Sample records for monitoring subsurface flow

  1. Monitoring Subsurface Fluid Flow Using Perfluorocarbon Tracers: Another Tool Potentially Available for Subsurface Fluid Flow Assessments

    EPA Pesticide Factsheets

    Perfluorocarbon Tracers (PFTs) Complement stable Isotopes and Geochemistry for Verifying, Assessing or Modeling Fluid Flow. Geochemistry, Isotopes and PFT’s complement Geophysics to monitor and verify plume movement, leakage to shallow aquifers or surface

  2. Performance of a pilot showcase of different wetland systems in an urban setting in Singapore.

    PubMed

    Quek, B S; He, Q H; Sim, C H

    2015-01-01

    The Alexandra Wetlands, part of PUB's Active, Beautiful, Clean Waters (ABC Waters) Programme, showcase a surface flow wetland, an aquatic pond and a sub-surface flow wetland on a 200 m deck built over an urban drainage canal. Water from the canal is pumped to a sedimentation basin, before flowing in parallel to the three wetlands. Water quality monitoring was carried out monthly from April 2011 to December 2012. The order of removal efficiency is sub-surface flow (81.3%) >aquatic pond (58.5%) >surface flow (50.7%) for total suspended solids (TSS); sub-surface (44.9%) >surface flow (31.9%) >aquatic pond (22.0%) for total nitrogen (TN); and surface flow (56.7%) >aquatic pond (39.8%) >sub-surface flow (5.4%) for total phosphorus (TP). All three wetlands achieved the Singapore stormwater treatment objectives (STO) for TP removal, but only the sub-surface flow wetland met the STO for TSS, and none met the STO for TN. Challenges in achieving satisfactory performance include inconsistent feed water quality, undesirable behaviour such as fishing, release of pets and feeding of animals in the wetlands, and canal dredging during part of the monitoring period. As a pilot showcase, the Alexandra Wetlands provide useful lessons for implementing multi-objective wetlands in an urban setting.

  3. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais.

    PubMed

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V

    2016-01-01

    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  4. Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques

    NASA Astrophysics Data System (ADS)

    Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis

    2014-08-01

    Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.

  5. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK.

    PubMed

    Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick

    2016-10-01

    A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  6. A field study of colloid transport in surface and subsurface flows

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e.g., pesticides, phosphorus fertilizers) immediately before rainfall following a long no-rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.

  7. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  8. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into freshwater aquifers is a global problem, threatening the water supply of millions of people in coastal settlements. Abstraction rates could be much more efficiently managed if encroaching saline water could be detected before it arrived at the borehole. However, current monitoring is based largely on borehole conductivity measurements, which requires a dense network of monitoring boreholes to map the saline front. Recent laboratory and field experiments suggest that the concentration gradient associated with the front generates an SP signal which can be detected at an abstraction well prior to the arrival of the front, potentially allowing monitoring using a comparatively cheap array of non-polarising borehole electrodes. Current challenges in interpreting SP measurements for subsurface flow are also discussed, particularly the use of models to predict the values of C and Q. The importance of accounting for the pore-level distribution of flow and excess charge in such models is emphasised, and a way forward is suggested in which pore-scale network models, used previously to predict relative permeability and capillary pressure, are extended to include charge transport at the pore-level.

  9. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.

  10. Monitoring the Dynamics of Water Flow at a High-Mountain Permafrost Site Using Electrical Self-Potential Measurements

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Wagner, F.; Hilbich, C.; Hauck, C.

    2016-12-01

    Flow of (liquid) water plays a crucial role in the dynamics of coupled thermo-hydro-mechanical processes in terrestrial permafrost systems. To better understand these processes in the active layer of permafrost regions, with the ultimate goal of adequately incorporating them in numerical models for improved scenario prediction, monitoring approaches offering high spatial and temporal resolution, areal coverage, and especially sensitivity to subsurface water flow, are highly desired. This particularly holds for high-mountain slopes, where strong variability in topography, precipitation, and snow cover, along with significant subsurface soil/rock heterogeneity, gives rise to complex spatio-temporal patterns of water flow during seasonal thawing and freezing periods. The electrical self-potential (SP) method is well known to, in theory, meeting the above monitoring demands by measuring the electrical streaming potential which is generated at the microscopic scale when water flows along electrically non-neutral interfaces. Despite its inherent sensitivity to subsurface water flow, the SP method has not yet been used for the monitoring of high-mountain permafrost sites. We here present first results from an SP monitoring survey conducted at the Schilthorn (2970 m asl) in the Bernese Alps, Switzerland, where SP data have been collected since September 2013 at a sampling rate of 10 min on a permanently installed array of 12 non-polarizing electrodes covering an area of 35 m by 15 m. While the SP time series exhibit systematic daily variations, with part of the signal clearly correlated with temperature, in particular in the snow-free periods, the largest temporal changes in the SP signal occur in spring, when the snow cover melts and thawing sets on in the active layer. The period of higher temporal SP variations continues until autumn, when the signal gradually returns to relatively low variations, coinciding with the freezing of the ground. Our results suggest that the SP method is a suitable tool for the monitoring of seasonal water flow dynamics at high-mountain permafrost sites. Current work is directed towards an improved field setup, as well as the quantitative analysis of the SP data based on laboratory calibration measurements.

  11. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.

  12. Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape

    NASA Astrophysics Data System (ADS)

    Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.

    2017-12-01

    Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and improve management of our critical water resources.

  13. Understanding the rapidity of subsurface storm flow response from a fracture-oriented shallow vadose through a new perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Zhao, Pei; Liang, Chuan; Li, Tianyang; Zhou, Baojia

    2017-01-01

    Velocity and celerity in hydrologic systems are controlled by different mechanisms. Efforts were made through joint sample collection and the use of hydrographs and tracers to understand the rapidity of the subsurface flow response to rainstorms on hourly time scales. Three deep subsurface flows during four natural rainstorm events were monitored. The results show that (1) deeper discharge was observed early in responding rainfall events and yielded a high hydrograph amplitude; (2) a ratio index, k, reflecting the dynamic change of the rainfall perturbation intensity in subsurface flow, might reveal inner causal relationships between the flow index and the tracer signal index. Most values of k were larger than 1 at the perturbation stage but approximated 1 at the no-perturbation stage; and (3) for statistical analysis of tracer signals in subsurface flows, the total standard deviation was 17.2, 11.9, 7.4 and 3.5 at perturbation stages and 4.4, 2.5, 1.1, and 0.95 at the non-perturbation stage for observed events. These events were 3-7 times higher in the former rather than the later, reflecting that the variation of tracer signals primarily occurred under rainfall perturbation. Thus, we affirmed that the dynamic features of rainfall have a key effect on rapid processes because, besides the gravity, mechanical waves originating from dynamic rainfall features are another driving factor for conversion between different types of rainfall mechanical energy. A conceptual model for pressure wave propagation was proposed, in which virtual subsurface flow processes in a heterogeneous vadose zone under rainfall are analogous to the water hammer phenomenon in complex conduit systems. Such an analogy can allow pressure in a shallow vadose to increase and decrease and directly influence the velocity and celerity of the flow reflecting a mechanism for rapid subsurface hydrologic response processes in the shallow vadose zone.

  14. Approaching a universal scaling relationship between fracture stiffness and fluid flow

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, Laura J.; Nolte, David D.

    2016-02-01

    A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.

  15. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT

    NASA Astrophysics Data System (ADS)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier

    2017-04-01

    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  16. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin

    2017-07-01

    The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).

  17. Water Chemistry of Ephemeral Streams

    Treesearch

    J.L. Michael; W.P. Fowler; H.L. Gibbs; J.B. Fischer

    1994-01-01

    Four individual, but related, studies are currently being conducted to determine the effects of clearcut and seed tree reproduction cutting methods on stream chemistry, sedimentation, and bedload movement by monitoring herbicide and nutrient movement in stemflow, overland flow, streamflow, and zonal subsurface flow. Sediment movement is being quantified for...

  18. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined with additional geological information, modeling of the gravity signal based on the vertical component of the gravitational attraction was particularly useful to estimate the seasonal recharge leading to temporary groundwater storage in the vadose zone.

  19. A stochastic approach for model reduction and memory function design in hydrogeophysical inversion

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Kellogg, A.; Terry, N.

    2009-12-01

    Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the memory function as a new prior and generate samples from it for further updating when more geophysical data is available. We applied this approach for deep oil reservoir characterization and for shallow subsurface flow monitoring. The model reduction approach reliably helps reduce the joint seismic/EM/radar inversion computational time to reasonable levels. Continuous inversion images are obtained using time-lapse data with the “memory function” applied in the Bayesian inversion.

  20. Geophysical Methods for Monitoring Soil Stabilization Processes

    EPA Science Inventory

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...

  1. Evaluation of nutrient removal efficiency and microbial enzyme activity in a baffled subsurface-flow constructed wetland system

    Treesearch

    Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu

    2013-01-01

    In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...

  2. Point-of-care instrument for monitoring tissue health during skin graft repair

    NASA Astrophysics Data System (ADS)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  3. Development of concepts for the management of thermal resources in urban areas - Assessment of transferability from the Basel (Switzerland) and Zaragoza (Spain) case studies

    NASA Astrophysics Data System (ADS)

    Epting, Jannis; García-Gil, Alejandro; Huggenberger, Peter; Vázquez-Suñe, Enric; Mueller, Matthias H.

    2017-05-01

    The shallow subsurface in urban areas is increasingly used by shallow geothermal energy systems as a renewable energy resource and as a cheap cooling medium, e.g. for building air conditioning. In combination with further anthropogenic activities, this results in altered thermal regimes in the subsurface and the so-called subsurface urban heat island effect. Successful thermal management of urban groundwater resources requires understanding the relative contributions of the different thermal parameters and boundary conditions that result in the "present thermal state" of individual urban groundwater bodies. To evaluate the "present thermal state" of urban groundwater bodies, good quality data are required to characterize the hydraulic and thermal aquifer parameters. This process also involved adequate monitoring systems which provide consistent subsurface temperature measurements and are the basis for parameterizing numerical heat-transport models. This study is based on previous work already published for two urban groundwater bodies in Basel (CH) and Zaragoza (ES), where comprehensive monitoring networks (hydraulics and temperature) as well as calibrated high-resolution numerical flow- and heat-transport models have been analyzed. The "present thermal state" and how it developed according to the different hydraulic and thermal boundary conditions is compared to a "potential natural state" in order to assess the anthropogenic thermal changes that have already occurred in the urban groundwater bodies we investigated. This comparison allows us to describe the various processes concerning groundwater flow and thermal regimes for the different urban settings. Furthermore, the results facilitate defining goals for specific aquifer regions, including future aquifer use and urbanization, as well as evaluating the thermal use potential for these regions. As one example for a more sustainable thermal use of subsurface water resources, we introduce the thermal management concept of the "relaxation factor", which is a first approach to overcome the present policy of "first come, first served". Remediation measures to regenerate overheated urban aquifers are also introduced. The transferability of the applied methods to other urban areas is discussed. It is shown that an appropriate selection of locations for monitoring hydraulic and thermal boundary conditions make it possible to implement representative interpretations of groundwater flow and thermal regimes as well as to set up high-resolution numerical flow- and heat-transport models. Those models are the basis for the sustainable management of thermal resources.

  4. Using flowmeter pulse tests to define hydraulic connections in the subsurface: A fractured shale example

    USGS Publications Warehouse

    Williams, J.H.; Paillet, Frederick L.

    2002-01-01

    Cross-borehole flowmeter pulse tests define subsurface connections between discrete fractures using short stress periods to monitor the propagation of the pulse through the flow system. This technique is an improvement over other cross-borehole techniques because measurements can be made in open boreholes without packers or previous identification of water-producing intervals. The method is based on the concept of monitoring the propagation of pulses rather than steady flow through the fracture network. In this method, a hydraulic stress is applied to a borehole connected to a single, permeable fracture, and the distribution of flow induced by that stress monitored in adjacent boreholes. The transient flow responses are compared to type curves computed for several different types of fracture connections. The shape of the transient flow response indicates the type of fracture connection, and the fit of the data to the type curve yields an estimate of its transmissivity and storage coefficient. The flowmeter pulse test technique was applied in fractured shale at a volatile-organic contaminant plume in Watervliet, New York. Flowmeter and other geophysical logs were used to identify permeable fractures in eight boreholes in and near the contaminant plume using single-borehole flow measurements. Flowmeter cross-hole pulse tests were used to identify connections between fractures detected in the boreholes. The results indicated a permeable fracture network connecting many of the individual boreholes, and demonstrated the presence of an ambient upward hydraulic-head gradient throughout the site.

  5. Subsurface flow recently triggered the development of taliks under a sub-Arctic road embankment: a prelude to the collapse of the Alaska Highway?

    NASA Astrophysics Data System (ADS)

    Chen, L.; Fortier, D.; Sliger, M.; McKenzie, J. M.; Murchison, P.

    2017-12-01

    The Alaska Highway extends over 2200 km between central Alaska, U.S.A. and northern British-Columbia, Canada. This transportation corridor is crucial for the economy of Alaska as it is the only terrestrial link between mainland Alaska and the contiguous United States. Northern British Columbia and southwestern Yukon also greatly benefit from this highway for the transportation of goods and people across this remote corner of Canada. About a quarter of the Alaska Highway is built on permafrost, which is typically ice-rich and at a temperature near the point of thawing. Degradation of the permafrost under the embankment has led to severe structural damages to the highway such as deep longitudinal cracks, extended depressions, potholes and sinkholes. Here we present thermal data from the Beaver Creek experimental road test section in southwestern Yukon. Our study investigates convective heat transfers linked to subsurface water flow under the road embankment based on seven years (2009 to 2016) of thermal monitoring. Observation results demonstrate that snowmelt water infiltration in the spring causes rapid temperature increase of the upper portion of the embankment. Later in the summer, subsurface flow under the highway embankment can lead to step temperature-increase rates, which can be 200 times larger than those via conductive heat transfers. In the fall water trapped under the road significantly delays freeze back of the active layer and contributes to higher permafrost temperature. During the monitoring period, we observed the initiation and growth of taliks along sub-surface flow paths. Positive feedback mechanisms related to water flow through the taliks significantly increased permafrost degradation. Such taliks represent an un-precedent and presumably irreversible thermal state of the highway. Similar terrain conditions which severely threaten the structural integrity of the infrastructure on the short term are numerous along the Alaska Highway corridor.

  6. Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Blöschl, Günter

    2014-05-01

    Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.

  7. Reducing Risk in CO2 Sequestration: A Framework for Integrated Monitoring of Basin Scale Injection

    NASA Astrophysics Data System (ADS)

    Seto, C. J.; Haidari, A. S.; McRae, G. J.

    2009-12-01

    Geological sequestration of CO2 is an option for stabilization of atmospheric CO2 concentrations. Technical ability to safely store CO2 in the subsurface has been demonstrated through pilot projects and a long history of enhanced oil recovery and acid gas disposal operations. To address climate change, current injection operations must be scaled up by a factor of 100, raising issues of safety and security. Monitoring and verification is an essential component in ensuring safe operations and managing risk. Monitoring provides assurance that CO2 is securely stored in the subsurface, and the mechanisms governing transport and storage are well understood. It also provides an early warning mechanism for identification of anomalies in performance, and a means for intervention and remediation through the ability to locate the CO2. Through theoretical studies, bench scale experiments and pilot tests, a number of technologies have demonstrated their ability to monitor CO2 in the surface and subsurface. Because the focus of these studies has been to demonstrate feasibility, individual techniques have not been integrated to provide a more robust method for monitoring. Considering the large volumes required for injection, size of the potential footprint, length of time a project must be monitored and uncertainty, operational considerations of cost and risk must balance safety and security. Integration of multiple monitoring techniques will reduce uncertainty in monitoring injected CO2, thereby reducing risk. We present a framework for risk management of large scale injection through model based monitoring network design. This framework is applied to monitoring CO2 in a synthetic reservoir where there is uncertainty in the underlying permeability field controlling fluid migration. Deformation and seismic data are used to track plume migration. A modified Ensemble Kalman filter approach is used to estimate flow properties by jointly assimilating flow and geomechanical observations. Issues of risk, cost and uncertainty are considered.

  8. Characterization of recharge and flow behaviour of different water sources in Gunung Kidul and its impact on water quality based on hydrochemical and physico-chemical monitoring

    NASA Astrophysics Data System (ADS)

    Eiche, Elisabeth; Hochschild, Maren; Haryono, Eko; Neumann, Thomas

    2016-09-01

    Karst aquifers are important water resources but highly vulnerable due to their heterogeneous and complex characteristics. Various hydrological aspects (recharge, flow behaviour) have to be known in detail to develop a sustainable concept for water collection, distribution and treatment. In the karst area of Gunung Sewu (Java, Indonesia) such a concept was to be implemented within a German-Indonesian joint IWRM project. The basic hydrogeological conditions and water quality aspects were characterized on a regional scale through hydrochemical monitoring of springs, wells, subsurface and surface rivers. More detailed information about the recharge, flow and storage behaviour was obtained from high resolution monitoring of T, EC and discharge in one large underground river system. The water quality is well below any guideline values with regard to inorganic pollutants during dry season. During rainy season, dissolved Al concentrations are frequently above the Indonesian guideline value. Slow matrix flow is the most important recharge component during dry season, thus assuring the year-round water availability in the subsurface karst. During rainy season, quick infiltration of the surface water is a dominant recharge component. Rapid response of discharge, T and EC to heavy rain suggests the presence of point recharge that feeds a highly karstfied conduit system with fast conduit flow and short transit time of water. The strong variations in discharge and hydrochemistry are particularly challenging for technical water usage and treatment facilities. Piston flow is indicated to be the third important flow component and is induced by heavy rainfall.

  9. Coupled surface and subsurface flow modeling of natural hillslopes in the Aburrá Valley (Medellín, Colombia)

    NASA Astrophysics Data System (ADS)

    Blessent, Daniela; Barco, Janet; Temgoua, André Guy Tranquille; Echeverrri-Ramirez, Oscar

    2017-03-01

    Numerical results are presented of surface-subsurface water modeling of a natural hillslope located in the Aburrá Valley, in the city of Medellín (Antioquia, Colombia). The integrated finite-element hydrogeological simulator HydroGeoSphere is used to conduct transient variably saturated simulations. The objective is to analyze pore-water pressure and saturation variation at shallow depths, as well as volumes of water infiltrated in the porous medium. These aspects are important in the region of study, which is highly affected by soil movements, especially during the high-rain seasons that occur twice a year. The modeling exercise considers rainfall events that occurred between October and December 2014 and a hillslope that is currently monitored because of soil instability problems. Simulation results show that rainfall temporal variability, mesh resolution, coupling length, and the conceptual model chosen to represent the heterogeneous soil, have a noticeable influence on results, particularly for high rainfall intensities. Results also indicate that surface-subsurface coupled modeling is required to avoid unrealistic increase in hydraulic heads when high rainfall intensities cause top-down saturation of soil. This work is a first effort towards fostering hydrogeological modeling expertise that may support the development of monitoring systems and early landslide warning in a country where the rainy season is often the cause of hydrogeological tragedies associated with landslides, mud flow or debris flow.

  10. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    NASA Astrophysics Data System (ADS)

    Um, W.; Rod, K. A.; Strickland, C. E.

    2016-12-01

    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media, and the X-curve, commonly used to depict the relative permeability of fractures. Relative permeability measurements from the cores containing a higher degree of fracturing showed a better fit to X-curve, while data from the minimally fractured cores were better described by fitting to the Corey-curve.

  11. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan

    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processesmore » receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. Furthermore, the results also demonstrate the sensitivity of surface based ERT measurements to those changes over time.« less

  12. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    DOE PAGES

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan

    2016-09-22

    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processesmore » receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. Furthermore, the results also demonstrate the sensitivity of surface based ERT measurements to those changes over time.« less

  13. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    USGS Publications Warehouse

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  14. Acoustic Wave Monitoring of Biofilm Development in Porous Media

    EPA Science Inventory

    Biofilm development in porous media can result in significant changes to the hydrogeological properties of subsurface systems with implications for fluid flow and contaminant transport. As such, a number of numerical models and simulations have been developed in an attempt to qua...

  15. LONG TERM PERFORMANCE MONITORING OF A PRB FOR REMEDIATION OF CHLORINATED SOLVENTS AND CHROMIUM

    EPA Science Inventory

    Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...

  16. LONG-TERM PERFORMANCE MONITORING OF A PERMEABLE REACTIVE BARRIER TO REMEDIATE CONTAMINATED GROUND WATER

    EPA Science Inventory

    Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...

  17. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  18. Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.

    PubMed

    McKenna, J; Sherlock, D; Evans, B

    2001-12-01

    This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable relationships that exist between P-wave velocity and fluid saturation can allow a quantitative assessment of contaminant migration.

  19. Subsurface Hydrologic Processes Revealed by Time-lapse GPR in Two Contrasting Soils in the Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.

    2017-12-01

    Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.

  20. LONG-TERM PERFORMANCE MONITORING OF PERMEABLE REACTIVE BARRIERS TO REMEDIATE CONTAMINATED GROUND WATER

    EPA Science Inventory

    Permeable reactive barriers (PRB's) are an alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are being selected with increased frequency at waste sites (more than 40 f...

  1. 3-D Reconstructions of Subsurface Pleistocene Basalt Flows from Paleomagnetic Inclination Data and 40Ar/39Ar Ages in the Southern Part of the Idaho National Laboratory (INL), Idaho (USA)

    NASA Astrophysics Data System (ADS)

    Hodges, M. K.; Champion, D. E.; Turrin, B. D.; Swisher, C. C.

    2012-12-01

    The U. S. Geological Survey, in cooperation with the U.S. Department of Energy, is mapping the distribution of basalt flows and sedimentary interbeds at the Idaho National Laboratory in three dimensions to provide data for refining numerical models of groundwater flow and contaminant transport in the eastern Snake River Plain aquifer. Paleomagnetic inclination and polarity data from basalt samples from 47 coreholes are being used to create a three-dimensional (3-D) model of the subsurface of the southern part of the INL. Surface and sub-surface basalt flows can be identified in individual cores and traced in three dimensions on the surface and in the subsurface for distances of more than 20 km using a combination of paleomagnetic, stratigraphic, and 40Ar/39Ar data. Eastern Snake River Plain olivine tholeiite basalts have K2O contents of 0.2 to 1.0 weight per cent. In spite of the low-K content, high-precision 40Ar/39Ar ages were obtained by applying a protocol that employs short irradiation times (minimizing interferences from Ca derived 36Ar), frequent measurement of various size atmospheric Ar pipettes to monitor and correct for temporal variation, and signal size dependent nonlinearity in spectrometer mass bias, resulting in age dates with resolution generally between 2 to 10% of the age. 3-D models of subsurface basalt flows are being used to: (1) Estimate eruption volumes; (2) locate the approximate vent areas and extent of sub-surface flows; and (3) Help locate high and low transmissivity zones. Results indicate that large basalt eruptions (>3 km3) occurred at and near the Central Facilities Area between 637 ka and 360 ka; at and near the Radioactive Waste Management Complex before 540 ka; and north of the Naval Reactors Facility at about 580 ka. Since about 360 ka, large basalt flows have erupted along the Arco-Big Southern Butte Volcanic Rift Zone and the Axial Volcanic Zone, and flowed northerly towards the Central Facilities Area. Basalt eruptions shifted the course of the Big Lost River from a more southerly course to its present one.

  2. 3-D reconstructions of subsurface Pleistocene basalt flows from paleomagnetic inclination data and 40Ar/39Ar ages in the southern part of the Idaho National Laboratory (INL), Idaho (USA)

    USGS Publications Warehouse

    Hodges, Mary K. V.; Champion, Duane E.; Turrin, B.D.; Swisher, C. C.

    2012-01-01

    The U. S. Geological Survey, in cooperation with the U.S. Department of Energy, is mapping the distribution of basalt flows and sedimentary interbeds at the Idaho National Laboratory in three dimensions to provide data for refining numerical models of groundwater flow and contaminant transport in the eastern Snake River Plain aquifer. Paleomagnetic inclination and polarity data from basalt samples from 47 coreholes are being used to create a three-dimensional (3-D) model of the subsurface of the southern part of the INL. Surface and sub-surface basalt flows can be identified in individual cores and traced in three dimensions on the surface and in the subsurface for distances of more than 20 km using a combination of paleomagnetic, stratigraphic, and 40Ar/39Ar data. Eastern Snake River Plain olivine tholeiite basalts have K2O contents of 0.2 to 1.0 weight per cent. In spite of the low-K content, high-precision 40Ar/39Ar ages were obtained by applying a protocol that employs short irradiation times (minimizing interferences from Ca derived 36Ar), frequent measurement of various size atmospheric Ar pipettes to monitor and correct for temporal variation, and signal size dependent nonlinearity in spectrometer mass bias, resulting in age dates with resolution generally between 2 to 10% of the age. 3-D models of subsurface basalt flows are being used to: (1) Estimate eruption volumes; (2) locate the approximate vent areas and extent of sub-surface flows; and (3) Help locate high and low transmissivity zones. Results indicate that large basalt eruptions (>3 km3) occurred at and near the Central Facilities Area between 637 ka and 360 ka; at and near the Radioactive Waste Management Complex before 540 ka; and north of the Naval Reactors Facility at about 580 ka. Since about 360 ka, large basalt flows have erupted along the Arco-Big Southern Butte Volcanic Rift Zone and the Axial Volcanic Zone, and flowed northerly towards the Central Facilities Area. Basalt eruptions shifted the course of the Big Lost River from a more southerly course to its present one.

  3. Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM.

    PubMed

    Qi, Hongkai; Qi, Zhiming; Zhang, T Q; Tan, C S; Sadhukhan, Debasis

    2018-03-01

    Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Paleomagnetic correlation of basalt flows in selected coreholes near the Advanced Test Reactor Complex, the Idaho Nuclear Technology and Engineering Center, and along the southern boundary, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Champion, Duane E.

    2016-10-03

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, used paleomagnetic data from 18 coreholes to construct three cross sections of subsurface basalt flows in the southern part of the Idaho National Laboratory (INL). These cross sections, containing descriptions of the subsurface horizontal and vertical distribution of basalt flows and sediment layers, will be used in geological studies, and to construct numerical models of groundwater flow and contaminant transport.Subsurface cross sections were used to correlate surface vents to their subsurface flows intersected by coreholes, to correlate subsurface flows between coreholes, and to identify possible subsurface vent locations of subsurface flows. Correlations were identified by average paleomagnetic inclinations of flows, and depth from land surface in coreholes, normalized to the North American Datum of 1927. Paleomagnetic data were combined, in some cases, with other data, such as radiometric ages of flows. Possible vent locations of buried basalt flows were identified by determining the location of the maximum thickness of flows penetrated by more than one corehole.Flows from the surface volcanic vents Quaking Aspen Butte, Vent 5206, Mid Butte, Lavatoo Butte, Crater Butte, Pond Butte, Vent 5350, Vent 5252, Tin Cup Butte, Vent 4959, Vent 5119, and AEC Butte are found in coreholes, and were correlated to the surface vents by matching their paleomagnetic inclinations, and in some cases, their stratigraphic positions.Some subsurface basalt flows that do not correlate to surface vents, do correlate over several coreholes, and may correlate to buried vents. Subsurface flows which correlate across several coreholes, but not to a surface vent include the D3 flow, the Big Lost flow, the CFA buried vent flow, the Early, Middle, and Late Basal Brunhes flows, the South Late Matuyama flow, the Matuyama flow, and the Jaramillo flow. The location of vents buried in the subsurface by younger basalt flows can be inferred if their flows are penetrated by several coreholes, by tracing the flows in the subsurface, and determining where the greatest thickness occurs.

  5. Simulation of partially saturated - saturated flow in the Caspar Creek E-road groundwater system

    Treesearch

    Jason C. Fisher

    2000-01-01

    Abstract - Over the past decade, the U.S. Forest Service has monitored the subsurface hillslope flow of the E-road swale. The swale is located in the Caspar Creek watershed near Fort Bragg, California. In hydrologic year 1990 a logging road was built across the middle section of the hillslope followed by a total clearcut of the area during the following year....

  6. Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains.

    PubMed

    Wettstein, Felix E; Kasteel, Roy; Garcia Delgado, Maria F; Hanke, Irene; Huntscha, Sebastian; Balmer, Marianne E; Poiger, Thomas; Bucheli, Thomas D

    2016-08-24

    Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.

  7. The Science and Policy of the First Environmental Flows to the Colorado River Delta

    NASA Astrophysics Data System (ADS)

    Flessa, K. W.; Kendy, E.; Schlatter, K.

    2014-12-01

    The first transboundary flow of water for the environment was delivered to the Colorado River Delta in spring of 2014. This engineered mini-spring flood of 130 million cubic meters (105,000 acre-feet) was implemented as part of Minute 319, an addition to the 1944 U.S.-Mexico Water Treaty. Minute 319 is a temporary agreement, expiring in 2017. Teams of scientists from government agencies, universities, and environmental NGOs from both the U.S. and Mexico are measuring the surface flow rates, inundation, ground water recharge, ground water levels and subsurface flows, geomorphic change, recruitment, survival and health of vegetation, and avian response to the environmental flow. Monitoring includes on-the-ground observations and measurements and remote sensing. Surface water from the pulse flow reached restoration sites, prompted germination of both native and non-native vegetation, recharged groundwater and reached the Gulf of California - the first reconnection of the Colorado River and the sea in 16 years. People in local communities joyously welcomed the return of the river; extensive media coverage was overwhelmingly positive - despite widespread drought in the West. After about ten weeks, most of the pulse flow had infiltrated the subsurface, ponded in a few cut-off meanders, or run to the sea. The river no longer flows. Monitoring of seedling survival, groundwater, vegetation and wildlife will continue through 2017. Results of this landscape-scale experiment will play a role in negotiations to renew the agreement, help model and design future flows and guide the efficient use of water for restoration in semi-arid river systems.

  8. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan

    2017-02-01

    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev.

  9. Effects of spatial configuration of imperviousness and green infrastructure networks on hydrologic response in a residential sewershed

    NASA Astrophysics Data System (ADS)

    Lim, Theodore C.; Welty, Claire

    2017-09-01

    Green infrastructure (GI) is an approach to stormwater management that promotes natural processes of infiltration and evapotranspiration, reducing surface runoff to conventional stormwater drainage infrastructure. As more urban areas incorporate GI into their stormwater management plans, greater understanding is needed on the effects of spatial configuration of GI networks on hydrological performance, especially in the context of potential subsurface and lateral interactions between distributed facilities. In this research, we apply a three-dimensional, coupled surface-subsurface, land-atmosphere model, ParFlow.CLM, to a residential urban sewershed in Washington DC that was retrofitted with a network of GI installations between 2009 and 2015. The model was used to test nine additional GI and imperviousness spatial network configurations for the site and was compared with monitored pipe-flow data. Results from the simulations show that GI located in higher flow-accumulation areas of the site intercepted more surface runoff, even during wetter and multiday events. However, a comparison of the differences between scenarios and levels of variation and noise in monitored data suggests that the differences would only be detectable between the most and least optimal GI/imperviousness configurations.

