantify the severity of structural damage or allow the monitoring of structural changes after restoration. The purpose of this retrospective clinical study was to provide an in-depth analysis of 9 high-risk sites after restoration. The analysis followed structural defects found upon disassembly, restorative materials used, therapeutic procedures provided, current longevity, and long-term quantitative percussion diagnostics (QPD) to monitor results. The hypothesis was that QPD can be used to quantify positive and negative changes in structural stability. Sixty sites requiring restoration were part of an institutional review board-approved clinical study. Each participant was examined comprehensively, including QPD testing, at each follow-up. Long-term changes in normal fit error (NFE) values after restoration were evaluated according to a pathology rating system established in an earlier publication. Nine highly compromised sites were chosen for further analysis and monitored for an additional 6 years. Of the 9 high-risk sites (NFE>0.04), 7 sites improved and 2 sites deteriorated. Potential causes for each trend were documented. The data support the hypothesis that QPD can be used to monitor changes in structural stability after restoration. Knowledge of changes in advance of any symptoms allows further preventive or therapeutic intervention before serious structural damage can occur. Follow-up QPD indications of site improvement can also assure the clinician of the desired structural outcome. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Phonons, defects and optical damage in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.
1986-04-01
Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.
Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs.
Marlovits, Stefan; Mamisch, Tallal Charles; Vekszler, György; Resinger, Christoph; Trattnig, Siegfried
2008-04-01
Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.
NASA Astrophysics Data System (ADS)
Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David
2013-12-01
The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.
Guided wave phased array sensor tuning for improved defect detection and characterization
NASA Astrophysics Data System (ADS)
Philtron, Jason H.; Rose, Joseph L.
2014-03-01
Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto
2018-03-01
Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.
Viewing Integrated-Circuit Interconnections By SEM
NASA Technical Reports Server (NTRS)
Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.
1990-01-01
Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.
Process tool monitoring and matching using interferometry technique
NASA Astrophysics Data System (ADS)
Anberg, Doug; Owen, David M.; Mileham, Jeffrey; Lee, Byoung-Ho; Bouche, Eric
2016-03-01
The semiconductor industry makes dramatic device technology changes over short time periods. As the semiconductor industry advances towards to the 10 nm device node, more precise management and control of processing tools has become a significant manufacturing challenge. Some processes require multiple tool sets and some tools have multiple chambers for mass production. Tool and chamber matching has become a critical consideration for meeting today's manufacturing requirements. Additionally, process tools and chamber conditions have to be monitored to ensure uniform process performance across the tool and chamber fleet. There are many parameters for managing and monitoring tools and chambers. Particle defect monitoring is a well-known and established example where defect inspection tools can directly detect particles on the wafer surface. However, leading edge processes are driving the need to also monitor invisible defects, i.e. stress, contamination, etc., because some device failures cannot be directly correlated with traditional visualized defect maps or other known sources. Some failure maps show the same signatures as stress or contamination maps, which implies correlation to device performance or yield. In this paper we present process tool monitoring and matching using an interferometry technique. There are many types of interferometry techniques used for various process monitoring applications. We use a Coherent Gradient Sensing (CGS) interferometer which is self-referencing and enables high throughput measurements. Using this technique, we can quickly measure the topography of an entire wafer surface and obtain stress and displacement data from the topography measurement. For improved tool and chamber matching and reduced device failure, wafer stress measurements can be implemented as a regular tool or chamber monitoring test for either unpatterned or patterned wafers as a good criteria for improved process stability.
A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho
2015-03-31
Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less
NASA Astrophysics Data System (ADS)
Huang, Lijun; Tian, Huiping; Yang, Daquan; Zhou, Jian; Liu, Qi; Zhang, Pan; Ji, Yuefeng
2014-12-01
We propose a high figure of merit (FOM) biochemical sensor by designing a ring defect coupled resonator (RDCR) based on photonic crystal (PhC) slab. The design consists of ring resonant cavity which is coupled in and out with ring and line defect PhC structure. By a three dimensional finite-different time-domain (3D-FDTD) method, we demonstrate that the quality (Q) factor is greatly enhanced by altering the radius of air holes inner the ring resonant cavity and adjusting the width of line defect waveguide. In this paper, we obtain a highest Q up to 107 through numerical calculations. Even though water absorption at telecom wavelength range and random roughness of fabrication is considered, a Q of ~33,517 can be achieved. Simultaneously the proposed sensor possesses sensitivity (S) of 330 nm/RIU (refractive index unit), resulting in FOM of ~8000. Moreover, a minimal detection limit (DL) is obtained as good as 1.24×10-5. Therefore, these suggest that this design is a promising candidate for label-free biochemical sensing in medical diagnosis, life science and environmental monitoring.
Functional characterization of putative cilia genes by high-content analysis
Lai, Cary K.; Gupta, Nidhi; Wen, Xiaohui; Rangell, Linda; Chih, Ben; Peterson, Andrew S.; Bazan, J. Fernando; Li, Li; Scales, Suzie J.
2011-01-01
Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates. PMID:21289087
NASA Astrophysics Data System (ADS)
Bocz, Péter; Vinkó, Ákos; Posgay, Zoltán
2018-03-01
This paper presents an automatic method for detecting vertical track irregularities on tramway operation using acceleration measurements on trams. For monitoring of tramway tracks, an unconventional measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs. Accelerations are processed to obtain the vertical track irregularities to determine whether the track needs to be repaired. The automatic detection algorithm is based on time-frequency distribution analysis and determines the defect locations. Admissible limits (thresholds) are given for detecting moderate and severe defects using statistical analysis. The method was validated on frequented tram lines in Budapest and accurately detected severe defects with a hit rate of 100%, with no false alarms. The methodology is also sensitive to moderate and small rail surface defects at the low operational speed.
NASA Technical Reports Server (NTRS)
Kizer, J. A.
1981-01-01
Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.
NASA Astrophysics Data System (ADS)
Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo
2015-05-01
The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self-learning strategies were implemented with very promising results, demonstrating the feasibility of using low-cost high-speed infrared imagers in advancing towards a real-time / in-line zero-defect production systems.
AE monitoring instrumentation for high performance superconducting dipoles and quadrupoles, Phase 2
NASA Astrophysics Data System (ADS)
Iwasa, Y.
1986-01-01
In the past year and a half, attention has been focused on the development of instrumentation for on-line monitoring of high-performance superconducting dipoles and quadrupoles. This instrumentation has been completed and satisfactorily demonstrated on a prototype Fermi dipole. Conductor motion is the principal source of acoustic emission (AE) and the major cause of quenches in the dipole, except during the virgin run when other sources are also present. The motion events are mostly microslips. The middle of the magnet is most susceptible to quenches. This result agrees with the peak field location in the magnet. In the virgin state the top and bottom of the magnet appeared acoustically similar but diverged after training, possibly due to minute structural asymmetry, for example differences in clamping and welding strength; however, the results do not indicate any major structural defects. There is good correlation between quench current and AE starting current. The correlation is reasonable if mechanical disturbances are indeed responsible for quench. Based on AE cumulative history, the average frictional power dissipation in the whole dipole winding is estimated to be approx. 10 (MU)W cm(-3). We expect to implement the following in the next phase of this project: Application of room-temperature techniques to detecting structural defects in the dipole; application of the system to other dipoles and quadrupoles in the same series to compare their performances; and further investigation of AE starting current approx. quench current relationship. Work has begun on the room temperature measurements. Preliminary Stress Wave Factor measurements have been made on a model dipole casing.
NASA Astrophysics Data System (ADS)
Dumoulin, Jean; Ibos, Laurent
2010-05-01
In many countries road network ages while road traffic and maintenance costs increase. Nowadays, thousand and thousand kilometers of roads are each year submitted to surface distress survey. They generally lean on pavement surface imaging measurement techniques, mainly in the visible spectrum, coupled with visual inspection or image processing detection of emergent distresses. Nevertheless, optimisation of maintenance works and costs requires an early detection of defects within the pavement structure when they still are hidden from surface. Accordingly, alternative measurement techniques for pavement monitoring are currently under investigation (seismic methods, step frequency radar). On the other hand, strengthening or retrofitting of reinforced concrete structures by externally bonded Fiber Reinforced Polymer (FRP) systems is now a commonly accepted and widespread technique. However, the use of bonding techniques always implies following rigorous installing procedures. To ensure the durability and long-term performance of the FRP reinforcements, conformance checking through an in situ auscultation of the bonded FRP systems is then highly suitable. The quality-control program should involve a set of adequate inspections and tests. Visual inspection and acoustic sounding (hammer tap) are commonly used to detect delaminations (disbonds) but are unable to provide sufficient information about the depth (in case of multilayered composite) and width of debonded areas. Consequently, rapid and efficient inspection methods are also required. Among the non destructive methods under study, active infrared thermography was investigated both for pavement and civil engineering structures through experiments in laboratory and numerical simulations, because of its ability to be also used on field. Pulse Thermography (PT), Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) approaches have been tested onto pavement samples and CFRP bonding on concrete samples in laboratory. In parallel numerical simulations have been used to generate a set of time sequence of thermal maps for simulated samples with and without subsurface defect. Using this set of experimental and simulated data different approaches (thermal contrast, FFT analysis, polynomial interpolation, singular value decomposition…) for defect location have been studied and compared. Defect depth retrieval was also studied on such data using different thermal model coupled to a direct or an inverse approach. Trials were conducted both with an uncooled and cooled infrared camera with different measurement performances. Results obtained will be discussed and analysed in the paper we plan to present. Finally, combining numerical simulations and experiments allows us discussing on the sensitivity influence of the infrared camera used to detect subsurface defects.
Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Ponnaluru, Gopi Krishna
2006-01-01
The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.
Defect inspection using a time-domain mode decomposition technique
NASA Astrophysics Data System (ADS)
Zhu, Jinlong; Goddard, Lynford L.
2018-03-01
In this paper, we propose a technique called time-varying frequency scanning (TVFS) to meet the challenges in killer defect inspection. The proposed technique enables the dynamic monitoring of defects by checking the hopping in the instantaneous frequency data and the classification of defect types by comparing the difference in frequencies. The TVFS technique utilizes the bidimensional empirical mode decomposition (BEMD) method to separate the defect information from the sea of system errors. This significantly improve the signal-to-noise ratio (SNR) and moreover, it potentially enables reference-free defect inspection.
Defect detection and control in an analog CMOS process
NASA Astrophysics Data System (ADS)
Taucher, Franz; Evans, Ivor R.
1996-09-01
Over the last 12 months, Austria Mikro Systeme has installed an even more rigorous system of defect density measurement, monitoring and control in its facility at Unterpremstatten. To accomplish this, 2 test devices (Medusa 1 and 2) were designed which allow possible defects in all layers of the process to be located. These devices are 8 by 9 mm2 in area and contain various structures to quantify the density of defects causing continuity, bridging and inter-layer isolation failure. The devices move through the waferfab receiving all process steps with the usual handling and operator procedures, from which it is clear, that the density of defects measured is representative of that of normal production material. The wafers are tested electrically using a Keithley S450, and data analysis is done with RS1 and EXCEL. By using yield models available from the literature, the correspondence in yield estimates made in this way and actual production yields were generally within 3%. Applying this technique allows the yield loss mechanisms to be isolated and then prioritized. The chipset identified several areas within the process which required special attention. These included implant optimization to reduce gate oxide damage, defect reduction in the metal-etch process, increased leakage currents caused by implant channeling and second poly etch-control to avoid 'bridging' around poly 1 periphery. Successful actions at these points have led to a significant improvement in wafer probe yields at Austria Mikro Systeme.
An experimental study on the application of radionuclide imaging in repair of the bone defect
Zhu, Weimin; Wang, Daping; Zhang, Xiaojun; Lu, Wei; Liu, Jianquan; Peng, Liangquan; Li, Hao; Han, Yun; Zeng, Yanjun
2011-01-01
The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone’s reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05). The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone’s reconstruction. PMID:21875418
Effects of defects in composite structures
NASA Technical Reports Server (NTRS)
Sendeckyj, G. P.
1983-01-01
The effect of defects in composite structures is addressed. Defects in laminates such as wrinkles, foreign particles, scratches and breaks are discussed. Effects of plygap plywaviness and machining defects are also studied.
Successful demonstration of a comprehensive lithography defect monitoring strategy
NASA Astrophysics Data System (ADS)
Peterson, Ingrid B.; Breaux, Louis H.; Cross, Andrew; von den Hoff, Michael
2003-07-01
This paper describes the validation of the methodology, the model and the impact of an optimized Lithography Defect Monitoring Strategy at two different semiconductor manufacturing factories. The lithography defect inspection optimization was implemented for the Gate Module at both factories running 0.13-0.15μm technologies on 200mm wafers, one running microprocessor and the other memory devices. As minimum dimensions and process windows decrease in the lithography area, new technologies and technological advances with resists and resist systems are being implemented to meet the demands. Along with these new technological advances in the lithography area comes potentially unforeseen defect issues. The latest lithography processes involve new resists in extremely thin, uniform films, exposing the films under conditions of highly optimized focus and illumination, and finally removing the resist completely and cleanly. The lithography cell is defined as the cluster of process equipment that accomplishes the coating process (surface prep, resist spin, edge-bead removal and soft bake), the alignment and exposure, and the developing process (post-exposure bake, develop, rinse) of the resist. Often the resist spinning process involves multiple materials such as BARC (bottom ARC) and / or TARC (top ARC) materials in addition to the resist itself. The introduction of these new materials with the multiple materials interfaces and the tightness of the process windows leads to an increased variety of defect mechanisms in the lithography area. Defect management in the lithography area has become critical to successful product introduction and yield ramp. The semiconductor process itself contributes the largest number and variety of defects, and a significant portion of the total defects originate within the lithography cell. From a defect management perspective, the lithography cell has some unique characteristics. First, defects in the lithography process module have the widest range of sizes, from full-wafer to suboptical, and with the largest variety of characteristics. Some of these defects fall into the categories of coating problems, focus and exposure defects, developer defects, edge-bead removal problems, contamination and scratches usually defined as lithography macro defects as shown in Figure 1. Others fall into the category of lithography micro defects, Figure 2. They are characterized as having low topography such as stains, developer spots, satellites, are very small such as micro-bridging, partial micro-bridging, micro-bubbles, CD variation and single isolated missing or deformed contacts or vias. Lithography is the only area of the fab besides CMP in which defect excursions can be corrected by reworking the wafers. The opportunity to fix defect problems without scrapping wafers is best served by a defect inspection strategy that captures the full range of all relevant defect types with a proper balance between the costs of monitoring and inspection and the potential cost of yield loss. In the previous paper [1] it was shown that a combination of macro inspection and high numerical aperture (NA) brightfield imaging inspection technology is best suited for the application in the case of the idealized fab modeled. In this paper we will report on the successful efforts in implementing and validating the lithography defect monitoring strategy at two existing 200 mm factories running 0.15 μm and 0.13 μm design rules.
NASA Astrophysics Data System (ADS)
Sorkin, Anastassia; Su, Haibin
2018-06-01
The fusion processes of structures consisting of various combinations between sumanene and corannulene, leading to the formation of graphene nanoribbons (GNRs) under heating are simulated by density-functional-based tight-binding molecular dynamics. Distinct stages are unraveled in the course of GNR formation. Firstly, the carbon fragments coalescence into highly strained framework. Secondly, structural reconstruction invokes breaking most strained bonds to form a GNR structure containing numerous defects. Lastly, defects are remedied by the delicate ‘edge-facilitated self-healing’ process through two synergized edge-related effects: elevated mobility of defects and promoted structure reconstructions owing to the remarkable dynamics associated with edges. Importantly, detailed dynamics in the course of forming GNRs with defects and grain boundaries simulated in this work is valuable to provide better understanding at the atomistic scale of defect formation as well as self-healing in the context of the sp2 carbon network. In particular, edges play important roles in not only generating Stone–Wales (SW), 5-8-5 types of defects, 8-5-5-8 and pentagon–heptagon grain boundaries. In addition, our simulations predict the existence of one novel defect, coined as the Inverse SW defect, which is to be confirmed in future experimental studies. This study of dynamic structural evolution reveals that edges are prone to intrinsic and extrinsic modifications such as atomic-scale defects, structural distortions and inhomogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Jeong Hun; Lee, Sung Su; Lee, Hyeon Jun
2016-03-21
We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries;more » however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.« less
NASA Astrophysics Data System (ADS)
Zhou, Yuan-Qi; Zhan, Li-Hua
2016-05-01
Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.
Swornowski, Pawel J
2012-01-01
Aviation is one of the know-how spheres containing a great deal of responsible sub-assemblies, in this case landing gear. The necessity for reducing production cycle times while achieving better quality compels metrologists to look for new and improved ways to perform inspection of critical structures. This article describes the ability to determine the shape deviation and location of defects in landing gear using coordinate measuring machines and laser ultrasonic with high-speed scanning. A nondestructive test is the basis for monitoring microcrack and corrosion propagation in the context of a damage-tolerant design approach. This article presents an overview of the basics and of the various metrological aspects of coordinate measurement and a nondestructive testing method in terms of high-speed scanning. The new test method (laser ultrasonic) promises to produce the necessary increase in inspection quality, but this is limited by the wide range of materials, geometries, and structure aeronautic parts used. A technique combining laser ultrasonic and F-SAFT (Fourier-Synthetic Aperture Focusing Technique) processing has been proposed for the detection of small defects buried in landing gear. The experimental results of landing gear inspection are also presented. © Wiley Periodicals, Inc.
Ewalt, Lauren A; Danduran, Michael J; Strath, Scott J; Moerchen, Victoria; Swartz, Ann M
2012-02-01
To objectively evaluate and describe physical activity levels in children with a stable congenital heart defect and compare those levels with children who do not have a congenital heart defect. We matched 21 pairs of children for gender and grade in school and gave them an accelerometer-based motion sensor to wear for 7 consecutive days. Physical activity levels did not differ between children with and without a congenital heart defect. During the 7 days of monitoring, children in this study spent most of their time in sedentary behaviours, that is, 6.7 hours of the 13 monitored hours, 54 minutes in moderate-intensity physical activity, and 12 minutes in vigorous-intensity physical activity. Less than one-fifth of all participants, with or without a congenital heart defect, accumulated sufficient physical activity to meet current physical activity recommendations for children and adolescents. Children with a stable congenital heart defect have activity behaviours that are similar to children without a congenital heart defect. Habitual physical activity in children with a congenital heart defect should be encouraged early on in life to develop strong physical activity habits that will hopefully follow them across their lifespan.
NASA Astrophysics Data System (ADS)
Kim, S.; Adams, D. E.; Sohn, H.
2013-01-01
As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.
Degradation and Reinforcement of Industrial Gas Tank Support Structures. Thirty-Year Long Monitoring
NASA Astrophysics Data System (ADS)
Krentowski, Janusz R.; Knyziak, Piotr
2017-10-01
An analysis of reinforced concrete supporting structures of more than a dozen liquid gas tanks mounted on tower support structures located at different sites on Poland’s territory is presented. Stability testing of the degraded structures was carried out over a period of 30 years and pointed out significant defects that prevented safe operation of the tanks containing hazardous medium. Analysing complex stress states, as well as displacements of shell structure components, the authors developed a concept of strengthening the structures. Initial repair works, which had been carried out without proper supervision, failed to meet the mandatory requirements and were not compatible with the original design solutions. After several years of operation of the reinforced structures, their degradation states were assessed again. The next stage of repair works was carried out under the supervision of the authors together with authorized representatives of the investors.
Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto
2017-09-19
Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.
Estimation of corrosion damage in steel reinforced mortar using waveguides
NASA Astrophysics Data System (ADS)
Reis, Henrique; Ervin, Benjamin L.; Kuchma, Daniel A.; Bernhard, Jennifer
2005-05-01
Corrosion of reinforced concrete is a chronic infrastructure problem, particularly in areas with deicing salt and marine exposure. To maintain structural integrity, a testing method is needed to identify areas of corroding reinforcement. For purposes of rehabilitation, the method must also be able to evaluate the degree, rate and location of damage. Towards the development of a wireless embedded sensor system to monitor and assess corrosion damage in reinforced concrete, reinforced mortar specimens were manufactured with seeded defects to simulate corrosion damage. Taking advantage of waveguide effects of the reinforcing bars, these specimens were then tested using an ultrasonic approach. Using the same ultrasonic approach, specimens without seeded defects were also monitored during accelerated corrosion tests. Both the ultrasonic sending and the receiving transducers were mounted on the steel rebar. Advantage was taken of the lower frequency (<250 kHz) fundamental flexural propagation mode because of its relatively large displacements at the interface between the reinforcing steel and the surrounding concrete. Waveform energy (indicative of attenuation) is presented and discussed in terms of corrosion damage. Current results indicate that the loss of bond strength between the reinforcing steel and the surrounding concrete can be detected and evaluated.
Current deflection NDE for pipeline inspection and monitoring
NASA Astrophysics Data System (ADS)
Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.
2016-02-01
Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-07-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the E g 2 Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00 l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-04-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the Eg 2Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
40 CFR 63.7917 - What are my inspection and monitoring requirements for transfer systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
... annually inspect the unburied portion of pipeline and all joints for leaks and other defects. In the event that a defect is detected, you must repair the leak or defect according to the requirements of... days after detection and repair shall be completed as soon as possible but no later than 45 calendar...
Creation of deep blue light emitting nitrogen-vacancy center in nanosized diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himics, L., E-mail: himics.laszlo@wigner.mta.hu; Tóth, S.; Veres, M.
2014-03-03
This paper reports on the formation of complex defect centers related to the N3 center in nanosized diamond by employing plasma immersion and focused ion beam implantation methods. He{sup +} ion implantation into nanosized diamond “layer” was performed with the aim of creating carbon atom vacancies in the diamond structure, followed by the introduction of molecular N{sub 2}{sup +} ion and heat treatment in vacuum at 750 °C to initiate vacancy diffusion. To decrease the sp{sup 2} carbon content of nanosized diamond formed during the implantation processes, a further heat treatment at 450 °C in flowing air atmosphere was used. The modificationmore » of the bonding properties after each step of defect creation was monitored by Raman scattering measurements. The fluorescence measurements of implanted and annealed nanosized diamond showed the appearance of an intensive and narrow emission band with fine structures at 2.98 eV, 2.83 eV, and 2.71 eV photon energies.« less
Tight-binding calculation studies of vacancy and adatom defects in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing
2016-02-19
Computational studies of complex defects in graphene usually need to deal with a larger number of atoms than the current first-principles methods can handle. We show a recently developed three-center tight-binding potential for carbon is very efficient for large scale atomistic simulations and can accurately describe the structures and energies of various defects in graphene. Using the three-center tight-binding potential, we have systematically studied the stable structures and formation energies of vacancy and embedded-atom defects of various sizes up to 4 vacancies and 4 embedded atoms in graphene. In conclusion, our calculations reveal low-energy defect structures and provide a moremore » comprehensive understanding of the structures and stability of defects in graphene.« less
NASA Astrophysics Data System (ADS)
Alves, Eduardo; Breese, Mark
Defects affect virtually all properties of crystalline materials, and their role is magnified in nanoscale structures. In this box we describe the different type of defects with particular emphasis on point and linear defects. Above zero Kelvin all real materials have a defect population within their structure, which affects either their crystalline, electronic or optical properties. It is common to attribute a negative connotation to the presence of defects. However, a perfect silicon crystal or any other defect-free semiconductor would have a limited functionality and might even be useless.
NASA Astrophysics Data System (ADS)
Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad
In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.
Advanced in-production hotspot prediction and monitoring with micro-topography
NASA Astrophysics Data System (ADS)
Fanton, P.; Hasan, T.; Lakcher, A.; Le-Gratiet, B.; Prentice, C.; Simiz, J.-G.; La Greca, R.; Depre, L.; Hunsche, S.
2017-03-01
At 28nm technology node and below, hot spot prediction and process window control across production wafers have become increasingly critical to prevent hotspots from becoming yield-limiting defects. We previously established proof of concept for a systematic approach to identify the most critical pattern locations, i.e. hotspots, in a reticle layout by computational lithography and combining process window characteristics of these patterns with across-wafer process variation data to predict where hotspots may become yield impacting defects [1,2]. The current paper establishes the impact of micro-topography on a 28nm metal layer, and its correlation with hotspot best focus variations across a production chip layout. Detailed topography measurements are obtained from an offline tool, and pattern-dependent best focus (BF) shifts are determined from litho simulations that include mask-3D effects. We also establish hotspot metrology and defect verification by SEM image contour extraction and contour analysis. This enables detection of catastrophic defects as well as quantitative characterization of pattern variability, i.e. local and global CD uniformity, across a wafer to establish hotspot defect and variability maps. Finally, we combine defect prediction and verification capabilities for process monitoring by on-product, guided hotspot metrology, i.e. with sampling locations being determined from the defect prediction model and achieved prediction accuracy (capture rate) around 75%
Imaging the atomic structure and local chemistry of platelets in natural type Ia diamond
NASA Astrophysics Data System (ADS)
Olivier, E. J.; Neethling, J. H.; Kroon, R. E.; Naidoo, S. R.; Allen, C. S.; Sawada, H.; van Aken, P. A.; Kirkland, A. I.
2018-03-01
In the past decades, many efforts have been devoted to characterizing {001} platelet defects in type Ia diamond. It is known that N is concentrated at the defect core. However, an accurate description of the atomic structure of the defect and the role that N plays in it is still unknown. Here, by using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy we have determined the atomic arrangement within platelet defects in a natural type Ia diamond and matched it to a prevalent theoretical model. The platelet has an anisotropic atomic structure with a zigzag ordering of defect pairs along the defect line. The electron energy-loss near-edge fine structure of both carbon K- and nitrogen K-edges obtained from the platelet core is consistent with a trigonal bonding arrangement at interstitial sites. The experimental observations support an interstitial aggregate mode of formation for platelet defects in natural diamond.
Imaging the atomic structure and local chemistry of platelets in natural type Ia diamond.
Olivier, E J; Neethling, J H; Kroon, R E; Naidoo, S R; Allen, C S; Sawada, H; van Aken, P A; Kirkland, A I
2018-03-01
In the past decades, many efforts have been devoted to characterizing {001} platelet defects in type Ia diamond. It is known that N is concentrated at the defect core. However, an accurate description of the atomic structure of the defect and the role that N plays in it is still unknown. Here, by using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy we have determined the atomic arrangement within platelet defects in a natural type Ia diamond and matched it to a prevalent theoretical model. The platelet has an anisotropic atomic structure with a zigzag ordering of defect pairs along the defect line. The electron energy-loss near-edge fine structure of both carbon K- and nitrogen K-edges obtained from the platelet core is consistent with a trigonal bonding arrangement at interstitial sites. The experimental observations support an interstitial aggregate mode of formation for platelet defects in natural diamond.
Meier, Frederick A; Badrick, Tony C; Sikaris, Kenneth A
2018-02-17
For 50 years, structure, process, and outcomes measures have assessed health care quality. For clinical laboratories, structural quality has generally been assessed by inspection. For assessing process, quality indicators (QIs), statistical monitors of steps in the clinical laboratory total testing, have proliferated across the globe. Connections between structural and process laboratory measures and patient outcomes, however, have rarely been demonstrated. To inform further development of clinical laboratory quality systems, we conducted a selective but worldwide review of publications on clinical laboratory quality assessment. Some QIs, like seven generic College of American Pathologists Q-Tracks monitors, have demonstrated significant process improvement; other measures have uncovered critical opportunities to improve test selection and result management. The College of Pathologists of Australasia Key Indicator Monitoring and Management System has deployed risk calculations, introduced from failure mode effects analysis, as surrogate measures for outcomes. Showing economic value from clinical laboratory testing quality is a challenge. Clinical laboratories should converge on fewer (7-14) rather than more (21-35) process monitors; monitors should cover all steps of the testing process under laboratory control and include especially high-risk specimen-quality QIs. Clinical laboratory stewardship, the combination of education interventions among clinician test orderers and report consumers with revision of test order formats and result reporting schemes, improves test ordering, but improving result reception is more difficult. Risk calculation reorders the importance of quality monitors by balancing three probabilities: defect frequency, weight of potential harm, and detection difficulty. The triple approach of (1) a more focused suite of generic consensus quality indicators, (2) more active clinical laboratory testing stewardship, and (3) integration of formal risk assessment, rather than competing with economic value, enhances it.
Research on defects inspection of solder balls based on eddy current pulsed thermography.
Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe
2015-10-13
In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.
Fan, Wei; Tsui, Kwok-Leung; Lin, Jianhui
2018-01-01
Railway axle bearings are one of the most important components used in vehicles and their failures probably result in unexpected accidents and economic losses. To realize a condition monitoring and fault diagnosis scheme of railway axle bearings, three dimensionless steadiness indexes in a time domain, a frequency domain, and a shape domain are respectively proposed to measure the steady states of bearing vibration signals. Firstly, vibration data collected from some designed experiments are pre-processed by using ensemble empirical mode decomposition (EEMD). Then, the coefficient of variation is introduced to construct two steady-state indexes from pre-processed vibration data in a time domain and a frequency domain, respectively. A shape function is used to construct a steady-state index in a shape domain. At last, to distinguish normal and abnormal bearing health states, some guideline thresholds are proposed. Further, to identify axle bearings with outer race defects, a pin roller defect, a cage defect, and coupling defects, the boundaries of all steadiness indexes are experimentally established. Experimental results showed that the proposed condition monitoring and fault diagnosis scheme is effective in identifying different bearing health conditions. PMID:29495446
Zhang, Zizhong; Long, Jinlin; Xie, Xiuqiang; Lin, Huan; Zhou, Yangen; Yuan, Rusheng; Dai, Wenxin; Ding, Zhengxin; Wang, Xuxu; Fu, Xianzhi
2012-04-23
The electronic structure and photoactivation process in N-doped TiO(2) is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat- and photoinduced N-doped TiO(2) catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti(3+) states are formed to enhance the optical absorption in the visible-light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N-doped TiO(2), the DRS absorption and PL emission in the visible spectral region of 450-700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (N(s)·, oxygen vacancies with one electron (V(o)·), and Ti(3+) ions are produced with light irradiation and the intensity of N(s)· species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO(2) corresponding to the main absorption band at 410 nm of N-doped TiO(2), but oxygen vacancies and Ti(3+) states as defects contribute to the visible-light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N-doped TiO(2) is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen-vacancy-related defects leads to quenching of paramagnetic N(s)· species but they stabilize the active nitrogen species N(s)(-). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electric field-induced emission enhancement and modulation in individual CdSe nanowires.
Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru
2012-10-23
CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.
Crack depth profiling using guided wave angle dependent reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volker, Arno, E-mail: arno.volker@tno.nl; Pahlavan, Lotfollah, E-mail: arno.volker@tno.nl; Blacquiere, Gerrit, E-mail: arno.volker@tno.nl
2015-03-31
Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of anmore » inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.« less
González, Gabriela B.
2012-01-01
Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010
Structure and free energy of cholesteric DNA droplets
NASA Astrophysics Data System (ADS)
Strey, Helmut; Hong, Helen; Easwar, Nalini
2000-03-01
Liquid crystals of DNA are the simplest model systems for DNA packing in cell nuclei or in phage heads. With increasing concentration DNA solutions exhibit the following phases: hexagonal, line hexatic, cholesteric, blue phases. We will present measurements of defect structure and pitch of cholesteric spherulites of short fragment DNA (146 base pairs). DNA concentration as well as salt concentrations are controlled by bathing the spherulites in poly (ethylene glycol) (MW 35,000u) solutions of known osmotic pressure. Combining polarizing microscopy and x-ray scattering with the osmotic stress method allows us to monitor the cholesteric structure and pitch as a function of interaxial distance between DNA molecules as well as salt concentration and type. In particular, we present data on how the DNA cholesteric pitch unwinds when the line hexatic phase is approached.
Nondestructive tests for railway monitoring. European Experience in COST Action TU1208
NASA Astrophysics Data System (ADS)
Fontul, Simona; Solla, Mercedes; Loizos, Andreas
2016-04-01
The railway monitoring is an important issue for a proper maintenance planning. With the increase in loads and travel speed, it is important to be able to diagnose the track defects and to plan the proper maintenance without interfering with the users. Traditionally, the maintenance actions are planned based on the geometric level parameters assessed without contact with the line, at traffic speed, by dedicated inspection vehicles. Nevertheless, the geometric condition of the line does not provide information on the defects causes. In order to complements the information on the causes, geophysics measurements can be performed in a nondestructive way. Among these later methods, Ground Penetrating Radar (GPR) is a quick and effective technique to evaluate infrastructure condition in a continuous manner, replacing or reducing the use of traditional drilling method. GPR application to railways infrastructures, during construction and monitoring phase, is relatively recent. It is based on the measuring of layers thicknesses and detection of structural changes. It also enables the assessment of materials properties that constitute the infrastructure and the evaluation of the different types of defects such as ballast pockets, fouled ballast, poor drainage, subgrade settlement and transitions problems. These deteriorations are generally the causes of vertical deviations in track geometry. Moreover, the development of new GPR systems with higher antenna frequencies, better data acquisition systems, more user friendly software and new algorithms for calculation of materials properties can lead to a regular use of GPR. A resume of the European experience in COST Action TU1208 of the application of GPR for railway monitoring and the measurement interpretation is presented in this paper. Also complementary nondestructive tests and other geophysical methods are referred, together with case studies of their application. The main troubleshooting and the needs for data analysis tools that can improve the processing of the measurements are highlighted. Future approaches of combined application of geophysical methods, load tests and track geometry measurements are addressed. A possible methodology of joint interpretation and examples of maintenance measurements adequate to the deterioration causes are presented.
Monitoring the reflection from an artificial defect in rail track using guided wave ultrasound
NASA Astrophysics Data System (ADS)
Loveday, Philip W.; Taylor, Rebecca M. C.; Long, Craig S.; Ramatlo, Dineo A.
2018-04-01
Guided wave ultrasound has the potential to detect relatively large defects in continuously welded rail track at long range. As monitoring can be performed in near real time it would be acceptable to only detect fairly large cracks provided this is achieved prior to complete rail breakage. Heavy haul rail lines are inspected periodically by conventional ultrasound and sections with even relatively small cracks are removed; therefore, no sizable defects are available to demonstrate monitoring in the presence of realistic environmental operating conditions. Instead, we glued a small mass to the rail to simulate reflection from a crack and monitored the guided wave signals as the glue joint deteriorated over time. Data was collected over a two week period on an operational heavy haul line. A piezoelectric transducer mounted under the head of the rail was used in pulse-echo mode to transmit and receive a mode of propagation with energy confined mainly in the head of the rail. The small mass was attached under the head of the rail, at a distance of 375m from the transducer, using a cyanoacrylate glue, which was not expected to remain intact for long. Pre-processing of the collected signals involved rejection of signals containing train noise, averaging, filtering and dispersion compensation. Reflections from aluminothermic welds were used to stretch and scale the signals to reduce the influence of temperature variations. Singular value decomposition and independent component analysis were then applied to the signals with the aim of separating the reflection caused by the artificial defect from the background signal. The performance of these techniques was compared for different time spans. The reflection from the artificial defect showed unanticipated fluctuations.
Chang, Po-Chun; Seol, Yang-Jo; Goldstein, Steven A.; Giannobile, William V.
2014-01-01
Purpose It is currently a challenge to determine the biomechanical properties of the hard tissue–dental implant interface. Recent advances in intraoral imaging and tomographic methods, such as microcomputed tomography (micro-CT), provide three-dimensional details, offering significant potential to evaluate the bone-implant interface, but yield limited information regarding osseointegration because of physical scattering effects emanating from metallic implant surfaces. In the present study, it was hypothesized that functional apparent moduli (FAM), generated from functional incorporation of the peri-implant structure, would eliminate the radiographic artifact–affected layer and serve as a feasible means to evaluate the biomechanical dynamics of tissue-implant integration in vivo. Materials and Methods Cylindric titanium mini-implants were placed in osteotomies and osteotomies with defects in rodent maxillae. The layers affected by radiographic artifacts were identified, and the pattern of tissue-implant integration was evaluated from histology and micro-CT images over a 21-day observation period. Analyses of structural information, FAM, and the relationship between FAM and interfacial stiffness (IS) were done before and after eliminating artifacts. Results Physical artifacts were present within a zone of about 100 to 150 μm around the implant in both experimental defect situations (osteotomy alone and osteotomy + defect). All correlations were evaluated before and after eliminating the artifact-affected layers, most notably during the maturation period of osseointegration. A strong correlation existed between functional bone apparent modulus and IS within 300 μm at the osteotomy defects (r > 0.9) and functional composite tissue apparent modulus in the osteotomy defects (r > 0.75). Conclusion Micro-CT imaging and FAM were of value in measuring the temporal process of tissue-implant integration in vivo. This approach will be useful to complement imaging technologies for longitudinal monitoring of osseointegration. PMID:23377049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnuvardhan, J.; Muralidharan, Ajith; Balasubramaniam, Krishnan
A full ring STMR array patch had been used for Structural Health Monitoring (SHM) of anisotropic materials where the elastic moduli, correspond to the virgin sample, were used in the calculations. In the present work an in-situ SHM has been successfully demonstrated using a novel compact sensor patch (Double ring single quadrant small footprint STMR array) through simultaneous reconstruction of the elastic moduli, material symmetry, orientation of principal planes and defect imaging. The direct received signals were used to measure Lamb wave velocities, which were used in a slowness based reconstructed algorithm using Genetic Algorithm to reconstruct the elastic moduli,more » material symmetry and orientation of principal planes. The measured signals along with the reconstructed elastic moduli were used in the phased addition algorithm for imaging the damages present on the structure. To show the applicability of the method, simulations were carried out with the double ring single quadrant STMR array configuration to image defects and are compared with the images obtained using simulation data of the full ring STMR array configuration. The experimental validation has been carried out using 3.15 mm quasi-isotropic graphite-epoxy composite. The double ring single quadrant STMR array has advantages over the full ring STMR array as it can carry out in-situ SHM with limited footprint on the structure.« less
Mercier, Luc; Böhm, Johann; Fekonja, Nina; Allio, Guillaume; Lutz, Yves; Koch, Marc; Goetz, Jacky G.; Laporte, Jocelyn
2016-01-01
ABSTRACT Skeletal muscle structure and function are altered in different myopathies. However, the understanding of the molecular and cellular mechanisms mainly rely on in vitro and ex vivo investigations in mammalian models. In order to monitor in vivo the intracellular structure of the neuromuscular system in its environment under normal and pathological conditions, we set-up and validated non-invasive imaging of ear and leg muscles in mice. This original approach allows simultaneous imaging of different cellular and intracellular structures such as neuromuscular junctions and sarcomeres, reconstruction of the 3D architecture of the neuromuscular system, and video recording of dynamic events such as spontaneous muscle fiber contraction. Second harmonic generation was combined with vital dyes and fluorescent-coupled molecules. Skin pigmentation, although limiting, did not prevent intravital imaging. Using this versatile toolbox on the Mtm1 knockout mouse, a model for myotubular myopathy which is a severe congenital myopathy in human, we identified several hallmarks of the disease such as defects in fiber size and neuromuscular junction shape. Intravital imaging of the neuromuscular system paves the way for the follow-up of disease progression or/and disease amelioration upon therapeutic tests. It has also the potential to reduce the number of animals needed to reach scientific conclusions. PMID:28243519
Vibration of carbon nanotubes with defects: order reduction methods
NASA Astrophysics Data System (ADS)
Hudson, Robert B.; Sinha, Alok
2018-03-01
Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
Structural, electronic and photocatalytic properties of atomic defective BiI3 monolayers
NASA Astrophysics Data System (ADS)
Yan, Huang; Ziyu, Hu; Xu, Gong; Xiaohong, Shao
2018-01-01
The structural, electronic and photocatalytic properties of five vacancy-containing 2D BiI3 monolayers are investigated by the first-principle calculations. The electronic structures show that the five structures are stable and have comparable binding energies to that of the pristine BiI3 monolayer, and the defects can tune the band gaps. Optical spectra indicate that the five structures retain high absorption capacity for visible light. The spin-orbit coupling (SOC) effect is found to play an important role in the band edge of defective structures, and the VBi and VBi-I3 defective BiI3 monolayers can make absolute band edges straddle water redox potentials more easily.
Solid State Lighting Program (Falcon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeks, Steven
2012-06-30
Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.« less
BDA: A novel method for identifying defects in body-centered cubic crystals.
Möller, Johannes J; Bitzek, Erik
2016-01-01
The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].
Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; Voter, Arthur F.
2015-01-01
Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus, sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary. PMID:25766999
Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; ...
2015-03-13
Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus,more » sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary.« less
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures.
Zhang, S; Nordlund, K; Djurabekova, F; Zhang, Y; Velisa, G; Wang, T S
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
NASA Astrophysics Data System (ADS)
Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
Prevalence of birth defects among American-Indian births in California, 1983-2010.
Aggarwal, Deepa; Warmerdam, Barbara; Wyatt, Katrina; Ahmad, Shabbir; Shaw, Gary M
2015-02-01
Approximately 6.3 million live births and fetal deaths occurred during the ascertainment period in the California Birth Defects Monitoring Program registry. American-Indian and non-Hispanic white women delivered 40,268 and 2,044,118 births, respectively. While much information has been published about non-Hispanic white infants, little is known regarding the risks of birth defects among infants born to American-Indian women. This study used data from the California Birth Defects Monitoring Program to explore risks of selected birth defects in offspring of American-Indian relative to non-Hispanic white women in California. The study population included all live births and fetal deaths 20 weeks or greater from 1983 to 2010. Prevalence ratios and corresponding 95% confidence intervals (CI) were computed using Poisson regression for 51 groupings of birth defects. Prevalence ratios were estimated for 51 groupings of birth defects. Of the 51, nine had statistically precise results ranging from 0.78 to 1.85. The eight groups with elevated risks for American-Indian births were reduction deformities of brain, anomalies of anterior segments, specified anomalies of ear, ostium secundum type atrial septal defect, specified anomalies of heart, anomalies of the aorta, anomalies of great veins, and cleft lip with cleft palate. Our results suggest that American-Indian women having babies in California may be at higher risk for eight birth defect phenotypes compared with non-Hispanic whites. Further research is needed to determine whether these risks are observed among other populations of American-Indian women or when adjusted for potential covariates. © 2015 Wiley Periodicals, Inc.
A theoretical study of the stability of anionic defects in cubic ZrO 2 at extreme conditions
Samanta, Amit
2016-02-19
Using first principles density functional theory calculations, we present a study of the structure, mobility, and the thermodynamic stability of anionic defects in the high-temperature cubic phase of ZrO 2. Our results suggest that the local structure of an oxygen interstitial depends on the charge state and the cubic symmetry of the anionic sublattice is unstable at 0 K. In addition, the oxygen interstitials and the vacancies exhibit symmetry breaking transitions to low-energy structures with tetragonal distortion of the oxygen sublattice at 0 K. However, the vibrational entropy stabilizes the defect structures with cubic symmetry at 2600–2980 K. The formationmore » free energies of the anionic defects and Gibbs free energy changes associated with different defect reactions are calculated by including the vibrational free energy contributions and the effect of pressure on these defect structures. By analyzing the defect chemistry, we obtain the defect concentrations at finite temperature and pressure conditions using the zero temperature ab initio results as input and find that at low oxygen partial pressures, neutral oxygen vacancies are most dominant and at high oxygen partial pressures, doubly charged anionic defects are dominant. As a result, the relevance of the results to the thermal protective coating capabilities of zirconium-based ceramic composites is elucidated.« less
Vinikoor-Imler, Lisa C; Davis, J Allen; Meyer, Robert E; Luben, Thomas J
2013-10-01
Few studies have examined the potential relationship between air pollution and birth defects. The objective of this study was to investigate whether maternal exposure to particulate matter (PM2.5 ) and ozone (O3 ) during pregnancy is associated with birth defects among women living throughout North Carolina. Information on maternal and infant characteristics was obtained from North Carolina birth certificates and health service data (2003-2005) and linked with information on birth defects from the North Carolina Birth Defects Monitoring Program. The 24-hr PM2.5 and O3 concentrations were estimated using a hierarchical Bayesian model of air pollution generated by combining modeled air pollution predictions from the U.S. Environmental Protection Agency's Community Multi-Scale Air Quality model with air monitor data from the Environmental Protection Agency's Air Quality System. Maternal residence was geocoded and assigned pollutant concentrations averaged over weeks 3 to 8 of gestation. Binomial regression was performed and adjusted for potential confounders. No association was observed between either PM2.5 or O3 concentrations and most birth defects. Positive effect estimates were observed between air pollution and microtia/anotia and lower limb deficiency defects, but the 95% confidence intervals were wide and included the null. Overall, this study suggested a possible relationship between air pollution concentration during early pregnancy and certain birth defects (e.g., microtia/anotia, lower limb deficiency defects), although this study did not have the power to detect such an association. The risk for most birth defects does not appear to be affected by ambient air pollution. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Fisch, G. Z.; Borden, T. J.
1982-01-01
Monitoring circuit responds to changes in resistance as little as 0.1 ohm. Has been used to detect defective wire-wrap connections during thermal and vibration tests. Defect is indicated to operator by light-emitting diode and by increase in count on a two-digit display.
NASA Astrophysics Data System (ADS)
Lee, Sang Jun
Autonomous structural health monitoring (SHM) systems using active sensing devices have been studied extensively to diagnose the current state of aerospace, civil infrastructure and mechanical systems in near real-time and aims to eventually reduce life-cycle costs by replacing current schedule-based maintenance with condition-based maintenance. This research develops four schemes for SHM applications: (1) a simple and reliable PZT transducer self-sensing scheme; (2) a smart PZT self-diagnosis scheme; (3) an instantaneous reciprocity-based PZT diagnosis scheme; and (4) an effective PZT transducer tuning scheme. First, this research develops a PZT transducer self-sensing scheme, which is a necessary condition to accomplish a PZT transducer self-diagnosis. Main advantages of the proposed self-sensing approach are its simplicity and adaptability. The necessary hardware is only an additional self-sensing circuit which includes a minimum of electric components. With this circuit, the self-sensing parameters can be calibrated instantaneously in the presence of changing operational and environmental conditions of the system. In particular, this self-sensing scheme focuses on estimating the mechanical response in the time domain for the subsequent applications of the PZT transducer self-diagnosis and tuning with guided wave propagation. The most significant challenge of this self-sensing comes from the fact that the magnitude of the mechanical response is generally several orders of magnitude smaller than that of the input signal. The proposed self-sensing scheme fully takes advantage of the fact that any user-defined input signals can be applied to a host structure and the input waveform is known. The performance of the proposed self-sensing scheme is demonstrated by theoretical analysis, numerical simulations and various experiments. Second, this research proposes a smart PZT transducer self-diagnosis scheme based on the developed self-sensing scheme. Conventionally, the capacitance change of the PZT wafer is monitored to identify the abnormal PZT condition because the capacitance of the PZT wafer is linearly proportional to its size and also related to the bonding condition. However, temperature variation is another primary factor that affects the PZT capacitance. To ensure the reliable transducer self-diagnosis, two different self-diagnosis features are proposed to differentiate two main PZT wafer defects, i.e., PZT debonding and PZT cracking, from temperature variations and structural damages. The PZT debonding is identified using two indices based on time reversal process (TRP) without any baseline data. Also, the PZT cracking is identified by monitoring the change of the generated Lamb wave power ratio index with respect to the driving frequency. The uniqueness of this self-diagnosis scheme is that the self-diagnosis features can differentiate the PZT defects from environmental variations and structural damages. Therefore, it is expected to minimize false-alarms which are induced by operational or environmental variations as well as structural damages. The applicability of the proposed self-diagnosis scheme is verified by theoretical analysis, numerical simulations, and experimental tests. Third, a new methodology of guided wave-based PZT transducer diagnosis is developed to identify PZT transducer defects without using prior baseline data. This methodology can be applied when a number of same-size PZT transducers are attached to a target structure to form a sensor network. The advantage of the proposed technique is that abnormal PZT transducers among intact PZT transducers can be detected even when the system being monitored is subjected to varying operational and environmental conditions or changing structural conditions. To achieve this goal, the proposed diagnosis technique utilizes the linear reciprocity of guided wave propagation between a pair of surface-bonded PZT transducers. Finally, a PZT transducer tuning scheme is being developed for selective Lamb wave excitation and sensing. This is useful for structural damage detection based on Lamb wave propagation because the proper transducer size and the corresponding input frequency can be is crucial for selective Lamb wave excitation and sensing. The circular PZT response model is derived, and the energy balance is included for a better prediction of the PZT responses because the existing PZT response models do not consider any energy balance between Lamb wave modes. In addition, two calibration methods are also suggested in order to model the PZT responses more accurately by considering a bonding layer effect. (Abstract shortened by UMI.)
... both. Some birth defects like cleft lip or neural tube defects are structural problems that can be ... during pregnancy is a key factor in causing neural tube defects. For most birth defects, the cause ...
Actinic imaging and evaluation of phase structures on EUV lithography masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin
2010-09-28
The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less
Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F
2015-11-01
Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.
Effect of Defects on III-V MWIR nBn Detector Performance
2014-08-01
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 infrared detectors ...rather than diffusion based processes. Keywords: infrared detectors , MWIR, nBn, photodiode, defects, irradiation, lattice mismatch, dark current...currents will increase noise in the detector , it is important to understand the impact elevated defect concentrations will have on barrier architecture
Offline detection of broken rotor bars in AC induction motors
NASA Astrophysics Data System (ADS)
Powers, Craig Stephen
ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.
Nanoscale interfacial defect shedding in a growing nematic droplet.
Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro
2017-08-01
Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.
NASA Astrophysics Data System (ADS)
Silva, Tiago Varão; Hubinger, Silviane Zanni; Gomes Neto, José Anchieta; Milori, Débora Marcondes Bastos Pereira; Ferreira, Ednaldo José; Ferreira, Edilene Cristina
2017-09-01
Coffee is an important commodity and a very popular beverage around the world. Its economic value as well as beverage quality are strongly dependent of the quality of beans. The presence of defective beans in coffee blends has caused a negative impact on the beverage Global Quality (GQ) assessed by cupping tests. The main defective beans observed in the productive chain has been those Blacks, Greens and Sours (BGS). Chemical composition of BGS has a damaging impact on beverage GQ. That is why analytical tools are needed for monitoring and controlling the GQ in coffee agro-industry. Near Infrared Spectroscopy (NIRS) has been successfully applied for assessment of coffee quality. Another potential technique for direct, clean and fast measurement of coffee GQ is Laser Induced Breakdown Spectroscopy (LIBS). Elements and diatomic molecules commonly present in organic compounds (structure) can be assessed by using LIBS. In this article is reported an evaluation of LIBS for the main interferents of GQ (BGS defects). Results confirm the great potential of LIBS for discriminating good beans from those with BGS defects by using emission lines of C, CN, C2 and N. Most importantly, some emission lines presented strong linear correlation (r > 0.9) with NIRS absorption bands assigned to proteins, lipids, sugar and carboxylic acids, suggesting LIBS potential to estimate these compounds in unroasted and ground coffee samples.
Location, location & size: defects close to surfaces dominate fatigue crack initiation
NASA Astrophysics Data System (ADS)
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-03-01
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards
Location, location &size: defects close to surfaces dominate fatigue crack initiation.
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-03-27
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards.
Location, location & size: defects close to surfaces dominate fatigue crack initiation
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-01-01
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards PMID:28345599
Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A
2014-09-01
The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.
Defect modes in a stacked structure of chiral photonic crystals.
Chen, Jiun-Yeu; Chen, Lien-Wen
2005-06-01
An optical propagation simulation is carried out for the study of photonic defect modes in a stacked structure of cholesteric liquid crystal films with spatially varying pitch. The defects are introduced by a pitch jump and a phase jump in the cholesteric helix. The effect of a finite sample thickness on transmission of the defect mode and on the required polarization of incident light to create the defect mode is discussed. For normal and near-normal incidence of circularly polarized light with the same handedness as structure, the defect caused by a pitch jump results in discrete peaks within a forbidden band in the transmission. The particular spectrum is similar to the feature of a Fabry-Pérot interferometer. By introducing an additional phase jump, linear blueshifts of the defect modes in transmission spectra are correlated with an increase in the twist angle.
Band Structure Characteristics of Nacreous Composite Materials with Various Defects
NASA Astrophysics Data System (ADS)
Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.
2016-06-01
Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.
Detection of Internal Delamination in Composite Mono Leaf Spring based on Vibration Characteristics
NASA Astrophysics Data System (ADS)
Jamadar, Nagendra Iranna; Kivade, S. B.
2017-06-01
Structural health monitoring (SHM) is one of the non destructive evaluations universally accepted to detect defect or damage in composite structures. The paper deals with detection of inter laminar delamination problems in composite mono leaf spring during service conditions by vibration techniques. The delamination detection is crucial issue as it leads to catastrophic failure. The vibration parameters such as natural frequency and modes shapes are evaluated for healthy and delaminated spring. It has been observed that some mode shapes are found to be more sensitive to the delaminated region. The presence, location and severity of delamination are simulated and validated by experimental modal analysis for both the spring and found closer approximation with each other.
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.
NASA Astrophysics Data System (ADS)
Avendanño, Carlos G.; Martínez, Daniel
2018-07-01
We studied the transmission spectra in a one-dimensional dielectric multilayer photonic structure containing a cholesteric liquid crystal elastomer layer as a defect. For circularly polarized incident electromagnetic waves, we analyzed the optical defect modes induced in the band gap spectrum as a function of the incident angle and the axial strain applied along the same axis as the periodic medium. The physical parameters of the structure were chosen in such a way the photonic band gap of the cholesteric elastomer lies inside that of the multilayer. We found that, in addition to the defect modes associated with the thickness of the defect layer and the anisotropy of the elastic polymer, two new defect modes appear at both band edges of the cholesteric structure, whose amplitudes and spectral positions can be elastically tuned. Particularly, we showed that, at normal incidence, the defect modes shift toward the long-wavelength region with the strain; whereas, for constant elongation, such defects move toward larger frequencies with the incidence angle.
Liu, Chang; Dobson, Jacob; Cawley, Peter
2017-03-01
Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an installed monitoring system and to show whether it is capable of detecting particular damage growth at any given location. It will enable monitoring results to be evaluated rigorously and will be valuable in the development of safety cases.
Dobson, Jacob; Cawley, Peter
2017-01-01
Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an installed monitoring system and to show whether it is capable of detecting particular damage growth at any given location. It will enable monitoring results to be evaluated rigorously and will be valuable in the development of safety cases. PMID:28413339
Study Acoustic Emissions from Composites
NASA Technical Reports Server (NTRS)
Walker, James L.; Workman, Gary L.
1997-01-01
The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...
2016-10-25
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less
NASA Astrophysics Data System (ADS)
Kolotova, L. N.; Starikov, S. V.
2017-11-01
In irradiation of swift heavy ions, the defects formation frequently takes place in crystals. High energy transfer into the electronic subsystem and relaxations processes lead to the formation of structural defects and cause specific effects, such as the track formation. There is a large interest to understanding of the mechanisms of defects/tracks formation due to the heating of the electron subsystem. In this work, the atomistic simulation of defects formation and structure transitions in U-Mo alloys in irradiation of swift heavy ions has been carried out. We use the two-temperature atomistic model with explicit account of electron pressure and electron thermal conductivity. This two-temperature model describes ionic subsystem by means of molecular dynamics while the electron subsystem is considered in the continuum approach. The various mechanisms of structure changes in irradiation are examined. In particular, the simulation results indicate that the defects formation may be produced without melting and subsequent crystallization. Threshold stopping power of swift ions for the defects formation in irradiation in the various conditions are calculated.
Average structure and local configuration of excess oxygen in UO(2+x).
Wang, Jianwei; Ewing, Rodney C; Becker, Udo
2014-03-19
Determination of the local configuration of interacting defects in a crystalline, periodic solid is problematic because defects typically do not have a long-range periodicity. Uranium dioxide, the primary fuel for fission reactors, exists in hyperstoichiometric form, UO(2+x). Those excess oxygen atoms occur as interstitial defects, and these defects are not random but rather partially ordered. The widely-accepted model to date, the Willis cluster based on neutron diffraction, cannot be reconciled with the first-principles molecular dynamics simulations present here. We demonstrate that the Willis cluster is a fair representation of the numerical ratio of different interstitial O atoms; however, the model does not represent the actual local configuration. The simulations show that the average structure of UO(2+x) involves a combination of defect structures including split di-interstitial, di-interstitial, mono-interstitial, and the Willis cluster, and the latter is a transition state that provides for the fast diffusion of the defect cluster. The results provide new insights in differentiating the average structure from the local configuration of defects in a solid and the transport properties of UO(2+x).
Turbine Engine Disk Rotor Health Monitoring Assessment Using Spin Tests Data
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Woike, Mark; Baalini, George; Bodis, James R.
2012-01-01
Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center s Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology.
Turbine engine disk rotor health monitoring assessment using spin tests data
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Woike, Mark; Baaklini, George; Bodis, James R.
2012-04-01
Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center's Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology.
NASA Astrophysics Data System (ADS)
Kumar, Asish; Singh, Prabal P.; Thapa, Khem B.
2018-05-01
The optical properties of one-dimensional periodic structure composed by SiO2 and dielectric (air) layers with asymmetric and symmetric forms studied. The transmittance for symmetric periodic defective structure analyzed by introducing one, two, three layers of magnetized cold plasma (MCP) in one-dimensional periodic structure. We found better result for symmetric defect of three layer of the MCP compare to the other defective structures. On the basis of our calculated results, we proposed a new idea for broadband reflector at lower frequency range as well as the multichannel filter at higher frequency range.
Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO
NASA Astrophysics Data System (ADS)
Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.
2018-05-01
The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.
NASA Astrophysics Data System (ADS)
Gryzunova, N. N.; Vikarchuk, A. A.; Tyur'kov, M. N.
2016-10-01
The defect structure of the electrolytic copper coatings formed upon mechanical activation of a cathode is described. These coatings are shown to have a fragmented structure containing disclination-type defects, namely, terminating dislocation, disclination and twin boundaries; partial disclinations, misorientation bands; and twin layers. They have both growth and deformation origins. The mechanisms of formation of the structural defects are discussed. It is experimentally proved that part of the elastic energy stored in the crystal volume during electrocrystallization can be converted into surface energy. As a result, catalytically active materials with a large developed surface can be synthesized.
NASA Astrophysics Data System (ADS)
Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko
2018-06-01
We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.
2004-04-15
Technology derived by NASA for monitoring control gyros in the Skylab program is directly applicable to the problems of fault detection of railroad wheel bearings. Marhsall Space Flight Center's scientists have developed a detection concept based on the fact that bearing defects excite resonant frequency of rolling elements of the bearing as they impact the defect. By detecting resonant frequency and subsequently analyzing the character of this signal, bearing defects may be detected and identified as to source.
Monitoring Welding-Gas Quality
NASA Technical Reports Server (NTRS)
Huddleston, Kevin L.
1988-01-01
System monitors welding gas to ensure characteristics within predetermined values. Responds to changes that might go unnoticed by human operator and acts quickly to prevent weld defects. Electronic pressure controller employs various amounts of gain, equalization, and compensation to respond to changes in gas-supply pressure. Works in conjuction with pressure/oxygen/moisture monitor.