  10. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.

  11. Investigations of subsurface flow constructed wetlands and associated geomaterial resources in the Akumal and Reforma regions, Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Krekeler, Mark P. S.; Probst, Pete; Samsonov, Misha; Tselepis, Cynthia M.; Bates, William; Kearns, Lance E.; Maynard, J. Barry

    2007-12-01

    Subsurface flow constructed wetlands in the village of Akumal, Quintana Roo, Mexico were surveyed to determine the general status of the wetland systems and provide baseline information for long term monitoring and further study. Twenty subsurface flow wetlands were surveyed and common problems observed in the systems were overloading, poor plant cover, odor, and no secondary containment. Bulk mineral composition of aggregate from two subsurface flow constructed wetlands was determined to consist solely of calcite using bulk powder X-ray diffraction. Some soil structure is developed in the aggregate and aggregate levels in wetlands drop at an estimated rate between 3 and 10 cm/year for overloaded wetlands owing to dissolution. Mineral composition from fresh aggregate samples commonly is a mixture of calcite and aragonite. Trace amounts of Pb, Zn, Co, and Cr were observed in fresh aggregate. Coefficients of permeability ( k) varied from 0.006 to 0.027 cm/s with an average values being 0.016 cm/s. Grain size analysis of fresh aggregate samples indicates there are unimodal and multimodal size distributions in the samples with modes in the coarse and fine sand being common. Investigations of other geologic media from the Reforma region indicate that a dolomite with minor amounts of Fe-oxide and palygorskite is abundant and may be a better aggregate source that the current materials used. A Ca-montmorillonite bed was identified in the Reforma region as well and this unit is suitable to serve as a clay liner to prevent leaks for new and existing wetland systems. These newly discovered geologic resources should aid in the improvement of subsurface flow constructed wetlands in the region. Although problems do exist in these wetlands with respect to design, these systems represent a successful implementation of constructed wetlands at a community level in developing regions.

  12. Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects

    NASA Astrophysics Data System (ADS)

    Couchman, M. J.; Everett, M. E.

    2017-12-01

    As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.

  13. May cause environmental damage the diversion of the Danube in the Szigetköz area, Hungary?

    NASA Astrophysics Data System (ADS)

    Novak, Brigitta

    2009-04-01

    Summary The floodplain area between the main channel of Danube and its branch river Mosoni-Duna is called the Szigetköz. This wetland area has special flora and fauna, and it is a natural protection area. Underneath of the Szigetköz, there are a thick (several hundreds meters) sedimentary sequence, the so called Kisalföld Quaternary Aquifer. This aquifer system is fed by the surface river system of Danube and supplies excellent quality drinking water for several hundred thousands of people in Hungary and Slovakia. The Szigetköz Monitoring Network was established in 1991 to describe the environmental effects of the Bős-Nagymaros Dam System, which was partly built in 1992 on the Slovakian part of the Danube. The dam diverts three-quarter of the Danube runoff to a 40 km long artificial concrete channel north of the original river bed. The effect of this diversion is spectacular on the wetland area. Water level in the meandering channels have decreased significantly, part of the wetland area frequently becomes dry. The natural flow pattern has disappeared. As a consequence, the channel characteristics of the river network, therefore the flow pattern, the quantity and quality of surface and subsurface water on the upper region of the Danube have significantly changed. The aim of our research is to describe the relationship between surface water and groundwater and considering the variable geology of the area, to describe trends in chemistry and to find the possible reasons for extreme values. Also to detect possible connection between the extreme values and the changes in flow pattern caused by the human intervention. Water sample pairs from surface water and shallow and deeper ground water were taken in every season at 18 locations. To sample shallow ground-water 1,5 m long, screened metal probes were derived into the sediment at the possible nearest point to the surface water. On the field pH, temperature, dissolved oxygen, specific conductivity, and in the wells redox potential were measured. Samples were taken for further laboratory analyses (major and trace components, nitrate. The chemical parameters of surface and subsurface water show seasonal changes, due to the changes of temperature, of precipitation, of biological and microbiological activity. At the monitoring points along the main channel the surface and subsurface water is closely related, and the velocity of groundwater can be calculated by the seasonal periodical dislocation. At the monitoring points on the north-western part of the study area (point 1), subsurface water replenished by the rivers, and water level in the probes follow the surface water level changes with short shift. Practically water quality is the same in the probe as in the surface. It is the same on the south-eastern part of the study area, where the diverted channel rejoins to the original river channel (point 10). The middle section (at points 4 and 5) of the study area, water level in the probes is higher than surface water level. Also concentrations of some chemical components are higher in the subsurface water here. These components are typically the results of water - sediment interaction. Based on these observations, the study area can be differentiated by the hydrochemical composition for losing and gaining sections. At the monitoring points along the meandering sub-branch system, water in the probes is reductive, the connection between surface and subsurface water is week, furthermore at some point is non-existent. At some points surface water has slow flow, or it is even stagnant. This means reductive environments, and high concentrations of some components, especially at the monitoring points of 31 and 41. For example, concentrations of ammonium, sulphate, phosphate, magnesium, iron, manganese are extremely high in the shallow groundwater. Originally the Danube supplied fresh, oxygen-rich water to the area, while nowadays at these locations surface water and subsurface water almost has no connection, and these sections of river bed already turned muddy, and organic material accumulated in the sediment, which further increase the rate of reduction and decrease the flow rate. The extreme values, and values not following the trend in the time series of chemical parameters can be explained only by further detailed examination. On the whole, it is unambiguously clear, since the diversion of Danube the water replenishment of the meandering sub-branch system is poorer, causing unfavourable changes in water chemistry both in surface and subsurface water. Other research teams of the monitoring system, studying ecology, have found that the water regulation has major adverse effects on the biology as well. The typical floodplain vegetation is changing toward species tolerating dryness. In the water flora and fauna alters gradually as well, due to the changing chemical characteristic of water and the decreasing flow. Considering that the abiotic environment react slower than the biotic to the anthropologic influence, we do not have a clear view how the water quality will deteriorate on the long run. Furthermore, the changes in flora and fauna have already caused changes in water chemistry, and these changes will persist causing a slow but continuous diversion from the original, natural values. In Szigetköz area, the decreased flow and the deteriorating quality of surface water will endanger the important subsurface drinking water aquifer on the long-term.

  14. Runoff processes in catchments with a small scale topography

    NASA Astrophysics Data System (ADS)

    Feyen, H.; Leuenberger, J.; Papritz, A.; Gysi, M.; Flühler, H.; Schleppi, P.

    1996-05-01

    How do runoff processes influence nitrogen export from forested catchments? To support nitrogen balance studies for three experimental catchments (1500m 2) in the Northern Swiss prealps water flow processes in the two dominating soil types are monitored. Here we present the results for an experimental wetland catchment (1500m 2) and for a delineated sloped soil plot (10m 2), both with a muck humus topsoil. Runoff measurements on both the catchment and the soil plot showed fast reactions of surface and subsurface runoff to rainfall inputs, indicating the dominance of fast-flow paths such as cracks and fissures. Three quarters of the runoff from the soil plot can be attributed to water flow in the gleyic, clayey subsoil, 20% to flow in the humic A horizon and only 5% to surface runoff. The water balance for the wetland catchment was closed. The water balance of the soil plot did not close. Due to vertical upward flow from the saturated subsoil into the upper layers, the surface runoff plus subsurface runoff exceeded the input (precipitation) to the plot.

  15. Design and hydrologic performance of a tile drainage treatment wetland in Minnesota, USA

    USDA-ARS?s Scientific Manuscript database

    Treatment wetlands are increasingly needed to remove nitrate from agricultural drainage water to protect downstream waters such as the Gulf of Mexico. A 0.10 ha wetland was designed,installed and monitored to treat subsurface drainage flow from farmland in Minnesota, USA. This project sought to deve...

  16. Experience in non-conventional wastewater treatment techniques used in the Czech Republic.

    PubMed

    Felberova, L; Kucera, J; Mlejnska, E

    2007-01-01

    Among the most common non-conventional wastewater treatment techniques used in the Czech Republic are waste stabilisation ponds (WSP), subsurface horizontal flow constructed wetlands (CW) and vertical flow groundfilters (GF). These extensive systems can be advantageously used for treatment of waters coming from sewerages where the ballast weighting commonly makes more than half of dry-weather flow. The monitoring was focused at 14 different extensive systems. Organics removal efficiencies were favourable (CW-82%; GF-88%); in the case of WSP only 57% due to the algal bloom. Total nitrogen removal efficiencies were 43 and 47% for WSP and GF; in the case of CW only 32% due to often occurring anaerobic conditions in filter beds. Total phosphorus removal efficiencies were 37, 35 and 22% for WSP, GF and CW, respectively. Often occurring problems are the ice-blockage of surface aerators at WSP during wintertimes, the pond duckweed-cover or the algal bloom at WSP during summers; a gradual colmatage of filter systems; and the oxygen deficiency in beds of subsurface horizontal flow constructed wetlands. Czech legal regulations do not allow treated wastewater disposal into underground waters. There is only an exception for individual family houses. Up to now, knowledge gained by monitoring of a village (which uses the infiltration upon a permission issued according to earlier legal regulations) have not shown an unacceptable groundwater quality deterioration into the infiltration areas.

  17. Hydrogeologic data from a shallow flooding demonstration project, Twitchell Island, California, 1997-2001

    USGS Publications Warehouse

    Gamble, James M.; Burow, Karen R.; Wheeler, Gail A.; Hilditch, Robert; Drexler, Judy Z.

    2003-01-01

    Data were collected during a study to determine the effects of continuous shallow flooding on ground-water discharge to an agricultural drainage ditch on Twitchell Island, California. The conceptual model of the hydrogeologic setting was detailed with soil coring and borehole-geophysical logs. Twenty-two monitoring wells were installed to observe hydraulic head. Ten aquifer slug tests were done in peat and mineral sediments. Ground-water and surface-water temperature was monitored at 14 locations. Flow to and from the pond was monitored through direct measurement of flows and through the calculation of a water budget. These data were gathered to support the development of a two-dimensional ground-water flow model. The model will be used to estimate subsurface discharge to the drainage ditch as a result of the pond. The estimated discharge will be used to estimate the concentrations of DOC that can be expected in the ditch.

  18. Karst aquifer characterization using geophysical remote sensing of dynamic recharge events

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.

    2017-12-01

    Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and meteorologic data to map and characterize conduits and other features of the larger karst system and to monitor subsurface flow dynamics during recharge events.

  19. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    NASA Astrophysics Data System (ADS)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.

  20. Ammonia, phosphate, phenol, and copper(II) removal from aqueous solution by subsurface and surface flow constructed wetland.

    PubMed

    Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali

    2017-07-01

    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.

  1. Imaging Preferential Flow Pathways of Contaminants from Passive Acid Mine Drainage Mitigation Sites Using Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.

    2017-12-01

    The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.

  2. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    NASA Astrophysics Data System (ADS)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a second example, the option of seasonal hydrogen storage in a deep saline aquifer is considered. The induced thermal and hydraulic multiphase flow processes were simulated. Also, an integrative approach towards geophysical monitoring of gas presence was evaluated by synthetically applying these monitoring methods to the synthetic, however realistically defined numerical storage scenarios. Laboratory experiments provided parameterisations of geochemical effects caused by storage gas leakage into shallow aquifers in cases of sealing failure. Ultimately, the analysis of realistically defined scenarios of subsurface energy storage within the ANGUS+ project allows a quantification of the subsurface space claimed by a storage operation and its induced effects. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  3. Subsurface drainage processes and management impacts

    Treesearch

    Elizabeth T. Keppeler; David Brown

    1998-01-01

    Storm-induced streamflow in forested upland watersheds is linked to rainfall by transient, variably saturated flow through several different flow paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream as subsurface flow. Subsurface runoff can occur within...

  4. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    NASA Astrophysics Data System (ADS)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  5. Exploring applications of GPR methodology and uses in determining floodplain function of restored streams in the Gulf Coastal Plain, Alabama

    NASA Astrophysics Data System (ADS)

    Eckes, S. W.; Shepherd, S. L.

    2017-12-01

    Accurately characterizing subsurface structure and function of remediated floodplains is indispensable in understanding the success of stream restoration projects. Although many of these projects are designed to address increased storm water runoff due to urbanization, long term monitoring and assessment are often limited in scope and methodology. Common monitoring practices include geomorphic surveys, stream discharge, and suspended sediment loads. These data are comprehensive for stream monitoring but they do not address floodplain function in terms of infiltration and through flow. Developing noninvasive methods for monitoring floodplain moisture transfer and distribution will aid in current and future stream restoration endeavors. Ground penetrating radar (GPR) has been successfully used in other physiographic regions for noninvasive and continuous monitoring of (1) natural geomorphic environments including subsurface structure and landform change and (2) soil and turf management to monitor subsurface moisture content. We are testing the viability of these existing methods to expand upon the broad capabilities of GPR. Determining suitability will be done in three parts using GPR to (1) find known buried objects of typical materials used in remediation at measured depths, (2) understand GPR functionality in varying soil moisture content thresholds on turf plots, and (3) model reference, remediated, and impacted floodplains in a case study in the D'Olive Creek watershed located in Baldwin County, Alabama. We hypothesize that these methods will allow us to characterize moisture transfer from precipitation and runoff to the floodplain which is a direct function of floodplain health. The need for a methodology to monitor floodplains is widespread and with increased resolution and mobility, expanding GPR applications may help streamline remediation and monitoring practices.

  6. A Generalized Subsurface Flow Parameterization Considering Subgrid Spatial Variability of Recharge and Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Liang, Xu; Leung, Lai R.

    2008-12-05

    Subsurface flow is an important hydrologic process and a key component of the water budget, especially in humid regions. In this study, a new subsurface flow formulation is developed that incorporates spatial variability of both topography and recharge. It is shown through theoretical derivation and case studies that the power law and exponential subsurface flow parameterizations and the parameterization proposed by Woods et al.[1997] are all special cases of the new formulation. The subsurface flows calculated using the new formulation compare well with values derived from observations at the Tulpehocken Creek and Walnut Creek watersheds. Sensitivity studies show that whenmore » the spatial variability of topography or recharge, or both is increased, the subsurface flows increase at the two aforementioned sites and the Maimai hillslope. This is likely due to enhancement of interactions between the groundwater table and the land surface that reduce the flow path. An important conclusion of this study is that the spatial variability of recharge alone, and/or in combination with the spatial variability of topography can substantially alter the behaviors of subsurface flows. This suggests that in macroscale hydrologic models or land surface models, subgrid variations of recharge and topography can make significant contributions to the grid mean subsurface flow and must be accounted for in regions with large surface heterogeneity. This is particularly true for regions with humid climate and relatively shallow groundwater table where the combined impacts of spatial variability of recharge and topography are shown to be more important. For regions with arid climate and relatively deep groundwater table, simpler formulations, especially the power law, for subsurface flow can work well, and the impacts of subgrid variations of recharge and topography may be ignored.« less

  7. 4D ERT Monitoring of Subsurface Water Pipe Leakage During a Controlled Field Experiment

    NASA Astrophysics Data System (ADS)

    Inauen, C.; Chambers, J. E.; Wilkinson, P. B.; Meldrum, P.; Swift, R. T.; Uhlemann, S.; Gunn, D.; Dashwood, B.; Taxil, J.; Curioni, G.

    2016-12-01

    Locating and delineating leakage from subsurface pipelines is an important task for civil engineers. 4D Electrical Resistivity Tomography (ERT) allows changes in subsurface resistivity to be imaged at a high spatial and temporal resolution in a minimally invasive manner. It is therefore a promising tool to supplement conventional point-sensing techniques to monitor subsurface flow processes. To assess the efficacy of ERT for pipe leakage monitoring several controlled leak experiments were carried out at a test site in Blagdon, Bristol, UK. To simulate the leak, a plastic pipe with a hole was buried below a flat, grassed area at a depth of 0.7 m, representing a standard UK mains water pipe installation. The water table at the site lies well below the surface meaning that the experiment took entirely place in the vadose zone, where changes in resistivity are primarily sensitive to water content variations. The ERT array covered an area of 6.5m x 6.5m around the leak location. Data acquisition was carried out with the BGS PRIME (Proactive Infrastructure Monitoring and Evaluation) system, which facilitates remote scheduling and autonomous ERT data collection and transmission. To obtain the resistivity changes of the subsurface a 4D inversion was carried out using a Gauss-Newton approach with spatial and temporal smoothness constraints. We were able to reliably observe the onset, spread and cessation of the leakage. Measurements from in-situ soil sensors at several depths above and below the leak complemented the ERT data and allowed us to assess their reliability and directly relate them to hydrogeological processes. Moreover, through experimental tests with soil samples from the test area, a Waxman-Smits relation was obtained to directly convert the changes in electrical resistivity to gravimetric soil moisture content. With future experiments on the test site more work is planned towards survey optimization, automated processing and tracking of leakage plumes.

  8. Continuous Temperature and Water-Level Data Collected for a Heat Tracer Study on a Selected Reach of Tri-State Canal, Western Nebraska, 2007

    USGS Publications Warehouse

    Hobza, Christopher M.

    2008-01-01

    The water supply in parts of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or over appropriated by the Nebraska Department of Natural Resources. Recent legislation (LB 962) requires the North Platte Natural Resources District and the Nebraska Department of Natural Resources to develop an Integrated Management Plan to balance ground- and surface-water supply and demand within the North Platte Natural Resources District. For a ground-water-flow model to accurately simulate existing or future ground-water and surface-water conditions, accurate estimates of specific input variables such as streambed conductance or canal-seepage rates are required. As of 2008, the values input into ground-water models were estimated on the basis of interpreted lithology from test holes and geophysical surveys. Often, contrasts of several orders of magnitude exist for streambed conductance among the various sediment textures present locally, and thin, near-surface layers of fine sediment can clog the streambed, substantially reducing conductance. To accurately quantify the rates of leakage from irrigation canals and estimate ground-water recharge, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, collected continuous temperature and water-level data to use heat as a tracer for a selected reach of Tri-State Canal west of Scottsbluff, Nebraska. Continuous records of subsurface temperature, ground-water level, canal stage, and water temperature, and sediment core data are presented in this report. Subsurface temperature was monitored at four vertical sensor arrays of thermocouples installed at various depths beneath the canal bed from March through September 2007. Canal stage and water temperature were measured from June to September 2007. Ground-water level was recorded continuously in an observation well drilled near the subsurface temperature monitoring site. These data sets were collected for use as inputs for a computer model to estimate the vertical hydraulic conductivity. Before the initiation of flow, diurnal variations in subsurface temperature occurred because of daytime heating and nighttime cooling of bed sediment. Flow in Tri-State Canal was first detected on June 16 at the monitoring site as a disruption in the temperature signal in the shallowest thermocouple in all four vertical sensor arrays. This disruption in the temperature pattern occurred in deeper thermocouples at slightly later times during the rapid infiltration of canal water. The ground-water level began to rise approximately 23 hours after flow was first detected at the monitoring site. Canal stage rose for 7 days until the maximum flow capacity of the canal was approached on June 23, 2007. Measured water temperatures ranged from 18 to 25 degrees Celsius (C) while the canal was flowing near maximum capacity. Small diurnal variations of 1.0 to 1.5 degrees C in water temperature were recorded during this time. Measured ground-water levels rose constantly during the entire irrigation season until levels peaked on September 3, 2007, 3 days after diversions to Tri-State Canal ceased.

  9. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.

    PubMed

    Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott

    2012-11-01

    Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.

  10. Effect of subalpine canopy removal on snowpack, soil solution, and nutrient export, Fraser Experimental Forest, CO

    USGS Publications Warehouse

    Stottlemyer, R.; Troendle, C.A.

    1999-01-01

    Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca2+ flux at shallow depths increased from 5 to 12%, SO42- 5.4 to 12%, HCO3- from 5.6 to 8.7%, K+ from 6 to 35%, and NO3- from 2.7 to 17%. The increases in Ca2+ and SO42- flux were proportional to the increase in water flux, the flux of HCO3- increased proportionally less than water flux, and NO3- and K+ were proportionally greater than water flux. Increased subsurface flow accounted for most of the increase in non-limiting nutrient loss. For limiting nutrients, loss of plant uptake and increased shallow subsurface flow accounted for the greater loss. Seasonal ion concentration patterns in streamwater and subsurface flow were similar.Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca

  11. Need to improve SWMM's subsurface flow routing algorithm for green infrastructure modeling

    EPA Science Inventory

    SWMM can simulate various subsurface flows, including groundwater (GW) release from a subcatchment to a node, percolation out of storage units and low impact development (LID) controls, and rainfall derived inflow and infiltration (RDII) at a node. Originally, the subsurface flow...

  12. Modeling subsurface stormflow initiation in low-relief landscapes

    NASA Astrophysics Data System (ADS)

    Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.

    2015-04-01

    Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition, we also ran a longer-term simulation, using daily climate data for a nine year period to include more variable climate conditions in the threshold analysis. The model captured the observed subsurface flow instances very well. The threshold analysis indicated that the occurrence of subsurface stormflow uncommon, with a large proportion of the water perching above the clay layer percolating vertically into the clay layer. Event sizes of approximately 70-80 mm were required for initiating subsurface stormflow. The hourly data from 2009-2010 was subsequently used to test if the actual spatial distribution of depth to clay is a major control for the occurrence and magnitude of lateral subsurface flow. Results suggest that in this low-relief landscape also a spatially uniform mean depth to clay reproduces well the hydrologic behavior.

  13. Dynamics of Reactive Microbial Hotspots in Concentration Gradient.

    NASA Astrophysics Data System (ADS)

    Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.

    2017-12-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  14. Dynamics of reactive microbial hotspots in concentration gradients

    NASA Astrophysics Data System (ADS)

    Hubert, Antoine; Farasin, Julien; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2017-04-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as a quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. To quantify bacterial activity we use Fluorescein Diacetate (FDA) hydrolysis by bacterial enzymes which transforms FDA into Fluorescein, whose local concentration is measured optically. We thus measure bacterial activity locally from the time derivative of the measured fluorescence. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  15. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    NASA Astrophysics Data System (ADS)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic resistances were tested, again to accommodate a large range of potential drainage flows rates. The experiment was continued until the Sorbicell's capacity was exhausted, which gave experimentation times from 6 to 34 days, while continuously changing the drainage flow rate to simulate field drainage conditions, and to test the range of the Flowcap. The laboratory testing yielded a very good linear correlation between drainage flow rates and Sorbicell sampling rates, giving r = 0.99 for both the Q25 and the Q256 Flowcap. The Sorbicells in this experiment were designed to measure NO3, but the Flowcap can be used with any Sorbicell and thus be used to measure any compound of interest. The Flowcap does not need housing, electricity, or maintenance and continuously register drainage volumes and contaminant loads for periods up to one month. This, in addition to the low cost of the monitoring system, enables large-scale monitoring of contaminant loads via tube drains, giving valuable data for the improvement of contaminant transport models. Further, these data will help select and evaluate the different mitigation option to improve water quality.

  16. Prediction uncertainty and data worth assessment for groundwater transport times in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Zell, Wesley O.; Culver, Teresa B.; Sanford, Ward E.

    2018-06-01

    Uncertainties about the age of base-flow discharge can have serious implications for the management of degraded environmental systems where subsurface pathways, and the ongoing release of pollutants that accumulated in the subsurface during past decades, dominate the water quality signal. Numerical groundwater models may be used to estimate groundwater return times and base-flow ages and thus predict the time required for stakeholders to see the results of improved agricultural management practices. However, the uncertainty inherent in the relationship between (i) the observations of atmospherically-derived tracers that are required to calibrate such models and (ii) the predictions of system age that the observations inform have not been investigated. For example, few if any studies have assessed the uncertainty of numerically-simulated system ages or evaluated the uncertainty reductions that may result from the expense of collecting additional subsurface tracer data. In this study we combine numerical flow and transport modeling of atmospherically-derived tracers with prediction uncertainty methods to accomplish four objectives. First, we show the relative importance of head, discharge, and tracer information for characterizing response times in a uniquely data rich catchment that includes 266 age-tracer measurements (SF6, CFCs, and 3H) in addition to long term monitoring of water levels and stream discharge. Second, we calculate uncertainty intervals for model-simulated base-flow ages using both linear and non-linear methods, and find that the prediction sensitivity vector used by linear first-order second-moment methods results in much larger uncertainties than non-linear Monte Carlo methods operating on the same parameter uncertainty. Third, by combining prediction uncertainty analysis with multiple models of the system, we show that data-worth calculations and monitoring network design are sensitive to variations in the amount of water leaving the system via stream discharge and irrigation withdrawals. Finally, we demonstrate a novel model-averaged computation of potential data worth that can account for these uncertainties in model structure.

  17. Design and monitoring of horizontal subsurface-flow constructed wetlands for treating nursery leachates.

    PubMed

    Narváez, Lola; Cunill, Conrad; Cáceres, Rafaela; Marfà, Oriol

    2011-06-01

    Nursery leachates usually contain high concentrations of nitrates, phosphorus and potassium, so discharging them into the environment often causes pollution. Single-stage or two-stage horizontal subsurface flow constructed wetlands (HSSCW) filled with different substrates were designed to evaluate the effect and evolution over time of the removal of nitrogen and other nutrients contained in nursery leachates. The addition of sodium acetate to achieve a C:NO(3)(-)-N ratio of 3:1 was sufficient to reach complete denitrification in all HSSCW. The removal rate of nitrate was high throughout the operation period (over 98%). Nevertheless, the removal rate of ammonium decreased about halfway through the operation. Removal of the COD was enhanced by the use of two-stage HSSCW. In general, the substrates and the number of stages of the wetlands did not affect the removal of nitrogen, total phosphorus and potassium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    PubMed

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field.

    PubMed

    Hwang, Yong Keun; Endres, Anthony L; Piggott, Scott D; Parker, Beth L

    2008-04-04

    An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing in those layers. The long-term monitoring results demonstrated that GPR profiling is a promising non-invasive method for use at DNAPL contaminated sites in sandy aquifers where temporal information about immiscible contaminant mass depletion due to either natural flow or remediation is needed. However, our results also indicated that the GPR signature of older DNAPL impacted zones may not differ greatly from the uncontaminated background if significant mass reduction due to dissolution has occurred.

  20. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  1. Stratigraphic and structural characterization of the OU-1 area at the former George Air Force Base, Adelanto, Southern California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.

    2001-01-01

    The former George Air Force Base (GAFB), now known as the Southern California Logistics Airport (SCLA), is located in the town of Adelanto, approximately 100 km northeast of Los Angeles, California (Fig. 1). In this report, we present acquisition parameters, data, and interpretations of seismic images that were acquired in the OU-1 area of GAFB during July 1999 (Fig. 2). GAFB is scheduled for conversion to civilian use, however, during its years as an Air Force base, trichlorethylene (TCE) was apparently introduced into the subsurface as a result of spills during normal aircraft maintenance operations. To comply with congressional directives, TCE contaminant removal has been ongoing since the early-tomid 1990s. However, only a small percentage of the TCE believed to have been introduced into the subsurface has been recovered, due largely to difficulty in locating the TCE within the subsurface. Because TCE migrates within the subsurface by ground water movement, attempts to locate the TCE contaminants in the subsurface have employed an array of ground-water monitoring and extraction wells. These wells primarily sample within a shallow-depth (~40 m) aquifer system. Cores obtained from the monitoring and extraction wells indicate that the aquifer, which is composed of sand and gravel channels, is bounded by aquitards composed largely of clay and other fine-grained sediments. Based on well logs, the aquifer is about 3 to 5 m thick along the seismic profiles. A more thorough understanding of the lateral variations in the depth and thickness of the aquifer system may be a key to finding and removing the remaining TCE. However, due to its complex depositional and tectonic history, the structural and stratigraphic sequences are not easily characterized. An indication of the complex nature of the structure and stratigraphy is the appreciable variation in stratigraphic sequences observed in some monitoring wells that are only a few tens of meters apart. To better characterize the shallow (upper 100 m) stratigraphy beneath GAFB, the US Environmental Protection Agency (USEPA) contracted the US Geological Survey (USGS) to acquire three seismic reflection/refraction profiles within an area known as Operational Unit #1 (OU-1). The principal objective of the seismic survey was to laterally characterize the subsurface with respect to structure and stratigraphy. In particular, we desired to (1) laterally “map” stratigraphic units (particularly aquifer layers) that were previously identified in monitoring wells within the OU-1 area and (2) identify structures, such as faults and folds, that affect the movement of ground water. Knowledge of lateral variations in stratigraphic units and structures that may affect those units is useful in constructing ground-water flow models, which aid in identifying possible TCE migration paths within the subsurface. Stratigraphic and structural characterization may also be useful in identifying surface locations and target depths for future wells (Catchings et al., 1996). Proper siting of wells is important because a welldefined aquifer is apparently not present in all locations at GAFB, as indicated by lithologic logs from existing wells (Montgomery Watson, 1995). Proper depth placement of monitoring and extraction wells is important because wells that are too shallow will not sample within the aquifer, and wells that are too deep risk puncturing the aquitard and allowing contaminants to flow to deeper levels.

  2. Dynamic coupling of subsurface and seepage flows solved within a regularized partition formulation

    NASA Astrophysics Data System (ADS)

    Marçais, J.; de Dreuzy, J.-R.; Erhel, J.

    2017-11-01

    Hillslope response to precipitations is characterized by sharp transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Locally, the transition between these two regimes is triggered by soil saturation. Here we develop an integrative approach to simultaneously solve the subsurface flow, locate the potential fully saturated areas and deduce the generated saturation excess overland flow. This approach combines the different dynamics and transitions in a single partition formulation using discontinuous functions. We propose to regularize the system of partial differential equations and to use classic spatial and temporal discretization schemes. We illustrate our methodology on the 1D hillslope storage Boussinesq equations (Troch et al., 2003). We first validate the numerical scheme on previous numerical experiments without saturation excess overland flow. Then we apply our model to a test case with dynamic transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Our results show that discretization respects mass balance both locally and globally, converges when the mesh or time step are refined. Moreover the regularization parameter can be taken small enough to ensure accuracy without suffering of numerical artefacts. Applied to some hundreds of realistic hillslope cases taken from Western side of France (Brittany), the developed method appears to be robust and efficient.