Structural defects in GaN revealed by Transmission Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liliental-Weber, Zuzanna
This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.
Structural defects in GaN revealed by Transmission Electron Microscopy
Liliental-Weber, Zuzanna
2014-09-08
This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.
NASA Astrophysics Data System (ADS)
Sung, Wen-Pei; Shih, Ming-Hsiang
2016-04-01
Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.
Topological defects in electric double layers of ionic liquids at carbon interfaces
Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; ...
2015-06-07
The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less
NASA Astrophysics Data System (ADS)
Pawar, U. A.; Mondal, D.; Nagaraju, A.; Chakraborty, S.; Singh, L. L. K.; Chattopadhyay, S.
2018-03-01
In this paper, single layer, simple and compact RMA, with corrugation like defects at the radiating edge, is studied thoroughly to reduce XP radiation from the patch. Unlike the earlier works reported on defected ground structure integrated patches and defect patch structures, in this work, corrugation like linear defects have been placed at the radiating edges of the patch to reduce cross polarisation radiation. Around 30-40 dB of CP-XP isolation is observed in H-plane with 7% impedance bandwidth and in E-plane also, more than 55 dB CP-XP isolation is found. The proposed structure is very simple to design and easy to fabricate.
NASA Astrophysics Data System (ADS)
Soua, S.; Bridge, B.; Cebulski, L.; Gan, T.-H.
2012-03-01
The use of a shock accelerometer for the continuous in-service monitoring of wear of the slip ring on a wind turbine generator is proposed and supporting results are presented. Five wear defects in the form of out-of-round circumference acceleration data with average radial dimensions in the range 5.9-25 µm were studied. A theoretical model of the acceleration at a point on the circumference of a ring as a function of the defect profile is presented. Acceleration data as a continuous function of time have been obtained for ring rotation frequencies that span the range of frequencies arising with the variation of wind speeds experienced under all in-service conditions. As a result, the measured RMS acceleration is proven to follow an overall increasing trend with frequency for all defects at all brush pressures. A statistical analysis of the root mean square of the time acceleration data as a function of the defect profiles, rotation speeds and brush contact pressure has been performed. The detection performance is considered in terms of the achievement of a signal to noise ratio exceeding 3 (99.997% defect detection probability). Under all conditions of rotation speed and pressure, this performance was achieved for average defect sizes as small as 10 µm, which is only 0.004% of the ring diameter. These results form the basis of a very sensitive defect alarm system.
Nondestructive optical testing of the materials surface structure based on liquid crystals
NASA Astrophysics Data System (ADS)
Tomilin, M. G.; Stafeev, S. K.
2011-08-01
Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.
Acoustic Emission Beamforming for Detection and Localization of Damage
NASA Astrophysics Data System (ADS)
Rivey, Joshua Callen
The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over the conventional wave propagation tracking technique based on laser doppler vibrometry that requires synchronization of data acquired from numerous excitations and measurements. The proposed technique can be used to characterize and localize damage by detecting the scattering, attenuation, and reflections of stress waves resulting from damage and defects. These studies lend credence to the potential development of new SHM/NDE techniques based on acoustic emission beamforming for characterizing a wide spectrum of damage modes in next-generation materials and structures without the need for mounted contact sensors.
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Chamis, Christos C.; Minnetyan, Levon
1996-01-01
Graphite/epoxy composite thin shell structures were simulated to investigate damage and fracture progression due to internal pressure and axial loading. Defective and defect-free structures (thin cylinders) were examined. The three different laminates examined had fiber orientations of (90/0/+/-0)(sub s), where 0 is 45, 60, and 75 deg. CODSTRAN, an integrated computer code that scales up constituent level properties to the structural level and accounts for all possible failure modes, was used to simulate composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture were included in the simulation. Burst pressures for defective and defect-free shells were compared to evaluate damage tolerance. The results showed that damage initiation began with matrix failure whereas damage and/or fracture progression occurred as a result of additional matrix failure and fiber fracture. In both thin cylinder cases examined (defective and defect-free), the optimum layup configuration was (90/0/+/-60)(sub s) because it had the best damage tolerance with respect to the burst pressure.
NASA Astrophysics Data System (ADS)
Sen, Dipanjan; Buehler, Markus J.
2011-07-01
Mineralized biological materials such as bone, sea sponges or diatoms provide load-bearing and armor functions and universally feature structural hierarchies from nano to macro. Here we report a systematic investigation of the effect of hierarchical structures on toughness and defect-tolerance based on a single and mechanically inferior brittle base material, silica, using a bottom-up approach rooted in atomistic modeling. Our analysis reveals drastic changes in the material crack-propagation resistance (R-curve) solely due to the introduction of hierarchical structures that also result in a vastly increased toughness and defect-tolerance, enabling stable crack propagation over an extensive range of crack sizes. Over a range of up to four hierarchy levels, we find an exponential increase in the defect-tolerance approaching hundred micrometers without introducing additional mechanisms or materials. This presents a significant departure from the defect-tolerance of the base material, silica, which is brittle and highly sensitive even to extremely small nanometer-scale defects.
Riffet, Vanessa; Vidal, Julien
2017-06-01
The search for functional materials is currently hindered by the difficulty to find significant correlation between constitutive properties of a material and its functional properties. In the case of amorphous materials, the diversity of local structures, chemical composition, impurities and mass densities makes such a connection difficult to be addressed. In this Letter, the relation between refractive index and composition has been investigated for amorphous AlO x materials, including nonstoichiometric AlO x , emphasizing the role of structural defects and the absence of effect of the band gap variation. It is found that the Newton-Drude (ND) relation predicts the refractive index from mass density with a rather high level of precision apart from some structures displaying structural defects. Our results show especially that O- and Al-based defects act as additive local disturbance in the vicinity of band gap, allowing us to decouple the mass density effects from defect effects (n = n[ND] + Δn defect ).
Controversies in cardiovascular care: silent myocardial ischemia
NASA Technical Reports Server (NTRS)
Hollenberg, N. K.
1987-01-01
The objective evidence of silent myocardial ischemia--ischemia in the absence of classical chest pain--includes ST-segment shifts (usually depression), momentary left ventricular failure, and perfusion defects on scintigraphic studies. Assessment of angina patients with 24-hour ambulatory monitoring may uncover episodes of silent ischemia, the existence of which may give important information regarding prognosis and may help structure a more effective therapeutic regimen. The emerging recognition of silent ischemia as a significant clinical entity may eventually result in an expansion of current therapy--not only to ameliorate chest pain, but to minimize or eliminate ischemia in the absence of chest pain.
NASA Astrophysics Data System (ADS)
Okafor, A. C.; Natarajan, S.
2007-03-01
Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.
NASA Astrophysics Data System (ADS)
Datsyuk, Vitaliy; Trotsenko, Svitlana; Reich, Stephanie
2018-01-01
A sustainable approach to graphite exfoliation via in situ thermal polymerization of fish oil results in the production of nanographite particles. The material was characterized by elemental analysis, transmission electron microscopy, and Raman spectroscopy. The thermal polymerization of fish oil was controlled by monitoring the viscosity and measuring the iodine number. The number of structural defects on the graphitic surface remained constant during the synthesis. The protocol leads to a hydrophobization of the nanographite surface. Immobilized polyoil islands create sterical hindrance and stabilize the nanographite particles in engineering polymers.
Waltzing route toward double-helix formation in cholesteric shells
NASA Astrophysics Data System (ADS)
Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa
2016-08-01
Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other.
Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan; ...
2016-11-10
Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan
Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less
77 FR 24960 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [30Day-12-0010... Description CDC has been monitoring the occurrence of serious birth defects and genetic diseases in Atlanta... early warning system for new teratogens. In 1997, the Birth Defects Risk Factor Surveillance (BDRFS...
NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-01
This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C
2013-10-08
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H.; Zhao, Xin; Hayner, Cary M.; Kung, Mayfair C.
2016-05-31
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
Defect formation energy in pyrochlore: the effect of crystal size
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Ewing, Rodney C.; Becker, Udo
2014-09-01
Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.
NASA Astrophysics Data System (ADS)
Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim
2017-12-01
This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.
Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Samrat; Morgan, Dane; Uberuaga, Blas P.
Electronic structure calculations were performed to study the role of misfit dislocations on the structure and chemistry of a metal/oxide interface. We found that a chemical imbalance exists at the misfit dislocation which leads to dramatic changes in the point defect content at the interface – stabilizing the structure requires removing as much as 50% of the metal atoms and insertion of a large number of oxygen interstitials. The exact defect composition that stabilizes the interface is sensitive to the external oxygen partial pressure. We relate the preferred defect structure at the interface to a competition between chemical and strainmore » energies as defects are introduced.« less
Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces
Choudhury, Samrat; Morgan, Dane; Uberuaga, Blas P.
2014-10-17
Electronic structure calculations were performed to study the role of misfit dislocations on the structure and chemistry of a metal/oxide interface. We found that a chemical imbalance exists at the misfit dislocation which leads to dramatic changes in the point defect content at the interface – stabilizing the structure requires removing as much as 50% of the metal atoms and insertion of a large number of oxygen interstitials. The exact defect composition that stabilizes the interface is sensitive to the external oxygen partial pressure. We relate the preferred defect structure at the interface to a competition between chemical and strainmore » energies as defects are introduced.« less
Role of Defects on Regioselectivity of Nano Pristine Graphene.
Kudur Jayaprakash, Gururaj; Casillas, Norberto; Astudillo-Sánchez, Pablo D; Flores-Moreno, Roberto
2016-11-17
Here analytical Fukui functions based on density functional theory are applied to investigate the redox reactivity of pristine and defected graphene lattices. A carbon H-terminated graphene structure (with 96 carbon atoms) and a graphene defected surface with Stone-Wales rearrangement and double vacancy defects are used as models. Pristine sp 2 -hybridized, hexagonal arranged carbon atoms exhibit a symmetric reactivity. In contrast, common carbon atoms at reconstructed polygons in Stone-Wales and double vacancy graphene display large reactivity variations. The improved reactivity and the regioselectivity at defected graphene is correlated to structural changes that caused carbon-carbon bond length variations at defected zones.
Code of Federal Regulations, 2010 CFR
2010-01-01
... structural defect. (d) Structural defect. A defect in the dwelling or unit, installation or set-up of a unit... of the dwelling or unit or site such as faulty wiring, or failure of sewage disposal or water supply systems located on the property securing the loan caused by faulty materials or improper installation. (3...
Electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene
NASA Astrophysics Data System (ADS)
Menezes, Marcos G.; Capaz, Rodrigo B.
2015-08-01
Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.
Electronic and Structural Properties of Vacancies and Hydrogen Adsorbates on Trilayer Graphene
NASA Astrophysics Data System (ADS)
Menezes, Marcos; Capaz, Rodrigo
2015-03-01
Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external electrical field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.
Defects in Arsenic Implanted p + -n- and n + -p- Structures Based on MBE Grown CdHgTe Films
NASA Astrophysics Data System (ADS)
Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytskyy, H. V.; Świątek, Z.
2018-02-01
Complex studies of the defect structure of arsenic-implanted (with the energy of 190 keV) Cd x Hg 1-x Te ( x = 0.22) films grown by molecular-beam epitaxy are carried out. The investigations were performed using secondary-ion mass spectroscopy, transmission electron microscopy, optical reflection in the visible region of the spectrum, and electrical measurements. Radiation donor defects were studied in n +- p- and n +- n-structures obtained by implantation and formed on the basis of p-type and n-type materials, respectively, without activation annealing. It is shown that in the layer of the distribution of implanted ions, a layer of large extended defects with low density is formed in the near-surface region followed by a layer of smaller extended defects with larger density. A different character of accumulation of electrically active donor defects in the films with and without a protective graded-gap surface layer has been revealed. It is demonstrated that p +- n- structures are formed on the basis of n-type material upon activation of arsenic in the process of postimplantation thermal annealing with 100% activation of impurity and complete annihilation of radiation donor defects.
NASA Astrophysics Data System (ADS)
Rout, Dipak; Kumar, Govind; Vijaya, R.
2018-01-01
A photonic crystal hetero-structure consisting of a passive planar defect of SiO2 thin film sandwiched between two identical opals grown by inward growing self-assembly method using Rhodamine-B dye-doped polystyrene microspheres is studied for the characteristics of dye emission. The optical properties and the defect mode characteristics of the hetero-structure are studied from the reflection and transmission measurements. Laser-induced fluorescence from the hetero-structure showed amplified and spectrally narrowed emission compared to the photonic crystal emphasizing the role of the defect mode and distributed feedback. The enhanced emission is also complemented by the reduction in fluorescence decay time in the case of the hetero-structure in comparison to the 3D photonic crystals.
Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements
NASA Astrophysics Data System (ADS)
Yan, Fei; Qi, Kevin ``Xue''; Rose, Joseph L.; Weiland, Hasso
2010-02-01
Nondestructive testing for multilayered structures is challenging because of increased numbers of layers and plate thicknesses. In this paper, ultrasonic guided waves are applied to detect delamination defects inside a 23-layer Alcoa Advanced Hybrid Structural plate. A semi-analytical finite element (SAFE) method generates dispersion curves and wave structures in order to select appropriate wave structures to detect certain defects. One guided wave mode and frequency is chosen to achieve large in-plane displacements at regions of interest. The interactions of the selected mode with defects are simulated using finite element models. Experiments are conducted and compared with bulk wave measurements. It is shown that guided waves can detect deeply embedded damages inside thick multilayer fiber-metal laminates with suitable mode and frequency selection.
Smart concrete slabs with embedded tubular PZT transducers for damage detection
NASA Astrophysics Data System (ADS)
Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing
2018-02-01
The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.
Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro
2018-06-01
The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.
Propagation characteristics of ultrasonic guided waves in continuously welded rail
NASA Astrophysics Data System (ADS)
Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan
2017-07-01
Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.
Palczewska, Grazyna; Maeda, Tadao; Imanishi, Yoshikazu; Sun, Wenyu; Chen, Yu; Williams, David R.; Piston, David; Maeda, Akiko; Palczewski, Krzysztof
2010-01-01
Multi–photon excitation fluorescence microscopy (MPM) can image certain molecular processes in vivo. In the eye, fluorescent retinyl esters in sub–cellular structures called retinosomes mediate regeneration of the visual chromophore, 11–cis–retinal, by the visual cycle. But harmful fluorescent condensation products were also identified previously. We report that in wild type mice, excitation with λ ~730 nm identified retinosomes in the retinal pigment epithelium, whereas excitation with λ ~910 nm revealed at least one additional retinal fluorophore. The latter fluorescence was absent in eyes of genetically modified mice lacking a functional visual cycle, but accentuated in eyes of older WT mice and mice with defective clearance of all–trans–retinal, an intermediate in the visual cycle. MPM, a noninvasive imaging modality that facilitates concurrent monitoring of retinosomes along with potentially harmful products in aging eyes, has the potential to detect early molecular changes due to age–related macular degeneration and other defects in retinoid metabolism. PMID:21076393
Reston, E G; Bueno, Rpr; Closs, L Q; Zettermann, J
Internal bleaching in endodontically treated teeth requires care and protection to prevent harm to the periodontal ligament due to peroxide and may result in external root resorption. There is a myriad of treatment options when this occurs, such as monitoring, extraction, and subsequent rehabilitation with implants or fixed prosthodontics. In some cases, such as the one described here, a conservative attempt to maintain the tooth as a single structure can be made by sealing the resorptive defect. In the present case, we show a multidisciplinary approach where orthodontics, periodontics, and restorative dentistry were involved in treating the maxillary right central incisor (#8) of a 65-year-old patient with extensive cervical resorption, whose chief complaint was esthetics. The proposed treatment was extrusion of the tooth followed by curettage and restoration of the defect with glass ionomer cement. The patient has been followed for 15 years with no signs of recurrence, maintenance of periodontal health, and patient satisfaction with the esthetic outcome.
Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd 2Ti 2O 7
Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; ...
2015-11-10
In this research, the structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd 2Ti 2O 7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region ismore » predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. From these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less
Study of Acoustic Emissions from Composites
NASA Technical Reports Server (NTRS)
Walker, James L.; Workman, Gary L.
1997-01-01
The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; ...
2016-12-14
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
Impedance-Based Structural Health Monitoring for Composite Laminates at Cryogenic Environments
NASA Technical Reports Server (NTRS)
Tseng, Kevin
2003-01-01
One of the important ways of increasing the payload in a reusable launch vehicle (RLV) is to replace heavy metallic materials by lightweight composite laminates. Among various parts and systems of the RLV, this project focuses on tanks containing cryogenic fuel. Historically, aluminum alloys have been used as the materials to construct fuel tanks for launch vehicles. To replace aluminum alloys with composite laminates or honeycomb materials, engineers have to make sure that the composites are free of defects before, during, and after launch. In addition to robust design and manufacturing procedures, the performance of the composite structures needs to be monitored constantly.In recent years, the impedance-based health monitoring technique has shown its promise in many applications. This technique makes use of the special properties of smart piezoelectric materials to identify the change of material properties due to the nucleation and progression of damage. The piezoceramic patch serves as a sensor and an actuator simultaneously. The piezoelectric patch is bonded onto an existing structure or embedded into a new structure and electrically excited at high frequencies. The signature (impedance or admittance) is extracted as a function of the exciting frequency and is compared with the baseline signature of the healthy state. The damage is quantified using root mean square deviation (RMSD) in the impedance signatures with respect to the baseline signature. A major advantage of this technique is that the procedure is nondestructive in nature and does not perturb the properties and performance of the materials and structures. This project aims at applying the impedance-based nondestructive testing technique to the damage identification of composite laminates at cryogenic temperature.
In situ simulated cardiac arrest exercises to detect system vulnerabilities.
Barbeito, Atilio; Bonifacio, Alberto; Holtschneider, Mary; Segall, Noa; Schroeder, Rebecca; Mark, Jonathan
2015-06-01
Sudden cardiac arrest is the leading cause of death in the United States. Despite new therapies, progress in this area has been slow, and outcomes remain poor even in the hospital setting, where providers, drugs, and devices are readily available. This is partly attributed to the quality of resuscitation, which is an important determinant of survival for patients who experience cardiac arrest. Systems problems, such as deficiencies in the physical space or equipment design, hospital-level policies, work culture, and poor leadership and teamwork, are now known to contribute significantly to the quality of resuscitation provided. We describe an in situ simulation-based quality improvement program that was designed to continuously monitor the cardiac arrest response process for hazards and defects and to detect opportunities for system optimization. A total of 72 simulated unannounced cardiac arrest exercises were conducted between October 2010 and September 2013 at various locations throughout our medical center and at different times of the day. We detected several environmental, human-machine interface, culture, and policy hazards and defects. We used the Systems Engineering Initiative for Patient Safety (SEIPS) model to understand the structure, processes, and outcomes related to the hospital's emergency response system. Multidisciplinary solutions were crafted for each of the hazards detected, and the simulation program was used to iteratively test the redesigned processes before implementation in real clinical settings. We describe an ongoing program that uses in situ simulation to identify and mitigate latent hazards and defects in the hospital emergency response system. The SEIPS model provides a framework for describing and analyzing the structure, processes, and outcomes related to these events.
NASA Astrophysics Data System (ADS)
Kim, Yongseon
2015-11-01
The structural features related to the defects of LiMO2 (M = Ni, Co, Mn) cathode materials for lithium secondary batteries were investigated by a simulation of phase diagrams based on first-principle calculations. Crystal models with various types of point defects were designed and dealt with as independent phases, which enabled an examination of the thermodynamic stability of the defects. A perfect phase without defects appeared to be the most stable for LiCoO2, whereas the formation of Li vacancies, O vacancies, and antisites between Li and Ni was thermodynamically unavoidable for LiNiO2. The introduction of both Co and Mn in LiNiO2 was effective in reducing the formation of point defects, but increasing the relative amount of Mn was undesirable because the antisite defect remained stable with Mn doping. The simulation showed good agreement with the experimental data and previous reports. Therefore, the method and the results of this study are expected to be useful for examining the synthesis, structure and related properties of layer-structured cathode materials.
He, Heming; Shoesmith, David
2010-07-28
A method to determine the defect structures in hyper-stoichiometric UO(2+x) using a combination of XRD and Raman spectroscopy has been developed. A sequence of phase transitions, from cubic to tetragonal symmetry, occurs with increasing degree of non-stoichiometry. This sequence proceeds from a cubic phase through an intermediate t''-type tetragonal (axial ratio c/a = 1) phase to a final t-type tetragonal (c/a not = 1) phase. Four distinct structural defect regions can be identified in the stoichiometry range, UO(2) to U(3)O(7): (i) a random point defect structure (x (in UO(2+x)) < or = 0.05); (ii) a non-stoichiometry region (0.05 < or = x < or = 0.15) over which point defects are gradually eliminated and replaced by the Willis 2:2:2 cluster; (iii) a mixture of Willis and cuboctahedral clusters (0.15 < or = x < or = 0.23); (iv) the cuboctahedral cluster (x > or = 0.23). The geometry and steric arrangement of these defects is primarily determined by the concentration of the excess-oxygen interstitials.
NASA Astrophysics Data System (ADS)
Dumoulin, Jean
2013-04-01
Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using direct thermal modelling or inverse thermal modelling will be presented and discussed. Conclusion and perspectives will be proposed in link with structure monitoring or cultural heritage applications. References [1] Maldague, X.P.V. "Theory and practice of infrared technology for non-destructive testing", John Wiley & sons Inc., 2001. [2] Dumoulin J. and Averty R., « Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", QIRT 2012, Naples, Italy, June 2012. [3] J. Dumoulin, L. Ibos, C. Ibarra-Castanedo, A Mazioud, M. Marchetti, X. Maldague and A. Bendada, « Active infrared thermography applied to defect detection and characterization on asphalt pavement samples: comparison between experiments and numerical simulations », Journal of Modern Optics, Special Issue on Advanced Infrared Technology and Applications, Volume 57, Issue 18, October 2010 , pages 1759 - 1769, doi:10.1080/09500340.2010.522738 [4] F. Taillade, M. Quiertant, K. Benzarti, J. Dumoulin, Ch. Aubagnac, Chapter 9: "Nondestructive Evaluation of FRP Strengthening Systems Bonded on Concrete Structures using Pulsed Stimulated Infrared Thermography ", pp 193-208, Book title "Infrared Thermography", Editeur Raghu V. Prakash, ISBN 978-953-51-0242-7, Intech, open access at the following address http://www.intechopen.com/books/editor/infrared-thermography, march 2012. [5] Cooley J.W., Tukey J.W., "An algorithm for the machine calculation of complex Fourier series", Mathematics of Computation, vol. 19, n° 90, 1965, p. 297-301. [6] Rajic N., "Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures", Composite Structures, vol 58, pp 521-528, 2002. [7] Marinetti S., Grinzato E., Bison P. G., Bozzi E., Chimenti M., Pieri G. and Salvetti O. "Statistical analysis of IR thermographic sequences by PCA," Infrared Physics & Technology vol 46 pp 85-91, 2004.
NASA Astrophysics Data System (ADS)
Pankratov, E. L.
2018-05-01
We introduce a model of redistribution of point radiation defects, their interaction between themselves and redistribution of their simplest complexes (divacancies and diinterstitials) in a multilayer structure. The model gives a possibility to describe qualitatively nonmonotonicity of distributions of concentrations of radiation defects on interfaces between layers of the multilayer structure. The nonmonotonicity was recently found experimentally. To take into account the nonmonotonicity we modify recently used in literature model for analysis of distribution of concentration of radiation defects. To analyze the model we used an approach of solution of boundary problems, which could be used without crosslinking of solutions on interfaces between layers of the considered multilayer structures.
Transforming graphene nanoribbons into nanotubes by use of point defects.
Sgouros, A; Sigalas, M M; Papagelis, K; Kalosakas, G
2014-03-26
Using molecular dynamics simulations with semi-empirical potentials, we demonstrate a method to fabricate carbon nanotubes (CNTs) from graphene nanoribbons (GNRs), by periodically inserting appropriate structural defects into the GNR crystal structure. We have found that various defect types initiate the bending of GNRs and eventually lead to the formation of CNTs. All kinds of carbon nanotubes (armchair, zigzag, chiral) can be produced with this method. The structural characteristics of the resulting CNTs, and the dependence on the different type and distribution of the defects, were examined. The smallest (largest) CNT obtained had a diameter of ∼ 5 Å (∼ 39 Å). Proper manipulation of ribbon edges controls the chirality of the CNTs formed. Finally, the effect of randomly distributed defects on the ability of GNRs to transform into CNTs is considered.
Toward superconducting critical current by design
Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...
2016-03-31
The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less
Platelet rich fibrin in jaw defects
NASA Astrophysics Data System (ADS)
Nica, Diana; Ianes, Emilia; Pricop, Marius
2016-03-01
Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.
Study on control of defect mode in hybrid mirror chirped porous silicon photonic crystal
NASA Astrophysics Data System (ADS)
Chen, Ying; Luo, Pei; Han, Yangyang; Cui, Xingning; He, Lei
2018-03-01
Based on the optical resonance principle and the tight-binding theory, a hybrid mirror chirped porous silicon photonic crystal is proposed. The control of the defect mode in hybrid mirror chirped porous silicon photonic crystal is studied. Through the numerical simulation, the control regulations of the defect modes resulted by the number of the periodical layers for the fundamental unit and the cascading number of the chirped structures are analyzed, and the split and the degeneration of the defect modes resulted by the change of the relative location between the mirror structures and the quasi-mirror structures are discussed. The simulation results show that the band gap would be broadened with the increase of the chirp quantity and the layer number of unilateral chirp. Adjusting the structural parameters of the hybrid mirror structure, the multimode characteristics will occur in the band gap. The more the cascading number of the chirped units, the more the number of the filtering channels will be. In addition, with the increase of the relative location between the mirror structures and the quasi-mirror structures, the degeneration of the defect modes will occur and can obtain high Q value. The structure can provide effective theoretical references for the design the multi-channel filters and high Q value sensors.
NASA Technical Reports Server (NTRS)
Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.
1979-01-01
The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.
Academic Outcomes in Children With Congenital Heart Defects: A Population-Based Cohort Study.
Oster, Matthew E; Watkins, Stephanie; Hill, Kevin D; Knight, Jessica H; Meyer, Robert E
2017-02-01
Most studies evaluating neurocognitive outcomes in children with congenital heart defects (CHD) have focused on high-risk patients or used specialized, resource-intensive testing. To determine the association of CHD with academic outcomes and compare outcomes according to the severity of CHD, we linked state educational records with a birth defects registry and birth certificates. We performed a retrospective cohort study using data from the North Carolina Birth Defects Monitoring Program, North Carolina Department of Public Instruction, and North Carolina Department of Health and Human Services vital records. We performed logistic regression, adjusting for maternal education, race/ethnicity, enrollment in public pre-Kindergarten, and gestational age, to determine the association of CHD with not meeting standards on reading and math end-of-grade examinations in third grade in 2006 to 2012. Of 5624 subjects with CHD and 10 832 with no structural birth defects, 2807 (50%) and 6355 (59%) were linked, respectively. Children with CHD had 1.24× the odds of not meeting standards in either reading or math (95% confidence interval, 1.12-1.37), with 44.6% of children with CHD not meeting standards in at least one of these areas compared with 37.5% without CHD. Although children with both critical and noncritical CHD had poorer outcomes, those with critical CHD were significantly more likely to receive exceptional services compared with the noncritical group (adjusted odds ratio, 1.46; 95% confidence interval, 1.15-1.86). Children with all types of CHD have poorer academic outcomes compared with their peers. Evaluation for exceptional services should be considered in children with any type of CHD. © 2017 American Heart Association, Inc.
Patassini, Stefano; Begley, Paul; Reid, Suzanne J; Xu, Jingshu; Church, Stephanie J; Curtis, Maurice; Dragunow, Mike; Waldvogel, Henry J; Unwin, Richard D; Snell, Russell G; Faull, Richard L M; Cooper, Garth J S
Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients. Copyright © 2015 Elsevier Inc. All rights reserved.
A vibroacoustic diagnostic system as an element improving road transport safety.
Komorska, Iwona
2013-01-01
Mechanical defects of a vehicle driving system can be dangerous on the road. Diagnostic systems, which monitor operations of electric and electronic elements and devices of vehicles, are continuously developed and improved, while defects of mechanical systems are still not managed properly. This article proposes supplementing existing on-board diagnostics with a system of diagnosing selected defects to minimize their impact. It presents a method of diagnosing mechanical defects of the engine, gearbox and other elements of the driving system on the basis of a model of the vibration signal obtained adaptively. This method is suitable for engine valves, engine head gasket, main gearbox, joints, etc.
Li, Hongkun; He, Changbo; Malekian, Reza; Li, Zhixiong
2018-04-19
The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal.
Li, Hongkun; He, Changbo
2018-01-01
The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal. PMID:29671821
Quantitative determination of anti-structured defects applied to alloys of a wide chemical range
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Zheng; Wang, Yongxin; Lu, Yanli
2016-11-01
Anti-structured defects bridge atom migration among heterogeneous sublattices facilitating diffusion but could also result in the collapse of ordered structure. Component distribution Ni75Al x V25-x alloys are investigated using a microscopic phase field model to illuminate relations between anti-structured defects and composition, precipitate order, precipitate type, and phase stability. The Ni75Al x V25-x alloys undergo single Ni3V (stage I), dual Ni3Al and Ni3V (stage II with Ni3V prior; and stage III with Ni3Al prior), and single Ni3Al (stage IV) with enhanced aluminum level. For Ni3V phase, anti-structured defects (VNi1, NiV, except VNi2) and substitution defects (AlNi1, AlNi2, AlV) exhibit a positive correlation to aluminum in stage I, the positive trend becomes to negative correlation or smooth during stage II. For Ni3Al phase, anti-structured defects (AlNi, NiAl) and substitution defects (VNi, VAl) have a positive correlation to aluminum in stage II, but NiAl goes down since stage III and lasts to stage IV. VNi and VAl fluctuate when Ni3Al precipitates prior, but go down drastically in stage IV. Precipitate type conversion of single Ni3V/dual (Ni3V+Ni3Al) affects Ni3V defects, while dual (Ni3V+Ni3Al)/single Ni3Al has little effect on Ni3Al defects. Precipitate order swap occurred in the dual phase region affects on Ni3Al defects but not on Ni3V. Project supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JQ5014), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102014JCQ01024), the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 114-QP-2014), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136102120021), and the National Natural Science Foundation of China (Grant Nos. 51474716 and 51475378).
Enhanced capture rate for haze defects in production wafer inspection
NASA Astrophysics Data System (ADS)
Auerbach, Ditza; Shulman, Adi; Rozentsvige, Moshe
2010-03-01
Photomask degradation via haze defect formation is an increasing troublesome yield problem in the semiconductor fab. Wafer inspection is often utilized to detect haze defects due to the fact that it can be a bi-product of process control wafer inspection; furthermore, the detection of the haze on the wafer is effectively enhanced due to the multitude of distinct fields being scanned. In this paper, we demonstrate a novel application for enhancing the wafer inspection tool's sensitivity to haze defects even further. In particular, we present results of bright field wafer inspection using the on several photo layers suffering from haze defects. One way in which the enhanced sensitivity can be achieved in inspection tools is by using a double scan of the wafer: one regular scan with the normal recipe and another high sensitivity scan from which only the repeater defects are extracted (the non-repeater defects consist largely of noise which is difficult to filter). Our solution essentially combines the double scan into a single high sensitivity scan whose processing is carried out along two parallel routes (see Fig. 1). Along one route, potential defects follow the standard recipe thresholds to produce a defect map at the nominal sensitivity. Along the alternate route, potential defects are used to extract only field repeater defects which are identified using an optimal repeater algorithm that eliminates "false repeaters". At the end of the scan, the two defect maps are merged into one with optical scan images available for all the merged defects. It is important to note, that there is no throughput hit; in addition, the repeater sensitivity is increased relative to a double scan, due to a novel runtime algorithm implementation whose memory requirements are minimized, thus enabling to search a much larger number of potential defects for repeaters. We evaluated the new application on photo wafers which consisted of both random and haze defects. The evaluation procedure involved scanning with three different recipe types: Standard Inspection: Nominal recipe with a low false alarm rate was used to scan the wafer and repeaters were extracted from the final defect map. Haze Monitoring Application: Recipe sensitivity was enhanced and run on a single field column from which on repeating defects were extracted. Enhanced Repeater Extractor: Defect processing included the two parallel routes: a nominal recipe for the random defects and the new high sensitive repeater extractor algorithm. The results showed that the new application (recipe #3) had the highest capture rate on haze defects and detected new repeater defects not found in the first two recipes. In addition, the recipe was much simpler to setup since repeaters are filtered separately from random defects. We expect that in the future, with the advent of mask-less lithography and EUV lithography, the monitoring of field and die repeating defects on the wafer will become a necessity for process control in the semiconductor fab.
Subminiature eddy current transducers for studying metal- dielectric junctions
NASA Astrophysics Data System (ADS)
Dmitriev, S.; Katasonov, A.; Malikov, V.; Sagalakov, A.; Davydchenko, M.; Shevtsova, L.; Ishkov, A.
2016-11-01
Based on an eddy current transducer (ECT), a probe has been designed to research metal-dielectric structures. The measurement procedure allowing one to detect defects in laminate composites with a high accuracy is described. The transducer was tested on the layered structure consisting of paper and aluminum layers with a thickness of 100 μm each in which the model defect was placed. The dependences of the ECT signal on the defect in this structure are given.
2012-10-12
21/2012 Abstract: In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in...quantitatively understood as functions of structural / point defect and impurity concentrations (crystal imperfections). However, only few papers [5...NOTES 14. ABSTRACT In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in wide bandgap
Electronic structure properties of deep defects in hBN
NASA Astrophysics Data System (ADS)
Dev, Pratibha; Prdm Collaboration
In recent years, the search for room-temperature solid-state qubit (quantum bit) candidates has revived interest in the study of deep-defect centers in semiconductors. The charged NV-center in diamond is the best known amongst these defects. However, as a host material, diamond poses several challenges and so, increasingly, there is an interest in exploring deep defects in alternative semiconductors such as hBN. The layered structure of hBN makes it a scalable platform for quantum applications, as there is a greater potential for controlling the location of the deep defect in the 2D-matrix through careful experiments. Using density functional theory-based methods, we have studied the electronic and structural properties of several deep defects in hBN. Native defects within hBN layers are shown to have high spin ground states that should survive even at room temperature, making them interesting solid-state qubit candidates in a 2D matrix. Partnership for Reduced Dimensional Material (PRDM) is part of the NSF sponsored Partnerships for Research and Education in Materials (PREM).
NASA Astrophysics Data System (ADS)
Mynbaev, K. D.; Bazhenov, N. L.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Marin, D. V.; Yakushev, M. V.
2018-05-01
Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical "intrinsic" HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si.
NASA Astrophysics Data System (ADS)
Ospina, D. A.; Cisternas, E.; Duque, C. A.; Correa, J. D.
2018-03-01
By first principles calculations which include van der Waals interactions, we studied the electronic structure of hexagonal boron-nitride/black-phosphorene heterostructures (hBN/BP). In particular the role of several kind of defects on the electronic properties of black-phosphorene monolayer and hBN/BP heterostructure was analyzed. The defects under consideration were single and double vacancies, as well Stone-Wale type defects, all of them present in the phosphorene layer. In this way, we found that the electronic structure of the hBN/BP is modified according the type of defect that is introduced. As a remarkable feature, our results show occupied states at the Fermi Level introduced by a single vacancy in the energy gap of the hBN/BP heterostructure. Additionally, we performed simulations of scanning tunneling microscopy images. These simulations show that is possible to discriminate the kind of defect even when the black-phosphorene monolayer is part of the heterostructure hBN/BP. Our results may help to discriminate among several kind of defects during experimental characterization of these novel materials.
Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods
Hehr, Brian Douglas
2014-11-25
The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials.more » The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.« less
Extracting and identifying concrete structural defects in GPR images
NASA Astrophysics Data System (ADS)
Ye, Qiling; Jiao, Liangbao; Liu, Chuanxin; Cao, Xuehong; Huston, Dryver; Xia, Tian
2018-03-01
Traditionally most GPR data interpretations are performed manually. With the advancement of computing technologies, how to automate GPR data interpretation to achieve high efficiency and accuracy has become an active research subject. In this paper, analytical characterizations of major defects in concrete structures, including delamination, air void and moisture in GPR images, are performed. In the study, the image features of different defects are compared. Algorithms are developed for defect feature extraction and identification. For validations, both simulation results and field test data are utilized.
Guan, Zhe; Cao, Baobao; Yang, Yang; Jiang, Youfei; Li, Deyu; Xu, Terry T
2014-01-15
The physical properties of nanostructures strongly depend on their structures, and planar defects in particular could significantly affect the behavior of the nanowires. In this work, planar defects (twins or stacking faults) in boron carbide nanowires are extensively studied by transmission electron microscopy (TEM). Results show that these defects can easily be invisible, i.e., no presence of characteristic defect features like modulated contrast in high-resolution TEM images and streaks in diffraction patterns. The simplified reason of this invisibility is that the viewing direction during TEM examination is not parallel to the (001)-type planar defects. Due to the unique rhombohedral structure of boron carbide, planar defects are only distinctive when the viewing direction is along the axial or short diagonal directions ([100], [010], or 1¯10) within the (001) plane (in-zone condition). However, in most cases, these three characteristic directions are not parallel to the viewing direction when boron carbide nanowires are randomly dispersed on TEM grids. To identify fault orientations (transverse faults or axial faults) of those nanowires whose planar defects are not revealed by TEM, a new approach is developed based on the geometrical analysis between the projected preferred growth direction of a nanowire and specific diffraction spots from diffraction patterns recorded along the axial or short diagonal directions out of the (001) plane (off-zone condition). The approach greatly alleviates tedious TEM examination of the nanowire and helps to establish the reliable structure-property relations. Our study calls attention to researchers to be extremely careful when studying nanowires with potential planar defects by TEM. Understanding the true nature of planar defects is essential in tuning the properties of these nanostructures through manipulating their structures.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore
NASA Astrophysics Data System (ADS)
Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.
2017-06-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore.
Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C
2017-06-28
Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity
NASA Astrophysics Data System (ADS)
Pacchioni, Gianfranco
2000-05-01
Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.
Delaney, Augustina; Mai, Cara; Smoots, Ashley; Cragan, Janet; Ellington, Sascha; Langlois, Peter; Breidenbach, Rebecca; Fornoff, Jane; Dunn, Julie; Yazdy, Mahsa; Scotto-Rosato, Nancy; Sweatlock, Joseph; Fox, Deborah; Palacios, Jessica; Forestieri, Nina; Leedom, Vinita; Smiley, Mary; Nance, Amy; Lake-Burger, Heather; Romitti, Paul; Fall, Carrie; Prado, Miguel Valencia; Barton, Jerusha; Bryan, J Michael; Arias, William; Brown, Samara Viner; Kimura, Jonathan; Mann, Sylvia; Martin, Brennan; Orantes, Lucia; Taylor, Amber; Nahabedian, John; Akosa, Amanda; Song, Ziwei; Martin, Stacey; Ramlal, Roshan; Shapiro-Mendoza, Carrie; Isenburg, Jennifer; Moore, Cynthia A; Gilboa, Suzanne; Honein, Margaret A
2018-01-26
Zika virus infection during pregnancy can cause serious birth defects, including microcephaly and brain abnormalities (1). Population-based birth defects surveillance systems are critical to monitor all infants and fetuses with birth defects potentially related to Zika virus infection, regardless of known exposure or laboratory evidence of Zika virus infection during pregnancy. CDC analyzed data from 15 U.S. jurisdictions conducting population-based surveillance for birth defects potentially related to Zika virus infection.* Jurisdictions were stratified into the following three groups: those with 1) documented local transmission of Zika virus during 2016; 2) one or more cases of confirmed, symptomatic, travel-associated Zika virus disease reported to CDC per 100,000 residents; and 3) less than one case of confirmed, symptomatic, travel-associated Zika virus disease reported to CDC per 100,000 residents. A total of 2,962 infants and fetuses (3.0 per 1,000 live births; 95% confidence interval [CI] = 2.9-3.2) (2) met the case definition. † In areas with local transmission there was a non-statistically significant increase in total birth defects potentially related to Zika virus infection from 2.8 cases per 1,000 live births in the first half of 2016 to 3.0 cases in the second half (p = 0.10). However, when neural tube defects and other early brain malformations (NTDs) § were excluded, the prevalence of birth defects strongly linked to congenital Zika virus infection increased significantly, from 2.0 cases per 1,000 live births in the first half of 2016 to 2.4 cases in the second half, an increase of 29 more cases than expected (p = 0.009). These findings underscore the importance of surveillance for birth defects potentially related to Zika virus infection and the need for continued monitoring in areas at risk for Zika.
Electronic and magnetic properties of zigzag silicene nanoribbons with Stone–Wales defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Haixia; Institute of Solid State Physics, Shanxi Datong University, Datong 037009; Fang, Dangqi
2015-02-14
The structural, electronic, and magnetic properties of zigzag silicene nanoribbons (ZSiNRs) with Stone–Wales (SW) defects were investigated using first-principles calculations. We found that two types of SW defects (named SW-Ι and SW-ΙΙ) exist in ZSiNRs. The SW defect was found to be the most stable at the edge of the ZSiNR, independently of the defect orientation, even more stable than it is in an infinite silicene sheet. In addition, the ZSiNRs can transition from semiconductor to metal or half-metal by modifying the SW defect location and concentration. For the same defect concentration, the band structures influenced by the SW-Ι defectmore » are more distinct than those influenced by the SW-ΙΙ when the SW defect is at the edge. The present study suggests the possibility of tuning the electronic properties of ZSiNRs using the SW defects and might motivate their potential application in nanoelectronics and spintronics.« less
Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio; ...
2017-11-14
We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 10 4 cm -2), localized areas with a defect density > 10 5 cm -2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stackingmore » faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. In conclusion, the impact of the defects on material performance and substrate re-use is also discussed.« less
First principles study of the effect of hydrogen annealing on SiC MOSFETs
NASA Astrophysics Data System (ADS)
Chokawa, Kenta; Shiraishi, Kenji
2018-04-01
The high interfacial defect density at SiC/SiO2 interfaces formed by thermal oxidation is a crucial problem. Although post-oxidation annealing with H2 can reduce the defect density, some defects still remain at the interface. We investigate the termination of vacancy defects by H atoms at the 4H-SiC(0001)/SiO2 interface and discuss the stability of these H termination structures. Si vacancy defects can be terminated with H atoms to reduce the defect density, and the termination structure is stable even at high temperatures. On the other hand, it is difficult to terminate C vacancy defects with H atoms because the H atoms desorb from the dangling bonds and form H2 molecules below room temperature. However, we confirm that N atoms are effective for reducing the C vacancy defect states. Therefore, a defect-less interface can be achieved by post-oxidation annealing with H2 and N2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio
We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 10 4 cm -2), localized areas with a defect density > 10 5 cm -2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stackingmore » faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. In conclusion, the impact of the defects on material performance and substrate re-use is also discussed.« less
NASA Astrophysics Data System (ADS)
Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio; Jensen, Mallory Ann; Morishige, Ashley E.; Lai, Barry; Hao, Ruiying; Ravi, T. S.; Buonassisi, Tonio
2018-02-01
We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 104 cm-2), localized areas with a defect density > 105 cm-2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stacking faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. The impact of the defects on material performance and substrate re-use is also discussed.
Kegel, Jan; Zubialevich, Vitaly Z; Schmidt, Michael; Povey, Ian M; Pemble, Martyn E
2018-05-30
Due to the abundance of intrinsic defects in zinc oxide (ZnO), the material properties are often governed by same. Knowledge of the defect chemistry has proven to be highly important, especially in terms of the photocatalytic degradation of pollutants. Given the fact that defect-free materials or structures exhibiting only one type of defect are extremely difficult to produce, it is necessary to evaluate what influence various defects may have when present together in the material. In this study, intentionally defect-rich ZnO nanorod (NR) arrays are grown using a simple low-temperature solution-based growth technique. Upon changing the defect chemistry using rapid thermal annealing (RTA) the material properties are carefully assessed and correlated to the resulting photocatalytic properties. Special focus is put on the investigation of these properties for samples showing strong orange photoluminescence (PL). It is shown that intense orange emitting NR arrays exhibit improved dye-degradation rates under UV-light irradiation. Furthermore, strong dye-adsorption has been observed for some samples. This behavior is found to stem from a graphitic surface structure (e.g., shell) formed during RTA in vacuum. Since orange-luminescent samples also exhibit an enhancement of the dye adsorption a possible interplay and synergy of these two defects is elucidated. Additionally, evidence is presented suggesting that in annealed ZnO NRs structural defects may be responsible for the often observed PL emission at 3.31 eV. However, a clear correlation with the photocatalytic properties could not be established for these defects. Building on the specific findings presented here, this study also presents some more general guidelines which, it is suggested, should be employed when assessing the photocatalytic properties of defect-rich ZnO.
NASA Astrophysics Data System (ADS)
Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Vang, T.; Patten, E. A.; Radford, W. A.; Johnson, S. M.
2010-07-01
This paper describes molecular-beam epitaxy growth of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) dual-band device structures on large-area (6 cm × 6 cm) CdZnTe substrates. Wafer-level composition and defect mapping techniques were used to investigate the limiting mechanisms in improving the cutoff wavelength ( λ c) uniformity and reducing the defect density. Structural quality of epitaxial layers was monitored using etch pit density (EPD) measurements at various depths in the epitaxial layers. Finally, 640 × 480, 20- μm-pixel-pitch dual-band focal-plane arrays (FPAs) were fabricated to demonstrate the overall maturity of growth and fabrication processes of epitaxial layers. The MWIR/LWIR dual-band layers, at optimized growth conditions, show a λ c variation of ±0.15 μm across a 6 cm × 6 cm CdZnTe substrate, a uniform low macrodefect density with an average of 1000 cm-2, and an average EPD of 1.5 × 105 cm-2. FPAs fabricated using these layers show band 1 (MWIR) noise equivalent temperature difference (NETD) operability of 99.94% and band 2 (LWIR) NETD operability of 99.2%, which are among the highest reported to date.
An improved PSO-SVM model for online recognition defects in eddy current testing
NASA Astrophysics Data System (ADS)
Liu, Baoling; Hou, Dibo; Huang, Pingjie; Liu, Banteng; Tang, Huayi; Zhang, Wubo; Chen, Peihua; Zhang, Guangxin
2013-12-01
Accurate and rapid recognition of defects is essential for structural integrity and health monitoring of in-service device using eddy current (EC) non-destructive testing. This paper introduces a novel model-free method that includes three main modules: a signal pre-processing module, a classifier module and an optimisation module. In the signal pre-processing module, a kind of two-stage differential structure is proposed to suppress the lift-off fluctuation that could contaminate the EC signal. In the classifier module, multi-class support vector machine (SVM) based on one-against-one strategy is utilised for its good accuracy. In the optimisation module, the optimal parameters of classifier are obtained by an improved particle swarm optimisation (IPSO) algorithm. The proposed IPSO technique can improve convergence performance of the primary PSO through the following strategies: nonlinear processing of inertia weight, introductions of the black hole and simulated annealing model with extremum disturbance. The good generalisation ability of the IPSO-SVM model has been validated through adding additional specimen into the testing set. Experiments show that the proposed algorithm can achieve higher recognition accuracy and efficiency than other well-known classifiers and the superiorities are more obvious with less training set, which contributes to online application.
A novel nonlinear damage resonance intermodulation effect for structural health monitoring
NASA Astrophysics Data System (ADS)
Ciampa, Francesco; Scarselli, Gennaro; Meo, Michele
2017-04-01
This paper is aimed at developing a theoretical model able to predict the generation of nonlinear elastic effects associated to the interaction of ultrasonic waves with the steady-state nonlinear response of local defect resonance (LDR). The LDR effect is used in nonlinear elastic wave spectroscopy to enhance the excitation of the material damage at its local resonance, thus to dramatically increase the vibrational amplitude of material nonlinear phenomena. The main result of this work is to prove both analytically and experimentally the generation of novel nonlinear elastic wave effects, here named as nonlinear damage resonance intermodulation, which correspond to a nonlinear intermodulation between the driving frequency and the LDR one. Beside this intermodulation effect, other nonlinear elastic wave phenomena such as higher harmonics of the input frequency and superharmonics of LDR frequency were found. The analytical model relies on solving the nonlinear equation of motion governing bending displacement under the assumption of both quadratic and cubic nonlinear defect approximation. Experimental tests on a damaged composite laminate confirmed and validated these predictions and showed that using continuous periodic excitation, the nonlinear structural phenomena associated to LDR could also be featured at locations different from the damage resonance. These findings will provide new opportunities for material damage detection using nonlinear ultrasounds.
The Assessment of Cement Mortars after Thermal Degradation by Acoustic Non-destructive Methods
NASA Astrophysics Data System (ADS)
Topolář, L.; Štefková, D.; Hoduláková, M.
2017-10-01
Thanks, the terrorist attacks on the worldwide interest in the design of structures for fire greatly increased. One of the advantages of concrete over other building materials is its inherent fire-resistive properties. The concrete structural components still must be able to withstand dead and live loads without collapse even though the rise in temperature causes a decrease in the strength and modulus of elasticity for concrete and steel reinforcement. In addition, fully developed fires cause expansion of structural components and the resulting stresses and strains must be resisted. This paper reports the results of measurements by Impact-echo method and measurement by ultrasound. Both methods are based on the acoustic properties of the material which are dependent on its condition. These acoustic methods allow identifying defects and are thus suitable for monitoring the building structure condition. The results are obtained in the laboratory during the degradation of composite materials based on cement by high-temperature.
NASA Astrophysics Data System (ADS)
Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt
2018-05-01
Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.
NASA Astrophysics Data System (ADS)
Ramos-Ramón, Jesús Alberto; Pal, Umapada; Cremades, Ana; Maestre, David
2018-05-01
Fabrication of 1D metal oxide nanostructures of controlled morphology and defect structure is of immense importance for their application in optoelectronics. While the morphology of these nanostructures depends primarily on growth parameters utilized in physical deposition processes, incorporation of foreign elements or dopants not only affects their morphology, but also affects their crystallinity and defect structure, which are the most important parameters for their device applications. Herein we report on the growth of highly crystalline 1D In2O3 nanostructures through vapor-liquid-solid process at relatively low temperature, and the effect of Ga incorporation on their morphology and defect structures. Through electron microscopy, Raman spectroscopy and cathodoluminescence spectroscopy techniques, we demonstrate that incorporation of Ga in In2O3 nanostructures not only strongly affects their morphology, but also generates new defect levels in the band gap of In2O3, shifting the overall emission of the nanostructures towards visible spectral range.
First Trimester Influenza Vaccination and Risks for Major Structural Birth Defects in Offspring.
Kharbanda, Elyse Olshen; Vazquez-Benitez, Gabriela; Romitti, Paul A; Naleway, Allison L; Cheetham, T Craig; Lipkind, Heather S; Klein, Nicola P; Lee, Grace; Jackson, Michael L; Hambidge, Simon J; McCarthy, Natalie; DeStefano, Frank; Nordin, James D
2017-08-01
To examine risks for major structural birth defects in infants after first trimester inactivated influenza vaccine (IIV) exposures. In this observational study, we used electronic health data from 7 Vaccine Safety Datalink sites to examine risks for selected major structural defects in infants after maternal IIV exposure. Vaccine exposures for women with continuous insurance enrollment through pregnancy who delivered singleton live births between 2004 and 2013 were identified from standardized files. Infants with continuous insurance enrollment were followed to 1 year of age. We excluded mother-infant pairs with other exposures that potentially increased their background risk for birth defects. Selected cardiac, orofacial or respiratory, neurologic, ophthalmologic or otologic, gastrointestinal, genitourinary and muscular or limb defects were identified from diagnostic codes in infant medical records using validated algorithms. Propensity score adjusted generalized estimating equations were used to estimate prevalence ratios (PRs). We identified 52 856 infants with maternal first trimester IIV exposure and 373 088 infants whose mothers were unexposed to IIV during first trimester. Prevalence (per 100 live births) for selected major structural birth defects was 1.6 among first trimester IIV exposed versus 1.5 among unexposed mothers. The adjusted PR was 1.02 (95% CI 0.94-1.10). Organ system-specific PRs were similar to the overall PR. First trimester maternal IIV exposure was not associated with an increased risk for selected major structural birth defects in this large cohort of singleton live births. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Ming; Tian, Qing; Wu, Kevin; Zhao, Yan
2016-03-01
Gate to source/drain (S/D) short is the most common and detrimental failure mechanism for advanced process technology development in Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) device manufacturing. Especially for sub-1Xnm nodes, MOSFET device is more vulnerable to gate-S/D shorts due to the aggressive scaling. The detection of this kind of electrical short defect is always challenging for in-line electron beam inspection (EBI), especially new shorting mechanisms on atomic scale due to new material/process flow implementation. The second challenge comes from the characterization of the shorts including identification of the exact shorting location. In this paper, we demonstrate unique scan direction induced charging dynamics (SDCD) phenomenon which stems from the transistor level response from EBI scan at post metal contact chemical-mechanical planarization (CMP) layers. We found that SDCD effect is exceptionally useful for gate-S/D short induced voltage contrast (VC) defect detection, especially for identification of shorting locations. The unique SDCD effect signatures of gate-S/D shorts can be used as fingerprint for ground true shorting defect detection. Correlation with other characterization methods on the same defective location from EBI scan shows consistent results from various shorting mechanism. A practical work flow to implement the application of SDCD effect for in-line EBI monitor of critical gate-S/D short defects is also proposed, together with examples of successful application use cases which mostly focus on static random-access memory (SRAM) array regions. Although the capability of gate-S/D short detection as well as expected device response is limited to passing transistors and pull-down transistors due to the design restriction from standard 6-cell SRAM structure, SDCD effect is proven to be very effective for gate-S/D short induced VC defect detection as well as yield learning for advanced technology development.
Defect imaging for plate-like structures using diffuse field.
Hayashi, Takahiro
2018-04-01
Defect imaging utilizing a scanning laser source (SLS) technique produces images of defects in a plate-like structure, as well as spurious images occurring because of resonances and reverberations within the specimen. This study developed defect imaging by the SLS using diffuse field concepts to reduce the intensity of spurious images, by which the energy of flexural waves excited by laser can be estimated. The experimental results in the different frequency bandwidths of excitation waves and in specimens with different attenuation proved that clearer images of defects are obtained in broadband excitation using a chirp wave and in specimens with low attenuation, which produce diffuse fields easily.
NASA Astrophysics Data System (ADS)
Lantreibecq, A.; Legros, M.; Plassat, N.; Monchoux, J. P.; Pihan, E.
2018-02-01
The PV properties of wafers processed from Cz-seeded directionally solidified silicon ingots suffer from variable structural defects. In this study, we draw an overview on the types of structural defects encountered in the specific case of full 〈1 0 0〉 oriented growth. We found micro twins, background dislocations, and subgrains boundaries. We discuss the possible links between thermomechanical stresses and growth processes with spatial evolution of both background dislocation densities and subgrain boundaries length.
Ensembles of novelty detection classifiers for structural health monitoring using guided waves
NASA Astrophysics Data System (ADS)
Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Haq, Mahmoodul; Udpa, Lalita
2018-01-01
Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions (EOC). To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations. We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a different segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using Monte-Carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate. We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all EOC, while the latter does not and leverages the fact that EOC vary slowly over time and can be modeled as a Gaussian process.
Image Registration-Based Bolt Loosening Detection of Steel Joints
2018-01-01
Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts. PMID:29597264
Image Registration-Based Bolt Loosening Detection of Steel Joints.
Kong, Xiangxiong; Li, Jian
2018-03-28
Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts.
NASA Astrophysics Data System (ADS)
Rahman, Abdul Ghaffar Abdul; Noroozi, Siamak; Dupac, Mihai; Mahathir Syed Mohd Al-Attas, Syed; Vinney, John E.
2013-03-01
Complex rotating machinery requires regular condition monitoring inspections to assess their running conditions and their structural integrity to prevent catastrophic failures. Machine failures can be divided into two categories. First is the wear and tear during operation, they range from bearing defects, gear damage, misalignment, imbalance or mechanical looseness, for which simple condition-based maintenance techniques can easily detect the root cause and trigger remedial action process. The second factor in machine failure is caused by the inherent design faults that usually happened due to many reasons such as improper installation, poor servicing, bad workmanship and structural dynamics design deficiency. In fact, individual machines components are generally dynamically well designed and rigorously tested. However, when these machines are assembled on sight and linked together, their dynamic characteristics will change causing unexpected behaviour of the system. Since nondestructive evaluation provides an excellent alternative to the classical monitoring and proved attractive due to the possibility of performing reliable assessments of all types of machinery, the novel dynamic design verification procedure - based on the combination of in-service operation deflection shape measurement, experimental modal analysis and iterative inverse finite element analysis - proposed here allows quick identification of structural weakness, and helps to provide and verify the solutions.
A smart composite patch for the repair of aircraft structures
NASA Astrophysics Data System (ADS)
Wakha, Kelah; Samuel, Paul; Pines, Darryll J.
2005-05-01
Recent interest in bonded composite patch repair technology for aerospace systems is because this method can be carried out at a reduced cost and time and can easily be applied to complex geometric structures. This paper details the development of a dual stiffness/energy sensor for monitoring the integrity of a composite patch used to repair an aluminum structural component. The smart sensor has the ability to predict the elastic field of a given host structure based on the strain state of two sub-sensors integrated into the structure. The present study shows the possibility of using the sensor to deduce the local instantaneous host stiffness. Damaged structures are characterized by a reduction in their elastic stiffness that evolve from microstructural defects. A local smart sensor can be developed to sense the local average properties on a host. In this paper, sensors are attached to a structure and a modified Eshelby's equivalent inclusion method is used to derive the elastic properties of the host. An analytical derivation and a sensitivity analysis for the quasistatic application is given in a papers by Majed, Dasgupta, Kelah and Pines. A summary of the derivation of the dynamic Eshelby tensor is presented. This is of importance because damage detection in structures undergoing vibratory and other motions present a greater challenge than those in quasistatic motion. An in-situ health monitoring active sensor system for a real structure (an aluminum plate with an attached repair patch) under close-to real lifecycle loading conditions is developed. The detection of the onset of any damage to the structure as well as the repair patch and the subsequent monitoring of the growth of this damage constitute important goals of the system. Both experimental and finite element methods were applied. Experimental results are presented for tests of the aluminum plate with the repair patch under monotonic quasi-static and dynamic loading vibratory conditions. In summary, the study shows that smart bonded composite repair patches are very effective in the repair of thin aluminum structures since they are able to determine the integrity of the repair structure as well as the repair patch.
Defect structure of web silicon ribbon
NASA Technical Reports Server (NTRS)
Cunningham, B.; Strunk, H.; Ast, D.