  3. Processus et bilan des flux hydriques d'un bassin versant de milieu tropical de socle au Bénin (Donga, haut Ouémé)

    NASA Astrophysics Data System (ADS)

    Kamagaté, Bamory; Séguis, Luc; Favreau, Guillaume; Seidel, Jean-Luc; Descloitres, Marc; Affaton, Pascal

    2007-05-01

    Hydrodynamic, geochemical, and subsurface geophysical investigations, for two consecutive years with contrasting rainfall conditions, were used to characterize the hydrological processes occurring, and the water balance of a 586-km 2 watershed in Benin (Africa). The water table's monitoring shows that recharge occurs by direct infiltration of rainfall, and represents between 5 to 24% of the annual rainfall. Both surface water outflow, limited to the rainy season, and water chemistry indicate a weak groundwater contribution to river discharge. This implies that the calculated variations in annual runoff coefficients (of 14 and 28%) are mainly governed by surface and subsurface flows.

  4. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Treesearch

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  5. Downhole Measurements of Electrokinetic Potential to Monitor Flow in Oilfields

    NASA Astrophysics Data System (ADS)

    Saunders, J.; Jackson, M.; Pain, C.; Addiego-Guevara, E.

    2005-12-01

    Oil companies currently produce an average of three barrels of water for each barrel of oil, which is expensive and environmentally unfriendly: the produced water is contaminated and must be treated and disposed of carefully. Ideally, water production would be prevented or minimised by monitoring its movement within the reservoir and responding appropriately. We suggest that measurements of electrokinetic (or ' streaming') potential during oil production, using permanently installed downhole electrodes, could be used to monitor water encroachment towards a well before water breakthrough occurs. Electrokinetic potentials are generated when fluids flow through rock, and although they are increasingly being used in other areas of earth science to monitor subsurface flows, there has been little investigation of their utility in hydrocarbon reservoirs. We have used a new numerical model to simulate the electrokinetic potential measured at a well during oil production, with reservoir pressure maintained by water injection or aquifer influx. Our results suggest that encroaching water causes changes in the electrokinetic potential at the well which could be resolved above background electrical noise; indeed, water approaching the well could be monitored several 10s to 100s of metres away. Our results differ from those obtained previously, because we include the results of recent laboratory experiments which provide new insight into the nature of the coupling between fluid and electrokinetic potentials as the oil saturation changes. Moreover, we investigate a range of production rates which are more appropriate for modern offshore developments, and simulate the potential measured at electrodes installed at the producing well rather than at a nearby monitoring well or at the surface. Electrodes mounted downhole on insulated casing have been successfully applied in subsurface resistivity surveys during oil production, and similar technology could be used to measure electrokinetic potential. If the producing well is equipped with downhole inflow control valves (so called ' intelligent' well technology), then oil production can be significantly enhanced if encroaching water is detected before it arrives and flow into the wellbore properly controlled. These findings raise the prospect of an oil field in which the wells can monitor the approach of water and respond appropriately. Such wells offer enormous potential economic and environmental benefits, particularly in fields which are difficult to access or dangerous to operate.

  6. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    PubMed

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.

  7. Analysis of tests of subsurface injection, storage, and recovery of freshwater in the lower Floridan aquifer, Okeechobee County, Florida

    USGS Publications Warehouse

    Quinones-Aponte, Vicente; Kotun, Kevin; Whitley, J.F.

    1996-01-01

    A series of freshwater subsurface injection, storage, and recovery tests were conducted at an injection-well site near Lake Okeechobee in Okeechobee County, Florida, to assess the recoverability of injected canal water from the Lower Floridan aquifer. At the study site, the Lower Floridan aquifer is characterized as having four local, relatively independent, high-permeability flow zones (389 to 398 meters, 419 to 424 meters, 456 to 462 meters, and 472 to 476 meters below sea level). Four subsurface injection, storage, and recovery cycles were performed at the Lake Okeechobee injection-well site in which volumes of water injected ranged from about 387,275 to 1,343,675 cubic meters for all the cycles, and volumes of water recovered ranged from about 106,200 to 484,400 cubic meters for cycles 1, 2, and 3. The recovery efficiency for successive cycles 2 and 3 increased from 22 to 36 percent and is expected to continue increasing with additional cycles. A comparison of chloride concentration breakthrough curves at the deep monitor well (located about 171 meters from the injection well) for cycles 1, 4, and test no. 4 (from a previous study) revealed unexpected finings. One significant result was that the concentration asymptote, expected to be reached at concentration levels equivalent or close to the injected water concentration, was instead reached at higher concentration levels. The injection to recovery rate ratio might affect the chloride concentration breakthrough curve at the deep monitor well, which could explain this unexpected behavior. Because there are four high-permeability zones, if the rate of injection is smaller than the rate of recovery (natural artesian flow), the head differential might not be transmitted through the entire open wellbore, and injected water would probably flow only through the upper high- permeability zones. Therefore, observed chloride concentration values at the deep monitor well would be higher than the concentration of the injected water and would represent a mix of water from the different high-permeability zones. A generalized digital model was constructed to simulate the subsurface injection, storage, and recovery of freshwater in the Lower Floridan aquifer at the Lake Okeechobee injection-well site. The model was constructed using a modified version of the Saturated-Unsaturated TRAnsport code (SUTRA), which simulates variable-density advective-dispersive solute transport and variable-density ground-water flow. Satisfactory comparisons of simulated to observed dimensionless chloride concentrations for the deep monitor well were obtained when using the model during the injection and recovery phases of cycle 1, but not for the injection well during the recovery phase of cycle 1 even after several attempts. This precluded the determination of the recovery efficiency values by using the model. The unsatisfactory comparisons of simulated to observed dimensionless chloride concentrations for the injection well and failure of the model to represent the field data at this well could be due to the characteristics of the Lower Floridan aquifer (at the local scale), which is cavernous or conduit in nature. To test this possibility, Reynolds numbers were estimated at varying distances from the injection well, taking into consideration two aquifer types or conceptual systems, porous media and cavernous. For the porous media conceptual system, the Reynolds numbers were greater than 10 at distances less than 1.42 meters from the injection well. Thus, application of Darcy's law to ground-water flow might not be valid at this distance. However, at the deep monitor well (171 meters from the injection well), the Reynolds number was 0.08 which is indicative of laminar porous media flow. For the cavernous conceptual system, the Reynolds numbers were greater than 2,000 at distances less than 1,000 meters from the well. This number represents the upper limit of laminar flow, which is the fundamental assumption

  8. The role of the hyporheic flow on sediment transport processes : an experimental approach using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe

    2017-04-01

    The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.

  9. Nutrient transport through a Vegetative Filter Strip with subsurface drainage.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta Kumar; Patel, Mita Kanu

    2009-04-01

    The transport of nutrients and soil sediments in runoff has been recognized as a noteworthy environmental issue. Vegetative Filter Strips (VFS) have been used as one of the best management practices (BMPs) for retaining nutrients and sediments from surface runoff, thus preventing the pollutants from reaching receiving waters. However, the effectiveness of a VFS when combined with a subsurface drainage system has not been investigated previously. This study was undertaken to monitor the retention and transport of nutrients within a VFS that had a subsurface drainage system installed at a depth of 1.2 m below the soil surface. Nutrient concentrations of NO(3)-N (Nitrate Nitrogen), PO(-)(4) (Orthophosphorus), and TP (Total Phosphorus) were measured in surface water samples (entering and leaving the VFS), and subsurface outflow. Soil samples were collected and analyzed for plant available Phosphorus (Bray P1) and NO(3)-N concentrations. Results showed that PO(-)(4), NO(3)-N, and TP concentrations decreased in surface flow through the VFS. Many surface outflow water samples from the VFS showed concentration reductions of as much as 75% for PO(-)(4) and 70% for TP. For subsurface outflow water samples through the drainage system, concentrations of PO(-)(4) and TP decreased but NO(3)-N concentrations increased in comparison to concentrations in surface inflow samples. Soil samples that were collected from various depths in the VFS showed a minimal buildup of nutrients in the top soil profile but indicated a gradual buildup of nutrients at the depth of the subsurface drain. Results demonstrate that although a VFS can be very effective in reducing runoff and nutrients from surface flow, the presence of a subsurface drain underneath the VFS may not be environmentally beneficial. Such a combination may increase NO(3)-N transport from the VFS, thus invalidating the purpose of the BMP.

  10. A water-quality monitoring network for Vallecitos Valley, Alameda County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1980-01-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. In Vallecitos Valley, the Livermore Gravel and the overlying alluvium constitute the ground-water reservoir. There is no subsurface inflow from adjacent ground-water basins. Ground-water flow in the Vallecitos subbasin is toward the southwest.The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring.

  11. Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Hubbard, S. S.; Peterson, J.; Blom, K.; Black, W.; Delaney, C.; Mendoza, J.

    2014-12-01

    An evaluation is underway at the Goat Rock State Park, located at the mouth of the Russian River near Jenner, CA, to quantify the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. We are monitoring seepage through the jetty and beach berm with multiple surface and borehole geophysical methods, including: electrical resistivity (ERT), seismic refraction (SR), ground penetrating radar (GPR), and electromagnetic methods (EM). We use SR data to characterize deeper bedrock controls on beach barrier functioning; ERT and EM methods to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure; time-lapse ERT and EM data to monitor moisture changes and mixing of saline and fresh water within the beach berm, and borehole ERT and GPR data to delineate the geometry of the (often buried) jetty. Preliminary ERT and EM results indicate two preferential flow paths through zones of missing jetty structure, while time-lapse borehole ERT data is expected to image saltwater flow impedance in zones of intact jetty structure. All data are being integrated with topography, tidal, borehole, and hydrological information and the results of the assessment will enable the Sonoma County Water Agency to develop the feasibility of alternatives to the existing jetty that may help achieve target estuarine water surface elevations.

  12. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.

  13. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  14. Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels

    2016-04-01

    Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems in Engineering. Springer. Weill, S., Mouche, E., and Patin, J. (2009). A generalized Richards equation for surface/subsurface flow modelling. Journal of Hydrology, 366:9-20.

  15. Discharge-nitrate data clustering for characterizing surface-subsurface flow interaction and calibration of a hydrologic model

    NASA Astrophysics Data System (ADS)

    Shrestha, R. R.; Rode, M.

    2008-12-01

    Concentration of reactive chemicals has different chemical signatures in baseflow and surface runoff. Previous studies on nitrate export from a catchment indicate that the transport processes are driven by subsurface flow. Therefore nitrate signature can be used for understanding the event and pre-event contributions to streamflow and surface-subsurface flow interactions. The study uses flow and nitrate concentration time series data for understanding the relationship between these two variables. Unsupervised artificial neural network based learning method called self organizing map is used for the identification of clusters in the datasets. Based on the cluster results, five different pattern in the datasets are identified which correspond to (i) baseflow, (ii) subsurface flow increase, (iii) surface runoff increase, (iv) surface runoff recession, and (v) subsurface flow decrease regions. The cluster results in combination with a hydrologic model are used for discharge separation. For this purpose, a multi-objective optimization tool NSGA-II is used, where violation of cluster results is used as one of the objective functions. The results show that the use of cluster results as supplementary information for the calibration of a hydrologic model gives a plausible simulation of subsurface flow as well total runoff at the catchment outlet. The study is undertaken using data from the Weida catchment in the North-Eastern Germany, which is a sub-catchment of the Weisse Elster river in the Elbe river basin.

  16. The State of Stress Beyond the Borehole

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Coblentz, D. D.; Maceira, M.; Delorey, A. A.; Guyer, R. A.

    2015-12-01

    The state of stress controls all in-situ reservoir activities and yet we lack the quantitative means to measure it. This problem is important in light of the fact that the subsurface provides more than 80 percent of the energy used in the United States and serves as a reservoir for geological carbon sequestration, used fuel disposition, and nuclear waste storage. Adaptive control of subsurface fractures and fluid flow is a crosscutting challenge being addressed by the new Department of Energy SubTER Initiative that has the potential to transform subsurface energy production and waste storage strategies. Our methodology to address the above mentioned matter is based on a novel Advance Multi-Physics Tomographic (AMT) approach for determining the state of stress, thereby facilitating our ability to monitor and control subsurface geomechanical processes. We developed the AMT algorithm for deriving state-of-stress from integrated density and seismic velocity models and demonstrate the feasibility by applying the AMT approach to synthetic data sets to assess accuracy and resolution of the method as a function of the quality and type of geophysical data. With this method we can produce regional- to basin-scale maps of the background state of stress and identify regions where stresses are changing. Our approach is based on our major advances in the joint inversion of gravity and seismic data to obtain the elastic properties for the subsurface; and coupling afterwards the output from this joint-inversion with theoretical model such that strain (and subsequently) stress can be computed. Ultimately we will obtain the differential state of stress over time to identify and monitor critically stressed faults and evolving regions within the reservoir, and relate them to anthropogenic activities such as fluid/gas injection.

  17. Form and function in hillslope hydrology: characterization of subsurface flow based on response observations

    NASA Astrophysics Data System (ADS)

    Angermann, Lisa; Jackisch, Conrad; Allroggen, Niklas; Sprenger, Matthias; Zehe, Erwin; Tronicke, Jens; Weiler, Markus; Blume, Theresa

    2017-07-01

    The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al.(2017).

  18. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  19. Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lesack, Lance F. W.

    1993-03-01

    The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.

  20. 3D time-lapse Electrical Resistivity Tomography (ERT) to monitor subsurface flow processes during a sprinkling and injection experiment on a mountain slope

    NASA Astrophysics Data System (ADS)

    Inauen, C.; Green, A.; Rabenstein, L.; Greenhalgh, S.; Kinzelbach, W.; Doetsch, J.; Hertrich, M.; Smoorenburg, M.; Volze, N.

    2012-04-01

    Understanding the relationships between precipitation volumes, surface runoff and subsurface storage, drainage and flow processes on mountain slopes is critical for flood management in alpine regions. In the Schächen catchment (central Switzerland) an unexpectedly delayed and heavy flood reaction to a long duration rainfall event was observed in 2005. It is believed that the steep creeping landmass slopes with thick soils were responsible for the delay. To better comprehend and visualise water infiltration and runoff formation we conducted a 3D time-lapse ERT experiment during a water sprinkling and injection experiment on the side of a hill in the Schächental region presumed representative of soil and other conditions associated with the delayed flood. Constant sprinkling at a rate of about 10mm/h was applied to a plot of area 30m x 5m. The electrical conductivity of the sprinkled water was approximately that of the pore water (25mS/m). A total of 33 consecutive ERT data sets, each comprising 3521 measured electrode configurations, were recorded with a 96-electrode array over an area of 27.5m x 14m, which included two thirds of the sprinkled area. Each electrode configuration was measured at a repeat interval of 2 to 2.8 hours. The entire 3D ERT monitoring experiment was divided into two separate time intervals: (1) the initial 25 hour period involving only freshwater sprinkling, until steady state was reached, (2) the following 35 hour period during which, in addition to the sprinkling, salt water was injected in two boreholes at a depth of 1m (unsaturated zone). The salt water injections were separated by 17 hours, and monitored until 14 hours after sprinkling stopped. During the first interval all changes in the subsurface resistivity are caused by changes in the water saturation and the temperature of the fluid, whereas in the second interval they are mainly due to changes in salt concentration of the pore fluid. Supplementary measurements of water table elevation and fluid electric conductivity were made in several boreholes. To image the subsurface resistivity changes, we inverted the ratios of time-lapse resistances to their background (pre-sprinkling) values. The sprinkling during time interval 1 allowed us to examine near-surface infiltration. Even from the first time window, the emergence of a shallow wetting front could be observed in the inverted depth sections as a decrease in bulk resistivity. Both salt water plumes during interval 2 were found to move laterally as well as vertically through the soil into a zone of fissured Flysch. Below the water table, the plume could be tracked further as a weaker ERT signal, which shows a flow component parallel to the water table in the downslope direction where it eventually breaks the surface. 3D ERT monitoring has proven to be a powerful tool to monitor water sprinkling and injection experiments. Due to its advantageous ability to resolve changes, both in time and in space, it captured most of the soil moisture and flow dynamics. Processes, such as infiltration and drainage, which are important for the understanding of runoff formation, could be readily visualized.

  1. Coupled three-layer model for turbulent flow over large-scale roughness: On the hydrodynamics of boulder-bed streams

    NASA Astrophysics Data System (ADS)

    Pan, Wen-hao; Liu, Shi-he; Huang, Li

    2018-02-01

    This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.

  2. Subsurface temperature distribution in a tropical alluvial fan

    NASA Astrophysics Data System (ADS)

    Chen, Wenfu; Chang, Minhsiang; Chen, Juier; Lu, Wanchung; Huang, Chihc; Wang, Yunshuen

    2017-04-01

    As a groundwater intensive use country, Taiwan's 1/3 water supplies are derived from groundwater. The major aquifers consist of sand and gravel formed in alluvial fans which border the fronts of central mountains. Thanks to high density of monitoring wells which provide a window to see the details of the subsurface temperature distribution and the thermal regime in an alluvial fan system. Our study area, the Choshui Alluvial Fan, is the largest groundwater basin in Taiwan and, located within an area of 2,000 km2, has a population of over 1.5 million. For this work, we investigated temperature-depth profiles using 70 groundwater monitoring wells during 2000 to 2015. Our results show that the distribution of subsurface temperature is influenced by various factors such as groundwater recharge, groundwater flow field, air temperature and land use. The groundwater recharge zone, hills to the upper fan, contains disturbed and smaller geothermal gradients. The lack of clay layers within the upper fan aquifers and fractures that developed in the hills should cause the convection and mixing of cooler recharge water to groundwater, resulting in smaller geothermal gradients. The groundwater temperatures at a depth to 300 m within the upper fan and hill were approximately only 23-24 °C while the current mean ground surface temperature is approximately 26 °C.

  3. Landslide monitoring and early warning systems in Lower Austria - current situation and new developments

    NASA Astrophysics Data System (ADS)

    Thiebes, Benni; Glade, Thomas; Schweigl, Joachim; Jäger, Stefan; Canli, Ekrem

    2014-05-01

    Landslides represent significant hazards in the mountainous areas of Austria. The Regional Geological Surveys are responsible to inform and protect the population, and to mitigate damage to infrastructure. Efforts of the Regional Geological Survey of Lower Austria include detailed site investigations, the planning and installation of protective structures (e.g. rock fall nets) as well as preventive measures such as regional scale landslide susceptibility assessments. For potentially endangered areas, where protection works are not feasible or would simply be too costly, monitoring systems have been installed. However, these systems are dominantly not automatic and require regular field visits to take measurements. Therefore, it is difficult to establish any relation between initiating and controlling factors, thus to fully understand the underlying process mechanism which is essential for any early warning system. Consequently, the implementation of new state-of-the-art monitoring and early warning systems has been started. In this presentation, the design of four landslide monitoring and early warning systems is introduced. The investigated landslide process types include a deep-seated landslide, a rock fall site, a complex earth flow, and a debris flow catchment. The monitoring equipment was chosen depending on the landslide processes and their activity. It aims to allow for a detailed investigation of process mechanisms in relation to its triggers and for reliable prediction of future landslide activities. The deep-seated landslide will be investigated by manual and automatic inclinometers to get detailed insights into subsurface displacements. In addition, TDR sensors and a weather station will be employed to get a better understanding on the influence of rainfall on sub-surface hydrology. For the rockfall site, a wireless sensor network will be installed to get real-time information on acceleration and inclination of potentially unstable blocks. The movement of the earth flow site will be monitored by differential GPS to get high precision information on displacements of marked points. Photogrammtetry based on octocopter surveys will provide spatial information on movement patterns. A similar approach will be followed for the debris flow catchment. Here, the focus lies on a monitoring of the landslide failures in the source area which prepares the material for subsequent debris flow transport. In addition to the methods already mentioned, repeated terrestrial laserscanning campaigns will be used to monitor geomorphological changes at all sites. All important data, which can be single measurements, episodic or continuous monitoring data for a given point (e.g. rainfall, inclination) or of spatial character (e.g. LiDAR measurements), are collected and analysed on an external server. Automatic data analysis methods, such as progressive failure analysis, are carried out automatically based on field measurements. The data and results from all monitoring sites are visualised on a web-based platform which enables registered users to analyse the respective information in near-real-time. Moreover, thresholds can be determined which trigger automated warning messages to the involved scientists if thresholds are exceeded by field measurements. The described system will enable scientists and decision-makers to access the latest data from the monitoring systems. Automatic alarms are raised when thresholds are exceeded to inform them about potentially hazardous changes. Thereby, a more efficient hazard management and early warning can be achieved. Keywords: landslide, rockfall, debris flow, earth flow, monitoring, early warning system.

  4. Removal of microbial pathogens in a sandy gravel aquifer under forced-gradient subsurface flow conditions

    NASA Astrophysics Data System (ADS)

    Oudega, Thomas James; Derx, Julia; van Driezum, Inge; Cisneros, Anibal; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas; Blaschke, Alfred Paul

    2017-04-01

    Subsurface media are being used around the world as a means to mitigate microbial contamination, but vary widely in their ability to remove pathogens. To help to provide accurate risk assessments of microbial contamination of groundwaters, and establish safe setback distances between receiving waters and disposal fields, this study aims to use aquifer tracer tests to evaluate the ability of subsurface media to attenuate these pathogens. The novelty of this work is the use of a variety of different tracer substances (e.g. phages, spores, microspheres, conservative tracers) together in field experiments. This will be done by means of injecting these substances under a forced gradient in a sandy gravel aquifer in Lobau, Austria. The extraction of the tracers will be monitored in a pumping well at a distrance of 50m downgradient. This will be able to provide us with insight to the characteristics of microbial transport and how the microorganisms react to the subsurface in the study site. Subsequent numerical modelling of the experiments can tell us more about quantification of subsurface processes such as attachment/detachment, inactivation and die-off of these substances. The first field experiment with conservative tracers (NaCl) has been carried out in December 2016, and subsequent tests are being planned for the next months.

  5. Impacts of ditch blocking on peatland hydrology - the benefits of long-term monitoring

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Green, Sophie; Baird, Andy; Chapman, Pippa; Evans, Chris; Grayson, Richard

    2016-04-01

    A long-term field trial was conducted on a blanket peatland in North Wales. Twelve ditches were studied. After an initial monitoring period, eight of the ditches had peat dams installed a few metres apart along their entire length (dammed), four of these ditches were also partially infilled through bank reprofiling (reprofiled). Four ditches were left open with no dams or reprofiling (open). These 12 ditches and the surrounding peat were then monitored for a further 4 years. The effect of ditch blocking on local water tables was spatially highly variable but small overall (of the order of 2-3 cm) because the site, despite having ditches, already had relatively shallow water tables (medians within the upper 10 cm of the peat profile). An initial five-fold reduction in discharge occurred in ditches that had been dammed or reprofiled. However, there was evidence of a slow change over time in ditch flow at the site in subsequent years, with the overall volume of water leaving the dammed or reprofiled ditch weirs increasing per unit of rainfall to around twice that which occurred in the first year after the restoration. These changes were not observed in the open ditches. There was therefore clear evidence of the benefits of long-term monitoring as hydrological impacts in the first year after ditch blocking were very different from those in later years as the site conditions gradually changed. The additional water that flowed in later periods of the study from the blocked ditch catchments occurred in the form of a more continuously-flowing baseflow with fewer dry periods. The cause of this increase was related to changes in subsurface flow pathways in the peat in the aftermath of re-wetting. We show that these subsurface pathways mean that even in sloping blanket peatlands, the catchment areas for peatland ditches may be very different from that expressed by surface topography alone. Therefore, peatland studies that have estimated aerially-weighted water or carbon fluxes from one or two open or blocked ditches and where such data have also been used in upscaling estimates, need to be treated with caution.

  6. Subsurface conditions in hydrothermal vents inferred from diffuse flow composition, and models of reaction and transport

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.

    2015-08-01

    Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.

  7. Challenging dyke ascent models using novel laboratory experiments: Implications for reinterpreting evidence of magma ascent and volcanism

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine L.; Burns, Alec J.; Hilmi Hazim, Suraya; Wood, Elliot P.; Martin, Simon A.; Hignett, Sam; Dennis, David J. C.

    2018-04-01

    Volcanic eruptions are fed by plumbing systems that transport magma from its source to the surface, mostly fed by dykes. Here we present laboratory experiments that model dyke ascent to eruption using a tank filled with a crust analogue (gelatine, which is transparent and elastic) that is injected from below by a magma analogue (dyed water). This novel experimental setup allows, for the first time, the simultaneous measurement of fluid flow, sub-surface and surface deformation during dyke ascent. During injection, a penny-shaped fluid-filled crack is formed, intrudes, and traverses the gelatine slab vertically to then erupt at the surface. Polarised light shows the internal stress evolution as the dyke ascends, and an overhead laser scanner measures the surface elevation change in the lead-up to dyke eruption. Fluorescent passive-tracer particles that are illuminated by a laser sheet are monitored, and the intruding fluid's flow dynamics and gelatine's sub-surface strain evolution is measured using particle image velocimetry and digital image correlation, respectively. We identify 4 previously undescribed stages of dyke ascent. Stage 1, early dyke growth: the initial dyke grows from the source, and two fluid jets circulate as the penny-shaped crack is formed. Stage 2, pseudo-steady dyke growth: characterised by the development of a rapidly uprising, central, single pseudo-steady fluid jet, as the dyke grows equally in length and width, and the fluid down-wells at the dyke margin. Sub-surface host strain is localised at the head region and the tail of the dyke is largely static. Stage 3, pre-eruption unsteady dyke growth: an instability in the fluid flow appears as the central fluid jet meanders, the dyke tip accelerates towards the surface and the tail thins. Surface deformation is only detected in the immediate lead-up to eruption and is characterised by an overall topographic increase, with axis-symmetric topographic highs developed above the dyke tip. Stage 4 is the onset of eruption, when fluid flow is projected outwards and focused towards the erupting fissure as the dyke closes. A simultaneous and abrupt decrease in sub-surface strain occurs as the fluid pressure is released. Our results provide a comprehensive physical framework upon which to interpret evidence of dyke ascent in nature, and suggest dyke ascent models need to be re-evaluated to account for coupled intrusive and extrusive processes and improve the recognition of monitoring signals that lead to volcanic eruptions in nature.

  8. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

    1990-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

  9. 2015 Groundwater Monitoring Report Project Shoal Area: Subsurface Correction Unit 447

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Findlay, Rick

    The Project Shoal Area in Nevada was the site of a 12-kiloton-yield underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. The corrective action strategy is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwatermore » flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. Although water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized to the agreement of both the U.S. Department of Energy Office of Legacy Management and the Nevada Division of Environmental Protection.« less

  10. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical cumulative probability functions (beta distribution) were obtained for all soils, all source types, and flow rates. Further, same distributions were obtained for the infiltration and redistribution processes. This attractive result demonstrates the competence and advantage of the moment analysis method.

  11. The hydrological response of a small catchment after the abandonment of terrace cultivation. A study case in northwestern Spain

    NASA Astrophysics Data System (ADS)

    Llorente-Adán, Jose A.; Lana-Renault, Noemí; Galilea, Ianire; Ruiz-Flaño, Purificacion

    2015-04-01

    Terrace construction for cultivation results in a complete transformation of the hillslopes to a series of flat sectors and almost vertical steps. This strategy, which involves a redistribution of soils and a re-organization of the drainage network, provides fertile soil over steep slopes, improves infiltration and controls overland flow under conditions of intense rainstorms. In Camero Viejo (north-western Iberian ranges) most of the hillslopes are occupied by terraced fields. During the XXth century, rural population declined and agricultural practices were abandoned. In this area, a small catchment (1.9 km2) was monitored in 2012 for studying how the abandonment of agricultural terraces affect water and sediment transfer from the hillslopes to the channels. Terraces occupy 40% of the catchment and are covered by sparse grass and shrubs. The equipment installed in the catchment registers continuously meteorological data, discharge and water table fluctuations. Data on suspended sediment transport is obtained by means of a rising-stage sampler. Here we present the hydrological results corresponding to the years 2012-13 and 2013-14. The hydrological response of the catchment was moderate (annual runoff coefficient < 0.20), which could be in part explained by the high evapotranspiration rates reported in the area. Lows flows were recorded in summer and autumn, when the water reserves of the catchment were dry, and high flows occurred from January, when the catchment became wetter. The shape of the hydrographs, with slow response times, moderate peakflows and long recession limbs suggested a large contribution of subsurface flow, probably favored by deep and well structured soils in the bench terraces. Soil saturation areas were not observed during the study period, suggesting that soil infiltration processes and subsurface flow are important, and that the drainage system of the terraces is probably well maintained. No suspended sediment has been collected so far, confirming the hypothesis that subsurface flow might be a dominant runoff generation process.

  12. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands

    Treesearch

    Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu

    2015-01-01

    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...

  13. Subsurface lateral preferential flow network revealed by time-lapse ground-penetrating radar in a hillslope

    NASA Astrophysics Data System (ADS)

    Guo, Li; Chen, Jin; Lin, Henry

    2014-12-01

    Subsurface lateral preferential flow (LPF) has been observed to contribute substantially to hillslope and catchment runoff. However, the complex nature of LPF and the lack of an appropriate investigation method have hindered direct LPF observation in the field. Thus, the initiation, persistence, and dynamics of LPF networks remain poorly understood. This study explored the application of time-lapse ground-penetrating radar (GPR) together with an artificial infiltration to shed light on the nature of LPF and its dynamics in a hillslope. Based on our enhanced field experimental setup and carefully refined GPR data postprocessing algorithms, we developed a new protocol to reconstruct LPF networks with centimeter resolution. This is the first time that a detailed LPF network and its dynamics have been revealed noninvasively along a hillslope. Real-time soil water monitoring and field soil investigation confirmed the locations of LPF mapped by time-lapse GPR surveys. Our results indicated the following: (1) Increased spatial variations of radar signals after infiltration suggested heterogeneous soil water changes within the studied soil, which reflected the generation and dynamics of LPF; (2) Two types of LPF networks were identified, the network at the location of soil permeability contrasts and that formed via a series of connected preferential flow paths; and (3) The formation and distribution of LPF networks were influenced by antecedent soil water condition. Overall, this study demonstrates clearly that carefully designed time-lapse GPR surveys with enhanced data postprocessing offer a practical and nondestructive way of mapping LPF networks in the field, thereby providing a potentially significant enhancement in our ability to study complex subsurface flow processes across the landscape.

  14. Effects of Heterogeneities, Sampling Frequencies, Tools and Methods on Uncertainties in Subsurface Contaminant Concentration Measurements

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.; McNab, W. W.