1980-01-01
The results of a preliminary study of two dendritic web samples are presented. The structure and electrical activity of the defects in the silicon webs were studied. Optical microscopy of chemically etched specimens was used to determine dislocation densities. Samples were mechanically polished, then Secco etched for approximately 5 minutes. High voltage transmission electron microscopy was used to characterize the crystallographic nature of the defects.
Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D
2017-05-01
The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. Copyright © 2016 Elsevier B.V. All rights reserved.
Structure Defect Property Relationships in Binary Intermetallics
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark
2015-03-01
Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).
Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects
NASA Astrophysics Data System (ADS)
Gramlich, Michael W.; Conway, Leslie; Liang, Winnie H.; Labastide, Joelle A.; King, Stephen J.; Xu, Jing; Ross, Jennifer L.
2017-03-01
The structure of the microtubule is tightly regulated in cells via a number of microtubule associated proteins and enzymes. Microtubules accumulate structural defects during polymerization, and defect size can further increase under mechanical stresses. Intriguingly, microtubule defects have been shown to be targeted for removal via severing enzymes or self-repair. The cell’s control in defect removal suggests that defects can impact microtubule-based processes, including molecular motor-based intracellular transport. We previously demonstrated that microtubule defects influence cargo transport by multiple kinesin motors. However, mechanistic investigations of the observed effects remained challenging, since defects occur randomly during polymerization and are not directly observable in current motility assays. To overcome this challenge, we used end-to-end annealing to generate defects that are directly observable using standard epi-fluorescence microscopy. We demonstrate that the annealed sites recapitulate the effects of polymerization-derived defects on multiple-motor transport, and thus represent a simple and appropriate model for naturally-occurring defects. We found that single kinesins undergo premature dissociation, but not preferential pausing, at the annealed sites. Our findings provide the first mechanistic insight to how defects impact kinesin-based transport. Preferential dissociation on the single-molecule level has the potential to impair cargo delivery at locations of microtubule defect sites in vivo.
Analysis of the Defect Structure of B2 Feal Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Amador, Carlos
1995-01-01
The Bozzolo, Ferrante and Smith (BFS) method for alloys is applied to the study of the defect structure of B2 FeAI alloys. First-principles Linear Muffin Tin Orbital calculations are used to determine the input parameters to the BFS method used in this work. The calculations successfully determine the phase field of the B2 structure, as well as the dependence with composition of the lattice parameter. Finally, the method is used to perform 'static' simulations where instead of determining the ground state configuration of the alloy with a certain concentration of vacancies, a large number of candidate ordered structures are studied and compared, in order to determine not only the lowest energy configurations but other possible metastable states as well. The results provide a description of the defect structure consistent with available experimental data. The simplicity of the BFS method also allows for a simple explanation of some of the essential features found in the concentration dependence of the heat of formation, lattice parameter and the defect structure.
Method for fabricating high aspect ratio structures in perovskite material
Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria
2003-10-28
A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.
Filtering properties of Thue-Morse nano-photonic crystals containing high-temperature superconductor
NASA Astrophysics Data System (ADS)
Talebzadeh, Robabeh; Bavaghar, Mehrdad
2018-05-01
In this paper, we introduced new design of quasi-periodic layered structures by choosing order two of ternary Thue-Morse structure. We considered Superconductor-dielectric photonic crystal with mirror symmetric as (ABSSAB)N(BASSBA)N composed of two kinds of nano-scale dielectric layers (A and B) and high-temperature superconductor layers where N is the number of period. This structure is assumed to be the free space. By using the transfer matrix method and the two fluid model, we theoretically study the transmission spectrum of ternary Thue-Morse superconducting photonic crystals with mirror symmetry and introduce this structure as a narrow optical filter. We showed that transmission peak so-called defect mode appears itself inside the transmission spectrum of suggested structure as same as defective layered structure. Also, we analyzed the influence of various related parameters such as the operating temperature of superconductor layer on position of defect mode. The redshift of defect mode with increasing the operating temperature was observed.
S3 targets monitoring with an electron gun
NASA Astrophysics Data System (ADS)
Kallunkathariyil, J.; Stodel, Ch.; Marry, C.; Frémont, G.; Bastin, B.; Piot, J.; Clément, E.; Le Moal, S.; Morel, V.; Thomas, J.-C.; Kamalou, O.; Spitaëls, C.; Savajols, H.; Vostinar, M.; Pellemoine, F.; Mittig, W.
2018-05-01
The monitoring of targets under irradiation was investigated using a 20 keV electron beam. An integrated and automated electron beam deflection was developed allowing a monitoring over the whole surface of target materials. Thus, local defects could be identified on-line during an experiment performed at GANIL involving different materials irradiated with a focused krypton beam at 10.5 MeV/u. Performances of this target monitoring system are presented in this paper.
Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance
NASA Astrophysics Data System (ADS)
Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol
2014-06-01
Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected.
Strongly localized donor level in oxygen doped gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, C.; Suski, T.; Ager, J.W. III
1996-08-01
A classification in terms of localization of donor defects in GaN is performed by Raman spectroscopy under large hydrostatic pressure. We observe a significant decrease of free carrier concentration in highly O doped GaN epitaxial films at 22 GPa, indicating the presence of a strongly localized donor defect at large pressure. Monitoring the phonon plasmon coupled mode, we find similarities with results on highly n-type bulk crystals. We refine the model of localized defects in GaN and transfer it to the AlGaN system.
Influence of point defects on the near edge structure of hexagonal boron nitride
NASA Astrophysics Data System (ADS)
McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.
2017-10-01
Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.
NASA Astrophysics Data System (ADS)
Delachat, F.; Phillipe, J.-C.; Larrey, V.; Fournel, F.; Bos, S.; Teyssèdre, H.; Chevalier, Xavier; Nicolet, Célia; Navarro, Christophe; Cayrefourcq, Ian
2018-03-01
In this work, an evaluation of various ASL processes for 200 mm wafer scale in the HERCULES® NIL equipment platform available at the CEA-Leti through the INSPIRE program is reported. The surface and adherence energies were correlated to the AFM and defectivity results in order to select the most promising ASL process for high resolution etch mask applications. The ASL performances of the selected process were evaluated by multiple working stamp fabrication using unpatterned and patterned masters though defectivity monitoring on optical based-inspection tools. Optical and SEM defect reviews were systematically performed. Multiple working stamps fabrication without degradation of the master defectivity was witnessed. This evaluation enabled to benchmark several ASL solutions based on the grafted technology develop by ARKEMA in order to reduce and optimize the soft stamp defectivity prior to its replication and therefore considerably reduce the final imprint defectivity for the Smart NIL process.
NASA Astrophysics Data System (ADS)
Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor
2004-07-01
Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.
Dholabhai, Pratik P; Aguiar, Jeffery A; Misra, Amit; Uberuaga, Blas P
2014-05-21
Due to reduced dimensions and increased interfacial content, nanocomposite oxides offer improved functionalities in a wide variety of advanced technological applications, including their potential use as radiation tolerant materials. To better understand the role of interface structures in influencing the radiation damage tolerance of oxides, we have conducted atomistic calculations to elucidate the behavior of radiation-induced point defects (vacancies and interstitials) at interface steps in a model CeO2/SrTiO3 system. We find that atomic-scale steps at the interface have substantial influence on the defect behavior, which ultimately dictate the material performance in hostile irradiation environments. Distinctive steps react dissimilarly to cation and anion defects, effectively becoming biased sinks for different types of defects. Steps also attract cation interstitials, leaving behind an excess of immobile vacancies. Further, defects introduce significant structural and chemical distortions primarily at the steps. These two factors are plausible origins for the enhanced amorphization at steps seen in our recent experiments. The present work indicates that comprehensive examination of the interaction of radiation-induced point defects with the atomic-scale topology and defect structure of heterointerfaces is essential to evaluate the radiation tolerance of nanocomposites. Finally, our results have implications for other applications, such as fast ion conduction.
Mechanism of Membrane Curvature Sensing by Amphipathic Helix Containing Proteins
Cui, Haosheng; Lyman, Edward; Voth, Gregory A.
2011-01-01
There are several examples of membrane-associated protein domains that target curved membranes. This behavior is believed to have functional significance in a number of essential pathways, such as clathrin-mediated endocytosis, which involve dramatic membrane remodeling and require the recruitment of various cofactors at different stages of the process. This work is motivated in part by recent experiments that demonstrated that the amphipathic N-terminal helix of endophilin (H0) targets curved membranes by binding to hydrophobic lipid bilayer packing defects which increase in number with increasing membrane curvature. Here we use state-of-the-art atomistic simulation to explore the packing defect structure of curved membranes, and the effect of this structure on the folding of H0. We find that not only are packing defects increased in number with increasing membrane curvature, but also that their size distribution depends nontrivially on the curvature, falling off exponentially with a decay constant that depends on the curvature, and crucially that even on highly curved membranes defects large enough to accommodate the hydrophobic face of H0 are never observed. We furthermore find that a percolation model for the defects explains the defect size distribution, which implies that larger defects are formed by coalescence of noninteracting smaller defects. We also use the recently developed metadynamics algorithm to study in detail the effect of such defects on H0 folding. It is found that the comparatively larger defects found on a convex membrane promote H0 folding by several kcal/mol, while the smaller defects found on flat and concave membrane surfaces inhibit folding by kinetically trapping the peptide. Together, these observations suggest H0 folding is a cooperative process in which the folding peptide changes the defect structure relative to an unperturbed membrane. PMID:21354400
Defect dynamics in active nematics
Giomi, Luca; Bowick, Mark J; Mishra, Prashant; Sknepnek, Rastko; Cristina Marchetti, M
2014-01-01
Topological defects are distinctive signatures of liquid crystals. They profoundly affect the viscoelastic behaviour of the fluid by constraining the orientational structure in a way that inevitably requires global changes not achievable with any set of local deformations. In active nematic liquid crystals, topological defects not only dictate the global structure of the director, but also act as local sources of motion, behaving as self-propelled particles. In this article, we present a detailed analytical and numerical study of the mechanics of topological defects in active nematic liquid crystals. PMID:25332389
Effect of point defects and disorder on structural phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toulouse, J.
1997-06-01
Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods tomore » study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.« less
Zhao, Lin; Zhao, Junli; Yu, Jiajia; Sun, Rui; Zhang, Xiaofeng; Hu, Shuhua
2017-04-01
The aim of the study was to evaluate the efficacy of tissue-engineered periosteum (TEP) in repairing allogenic bone defects in the long term. TEP was biofabricated with osteoinduced rabbit bone marrow mesenchymal stem cells and porcine small intestinal submucosa (SIS). A total of 24 critical sized defects were created bilaterally in radii of 12 New Zealand White rabbits. TEP/SIS was implanted into the defect site. Bone defect repair was evaluated with radiographic and histological examination at 4, 8 and 12 weeks. Bone defects were structurally reconstructed in the TEP group with mature cortical bone and medullary canals, however this was not observed in the SIS group at 12 weeks. The TEP approach can effectively restore allogenic critical sized defects, and achieve maturity of long-bone structure in 12 weeks in rabbit models.
Vision-based surface defect inspection for thick steel plates
NASA Astrophysics Data System (ADS)
Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo
2017-05-01
There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.
Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg
2016-05-28
Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.
Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg
2016-01-01
Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared. PMID:27285177
NASA Astrophysics Data System (ADS)
de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti
2016-06-01
A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.
Periodic multilayer magnetized cold plasma containing a doped semiconductor
NASA Astrophysics Data System (ADS)
Nayak, Chittaranjan; Saha, Ardhendu; Aghajamali, Alireza
2018-07-01
The present work is to numerically investigate the properties of the defect mode in a one-dimensional photonic crystal made of magnetized cold plasma, doped by semiconductor. The defect mode of such kind of multilayer structure is analyzed by applying the character matrix method to each individual layer. Numerical results illustrate that the defect mode frequency can be tuned by varying the external magnetic field, the electron density, and the thickness of the defect layer. Moreover, the behavior of the defect mode was found to be quite interesting when study the oblique incidence. It was found that for both right- and left-hand polarized transversal magnetic waves, the defect mode of the proposed defective structure disappears when the angle of incidence is larger than a particular oblique incidence. For the left-hand polarized transversal electric wave, however, an additional defect mode was noticed. The results lead to some new information concerning the designing of new types of tunable narrowband microwave filters.
Periodic multilayer magnetized cold plasma containing a doped semiconductor
NASA Astrophysics Data System (ADS)
Nayak, Chittaranjan; Saha, Ardhendu; Aghajamali, Alireza
2018-02-01
The present work is to numerically investigate the properties of the defect mode in a one-dimensional photonic crystal made of magnetized cold plasma, doped by semiconductor. The defect mode of such kind of multilayer structure is analyzed by applying the character matrix method to each individual layer. Numerical results illustrate that the defect mode frequency can be tuned by varying the external magnetic field, the electron density, and the thickness of the defect layer. Moreover, the behavior of the defect mode was found to be quite interesting when study the oblique incidence. It was found that for both right- and left-hand polarized transversal magnetic waves, the defect mode of the proposed defective structure disappears when the angle of incidence is larger than a particular oblique incidence. For the left-hand polarized transversal electric wave, however, an additional defect mode was noticed. The results lead to some new information concerning the designing of new types of tunable narrowband microwave filters.
N-Scan®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization
NASA Astrophysics Data System (ADS)
Zagrai, Andrei; Donskoy, Dimitri; Lottiaux, Jean-Louis
2004-02-01
In recent years, an innovative vibro-modulation technique has been introduced for the detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies the contact area of the interface, modulating a passing ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for the detection and differentiation of the contact-type defects from other structural and material inhomogeneities. The vibro-modulation technique has been implemented in the N-SCAN® damage detection system providing a cost effective solution for the complex NDT problems. N-SCAN® proved to be very effective for damage detection and characterization in structures and structural components of simple and complex geometries made of steel, aluminum, composites, and other materials. Examples include 24 foot-long gun barrels, stainless steel pipes used in nuclear power plants, aluminum automotive parts, steel train couplers, etc. This paper describes the basic principles of the nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction, and justification of signal processing algorithms. The laboratory experiment is presented for a set of specimens with the calibrated cracks and the quantitative characterization of fatigue damage is given in terms of a modulation index. The paper also discusses examples of practical implementation and application of the technique.
Estimated Maternal Pesticide Exposure from Drinking Water and Heart Defects in Offspring
Kim, Jihye; Swartz, Michael D.; Langlois, Peter H.; Romitti, Paul A.; Weyer, Peter; Mitchell, Laura E.; Ramakrishnan, Anushuya; Malik, Sadia; Lupo, Philip J.; Feldkamp, Marcia L.; Meyer, Robert E.; Winston, Jennifer J.; Reefhuis, Jennita; Blossom, Sarah J.; Bell, Erin; Agopian, A. J.
2017-01-01
Our objective was to examine the relationship between estimated maternal exposure to pesticides in public drinking water and the risk of congenital heart defects (CHD). We used mixed-effects logistic regression to analyze data from 18,291 nonsyndromic cases with heart defects from the Texas Birth Defects Registry and 4414 randomly-selected controls delivered in Texas from 1999 through 2005. Water district-level pesticide exposure was estimated by linking each maternal residential address to the corresponding public water supply district’s measured atrazine levels. We repeated analyses among independent subjects from the National Birth Defects Prevention Study (NBDPS) (1620 nonsyndromic cases with heart defects and 1335 controls delivered from 1999 through 2005). No positive associations were observed between high versus low atrazine level and eight CHD subtypes or all included heart defects combined. These findings should be interpreted with caution, in light of potential misclassification and relatively large proportions of subjects with missing atrazine data. Thus, more consistent and complete monitoring and reporting of drinking water contaminants will aid in better understanding the relationships between pesticide water contaminants and birth defects. PMID:28786932
Estimated Maternal Pesticide Exposure from Drinking Water and Heart Defects in Offspring.
Kim, Jihye; Swartz, Michael D; Langlois, Peter H; Romitti, Paul A; Weyer, Peter; Mitchell, Laura E; Luben, Thomas J; Ramakrishnan, Anushuya; Malik, Sadia; Lupo, Philip J; Feldkamp, Marcia L; Meyer, Robert E; Winston, Jennifer J; Reefhuis, Jennita; Blossom, Sarah J; Bell, Erin; Agopian, A J
2017-08-08
Our objective was to examine the relationship between estimated maternal exposure to pesticides in public drinking water and the risk of congenital heart defects (CHD). We used mixed-effects logistic regression to analyze data from 18,291 nonsyndromic cases with heart defects from the Texas Birth Defects Registry and 4414 randomly-selected controls delivered in Texas from 1999 through 2005. Water district-level pesticide exposure was estimated by linking each maternal residential address to the corresponding public water supply district's measured atrazine levels. We repeated analyses among independent subjects from the National Birth Defects Prevention Study (NBDPS) (1620 nonsyndromic cases with heart defects and 1335 controls delivered from 1999 through 2005). No positive associations were observed between high versus low atrazine level and eight CHD subtypes or all included heart defects combined. These findings should be interpreted with caution, in light of potential misclassification and relatively large proportions of subjects with missing atrazine data. Thus, more consistent and complete monitoring and reporting of drinking water contaminants will aid in better understanding the relationships between pesticide water contaminants and birth defects.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Zheng; Zhang, Mingyi; Lai, Qingbo; Lu, Yanli; Wang, Yongxin
2009-08-01
Microscopic phase field simulation is performed to study antisite defect type and temporal evolution characteristic of D022-Ni3V structure in Ni75Al x V25- x ternary system. The result demonstrates that two types of antisite defect VNi and NiV coexist in D022 structure; however, the amount of NiV is far greater than VNi; when precipitates transform from D022 singe phase to two phases mixture of D022 and L12 with enhanced Al:V ratio, the amount of VNi has no evident response to the secondary L12 phase, while NiV exhibits a definitely contrary variation tendency: NiV rises without L12 structure precipitating from matrix but declines with it; temporal evolution characteristic and temperature dependent antisite defect VNi, NiV are also studied in this paper: The concentrations of the both defects decline from high antistructure state to equilibrium level with elapsed time but rise with elevated temperature; the ternary alloying element aluminium atom occupies both α and β sublattices of D022 structure with a strong site preference of substituting α site.
NASA Astrophysics Data System (ADS)
Shropshire, Steven Leslie
Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of interstitial species in the flux were determined. Deformation of Au was found to produce only mono- and di-interstitial fluxes in a 1:2 ratio. Cross-sections increased rapidly with the number of vacancies, which is attributed to the amount of relaxation of lattice strains around solute-vacancy complexes.
Left-right correlation in coupled F-center defects.
Janesko, Benjamin G
2016-08-07
This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of "strong" left-right correlation, symptoms similar to those seen in stretched H2. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.
NASA Astrophysics Data System (ADS)
Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.
2017-12-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa). Stannate and hafnate pyrochlore compositions taken to high pressure show structural transformations consistent with irradiated pyrochlore, and compositionally disordered pyrochlore: a long-range structure best described by defect-fluorite, and a short-range structure best described by weberite.
Sharma, Vinit K.; Herklotz, Andreas; Ward, Thomas Zac; ...
2017-09-11
Ion implantation has been widely used in the semiconductor industry for decades to selectively control electron/hole doping for device applications. Recently, experimental studies on ion implantation into more structurally and electronically complex materials have been undertaken in which defect generation has been used to control a variety of functional phenomena. Of particular interest, are recent findings demonstrating that low doses of low energy helium ions into single crystal films can be used to tailor the structural properties. These initial experimental studies have shown that crystal symmetry can be continuously controlled by applying increasingly large doses of He ions into amore » crystal. The observed changes in lattice structure were then observed to correlate with functional changes, such as metal-insulator transition temperature2 and optical bandgap3. In these preliminary experimental studies, changes to lattice expansion was proposed to be the direct result of chemical pressure originating predominantly from the implanted He applying chemical pressure at interstitial sites. However, the influence of possible secondary knock-on damage arising from the He atoms transferring energy to the lattice through nuclear-nuclear collision with the crystal lattice remains largely unaddressed. In this work, we focus on a SrRuO3 model system to provide a comprehensive examination of the impact of common defects on structural and electronic properties, obtain calculated defect formation energies, and define defect migration barriers. Our model indicates that, while interstitial He can modify the crystal properties, a dose significantly larger than those reported in experimental studies would be required. The true origin of the observed structural changes is likely the result of a combination of secondary defects created during He implantation. Of particular importance, we observe that different defect types can generate greatly varied local electronic structures and that the formation energies and migration energy barriers vary by defect type. Thus, we may have identified a new method of selectively inducing controlled defect complexes into single crystal materials. Development of this approach would have a broad impact on both our ability to probe specific defect contributions in fundamental studies and allow a new level of control over functional properties driven by specific defect complexes.« less
NASA Astrophysics Data System (ADS)
Bastola, B.; Fischer, B.; Roths, J.; Ruediger, A.
2018-07-01
Despite the relevance of glass fibers and integrated optical circuits for an increasing number of cutting-edge applications ranging from telecommunication to sensing and quantum photonics, the knowledge about their structural and chemical properties is still in its infancy. Optical spectroscopy techniques are challenged due to the intrinsically low cross-sections for inelastic processes. Our approach is to detect these properties along the core, extending the interaction to the fiber length. We report on in-situ temperature-dependent photoluminescence (PL) measurements in transmission geometry of a) pristine optical glass fibers (standard commercial telecom grade and different types of photosensitive fibers) and b) type I fiber Bragg grating (FBG) in hydrogen-loaded fibers of the same type. A laser with 473 nm wavelength and TEM 00 mode is coupled to an optical spectrometer through different fibers. The fibers are thermally cycled between room temperature and 950° Celsius. As a first observation, we detect a clearly visible red emission from the uncoated fibers at the location of the fiber Bragg grating. Fitting the luminescence spectra with a single Gaussian and monitoring the intensity as a function of temperature reveals an irreversible, thermally activated degradation of the luminescence associated to the fiber Bragg gratings. A closer inspection of pristine glass fibers without FBG revealed a faint, yet thermally stable luminescence with similar spectral characteristics. Analyzing qualitative data for two consecutive heating cycles confirmed two distinct activation energies. This may be due to several reasons such as different defects at the basis of this emission or different structural or chemical environments for the same defect. Further experiment will be carried out in the future to investigate the main reason of two distinct activation energies.
Characterization of point defects in monolayer arsenene
NASA Astrophysics Data System (ADS)
Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence
2018-06-01
Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.
Zhang, Rufan; Zhang, Yingying; Wei, Fei
2017-02-21
Carbon nanotubes (CNTs) have drawn intensive research interest in the past 25 years due to their excellent properties and wide applications. Ultralong CNTs refers to the horizontally aligned CNT arrays which are usually grown on flat substrates, parallel with each other with large intertube distances. They usually have perfect structures, excellent properties, and lengths up to centimeters, even decimeters. Ultralong CNTs are promising candidates as building blocks for transparent displays, nanoelectronics, superstrong tethers, aeronautics and aerospace materials, etc. The controlled synthesis of ultralong CNTs with perfect structures is the key to fully exploit the extraordinary properties of CNTs. CNTs are typical one-dimensional single-crystal nanomaterials. It has always been a great challenge how to grow macroscale single-crystals with no defects. Thus, the synthesis of ultralong CNTs with no defect is of significant importance from both fundamental and industrial aspects. In this Account, we focus on our progress on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. A deep understanding of the CNT growth mechanism is the first step for the controlled synthesis of ultralong CNTs with high quality. We first introduce the growth mechanism for ultralong CNTs and the main factor affecting their structures. We then discuss the strategies to control the defects in the as-grown ultralong CNTs. With these approaches, ultralong high-quality CNTs with different structures can be obtained. By completely eliminating the factors which may induce defects in the CNT walls, ultralong CNTs with perfect structures can be obtained. Their chiral indices keep unchanged for several centimeters long along the axial direction of the CNTs. The defect-free structures render the ultralong CNTs with excellent electrical, mechanical and thermal properties. The as-grown ultralong CNTs exhibit superhigh mechanical strength (>100 GPa) and their breaking strain (>17.5%) reach the theoretical limits. They also show excellent electrical and thermal properties. In addition, centimeters long CNTs showed macroscale interwall superlubricious properties due to their defect-free structures. Ultralong, defect-free CNTs with controlled structures are highly desirable for many high-end applications. We hope that this Account will shed light on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. Moreover, the growth mechanism and controlled synthesis of ultralong CNTs with perfect structures also offers a good model for other one-dimensional nanomaterials.
NASA Astrophysics Data System (ADS)
Kamarudin, A. F.; Mokhatar, S. N.; Zainal Abidin, M. H.; Daud, M. E.; Rosli, M. S.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md
2018-04-01
Monitoring of structural health from initial stage of building construction to its serviceability is an ideal practise to assess for any structural defects or damages. Structural integrity could be intruded by natural destruction or structural deterioration, and worse if without remedy action on monitoring, building re-assessment or maintenance is taken. In this study the application of ambient vibration (AV) testing is utilized to evaluate the health of eighth stories medium rise reinforced concrete building in Universiti Tun Hussein Onn Malaysia (UTHM), based comparison made between the predominant frequency, fo, determined in year 2012 and 2017. For determination of fo, popular method of Fourier Amplitude Spectra (FAS) was used to transform the ambient vibration time series by using 1 Hz tri-axial seismometer sensors and City SharkII data recorder. From the results, it shows the first mode frequencies from FAS curves indicate at 2.04 Hz in 2012 and 1.97 Hz in 2017 with only 3.14% of frequency reduction. However, steady state frequencies shown at the second and third modes frequencies of 2.42 Hz and 3.31 Hz by both years. Two translation mode shapes were found at the first and second mode frequencies in the North-South (NS-parallel to building transverse axis) and East-West (EsW-parallel to building longitudinal axis) components, and the torsional mode shape shows as the third mode frequency in both years. No excessive deformation amplitude was found at any selective floors based on comparison made between three mode shapes produced, that could bring to potential feature of structural deterioration. Low percentages of natural frequency disparity within five years of duration interval shown by the first mode frequencies under ambient vibration technique was considered in good health state, according to previous researchers recommendation at acceptable percentages below 5 to 10% over the years.
NASA Astrophysics Data System (ADS)
Gallagher, H. G.; Sherwood, J. N.; Vrcelj, R. M.
2017-10-01
An examination has been made of the defect structure of crystals of the energetic material β-cyclotetramethylene-tetranitramine (HMX) using both Laboratory (Lang method) and Synchrotron (Bragg Reflection and Laue method) techniques. The results of the three methods are compared with particular attention to the influence of potential radiation damage caused to the samples by the latter, more energetic, technique. The comparison shows that both techniques can be confidently used to evaluate the defect structures yielding closely similar results. The results show that, even under the relatively casual preparative methods used (slow evaporation of unstirred solutions at constant temperature), HMX crystals of high perfection can be produced. The crystals show well defined bulk defect structures characteristic of organic materials in general: growth dislocations, twins, growth sector boundaries, growth banding and solvent inclusions. The distribution of the defects in specific samples is correlated with the morphological variation of the grown crystals. The results show promise for the further evaluation and characterisation of the structure and properties of dislocations and other defects and their involvement in mechanical and energetic processes in this material.
Nondestructive monitoring damage in composites using scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Wey, A. C.; Kessler, L. W.; Dos Reis, H. L. M.
1992-01-01
Several Nicalon fiber reinforced LAS (lithium alumino-silicate) glass matrix composites were tested to study the relation between the residual strength and the different amounts of damage. The samples were fatigued by four-point cyclic loading at a 5 Hz rate at 500 C for a different number of cycles. 10 MHz scanning laser acoustic microscope (SLAM) images were taken to monitor damage on the samples. Our SLAM results indicate that there were defects already existing throughout the sample before fatigue, and the resultant damage pattern from fatigue could be related to the initial defect distribution in the sample. Finally, the fatigued samples were fractured and the residual strength data could not be explained by the cyclic fatigue alone. Rather, the damage patterns evident in the SLAM images were needed to explain the scatter in the data. The results show that SLAM is useful in nondestructively monitoring damage and estimating residual strength of fatigued ceramic composites.
Wireless Sensors for Wind Turbine Blades Monitoring
NASA Astrophysics Data System (ADS)
Iftimie, N.; Steigmann, R.; Danila, N. A.; Rosu, D.; Barsanescu, P. D.; Savin, A.
2017-06-01
The most common defects in turbine blades may be faulty microscopic and mesoscopic appeared in matrix, no detected by classical nondestructive testing (i.e. using phased array sensors), broken fibers can also appear and develop under moderated loads, or cracks and delaminations due to low energy impacts, etc. The paper propose to present the results obtained from testing of glass fiber reinforced plastic used in the construction of the wind turbine blades as well as the monitoring of the entire scalable blade using wireless sensors placed on critical location on blade. In order to monitories the strain/stress during the tests, the determination of the location and the nature of defects have been simulated using FEM.
Evolution of displacement cascades in Fe-Cr structures with different [001] tilt grain boundaries
NASA Astrophysics Data System (ADS)
Abu-Shams, M.; Haider, W.; Shabib, I.