    2007-12-01

    Long-term monitoring (LTM) is particularly important for contaminants which are mitigated by natural processes of dilution, dispersion, and degradation. At many sites, LTM can require decades of expensive sampling at tens or even hundreds of existing monitoring wells, resulting in hundreds of thousands, or millions of dollars per year for sampling and data management. Therefore, contaminant sampling tools, methods and frequencies are chosen to minimize waste and data management costs while ensuring a reliable and informative time-history of contaminant measurement for regulatory compliance. The interplay play between cause (i.e. subsurface heterogeneities, sampling techniques, measurement frequencies) and effect (unreliable data and measurements gap) has been overlooked in many field applications which can lead to inconsistencies in time- histories of contaminant samples. In this study we address the relationship between cause and effect for different hydrogeological sampling settings: porous and fractured media. A numerical model has been developed using AMR-FEM to solve the physicochemical processes that take place in the aquifer and the monitoring well. In the latter, the flow is governed by the Navier-Stokes equations while in the former the flow is governed by the diffusivity equation; both are fully coupled to mimic stressed conditions and to assess the effect of dynamic sampling tool on the formation surrounding the monitoring well. First of all, different sampling tools (i.e., Easy Pump, Snapper Grab Sampler) were simulated in a monitoring well screened in different homogeneous layered aquifers to assess their effect on the sampling measurements. Secondly, in order to make the computer runs more CPU efficient the flow in the monitoring well was replaced by its counterpart flow in porous media with infinite permeability and the new model was used to simulate the effect of heterogeneities, sampling depth, sampling tool and sampling frequencies on the uncertainties in the concentration measurements. Finally, the models and results were abstracted using a simple mixed-tank approach to further simplify the models and make them more accessible to field hydrogeologists. During the abstraction process a novel method was developed for mapping streamlines in the fractures as well within the monitoring well to illustrate mixing and mixing zones. Applications will be demonstrated for both sampling in porous and fractured media. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  15. Lysimeter apparatus

    DOEpatents

    Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.; Hubbell, Joel M.; Sisson, James B.

    2005-09-06

    A suction lysimeter for sampling subsurface liquids includes a lysimeter casing having a drive portion, a reservoir portion, and a tip portion, the tip portion including a membrane through which subsurface liquids may be sampled; a fluid conduit coupled in fluid flowing relation relative to the membrane, and which in operation facilitates the delivery of the sampled subsurface liquids from the membrane to the reservoir portion; and a plurality of tubes coupled in fluid flowing relation relative to the reservoir portion, the tubes in operation facilitating delivery of the sampled subsurface liquids from the reservoir portion for testing. A method of sampling subsurface liquids comprises using this lysimeter.

  16. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, Charles R.; Hardee, Harry C.; Reynolds, Gerald D.; Steinfort, Terry D.

    1992-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

  17. Researchers Mine Information from Next-Generation Subsurface Flow Simulations

    DOE PAGES

    Gedenk, Eric D.

    2015-12-01

    A research team based at Virginia Tech University leveraged computing resources at the US Department of Energy's (DOE's) Oak Ridge National Laboratory to explore subsurface multiphase flow phenomena that can't be experimentally observed. Using the Cray XK7 Titan supercomputer at the Oak Ridge Leadership Computing Facility, the team took Micro-CT images of subsurface geologic systems and created two-phase flow simulations. The team's model development has implications for computational research pertaining to carbon sequestration, oil recovery, and contaminant transport.

  18. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    EPA Science Inventory

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  19. MODELING THREE-DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS (3DFATMIC)

    EPA Science Inventory

    A three-dimensional model simulating the subsurface flow, microbial growth and degradation, microbial-chemical reaction, and transport of microbes and chemicals has been developed. he model is designed to solve the coupled flow and transport equations. asically, the saturated-uns...

  20. Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California

    NASA Astrophysics Data System (ADS)

    Pritchard-Peterson, D.; Malama, B.

    2017-12-01

    We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.

  1. Lysimeter methods and apparatus

    DOEpatents

    Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.; Hubbell, Joel M.; Sisson, James B.

    2004-12-07

    A suction lysimeter for sampling subsurface liquids includes a lysimeter casing having a drive portion, a reservoir portion, and a tip portion, the tip portion including a membrane through which subsurface liquids may be sampled; a fluid conduit coupled in fluid flowing relation relative to the membrane, and which in operation facilitates the delivery of the sampled subsurface liquids from the membrane to the reservoir portion; and a plurality of tubes coupled in fluid flowing relation relative to the reservoir portion, the tubes in operation facilitating delivery of the sampled subsurface liquids from the reservoir portion for testing. A method of sampling subsurface liquids comprises using this lysimeter.

  2. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.

  3. Robust Representation of Integrated Surface-subsurface Hydrology at Watershed Scales

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Tang, G.; Collier, N.; Jan, A.; Karra, S.

    2015-12-01

    A representation of integrated surface-subsurface hydrology is the central component to process-rich watershed models that are emerging as alternatives to traditional reduced complexity models. These physically based systems are important for assessing potential impacts of climate change and human activities on groundwater-dependent ecosystems and water supply and quality. Integrated surface-subsurface models typically couple three-dimensional solutions for variably saturated flow in the subsurface with the kinematic- or diffusion-wave equation for surface flows. The computational scheme for coupling the surface and subsurface systems is key to the robustness, computational performance, and ease-of-implementation of the integrated system. A new, robust approach for coupling the subsurface and surface systems is developed from the assumption that the vertical gradient in head is negligible at the surface. This tight-coupling assumption allows the surface flow system to be incorporated directly into the subsurface system; effects of surface flow and surface water accumulation are represented as modifications to the subsurface flow and accumulation terms but are not triggered until the subsurface pressure reaches a threshold value corresponding to the appearance of water on the surface. The new approach has been implemented in the highly parallel PFLOTRAN (www.pflotran.org) code. Several synthetic examples and three-dimensional examples from the Walker Branch Watershed in Oak Ridge TN demonstrate the utility and robustness of the new approach using unstructured computational meshes. Representation of solute transport in the new approach is also discussed. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes.

  4. Seasonal GPR Signal Changes in Two Contrasting Soils in the Shale Hills Catchment

    NASA Astrophysics Data System (ADS)

    Lin, H.; Zhang, J.; Doolittle, J. A.

    2011-12-01

    Repeated GPR surveys in different seasons, combined with real-time soil water monitoring, provide a useful methodology to reveal subsurface hydrologic processes and their underlying mechanisms in different soils and hillslopes. This was demonstrated in the Shale Hills Critical Zone Observatory using two contrasting soils over several dry and wet seasons. Our results showed that 1) the radar reflection in the BC-C horizon interface in the deep Rushtown soil became clearer as soil became wetter, which was linked to lateral flow above this horizon interface that increased the contrast, and 2) the reflection in the soil-bedrock interface and the weathered-unweathered rock interface in the shallow Weikert soil become intermittent as soil became wetter, which was attributed to non-uniform distribution of water in bedrock fractures that created locally strong contrast, leading to point scatter of GPR reflection. This study shows the optimal time for using GPR to detect soil horizon interfaces, the value of nondestructive mapping of soil-rock moisture distribution patterns, and the possibility of identifying preferential flow pathways in the subsurface.

  5. Performance assessment of pilot horizontal sub-surface flow constructed wetlands for removal of diesel from wastewater by Scirpus grossus.

    PubMed

    Al-Baldawi, Israa Abdulwahab; Sheikh Abdullah, Siti Rozaimah; Anuar, Nurina; Suja, Fatihah; Idris, Mushrifah

    2013-01-01

    One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.

  6. Design, construction and performance of a horizontal subsurface flow wetland system in Australia.

    PubMed

    Bolton, Lise M W; Bolton, Keith G E

    2013-01-01

    Malabugilmah is a remote Aboriginal community located in Clarence Valley, Northern NSW, Australia. In 2006, seven horizontal subsurface flow wetland clusters consisting of 3 m × 2 m wetland cells in series were designed and constructed to treat septic tank effluent to a secondary level (Total Suspended Solids (TSS) < 30 mg/L and Biochemical Oxygen Demand (BOD5) <20 mg/L) and achieve >50% Total Nitrogen (TN) reduction, no net Total Phosphorus (TP) export and ≥99.9% Faecal Coliform (FC) reduction. The wetland cell configuration allowed the wetlands to be located on steeper terrain, enabling effluent to be treated to a secondary level without the use of pumps. In addition to the water quality targets, the wetlands were designed and constructed to satisfy environmental, economic and social needs of the community. The wetland systems were planted with a local Australian wetland tree species which has become well established. Two wetland clusters have been monitored over the last 4 years. The wetlands have demonstrated to be robust over time, providing a high level of secondary treatment over an extended period.

  7. Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements

    NASA Astrophysics Data System (ADS)

    Bakker, M.

    2017-12-01

    Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.

  8. Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Hubbard, S.; Delaney, C.; Seymour, D.; Blom, K.; Black, W.

    2013-12-01

    An evaluation is underway at the Goat Rock State Beach, which is located at the mouth of the Russian River near Jenner, CA. The study focuses on quantifying the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the potential major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding or enhancing subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. Results of the assessment will enable the Sonoma County Water Agency to understand how the jetty affects formation of the barrier beach and water surface elevations within the estuary. As one aspect of the evaluation, we are using geophysical methods to monitor seepage through the jetty as well as through the beach berm. We are using multiple surface geophysical methods, including: electrical resistivity, seismic refraction, ground penetrating radar, and electromagnetic methods. In general, seismic data are being used to characterize deeper bedrock controls on beach barrier functioning such as, channeling of estuarine water beneath the barrier beach. Electrical and electromagnetic methods are being used to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure. Time-lapse electrical and electromagnetic data are being used to monitor moisture changes and mixing of saline and fresh water within the beach berm. Ground penetrating radar data are being used to delineate the geometry of the (often buried) jetty. All data are being integrated with topography, tidal and hydrological information, and electrical conductivity and temperature data from monitoring wells. These results are expected to improve the overall understanding of the jetty's effects on beach permeability and will better improve the understanding of the jetty's influence on estuary habitats and flood risk.

  9. Three-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (3DFATMIC) Model

    EPA Pesticide Factsheets

    This model simulates subsurface flow, fate and transport of contaminants that are undergoing chemical or biological transformations. The model is applicable to transient conditions in both saturated and unsaturated zones.

  10. Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model

    EPA Pesticide Factsheets

    This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.

  11. Validation, Proof-of-Concept, and Postaudit of the Groundwater Flow and Transport Model of the Project Shoal Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed Hassan

    2004-09-01

    The groundwater flow and radionuclide transport model characterizing the Shoal underground nuclear test has been accepted by the State of Nevada Division of Environmental Protection. According to the Federal Facility Agreement and Consent Order (FFACO) between DOE and the State of Nevada, the next steps in the closure process for the site are then model validation (or postaudit), the proof-of-concept, and the long-term monitoring stage. This report addresses the development of the validation strategy for the Shoal model, needed for preparing the subsurface Corrective Action Decision Document-Corrective Action Plan and the development of the proof-of-concept tools needed during the five-yearmore » monitoring/validation period. The approach builds on a previous model, but is adapted and modified to the site-specific conditions and challenges of the Shoal site.« less

  12. Anatomy Of The ‘LuSi’ Mud Eruption, East Java

    NASA Astrophysics Data System (ADS)

    Tingay, M. R.

    2009-12-01

    Early in the morning of the 29th of May 2006, hot mud started erupting from the ground in the densely populated Porong District of Sidoarjo, East Java. With initial flow rates of ~5000 cubic meters per day, the mud quickly inundated neighbouring villages. Over two years later and the ‘Lusi’ eruption has increased in strength, expelling over 90 million cubic meters of mud at an average rate of approximately 100000 cubic meters per day. The mud flow has now covered over 700 hectares of land to depths of over 25 meters, engulfing a dozen villages and displacing approximately 40000 people. In addition to the inundated areas, other areas are also at risk from subsidence and distant eruptions of gas. However, efforts to stem the mud flow or monitor its evolution are hampered by our overall lack of knowledge and consensus on the subsurface anatomy of the Lusi mud volcanic system. In particular, the largest and most significant uncertainties are the source of the erupted water (shales versus deep carbonates), the fluid flow pathways (purely fractures versus mixed fracture and wellbore) and disputes over the subsurface geology (nature of deep carbonates, lithology of rocks between shale and carbonates). This study will present and overview of the anatomy of the Lusi mud volcanic system with particular emphasis on these critical uncertainties and their influence on the likely evolution of disaster.

  13. Treatment of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow.

    PubMed

    Meutia, A A

    2001-01-01

    Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.

  14. An Open Source Framework for Coupled Hydro-Hydrogeo-Chemical Systems in Catchment Research

    NASA Astrophysics Data System (ADS)

    Delfs, J.; Sachse, A.; Gayler, S.; Grathwohl, P.; He, W.; Jang, E.; Kalbacher, T.; Klein, C.; Kolditz, O.; Maier, U.; Priesack, E.; Rink, K.; Selle, B.; Shao, H.; Singh, A. K.; Streck, T.; Sun, Y.; Wang, W.; Walther, M.

    2013-12-01

    This poster presents an open-source framework designed to assist water scientists in the study of catchment hydraulic functions with associated chemical processes, e.g. contaminant degradation, plant nutrient turnover. The model successfully calculates the feedbacks between surface water, subsurface water and air in standard benchmarks. In specific model applications to heterogeneous catchments, subsurface water is driven by density variations and runs through double porous media. Software codes of water science are tightly coupled by iteration, namely the Storm Water Management Model (SWMM) for urban runoff, Expert-N for simulating water fluxes and nutrient turnover in agricultural and forested soils, and OpenGeoSys (OGS) for groundwater. The coupled model calculates flow of hydrostatic shallow water over the land surface with finite volume and difference methods. The flow equations for water in the porous subsurface are discretized in space with finite elements. Chemical components are transferred through 1D, 2D or 3D watershed representations with advection-dispersion solvers or, as an alternative, random walk particle tracking. A transport solver can be in sequence with a chemical solver, e.g. PHREEQ-C, BRNS, additionally. Besides coupled partial differential equations, the concept of hydrological response units is employed in simulations at regional scale with scarce data availability. In this case, a conceptual hydrological model, specifically the Jena Adaptable Modeling System (JAMS), passes groundwater recharge through a software interface into OGS, which solves the partial differential equations of groundwater flow. Most components of the modeling framework are open source and can be modified for individual purposes. Applications range from temperate climate regions in Germany (Ammer catchment and Hessian Ried) to arid regions in the Middle East (Oman and Dead See). Some of the presented examples originate from intensively monitored research sites of the WESS research centre and the monitoring initiative TERENO. Other examples originate from the IWAS project on integrated water resources management. The model applications are primarily concerned with groundwater resources, which are endangered by overexploitation, intrusion of saltwater, and nitrate loads.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleman, S.E.

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  16. Subsurface multidisciplinary research results at ICTJA-CSIC downhole lab and test site

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Crespo, Jose; Salvany, Josep Maria; Teixidó, Teresa

    2017-04-01

    Two scientific boreholes, Almera-1 and Almera-2 were drilled in the Barcelona University campus area in 2011. The main purpose for this drilling was to create a new geophysical logging and downhole monitoring research facility and infrastructure. We present results obtained in the frame of multidisciplinary studies and experiments carried out since 2011 at the ICTJA "Borehole Geophysical Logging Lab - Scientific Boreholes Almera" downhole lab facilities. First results obtained from the scientific drilling, coring and logging allowed us to characterize the urban subsurface geology and hydrology adjacent to the Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) in Barcelona. The subsurface geology and structural picture has been completed with recent geophysical studies and monitoring results. The upper section of Almera-1 214m deep hole was cased with PVC after drilling and after the logging operations. An open hole interval was left from 112m to TD (Paleozoic section). Almera-2 drilling reached 46m and was cased also with PVC to 44m. Since completion of the drilling in 2011, both Almera-1 and Almera-2 have been extensively used for research purposes, tests, training, hydrological and geophysical monitoring. A complete set of geophysical logging measurements and borehole oriented images were acquired in open hole mode of the entire Almera-1 section. Open hole measurements included acoustic and optical imaging, spectral natural gamma ray, full wave acoustic logging, magnetic susceptibility, hydrochemical-temperature logs and fluid sampling. Through casing (PVC casing) measurements included spectral gamma ray logging, full wave sonic and acoustic televiewer. A Quaternary to Paleozoic section was characterized based on the geophysical logging and borehole images interpretation and also on the complete set of (wireline) cores of the entire section. Sample availability was intended for geological macro and micro-facies detailed characterization, mineralogical and petrophysical tests and analyses. The interpretation of the geophysical logging data and borehole oriented images, and core data allowed us to define the stratigraphy, structures and petrophysical properties in the subsurface. Quaternary sediments overlie unconformably weathered, deformed and partially metamorphosed Paleozoic rocks. A gap of the Tertiary rocks at the drillsite was detected. Structures at intensely fractured and faulted sections were measured and have yielded valuable data to understand the subsurface geology, hydrology and geological evolution in that area. Logging, borehole imaging and monitoring carried out in the scientific boreholes Almera-1 and Almera-2 has allowed also to identify three preferential groundwater flow paths in the subsurface. Geophysical logging data combined with groundwater monitoring allowed us to identify three zones of high permeability in the subsurface. Logging data combined with core analysis were used to characterize the aquifers lithology and their respective petrophysical properties. We also analyzed the aquifer dynamics and potential relationships between the variations in groundwater levels and the rainfalls by comparing the groundwater monitoring results and the rainfall. A seismic survey was carried out to outline the geological structures beyond Almera-1 borehole, a vertical reverse pseudo-3D (2.5D) seismic tomography experiment. The results allowed us to define the geological structure beyond the borehole wall and also a correlation between the different geological units in the borehole and their geometry and spatial geophysical and seismic image.

  17. Quantification of the effect of temperature gradients in soils on subsurface radon signal

    NASA Astrophysics Data System (ADS)

    Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam

    2017-04-01

    Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.

  18. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    PubMed

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  19. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    PubMed

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multisource data assimilation in a Richards equation-based integrated hydrological model: a real-world application to an experimental hillslope

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Botto, A.

    2017-12-01

    Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows for direct integration of multisource observation data in modeling predictions and uncertainty reduction. For this reason, data assimilation has been recently the focus of much attention also for integrated surface-subsurface hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). Although the EnKF has been specifically developed to deal with nonlinear models, integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of EnKF to correct the system state and identify parameters in cases where the unsaturated zone dynamics are dominant. Here, the model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope, equipped with tensiometers, water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial rainfall events. We assimilate pressure head, soil moisture, and subsurface outflow with EnKF in a number of assimilation scenarios and discuss the challenges, issues, and tradeoffs arising from the assimilation of multisource data in a real-world test case, with particular focus on the capability of DA to update the subsurface parameters.

  1. Characterizing Long-Term Groundwater Conditions and Lithology for the Design of Large-Scale Borehole Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Smith, David Charles

    Construction of large scale ground coupled heat pump (GCHP) systems that operate with hundreds or even thousands of boreholes for the borehole heat exchangers (BHE) has increased in recent years with many coming on line in the past 10 years. Many large institutions are constructing these systems because of their ability to store energy in the subsurface for indoor cooling during the warm summer months and extract that energy for heating during the cool winter months. Despite the increase in GCHP system systems constructed, there have been few long term studies on how these large systems interact with the subsurface. The thermal response test (TRT) is the industry standard for determining the thermal properties of the rock and soil. The TRT is limited in that it can only be used to determine the effective thermal conductivity over the whole length of a single borehole at the time that it is administered. The TRT cannot account for long-term changes in the aquifer saturation, changes in groundwater flow, or characterize different rock and soil units by effectiveness for heat storage. This study established new methods and also the need for the characterization of the subsurface for the purpose of design and long-term monitoring for GCHP systems. These new methods show that characterizing the long-term changes in aquifer saturation and groundwater flow, and characterizing different rock and soil units are an important part of the design and planning process of these systems. A greater understanding of how large-scale GCHP systems interact with the subsurface will result in designs that perform more efficiently over a longer period of time and expensive modifications due to unforeseen changes in system performance will be reduced.

  2. Study on removal efficiency of nitrogen and phosphorus from agricultural wastewater by subsurface flow constructed wetland

    NASA Astrophysics Data System (ADS)

    Ling, Zhen; Li, Jie

    2018-03-01

    Subsurface Flow Constructed Wetland Plant 5 kinds of perennial herbs, there are Canna, Water onion, Iris, Calamus, Reed. Foucs on Subsurface Flow Constructed Wetlands on agricultural wastewater nitrogen and phosphorus removal effect. Research results: Different plants TP removal efficiency from high to low is Iris> reed> calamus> water onion> canna.And TN removal efficiency from high to low is reed> water onion> iris> calamus> canna. Compared with the blank test land, Wetland plants improves TN removal and TP removal is higher than TN. Wetland plants can reduce the PH of experimental water.

  3. Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields

    NASA Astrophysics Data System (ADS)

    Fairley, Jerry P.; Nicholson, Kirsten N.

    2006-04-01

    Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.

  4. Field evaluations of "ShapeAccelArray" in-place MEMS inclinometer strings for subsurface deformation monitoring.

    DOT National Transportation Integrated Search

    2012-03-01

    Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...

  5. Applying model abstraction techniques to optimize monitoring networks for detecting subsurface contaminant transport

    USDA-ARS?s Scientific Manuscript database

    Improving strategies for monitoring subsurface contaminant transport includes performance comparison of competing models, developed independently or obtained via model abstraction. Model comparison and parameter discrimination involve specific performance indicators selected to better understand s...

  6. Constructed wetland as a low cost and sustainable solution for wastewater treatment adapted to rural settlements: the Chorfech wastewater treatment pilot plant.

    PubMed

    Ghrabi, Ahmed; Bousselmi, Latifa; Masi, Fabio; Regelsberger, Martin

    2011-01-01

    The paper presents the detailed design and some preliminary results obtained from a study regarding a wastewater treatment pilot plant (WWTPP), serving as a multistage constructed wetland (CW) located at the rural settlement of 'Chorfech 24' (Tunisia). The WWTPP implemented at Chorfech 24 is mainly designed as a demonstration of sustainable water management solutions (low-cost wastewater treatment), in order to prove the efficiency of these solutions working under real Tunisian conditions and ultimately allow the further spreading of the demonstrated techniques. The pilot activity also aims to help gain experience with the implemented techniques and to improve them when necessary to be recommended for wide application in rural settlements in Tunisia and similar situations worldwide. The selected WWTPP at Chorfech 24 (rural settlement of 50 houses counting 350 inhabitants) consists of one Imhoff tank for pre-treatment, and three stages in series: as first stage a horizontal subsurface flow CW system, as second stage a subsurface vertical flow CW system, and a third horizontal flow CW. The sludge of the Imhoff tank is treated in a sludge composting bed. The performances of the different components as well as the whole treatment system were presented based on 3 months monitoring. The results shown in this paper are related to carbon, nitrogen and phosphorus removal as well as to reduction of micro-organisms. The mean overall removal rates of the Chorfech WWTPP during the monitored period have been, respectively, equal to 97% for total suspended solids and biochemical oxygen demand (BOD5), 95% for chemical oxygen demand, 71% for total nitrogen and 82% for P-PO4. The removal of E. coli by the whole system is 2.5 log units.

  7. An Advanced Reservoir Simulator for Tracer Transport in Multicomponent Multiphase Compositional Flow and Applications to the Cranfield CO2 Sequestration Site

    NASA Astrophysics Data System (ADS)

    Moortgat, J.

    2015-12-01

    Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.

  8. The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field

    NASA Technical Reports Server (NTRS)

    Anderson, Jennifer L. B.; Schultz, P. H.

    2005-01-01

    The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.

  9. Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2017-04-01

    Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.

  10. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE PAGES

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia; ...

    2017-09-05

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  11. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  12. Modeling of ground-water flow in subsurface Austin Chalk and Taylor marl in Ellis County, Texas, near the superconducting super collider site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, R.E.

    1993-02-01

    Numerical models are useful tools for developing an understanding of ground-water flow in sparsely characterized low-permeability aquifers. Finite-difference, cross-sectional models of Cretaceous chalk and marl formations near the Superconducting Super Collider (SSC) were constructed using MODFLOW to evaluate ground-water circulation paths and travel times. Weathered and fractured zones with enhanced permeability were included to assess the effect these features had on flow paths and times. Pump tests, slug tests, packer tests, core tests, and estimates were used to define hydraulic properties for model input. The model was calibrated with water-level data from monitor wells and from wire-line piezometers near amore » test shaft excavated by the SSC project. A ratio of vertical-to-horizontal permeability of 0.0085 was estimated through model calibration. A chalk-to-marl permeability ratio of 18 was needed to reproduce artesian head in a well completed in chalk beneath marl. Hydraulic head distributions and ground-water flow paths reflected local, intermediate, and regional flow systems with recharge beneath upland surface-water divides and discharge in valleys. Most of the flow (99%) occurred in the weathered zone, with average residence times of 5 to 10 years. Residence time in unweathered chalk bedrock was substantially longer, at an average of 1.7 Ma. As expected, the model demonstrated that deep and rapid ground-water circulation might occur in fracture zones. Particle paths calculated using MODPATH showed that ground-water travel times from recharge areas to the SSC subsurface facilities might be 20 to 60 years where flow is through fracture zones.« less

  13. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.

    PubMed

    Moriasi, Daniel N; Gowda, Prasanna H; Arnold, Jeffrey G; Mulla, David J; Ale, Srinivasulu; Steiner, Jean L; Tomer, Mark D

    2013-11-01

    Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. 3DFATMIC: THREE DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS MODEL - USER'S MANUAL VERSION 1.0

    EPA Science Inventory

    This document is the user's manual of 3DFATMIC, a 3-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals Model using a Lagrangian-Eulerian adapted zooming and peak capturing (LEZOOMPC) algorithm.

  15. Restoration of the Apollo Heat Flow Experiments Metadata

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.

    2015-01-01

    Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.

  16. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    DTIC Science & Technology

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  17. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  18. Data on the solute concentration within the subsurface flows of Little Lost Man Creek in response to a transport experiment, Redwood National Park, northwest California

    USGS Publications Warehouse

    Zellweger, Gary W.; Kennedy, V.C.; Bencala, K.E.; Avanzino, R.J.; Jackman, A.P.; Triska, F.J.

    1986-01-01

    A solute transport experiment was conducted on a 327-m reach of Little Lost Man Creek, a small stream in Humboldt County, California. Solutes were injected for 20 days. Chloride was used as a conservative tracer; lithium, potassium, and strontium were used as reactive tracers. In addition, nitrate and phosphate were added as biological reactants. Eighteen shallow wells were dug along the length of the study reach, 1-10 m laterally from the edge of the stream. The wells and sites in the stream were monitored for the injected solutes during and after the injection. Solute concentrations in the wells and stream are indicative of transport properties of stream and subsurface channel flow. This report presents the results of the analyses of the well samples and chemical data relevant to the interpretation of hydrological and chemical interaction between the stream and adjacent channel subsurface flows in the streambed. Calculations of the percentage of streamwater in the wellwater were made from conservative tracer measurements. The composition of wellwater ranged from 47% to 100% streamwater with most values above 90%. The time for water to travel from the beginning of the study reach to the wells was approximately three times as great as the travel time in the stream at the same distance down the reach. The three conclusions that can be drawn are (1) water in the stream exchanges extensively with water in the rest of the channel; (2) the interstitial water in the channel gravels achieves almost the same composition as the stream; and (3) under low flow conditions the stream gravels contain a significant portion of the stream volume. Plots of normalized chloride, lithium, and strontium concentrations at three stream sites are included. (Author 's abstract)

  19. Flow pathways in the Slapton Wood catchment using temperature as a tracer

    NASA Astrophysics Data System (ADS)

    Birkinshaw, Stephen J.; Webb, Bruce

    2010-03-01

    SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.

  20. A Low-Cost, In Situ Resistivity and Temperature Monitoring System

    EPA Science Inventory

    We present a low-cost, reliable method for long-term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with close electrode spacing. Once i...

  1. Subsurface warming across the Veluwe area (Netherlands) driven by climate change, urbanisation, groundwater abstraction and aquifer energy storage

    NASA Astrophysics Data System (ADS)

    Bense, Victor; de Kleijn, Christian; van Daal, Jonathan

    2017-04-01

    Atmospheric warming, urbanisation, land-use changes, groundwater abstraction and aquifer thermal energy storage can induce significant changes in the subsurface thermal regime. These need to better understood and monitored in order for humanity to make efficient use of the subsurface as a thermal reservoir, but also to understand how this space acts as a heat sink during the current warming of the climate. This work aims to improve our understanding of the relative importance, spatiotemporal characteristics and mechanisms of how various environmental processes and anthropogenic activities control changes in subsurface thermal regimes. Such changes are poignantly illustrated by temperature-depth profiles recently obtained in 30 boreholes upto several hundreds of meters deep that are present in the unconsolidated sedimentary aquifer system of the Veluwe area, Netherlands. A comparison to similar data collected in 1978-1980 shows that since then across the entire study area subsurface warming has occurred to depths upto 250 m. The availability of historic land-use maps, hydrogeological and meteorological data for this area allow for a detailed analysis of the observed subsurface warming patterns, which is aided by numerical models of coupled groundwater and heat flow. On a regional scale and across the entire first 100-150 m into the subsurface, the classic thermal signatures of variations in land-use, groundwater recharge and discharge fluxes, are increasingly overprinted by those of regional atmospheric warming and urbanisation. In the topographically higher, forested groundwater recharge areas groundwater is significantly cooler (upto 6 K) than in the open agricultural lands where groundwater is discharging. The presence of a thick (upto 30-40 m) unsaturated zone in the recharge area probably enhances this striking contrast in groundwater temperature in addition to the effects of groundwater recharge and the presence of forest. Locally and at larger depths, however, aquifer thermal storage activities and groundwater abstraction have a strong and probably more immediate role in altering the subsurface thermal regime.

  2. Scenario simulation based assessment of subsurface energy storage

    NASA Astrophysics Data System (ADS)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC-processes, mutual effects and influences on protected entities. The scenario analyses allow the deduction of monitoring concepts as well as a first methodology for large scale spatial planning of the geological subsurface. This concept is illustrated for different storage options and their impacts in space and time.

  3. Muon Tomography for Geological Repositories.

    NASA Astrophysics Data System (ADS)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  4. Subsurface Flow and Moisture Dynamics in Response to Swash Motions: Effects of Beach Hydraulic Conductivity and Capillarity

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.

    2017-12-01

    A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.

  5. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma

    USGS Publications Warehouse

    Zume, J.T.; Tarhule, A.; Christenson, S.

    2006-01-01

    Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.

  6. Two dimensional microcirculation mapping with real time spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xinlin; Lin, Weihao; Cao, Zili; Zhu, Xiuwei; Zeng, Bixin; Xu, M.

    2018-02-01

    We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the human finger cuticle of healthy volunteers performing paced breathing and the forearm of healthy young adults performing normal breathing with our recently developed Real Time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) system. A two-layer model was used to map the concentrations of deoxy-, oxy-hemoglobin, melanin, epidermal thickness and scattering properties at the subsurface of the forearm and the finger cuticle. The oscillations of the concentrations of deoxy- and oxy-hemoglobin at the subsurface of the finger cuticle and forearm induced by paced breathing and normal breathing, respectively, were found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing or heartbeat. Our results suggest that the real time SFDI platform may serve as one effective imaging modality for microcirculation monitoring.

  7. Feasibility Study for The Setting Up of a Safety System for Monitoring CO2 Storage at Prinos Field, Greece

    NASA Astrophysics Data System (ADS)

    Koukouzas, Nikolaos; Lymperopoulos, Panagiotis; Tasianas, Alexandros; Shariatipour, Seyed

    2016-10-01

    Geological storage of CO2 in subsurface geological structures can mitigate global warming. A comprehensive safety and monitoring system for CO2 storage has been undertaken for the Prinos hydrocarbon field, offshore northern Greece; a system which can prevent any possible leakage of CO2. This paper presents various monitoring strategies of CO2 subsurface movement in the Prinos reservoir, the results of a simulation of a CO2 leak through a well, an environmental risk assessment study related to the potential leakage of CO2 from the seafloor and an overall economic insight of the system. The results of the simulation of the CO2 leak have shown that CO2 reaches the seabed in the form of gas approximately 13.7 years, from the beginning of injection. From that point onwards the amount of CO2 reaching the seabed increases until it reaches a peak at around 32.9 years. During the injection period, the CO2 plume develops only within the reservoir. During the post-injection period, the CO2 reaches the seabed and develops side branches. These correspond to preferential lateral flow pathways of the CO2 and are more extensive for the dissolved CO2 than for the saturated CO2 gas. For the environmental risk assessment, we set up a model, using ArcGIS software, based on the use of data regarding the speeds of the winds and currents encountered in the region. We also made assumptions related to the flow rate of CO2. Results show that after a period of 10 days from the start of CO2 leakage the CO2 has reached halfway to the continental shores where the “Natura” protected areas are located. CO2 leakage modelling results show CO2 to be initially flowing along a preferential flow direction, which is towards the NE. However, 5 days after the start of leakage of CO2, the CO2 is also flowing towards the ENE. The consequences of a potential CO2 leak are considered spatially limited and the ecosystem is itself capable of recovering. We have tried to determine the costs necessary for the creation of such an integrated CO2 monitoring program both during the CO2 injection phase as well as during permanent storage. The most prevalent solution consists of purchasing both seismic equipment and Echosounder systems as well as privileging a monitoring system, which uses selected boreholes. The necessary period required for monitoring the study area is at least 20 years after the end of the CO2 storage period at Prinos. To the overall monitoring time, we should also add a further 20 years that are required for the injection phase as well as 12 years for the storage phase. The operating costs for monitoring the CO2 amount to 0,38 /ton CO2 and the total cost for EOR at Prinos amounts to 0,45 /ton CO2.

  8. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.

  9. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology

    NASA Astrophysics Data System (ADS)

    Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A.

    2012-06-01

    Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization techniques, which have potential in many environmental and hydrogeological applications. They provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of electrical current due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redox-active species. Under some conditions, this method can be used to visualize groundwater flow, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Time-lapse resistivity can be used to assess the permeability and dispersivity distributions and to monitor contaminant plumes. Induced polarization characterizes the ability of rocks to reversibly store electrical energy. It can be used to image permeability and to monitor chemistry of the pore water-minerals interface. These geophysical methods, reviewed in this paper, should always be used in concert with additional in-situ measurements (e.g. in-situ pumping tests, chemical measurements of the pore water), for instance through joint inversion schemes, which is an area of fertile on-going research.

  10. Effect of different transport observations on inverse modeling results: case study of a long-term groundwater tracer test monitored at high resolution

    NASA Astrophysics Data System (ADS)

    Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M.; Scow, Kate M.

    2013-11-01

    Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs ( m 1), and tracer cumulative mass discharge ( M d) through control planes combined with hydraulic head observations ( h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.

  11. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    NASA Astrophysics Data System (ADS)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The application of FTIR spectroscopy in combination with soil gas surveys and geophysical investigations results in a comprehensive site characterization, including atmospheric and near-surface CO2 distribution, as well as subsurface structural features. We observed a correlation of higher CO2 concentration and flux rates at the meso-scale that coincides with distinct geophysical anomalies. Here, we found prominent SP anomalies and zones of lower resistivity in the geoelectrical images compared to undisturbed regions nearby. This presentation will discuss the results we obtained and illustrate the influence of CO2 on electrical parameters measured under field conditions in relation to environmental parameters.

  12. Accelerated Weathering of Waste Glass at 90°C with the Pressurized Unsaturated Flow (PUF) Apparatus: Implications for Predicting Glass Corrosion with a Reactive Transport Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.

    2009-09-21

    The interest in the long-term durability of waste glass stems from the need to predict radionuclide release rates from the corroding glass over geologic time-scales. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)]. Currently, the PUF test is the only method that can mimic the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitor the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior.more » One dimensional reactive chemical transport simulations of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases (STORM) code. Results show that parameterization of the computer model by combining direct laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over geologic-time scales.« less

  13. Treatment of domestic wastewater by subsurface flow constructed wetlands filled with gravel and tire chip media.

    PubMed

    Richter, A Y; Weaver, R W

    2003-12-01

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and less expensive. This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater. The influent and effluent of six SFCWs filled with tire chip medium and six SFCWs filled with gravel were monitored for 5 to 16 consecutive months. Parameters measured included pH, biochemical oxygen demand (BOD5), total and volatile suspended solids, NH4, P, and fecal and total coliforms. The only clear difference between medium types in wetland performance was for P. Soluble P in the effluent averaged 1.6 +/- 1.0 mg l(-1) in the tire chip-filled wetlands and 4.8 +/- 3.2 mg l(-1) in the gravel-filled wetlands. Most likely, Fe from exposed wires in shredded steel-belted tires complexed with P to create an insoluble compound. Tire chips may be a better fill medium for SFCWs than gravel because of higher porosity, lower cost, and greater reduction of P in effluent.

  14. Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Strickland, C. E.; Field, J. G.

    2009-12-01

    A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.

  15. SUBSURFACE CHARACTERIZATION AND MONITORING TECHNIQUES: A DESK REFERENCE GUIDE - VOLUME I: SOLIDS AND GROUND WATER - APPENDICES A AND B

    EPA Science Inventory

    Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to devel...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Bao, J; Huang, M

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less

  17. A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site

    NASA Astrophysics Data System (ADS)

    Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.

    2015-12-01

    A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.

  18. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal.

    PubMed

    Jaynes, D B; Isenhart, T M

    2014-03-01

    Riparian buffers are a proven practice for removing NO from overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage, most of the subsurface flow leaving fields is passed through the buffers in drainage pipes, leaving little opportunity for NO removal. We investigated the feasibility of re-routing a fraction of field tile drainage as subsurface flow through a riparian buffer for increasing NO removal. We intercepted an existing field tile outlet draining a 10.1-ha area of a row-cropped field in central Iowa and re-routed a fraction of the discharge as subsurface flow along 335 m of an existing riparian buffer. Tile drainage from the field was infiltrated through a perforated pipe installed 75 cm below the surface by maintaining a constant head in the pipe at a control box installed in-line with the existing field outlet. During 2 yr, >18,000 m (55%) of the total flow from the tile outlet was redirected as infiltration within the riparian buffer. The redirected water seeped through the 60-m-wide buffer, raising the water table approximately 35 cm. The redirected tile flow contained 228 kg of NO. On the basis of the strong decrease in NO concentrations within the shallow groundwater across the buffer, we hypothesize that the NO did not enter the stream but was removed within the buffer by plant uptake, microbial immobilization, or denitrification. Redirecting tile drainage as subsurface flow through a riparian buffer increased its NO removal benefit and is a promising management practice to improve surface water quality within tile-drained landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.

  20. Baseline hydraulic performance of the Heathrow constructed wetlands subsurface flow system.

    PubMed

    Richter, K M; Margetts, J R; Saul, A J; Guymer, I; Worrall, P

    2003-01-01

    A constructed wetland treatment system has been commissioned by BAA (formerly the British Airports Authority) in order to attenuate airfield runoff contaminated with de-icant and other potentially polluting materials from Heathrow Airport. Airfield runoff containing de-icants has the potential to impose significant oxygen demands on water bodies. The site consists of a number of integrated treatment systems, including a 1 ha rafted reed bed canal system and a 2 ha sub-surface flow gravel reed bed. This research project is concerned with the performance of the subsurface flow reed beds, though attention will be paid in this paper to the operation of the whole system. Prior to the planting of the subsurface flow reed beds, flow-tracing experiments were carried out on the three different types of subsurface flow beds, so that the baseline performance of the system could be quantified. In association, data regarding the soil organic matter content was also collected prior to the planting of the beds. As expected, soil organic matter content is observed to be negligible within the bed, though a small amount of build up was observed in localised areas on the surface of the beds. This was attributed to the growth of algae in depressions where standing water persisted during the construction phase. Few studies exist which provide detailed measurements into the cause and effect of variations in hydraulic conductivity within an operational reed bed system. The data presented here form the baseline results for an ongoing study into the investigation of the change in hydraulic conductivity of an operational reed bed system.

  1. THE HYDROLOGIC SYSTEM: GEOMORPHIC AND HYDROGEOLOGIC CONTROLS ON SURFACE AND SUBSURFACE FLOW REGIMES IN RIPARIAN MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    EPA Science Inventory

    Riparian corridors in upland watersheds in the Great Basin of central Nevada contain the majority of the region's biodiversity. Water, in both surface and subsurface flow regimes, is an important resource sustaining these sensitive ecosystems and other similar riparian ecosystem...

  2. Modifying WEPP to improve streamflow simulation in a Pacific Northwest watershed

    Treesearch

    A. Srivastava; M. Dobre; J. Q. Wu; W. J. Elliot; E. A. Bruner; S. Dun; E. S. Brooks; I. S. Miller

    2013-01-01

    The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow...

  3. Subsurface temperatures and surface heat flow in the Michigan Basin and their relationships to regional subsurface fluid movement

    USGS Publications Warehouse

    Vugrinovich, R.

    1989-01-01

    Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.

  4. Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer

    NASA Astrophysics Data System (ADS)

    Naranjo, R. C.; Morway, E. D.; Healy, R. W.

    2016-12-01

    Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.

  5. A linear geospatial streamflow modeling system for data sparse environments

    USGS Publications Warehouse

    Asante, Kwabena O.; Arlan, Guleid A.; Pervez, Md Shahriar; Rowland, James

    2008-01-01

    In many river basins around the world, inaccessibility of flow data is a major obstacle to water resource studies and operational monitoring. This paper describes a geospatial streamflow modeling system which is parameterized with global terrain, soils and land cover data and run operationally with satellite‐derived precipitation and evapotranspiration datasets. Simple linear methods transfer water through the subsurface, overland and river flow phases, and the resulting flows are expressed in terms of standard deviations from mean annual flow. In sample applications, the modeling system was used to simulate flow variations in the Congo, Niger, Nile, Zambezi, Orange and Lake Chad basins between 1998 and 2005, and the resulting flows were compared with mean monthly values from the open‐access Global River Discharge Database. While the uncalibrated model cannot predict the absolute magnitude of flow, it can quantify flow anomalies in terms of relative departures from mean flow. Most of the severe flood events identified in the flow anomalies were independently verified by the Dartmouth Flood Observatory (DFO) and the Emergency Disaster Database (EM‐DAT). Despite its limitations, the modeling system is valuable for rapid characterization of the relative magnitude of flood hazards and seasonal flow changes in data sparse settings.

  6. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  7. Predictive assimilation framework to support contaminated site understanding and remediation

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Bianchi, M.; Hubbard, S. S.

    2014-12-01

    Subsurface system behavior at contaminated sites is driven and controlled by the interplay of physical, chemical, and biological processes occurring at multiple temporal and spatial scales. Effective remediation and monitoring planning requires an understanding of this complexity that is current, predictive (with some level of confidence) and actionable. We present and demonstrate a predictive assimilation framework (PAF). This framework automatically ingests, quality controls and stores near real-time environmental data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of the subsurface system. PAF is implemented as a cloud based software application which has five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result deliver and (5) orchestration. Access to and interaction with PAF is done through a standard browser. PAF is designed to be modular so that it can ingest and process different data streams dependent on the site. We will present an implementation of PAF which uses data from a highly instrumented site (the DOE Rifle Subsurface Biogeochemistry Field Observatory in Rifle, Colorado) for which PAF automatically ingests hydrological data and forward models groundwater flow in the saturated zone.

  8. GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  9. A sprinkling experiment to quantify celerity-velocity differences at the hillslope scale.

    PubMed

    van Verseveld, Willem J; Barnard, Holly R; Graham, Chris B; McDonnell, Jeffrey J; Brooks, J Renée; Weiler, Markus

    2017-01-01

    Few studies have quantified the differences between celerity and velocity of hillslope water flow and explained the processes that control these differences. Here, we asses these differences by combining a 24-day hillslope sprinkling experiment with a spatially explicit hydrologic model analysis. We focused our work on Watershed 10 at the H. J. Andrews Experimental Forest in western Oregon. Celerities estimated from wetting front arrival times were generally much faster than average vertical velocities of δ 2 H. In the model analysis, this was consistent with an identifiable effective porosity (fraction of total porosity available for mass transfer) parameter, indicating that subsurface mixing was controlled by an immobile soil fraction, resulting in the attenuation of the δ 2 H input signal in lateral subsurface flow. In addition to the immobile soil fraction, exfiltrating deep groundwater that mixed with lateral subsurface flow captured at the experimental hillslope trench caused further reduction in the δ 2 H input signal. Finally, our results suggest that soil depth variability played a significant role in the celerity-velocity responses. Deeper upslope soils damped the δ 2 H input signal, while a shallow soil near the trench controlled the δ 2 H peak in lateral subsurface flow response. Simulated exit time and residence time distributions with our hillslope hydrologic model showed that water captured at the trench did not represent the entire modeled hillslope domain; the exit time distribution for lateral subsurface flow captured at the trench showed more early time weighting.

  10. A sprinkling experiment to quantify celerity-velocity differences at the hillslope scale

    NASA Astrophysics Data System (ADS)

    van Verseveld, Willem J.; Barnard, Holly R.; Graham, Chris B.; McDonnell, Jeffrey J.; Renée Brooks, J.; Weiler, Markus

    2017-11-01

    Few studies have quantified the differences between celerity and velocity of hillslope water flow and explained the processes that control these differences. Here, we asses these differences by combining a 24-day hillslope sprinkling experiment with a spatially explicit hydrologic model analysis. We focused our work on Watershed 10 at the H. J. Andrews Experimental Forest in western Oregon. Celerities estimated from wetting front arrival times were generally much faster than average vertical velocities of δ2H. In the model analysis, this was consistent with an identifiable effective porosity (fraction of total porosity available for mass transfer) parameter, indicating that subsurface mixing was controlled by an immobile soil fraction, resulting in the attenuation of the δ2H input signal in lateral subsurface flow. In addition to the immobile soil fraction, exfiltrating deep groundwater that mixed with lateral subsurface flow captured at the experimental hillslope trench caused further reduction in the δ2H input signal. Finally, our results suggest that soil depth variability played a significant role in the celerity-velocity responses. Deeper upslope soils damped the δ2H input signal, while a shallow soil near the trench controlled the δ2H peak in lateral subsurface flow response. Simulated exit time and residence time distributions with our hillslope hydrologic model showed that water captured at the trench did not represent the entire modeled hillslope domain; the exit time distribution for lateral subsurface flow captured at the trench showed more early time weighting.

  11. Inputs and losses by surface runoff and subsurface leaching for pastures managed by continuous or rotational stocking.

    PubMed

    Owens, L B; Barker, D J; Loerch, S C; Shipitalo, M J; Bonta, J V; Sulc, R M

    2012-01-01

    Pasture management practices can affect forage quality and production, animal health and production, and surface and groundwater quality. In a 5-yr study conducted at the North Appalachian Experimental Watershed near Coshocton, Ohio, we compared the effects of two contrasting grazing methods on surface and subsurface water quantity and quality. Four pastures, each including a small, instrumented watershed (0.51-1.09 ha) for surface runoff measurements and a developed spring for subsurface flow collection, received 112 kg N ha(-1) yr(-1) and were grazed at similar stocking rates (1.8-1.9 cows ha(-1)). Two pastures were continuously stocked; two were subdivided so that they were grazed with frequent rotational stocking (5-6 times weekly). In the preceding 5 yr, these pastures received 112 kg N ha(-1) yr(-1) after several years of 0 N fertilizer and were grazed with weekly rotational stocking. Surface runoff losses of N were minimal. During these two periods, some years had precipitation up to 50% greater than the long-term average, which increased subsurface flow and NO(3)-N transport. Average annual NO(3)-N transported in subsurface flow from the four watersheds during the two 5-yr periods ranged from 11.3 to 22.7 kg N ha(-1), which was similar to or less than the mineral-N received in precipitation. Flow and transport variations were greater among seasons than among watersheds. Flow-weighted seasonal NO(3)-N concentrations in subsurface flow did not exceed 7 mg L(-1). Variations in NO(3)-N leached from pastures were primarily due to variable precipitation rather than the effects of continuous, weekly rotational, or frequent rotational stocking practices. This suggests that there was no difference among these grazing practices in terms of NO(3)-N leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. SUBSURFACE CHARACTERIZATION AND MONITORING TECHNIQUES: A DESK REFERENCE GUIDE - VOLUME II: THE VADOSE ZONE, FIELD SCREENING AND ANALYTICAL METHODS - APPENDICES C AND D

    EPA Science Inventory

    Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to deve...

  13. Salinization Sources Along the Lower Jordan River Under Draught Conditions

    NASA Astrophysics Data System (ADS)

    Holtzman, R.; Shavit, U.; Segal, M.; Vengosh, A.; Farber, E.; Gavrieli, I.

    2003-12-01

    The Lower Jordan River, once a flowing freshwater river, is suffering from an ongoing reduction of discharge and water quality. The river flows between the Sea of Galilee and the Dead Sea, an aerial distance of about 105 Km. The severe reduction is caused by an excessive exploitation of its sources and diversion of sewage and agricultural drainage into the river. The extreme low flows and low water quality threaten the natural existence of the river and its potential use for agriculture. In spite of its importance, little research has been done in the river. The objectives of the study were to measure the discharge and water composition along the river and to evaluate the main sources that control its flow and chemical characteristics. The hypothesis of the study was that interaction with subsurface flows significantly affects the river flow and chemical composition. The research is based on a detailed field study, which included flow rate measurements in the river and its tributaries, water sampling and analysis and mass balance calculations of water and solutes. A portable Acoustic Doppler Velocimeter (ADV) was used to measure velocities and bathymetry at different locations across the river sections. Due to accessibility constraints, a floating traverse construction, which enables the ADV's deployment from one bank of the river, was developed. It was found that flow rate ranges between 500-1,100 L/s in northern (upstream) sections and 300-1,650 L/s in the south. This low discharge represents a significant reduction from historical values and is lower than recent published estimations. This research represents base flows only, as the measurements were done during a period of two consecutive draught years. Calculated mass balance of water flows in the northern sections shows that the subsurface source contributes to the river around 200-670 L/s (30-80% of the river flow). Calculations of solute balance show that the subsurface flows add 20-50% of the mass of solutes (e.g. Sulfate) that flows in the river. The assumption of a hydraulic gradient that points at inflows from subsurface flows is encouraged by high water levels measured in nearby piezometers. Possible natural subsurface sources include shallow groundwater or rising of water from deep formations. The existence of adjacent thermal wells strengthens the reasonability of such water rise. Possible anthropogenic sources include return flows and effluents. The results are consistent and agree with the geochemical and isotopic analyses. It is concluded that the impact of the subsurface component on the Jordan River is significant and must be taken into consideration, for future water management schemes and implementation of the Peace Treaty between Israel and Jordan.

  14. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska

    USGS Publications Warehouse

    Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

    1992-01-01

    Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

  15. Spatiotemporal Variability of Hillslope Soil Moisture Across Steep, Highly Dissected Topography

    NASA Astrophysics Data System (ADS)

    Jarecke, K. M.; Wondzell, S. M.; Bladon, K. D.

    2016-12-01

    Hillslope ecohydrological processes, including subsurface water flow and plant water uptake, are strongly influenced by soil moisture. However, the factors controlling spatial and temporal variability of soil moisture in steep, mountainous terrain are poorly understood. We asked: How do topography and soils interact to control the spatial and temporal variability of soil moisture in steep, Douglas-fir dominated hillslopes in the western Cascades? We will present a preliminary analysis of bimonthly soil moisture variability from July-November 2016 at 0-30 and 0-60 cm depth across spatially extensive convergent and divergent topographic positions in Watershed 1 of the H.J. Andrews Experimental Forest in central Oregon. Soil moisture monitoring locations were selected following a 5 m LIDAR analysis of topographic position, aspect, and slope. Topographic position index (TPI) was calculated as the difference in elevation to the mean elevation within a 30 m radius. Convergent (negative TPI values) and divergent (positive TPI values) monitoring locations were established along northwest to northeast-facing aspects and within 25-55 degree slopes. We hypothesized that topographic position (convergent vs. divergent), as well as soil physical properties (e.g., texture, bulk density), control variation in hillslope soil moisture at the sub-watershed scale. In addition, we expected the relative importance of hillslope topography to the spatial variability in soil moisture to differ seasonally. By comparing the spatiotemporal variability of hillslope soil moisture across topographic positions, our research provides a foundation for additional understanding of subsurface flow processes and plant-available soil-water in forests with steep, highly dissected terrain.

  16. A one-dimensional model of subsurface hillslope flow

    Treesearch

    Jason C. Fisher

    1997-01-01

    Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...

  17. Evaluation of SCS-CN method using a fully distributed physically based coupled surface-subsurface flow model

    NASA Astrophysics Data System (ADS)

    Shokri, Ali

    2017-04-01

    The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.

  18. Coupling a three-dimensional subsurface flow model with a land surface model to simulate stream-aquifer-land interactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.

    2016-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.

  19. Subsurface Water Flow and its Subsequent Impact on Chemical Behavior

    USDA-ARS?s Scientific Manuscript database

    The impact of the subsurface stratigraphy on crop growth and agrichemical behavior has been studied for several years at the OPE3 research site located at the USDA-ARS Beltsville Agricultural Research Center, in Beltsville Maryland. This site contains subsurface restricting layers that have been id...

  20. GPR monitoring for non-uniform infiltration through a high permeable gravel layer in the test sand box

    NASA Astrophysics Data System (ADS)

    Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro

    2017-04-01

    Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.

  1. A field evaluation of subsurface and surface runoff. II. Runoff processes

    USGS Publications Warehouse

    Pilgrim, D.H.; Huff, D.D.; Steele, T.D.

    1978-01-01

    Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.

  2. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  3. Finding the best windows: An apparent environmental threshold determines which diffuse flows are dominated by subsurface microbes

    NASA Astrophysics Data System (ADS)

    Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.

    2014-12-01

    Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical cycles.

  4. The contribution of geology and groundwater studies to city-scale ground heat network strategies: A case study from Cardiff, UK

    NASA Astrophysics Data System (ADS)

    Boon, David; Farr, Gareth; Patton, Ashley; Kendall, Rhian; James, Laura; Abesser, Corinna; Busby, Jonathan; Schofield, David; White, Debbie; Gooddy, Daren; James, David; Williams, Bernie; Tucker, David; Knowles, Steve; Harcombe, Gareth

    2016-04-01

    The development of integrated heat network strategies involving exploitation of the shallow subsurface requires knowledge of ground conditions at the feasibility stage, and throughout the life of the system. We describe an approach to the assessment of ground constraints and energy opportunities in data-rich urban areas. Geological and hydrogeological investigations have formed a core component of the strategy development for sustainable thermal use of the subsurface in Cardiff, UK. We present findings from a 12 month project titled 'Ground Heat Network at a City Scale', which was co-funded by NERC/BGS and the UK Government through the InnovateUK Energy Catalyst grant in 2015-16. The project examined the technical feasibility of extracting low grade waste heat from a shallow gravel aquifer using a cluster of open loop ground source heat pumps. Heat demand mapping was carried out separately. The ground condition assessment approach involved the following steps: (1) city-wide baseline groundwater temperature mapping in 2014 with seasonal monitoring for at least 12 months prior to heat pump installation (Patton et al 2015); (2) desk top and field-based investigation of the aquifer system to determine groundwater levels, likely flow directions, sustainable pumping yields, water chemistry, and boundary conditions; (3) creation of a 3D geological framework model with physical property testing and model attribution; (4) use steps 1-3 to develop conceptual ground models and production of maps and GIS data layers to support scenario planning, and initial heat network concept designs; (5) heat flow modelling in FEFLOW software to analyse sustainability and predict potential thermal breakthrough in higher risk areas; (6) installation of a shallow open loop GSHP research observatory with real-time monitoring of groundwater bodies to provide data for heat flow model validation and feedback for system control. In conclusion, early ground condition modelling and subsurface monitoring have provided an initial indication of ground constraints and opportunities supporting development of aquifer thermal energy systems in Cardiff. Ground models should consider the past and future anthropogenic processes that influence and modify the condition of the ground. These include heat losses from buildings, modification of the groundwater regime by artificial pumping, sewers, and other GSH schemes, and construction hazards such as buried infrastructure, old foundations, land contamination and un-exploded ordnance. This knowledge base forms the foundation for a 'whole life' approach for sustainable thermal use of the subsurface. Benefits of the approach include; timely and easy to understand information for land use and financial resource planning, reduced financial risk for developers and investors, clear evidence to help improve public perception of GSHP technology, and provision of independent environmental data to satisfy the needs of the regulator. References: Patton, A.M., Farr, G.J., Boon, D.P., James, D.R., Williams, B., Newell, A.J. 2015. Shallow Groundwater Temperatures and the Urban Heat Island Effect: the First U.K City-wide Geothermal Map to Support Development of Ground Source Heating Systems Strategy. Geophysical Research Abstracts. EGU 2015 Vienna, Austria. (Poster)

  5. [Correlation of substrate structure and hydraulic characteristics in subsurface flow constructed wetlands].

    PubMed

    Bai, Shao-Yuan; Song, Zhi-Xin; Ding, Yan-Li; You, Shao-Hong; He, Shan

    2014-02-01

    The correlation of substrate structure and hydraulic characteristics was studied by numerical simulation combined with experimental method. The numerical simulation results showed that the permeability coefficient of matrix had a great influence on hydraulic efficiency in subsurface flow constructed wetlands. The filler with a high permeability coefficient had a worse flow field distribution in the constructed wetland with single layer structure. The layered substrate structure with the filler permeability coefficient increased from surface to bottom could avoid the short-circuited flow and dead-zones, and thus, increased the hydraulic efficiency. Two parallel pilot-scale constructed wetlands were built according to the numerical simulation results, and tracer experiments were conducted to validate the simulation results. The tracer experiment result showed that hydraulic characteristics in the layered constructed wetland were obviously better than that in the single layer system, and the substrate effective utilization rates were 0.87 and 0.49, respectively. It was appeared that numerical simulation would be favorable for substrate structure optimization in subsurface flow constructed wetlands.

  6. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  7. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

  8. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.

  9. Evaluation of positron emission tomography as a method to visualize subsurface microbial processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsella K.; Schlyer D.; Kinsella, K.

    2012-01-18

    Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils weremore » seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.« less

  10. Seasonal variation of residence time in spring and groundwater evaluated by CFCs and numerical simulation in mountainous headwater catchment

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Watanabe, Yasuto; Ikeda, Koichi; Yano, Shinjiro; Abe, Yutaka

    2016-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time of subsurface water in time and space at the mountainous headwaters especially with steep slope. We investigated the temporal variation of the residence time of the spring and groundwater with tracing of hydrological flow processes in mountainous catchments underlain by granite, Yamanashi Prefecture, central Japan. We conducted intensive hydrological monitoring and water sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2013 in River Jingu Watershed underlain by granite, with an area of approximately 15 km2 and elevation ranging from 950 m to 2000 m. The CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Also, a numerical simulation was conducted to reproduce of the average residence times of the spring and groundwater. The residence time of the spring water estimated by the CFCs concentration ranged from 10 years to 60 years in space within the watershed, and it was higher (older) during the low flow season and lower (younger) during the high flow season. We tried to reproduce the seasonal change of the residence time in the spring water by numerical simulation, and the calculated residence time of the spring water and discharge of the stream agreed well with the observed values. The groundwater level was higher during the high flow season and the groundwater dominantly flowed through the weathered granite with higher permeability, whereas that was lower during the low flow season and that flowed dominantly through the fresh granite with lower permeability. This caused the seasonal variation of the residence time of the spring water, older in low flow season and younger in the high flow season in the watershed. As a result, the numerical model simulated successfully the dynamics of the groundwater flow and residence time in the spring water.

  11. Design of combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using Vetiveria zizanioides (akar wangi)

    NASA Astrophysics Data System (ADS)

    Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.

    2018-01-01

    As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.

  12. Effects of basin size on low-flow stream chemistry and subsurface contact time in the neversink river watershed, New York

    USGS Publications Warehouse

    Wolock, D.M.; Fan, J.; Lawrence, G.B.

    1997-01-01

    The effects of basin size on low-flow stream chemistry and subsurface contact time were examined for a part of the Neversink River watershed in southern New York State. Acid neutralizing capacity (ANC), the sum of base cation concentrations (SBC), pH and concentrations of total aluminum (Al), dissolved organic carbon (DOC) and silicon (Si) were measured during low stream flow at the outlets of nested basins ranging in size from 0.2 to 166.3 km2. ANC, SBC, pH, Al and DOC showed pronounced changes as basin size increased from 0.2 to 3 km2, but relatively small variations were observed as basin size increased beyond 3 km2. An index of subsurface contact time computed from basin topography and soil hydraulic conductivity also showed pronounced changes as basin size increased from 0.2 to 3 km2 and smaller changes as basin size increased beyond 3 km2. These results suggest that basin size affects low-flow stream chemistry because of the effects of basin size on subsurface contact time. ?? 1997 by John Wiley & Sons, Ltd.

  13. A new solar cycle model including meridional circulation

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.

    1991-01-01

    A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.

  14. Long-term temperature monitoring at the biological community site on the Nankai accretionary prism off Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.

    2008-12-01

    Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of the bacterial mat), we found that the effects of the BTV propagated into sediment by conduction only. By correcting the effect of the BTV, conductive heat flow estimated is higher than 100 mW/m2. Sub-bottom temperatures measured within bacterial mat (SAHF-4) except for the topmost sensor could be explained by a conduction model. The heat flow estimated based on the conduction model is similar to that measured with SAHF-3. The temperature of the topmost sensor is slightly higher than that expected from the conduction model. To explain the high temperature, upward fluid flow at a rate of 10-7 m/s order is needed. Heat flow carried by the upward fluid flow is higher than that estimated by Goto et al. [2003]. Heat flow value expected from the distribution of heat flow around this area is 70-80 mW/m2. The high heat flow values inside and outside the bacterial mat estimated in the present and previous studies may reflect upward fluid flow along the splay fault.