2017-06-01
Reduced-activation ferritic/martensitic steels of Cr concentration between 2.25 and 12 wt% are candidate structural materials for next-generation nuclear reactors. In this study, molecular dynamics (MD) simulation is used to generate the displacement cascades in Fe-Cr structures with different Cr concentrations by using different primary knock-on atom (PKA) energies between 2 and 10 keV. A concentration-dependent model potential has been used to describe the interactions between Fe and Cr. Single crystals (SCs) of three different coordinate bases (e.g. [310], [510], and [530]) and bi-crystal (BC) structures with three different [001] tilt grain boundaries (GBs) (e.g. Σ5, Σ13, and Σ17) have been simulated. The Wigner-Seitz cell criterion has been used to identify the produced Frenkel pairs. The results show a marked difference between collisions observed in SCs and those in BC structures. The numbers of vacancies and interstitials are found to be significantly higher in BC structures than those found in SCs. The number of point defects exhibits a power relationship with the PKA energies; however, the Cr concentration does not seem to have any influence on the number of survived point defects. In BC models, a large fraction of the total survived point defects (between 59% and 93%) tends accumulate at the GBs, which seem to trap the generated point defects. The BC structure with Σ17 GB is found to trap more defects than Σ5 and Σ13 GBs. The defect trapping is found to be dictated by the crystallographic parameters of the GBs. For all studied GBs, self-interstitial atoms (SIAs) are easily trapped within the GB region than vacancies. An analysis of defect composition reveals an enrichment of Cr in SIAs, and in BC cases, more than half of the Cr-SIAs are found to be located within the GB region.
Exceptional gettering response of epitaxially grown kerfless silicon
Powell, D. M.; Markevich, V. P.; Hofstetter, J.; ...
2016-02-08
The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomeratesmore » at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.« less
NASA Astrophysics Data System (ADS)
Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kazakov, Vadim S.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.
2017-04-01
This work presents method for performing precision macro-structure defects "tapers" and "up-tapers" written in conventional silica telecommunication multimode optical fibers by commercially available field fusion splicer with modified software settings and following writing fiber Bragg gratings over or near them. We developed technique for macrodefect geometry parameters estimation via analysis of photo-image performed after defect writing and displayed on fusion splicer screen. Some research results of defect geometry dependence on fusion current and fusion time values re-set in splicer program are represented that provided ability to choose their "the best" combination. Also experimental statistical researches concerned with "taper" and "up-taper" diameter stability as well as their insertion loss values during their writing under fixed corrected splicer program parameters were performed. We developed technique for FBG writing over or near macro-structure defect. Some results of spectral response measurements produced for short-length samples of multimode optical fiber with fiber Bragg gratings written over and near macro-defects prepared by using proposed technique are presented.
Broken rail track detection using smart materials
NASA Astrophysics Data System (ADS)
Bouteiller, Fanny; Grisso, Benjamin L.; Peairs, Daniel M.; Inman, Daniel J.
2006-03-01
Rail lines are subject to many types of damage that, in the worst cases, can cause train derailments. The damage can arise from either manufacturing defects or external factors, possibly even terrorist acts to disrupt the civil infrastructure. Current rail inspection techniques require train traffic to be interrupted while workers and equipment move along the track. Moreover, a technician with rail testing experience is required to analyze the results. This paper focuses on simple proof of concept experiments to determine if impedance based structural health monitoring may be used to detect anomalies in rail tracks, and in particular broken rails. The technique applies a very low voltage (one volt) high frequency wave to a structure, measures its response and determines the location and extent of a rail break. The monitoring device is envisioned to run off of ambient vibration and thermal gradients provided by passing trains and daily thermal cycles, store the energy and utilize the stored energy periodically to inspect the track (according to the track usage schedule). If damage occurs or starts to occur, a warning signal would be transmitted to substation then broadcast to the appropriate operator listing the location and extent of the damage.
NASA Astrophysics Data System (ADS)
Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen
2016-10-01
Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.
Luo, Danmei; Rong, Qiguo; Chen, Quan
2017-09-01
Reconstruction of segmental defects in the mandible remains a challenge for maxillofacial surgery. The use of porous scaffolds is a potential method for repairing these defects. Now, additive manufacturing techniques provide a solution for the fabrication of porous scaffolds with specific geometrical shapes and complex structures. The goal of this study was to design and optimize a three-dimensional tetrahedral titanium scaffold for the reconstruction of mandibular defects. With a fixed strut diameter of 0.45mm and a mean cell size of 2.2mm, a tetrahedral structural porous scaffold was designed for a simulated anatomical defect derived from computed tomography (CT) data of a human mandible. An optimization method based on the concept of uniform stress was performed on the initial scaffold to realize a minimal-weight design. Geometric and mechanical comparisons between the initial and optimized scaffold show that the optimized scaffold exhibits a larger porosity, 81.90%, as well as a more homogeneous stress distribution. These results demonstrate that tetrahedral structural titanium scaffolds are feasible structures for repairing mandibular defects, and that the proposed optimization scheme has the ability to produce superior scaffolds for mandibular reconstruction with better stability, higher porosity, and less weight. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Ion channeling study of defects in compound crystals using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.
2014-08-01
Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Kui; Zhao, Yi; Liu, Liangbin
2014-01-20
The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.
Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe2
2018-01-01
Studying the atomic structure of intrinsic defects in two-dimensional transition-metal dichalcogenides is difficult since they damage quickly under the intense electron irradiation in transmission electron microscopy (TEM). However, this can also lead to insights into the creation of defects and their atom-scale dynamics. We first show that MoTe2 monolayers without protection indeed quickly degrade during scanning TEM (STEM) imaging, and discuss the observed atomic-level dynamics, including a transformation from the 1H phase into 1T′, 3-fold rotationally symmetric defects, and the migration of line defects between two 1H grains with a 60° misorientation. We then analyze the atomic structure of MoTe2 encapsulated between two graphene sheets to mitigate damage, finding the as-prepared material to contain an unexpectedly large concentration of defects. These include similar point defects (or quantum dots, QDs) as those created in the nonencapsulated material and two different types of line defects (or quantum wires, QWs) that can be transformed from one to the other under electron irradiation. Our density functional theory simulations indicate that the QDs and QWs embedded in MoTe2 introduce new midgap states into the semiconducting material and may thus be used to control its electronic and optical properties. Finally, the edge of the encapsulated material appears amorphous, possibly due to the pressure caused by the encapsulation. PMID:29503509
Radiation-induced disorder in compressed lanthanide zirconates.
Park, Sulgiye; Tracy, Cameron L; Zhang, Fuxiang; Park, Changyong; Trautmann, Christina; Tkachev, Sergey N; Lang, Maik; Mao, Wendy L; Ewing, Rodney C
2018-02-28
The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln 2 Zr 2 O 7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197 Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm 2 Zr 2 O 7 and Nd 2 Zr 2 O 7 . For irradiated Er 2 Zr 2 O 7 , which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.
Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization
NASA Astrophysics Data System (ADS)
Fromme, P.
2013-04-01
Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.
Baer, Rebecca J; Norton, Mary E; Shaw, Gary M; Flessel, Monica C; Goldman, Sara; Currier, Robert J; Jelliffe-Pawlowski, Laura L
2014-12-01
We sought to examine the association between increased first-trimester fetal nuchal translucency (NT) measurement and major noncardiac structural birth defects in euploid infants. Included were 75,899 singleton infants without aneuploidy or critical congenital heart defects born in California in 2009 through 2010 with NT measured between 11-14 weeks of gestation. Logistic binomial regression was employed to estimate relative risks (RRs) and 95% confidence intervals (CIs) for occurrence of birth defects in infants with an increased NT measurement (by percentile at crown-rump length [CRL] and by ≥3.5 mm compared to those with measurements <90th percentile for CRL). When considered by CRL adjusted percentile and by measurement ≥3.5 mm, infants with a NT ≥95th percentile were at risk of having ≥1 major structural birth defects (any defect, RR, 1.6; 95% CI, 1.3-1.9; multiple defects, RR, 2.1; 95% CI, 1.3-3.4). Infants with a NT measurement ≥95th percentile were at particularly high risk for pulmonary, gastrointestinal, genitourinary, and musculoskeletal anomalies (RR, 1.6-2.7; 95% CI, 1.1-5.4). Our findings demonstrate that risks of major pulmonary, gastrointestinal, genitourinary, and musculoskeletal structural birth defects exist for NT measurements ≥95th percentile. The ≥3-fold risks were observed for congenital hydrocephalus; agenesis, hypoplasia, and dysplasia of the lung; atresia and stenosis of the small intestine; osteodystrophies; and diaphragm anomalies. Copyright © 2014 Elsevier Inc. All rights reserved.
Formation and field-driven dynamics of nematic spheroids.
Fu, Fred; Abukhdeir, Nasser Mohieddin
2017-07-19
Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.
Weld defect identification in friction stir welding using power spectral density
NASA Astrophysics Data System (ADS)
Das, Bipul; Pal, Sukhomay; Bag, Swarup
2018-04-01
Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.
Vakharia, Hema; German, Greg J.; Misra, Rajeev
2001-01-01
This study describes the isolation and characterization of a unique class of TolC mutants that, under steady-state growth conditions, secreted normal levels of largely inactive alpha-hemolysin. Unlike the reduced activity in the culture supernatants, the cell-associated hemolytic activity in these mutants was identical to that in the parental strain, thus reflecting a normal intracellular toxin activation event. Treatment of the secreted toxin with guanidine hydrochloride significantly restored cytolytic activity, suggesting that the diminished activity may have been due to the aggregation or misfolding of the toxin molecules. Consistent with this notion, sedimentation and filtration analyses showed that alpha-hemolysin secreted from the mutant strain has a mass greater than that secreted from the parental strain. Experiments designed to monitor the time course of alpha-hemolysin release showed delayed appearance of toxin in the culture supernatant of the mutant strain, thus indicating a possible defect in alpha-hemolysin translocation or release. Eight different TolC substitutions displaying this toxin secretion defect were scattered throughout the protein, of which six localized in the periplasmically exposed α-helical domain, while the remaining two mapped within the outer membrane-embedded β-barrel domain of TolC. A plausible model for the secretion of inactive alpha-hemolysin in these TolC mutants is discussed in the context of the recently determined three-dimensional structure of TolC. PMID:11698380
Left-right correlation in coupled F-center defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesko, Benjamin G., E-mail: b.janesko@tcu.edu
This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of “strong” left-right correlation, symptoms similar to those seen in stretched H{sub 2}. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centersmore » may fail for adjacent F-centers.« less
Stochastic annealing simulations of defect interactions among subcascades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinisch, H.L.; Singh, B.N.
1997-04-01
The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performedmore » on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.« less
NASA Astrophysics Data System (ADS)
Ding, Xiu-Huan; Wang, Rui; Qiao, Qian; Zhang, Cun-Xi
2018-03-01
As is well known, Fano resonance originates from the interference between a continuum energy band and an embedded discrete energy level. We study transmission properties of the discrete chain-structure of additional defects with an isolated ring composed of N defect states, and obtain the analytical transmission coefficient of similar Fano formula. Using the formula, we reveal conditions for perfect reflections and transmissions due to either destructive or constructive interferences. It is found that a nonlinear Kerr-like response leads to bistable transmission, and for either linear cases or nonlinear ones, the defects in main arrays have a major impact on perfect reflections, but has no effect on perfect transmission.
Structural manipulation of the graphene/metal interface with Ar+ irradiation
NASA Astrophysics Data System (ADS)
Åhlgren, E. H.; Hämäläinen, S. K.; Lehtinen, O.; Liljeroth, P.; Kotakoski, J.
2013-10-01
Controlled defect creation is a prerequisite for the detailed study of disorder effects in materials. Here, we irradiate a graphene/Ir(111) interface with low-energy Ar+ to study the induced structural changes. Combining computer simulations and scanning-probe microscopy, we show that the resulting disorder manifests mainly in the forms of intercalated metal adatoms and vacancy-type defects in graphene. One prominent feature at higher irradiation energies (from 1 keV up) is the formation of linelike depressions, which consist of sequential graphene defects created by the ion channeling within the interface, much like a stone skipping on water. Lower energies result in simpler defects, down to 100 eV, where more than one defect in every three is a graphene single vacancy.
Experimental Insights into the Origin of Defect-Structured Hibonites Found in Meteorites
NASA Technical Reports Server (NTRS)
Han. J.; Keller, L. P.; Danielson, L. R.
2016-01-01
Hibonite (CaAl12O19) is a primary, highly refractory phase occurring in many Ca-Al-rich inclusions (CAIs). Previous microstructural studies of hibonite in CAIs and their Wark-Lovering (WL) rims showed the presence of numerous stacking defects in hibonites. These defects are interpreted as the modification of the stacking sequences of spinel and Ca-containing blocks within the ideal hexagonal hibonite structure due to the presence of wider spinel blocks [3], as shown by experimental studies of reaction-sintered compounds in the CaO-Al2O3 system. We performed a series of experiments in the CaO-Al2O3-MgO system in order to provide additional in-sights into the formation processes and conditions of defect-structured hibonites found in meteorites.
Non-contact inline monitoring of thermoplastic CFRP tape quality using air-coupled ultrasound
NASA Astrophysics Data System (ADS)
Essig, W.; Fey, P.; Meiler, S.; Kreutzbruck, M.
2017-02-01
Beginning with the aerospace industry, fiber reinforced plastics have spread towards many applications such as automotive, civil engineering as well as sports and leisure articles. Their superior strength and stiffness to mass ratio made them the number one material for achieving high performance. Especially continuous fiber reinforced plastics allow for the construction of structures which are custom tailored to their mechanical loads by adjusting the paths of the fibers to the loading direction. The two main constituents of CFRP are carbon fibers and matrix. Two possibilities for matrix material exist: thermosetting and thermoplastic matrix. While thermosetting matrix may yield better properties with respect to thermal loads, thermoplasticity opens a wide range of applications due to weldability, shapeability, and compatibility to e.g. injection molded thermoplastic materials. Thin (0.1 mm) thermoplastic continuous fiber CFRP tapes with a width of 100 mm were examined using air-coupled ultrasound. Transducers were arranged in reflection as well as transmission setup. By slanted incidence of the ultrasound on the tape surface, guided waves were excited in the material in fiber direction and perpendicular to the fiber direction. Artificial defects - fiber cuts, matrix cuts, circular holes, low velocity impacts from tool drop, and sharp bends - were produced. Experiments on a stationary tape showed good detectability of all artificial defects by guided waves. Also the effects of variation in material properties, fiber volume content and fiber matrix adhesion being the most relevant, on guided wave propagation were examined, to allow for quality assessment. Guided wave measurements were supported by destructive analysis. Also an apparatus containing one endless loop of CFRP tape was constructed and built to simulate inline testing of CFRP tapes, as it would be employed in a CFRP tape production environment or at a CFRP tape processing facility. The influences of tape conveying speed on detectability of artificial defects as well as material properties were elaborated and recommendations for implementation in production scale inline monitoring are given.
Discrete elastic model for two-dimensional melting.
Lansac, Yves; Glaser, Matthew A; Clark, Noel A
2006-04-01
We present a network model for the study of melting and liquid structure in two dimensions, the first in which the presence and energy of topological defects (dislocations and disclinations) and of geometrical defects (elemental voids) can be independently controlled. Interparticle interaction is via harmonic springs and control is achieved by Monte Carlo moves which springs can either be orientationally "flipped" between particles to generate topological defects, or can be "popped" in force-free shape, to generate geometrical defects. With the geometrical defects suppressed the transition to the liquid phase occurs via disclination unbinding, as described by the Kosterlitz-Thouless-Halperin-Nelson-Young model and found in soft potential two-dimensional (2D) systems, such as the dipole-dipole potential [H. H. von Grünberg, Phys. Rev. Lett. 93, 255703 (2004)]. By contrast, with topological defects suppressed, a disordering transition, the Glaser-Clark condensation of geometrical defects [M. A. Glaser and N. A. Clark, Adv. Chem. Phys. 83, 543 (1993); M. A. Glaser, (Springer-Verlag, Berlin, 1990), Vol. 52, p. 141], produces a state that accurately characterizes the local liquid structure and first-order melting observed in hard-potential 2D systems, such as hard disk and the Weeks-Chandler-Andersen (WCA) potentials (M. A. Glaser and co-workers, see above). Thus both the geometrical and topological defect systems play a role in melting. The present work introduces a system in which the relative roles of topological and geometrical defects and their interactions can be explored. We perform Monte Carlo simulations of this model in the isobaric-isothermal ensemble, and present the phase diagram as well as various thermodynamic, statistical, and structural quantities as a function of the relative populations of geometrical and topological defects. The model exhibits a rich phase behavior including hexagonal and square crystals, expanded crystal, dodecagonal quasicrystal, and isotropic liquid phases. In this system the geometrical defects effectively control the melting, reducing the solid-liquid transition temperature by a factor of relative to the topological-only case. The local structure of the dense liquid has been investigated and the results are compared to that from simulations of WCA systems.
Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Waves
NASA Astrophysics Data System (ADS)
Jeong, Hyunjo; Lee, Jung-Sik; Bae, Sung-Min
2011-06-01
This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure.
NASA Astrophysics Data System (ADS)
Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan
2017-02-01
Sonic Infrared imaging (SIR) technology is a relatively new NDE technique that has received significant acceptance in the NDE community. SIR NDE is a super-fast, wide range NDE method. The technology uses short pulses of ultrasonic excitation together with infrared imaging to detect defects in the structures under inspection. Defects become visible to the IR camera when the temperature in the crack vicinity increases due to various heating mechanisms in the specimen. Defect detection is highly affected by noise levels as well as mode patterns in the image. Mode patterns result from the superposition of sonic waves interfering within the specimen during the application of sound pulse. Mode patterns can be a serious concern, especially in composite structures. Mode patterns can either mimic real defects in the specimen, or alternatively, hide defects if they overlap. In last year's QNDE, we have presented algorithms to improve defects detectability in severe noise. In this paper, we will present our development of algorithms on defect extraction targeting specifically to mode patterns in SIR images.
NASA Astrophysics Data System (ADS)
Meglinski, Igor; Popov, Alexey; Bykov, Alexander
2017-03-01
Biophotonics-based diagnostic and imaging modalities have been widely used in various applications associated with the non-invasive imaging of the internal structure of a range biological media from a range of cells cultures to biological tissues. With the fast growing interest in food securities there remains strong demand to apply reliable and cost effective biophotonics-based technologies for rapid screening of freshness, internal defects and quality of major agricultural products. In current presentation the results of application of optical coherence tomography (OCT) and encapsulated optical bio-sensors for quantitative assessment of freshness of agricultural products, such as meat and sea foods, are presented, and their further perspectives are discussed.
NASA Astrophysics Data System (ADS)
Wang, Qi
Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs. The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to obtain a mechanistic understanding of the charge transfer process. We have developed a spectroscopic technique for studying vacancy defects in TMOs using near-infrared photoluminescence (NIR-PL) spectroscopy and showed that this technique is uniquely suited for studying defect-adsorbate interactions. In this work, a series of studies were carried out to elucidate the underlying structure-defect-property correlations of TMOs and their role in catalyzing electrical and electrochemical properties. In the first study, we report a new type of electrical phase transition in p-type, non-stoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete change of conductivity from p- to n-type at room temperature induced by electrochemical Li+ intercalation. Direct observation of vacancy-ion interactions using in-situ NIR-PL show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. X-ray photoemission spectroscopy studies performed to examine the changes in the oxidation states of nickel due to defect interactions support the above conclusions. In the second study, main effects of oxygen vacancy defects on the electronic and optical properties of V2O5 nanowires were studied using in-situ Raman, photoluminescence, absorption, and photoemission spectroscopy. We show that both thermal reduction and electrochemical reduction via Li+ insertion results in the creation of oxygen vacancy defects in the crystal that leads to band filling and an increase in the optical band gap of V2O5 from 1.95 eV to 2.45 eV, an effect known as the Burstein-Moss effect. In the third study, we report a new type of semiconductor-adsorbed water interaction in metal oxides known as "electrochemical surface transfer doping," a phenomenon that has been previously been observed on hydrogen-terminated diamond, carbon nanotube, gallium nitride and zinc oxide. Most TMOs at room temperature are known to be strongly hydrated. We show that an adsorbed water film present on the surface of TMOs facilitates the dissolution of gaseous species and promotes charge transfers at the adsorbed-water/oxide interfaces. Further, we show the role of vacancy defects in enhancing catalytic processes by directly monitoring the charge transfer process between gaseous species and vacancy defects in non-stoichiometric p-type nickel oxide and n-type tungsten oxide using in-situ NIR-PL, electrical resistance, and X-ray photoelectron spectroscopy. We find the importance of adsorbed water and vacancy defects in affecting catalytic, electronic, electrical, and optical changes such as insulator-to-metal transitions and radiative emissions during electrochemical reactions. In addition, we demonstrate that electrochemical surface transfer doping exists in another system, specifically, in gallium nitride, and the presence of this adsorbed water film present on the surface of GaN induces electron transfer from GaN that leads to the formation of an electron depletion region on the surface.
Incorporation of composite defects from ultrasonic NDE into CAD and FE models
NASA Astrophysics Data System (ADS)
Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh
2017-02-01
Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.
NASA Astrophysics Data System (ADS)
Kochetova, Lyudmila A.; Prosvirnin, Sergey L.
2018-04-01
The problem of electromagnetic wave diffraction by the metallic bar grating with inhomogeneous dielectric filling of each slit between bars has been investigated by using the mode matching technique. The transmission and the inner field distribution have been analyzed for the structure which has a single defect in the periodic filling of slits. Such periodic structures are of particular interest for applications in optics, as they have the ability to concentrate a strong inner electromagnetic field and are characterized by high-Q transmission resonances. We use a simple approach to control the width and location of the stopband of the structure by placing a defect in the periodic filling of the grating slits. As a result, we observe the narrow resonance of transmission in terms of stopband width of the defect-free grating and confinement of strong inner electromagnetic field. By changing the permittivity of the defect layer we can shift the frequency of the resonant transmission.
Classification of defects in honeycomb composite structure of helicopter rotor blades
NASA Astrophysics Data System (ADS)
Balaskó, M.; Sváb, E.; Molnár, Gy.; Veres, I.
2005-04-01
The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and/or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected.
Chevron Defect at the Intersection of Grain Boundaries with Free Surfaces in Au
NASA Astrophysics Data System (ADS)
Radetic, T.; Lançon, F.; Dahmen, U.
2002-08-01
We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90° <110> tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary.
Gasga, Jose Reyes; Carbajal-de-la-Torre, Georgina; Bres, Etienne; Gil-Chavarria, Ivet M; Rodríguez-Hernández, Ana G; Garcia-Garcia, Ramiro
2008-02-01
When human tooth enamel is observed with the Transmission Electron Microscope (TEM), a structural defect is registered in the central region of their nanometric grains or crystallites. This defect has been named as Central Dark Line (CDL) and its structure and function in the enamel structure have been unknown yet. In this work we present the TEM analysis to these crystallites using the High Angle Annular Dark Field (HAADF) technique. Our results suggest that the CDL region is the calcium richest part of the human tooth enamel crystallites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
Time domain optical coherence tomography investigation of bone matrix interface in rat femurs
NASA Astrophysics Data System (ADS)
Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.
2013-08-01
The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly induced due to the osteoinductive process.
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...
2017-07-01
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben
2016-04-11
The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
NASA Astrophysics Data System (ADS)
Ren, Baiyang
Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF) arrays, which can extract modal information from the received waves. Also, the PATs and array sensors have broad frequency bandwidth and can easily excite and receive high order guided wave modes which are not possible using PZT disks. Currently, many guided wave SHM techniques employ the fundamental guided wave modes below the first cut-off frequency because of their low dispersion in this frequency range. Such a practice ignores the possibility of using higher order modes which sometimes have much better sensitivity to defects. A frequency domain finite element model is created in this work to study the behavior of the interaction between guided waves and a disbond. The sensitivities of modes are classified into three levels, namely, good sensitivity, intermediate sensitivity and no sensitivity. The novel damage indicators, wave modal amplitude and wave modal composition, are proposed to increase the sensitivity to disbonds. The effects of environmental operational conditions (EOC) are presenting great challenges to reliable SHM practice because they may influence the wave amplitude and time of flight. The use of fundamental modes shows poor sensitivity to the disbond; but the use of higher order modes shows good sensitivity. The experiments demonstrate that the new damage indicators have excellent sensitivity to disbonds even with elevated temperatures and have the capability to characterize the size of a disbond. Additionally, the detection of other types of defects like notches on aluminum plates and disbonds in adhesively bonded aluminum plate are also demonstrated using the proposed damage indicators. The use of the new damage indicators for SHM applications relies on the capability of resolving the modal content of wave signals which is enabled only by using PFC PATs and polyvinylidene fluoride (PVDF) array sensors.
HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal
NASA Astrophysics Data System (ADS)
Yasar, Bengisu; Ergunt, Yasin; Kabukcuoglu, Merve Pinar; Parlak, Mehmet; Turan, Rasit; Kalay, Yunus Eren
2018-01-01
In recent years, CdZnTe has attracted much attention due to its superior electrical and structural properties for room-temperature operable gamma and x-ray detectors. However, CdZnTe (CZT) material has often suffered from crystallographic defects encountered during the growth and post-growth processes. The identification and structural characterization of these defects is crucial to synthesize defect-free CdZnTe single crystals. In this study, Cd0.95 Zn0.05 Te single crystals were grown using a three-zone vertical Bridgman system. The single crystallinity of the material was ensured by using x-ray diffraction measurements. High-resolution electron microscopy (HRTEM) was used to characterize the nano-scale defects on the CdZnTe matrix. The linear defects oriented along the ⟨211⟩ direction were examined by transmission electron microscopy (TEM) and the corresponding HRTEM image simulations were performed by using a quantitative scanning TEM simulation package.
NASA Astrophysics Data System (ADS)
Ilyas, Usman; Rawat, R. S.; Tan, T. L.
2013-10-01
This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.
Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study
NASA Astrophysics Data System (ADS)
Zhou, Yanan; Chu, Wei; Jing, Fangli; Zheng, Jian; Sun, Wenjing; Xue, Ying
2017-07-01
The characteristics of hydrogen adsorption on Li-doped defective graphene systems were investigated using density functional theory (DFT) calculations. Four types of defective structures were selected. Li atoms were well dispersed on the defective graphene without clustering, evidenced by the binding energy value between Li and defective graphene than that of Li-Lix. Additionally, as the amount of adsorbed H2 molecules increase, the H2 molecules show tilting configuration toward the Li adatom. This is beneficial for more hydrogen adsorption under the electrostatic interaction. On these four stable structures, there were up to three polarized H2 molecules adsorbed on per Li adatom, with the average hydrogen adsorption energy in the range of approximately 0.2-0.4 eV. These results provide new focus on the nature of Li-doped defective graphene with sometimes B substitution medium, which could be considered as a promising candidate for hydrogen storage.
Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.
Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao
2016-03-01
The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Method and apparatus for inspecting reflection masks for defects
Bokor, Jeffrey; Lin, Yun
2003-04-29
An at-wavelength system for extreme ultraviolet lithography mask blank defect detection is provided. When a focused beam of wavelength 13 nm is incident on a defective region of a mask blank, three possible phenomena can occur. The defect will induce an intensity reduction in the specularly reflected beam, scatter incoming photons into an off-specular direction, and change the amplitude and phase of the electric field at the surface which can be monitored through the change in the photoemission current. The magnitude of these changes will depend on the incident beam size, and the nature, extent and size of the defect. Inspection of the mask blank is performed by scanning the mask blank with 13 nm light focused to a spot a few .mu.m in diameter, while measuring the reflected beam intensity (bright field detection), the scattered beam intensity (dark-field detection) and/or the change in the photoemission current.
Nevin, N C; McDonald, J R; Walby, A L
1978-12-01
The efficiency of two systems for recording congenital malformations has been compared; one system, the Registrar General's Congenital Malformation Notification, is based on registering all malformed infants, and the other, the Child Health System, records all births. In Northern Ireland for three years [1974--1976], using multiple sources of ascertainment, a total of 686 infants with neural tube defects was identified among 79 783 live and stillbirths. The incidence for all neural tube defects in 8 60 per 1 000 births. The Registrar General's Congenital Malformation Notification System identified 83.6% whereas the Child Health System identified only 63.3% of all neural tube defects. Both systems together identified 86.2% of all neural tube defects. The two systems are suitable for monitoring of malformations and the addition of information from the Genetic Counselling Clinics would enhance the data for epidemiological studies.
Tieleman, D Peter; Bentz, Joe
2002-01-01
The spontaneous formation of the phospholipid bilayer underlies the permeability barrier function of the biological membrane. Tears or defects that expose water to the acyl chains are spontaneously healed by lipid lateral diffusion. However, mechanical barriers, e.g., protein aggregates held in place, could sustain hydrophobic defects. Such defects have been postulated to occur in processes such as membrane fusion. This gives rise to a new question in bilayer structure: What do the lipids do in the absence of lipid lateral diffusion to minimize the free energy of a hydrophobic defect? As a first step to understand this rather fundamental question about bilayer structure, we performed molecular dynamic simulations of up to 10 ns of a planar bilayer from which lipids have been deleted randomly from one monolayer. In one set of simulations, approximately one-half of the lipids in the defect monolayer were restrained to form a mechanical barrier. In the second set, lipids were free to diffuse around. The question was simply whether the defects caused by removing a lipid would aggregate together, forming a large hydrophobic cavity, or whether the membrane would adjust in another way. When there are no mechanical barriers, the lipids in the defect monolayer simply spread out and thin with little effect on the other intact monolayer. In the presence of a mechanical barrier, the behavior of the lipids depends on the size of the defect. When 3 of 64 lipids are removed, the remaining lipids adjust the lower one-half of their chains, but the headgroup structure changes little and the intact monolayer is unaffected. When 6 to 12 lipids are removed, the defect monolayer thins, lipid disorder increases, and lipids from the intact monolayer move toward the defect monolayer. Whereas this is a highly simplified model of a fusion site, this engagement of the intact monolayer into the fusion defect is strikingly consistent with recent results for influenza hemagglutinin mediated fusion. PMID:12202375
40 CFR 63.906 - Inspection and monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in the roof sections or... or operator must perform the inspections at least once every calendar year except as provided for in... monitoring of the equipment may be performed at intervals longer than 1 year when an owner or operator...