  15. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    PubMed Central

    Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621

  16. Time-lapse electrical resistivity investigations for imaging the grouting injection in shallow subsurface cavities.

    PubMed

    Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  17. Reactive transport codes for subsurface environmental simulation

    DOE PAGES

    Steefel, C. I.; Appelo, C. A. J.; Arora, B.; ...

    2014-09-26

    A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of themore » codes, along with a selective list of applications that highlight their capabilities and historical development.« less

  18. Effect of subsurface heterogeneity on free-product recovery from unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Kaluarachchi, Jagath J.

    1996-03-01

    Free-product record system designs for light-hydrocarbon-contaminated sites were investigated to evaluate the effects of subsurface heterogeneity using a vertically integrated three-phase flow model. The input stochastic variable of the areal flow analysis was the log-intrinsic permeability and it was generated using the Turning Band method. The results of a series of hypothetical field-scale simulations showed that subsurface heterogeneity has a substantial effect on free-product recovery predictions. As the heterogeneity increased, the recoverable oil volume decreased and the residual trapped oil volume increased. As the subsurface anisotropy increased, these effects together with free- and total-oil contaminated areas were further enhanced. The use of multiple-stage water pumping was found to be insignificant compared to steady uniform pumping due to reduced recovery efficiency and increased residual oil volume. This observation was opposite to that produced under homogeneous scenarios. The effect of subsurface heterogeneity was enhanced at relatively low water pumping rates. The difference in results produced by homogeneous and heterogeneous simulations was substantial, indicating greater attention should be paid in modeling free-product recovery systems with appropriate subsurface heterogeneity.

  19. Identification of runoff formation with two dyes in a mid-latitude mountain headwater

    NASA Astrophysics Data System (ADS)

    Vlček, Lukáš; Falátková, Kristýna; Schneider, Philipp

    2017-06-01

    Subsurface flow in peat bog areas and its role in the hydrologic cycle has garnered increased attention as water scarcity and floods have increased due to a changing climate. In order to further probe the mechanisms in peat bog areas and contextualize them at the catchment scale, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic peat soils and a shallow phreatic zone (0.5 m below surface), and a slope with mineral Podzol soils and no detectable groundwater (> 2 m below surface). Similarities and differences in infiltration, percolation and preferential flow paths between both hillslopes could be identified by sprinkling experiments with Brilliant Blue and Fluorescein sodium. To our knowledge, this is the first time these two dyes have been compared in their ability to stain preferential flow paths in soils. Dye-stained soil profiles within and downstream of the sprinkling areas were excavated parallel (lateral profiles) and perpendicular (frontal profiles) to the slopes' gradients. That way preferential flow patterns in the soil could be clearly identified. The results show that biomat flow, shallow subsurface flow in the organic topsoil layer, occurred at both hillslopes; however, at the peat bog hillslope it was significantly more prominent. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipe flow in the case of the peat bog, or percolated vertically towards the bedrock in the case of the Podzol. This study provides evidence that subsurface pipe flow, lateral preferential flow along decomposed tree roots or logs in the unsaturated zone, is a major runoff formation process at the peat bog hillslope and in the adjacent riparian zone.

  20. Electrical Resistance Tomography Field Trials to Image CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Newmark, R.

    2003-12-01

    If geologic formations are used to sequester or store carbon dioxide (CO2) for long periods of time, it will be necessary to verify the containment of injected CO2 by assessing leaks and flow paths, and by understanding the geophysical and geochemical interactions between the CO2 and the geologic minerals and fluids. Remote monitoring methods are preferred, to minimize cost and impact to the integrity of the disposal reservoir. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are most sensitive to the presence and nature of the fluids contained in the medium. High resolution tomographs of electrical properties have been used with success for site characterization, monitoring subsurface migration of fluids in instances of leaking underground tanks, water infiltration events, subsurface steam floods, contaminant movement, and assessing the integrity of subsurface barriers. These surveys are commonly conducted utilizing vertical arrays of point electrodes in a crosswell configuration. Alternative ways of monitoring the reservoir are desirable due to the high costs of drilling the required monitoring boreholes Recent field results obtained using steel well casings as long electrodes are also promising. We have conducted field trials to evaluate the effectiveness of long electrode ERT as a potential monitoring approach for CO2 sequestration. In these trials, CO2 is not being sequestered but rather is being used as a solvent for enhanced oil recovery. This setting offers the same conditions expected during sequestration so monitoring secondary oil recovery allows a test of the method under realistic physical conditions and operational constraints. Field experience has confirmed the challenges identified during model studies. The principal difficulty are the very small signals due to the fact that formation changes occur only over a small segment of the 5000 foot length of the electrodes. In addition, telluric noise can be comparable to the signal levels during periods of geomagnetic activity. Finally, instrumentation stability over long periods is necessary to follow trends in reservoir behavior for several years. Solutions to these and other problems will be presented along with results from the first two years of work at a producing field undergoing CO2 flood. If electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, it will substantially reduce the cost to monitor CO2 sequestration. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  1. Untangling the effects of urban development on subsurface storage in Baltimore

    NASA Astrophysics Data System (ADS)

    Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.

    2015-02-01

    The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.

  2. Development of a subsurface gas flow probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, R.P.; Ballard, S.; Barker, G.T.

    1997-04-01

    This report describes a project to develop a flow probe to monitor gas movement in the vadose zone due to passive venting or active remediation efforts such as soil vapor extraction. 3-D and 1-D probes were designed, fabricated, tested in known flow fields under laboratory conditions, and field tested. The 3-D pores were based on technology developed for ground water flow monitoring. The probes gave excellent agreement with measured air velocities in the laboratory tests. Data processing software developed for ground water flow probes was modified for use with air flow, and to accommodate various probe designs. Modifications were mademore » to decrease the cost of the probes, including developing a downhole multiplexer. Modeling indicated problems with flow channeling due to the mode of deployment. Additional testing was conducted and modifications were made to the probe and to the deployment methods. The probes were deployed at three test sites: a large outdoor test tank, a brief vapor extraction test at the Chemical Waste landfill, and at an active remediation site at a local gas station. The data from the field tests varied markedly from the laboratory test data. All of the major events such as vapor extraction system turn on and turn off, as well as changes in the flow rate, could be seen in the data. However, there were long term trends in the data which were much larger than the velocity signals, which made it difficult to determine accurate air velocities. These long term trends may be due to changes in soil moisture content and seasonal ground temperature variations.« less

  3. Joint Use of ERT, Tracer, and Numerical Techniques to Image Preferential Flow Paths in a Fractured Granite Aquifer

    NASA Astrophysics Data System (ADS)

    Sanaga, S.; Vijay, S.; Kbvn, P.; Peddinti, S. R.; P S L, S.

    2017-12-01

    Fractured geologic media poses formidable challenges to hydrogeologists due of the strenuous mapping of fracture-matrix system and quantification of flow and transport processes. In this research, we demonstrated the efficacy of tracer-ERT studies coupled with numerical simulations to delineate preferential flow paths in a fractured granite aquifer of Deccan traps in India. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well located inside the IIT Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. Dynamic changes in sub-surface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements (R2=0.74). Fracture geometry and hydraulic properties derived from ERT and pumping tests were then used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that a dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by decrease in RMSE from 199 mg/l to 65 mg/l). A sensitivity analysis of the model parameters reveals that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. Keywords: saline tracer, ERT, fractured granite, groundwater, preferential flow, numerical simulation

  4. Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.

    2007-09-16

    To predict the long-term fate of low- and high-level waste forms in the subsurface over geologic time scales, it is important to understand the behavior of the corroding waste forms under conditions the mimic to the open flow and transport properties of a subsurface repository. Fluidized bed steam reformation (FBSR), a supplemental treatment technology option, is being considered as a waste form for the immobilization of low-activity tank waste. To obtain the fundamental information needed to evaluate the behavior of the FBSR waste form under repository relevant conditions and to monitor the long-term behavior of this material, an accelerated weatheringmore » experiment is being conducted with the pressurized unsaturated flow (PUF) apparatus. Unlike other accelerated weathering test methods (product consistency test, vapor hydration test, and drip test), PUF experiments are conducted under hydraulically unsaturated conditions. These experiments are unique because they mimic the vadose zone environment and allow the corroding waste form to achieve its final reaction state. Results from this on-going experiment suggest the volumetric water content varied as a function of time and reached steady state after 160 days of testing. Unlike the volumetric water content, periodic excursions in the solution pH and electrical conductivity have been occurring consistently during the test. Release of elements from the column illustrates a general trend of decreasing concentration with increasing reaction time. Normalized concentrations of K, Na, P, Re (a chemical analogue for 99Tc), and S are as much as 1 × 104 times greater than Al, Cr, Si, and Ti. After more than 600 days of testing, the solution chemistry data collected to-date illustrate the importance of understanding the long-term behavior of the FBSR product under conditions that mimic the open flow and transport properties of a subsurface repository.« less

  5. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    PubMed

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  6. A multicomponent tracer field experiment to measure the flow volume, surface area, and rectilinear spacing of fractures away from the wellbore

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.; Sanford, W. E.; Hawkins, A.; Li, Y. V.

    2017-12-01

    The nature of flow in fractured porous media is important to almost all subsurface processes including oil and gas recovery, contaminant transport and remediation, CO2 sequestration, and geothermal heat extraction. One would like to know, under flowing conditions, the flow volume, surface area, effective aperture, and rectilinear spacing of fractures in a representative volume of rock away from the well bore, but no methods currently allow acquisition of this data. It could, however, be collected by deploying inert tracers with a wide range of aqueous diffusion constants (e.g., rapidly diffusing heat to non-diffusing nanoparticle) in the following fashion: The flow volume is defined by the heated volume measured by resistivity surveys. The fracture volume within this flow volume is indicate by the nanoparticle transit time. The average fracture spacing is indicated by the evolving thermal profile in the monitor and the production wells (measured by fiber optic cable), and by the retention of absorbing tracers. The average fracture aperture is determined by permeability measurements and the average fracture separation. We have proposed a field test to redundantly measure these fracture parameters in the fractured Dakota Sandstone where it approaches the surface in Ft Collins, Colorado. Five 30 m deep wells (an injection, production, and 3 monitor wells) cased to 20 m are proposed. The experiments will involve at least 9 different tracers. The planned field test and its potential significance will be described.

  7. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic carbon releases. Further model development challenges are also highlighted and discussed, including coupling between subsurface and surface runoff, soil deformations, as well as site applications and larger system scales.

  8. Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information

    NASA Astrophysics Data System (ADS)

    Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland

    2016-03-01

    Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.

  9. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.

    PubMed

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-05-28

    Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Development of radon-222 as a natural tracer for monitoring the remediation of NAPL contamination in the subsurface. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semprini, L.; Istok, J.

    'The objective of this research is to develop a unique method of using naturally occurring radon-222 as a tracer for locating and quantitatively describing the presence of subsurface NAPL contamination. The research will evaluate using radon as an inexpensive, yet highly accurate, means of detecting NAPL contamination and assessing the effectiveness of NAPL remediation. Laboratory, field, and modeling studies are being performed to evaluate this technique, and to develop methods for its successful implementation in practice. This report summarizes work that has been accomplished after 1-year of a 3-year project. The research to date has included radon tracer tests inmore » physical aquifer models (PAMs) and field studies at Site 300 of the Lawrence Livermore National Laboratory, CA, and Site 100D at Hanford DOE Facility, WA. The PAM tests have evaluated the ability of radon as a tracer to monitor the remediation of TCE NAPL contamination using surfactant treatment, and oxidation with permanganate. The surfactant tests were performed in collaboration with Dr. Jack Istok and Dr. Jennifer Field and their EMSP project ``In-situ, Field-Scale Evaluation of Surfactant Enhanced DNAPL Recovery Using a Single-Well-Push-Pull Test.'''' This collaboration enabled the EMSP radon project to make rapid progress. The PAM surfactant tests were performed in a radial flow geometry to simulate the push-pull-method that is being developed for surfactant field tests. The radon tests were easily incorporated into these experiments, since they simply rely on measuring the natural radon present in the subsurface fluids. Two types of radon tests were performed: (1) static tests where radon was permitted to build-up to steady-state concentrations in the pore fluids and the groundwater concentrations were monitored, and (2) dynamic tests were the radon response during push-pull surfactant tests was measured. Both methods were found to be useful in determining how NAPL remediation was progressing.'« less

  11. Water Management Strategy in Assessing the Water Scarcity in Northern Western Region of Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Mabrouk, Badr; Arafa, Salah; Gemajl, Khaled

    2015-04-01

    Sustainable development in the Nile Delta of Egypt is retarded by serious environmental problems, where land-use and land-cover of the region are subjected to continuous changes; including shoreline changes either by erosion or accretion, subsidence of the delta, as well as by sea level rise due to climate change. The current research attempts to; (1) study the vulnerability of the northern western region of the Nile Delta coastal zone to climate change/sea level rise while setting basic challenges, review adaptation strategies based on adaptation policy framework, and highlight recommended programs for preparedness to climate change, (2) study the scarcity of water resources in the area of study with review of the socioeconomic impacts and the critical need of establishing desalination plants with new standards assessing the environmental situation and population clusters, and (3) monitor of the brine water extracted from the desalination plants and injected to subsurface strata. This monitoring process is divided into 3 main directions: 1) studying the chemical characteristics of water extracted from the water desalinations plants qualitatively and quantitatively. 2) mapping the subsurface of which that brine water will be injected to it and the flow directions and effects using resistivity data, and 3) using GIS and suitable numerical models in order to study the effect, volume, flow of the brine water and its long term environmental impacts on the area. The results indicate that the area is particularly vulnerable to the impact of SLR, salt water intrusion, the deterioration of coastal tourism and the impact of extreme dust storms. This in turn will directly affect the agricultural productivity and human settlements in coastal zones. The paper presents different scenarios for water management and recommends the most suitable scenarios in order to establish a core for water management strategy in the region according to existing socio-economic and environmental situations. Key words: Nile Delta, climate change, socioeconomic, sea level rise, groundwater monitoring, GIS

  12. Application of high-resolution subsurface imaging techniques to water resource investigations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sternberg, B.K.; Thomas, S.J.

    1992-12-01

    The overall objective of the project was to apply a new high-resolution imaging system to water resource investigations. This imaging system measures the ellipticity of received magnetic-field components. The source of the magnetic field is a long-line transmitter emitting frequencies from 30 Hz to 30 kHz. A new high-accuracy calibration method was used to enhance the resolution of the measurements. The specific objectives included: (1) refine the system hardware and software based on these investigations, (2) learn the limitations of this technology in practical water resource investigations, and (3) improve interpretation techniques to extract the highest possible resolution. Successful fieldmore » surveys were run at: (1) San Xavier Mine, Arizona - flow of injected fluid was monitored with the system. (2) Avra Valley, Arizona - subsurface stratigraphy was imaged. A survey at a third site was less successful; interpreted resistivity section does not agree with nearby well logs. Surveys are continuing at this site.« less

  13. Quantifying wetland–aquifer interactions in a humid subtropical climate region: An integrated approach

    USGS Publications Warehouse

    Mendoza-Sanchez, Itza; Phanikumar, Mantha S.; Niu, Jie; Masoner, Jason R.; Cozzarelli, Isabelle M.; McGuire, Jennifer T.

    2013-01-01

    Wetlands are widely recognized as sentinels of global climate change. Long-term monitoring data combined with process-based modeling has the potential to shed light on key processes and how they change over time. This paper reports the development and application of a simple water balance model based on long-term climate, soil, vegetation and hydrological dynamics to quantify groundwater–surface water (GW–SW) interactions at the Norman landfill research site in Oklahoma, USA. Our integrated approach involved model evaluation by means of the following independent measurements: (a) groundwater inflow calculation using stable isotopes of oxygen and hydrogen (16O, 18O, 1H, 2H); (b) seepage flux measurements in the wetland hyporheic sediment; and (c) pan evaporation measurements on land and in the wetland. The integrated approach was useful for identifying the dominant hydrological processes at the site, including recharge and subsurface flows. Simulated recharge compared well with estimates obtained using isotope methods from previous studies and allowed us to identify specific annual signatures of this important process during the period of study (1997–2007). Similarly, observations of groundwater inflow and outflow rates to and from the wetland using seepage meters and isotope methods were found to be in good agreement with simulation results. Results indicate that subsurface flow components in the system are seasonal and readily respond to rainfall events. The wetland water balance is dominated by local groundwater inputs and regional groundwater flow contributes little to the overall water balance.

  14. Coupled charge migration and fluid mixing in reactive fronts

    NASA Astrophysics Data System (ADS)

    Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves

    2017-04-01

    Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501

  15. Intercomparison of Groundwater Flow Monitoring Technologies at Site OU 1, Former Fort Ord, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, P F; Jantos, J; Pedler, W H

    2005-09-20

    This report presents an intercomparison of three groundwater flow monitoring technologies at a trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County, California. Soil and groundwater at this site became contaminated by fuels and solvents that were burned on a portion of OU 1 called the Fire Drill Area (FDA) as part of firefighter training from 1962 and 1985. Cont Contamination is believed to be restricted to the unconfined A-aquifer, where water is reached at a depthmore » of approximately 60 to 80 feet below the ground surface; the aquifer is from 15 to 20 feet in thickness, and is bounded below by a dense clay layer, the Salinas Valley Aquitard. Soil excavation and bioremediation were initiated at the site of fire training activities in the late 1980s. Since that time a pump-and-treat operation has been operated close to the original area of contamination, and this system has been largely successful at reducing groundwater contamination in this source area. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In this report, we have augmented flow monitoring equipment permanently installed in an earlier project (Oldenburg et al., 2002) with two additional flow monitoring devices that could be deployed in existing monitoring wells, in an effort to better understand their performance in a nearly ideal, homogeneous sand aquifer, that we expected would exhibit laminar groundwater flow owing to the site's relatively simple hydrogeology. The three flow monitoring tools were the Hydrotechnics{reg_sign} In In-Situ Permeable Flow Sensor (ISPFS), the RAS Integrated Subsurface Evaluation Hydrophysical Logging tool (HPL), and the Lawrence Livermore National Laboratory Scanning Colloidal Borescope Flow Meter (SCBFM). All three devices produce groundwater flow velocity measurements, and the ISPFS and SCBFM systems also gene generate flow direction rate estimates. The ISPFS probes are permanently installed and are non-retrievable, but produce long-term records with essentially no operator intervention or maintenance. The HPL and SCBFM systems are lightweight, portable logging devices that employ recording of electrical conductivity changes in wells purged with deionized water (HPL), or imaging of colloidal particles traversing the borehole (SCBFM) as the physical basis for estimating the velocity of groundwater flow through monitoring wells. All three devices gave estimates of groundwater velocity that were in reasonable agreement. However, although the ISPFS produced groundwater azimuth data that correlated well with conventional conductivity and gradient analyses of the groundwater flow field, the SCBFM direction data were in poor agreement. Further research into the reasons for this lack of correlation would seem to be warranted, given the ease of deployment of this tool in existing conventional monitoring wells, and its good agreement with the velocity estimates of the other technologies examined.« less

  16. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Treesearch

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  17. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  18. Digital signal processing and interpretation of full waveform sonic log for well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    Along the Great Sand Dunes National Park and Preserve boundary (fig. 1), 10 monitoring wells were drilled by the National Park Service in order to monitor water flow in an unconfined aquifer spanning the park boundary. Adjacent to the National Park Service monitoring well named Boundary Piezometer Well No. 3, or BP-3, the U.S. Geological Survey (USGS) drilled the BP-3-USGS well. This well was drilled from September 14 through 17, 2009, to a total depth of 99.4 meters (m) in order to acquire additional subsurface information. The BP-3-USGS well is located at lat 37 degrees 43'18.06' and long -105 degrees 43'39.30' at a surface elevation of 2,301 m. Approximately 23 m of core was recovered beginning at a depth of 18 m. Drill cuttings were also recovered. The wireline geophysical logs acquired in the well include natural gamma ray, borehole caliper, temperature, full waveform sonic, density, neutron, resistivity, and induction logs. The BP-3-USGS well is now plugged and abandoned. This report details the full waveform digital signal processing methodology and the formation compressional-wave velocities determined for the BP-3-USGS well. These velocity results are compared to several velocities that are commonly encountered in the subsurface. The density log is also discussed in context of these formation velocities.

  19. Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.

    2017-12-01

    Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.

  20. Basic Research on Three-Dimensional (3D) Electromagnetic (EM) Methods for Imaging the Flow of Organic Fluids in the Subsurface.

    DTIC Science & Technology

    1997-04-30

    Currently there are no systems available which allow for economical and accurate subsurface imaging of remediation sites. In some cases, high...system to address this need. This project has been very successful in showing a promising new direction for high resolution subsurface imaging . Our

  1. Identification and characterization of natural pipe systems in forested tropical soils

    NASA Astrophysics Data System (ADS)

    Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel

    2017-04-01

    Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.

  2. Topographical controls on soil moisture distribution and runoff response in a first order alpine catchment

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco

    2010-05-01

    Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.

  3. Monitoring extent of moisture variations due to leachate recirculation in an ELR/bioreactor landfill using resistivity imaging.

    PubMed

    Manzur, Shahed Rezwan; Hossain, Md Sahadat; Kemler, Vance; Khan, Mohammad Sadik

    2016-09-01

    Bioreactor or enhanced leachate recirculation (ELR) landfills are designed and operated for accelerated waste stabilization, accelerated decomposition, and an increased rate of gas generation. The major aspects of a bioreactor landfill are the addition of liquid and the recirculation of collected leachate back into the waste mass through the subsurface leachate recirculation system (LRS). The performance of the ELR landfill largely depends on the existing moisture content within the waste mass; therefore, it is of utmost importance to determine the moisture variations within the landfill. Traditionally, the moisture variation of the ELR landfill is determined by collecting samples through a bucket auger boring from the landfill, followed by laboratory investigation. Collecting the samples through a bucket auger boring is time consuming, labor intensive, and cost prohibitive. Moreover, it provides the information for a single point within the waste mass, but not for the moisture distribution within the landfill. Fortunately, 2D resistivity imaging (RI) can be performed to assess the moisture variations within the landfill and provide a continuous image of the subsurface, which can be utilized to evaluate the performance of the ELR landfill. During this study, the 2D resistivity imaging technique was utilized to determine the moisture distribution and moisture movement during the recirculation process of an ELR landfill in Denton, Texas, USA. A horizontal recirculation pipe was selected and monitored periodically for 2.5years, using the RI technique, to investigate the performance of the leachate recirculation. The RI profile indicated that the resistivity of the solid waste decreased as much as 80% with the addition of water/leachate through the recirculation pipe. In addition, the recirculated leachate traveled laterally between 11m and 16m. Based on the resistivity results, it was also observed that the leachate flow throughout the pipe was non-uniform. The non-uniformity of the leachate flow confirms that the flow of leachate through waste is primarily through preferential flow paths due the heterogeneous nature of the waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. On the Representation of Aquifer Compressibility in General Subsurface Flow Codes: How an Alternate Definition of Aquifer Compressibility Matches Results from the Groundwater Flow Equation

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Karra, S.; Rajaram, H.

    2016-12-01

    The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.

  5. Climate reconstruction from borehole temperatures influenced by groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.

  6. On the Representation of Aquifer Compressibility in General Subsurface Flow Codes: How an Alternate Definition of Aquifer Compressibility Matches Results from the Groundwater Flow Equation

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Karra, S.; Rajaram, H.

    2017-12-01

    The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.

  7. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    NASA Technical Reports Server (NTRS)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature increase during the heating. By stopping during the excavation, it is possible to measure thermal conductivities at different depths. The gas jets are turned off when the penetrating cone reaches the target depth. Then, the stem pushes the needle sensor into the undisturbed soil at the bottom of the hole and carries out a thermal conductivity measurement. When the measurement is complete, the system resumes excavation. RTDs, placed along the stem at short (approx 30 cm) intervals, will monitor long-term temperature stability of the subsurface. Temperature in the shallow subsurface would fluctuate with the diurnal, annual, and precession cycles of the Moon. These thermal waves penetrate to different depths into the regolith. Longterm monitoring of the subsurface temperature would allow us to accurately delineate these cyclic signals and separate them from the signal associated with the outward flow of the Moon s endogenic heat. Further, temperature toward bottom of the 3-m hole should be fairly stable after the heat generated during the excavation dissipates into the surrounding soil. The geothermal gradient may be determined reliably from temperature measurements at the RTDs near the bottom. In order to minimize the heat conduction along the stem from affecting the geothermal gradient measurements, we plan to use low-conductive materials for the stem and develop a mechanism to achieve close coupling between the RTDs and the wall of the excavated hole.

  8. Subsurface phosphorus transport through a no-till field in the semi arid Palouse region

    NASA Astrophysics Data System (ADS)

    Norby, J. C.; Brooks, E. S.; Strawn, D. G.

    2017-12-01

    Excess application of fertilizers containing nitrogen and phosphorus for farming use has led to ongoing water quality issues in the United States. When these nutrients leave agronomic systems, and enter water bodies in large quantities, algal bloom and eutrophication can occur. Extensive studies focusing on phosphorus as a pollutant from agronomic systems have been conducted in the many regions of the United States; however, there has been a lack of studies completed in the semiarid Palouse region of eastern Washington and western Idaho. The goal of this research study was to better understand how no-till farm management has altered soil P temporally and the current availability for off-site transport of P throughout an artificially drained catchment at the Cook Agronomy Farm in Pullman, WA. We also attempted to determine the processes responsible for subsurface flow of phosphorus, specifically through preferential flow pathways. Dissolved reactive P (DRP)concentrations of subsurface drainage from a artificial drain exceeded TMDL threshold concentrations during numerous seasonal high flow events over the two-year study time frame. Soil analyses show a highly variable distribution of water-extractable P across the sub-catchment area and initial results suggest a translocation of P species deeper into the soil profile after implementing no-till practices in 1998. We hypothesized that a greater network of macropores from lack of soil disturbance allow for preferential flow of nutrient-laden water deeper into the subsurface and to the artificial drain system. Simulated flow experiments on soil cores from the study site showed large-scale macropore development, extreme variability in soil conductivity, and high P adsorption potential for the soils, suggesting a disconnect between P movement through macropore soil and subsurface drainage water rich in DRP at the artificial drain line outlet.

  9. GeoEn -Research on Geo-Energy

    NASA Astrophysics Data System (ADS)

    Liebscher, A.; Scheck-Wenderoth, M.; GeoEn Research Group

    2012-04-01

    Axel Liebscher1, Magdalena Scheck-Wenderoth1 and the GeoEn Research Group1, 2,3 1 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany 2 University Potsdam, Germany 3 BTU Cottbus, Germany One of the pressing challenges for the 21st century is a secure, sustainable and economical energy supply at simultaneous mitigation of its climate impact. Besides a switch to renewable energy resources, the exploration and exploitation of new, unconventional energy resources will play a major role as will the further use of fossil fuels. With the switch to renewable energies the question of geological energy storage will become an important topic whereas further use of fossil fuels requires strategies like CCS to reduce its negative climate impacts. These different aspects of geo-energy make complementary or competitive demands on the subsurface and its use. It is therefore essential to treat the subsurface as a geo-resource of its own right. So far, geo-resource related research has often focused on specific resource systems, e.g. ore forming systems, hydrocarbon systems or geothermal systems, providing results largely applicable only to the restricted range of physicochemical properties of the respective geo-resource systems. However, with the increasing use of the subsurface as important geo-resource, the different geo-resource systems tend to overlap and interact and also become much more complex due to the additional use or presence of artificial and technical matter, as is the case in geological CO2 storage. On the other hand, the combined use of the subsurface for different purposes may also create synergetic effects. GeoEn is a joint research project explicitly addressing the fundamental questions related to the sustainable and holistic use of the geo-resource subsurface with a special focus on geo-energy. Project partners are the German Research Centre for Geosciences (GFZ), the University of Potsdam (UP) and the Brandenburg University of Technology (BTU). GeoEn research addresses CO2 capture, transport and utilization, CO2 storage, the unconventional energy resource shale gas and geothermal technologies. These four core topics are studied in an integrated approach using the synergy of cross-cutting themes. The latter encompass new exploration and reservoir technologies as well as innovative monitoring methods, both complemented by numerical simulations of the relevant processes including flow dynamics or heat transfer in the subsurface and along the technological process chains. Accordingly, synergies derived from the cross-cutting topics improve both methodological development applicable in equal measure to the utilization of geothermal energy and of shale gas as well as to the use and monitoring of CO2 storage. Complementary, new modelling approaches are developed that allow the simulation of involved processes to predict the occurrence and physical properties of potential reservoirs and the changes that may be induced by their utilization. We present first results with respect to exploration strategies, monitoring technologies and modeling approaches for the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß-Schönebeck, where the respective technologies are tested and monitored.

  10. Completion reports, core logs, and hydrogeologic data from wells and piezometers in Prospect Gulch, San Juan County, Colorado

    USGS Publications Warehouse

    Johnson, Raymond H.; Yager, Douglas B.

    2006-01-01

    In the late nineteenth century, San Juan County, Colorado, was the center of a metal mining boom in the San Juan Mountains. Although most mining activity ceased by the 1990s, the effects of historical mining continue to contribute metals to ground water and surface water. Previous research by the U.S. Geological Survey identified ground-water discharge as a significant pathway for the loading of metals to surface water from both acid-mine drainage and acid-rock drainage. In an effort to understand the ground-water flow system in the upper Animas River watershed, Prospect Gulch was selected for further study because of the amount of previous data provided in and around that particular watershed. In support of this ground-water research effort, wells and piezometers were installed to allow for coring during installation, subsurface hydrologic testing, and the monitoring of ground-water hydraulic heads and geochemistry. This report summarizes the data that were collected during and after the installation of these wells and piezometers and includes (1) subsurface completion details, (2) locations and elevations, (3) geologic logs and elemental data, (4) slug test data for the estimation of subsurface hydraulic conductives, and (5) hydraulic head data.

  11. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  12. Control of topography gradients on residence time distributions, mixing dynamics and reactive hotspot development

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Aditya; Le Borgne, Tanguy; Davy, Philippe

    2017-04-01

    Topography-driven subsurface flows are thought to play a central role in determining solute turnover and biogeochemical processes at different scales in the critical zone, including river-hyporheic zone exchanges, hillslope solute transport and reactions, and catchment biogeochemical cycles. Hydraulic head gradients, induced by topography gradients at different scales, generate a distribution of streamlines at depth, dictating the spatial distribution of redox sensitive species, the magnitude of surface water - ground water exchanges and ultimately the source/sink function of the subsurface. Flow velocities generally decrease with depth, leading to broad residence time distributions, which have been shown to affect river chemistry and geochemical reactions in catchments. In this presentation, we discuss the impact of topography-driven flows on mixing processes and the formation of localized reactive hotspots. For this, we solve analytically the coupled flow, mixing and reaction equations in two-dimensional vertical cross-sections of subsurface domains with different topography gradients. For a given topography gradient, we derive the spatial distribution of subsurface velocities, the rates of solute mixing accross streamlines and the induced kinetics of redox, precipitation and dissolution reactions using a Lagrangian approach (Le Borgne et al. 2014). We demonstrate that vertical velocity profiles driven by topography variations, act effectively as shear flows, hence stretching continuously the mixing fronts between recently infiltrated and resident water (Bandopadhyay et al. 2017). We thus derive analytical expressions for residence time distributions, mixing rates and kinetics of chemical reactions as a function of the topography gradients. We show that the rates dissolution and precipitation reactions are significantly enhanced by the existence of vertical velocity gradients and that reaction rates reach a maximum in a localized subsurface reactive layer, whose location and intensity depends on topography gradients. As a consequence of these findings, we discuss the links between topography variations, subsurface velocity gradients and biogeochemical processes in the critical zone. References: Bandopadhyay A., T. Le Borgne, Y. Méheust and M. Dentz (2017) Enhanced reaction kinetics and reactive mixing scale dynamics in mixing fronts under shear flow for arbitrary Damkohler numbers, Adv. in Water Resour. Vol. 100, p. 78-95 Le Borgne T., T. Ginn and M. Dentz (2014) Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in Heterogeneous Flows, Geophys. Res. Lett., Vol. 41, 22, p. 7898-790

  13. Subsurface Environment Sampler for Improved In Situ Characterization of Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.

    2016-12-01

    There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.

  14. An analysis of a mixed convection associated with thermal heating in contaminated porous media.

    PubMed

    Krol, Magdalena M; Johnson, Richard L; Sleep, Brent E

    2014-11-15

    The occurrence of subsurface buoyant flow during thermal remediation was investigated using a two dimensional electro-thermal model (ETM). The model incorporated electrical current flow associated with electrical resistance heating, energy and mass transport, and density dependent water flow. The model was used to examine the effects of heating on sixteen subsurface scenarios with different applied groundwater fluxes and soil permeabilities. The results were analyzed in terms of the ratio of Rayleigh to thermal Peclet numbers (the buoyancy ratio). It was found that when the buoyancy number was greater than unity and the soil permeability greater than 10(-12) m(2), buoyant flow and contaminant transport were significant. The effects of low permeability layers and electrode placement on heat and mass transport were also investigated. Heating under a clay layer led to flow stagnation zones resulting in the accumulation of contaminant mass and transport into the low permeability layer. The results of this study can be used to develop dimensionless number-based guidelines for site management during subsurface thermal activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Relative Impacts of Low Permeability Subsurface Deposits on Recharge Basin Infiltration Rates

    NASA Astrophysics Data System (ADS)

    Oconnell, P.; Becker, M.; Pham, C.; Rodriguez, G.; Hutchinson, A.; Plumlee, M.

    2017-12-01

    Artificial recharge of aquifers through spreading basins has become an important component of water management in semi-arid climates. The rate at which water can be recharged in these basins is limited by the natural vertical permeability of the underlying deposits which may be highly variable both laterally and vertically. To help understand hydrostratigraphic controls on recharge, a newly constructed basin was surveyed and instrumented. Prior to flooding the basin, lithology was characterized by shallow hand coring, direct push coring, ground penetrating radar, and electrical resistivity. After flooding, recharge was monitored through piezometers, electrical resistivity, and a network of fiber optic distributed temperature sensing (DTS). The DTS network used temperature as a tracer to measure infiltration rate on 25 cm intervals both laterally and vertically. Several hundred paired DTS time series datasets (from fiber optic cables located at 0 and 0.5 meters below ground surface) were processed with the cross-wavelet transform (XWT) to calculate spatially and temporally continuous infiltration rates, which can be interpolated and animated to visualize heterogeneity. Time series data from 8-meter deep, vertically oriented DTS cables reveal depth intervals where infiltration rates vary. Inverted resistivity sections from repeated dipole-dipole surveys along the sidewall of a spreading basin exhibit a positive correlation with the distribution of relatively high and low infiltration rates, indicating zones of preferential downward (efficient) and lateral (inefficient) flow, respectively. In contrast to other monitored basins, no perching was observed in the vertically oriented DTS cables. The variation in recharge across the basin and the appearance of subsurface lateral flow can be explained in context of the alluvial depositional environment.

  16. 4D volcano gravimetry

    USGS Publications Warehouse

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the importance of this more realistic description in gravity calculations. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  17. Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic.

    PubMed

    Vymazal, Jan; Březinová, Tereza; Koželuh, Milan

    2015-12-01

    Estrogenic hormones, progesterone and testosterone are endocrine-disrupting chemicals and their presence in aquatic environments represents a potentially adverse environmental and public health impact. There is a considerable amount of information about removal of estrogens, progesterone and testosterone in conventional wastewater treatment plants, namely activated sludge systems. However, the information about removal of these compounds in constructed wetlands is very limited. Three constructed wetlands with horizontal subsurface flow in the Czech Republic have been selected to evaluate removal of estrogens (estrone, estriol, 17β-estradiol, 17α-ethinylestradiol), testosterone and progesterone. Monitored constructed wetlands for 100, 150 and 200 PE have been in operation for more than 10 years and all systems exhibit very high treatment efficiency for organics and suspended solids. The results indicate that removal of all estrogens, progesterone and testosterone was high and only estrone was found in the outflow from one constructed wetland in concentrations above the limit of quantification 1 ng l(-1). The limits of quantification for other estrogens, i.e., 10 ng l(-1) for estriol, 1 ng l(-1) for 17β-estradiol and 2 ng l(-1) for 17α-ethinylestradiol were not exceeded in the outflow of all monitored constructed wetlands. Also, for progesterone and testosterone, all outflow concentrations were below the LOQ of 0.5 ng l(-1). The results indicated that constructed wetlands with horizontal subsurface flow are a promising technology for elimination of estrogens, progesterone and testosterone from municipal sewage but more information is needed to confirm this finding. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  19. An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records

    NASA Astrophysics Data System (ADS)

    Treble, Pauline C.; Bradley, Chris; Wood, Anne; Baker, Andy; Jex, Catherine N.; Fairchild, Ian J.; Gagan, Michael K.; Cowley, Joan; Azcurra, Cecilia

    2013-03-01

    We investigated the distinctive shallow sub-surface hydrology of the southwest Western Australia (SWWA) dune calcarenite using observed rainfall and rainfall δ18O; soil moisture, cave drip rate and dripwater δ18O over a six-year period: August 2005-March 2012. A lumped parameter hydrological model is developed to describe water fluxes and drip δ18O. Comparison of observed data and model output allow us to assess the critical non-climatic karst hydrological processes that modify the precipitation δ18O signal and discuss the implications for speleothem paleoclimate records from this cave and those with a similar karst setting. Our findings include evidence of multiple reservoirs, characterised by distinct δ18O values and recharge responses ('low' and 'high' flow sites). Dripwaters exhibit δ18O variations in wet versus dry years at low-flow sites receiving diffuse seepage from the epikarst with an attenuated isotopic composition that approximates mean rainfall. Recharge from high-magnitude rain events is stored in a secondary reservoir which is associated with high-flow dripwater that is 1‰ lower than our monitored low-flow sites (δ18O). One drip site is characterised by mixed-flow behaviour and exhibits a non-linear threshold response after the cessation of drainage from a secondary reservoir following a record dry year (2006). Additionally, our results yield a better understanding of the vadose zone hydrology and dripwater characteristics in Quaternary age dune limestones. We show that flow to our monitored sites is dominated by diffuse flow with inferred transit times of less than one year. Diffuse flow appears to follow vertical preferential paths through the limestone reflecting differences in permeability and deep recharge into the host rock.

  20. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    USGS Publications Warehouse

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  1. Hydrology and subsurface transport of oil-field brine at the U.S. Geological Survey OSPER site "A", Osage County, Oklahoma

    USGS Publications Warehouse

    Herkelrath, W.N.; Kharaka, Y.K.; Thordsen, J.J.; Abbott, M.M.

    2007-01-01

    Spillage and improper disposal of saline produced water from oil wells has caused environmental damage at thousands of sites in the United States. In order to improve understanding of the fate and transport of contaminants at these sites, the U.S. Geological Survey carried out multidisciplinary investigations at two oil production sites near Skiatook Lake, Oklahoma. As a part of this effort, the hydrology and subsurface transport of brine at OSPER site "A", a tank battery and pit complex that was abandoned in 1973, was investigated. Based on data from 41 new boreholes that were cored and completed with monitoring wells, a large (???200 m ?? 200 m ?? 20 m) plume of saline ground water was mapped. The main dissolved species are Na and Cl, with TDS in the plume ranging as high as 30,000 mg/L. Analysis of the high barometric efficiency of the wells indicated a confined aquifer response. Well-slug tests indicated the hydraulic conductivity is low (0.3-7.0 cm/day). Simplified flow and transport modeling supports the following conceptual model: (1) prior to the produced water releases, recharge was generally low (???1 cm/a); (2) in ???60 a of oil production enough saline produced water in pits leaked into the subsurface to create the plume; (3) following abandonment of the site in 1973 and filling of Skiatook Reservoir in the mid-1980s, recharge and lateral flow of water through the plume returned to low values; (4) as a result, spreading of the brine plume caused by mixing with fresh ground water recharge, as well as natural attenuation, are very slow.

  2. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  3. Facilitated strontium transport by remobilization of strontium-containing secondary precipitates in Hanford Site subsurface.

    PubMed

    Wang, Guohui; Um, Wooyong

    2013-03-15

    Significantly enhanced immobilization of radionuclides (such as (90)Sr and (137)Cs) due to adsorption and coprecipitation with neo-formed colloid-sized secondary precipitates has been reported at the U.S. Department of Energy's Hanford Site. However, the stability of these secondary precipitates containing radionuclides in the subsurface under changeable field conditions is not clear. Here, the authors tested the remobilization possibility of Sr-containing secondary precipitates (nitrate-cancrinite) in the subsurface using saturated column experiments under different geochemical and flow conditions. The columns were packed with quartz sand that contained secondary precipitates (nitrate-cancrinite containing Sr), and leached using colloid-free solutions under different flow rates, varying pH, and ionic strength conditions. The results indicate remobilization of the neo-formed secondary precipitates could be possible given a change of pH of ionic strength and flow rate conditions. The remobility of the neo-formed precipitates increased with the rise in the leaching solution flow rate and pH (in a range of pH 4-11), as well as with decreasing solution ionic strength. The increased mobility of Sr-containing secondary precipitates with changing background conditions can be a potential source for additional radionuclide transport in Hanford Site subsurface environments. Published by Elsevier B.V.

  4. An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes

    DOE PAGES

    Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...

    2017-07-10

    Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less

  5. Reconstruction of the thermal environment evolution in urban areas from underground temperature distribution.

    PubMed

    Yamano, Makoto; Goto, Shusaku; Miyakoshi, Akinobu; Hamamoto, Hideki; Lubis, Rachmat Fajar; Monyrath, Vuthy; Taniguchi, Makoto

    2009-04-15

    It is possible to estimate the ground surface temperature (GST) history of the past several hundred years from temperature profiles measured in boreholes because the temporal variation in GST propagates into the subsurface by thermal diffusion. This "geothermal method" of reconstructing GST histories can be applied to studies of thermal environment evolution in urban areas, including the development of "heat islands." Temperatures in boreholes were logged at 102 sites in Bangkok, Jakarta, Taipei, Seoul and their surrounding areas in 2004 to 2007. The effects of recent surface warming can be recognized in the shapes of most of the obtained temperature profiles. The preliminary results of reconstruction of GST histories through inversion analysis show that GST increased significantly in the last century. Existing temperature profile data for the areas in and around Tokyo and Osaka can also be used to reconstruct GST histories. Because most of these cities are located on alluvial plains in relatively humid areas, it is necessary to use a model with groundwater flow and a layered subsurface structure for reconstruction analysis. Long-term records of subsurface temperatures at multiple depths may demonstrate how the GST variation propagates downward through formations. Time series data provide information on the mechanism of heat transfer (conduction or advection) and the thermal diffusivity. Long-term temperature monitoring has been carried out in a borehole located on the coast of Lake Biwa, Japan. Temperatures at 30 and 40 m below the ground surface were measured for 4 years and 2 years, respectively, with a resolution of 1 mK. The obtained records indicate steady increases at both depths with different rates, which is probably the result of some recent thermal event(s) near the surface. Borehole temperatures have also been monitored at selected sites in Bangkok, Jakarta, and Taiwan.

  6. Continual in situ monitoring of pore water stable isotopes in the subsurface

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Weiler, M.

    2014-05-01

    Stable isotope signatures provide an integral fingerprint of origin, flow paths, transport processes, and residence times of water in the environment. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive, detailed, and repeated measurements of pore water in the unsaturated and saturated zone. This paper presents a functional and cost-efficient system for non-destructive continual in situ monitoring of pore water stable isotope signatures with high resolution. Automatic controllable valve arrays are used to continuously extract diluted water vapor in soil air via a branching network of small microporous probes into a commercial laser-based isotope analyzer. Normalized liquid-phase isotope signatures are then obtained based on a specific on-site calibration approach along with basic corrections for instrument bias and temperature dependent isotopic fractionation. The system was applied to sample depth profiles on three experimental plots with varied vegetation cover in southwest Germany. Two methods (i.e., based on advective versus diffusive vapor extraction) and two modes of sampling (i.e., using multiple permanently installed probes versus a single repeatedly inserted probe) were tested and compared. The results show that the isotope distribution along natural profiles could be resolved with sufficiently high accuracy and precision at sampling intervals of less than four minutes. The presented in situ approaches may thereby be used interchangeably with each other and with concurrent laboratory-based direct equilibration measurements of destructively collected samples. It is thus found that the introduced sampling techniques provide powerful tools towards a detailed quantitative understanding of dynamic and heterogeneous shallow subsurface and vadose zone processes.

  7. U-tube based near-surface environmental monitoring in the Shenhua carbon dioxide capture and storage (CCS) project.

    PubMed

    Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun

    2018-04-01

    The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.

  8. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    PubMed

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.

  9. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    USGS Publications Warehouse

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  10. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    NASA Astrophysics Data System (ADS)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.

  11. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (CP v1.0)

    NASA Astrophysics Data System (ADS)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; Chen, Xingyuan; Dai, Heng; Hammond, Glenn E.; Riley, William J.; Downs, Janelle L.; Liu, Ying; Zachara, John M.

    2017-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater-river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.

  12. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE PAGES

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; ...

    2017-12-12

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year periodmore » to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  13. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate themore » impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  14. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE PAGES

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; ...

    2017-01-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate themore » impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  15. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year periodmore » to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  16. Solar-Cycle Variation of Subsurface-Flow Divergence: A Proxy of Magnetic Activity?

    NASA Astrophysics Data System (ADS)

    Komm, R.; Howe, R.; Hill, F.

    2017-09-01

    We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have analyzed Global Oscillation Network Group (GONG) Dopplergrams with a ring-diagram analysis covering about 15 years and Helioseismic and Magnetic Imager (HMI) Dopplergrams covering more than 6 years. After subtracting the average rotation rate and meridional flow, we have calculated the divergence of the horizontal residual flows from the maximum of Solar Cycle 23 through the declining phase of Cycle 24. The subsurface flows are mainly divergent at quiet regions and convergent at locations of high magnetic activity. The relationship is essentially linear between divergence and magnetic activity at all activity levels at depths shallower than about 10 Mm. At greater depths, the relationship changes sign at locations of high activity; the flows are increasingly divergent at locations with a magnetic activity index (MAI) greater than about 24 G. The flows are more convergent by about a factor of two during the rising phase of Cycle 24 than during the declining phase of Cycle 23 at locations of medium and high activity (about 10 to 40 G MAI) from the surface to at least 10 Mm. The subsurface divergence pattern of Solar Cycle 24 first appears during the declining phase of Cycle 23 and is present during the extended minimum. It appears several years before the magnetic pattern of the new cycle is noticeable in synoptic maps. Using linear regression, we estimate the amount of magnetic activity that would be required to generate the precursor pattern and find that it should be almost twice the amount of activity that is observed.

  17. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    NASA Astrophysics Data System (ADS)

    Mount, G. J.; Comas, X.

    2015-12-01

    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  18. Impacts of preferential flow on coastal groundwater-surface water interactions: The heterogeneous volcanic aquifer of Hawaii

    NASA Astrophysics Data System (ADS)

    Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.

    2017-12-01

    Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.

  19. Optimization of a Time-Lapse Gravity Network for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Appriou, D.; Strickland, C. E.; Ruprecht Yonkofski, C. M.

    2017-12-01

    The objective of this study is to evaluate what could be a comprehensive and optimal state of the art gravity monitoring network that would meet the UIC class VI regulation and insure that 90% of the CO2 injected remain underground. Time-lapse gravity surveys have a long history of effective applications of monitoring temporal density changes in the subsurface. For decades, gravity measurements have been used for a wide range of applications. The interest of time-lapse gravity surveys for monitoring carbon sequestration sites started recently. The success of their deployment in such sites depends upon a combination of favorable conditions, such as the reservoir geometry, depth, thickness, density change over time induced by the CO2 injection and the location of the instrument. In most cases, the density changes induced by the CO2 plume in the subsurface are not detectable from the surface but the use of borehole gravimeters can provide excellent results. In the framework of the National Assessment and Risk Partnership (NRAP) funded by the Department of Energy, the evaluation of the effectiveness of the gravity monitoring of a CO2 storage site has been assessed using multiple synthetic scenarios implemented on a community model developed for the Kimberlina site (e.g., fault leakage scenarios, borehole leakage). The Kimberlina carbon sequestration project was a pilot project located in southern San Joaquin Valley, California, aimed to safely inject 250,000 t CO2/yr for four years. Although the project was cancelled in 2012, the site characterization efforts resulted in the development of a geologic model. In this study, we present the results of the time-lapse gravity monitoring applied on different multiphase flow and reactive transport models developed by Lawrence Berkeley National Laboratory (i.e., no leakage, permeable fault zone, wellbore leakage). Our monitoring approach considers an ideal network, consisting of multiple vertical and horizontal instrumented boreholes that could be used to track the CO2 plume and potential leaks. A preliminary cost estimate will also be provided.

  20. On the effects of subsurface parameters on evaporite dissolution (Switzerland)

    NASA Astrophysics Data System (ADS)

    Zidane, Ali; Zechner, Eric; Huggenberger, Peter; Younes, Anis

    2014-05-01

    Uncontrolled subsurface evaporite dissolution could lead to hazards such as land subsidence. Observed subsidences in a study area of Northwestern Switzerland were mainly due to subsurface dissolution (subrosion) of evaporites such as halite and gypsum. A set of 2D density driven flow simulations were evaluated along 1000 m long and 150 m deep 2D cross sections within the study area that is characterized by tectonic horst and graben structures. The simulations were conducted to study the effect of the different subsurface parameters that could affect the dissolution process. The heterogeneity of normal faults and its impact on the dissolution of evaporites is studied by considering several permeable faults that include non-permeable areas. The mixed finite element method (MFE) is used to solve the flow equation, coupled with the multipoint flux approximation (MPFA) and the discontinuous Galerkin method (DG) to solve the diffusion and the advection parts of the transport equation.

  1. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2014-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  2. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2015-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  3. Traditional and innovative methods applied to a crystalline aquifer for characterizing fault zone hydrology at different scales

    NASA Astrophysics Data System (ADS)

    Bour, O.; Ruelleu, S.; Le Borgne, T.; Boudin, F.; Moreau, F.; Durand, S.; Longuevergne, L.

    2011-12-01

    Crystalline rocks aquifers are difficult to characterize since flow is mainly localized in few fractures or faults. In particular, the geometry of the main flow paths and the connections of the aquifer with the sub-surface are often poorly constrained. Here, we present results from different geophysical and hydraulic methods to quantify fault zone hydrology of a crystalline confined aquifer (Ploemeur, French Brittany). This outstandingly productive crystalline rock aquifer is exploited at a rate of about 10 6 m3 per year since 1991. The pumping site is located at the intersection of two main structures: the contact zone between granite roof and overlying micaschists, and a steeply dipping fault striking North 20°, with combined dextral strike-slip and normal components. Core samples and borehole optical imagery reveals that the contact zone at the granite roof consists of alternating deformed granitic sheets and enclaves of micaschists, pegmatite and aplite dykes, as well as quartz veins. Locally, this contact is marked by mylonites and pegmatite-bearing breccias that are often but not systematically associated with major borehole inflows. Other significant inflows are localized within single fractures independently of the lithologies encountered. At the borehole scale the structural and hydraulic properties of the aquifer are thus highly variable. At the site scale - typically a kilometer squared - the water levels are monitored in 22 boreholes, 100 meters deep in average. The connectivity of the main flow paths and the hydraulic properties are relatively well constrained and quantified thanks to cross-borehole flowmeter tests and traditional pumping tests. In complement, long-base tiltmeters monitoring and ground-surface leveling allows to monitor sub-surface deformation. It provides a quantification of the hydro-mechanical properties of the aquifer and better constraints about the geometry of the main fault zone. Surprisingly, the storage coefficient of the confined aquifer is relatively high, in agreement with ground-surface deformation measurements that suggest a relativity high compressibility of the fault zone. At larger scale, we show through a high-resolution gravimetric survey that the highly fractured contact between granite and micaschists, which constitutes the main path for groundwater flow, is a gently dipping structure. A 3D gravimetric model confirms also the presence of sub-vertical faults that may constitute important drains for the aquifer recharge. In addition, groundwater temperature monitoring allows to shows that the main water supply comes from a depth of at least 300 meters. Such a depth in a low relief region involves relatively deep groundwater circulation that can be achieved only thanks to major permeable fault zone. This field example shows the advantages and limitations of some traditional and innovative methods to characterize fault zone hydrology in crystalline bedrock aquifers.

  4. Advances in Multiphase Flow and Transport in the Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni

    Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.

  5. Advances in Multiphase Flow and Transport in the Subsurface Environment

    DOE PAGES

    Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni; ...

    2018-03-04

    Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.

  6. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    NASA Astrophysics Data System (ADS)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  7. Stochastic collocation using Kronrod-Patterson-Hermite quadrature with moderate delay for subsurface flow and transport

    NASA Astrophysics Data System (ADS)

    Liao, Q.; Tchelepi, H.; Zhang, D.

    2015-12-01

    Uncertainty quantification aims at characterizing the impact of input parameters on the output responses and plays an important role in many areas including subsurface flow and transport. In this study, a sparse grid collocation approach, which uses a nested Kronrod-Patterson-Hermite quadrature rule with moderate delay for Gaussian random parameters, is proposed to quantify the uncertainty of model solutions. The conventional stochastic collocation method serves as a promising non-intrusive approach and has drawn a great deal of interests. The collocation points are usually chosen to be Gauss-Hermite quadrature nodes, which are naturally unnested. The Kronrod-Patterson-Hermite nodes are shown to be more efficient than the Gauss-Hermite nodes due to nestedness. We propose a Kronrod-Patterson-Hermite rule with moderate delay to further improve the performance. Our study demonstrates the effectiveness of the proposed method for uncertainty quantification through subsurface flow and transport examples.

  8. High-resolution monitoring of catchment nutrient response to the end of the 2011-2012 drought in England, captured by the demonstration test catchments

    NASA Astrophysics Data System (ADS)

    Outram, F. N.; Lloyd, C.; Jonczyk, J.; Benskin, C. McW. H.; Grant, F.; Dorling, S. R.; Steele, C. J.; Collins, A. L.; Freer, J.; Haygarth, P. M.; Hiscock, K. M.; Johnes, P. J.; Lovett, A. L.

    2013-12-01

    The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011-2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that the weather fronts resulted in extreme flow, nitrate and TP concentrations in all three catchments but with distinct differences in both hydrographs and chemographs. Hysteresis loops constructed from high resolution data are used to highlight an array of potential pollutant sources and delivery pathways. In the Hampshire Avon DTC, transport was dominated by sub-surface processes, where phosphorus, largely in the soluble form, was found to be transport-limited. In the Wensum DTC, transport was largely dominated by rapid sub-surface movement due to the presence of under-drainage, which mobilised large quantities of nitrate during the storm. In the Eden DTC, transport was found to be initially dominated by surface runoff, which switched to subsurface delivery on the falling limb of the hydrograph, with the surface delivery transporting large amounts of particulate phosphorus to the river, with a transport-limited response. The lack of exhaustion of nutrient delivery in response to such extreme flow generation indicates the size of the nutrient pools stored in these catchments, and highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to UK river systems from diffuse agricultural sources.

  9. Paleomagnetic correlation of surface and subsurface basaltic lava flows and flow groups in the southern part of the Idaho National Laboratory, Idaho, with paleomagnetic data tables for drill cores

    USGS Publications Warehouse

    Champion, Duane E.; Hodges, Mary K.V.; Davis, Linda C.; Lanphere, Marvin A.

    2011-01-01

    Paleomagnetic inclination and polarity studies have been conducted on thousands of subcore samples from 51 coreholes located at and near the Idaho National Laboratory. These studies are used to paleomagnetically characterize and correlate successive stratigraphic intervals in each corehole to similar depth intervals in adjacent coreholes. Paleomagnetic results from 83 surface paleomagnetic sites, within and near the INL, are used to correlate these buried lava flow groups to basaltic shield volcanoes still exposed on the surface of the eastern Snake River Plain. Sample handling and demagnetization protocols are described as well as the paleomagnetic data averaging process. Paleomagnetic inclination comparisons between coreholes located only kilometers apart show comparable stratigraphic successions of mean inclination values over tens of meters of depth. At greater distance between coreholes, comparable correlation of mean inclination values is less consistent because flow groups may be missing or additional flow groups may be present and found at different depth intervals. Two shallow intersecting cross-sections, A-A- and B-B- (oriented southwest-northeast and northwest-southeast, respectively), drawn through southwest Idaho National Laboratory coreholes show the corehole to corehole or surface to corehole correlations derived from the paleomagnetic inclination data. From stratigraphic top to bottom, key results included the (1) Quaking Aspen Butte flow group, which erupted from Quaking Aspen Butte southwest of the Idaho National Laboratory, flowed northeast, and has been found in the subsurface in corehole USGS 132; (2) Vent 5206 flow group, which erupted near the southwestern border of the Idaho National Laboratory, flowed north and east, and has been found in the subsurface in coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, USGS 128, and STF-AQ-01; and (3) Mid Butte flow group, which erupted north of U.S. Highway 20, flowed northwest, and has been found in the subsurface at coreholes ARA-COR-005 and STF-AQ-01. The high K20 flow group erupted from a vent that may now be buried south of U.S. Highway 20 near Middle Butte, flowed north, and is found in the subsurface in coreholes USGS 131, USGS 127, USGS 130, USGS 128, USGS 123, STF-AQ-01, and ARA-COR-005 ending near the Idaho Nuclear Technology and Engineering Center. The vent 5252 flow group erupted just south of U.S. Highway 20 near Middle and East Buttes, flowed northwest, and is found in the subsurface in coreholes ARA-COR-005, STF-AQ-01, USGS 130, USGS 128, ICPP 214, USGS 123, ICPP 023, USGS 121, USGS 127, and USGS 131. The Big Lost flow group erupted from a now-buried vent near the Radioactive Waste Management Complex, flowed southwest to corehole USGS 135, and northeast to coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, STF-AQ-01, and ARA-COR-005. The AEC Butte flow group erupted from AEC Butte near the Advanced Test Reactor Complex and flowed south to corehole Middle 1823, northwest to corehole USGS 134, northeast to coreholes USGS 133 and NRF 7P, and south to coreholes USGS 121, ICPP 023, USGS 123, and USGS 128. Evidence of progressive subsidence of the axial zone of the ESRP is shown in these cross-sections, distorting the original attitudes of the lava flow groups and interbedded sediments. A deeper cross-section, C-C- (oriented west to east), spanning the entire southern Idaho National Laboratory shows correlations of the lava flow groups in the saturated part of the ESRP aquifer. Areally extensive flow groups in the deep subsurface (from about 100-800 meters below land surface) can be traced over long distances. In cross-section C-C-, the flow group labeled "Matuyama" can be correlated from corehole USGS 135 to corehole NPR Test/W-02, a distance of about 28 kilometers (17 miles). The flow group labeled "Matuyama 1.21 Ma" can be correlated from corehole Middle 1823 to corehole ANL-OBS-A-001, a distance of 26 kilometers (16 miles). Other flo

  10. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

    DOE PAGES

    Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; ...

    2016-08-11

    The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less

  11. Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity

    NASA Astrophysics Data System (ADS)

    Bause, Markus

    2008-02-01

    In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.

  12. EXPOSURE ASSESSMENT MODELING FOR HYDROCARBON SPILLS INTO THE SUBSURFACE

    EPA Science Inventory

    Hydrocarbons which enter the subsurface through spills or leaks may create serious, long-lived ground-water contamination problems. onventional finite difference and finite element models of multiphase, multicomponent flow often have extreme requirements for both computer time an...

  13. Controls on streamflow intermittence in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kampf, S. K.; Puntenney, K.; Martin, C.; Weber, R.; Gerlich, J.; Hammond, J. C.; Lefsky, M. A.

    2017-12-01

    Intermittent streams comprise more than 60% of the channel length in semiarid northern Colorado, yet little is known about their flow magnitude and timing. We used field surveys, stream sensors, and remote sensing to quantify spatial and temporal patterns of streamflow intermittence in the Cache la Poudre basin in 2016-2017. To evaluate potential controls on streamflow intermittence, we delineated the drainage area to each monitored point and quantified the catchment's mean precipitation, temperature, snow persistence, slope, aspect, vegetation type, soil type, and bedrock geology. During the period of study, most streams below 2500 m elevation and <550 mm mean annual precipitation were intermittent, with flow only during the early spring and summer. In these drier low elevation areas, flow duration generally increased with precipitation and snow persistence. Locally, the type of bedrock geology and location of streams relative to faults affected flow duration. Above 2500 m, nearly all streams with drainage areas >1 km2 had perennial flow, whereas nearly all streams with drainage areas <1 km2 had intermittent flow. For the high elevation intermittent streams, stream locations often differed substantially from the locations mapped in standard GIS data products. Initial analyses have identified no clearly quantifiable controls on flow duration of high elevation streams, but field observations indicate subsurface flow paths are important contributors to surface streams.