2014-01-01
The physical properties of nanostructures strongly depend on their structures, and planar defects in particular could significantly affect the behavior of the nanowires. In this work, planar defects (twins or stacking faults) in boron carbide nanowires are extensively studied by transmission electron microscopy (TEM). Results show that these defects can easily be invisible, i.e., no presence of characteristic defect features like modulated contrast in high-resolution TEM images and streaks in diffraction patterns. The simplified reason of this invisibility is that the viewing direction during TEM examination is not parallel to the (001)-type planar defects. Due to the unique rhombohedral structure of boron carbide, planar defects are only distinctive when the viewing direction is along the axial or short diagonal directions ([100], [010], or 1¯10) within the (001) plane (in-zone condition). However, in most cases, these three characteristic directions are not parallel to the viewing direction when boron carbide nanowires are randomly dispersed on TEM grids. To identify fault orientations (transverse faults or axial faults) of those nanowires whose planar defects are not revealed by TEM, a new approach is developed based on the geometrical analysis between the projected preferred growth direction of a nanowire and specific diffraction spots from diffraction patterns recorded along the axial or short diagonal directions out of the (001) plane (off-zone condition). The approach greatly alleviates tedious TEM examination of the nanowire and helps to establish the reliable structure–property relations. Our study calls attention to researchers to be extremely careful when studying nanowires with potential planar defects by TEM. Understanding the true nature of planar defects is essential in tuning the properties of these nanostructures through manipulating their structures. PMID:24423258
Various Stone-Wales defects in phagraphene
NASA Astrophysics Data System (ADS)
Openov, L. A.; Podlivaev, A. I.
2016-08-01
Various Stone-Wales defects in phagraphene, which is a graphene allotrope, predicted recently are studied in terms of the nonorthogonal tight-binding model. The energies of the defect formation and the heights of energy barriers preventing the formation and annealing of the defects are found. Corresponding frequency factors in the Arrhenius formula are calculated. The evolution of the defect structure is studied in the real-time mode using the molecular dynamics method.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2017-04-01
The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.
An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures
Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf
2016-01-01
Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less
Fiber Optic Thermal Detection of Composite Delaminations
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.
2011-01-01
A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.
XANES study of Fe-implanted strontium titanate
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Goncharova, L. V.; Chavarha, M.; Sham, T. K.
2014-03-01
Properties of strontium titanate SrTiO3 (STO) depend to a great extent on the substitutional dopants and defects of crystal structure. The ion beam implantation method was used for doping STO (001) crystals with Fe at different doses. Implanted samples were then annealed at 350°C in oxygen to induce recrystallization and remove oxygen vacancies produced during ion implantation process. The effect of Fe doping and post-implantation annealing was studied by X-ray Absorption Near Edge Spectroscopy (XANES) method and Superconducting Quantum Interference Device (SQUID). XANES allowed to monitor the change in structure of STO crystals and in the local environment of Fe following the implantation and annealing steps. SQUID measurements revealed correlation between magnetic moment and Fe implantation dose. Ferromagnetic hysteresis was observed on selected Fe-implanted STO at 5 K. The observed magnetic properties can be correlated with the several Fe oxide phases in addition to the presence of O/Ti vacancies.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less
Instabilities of Damage and Surface Degradation Mechanisms in Brittle Material Structural Systems
1992-03-15
I INTRODUCTION AND SCOPE 1.1 General Brittle materials such as rock and concrete contain a multitude of defects in the form of micro-voids and/or...micro-cracks even before any external load is applied. The term "structure" is associated with such defects . During a loading- unloading process, these...voids/cracks may undergo irreversible growth and new ones may nucleate. The ultimate coalescence of such defects may result in macro- crack initiation
Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates
NASA Astrophysics Data System (ADS)
Yazdanfar, M.; Ivanov, I. G.; Pedersen, H.; Kordina, O.; Janzén, E.
2013-06-01
By carefully controlling the surface chemistry of the chemical vapor deposition process for silicon carbide (SiC), 100 μm thick epitaxial layers with excellent morphology were grown on 4° off-axis SiC substrates at growth rates exceeding 100 μm/h. In order to reduce the formation of step bunching and structural defects, mainly triangular defects, the effect of varying parameters such as growth temperature, C/Si ratio, Cl/Si ratio, Si/H2 ratio, and in situ pre-growth surface etching time are studied. It was found that an in-situ pre growth etch at growth temperature and pressure using 0.6% HCl in hydrogen for 12 min reduced the structural defects by etching preferentially on surface damages of the substrate surface. By then applying a slightly lower growth temperature of 1575 °C, a C/Si ratio of 0.8, and a Cl/Si ratio of 5, 100 μm thick, step-bunch free epitaxial layer with a minimum triangular defect density and excellent morphology could be grown, thus enabling SiC power device structures to be grown on 4° off axis SiC substrates.
Tuning optical properties of opal photonic crystals by structural defects engineering
NASA Astrophysics Data System (ADS)
di Stasio, F.; Cucini, M.; Berti, L.; Comoretto, D.; Abbotto, A.; Bellotto, L.; Manfredi, N.; Marinzi, C.
2009-06-01
We report on the preparation and optical characterization of three dimensional colloidal photonic crystal (PhC) containing an engineered planar defect embedding photoactive push-pull dyes. Free standing polystyrene films having thickness between 0.6 and 3 mm doped with different dipolar chromophores were prepared. These films were sandwiched between two artificial opals creating a PhC structure with planar defect. The system was characterized by reflectance at normal incidence angle (R), variable angle transmittance (T) and photoluminescence spectroscopy (PL) Evidence of defect states were observed in T and R spectra which allow the light to propagate for selected frequencies within the pseudogap (stop band).
Impact damage detection in sandwich composite structures using Lamb waves and laser vibrometry
NASA Astrophysics Data System (ADS)
Lamboul, B.; Passilly, B.; Roche, J.-M.; Osmont, D.
2013-01-01
This experimental study explores the feasibility of impact damage detection in composite sandwich structures using Lamb wave excitation and signals acquired with a laser Doppler vibrometer. Energy maps are computed from the transient velocity wave fields and used to highlight defect areas in impacted coupons of foam core and honeycomb core sandwich materials. The technique performs well for the detection of barely visible damage in this type of material, and is shown to be robust in the presence of wave reverberation. Defect extent information is not always readily retrieved from the obtained defect signatures, which depend on the wave - defect interaction mechanisms.
Related Structure Characters and Stability of Structural Defects in a Metallic Glass
Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng
2018-01-01
Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298
Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks.
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2008-10-21
A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A noninvasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system.
Ensembles of novelty detection classifiers for structural health monitoring using guided waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias
Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions. To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations.We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a differentmore » segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using monte-carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate.We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all environmental and operating conditions, while the latter does not and leverages the fact that environmental and operating conditions vary slowly over time and can be modeled as a Gaussian process.« less
Compact wideband filter element-based on complementary split-ring resonators
NASA Astrophysics Data System (ADS)
Horestani, Ali K.; Shaterian, Zahra; Withayachumnankul, Withawat; Fumeaux, Christophe; Al-Sarawi, Said; Abbott, Derek
2011-12-01
A double resonance defected ground structure is proposed as a filter element. The structure involves a transmission line loaded with complementary split ring resonators embedded in a dumbbell shape defected ground structure. By using a parametric study, it is demonstrated that the two resonance frequencies can be independently tuned. Therefore the structure can be used for different applications such as dual bandstop filters and wide bandstop filters.
Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J
2011-09-01
In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.
Acoustic emission and nondestructive evaluation of biomaterials and tissues.
Kohn, D H
1995-01-01
Acoustic emission (AE) is an acoustic wave generated by the release of energy from localized sources in a material subjected to an externally applied stimulus. This technique may be used nondestructively to analyze tissues, materials, and biomaterial/tissue interfaces. Applications of AE include use as an early warning tool for detecting tissue and material defects and incipient failure, monitoring damage progression, predicting failure, characterizing failure mechanisms, and serving as a tool to aid in understanding material properties and structure-function relations. All these applications may be performed in real time. This review discusses general principles of AE monitoring and the use of the technique in 3 areas of importance to biomedical engineering: (1) analysis of biomaterials, (2) analysis of tissues, and (3) analysis of tissue/biomaterial interfaces. Focus in these areas is on detection sensitivity, methods of signal analysis in both the time and frequency domains, the relationship between acoustic signals and microstructural phenomena, and the uses of the technique in establishing a relationship between signals and failure mechanisms.
Point Defects and Grain Boundaries in Rotationally Commensurate MoS 2 on Epitaxial Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaolong; Balla, Itamar; Bergeron, Hadallia
2016-03-28
With reduced degrees of freedom, structural defects are expected to play a greater role in two-dimensional materials in comparison to their bulk counterparts. In particular, mechanical strength, electronic properties, and chemical reactivity are strongly affected by crystal imperfections in the atomically thin limit. Here, ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) are employed to interrogate point and line defects in monolayer MoS2 grown on epitaxial graphene (EG) at the atomic scale. Five types of point defects are observed with the majority species showing apparent structures that are consistent with vacancy and interstitial models. The total defect densitymore » is observed to be lower than MoS2 grown on other substrates and is likely attributed to the van der Waals epitaxy of MoS2 on EG. Grain boundaries (GBs) with 30° and 60° tilt angles resulting from the rotational commensurability of MoS2 on EG are more easily resolved by STM than atomic force microscopy at similar scales due to the enhanced contrast from their distinct electronic states. For example, band gap reduction to ~0.8 and ~0.5 eV is observed with STS for 30° and 60° GBs, respectively. In addition, atomic resolution STM images of these GBs are found to agree well with proposed structure models. This work offers quantitative insight into the structure and properties of common defects in MoS2 and suggests pathways for tailoring the performance of MoS2/graphene heterostructures via defect engineering.« less
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-05-01
The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.
Quantitative NDE of Composite Structures at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.
2015-01-01
The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.
Accessing protein conformational ensembles using room-temperature X-ray crystallography
Fraser, James S.; van den Bedem, Henry; Samelson, Avi J.; Lang, P. Therese; Holton, James M.; Echols, Nathaniel; Alber, Tom
2011-01-01
Modern protein crystal structures are based nearly exclusively on X-ray data collected at cryogenic temperatures (generally 100 K). The cooling process is thought to introduce little bias in the functional interpretation of structural results, because cryogenic temperatures minimally perturb the overall protein backbone fold. In contrast, here we show that flash cooling biases previously hidden structural ensembles in protein crystals. By analyzing available data for 30 different proteins using new computational tools for electron-density sampling, model refinement, and molecular packing analysis, we found that crystal cryocooling remodels the conformational distributions of more than 35% of side chains and eliminates packing defects necessary for functional motions. In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps. These results expose a bias in structural databases toward smaller, overpacked, and unrealistically unique models. Monitoring room-temperature conformational ensembles by X-ray crystallography can reveal motions crucial for catalysis, ligand binding, and allosteric regulation. PMID:21918110
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2001-01-01
This report includes the results of a research in which the COmposite Durability STRuctural ANalysis (CODSTRAN) computational simulation capabilities were augmented and applied to various structures for demonstration of the new features and verification. The first chapter of this report provides an introduction to the computational simulation or virtual laboratory approach for the assessment of damage and fracture progression characteristics in composite structures. The second chapter outlines the details of the overall methodology used, including the failure criteria and the incremental/iterative loading procedure with the definitions of damage, fracture, and equilibrium states. The subsequent chapters each contain an augmented feature of the code and/or demonstration examples. All but one of the presented examples contains laminated composite structures with various fiber/matrix constituents. For each structure simulated, damage initiation and progression mechanisms are identified and the structural damage tolerance is quantified at various degradation stages. Many chapters contain the simulation of defective and defect free structures to evaluate the effects of existing defects on structural durability.
Elementary defects in graphane
NASA Astrophysics Data System (ADS)
Podlivaev, A. I.; Openov, L. A.
2017-07-01
The main zero-dimensional defects in graphane, a completely hydrogenated single-layer graphene, having the chair-type conformation have been numerically simulated. The hydrogen and carbon-hydrogen vacancies, Stone-Wales defect, and "transmutation defect" resulting from the simultaneous hoppings of two hydrogen atoms between the neighboring carbon atoms have been considered. The energies of formations of these defects have been calculated and their effect on the electronic structure, phonon spectra, and Young modulus has been studied.
Acousto-defect interaction in irradiated and non-irradiated silicon n+-p structures
NASA Astrophysics Data System (ADS)
Olikh, O. Ya.; Gorb, A. M.; Chupryna, R. G.; Pristay-Fenenkov, O. V.
2018-04-01
The influence of ultrasound on current-voltage characteristics of non-irradiated silicon n+-p structures as well as silicon structures exposed to reactor neutrons or 60Co gamma radiation has been investigated experimentally. It has been found that the ultrasound loading of the n+-p structure leads to the reversible change of shunt resistance, carrier lifetime, and ideality factor. Specifically, considerable acoustically induced alteration of the ideality factor and the space charge region lifetime was observed in the irradiated samples. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations. It has been shown that divacancies and vacancy-interstitial oxygen pairs are effectively modified by ultrasound in contrast to interstitial carbon-interstitial oxygen complexes.
Ultrasonic imaging system for in-process fabric defect detection
Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.
1997-01-01
An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.
Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy
NASA Astrophysics Data System (ADS)
Matveeva, Larisa; Belentsov, Yuri
2017-10-01
The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.
Guo, Q-F; Xu, Z-H; Wen, S-F; Liu, Q-H; Liu, S-H; Wang, J-W; Li, X-Y; Xu, H-H
2012-09-01
To evaluate the feasibility and reliability of free vascularized fibular graft with skin island flap for reconstruction of large diaphyseal bone defect. The clinical results of vascularized fibular graft and experiences related to the importance and reliability of a monitoring island flap for the reconstruction of various long-bone defects were reviewed in 87 patients. Bony reconstruction was achieved in 82 of the 87 patients. Arterial thrombosis of anastomosed vessel in two patients and venous congestion of monitoring flap in nine patients occurred in the early postoperative periods. All of them were managed by immediate thrombectomy and reanastomosis, alternatively the thrombotic veins were replaced by new veins to anastomose with the superficial veins in five patients. Partial flap necrosis was noted in six patients, but additional surgical intervention was not required. The vascularized fibula survived and bony fusion was achieved in all patients. Postoperative stress fractures of the fibula graft occurred in 19 (21.8%) patients (once in seven patients, twice in five patients, three or more times in seven) as the mechanical stress to the graft increased. Included fracture on the tibia in 12 patients, humerus in one and femur in six. Treatments included casting in 11 patients, percutaneous pinning in one case, and adjustment of external fixator in seven patients. Bony union was finally achieved an average of 9.6 months after fracture. Correct alignment between the recipient bone and the external fixator is a prerequisite to preventing graft fracture. Vascularized fibula transfer is a valuable procedure for long-bone defects, and a skin island-monitoring flap is a simple, extremely useful, and reliable method for assessing the vascular status of vascularized fibula. Level IV. Retrospective study. Copyright © 2012. Published by Elsevier Masson SAS.
Prediction of guided wave scattering by defects in rails using numerical modelling
NASA Astrophysics Data System (ADS)
Long, Craig S.; Loveday, Philip W.
2014-02-01
A guided wave based monitoring system for welded freight rail, has previously been developed. The current arrangement consists of alternating transmit and receive stations positioned roughly 1 km apart, and is designed to reliably detect complete breaks in a rail. Current research efforts are focused on extending this system to include a pulse-echo mode of operation in order to detect, locate, monitor and possibly characterize damage, before a complete break occurs. For monitoring and inspection applications, it is beneficial to be able to distinguish between scattering defects which do not represent damage (such as welds) and cracks which could result in rail breaks. In this paper we investigate the complex interaction between selected propagating modes and various weld and crack geometries in an attempt to relate scattering behaviour to defect geometry. An efficient hybrid method is employed which models the volume containing the defect with conventional solid finite elements, while the semi-infinite incoming and outgoing waveguides are accounted for using the SAFE method. Four candidate modes, suitable for long range propagation, are identified and evaluated. A weighted average reflection coefficient is used as a measure to quantify mode conversion between these four modes, and results are represented graphically in the form of reflection maps. The results show that it should be possible to distinguish between a large crack in the crown of the rail and a weld. We also show that there may be difficulties associated with reliably identifying cracks in the web as well as cracks in the crown which occur at a thermite weld. We suspect that it will be difficult to detect damage in the foot of the rail.
Nano/micro/meso scale interactions in mechanics of pharmaceutical solid dosage forms
NASA Astrophysics Data System (ADS)
Akseli, Ilgaz
Oral administration in form tablets has been the most common method for delivering drug to the human systemic blood circulation accurately and reproducibly due to its established manufacturing methods and reliability as well as cost. The mechanical criteria for a successful powder-to-tablet processing are good flowability, compressibility and compactibility that are closely related to the mechanical and adhesion properties of the particles and particle strength. In this thesis, air-coupled acoustic and ultrasonic techniques are presented and demonstrated as noncontact and nondestructive methods for physical (mechanical) integrity monitoring and mechanical characterization of tablets. A testing and characterization experimental platform for defect detection, coating thickness and mechanical property determination of tablets was also developed. The presented air-coupled technique was based on the analysis of the transient vibrational responses of a tablet in both temporal and spectral domains. The contact ultrasonic technique was based on the analysis of the propagation speed of an acoustic pulse launched into a tablet and its reflection from the coat-core interface of the tablet. In defect monitoring, the ultimate objective is to separate defective tablets from nominal ones. In the case of characterization, to extract the coating layer thicknesses and mechanical properties of the tablets from a subset of the measured resonance frequencies, an iterative computational procedure was demonstrated. In the compaction monitoring experiments, an instrumented punch and a cylindrical die were employed to extract the elasticity properties of tablets during compaction. To study the effect of compaction kinetics on tablet properties and defect, finite element analyses of single layer and bilayer tablets were performed. A noncontact work-of-adhesion technique was also demonstrated to determine the work-of-adhesion of pharmaceutical powder particles.
On the scattering of elastic waves from a non-axisymmetric defect in a coated pipe.
Duan, Wenbo; Kirby, Ray; Mudge, Peter
2016-02-01
Viscoelastic coatings are often used to protect pipelines in the oil and gas industry. However, over time defects and areas of corrosion often form in these pipelines and so it is desirable to monitor the structural integrity of these coated pipes using techniques similar to those used on uncoated pipelines. A common approach is to use ultrasonic guided waves that work on the pulse-echo principle; however, the energy in the guided waves can be heavily attenuated by the coating and so significantly reduce the effective range of these techniques. Accordingly, it is desirable to develop a better understanding of how these waves propagate in coated pipes with a view to optimising test methodologies, and so this article uses a hybrid SAFE-finite element approach to model scattering from non-axisymmetric defects in coated pipes. Predictions are generated in the time and frequency domain and it is shown that the longitudinal family of modes is likely to have a longer range in coated pipes when compared to torsional modes. Moreover, it is observed that the energy velocity of modes in a coated pipe is very similar to the group velocity of equivalent modes in uncoated pipes. It is also observed that the coating does not induce any additional mode conversion over and above that seen for an uncoated pipe when an incident wave is scattered by a defect. Accordingly, it is shown that when studying coated pipes one need account only for the attenuation imparted by the coating so that one may normally neglect the effect of coating on modal dispersion and scattering. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Orientation-dependent imaging of electronically excited quantum dots
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin
2018-02-01
We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|
Orientation-dependent imaging of electronically excited quantum dots.
Nguyen, Duc; Goings, Joshua J; Nguyen, Huy A; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin
2018-02-14
We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x 0 , y 0 ) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x 0 , y 0 ) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density φ i x 0 ,y 0 2 of the excited orbital in the tunneling region. Thus, the SMA-STM signal is approximated by an orbital density map (ODM) of the resonantly excited orbital at energy E i . The situation is more complex for correlated electron motion, but either way a slice through the excited electronic state structure in the tunneling region is imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.
Defects in electro-optically active polymer solids
NASA Technical Reports Server (NTRS)
Martin, David C.
1993-01-01
There is considerable current interest in the application of organic and polymeric materials for electronic and photonic devices. The rapid, non-linear optical (NLO) response of these materials makes them attractive candidates for waveguides, interferometers, and frequency doublers. In order to realize the full potential of these systems, it is necessary to develop processing schemes which can fabricate these molecules into ordered arrangements. There is enormous potential for introducing well-defined, local variations in microstructure to control the photonic properties of organic materials by rational 'defect engineering.' This effort may eventually become as technologically important as the manipulation of the electronic structure of solid-state silicon based devices is at present. The success of this endeavor will require complimentary efforts in the synthesis, processing, and characterization of new materials. Detailed information about local microstructure will be necessary to understand the influence of symmetry breaking of the solid phases near point, line, and planar defects. In metallic and inorganic polycrystalline materials, defects play an important role in modifying macroscopic properties. To understand the influence of particular defects on the properties of materials, it has proven useful to isolate the defect by creating bicrystals between two-component single crystals. In this way the geometry of a grain boundary defect and its effect on macroscopic properties can be determined unambiguously. In crystalline polymers it would be valuable to establish a similar depth of understanding about the relationship between defect structure and macroscopic properties. Conventionally processed crystalline polymers have small crystallites (10-20 nm), which implies a large defect density in the solid state. Although this means that defects may play an important or even dominant role in crystalline or liquid crystalline polymer systems, it also makes it difficult to isolate the effect of a particular boundary on a macroscopically observed property. However, the development of solid-state and thin-film polymerization mechanisms have facilitated the synthesis of highly organized and ordered polymers. These systems provide a unique opportunity to isolate and investigate in detail the structure of covalently bonded solids near defects and the effect of these defects on the properties of the material. The study of defects in solid polymers has been the subject of a recent review (Martin, 1993).
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.
NASA Astrophysics Data System (ADS)
Lewis, D. K.; Matsubara, M.; Bellotti, E.; Sharifzadeh, S.
2017-12-01
Defects in semiconductors can play a vital role in the performance of electronic devices, with native defects often dominating the electronic properties of the semiconductor. Understanding the relationship between structural defects and electronic function will be central to the design of new high-performance materials. In particular, it is necessary to quantitatively understand the energy and lifetime of electronic states associated with the defect. Here, we apply first-principles density functional theory (DFT) and many-body perturbation theory within the GW approximation to understand the nature and energy of the defect states associated with a charged nitrogen vacancy on the electronic properties of gallium nitride (GaN), as a model of a well-studied and important wide gap semiconductor grown with defects. We systematically investigate the sources of error associated with the GW approximation and the role of the underlying atomic structure on the predicted defect state energies. Additionally, analysis of the computed electronic density of states (DOS) reveals that there is one occupied defect state 0.2 eV below the valence band maximum and three unoccupied defect states at energy of 0.2-0.4 eV above the conduction band minimum, suggesting that this defect in the +1 charge state will not behave as a carrier trap. Furthermore, we compare the character and energy of the defect state obtained from GW and DFT using the HSE approximate density functional and find excellent agreement. This systematic study provides a more complete understanding of how to obtain quantitative defect energy states in bulk semiconductors.
Defect formation in fluoropolymer films at their condensation from a gas phase
NASA Astrophysics Data System (ADS)
Luchnikov, P. A.
2018-01-01
The questions of radiation defects, factors of influence of electronic high-frequency discharge plasma components on the molecular structure and properties of the fluoropolymer vacuum films synthesized on a substrate from a gas phase are considered. It is established that at sedimentation of fluoropolymer coverings from a gas phase in high-frequency discharge plasma in films there are radiation defects in molecular and supramolecular structure because of the influence of active plasma components which significantly influence their main properties.
NASA Astrophysics Data System (ADS)
Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.
2017-11-01
Defects in a semiconductor structure of a photoelectric converter of solar energy based on a p-n junction with an antireflection film of porous silicon on the front surface have been studied by current deeplevel transient spectroscopy. An explanation of the influence of thickness of a porous-silicon film formed by electrochemical etching on the character of transformation of defects with deep levels and efficiency of solarenergy conversion is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynbaev, K. D., E-mail: mynkad@mail.ioffe.ru; Zablotsky, S. V.; Shilyaev, A. V.
Defects in mercury-cadmium-telluride heteroepitaxial structures (with 0.3 to 0.4 molar fraction of cadmium telluride) grown by molecular-beam epitaxy on silicon substrates are studied. The low-temperature photoluminescence method reveals that there are comparatively deep levels with energies of 50 to 60 meV and shallower levels with energies of 20 to 30 meV in the band gap. Analysis of the temperature dependence of the minority carrier lifetime demonstrates that this lifetime is controlled by energy levels with an energy of ∼30 meV. The possible relationship between energy states and crystal-structure defects is discussed.
Protecting the proteome: Eukaryotic cotranslational quality control pathways
2014-01-01
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822
Two Stages of Surface-Defect Formation in a MOS Structure under Low-Dose Rate Gamma Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V. D., E-mail: wdpopov@mail.ru
2016-03-15
The results of an experimental study of how surface defects are formed at the Si–SiO{sub 2} interface at γ-radiation dose rates of P = 0.1 and 1.0 rad/s are reported. It is found that the surface defects are formed in two stages. The defect-formation mechanisms are analyzed.
Fatigue Crack Prognostics by Optical Quantification of Defect Frequency
NASA Astrophysics Data System (ADS)
Chan, K. S.; Buckner, B. D.; Earthman, J. C.
2018-01-01
Defect frequency, a fatigue crack prognostics indicator, is defined as the number of microcracks per second detected using a laser beam that is scanned across a surface at a constant predetermined frequency. In the present article, a mechanistic approach was taken to develop a methodology for deducing crack length and crack growth information from defect frequency data generated from laser scanning measurements made on fatigued surfaces. The method was developed by considering a defect frequency vs fatigue cycle curve that comprised three regions: (i) a crack initiation regime of rising defect frequency, (ii) a plateau region of a relatively constant defect frequency, and (iii) a region of rapid rising defect frequency due to crack growth. Relations between defect frequency and fatigue cycle were developed for each of these three regions and utilized to deduce crack depth information from laser scanning data of 7075-T6 notched specimens. The proposed method was validated using experimental data of crack density and crack length data from the literature for a structural steel. The proposed approach was successful in predicting the length or depth of small fatigue cracks in notched 7075-T6 specimens and in smooth fatigue specimens of a structural steel.
The fine structure of electron irradiation induced EL2-like defects in n-GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tunhuma, S. M.; Auret, F. D.; Legodi, M. J.
2016-04-14
Defects induced by electron irradiation in n-GaAs have been studied using deep level transient spectroscopy (DLTS) and Laplace DLTS (L-DLTS). The E{sub 0.83} (EL2) is the only defect observed prior to irradiation. Ru/n-GaAs Schottky diodes were irradiated with high energy electrons from a Sr-90 radionuclide up to a fluence of 2.45 × 10{sup 13} cm{sup −2}. The prominent electron irradiation induced defects, E{sub 0.04}, E{sub 0.14}, E{sub 0.38}, and E{sub 0.63}, were observed together with the metastable E{sub 0.17}. Using L-DLTS, we observed the fine structure of a broad base EL2-like defect peak. This was found to be made up of the E{submore » 0.75}, E{sub 0.83}, and E{sub 0.85} defects. Our study reveals that high energy electron irradiation increases the concentration of the E{sub 0.83} defect and introduces a family of defects with electronic properties similar to those of the EL2.« less
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao
2018-06-09
"Perfect" and defective models of CL-20/TNT cocrystal explosive were established. Molecular dynamics methods were introduced to determine the structures and predict the comprehensive performances, including stabilities, sensitivity, energy density and mechanical properties, of the different models. The influences of crystal defects on the properties of these explosives were investigated and evaluated. The results show that, compared with the "perfect" model, the rigidity and toughness of defective models are decreased, while the ductility, tenacity and plastic properties are enhanced. The binding energies, interaction energy of the trigger bond, and the cohesive energy density of defective crystals declined, thus implying that stabilities are weakened, the explosive molecule is activated, trigger bond strength is diminished and safety is worsened. Detonation performance showed that, owing to the influence of crystal defects, the density is lessened, detonation pressure and detonation velocity are also declined, i.e., the power of defective explosive is decreased. In a word, the crystal defects may have a favorable effect on the mechanical properties, but have a disadvantageous influence on sensitivity, stability and energy density of CL-20/TNT cocrystal explosive. The results could provide theoretical guidance and practical instructions to estimate the properties of defective crystal models.
NASA Astrophysics Data System (ADS)
Ozawa, Ken; Komizo, Tooru; Ohnuma, Hidetoshi
2002-07-01
An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a single-trench type with undercut for ArF exposure, with programmed phase defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM193 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topographies of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors, are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated bump defect identified by the alt-PSM of a single-trench type with undercut for ArF exposure are 300 nm in bottom dimension and 74 degrees in height (phase) for the real shape, where the depth of wet-etching is 100 nm and the CD error limit is +/- 5 percent.
NASA Astrophysics Data System (ADS)
Ozawa, Ken; Komizo, Tooru; Kikuchi, Koji; Ohnuma, Hidetoshi; Kawahira, Hiroichi
2002-07-01
An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a dual-trench type for KrF exposure, with programmed quartz defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM100 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topography of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated defect identified by the alt-PSM of a single-trench type for ArF exposure are 240 nm in bottom diameter and 50 degrees in height (phase) for the cylindrical shape and 240 nm in bottom diameter and 90 degrees in height (phase) for the rotating trapezoidal shape, where the CD error limit is +/- 5%.
Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing
Wang, Xin; Friis, Thor E.; Masci, Paul P.; Crawford, Ross W.; Liao, Wenbo; Xiao, Yin
2016-01-01
The quality of hematomas are crucial for successful early bone defect healing, as the structure of fibrin clots can significantly influence the infiltration of cells, necessary for bone regeneration, from adjacent tissues into the fibrin network. This study investigated if there were structural differences between hematomas from normal and delayed healing bone defects and whether such differences were linked to changes in the expression of IL-1β. Using a bone defect model in rats, we found that the hematomas in the delayed healing model had thinner fibers and denser clot structures. Moreover, IL-1β protein levels were significantly higher in the delayed healing hematomas. The effects of IL-1β on the structural properties of human whole blood clots were evaluated by thrombelastograph (TEG), scanning electronic microscopy (SEM), compressive study, and thrombolytic assays. S-nitrosoglutathione (GSNO) was applied to modulate de novo hematoma structure and the impact on bone healing was evaluated in the delayed healing model. We found that GSNO produced more porous hematomas with thicker fibers and resulted in significantly enhanced bone healing. This study demonstrated that IL-1β and GSNO had opposing effects on clot architecture, the structure of which plays a pivotal role in early bone healing. PMID:27767056
NASA Astrophysics Data System (ADS)
Agrawal, Arpana; Saroj, Rajendra K.; Dar, Tanveer A.; Baraskar, Priyanka; Sen, Pratima; Dhar, Subhabrata
2017-11-01
We report the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response of ZnO films grown on a sapphire substrate at various oxygen flow rates using the chemical vapor deposition technique. The nonlinear refraction response was investigated in the off-resonant regime using a CW He-Ne laser source to examine the role of the intermediate bandgap states. It has been observed that the structural defects strongly influence the optical nonlinearity in the off-resonant regime. Nonlinearity has been found to improve as the oxygen flow rate is lowered from 2 sccm to 0.3 sccm. From photoluminescence studies, we observe that the enhanced defect density of the electronic defect levels due to the increased concentration of structural defects (with the decrease in the oxygen flow rate) is responsible for this improved optical nonlinearity along with the thermal effect. This suggests that defect engineering is an effective way to tailor the nonlinearity of ZnO films and their utility for optoelectronic device applications.
Profiling defect depth in composite materials using thermal imaging NDE
NASA Astrophysics Data System (ADS)
Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan
2018-04-01
Sonic Infrared (IR) NDE, is a relatively new NDE technology; it has been demonstrated as a reliable and sensitive method to detect defects. SIR uses ultrasonic excitation with IR imaging to detect defects and flaws in the structures being inspected. An IR camera captures infrared radiation from the target for a period of time covering the ultrasound pulse. This period of time may be much longer than the pulse depending on the defect depth and the thermal properties of the materials. With the increasing deployment of composites in modern aerospace and automobile structures, fast, wide-area and reliable NDE methods are necessary. Impact damage is one of the major concerns in modern composites. Damage can occur at a certain depth without any visual indication on the surface. Defect depth information can influence maintenance decisions. Depth profiling relies on the time delays in the captured image sequence. We'll present our work on the defect depth profiling by using the temporal information of IR images. An analytical model is introduced to describe heat diffusion from subsurface defects in composite materials. Depth profiling using peak time is introduced as well.
Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.
Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T
2015-09-04
We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.
Predicting the structure of screw dislocations in nanoporous materials
NASA Astrophysics Data System (ADS)
Walker, Andrew M.; Slater, Ben; Gale, Julian D.; Wright, Kate
2004-10-01
Extended microscale crystal defects, including dislocations and stacking faults, can radically alter the properties of technologically important materials. Determining the atomic structure and the influence of defects on properties remains a major experimental and computational challenge. Using a newly developed simulation technique, the structure of the 1/2a <100> screw dislocation in nanoporous zeolite A has been modelled. The predicted channel structure has a spiral form that resembles a nanoscale corkscrew. Our findings suggest that the dislocation will enhance the transport of molecules from the surface to the interior of the crystal while retarding transport parallel to the surface. Crucially, the dislocation creates an activated, locally chiral environment that may have enantioselective applications. These predictions highlight the influence that microscale defects have on the properties of structurally complex materials, in addition to their pivotal role in crystal growth.
ESEEM of industrial quartz powders: insights into crystal chemistry of Al defects
NASA Astrophysics Data System (ADS)
Romanelli, Maurizio; Di Benedetto, Francesco; Bartali, Laura; Innocenti, Massimo; Fornaciai, Gabriele; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio
2012-06-01
A set of raw industrial materials, that is, pure quartz and quartz-rich mixtures, were investigated through electron paramagnetic resonance and electron spin echo-envelope modulation spectroscopies, with the aim of evaluating the effective role played by defect centres and of assessing whether they can be used to monitor changes in the physical properties of quartz powders with reference to their health effects. The obtained results point to two interactions of the Al defect centres with H+, hosted in sites within the channels parallel and perpendicular to the c axis of quartz, respectively. These two Al/H+ (hAl) centres exhibit a weak chemical bond, and their relative amounts appear to be modified/controlled by the thermo-mechanical processes underwent by powders. Indeed, a mechanically promoted inter-conversion between the two kinds of site is suggested. As a consequence, the hAl centres are effective in monitoring even modest activations of powders, through thermal or mechanical processes, and they are also supposed to play a specific, relevant role in quartz reactivity during the considered industrial processes.
Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S. N.; Alam, A.; Johnson, Duane D.
2013-01-01
In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity.We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22 210 m Jm 2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be consideredmore » when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower« less
Boron doped GaN and InN: Potential candidates for spintronics
NASA Astrophysics Data System (ADS)
Fan, S. W.; Huang, X. N.; Yao, K. L.
2017-02-01
The full potential linearized augmented plane wave method together with the Tran-Blaha modified Becke-Johnson potential is utilized to investigate the electronic structures and magnetism for boron doped GaN and InN. Calculations show the boron substituting nitrogen (BN defects) could induce the GaN and InN to be half-metallic ferromagnets. The magnetic moments mainly come from the BN defects, and each BN defect would produce the 2.00 μB total magnetic moment. The electronic structures indicate the carriers-mediated double exchange interaction plays a crucial role in forming the ferromagnetism. Positive chemical pair interactions imply the BN defects would form the homogeneous distribution in GaN and InN matrix. Moderate formation energies suggest that GaN and InN with BN defects could be fabricated experimentally.
Adaptive noise cancelling and time-frequency techniques for rail surface defect detection
NASA Astrophysics Data System (ADS)
Liang, B.; Iwnicki, S.; Ball, A.; Young, A. E.
2015-03-01
Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles.
NASA Astrophysics Data System (ADS)
Wang, Xinyi; Shen, Jialong; Liu, Xinbo
2018-01-01
Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.
Autonomous detection of ISO fade point with color laser printers
NASA Astrophysics Data System (ADS)
Yan, Ni; Maggard, Eric; Fothergill, Roberta; Jessome, Renee J.; Allebach, Jan P.
2015-01-01
Image quality assessment is a very important field in image processing. Human observation is slow and subjective, it also requires strict environment setup for the psychological test 1. Thus developing algorithms to match desired human experiments is always in need. Many studies have focused on detecting the fading phenomenon after the materials are printed, that is to monitor the persistence of the color ink 2-4. However, fading is also a common artifact produced by printing systems when the cartridges run low. We want to develop an automatic system to monitor cartridge life and report fading defects when they appear. In this paper, we first describe a psychological experiment that studies the human perspective on printed fading pages. Then we propose an algorithm based on Color Space Projection and K-means clustering to predict the visibility of fading defects. At last, we integrate the psychological experiment result with our algorithm to give a machine learning tool that monitors cartridge life.
Ionization-induced annealing of pre-existing defects in silicon carbide
Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H.; ...
2015-08-12
A long-standing objective in materials research is to find innovative ways to remove preexisting damage and heal fabrication defects or environmentally induced defects in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power, high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization processes results in a highly localized thermal spike that can effectively heal preexisting defects and restore the structural order. This work revealsmore » an innovative self-healing process using highly ionizing ions, and it describes a critical aspect to be considered in modeling SiC performance as either a functional or a structural material for device applications or high-radiation environments.« less
Bondonic effects in group-IV honeycomb nanoribbons with Stone-Wales topological defects.
Putz, Mihai V; Ori, Ottorino
2014-04-03
This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i) by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene), Ge (germanene), Sn (stannene) by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-01-01
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-05-07
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances.
14 CFR 21.3 - Reporting of failures, malfunctions, and defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that has left its quality control system and that it determines could result in any of the occurrences... propeller control system. (5) A propeller or rotorcraft hub or blade structural failure. (6) Flammable fluid.... (11) Any structural or flight control system malfunction, defect, or failure which causes an...
USDA-ARS?s Scientific Manuscript database
Structured-illumination reflectance imaging (SIRI) provides a new means for enhanced detection of defects in horticultural products. Implementing the technique relies on retrieving amplitude images by illuminating the object with sinusoidal patterns of single spatial frequencies, which, however, are...
Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi
2014-05-05
Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less
7 CFR 1924.271 - Processing applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS CONSTRUCTION AND REPAIR Complaints and Compensation for Construction Defects § 1924.271 Processing applications. An application for compensation for construction defects shall be submitted by the claimant to Fm... entirety. All structural defects and claims for which compensation is sought will be listed. Borrowers will...
7 CFR 1924.271 - Processing applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATIONS CONSTRUCTION AND REPAIR Complaints and Compensation for Construction Defects § 1924.271 Processing applications. An application for compensation for construction defects shall be submitted by the claimant to Fm... entirety. All structural defects and claims for which compensation is sought will be listed. Borrowers will...
7 CFR 1924.271 - Processing applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATIONS CONSTRUCTION AND REPAIR Complaints and Compensation for Construction Defects § 1924.271 Processing applications. An application for compensation for construction defects shall be submitted by the claimant to Fm... entirety. All structural defects and claims for which compensation is sought will be listed. Borrowers will...
7 CFR 1924.271 - Processing applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATIONS CONSTRUCTION AND REPAIR Complaints and Compensation for Construction Defects § 1924.271 Processing applications. An application for compensation for construction defects shall be submitted by the claimant to Fm... entirety. All structural defects and claims for which compensation is sought will be listed. Borrowers will...
7 CFR 1924.271 - Processing applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATIONS CONSTRUCTION AND REPAIR Complaints and Compensation for Construction Defects § 1924.271 Processing applications. An application for compensation for construction defects shall be submitted by the claimant to Fm... entirety. All structural defects and claims for which compensation is sought will be listed. Borrowers will...
Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure
NASA Astrophysics Data System (ADS)
Hu, Chung-An; Liu, Jia-Wei; Wu, Chien-Jang; Yang, Tzong-Jer; Yang, Su-Lin
2013-03-01
Effects of superconducting thin film on the defect mode in a dielectric photonic crystal heterostructure (PCH) are theoretically investigated. The considered structure is (12)NS(21)N, in which both layers 1 and 2 are dielectrics, layer S is a high-temperature superconducting layer, and N is the stack number. The defect mode is analyzed based on the transmission spectrum calculated by using the transfer matrix method. It is found that, in the normal incidence, the defect mode existing in the host PCH of (12)N(21)N will be blue-shifted as the thickness of layer S increases. In addition, the defect mode is also blue-shifted for both TE and TM modes in the case of oblique incidence. The embedded superconducting thin film plays the role of tuning agent for the defect mode of PCH. As a result, the proposed structure can be designed as a tunable narrowband transmission filter which could be of technical use in the optoelectronic applications.
Defect states of complexes involving a vacancy on the boron site in boronitrene
NASA Astrophysics Data System (ADS)
Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.
2011-12-01
First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.
Near-infrared imaging of developmental defects in dental enamel.
Hirasuna, Krista; Fried, Daniel; Darling, Cynthia L
2008-01-01
Polarization-sensitive optical coherence tomography (PS-OCT) and near-infrared (NIR) imaging are promising new technologies under development for monitoring early carious lesions. Fluorosis is a growing problem in the United States, and the more prevalent mild fluorosis can be visually mistaken for early enamel demineralization. Unfortunately, there is little quantitative information available regarding the differences in optical properties of sound enamel, enamel developmental defects, and caries. Thirty extracted human teeth with various degrees of suspected fluorosis were imaged using PS-OCT and NIR. An InGaAs camera and a NIR diode laser were used to measure the optical attenuation through transverse tooth sections (approximately 200 microm). A digital microradiography system was used to quantify the enamel defect severity by measurement of the relative mineral loss for comparison with optical scattering measurements. Developmental defects were clearly visible in the polarization-resolved OCT images, demonstrating that PS-OCT can be used to nondestructively measure the depth and possible severity of the defects. Enamel defects on whole teeth that could be imaged with high contrast with visible light were transparent in the NIR. This study suggests that PS-OCT and NIR methods may potentially be used as tools to assess the severity and extent of enamel defects.
NASA Astrophysics Data System (ADS)
Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Sheehan, Megan M.; Ma, Pei; Peterson, Lindsy M.; Linask, Kersti K.; Jenkins, Michael W.; Rollins, Andrew M.; Watanabe, Michiko
2016-03-01
Over 500,000 women per year in the United States drink during pregnancy, and 1 in 5 of this population also binge drink. As high as 20-50% of live-born children with prenatal alcohol exposure (PAE) present with congenital heart defects including outflow and valvuloseptal anomalies that can be life-threatening. Previously we established a model of PAE (modeling a single binge drinking episode) in the avian embryo and used optical coherence tomography (OCT) imaging to assay early-stage cardiac function/structure and late-stage cardiac defects. At early stages, alcohol/ethanol-exposed embryos had smaller cardiac cushions and increased retrograde flow. At late stages, they presented with gross morphological defects in the head and chest wall, and also exhibited smaller or abnormal atrio-ventricular (AV) valves, thinner interventricular septae (IVS), and smaller vessel diameters for the aortic trunk branches. In other animal models, the methyl donor betaine (found naturally in many foods such as wheat bran, quinoa, beets and spinach) ameliorates neurobehavioral deficits associated with PAE but the effects on heart structure are unknown. In our model of PAE, betaine supplementation led to a reduction in gross structural defects and appeared to protect against certain types of cardiac defects such as ventricular septal defects and abnormal AV valvular morphology. Furthermore, vessel diameters, IVS thicknesses and mural AV leaflet volumes were normalized while the septal AV leaflet volume was increased. These findings highlight the importance of betaine and potentially methylation levels in the prevention of PAE-related birth defects which could have significant implications for public health.
Identification of Complex Carbon Nanotube Structures
NASA Technical Reports Server (NTRS)
Han, Jie; Saini, Subhash (Technical Monitor)
1998-01-01
A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.
Binder-free graphene foams for O2 electrodes of Li-O2 batteries.
Zhang, Wenyu; Zhu, Jixin; Ang, Huixiang; Zeng, Yi; Xiao, Ni; Gao, Yiben; Liu, Weiling; Hng, Huey Hoon; Yan, Qingyu
2013-10-21
We report a novel method to prepare bind-free graphene foams as O2 electrodes for Li-O2 batteries. The graphene foams are synthesized by electrochemical leavening of the graphite papers, followed by annealing in inert gas to control the amount of structural defects in the graphene foams. It was found that the structural defects were detrimental to the processes of the ORR and OER in Li-O2 batteries. The round-trip efficiencies and the cycling stabilities of the graphene foams were undermined by the structural defects. For example, the as-prepared graphene foam with a high defect level (ID/IG = 0.71) depicted a round-trip efficiency of only 0.51 and a 20(th)-cycle discharge capacity of only 340 mA h g(-1) at a current density of 100 mA g(-1). By contrast, the graphene foam electrode annealed at 800 °C with ID/IG = 0.07 delivered a round-trip efficiency of up to 80% with a stable discharge voltage at ~2.8 V and a stable charge voltage below 3.8 V for 20 cycles. According to the analysis on the electrodes after 20 cycles, the structural defects led to the quickened decay of the graphene foams and boosted the formation of side products.
Bartlett, Heather L.; Sutherland, Lillian; Kolker, Sandra J.; Welp, Chelsea; Tajchman, Urszula; Desmarais, Vera; Weeks, Daniel L.
2007-01-01
Nkx2-5 is a homeobox containing transcription factor that is conserved and expressed in organisms that form hearts. Fruit flies lacking the gene (tinman) fail to form a dorsal vessel, mice that are homozygous null for Nkx2-5 form small, deformed hearts, and several human cardiac defects have been linked to dominant mutations in the Nkx2-5 gene. The Xenopus homologs (XNkx2-5) of two truncated forms of Nkx2-5 that have been identified in humans with congenital heart defects were used in the studies reported here. mRNAs encoding these mutations were injected into single cell Xenopus embryos, and heart development was monitored. Our results indicate that the introduction of truncated XNkx2-5 variants leads to three principle developmental defects. The atrial septum and the valve of the atrioventricular canal were both abnormal. In addition, video microscopic timing of heart contraction indicated that embryos injected with either mutant form of XNkx2-5 have conduction defects. PMID:17685485
Observer POD for radiographic testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanzler, Daniel, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de; Ewert, Uwe, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de; Müller, Christina, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de
2015-03-31
The radiographic testing (RT) is a non-destructive testing (NDT) method capable of finding volumetric and open planar defects depending on their orientation. The radiographic contrast is higher for larger penetrated length of the defect in a component. Even though, the detectability of defects does not only depend on the contrast, but also on the noise, the defect area and the geometry of the defect. The currently applied Probability of Detection (POD) approach uses a detection threshold that is only based on a constant noise level or on a constant contrast threshold. This does not reflect accurately the results of evaluationsmore » by human observers. A new approach is introduced, using the widely applied POD evaluation and additionally a detection threshold depending on the lateral area and shape of the indication. This work shows the process of calculating the POD curves with simulated data by the modeling software aRTist and with artificial reference data of different defect types, such as ASTM E 476 EPS plates, flat bottom holes and notches. Additional experiments with different operators confirm that the depth of a defect, the lateral area and shape of its indication contribute with different weight to the detectability of the defect if evaluated by human operators on monitors.« less
NASA Astrophysics Data System (ADS)
Simpson, R. A.; Davis, D. E.
1982-09-01
This paper describes techniques to detect submicron pattern defects on optical photomasks with an enhanced direct-write, electron-beam lithographic tool. EL-3 is a third generation, shaped spot, electron-beam lithography tool developed by IBM to fabricate semiconductor devices and masks. This tool is being upgraded to provide 100% inspection of optical photomasks for submicron pattern defects, which are subsequently repaired. Fixed-size overlapped spots are stepped over the mask patterns while a signal derived from the back-scattered electrons is monitored to detect pattern defects. Inspection does not require pattern recognition because the inspection scan patterns are derived from the original design data. The inspection spot is square and larger than the minimum defect to be detected, to improve throughput. A new registration technique provides the beam-to-pattern overlay required to locate submicron defects. The 'guard banding" of inspection shapes prevents mask and system tolerances from producing false alarms that would occur should the spots be mispositioned such that they only partially covered a shape being inspected. A rescanning technique eliminates noise-related false alarms and significantly improves throughput. Data is accumulated during inspection and processed offline, as required for defect repair. EL-3 will detect 0.5 um pattern defects at throughputs compatible with mask manufacturing.
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, William A.; Brada, Mark P.
1995-01-01
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.
2015-10-01
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.
Flexible ultrasonic transducers for structural health monitoring of metals and composites
NASA Astrophysics Data System (ADS)
Kobayashi, M.; Wu, K.-T.; Shih, J.-L.; Jen, C.-K.; Kruger, S. E.
2010-03-01
Flexible ultrasonic transducers (FUTs) which have the on-site installation capability are presented for the non-destructive evaluation (NDE) and structural health monitoring (SHM) purposes. These FUTs consist of 75 μm thick titanium membrane, thick (> 70 μm) thick piezoelectric lead-zirconate-titanate (PZT) composite (PZT-c) films and thin (< 5 μm) thick top electrodes. The PZT-c films are made by a sol-gel spray technique. Such FUT has been glued onto a steel pipe of 101 mm in diameter and 4.5 mm in wall thickness and operated up to 200°C. The glue served as high temperature ultrasonic couplant between the FUT and the external surface of the pipe. The estimated pipe thickness measurement accuracy at 200°C is 34 μm. FUTs also were glued onto the end edge of 2 mm thick aluminum (Al) plates to generate and receive predominantly symmetrical and shear-horizontal (SH) plate acoustic waves (PAWs) to detect simulated line defects at temperature up to 100°C. FUTs glued onto a graphite/epoxy (Gr/Ep) composite are also used for the detection of artificial disbonds. An induction type non-contact method for the evaluation of Al plates and Gr/Ep composites using FUTs is also demonstrated.
NASA Astrophysics Data System (ADS)
El Kazzi, S.; Alian, A.; Hsu, B.; Verhulst, A. S.; Walke, A.; Favia, P.; Douhard, B.; Lu, W.; del Alamo, J. A.; Collaert, N.; Merckling, C.
2018-02-01
In this work, we report on the growth of pseudomorphic and highly doped InAs(Si)/GaSb(Si) heterostructures on p-type (0 0 1)-oriented GaSb substrate and the fabrication and characterization of n+/p+ Esaki tunneling diodes. We particularly study the influence of the Molecular Beam Epitaxy shutter sequences on the structural and electrical characteristics of InAs(Si)/GaSb(Si) Esaki diodes structures. We use real time Reflection High Electron Diffraction analysis to monitor different interface stoichiometry at the tunneling interface. With Atomic Force Microscopy, X-ray diffraction and Transmission Electron Microscopy analyses, we demonstrate that an "InSb-like" interface leads to a sharp and defect-free interface exhibiting high quality InAs(Si) crystal growth contrary to the "GaAs-like" one. We then prove by means of Secondary Ion Mass Spectroscopy profiles that Si-diffusion at the interface allows the growth of highly Si-doped InAs/GaSb diodes without any III-V material deterioration. Finally, simulations are conducted to explain our electrical results where a high Band to Band Tunneling (BTBT) peak current density of Jp = 8 mA/μm2 is achieved.
Simultaneous excitation system for efficient guided wave structural health monitoring
NASA Astrophysics Data System (ADS)
Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing
2017-10-01
Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures’ refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times. PMID:28045442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontheimer, Tobias, E-mail: tobias.sontheimer@helmholtz-berlin.de; Schnegg, Alexander; Lips, Klaus
2013-11-07
By employing electron paramagnetic resonance spectroscopy, transmission electron microscopy, and optical measurements, we systematically correlate the structural and optical properties with the deep-level defect characteristics of various tailored periodic Si microhole arrays, which are manufactured in an easily scalable and versatile process on nanoimprinted sol-gel coated glass. While tapered microhole arrays in a structured base layer are characterized by partly nanocrystalline features, poor electronic quality with a defect concentration of 10{sup 17} cm{sup −3} and a high optical sub-band gap absorption, planar polycrystalline Si layers perforated with periodic arrays of tapered microholes are composed of a compact crystalline structure and amore » defect concentration in the low 10{sup 16} cm{sup −3} regime. The low defect concentration is equivalent to the one in planar state-of-the-art solid phase crystallized Si films and correlates with a low optical sub-band gap absorption. By complementing the experimental characterization with 3-dimensional finite element simulations, we provide the basis for a computer-aided approach for the low-cost fabrication of novel high-quality structures on large areas featuring tailored opto-electronic properties.« less
Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure
Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...
2016-01-07
A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less
Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior.
Ryglewski, Stefanie; Kadas, Dimitrios; Hutchinson, Katie; Schuetzler, Natalie; Vonhoff, Fernando; Duch, Carsten
2014-12-16
Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.
A handheld computer as part of a portable in vivo knee joint load monitoring system
Szivek, JA; Nandakumar, VS; Geffre, CP; Townsend, CP
2009-01-01
In vivo measurement of loads and pressures acting on articular cartilage in the knee joint during various activities and rehabilitative therapies following focal defect repair will provide a means of designing activities that encourage faster and more complete healing of focal defects. It was the goal of this study to develop a totally portable monitoring system that could be used during various activities and allow continuous monitoring of forces acting on the knee. In order to make the monitoring system portable, a handheld computer with custom software, a USB powered miniature wireless receiver and a battery-powered coil were developed to replace a currently used computer, AC powered bench top receiver and power supply. A Dell handheld running Windows Mobile operating system(OS) programmed using Labview was used to collect strain measurements. Measurements collected by the handheld based system connected to the miniature wireless receiver were compared with the measurements collected by a hardwired system and a computer based system during bench top testing and in vivo testing. The newly developed handheld based system had a maximum accuracy of 99% when compared to the computer based system. PMID:19789715
Defects in GaAs films grown by MOMBE
NASA Astrophysics Data System (ADS)
Werner, K.; Heinecke, H.; Weyers, M.; Lüth, H.; Balk, P.
1987-02-01
The nature and densities of the defects obtained in MOMBE GaAs films have been studied. In addition to particulate matter deposited on the surface, imperfections in the substrate will lead to defect generation. Furthermore, the rate of generation is strongly affected by the ratio of the pressures of the group III alkyl and the group V hydride in the molecular beams and by the growth temperature, also on defect-free substrates. Doping has no effect on the defect structure of the surface. By proper choice of experimental conditions defect densities below 100 cm -2 may be consistently obtained.
High resolution structural characterisation of laser-induced defect clusters inside diamond
NASA Astrophysics Data System (ADS)
Salter, Patrick S.; Booth, Martin J.; Courvoisier, Arnaud; Moran, David A. J.; MacLaren, Donald A.
2017-08-01
Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides, and defects within diamond. We present a transmission electron microscopy study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy indicates that the majority of the irradiated region remains as sp3 bonded diamond. Electrically conductive paths are attributed to the formation of multiple nano-scale, sp2-bonded graphitic wires and a network of strain-relieving micro-cracks.
Positron-annihilation 2D-ACAR studies of disordered and defected alloys
NASA Astrophysics Data System (ADS)
Bansil, A.; Prasad, R.; Smedskjaer, L. C.; Benedek, R.; Mijnarends, P. E.
1987-09-01
Theoretical and experimental progess in connection with 2D-ACAR positron annihilation studies of ordered, disordered, and defected alloys is discussed. We present, in particular, some of the recent developments concerning the electronic structure of disordered alloys, and the work in the area of annihilation from positrons trapped at vacancy-type defects in metals and alloys. The electronic structure and properties of a number of compounds are also discussed briefly; we comment specifically on high T sub c ceramic superconductors, Heusler alloys, and transition-metal aluminides.
Atomic Structure and Properties of Extended Defects in Silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buczko, R.; Chisholm, M.F.; Kaplan, T.
1998-10-15
The Z-contrast technique represents a new approach to high-resolution electron microscopy allowing for the first time incoherent imaging of materials on the atomic scale. The key advantages of the technique, an intrinsically higher resolution limit and directly interpretable, compositionally sensitive imaging, allow a new level of insight into the atomic configurations of extended defects in silicon. This experimental technique has been combined with theoretical calculations (a combination of first principles, tight binding, and classical methods) to extend this level of insight by obtaining the energetic and electronic structure of the defects.
Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures
NASA Astrophysics Data System (ADS)
Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.
1989-11-01
The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.
Effect of edge defects on band structure of zigzag graphene nanoribbons
NASA Astrophysics Data System (ADS)
Wadhwa, Payal; Kumar, Shailesh; Dhilip Kumar, T. J.; Shukla, Alok; Kumar, Rakesh
2018-04-01
In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp3 to sp2 hybridized carbon atoms. On the basis of theoretical analyses, bandgap values of ZGNRs are found to be strongly dependent on the relative arrangement of sp3 to sp2 hybridized carbon atoms at the edges for a defect concentration; so the findings would greatly help in understanding the bandgap of nanoribbons for their electronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S. N.; Alam, Aftab; Johnson, Duane D.
2013-11-27
In BaFe 2As 2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22–210 m Jm -2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries—making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should bemore » considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed “ordered” moments from longer spatial and/or time averaging and should be considered directly.« less
Imaging atomic-level random walk of a point defect in graphene
NASA Astrophysics Data System (ADS)
Kotakoski, Jani; Mangler, Clemens; Meyer, Jannik C.
2014-05-01
Deviations from the perfect atomic arrangements in crystals play an important role in affecting their properties. Similarly, diffusion of such deviations is behind many microstructural changes in solids. However, observation of point defect diffusion is hindered both by the difficulties related to direct imaging of non-periodic structures and by the timescales involved in the diffusion process. Here, instead of imaging thermal diffusion, we stimulate and follow the migration of a divacancy through graphene lattice using a scanning transmission electron microscope operated at 60 kV. The beam-activated process happens on a timescale that allows us to capture a significant part of the structural transformations and trajectory of the defect. The low voltage combined with ultra-high vacuum conditions ensure that the defect remains stable over long image sequences, which allows us for the first time to directly follow the diffusion of a point defect in a crystalline material.
NASA Astrophysics Data System (ADS)
Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.
2018-03-01
The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.
Quantum computing with defects.
Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D
2010-05-11
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie
2017-06-01
Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.
NASA Astrophysics Data System (ADS)
Rafiee, Roham; Eskandariyun, Amirali
2017-06-01
In this research, nano-scale continuum modeling is employed to predict Young's modulus of graphene sheet. The lattice nano-structure of a graphene sheet is replaced with a discrete space-frame structure simulating carbon-carbon bonds with either beam or spring elements. A comparative study is carried out to check the influence of employed elements on estimated Young's moduli of graphene sheets in both horizontal and vertical directions. A detailed analysis is also conducted to investigate the influence of graphene sheet sizes on its Young's modulus and corresponding aspect ratios that unwelcomed end effects disappear on the results are extracted. At the final stage, defected graphene sheets suffering from vacancy defects are investigated through a stochastic analysis taking into account both number of defects and their locations as random parameters. The reduction level in the Young's moduli of defected graphene sheets compared with non-defected ones is analyzed and reported.