  14. Self-accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel

    NASA Astrophysics Data System (ADS)

    Avni, Yoav; Lensky, Nadav; Dente, Elad; Shviro, Maayan; Arav, Reuma; Gavrieli, Ittai; Yechieli, Yoseph; Abelson, Meir; Lutzky, Hallel; Filin, Sagi; Haviv, Itai; Baer, Gidon

    2016-01-01

    We document and analyze the rapid development of a real-time karst system within the subsurface salt layers of the Ze'elim Fan, Dead Sea, Israel by a multidisciplinary study that combines interferometric synthetic aperture radar and light detection and ranging measurements, sinkhole mapping, time-lapse camera monitoring, groundwater level measurements and chemical and isotopic analyses of surface runoff and groundwater. The >1 m/yr drop of Dead Sea water level and the subsequent change in the adjacent groundwater system since the 1960s resulted in flushing of the coastal aquifer by fresh groundwater, subsurface salt dissolution, gradual land subsidence and formation of sinkholes. Since 2010 this process accelerated dramatically as flash floods at the Ze'elim Fan were drained by newly formed sinkholes. During and immediately after these flood events the dissolution rates of the subsurface salt layer increased dramatically, the overlying ground surface subsided, a large number of sinkholes developed over short time periods (hours to days), and salt-saturated water resurged downstream. Groundwater flow velocities increased by more than 2 orders of magnitudes compared to previously measured velocities along the Dead Sea. The process is self-accelerating as salt dissolution enhances subsidence and sinkhole formation, which in turn increase the ponding areas of flood water and generate additional draining conduits to the subsurface. The rapid terrain response is predominantly due to the highly soluble salt. It is enhanced by the shallow depth of the salt layer, the low competence of the newly exposed unconsolidated overburden and the moderate topographic gradients of the Ze'elim Fan.

  15. Tetracycline Resistance in the Subsurface of a Poultry Farm: Influence of Poultry Wastes

    NASA Astrophysics Data System (ADS)

    You, Y.; Ball, W. P.; Ward, M. J.; Hilpert, M.

    2007-12-01

    Concentrated animal feeding operations (CAFOs) are considered to be important man-made reservoir of antibiotic resistant bacteria. Using the electromagnetic induction (EMI) method of geophysical characterization, we measured the apparent subsurface electrical conductivity (ECa) at a CAFO site in order to assess the movement of pollutants associated with animal waste. The map of ECa and other available data suggest that (1) soil surrounding a poultry litter storage shed is contaminated by poultry waste, (2) a contamination plume in the subsurface emanates from that shed, and (3) the development of that plume is due to groundwater flow. We focused on understanding the spread of tetracycline resistance (Tc\\tiny R), because tetracycline is one of the most frequently used antibiotics in food animal production and therefore probably used at our field site. Microbiological experiments show the presence of Tc\\tiny R bacteria in the subsurface and indicate higher concentrations in the top soil than in the aquifer. Environmental DNA was extracted to identify CAFO- associated Tc\\tiny R genes and to explore a link between the presence of Tc\\tiny R and CAFO practices. A "shot-gun" cloning approach is under development to target the most prevalent Tc\\tiny R gene. This gene will be monitored in future experiments, in which we will study the transmission of Tc\\tiny R to naive E.~coli under selective pressure of Tc. Experimental results will be used to develop a mathematical/numerical model in order to describe the transmission process and to subsequently make estimates regarding the large-scale spread of antibiotic resistance.

  16. Subsurface flow and vegetation patterns in tidal environments

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Silvestri, Sonia; Marani, Marco

    2004-05-01

    Tidal environments are characterized by a complex interplay of hydrological, geomorphic, and biological processes, and their understanding and modeling thus require the explicit description of both their biotic and abiotic components. In particular, the presence and spatial distribution of salt marsh vegetation (a key factor in the stabilization of the surface soil) have been suggested to be related to topographic factors and to soil moisture patterns, but a general, process-based comprehension of this relationship has not yet been achieved. The present paper describes a finite element model of saturated-unsaturated subsurface flow in a schematic salt marsh, driven by tidal fluctuations and evapotranspiration. The conditions leading to the establishment of preferentially aerated subsurface zones are studied, and inferences regarding the development and spatial distribution of salt marsh vegetation are drawn, with important implications for the overall ecogeomorphological dynamics of tidal environments. Our results show that subsurface water flow in the marsh induces complex water table dynamics, even when the tidal forcing has a simple sinusoidal form. The definition of a space-dependent aeration time is then proposed to characterize root aeration. The model shows that salt marsh subsurface flow depends on the distance from the nearest creek or channel and that the subsurface water movement near tidal creeks is both vertical and horizontal, while farther from creeks, it is primarily vertical. Moreover, the study shows that if the soil saturated conductivity is relatively low (10-6 m s-1, values quite common in salt marsh areas), a persistently unsaturated zone is present below the soil surface even after the tide has flooded the marsh; this provides evidence of the presence of an aerated layer allowing a prolonged presence of oxygen for aerobic root respiration. The results further show that plant transpiration increases the extent and persistence of the aerated layer, thereby introducing a strong positive feedback: Pioneer plants on marsh edges have the effect of increasing soil oxygen availability, thus creating the conditions for the further development of other plant communities.

  17. 3D numerical modeling of hyporheic exchange processes in fractal riverbed

    NASA Astrophysics Data System (ADS)

    Lee, A.; Aubeneau, A.

    2017-12-01

    The subsurface region receiving stream water is known as the hyporheic zone and the flow of water in and out of this zone is called hyporheic exchange. The hyporheic zone is populated by biofilms and is a hotspot for nutrient uptake and contaminant transformation. Traditionally, pumping models predicting the head distribution over the riverbed boundary are used to obtain the velocity field in the subsurface. However, past research has largely overlooked the nonlinearity of the turbulent flow above the bumpy riverbed. The main objective of this research is to investigate the effect of spatial and temporal heterogeneity created by turbulent flow on hyporheic exchange and residence time distribution in fractal channel beds. The 3-D fractal riverbed is created from the power spectrum. Large-Eddy Simulation is used to provide the pressure field over the benthic boundary. Finally, Darcian fluxes in the sub-surface are calculated and hyporheic travel times computed using random walks. Surface and subsurface transport processes are represented explicitly and can be studied in detail. Our results suggest that (1) Eddies and wakes around the dunes force the exchange (2) The bigger the dunes, the greater the influence of turbulence (3) Turbulence induces more exchange than pumping predicts.

  18. Acoustic Monitoring of Gravity-Driven Controls on CaCO3 Precipitates in a Fracture

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Sheets, J.; Zhang, L.; Kim, D.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.

    2017-12-01

    Sealing fractures by mineral precipitation is an important process for improving caprock integrity in subsurface reservoirs. In this study, the ability to monitor precipitate distribution in fractures with buoyant fluids was examined. Fractures with uniform aperture distributions of 0.5, 1.0 and 2.0 mm were created from acrylic plates to enable direct imaging of precipitate formation over time. CaCO3 precipitation was induced in a fracture from invasion of 1M CaCl2 and 0.3M Na2CO3 solutions. During chemical invasion, a fracture plane was oriented either parallel or perpendicular to gravity. Acoustic (P) wave transmission ( 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. Precipitate particle sizes during formation were determined using SAXS and WAXS. In both horizontal and vertical fractures, the density contrast between the two solutions affected the spatial distribution of precipitation. In vertical fractures, the denser CaCl2 solution almost completely displaced the NaCO3 solution, causing strong localization of precipitates. However, in the horizontal fractures, flow stratification occurred in the 2 mm aperture fractures, with the less dense Na2CO3 flowing over the CaCl2 solution, resulting in a more even distribution of precipitates cross the fracture plane. P-wave amplitudes increased up to 8% and the arrival time decreased with precipitate accumulation in the horizontal fracture. This is consistent with a three-layered approach as the seismic impedance inside the fracture increases. The initial contact between the two was observed as a decrease in the P-wave amplitude. As precipitates accumulated, the amplitude recovered and increased, with greater increases observed along the mixing flow path. Fractures in the subsurface may seal differently depending on the orientation thus affecting the ability of a fracture to self-heal if oriented vertically. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231

  19. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  20. Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980

    USGS Publications Warehouse

    Hull, R.W.; Martin, J.B.

    1982-01-01

    Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)

  1. 30 CFR 250.601 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...

  2. 30 CFR 250.601 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...

  3. 30 CFR 250.601 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...

  4. Using Electromagnetic Induction Technique to Detect Hydropedological Dynamics: Principles and Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Liao, Kaihua; Doolittle, James; Lin, Henry

    2014-05-01

    Hydropedological dynamics including soil moisture variation, subsurface flow, and spatial distributions of different soil properties are important parameters in ecological, environmental, hydrological, and agricultural modeling and applications. However, technical gap exists in mapping these dynamics at intermediate spatial scale (e.g., farm and catchment scales). At intermediate scales, in-situ monitoring provides detailed data, but is restricted in number and spatial coverage; while remote sensing provides more acceptable spatial coverage, but has comparatively low spatial resolution, limited observation depths, and is greatly influenced by the surface condition and climate. As a non-invasive, fast, and convenient geophysical tool, electromagnetic induction (EMI) measures soil apparent electrical conductivity (ECa) and has great potential to bridge this technical gap. In this presentation, principles of different EMI meters are briefly introduced. Then, case studies of using repeated EMI to detect spatial distributions of subsurface convergent flow, soil moisture dynamics, soil types and their transition zones, and different soil properties are presented. The suitability, effectiveness, and accuracy of EMI are evaluated for mapping different hydropedological dynamics. Lastly, contributions of different hydropedological and terrain properties on soil ECa are quantified under different wetness conditions, seasons, and land use types using Classification and Regression Tree model. Trend removal and residual analysis are then used for further mining of EMI survey data. Based on these analyses, proper EMI survey designs and data processing are proposed.

  5. Electrical Resistivity Tomography monitoring reveals groundwater storage in a karst vadose zone

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Kaufmann, O.; Van Camp, M. J.; Triantafyllou, A.; Cisse, M. F.; Quinif, Y.; Meldrum, P.; Wilkinson, P. B.; Chambers, J. E.

    2016-12-01

    Karst systems are among the most difficult aquifers to characterize, due to their high heterogeneity. In particular, temporary groundwater storage that occurs in the unsaturated zone and the discharge to deeper layers are difficult processes to identify and estimate with in-situ measurements. Electrical Resistivity Tomography (ERT) monitoring is meant to track changes in the electrical properties of the subsurface and has proved to be applicable to evidence and quantify hydrological processes in several types of environments. Applied to karst systems, it has particularly highlighted the challenges in linking electrical resistivity changes to groundwater content with usual approaches of petrophysical relationships, given the high heterogeneity of the subsurface. However, taking up the challenge, we undertook an ERT monitoring at the Rochefort Cave Laboratory (Belgium) lasting from Spring 2014 to Winter 2016. This includes 3 main periods of several months with daily measurements, from which seasonal groundwater content changes in the first meters of the vadose zone were successfully imaged. The monitoring concentrates on a 48 electrodes profile that goes from a limestone plateau to the bottom of a sinkhole. 3D UAV photoscans of the surveyed sinkhole and of the main chamber of the nearby cave were performed. Combined with lithological observations from a borehole drilled next to the ERT profile, the 3D information made it possible to project karstified layers visible in the cave to the surface and assess their potential locations along the ERT profile. Overall, this helped determining more realistic local petrophysical properties in the surveyed area, and improving the ERT data inversion by adding structural constraints. Given a strong air temperature gradient in the sinkhole, we also developed a new approach of temperature correction of the raw ERT data. This goes through the solving (using pyGIMLI package) of the 2D ground temperature field and its temporal evolution, calibrated with data from in-situ temperature probes installed along the ERT profile. Results from a 3D ERT monitoring of a sprinkling experiment, those of a gravimetric monitoring and an in-cave flow discharges monitoring were also of interest to verify interpretations of the permanent ERT monitoring in terms of groundwater content changes.

  6. Dissolved phosphorus retention of light-weight expanded shale and masonry sand used in subsurface flow treatment wetlands.

    PubMed

    Forbes, Margaret G; Dickson, Kenneth R; Golden, Teresa D; Hudak, Paul; Doyle, Robert D

    2004-02-01

    Using surface flow constructed wetlands for long-term phosphorus (P) retention presents a challenge due to the fact that P is stored primarily in the sediments. Subsurface flow wetlands have the potential to greatly increase P retention; however, the substrate needs to have both high hydraulic conductivity and high P sorption capacity. The objective of our study was to assess the P retention capacity of two substrates, masonry sand and lightweight expanded shale. We used sorption/desorption isotherms, flow-through column experiments, and pilot-scale wetlands to quantify P retained from treated municipal wastewater. Langmuir sorption isotherms predicted that the expanded shale has a maximum sorption capacity of 971 mg/kg and the masonry sand 58.8 mg/kg. In column desorption and column flow-through experiments, the masonry sand desorbed P when exposed to dilute P solutions. The expanded shale, however, had very little desorption and phosphorus did not break through the columns during our experiment. In pilot cells, masonry sand retained (mean +/- standard deviation) 45 +/- 62 g P/m2/yr and expanded shale retained 164 +/- 110 g P/m2/yr. We conclude that only the expanded shale would be a suitable substrate for retaining P in a subsurface flow wetland.

  7. Monitoring an Induced Permafrost Warming Experiment Using ERT, Temperature, and NMR in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.

    2016-12-01

    As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.

  8. Time-Distance Helioseismology Data-Analysis Pipeline for Helioseismic and Magnetic Imager Onboard Solar Dynamics Observatory (SDO-HMI) and Its Initial Results

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Couvidat, S.; Bogart, R. S.; Parchevsky, K. V.; Birch, A. C.; Duvall, Thomas L., Jr.; Beck, J. G.; Kosovichev, A. G.; Scherrer, P. H.

    2011-01-01

    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.

  9. Dynamics of nonreactive solute transport in the permafrost environment

    NASA Astrophysics Data System (ADS)

    Svyatskiy, D.; Coon, E. T.; Moulton, J. D.

    2017-12-01

    As part of the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, researchers are developing process-rich models to understand and predict the evolution of water sources and hydrologic flow pathways resulting from degrading permafrost. The sources and interaction of surface and subsurface water and flow paths are complex in space and time due to strong interplay between heterogeneous subsurface parameters, the seasonal to decadal evolution of the flow domain, climate driven melting and release of permafrost ice as a liquid water source, evolving surface topography and highly variable meteorological data. In this study, we seek to characterize the magnitude of vertical and lateral subsurface flows in a cold, wet tundra, polygonal landscape characteristic of the Barrow Peninsula, AK. To better understand the factors controlling water flux partitioning in these low gradient landscapes, NGEE researchers developed and are applying the Advanced Terrestrial Simulator (ATS), which fully couples surface and subsurface flow and energy processes, snow distribution and atmospheric forcing. Here we demonstrate the integration of a new solute transport model within the ATS, which enables the interpretation of applied and natural tracer experiments and observations aimed at quantifying water sources and flux partitioning. We examine the role of ice wedge polygon structure, freeze-thaw processes and soil properties on the seasonal transport of water within and through polygons features, and compare results to tracer experiments on 2D low-centered and high-centered transects corresponding to artificial as well as realistic topographical data from sites in polygonal tundra. These simulations demonstrate significant difference between flow patterns between permafrost and non-permafrost environments due to active layer freeze-thaw processes.

  10. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  11. Application of ERT, Saline Tracer and Numerical Studies to Delineate Preferential Paths in Fractured Granites.

    PubMed

    Sreeparvathy, Vijay; Kambhammettu, B V N P; Peddinti, Srinivasa Rao; Sarada, P S L

    2018-03-22

    Accurate quantification of in situ heterogeneity and flow processes through fractured geologic media remains elusive for hydrogeologists due to the complexity in fracture characterization and its multiscale behavior. In this research, we demonstrated the efficacy of tracer-electrical resistivity tomography (ERT) experiments combined with numerical simulations to characterize heterogeneity and delineate preferential flow paths in a fractured granite aquifer. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well (IW) located inside the Indian Institute of Technology Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. ERT data quality was improved by considering stacking, reciprocal measurements, resolution indicators, and geophysical logs. Dynamic changes in subsurface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. Temporal changes in electrical resistivity and tracer concentration were monitored along the vertical in an observation well located at 48 m to the east of the IW. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements. Fracture geometry and hydraulic properties derived from ERT and pumping tests were further used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by a decrease in RMSE from 199 to 65 mg/L). A sensitivity analysis on model simulations conclude that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. © 2018, National Ground Water Association.

  12. Hillslope response to sprinkling and natural rainfall using velocity and celerity estimates in a slate-bedrock catchment

    NASA Astrophysics Data System (ADS)

    Scaini, Anna; Hissler, Christophe; Fenicia, Fabrizio; Juilleret, Jérôme; Iffly, Jean François; Pfister, Laurent; Beven, Keith

    2018-03-01

    Subsurface flow is often recognized as a dominant runoff generation process. However, observing subsurface properties, and understanding how they control flow pathways, remains challenging. This paper investigates how surface slope and bedrock cleavage control subsurface flow pathways in a slate bedrock headwater catchment in Luxembourg, characterised by a double-peak streamflow response. We use a range of experimental techniques, including field observations of soil and bedrock characteristics, and a sprinkling experiment at a site located 40 m upslope from the stream channel. The sprinkling experiment uses Br- as a tracer, which is measured at a well downslope from the plot and at various locations along the stream, together with well and stream hydrometric responses. The sprinkling experiment is used to estimate velocities and celerities, which in turn are used to infer flow pathways. Our results indicate that the single or first peak of double-peak events is rainfall-driven (controlled by rainfall) while the second peak is storage-driven (controlled by storage). The comparison between velocity and celerity estimates suggests a fast flowpath component connecting the hillslope to the stream, but velocity information was too scarce to fully support such a hypothesis. In addition, different estimates of celerities suggest a seasonal influence of both rainfall intensity rate and residual water storage on the celerity responses at the hillslope scale. At the catchment outlet, the estimated of the total mass of Br- recovered in the stream was about 2.5% of the application. Further downstream, the estimate mass of Br- was about 4.0% of the application. This demonstrates that flowpaths do not appear to align with the slope gradient. In contrast, they appear to follow the strike of the bedrock cleavage. Our results have expanded our understanding of the importance of the subsurface, in particular the underlying bedrock systems, and the importance of cleavage orientation, as well as topography, in controlling subsurface flow direction in this catchment.

  13. Modeling Aspect Controlled Formation of Seasonally Frozen Ground on Montane Hillslopes: a Case Study from Gordon Gulch, Colorado

    NASA Astrophysics Data System (ADS)

    Rush, M.; Rajaram, H.; Anderson, R. S.; Anderson, S. P.

    2017-12-01

    The Intergovernmental Panel on Climate Change (2013) warns that high-elevation ecosystems are extremely vulnerable to climate change due to short growing seasons, thin soils, sparse vegetation, melting glaciers, and thawing permafrost. Many permafrost-free regions experience seasonally frozen ground. The spatial distribution of frozen soil exerts a strong control on subsurface flow and transport processes by reducing soil permeability and impeding infiltration. Accordingly, evolution of the extent and duration of frozen ground may alter streamflow seasonality, groundwater flow paths, and subsurface storage, presenting a need for coupled thermal-hydrologic models to project hydrologic responses to climate warming in high-elevation regions. To be useful as predictive tools, such models should incorporate the heterogeneity of solar insolation, vegetation, and snowpack dynamics. We present a coupled thermal-hydrologic modeling study against the backdrop of field observations from Gordon Gulch, a seasonally snow-covered montane catchment in the Colorado Front Range in the Boulder Creek Critical Zone Observatory. The field site features two instrumented hillslopes with opposing aspects: the snowpack on the north-facing slope persists throughout much of the winter season, while the snowpack on the south-facing slope is highly ephemeral. We implemented a surface energy balance and snowpack accumulation and ablation model that is coupled to the subsurface flow and transport code PFLOTRAN-ICE to predict the hydrologic consequences of aspect-controlled frozen soil formation during water years 2013-2016. Preliminary model results demonstrate the occurrence of seasonally-frozen ground on the north-facing slope that directs snowmelt to the stream by way of shallow subsurface flow paths. The absence of persistently frozen ground on the south-facing slope allows deeper infiltration of snowmelt recharge. The differences in subsurface flow paths also suggest strong aspect-controlled heterogeneities in nitrate export and differences in geomorphic processes such as frost creep.

  14. Geoelectrical Monitoring for the characterisation of the near surface interflow in small alpine catchment areas during continuous rain

    NASA Astrophysics Data System (ADS)

    Ita, A.; Römer, A.; Markart, G.; Klebinder, K.; Bieber, G.; Kohl, B.

    2009-04-01

    In a pilot study the bandwidth of the near surface interflow and subsurface stormflow was investigated on a hill slope complex at the military training centre Lizum/Walchen (approx. 2000m above sea level) in Tyrol. High amounts of precipitation (about 250 mm) were applied within 2 days by use of a transportable spray irrigation installation. During the first day water from a creek was applied to the test site. On the following day the site was sprinkled with a salt tracer for an hour followed by creek water for the rest of the day. To characterise the runoff, different measurements techniques were used in the irrigation field. The subsurface runoff was registered in calibrated tanks. Changes in soil moisture were measured with buried TDR-waveguides - arranged in four profiles from 15 cm to 115 cm soil depth in maximum. In addition three geoelectrical profiles were measured. Two geoelectrical profiles were positioned orthogonal to the slope in the precipitation area, where one was reaching over the edge. The third profile was parallel to the slope overlapping with the second profile. Electrode distances were 0.25 cm and 0.50 cm respectively with 48 electrodes per profile. Geoelectrical measurements were done periodically before, during and after the rain simulation experiments. These have been carried out with the newly developed geoelectric instrument of the Geological survey of Austria, GEOMON4D. The advantage of the instrument is that it can measure a resistivity section at high speed and in an automated, meaning monitoring mode. Therefore, it is possible to register small and fast changes in the soil conductivity caused by a tracer. Summarising it can be said that the resistivity soundings give a detailed picture regarding the geological structure of the research area as well as explicit knowledge of how the near surface interflow spreads out in the subsurface. The geoelectric measurements deliver precise information about the behaviour of the salt tracer, its lateral and vertical extend and the flow velocity in the subsurface. For a more elaborate interpretation the results of the measurements were put together to achieve the best information of the interflow processes.

  15. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands.

    PubMed

    Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L M; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J M; van der Stoel, Almer E C

    2014-07-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to establish a conceptual overview of the technical issues related to sustainable management of the subsurface. Case studies on the exploitation of subsurface resources (including spatial use of the subsurface) were analysed, examining social relevance, environmental impact, pressure points and management solutions. The case studies ranged from constructing underground garages to geothermal exploitation. The following issues were identified for the technological/scientific aspects: site investigation, suitability, risk assessment, monitoring and measures in the event of failure. Additionally, the following general issues were identified for the administrative aspects: spatial planning, option assessment, precaution, transparency, responsibility and liability. These issues were explored on their technological implications within the framework of sustainable management of the subsurface. This resulted into the following key aspects: (1) sustainability assessment, (2) dealing with uncertainty and (3) policy instruments and governance. For all three aspects, different options were identified which might have a legal, economic or ethical background. The technological implications of these backgrounds have been identified. A set of recommendations for sustainable management of the subsurface resources (incl. space) was established: (1) management should be driven by scarcity, (2) always implement closed loop monitoring when the subsurface activities are high-risk, (3) when dealing with unknown features and heterogeneity, apply the precautionary principle, (4) responsibility and liability for damage must be set out in legislation and (5) sustainability should be incorporated in all relevant legislation and not only in environmental legislation. Other aspects to be considered are the reversibility of the impacts from subsurface activities and the abandonment of installations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.

    2015-12-01

    High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.

  17. Monitoring CO2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time-lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lu, C.; Zhang, C.; Huang, H.; Johnson, T.

    2012-12-01

    Geological sequestration of carbon dioxide (CO2) into the subsurface has been considered as one solution to reduce greenhouse emission to the atmosphere. Successful sequestration process requires efficient and adequate monitoring of injected fluids as they migrate into the aquifer to evaluate flow path, leakage, and geochemical interactions between CO2 and geologic media. In this synthetic field scale study, we have integrated 3D multiphase flow modeling code PFLOTRAN with 3D time-laps electrical resistivity tomography (ERT) to gain insight into the supercritical (SC) CO2 plumes movement in the deep saline aquifer and associated brine intrusion into shallower fresh water aquifer. A parallel ERT forward and inverse modeling package was introduced, and related algorithms are briefly described. The capabilities and limitations of ERT in monitoring CO2 migration are assessed by comparing the results from PFLOTRAN simulations with the ERT inversion results. In general, our study shows the ERT inversion results compare well with PFLOTRAN with reasonable discrepancies, indicating that the ERT can capture the actual CO2 plume dynamics and brine intrusion. Detailed comparisons on the location, size and volume of CO2 plume show the ERT method underestimated area review and overestimated total plume volume in the predictions of SC CO2 movements. These comparisons also show the ERT method constantly overestimate salt intrusion area and underestimated total solute amount in the predictions of brine filtration. Our study shows that together with other geochemical and geophysical methods, ERT is a potentially useful monitoring tool in detecting the SC CO2 and formation fluid migrations.

  18. An electrical resistivity-based method for investigation of subsurface structure

    NASA Astrophysics Data System (ADS)

    Alves Meira Neto, A.; Litwin, D.; Troch, P. A. A.; Ferre, T. P. A.

    2017-12-01

    Resolving the spatial distribution of soil porosity within the subsurface is of great importance for understanding flow and transport within heterogeneous media. Additionally, porosity patterns can be associated with the availability of water and carbon dioxide that will drive geochemical reactions and constrain microbiological growth. The use of controlled experimentation has the potential to circumvent problems related to the external and internal variability of natural systems, while also allowing a higher degree of observability. In this study, we suggest an ERT-based method of retrieving porosity fields based on the application of Archie's law associated with an experimental procedure that can be used in laboratory-scale studies. We used a 2 cubic meter soil lysimeter, equipped with 238 electrodes distributed along its walls for testing the method. The lysimeter serves as a scaled-down version of the highly monitored artificial hillslopes at the Landscape Evolution Observatory (LEO) located at Biosphere 2 - University of Arizona. The capability of the ERT system in deriving spatially distributed patterns of porosity with respect to its several sources of uncertainty was numerically evaluated. The results will be used to produce an optimal experimental design and for assessing the reliability of experimental results. This novel approach has the potential to further resolve subsurface heterogeneity within the LEO project, and highlight the use of ERT-derived results for hydro-bio-geochemical studies.

  19. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  20. Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries.

    PubMed

    Ujang, Z; Soedjono, E; Salim, M R; Shutes, R B

    2005-01-01

    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.

  1. Thermal management of an unconsolidated shallow urban groundwater body

    NASA Astrophysics Data System (ADS)

    Epting, J.; Händel, F.; Huggenberger, P.

    2013-05-01

    This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland). The concept of the investigations is based on (1) a characterization of the present thermal state of the urban groundwater body, and (2) the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the subsurface as well as the thermal influence of river-groundwater interaction. Investigation methods include (1) short- and long-term data analysis, (2) high-resolution multilevel groundwater temperature monitoring, as well as (3) 3-D numerical groundwater flow and heat transport modeling and scenario development. The combination of these methods allows for the quantifying of the thermal influences on the investigated urban groundwater body, including the influences of thermal groundwater use and heated subsurface constructions. Subsequently, first implications for management strategies are discussed, including minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal potential.

  2. Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models where then used to assess the long term impact of various agricultural setups on the quantity and quality of groundwater recharge. Relevant publications: Turkeltaub et al., WRR. 2016; Turkeltaub et al., J. Hydrol. 2015: Dahan et al., HESS 2014. Baram et al., J. Hydrol. 2012.

  3. Evidence for debris flow gully formation initiated by shallow subsurface water on Mars

    USGS Publications Warehouse

    Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.

    2010-01-01

    The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.

  4. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  5. COUPLED GEOPHYSICAL-HYDROLOGICAL MODELING OF A CONTROLLED NAPL SPILL

    EPA Science Inventory

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data

    ...

  6. Improving National Water Modeling: An Intercomparison of two High-Resolution, Continental Scale Models, CONUS-ParFlow and the National Water Model

    NASA Astrophysics Data System (ADS)

    Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison to better understand differences in process and bias. This intercomparison is a step toward better understanding how much water we have and interactions between surface and subsurface. Our goal is to advance our understanding and simulation of the hydrologic system and ultimately improve hydrologic forecasts.

  7. Comparing Flow Mechanism Hypothesis with Mobility Data of Natural Tracers

    NASA Astrophysics Data System (ADS)

    Sanda, M.; Chárová, Z.; Zumr, D.; Císlerová, M.

    2009-04-01

    Hillslope rainfall-outflow interactions, groundwater fluxes and hydrological balance have been examined in the small mountainous headwater catchment Uhlířská (1.78 km2), Jizera Mountains, Czech Republic. The hillslope soil profile is formed by paleozolic crystalline bedrock overlaid by shallow highly permeable Cambisol, whereas the thick saturated glacial deposits in the valley are overlaid by Histosols. Quick communication of the vadose zone with the granite bedrock via preferential subsurface flowpaths is hypothesized, in agreement with the observation of instant water transformation through the permeable Cambisols, to outflow caused by storms. There is regularly a quick response of high magnitude, although surface runoff occurs very rarely. Standard climatic and hydrological monitoring is supplemented by measurements of the soil moisture, soil pore water suction, hillslope stormflow in the vadose zone and water table fluctuation in the saturated subsurface. Water sampling for analysis of the isotopes 18O and 2H and geochemical tracer silica in the form of SiO2 is performed throughout the catchment. The episode based isotopic data serve for the separation of the particular components of the outflow hydrograph and for the determination of the contribution of event and pre-event water in the hypodermic hillslope outflow and in the catchment outflow as a whole. Variation of silica content in the water cycle components was examined to assess contributions from the soil profile and the aquifer. Significant portion of event catchment runoff was assigned to pre-event water, partly stored in the shallow soil layers on hillslopes and partly in the valley aquifer. Here, a significant mixing (in form of attenuation of the input signal of 18O or 2H measured for precipitation) occurs as proven by sampling and modeling by means of physically based models for vadose and saturated zones. Hydrological balance of the catchment shows only minor discrepancies in averaged value of the either isotope in the whole balanced mass on the input (precipitation) and the output (streamflow). There is a strong mixing of water already in the root zone, where transpiration takes place. Preferential flow in the soil profile proved to be a major transporting mechanism for water in the form of quick subsurface runoff. The hypothesis that the hillslope soil layers controls the distribution of the flow into the groundwater recharge and/or the shallow subsurface flow during the rainfall-runoff episode, was confirmed. Porous structures of the catchment play dominant role in initial mixing of the water. We want to acknowledge projects GACR 205/09/0831 and 205/08/1174 of the Grant Agency of the Czech Republic for support of this contribution.

  8. MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER

    EPA Science Inventory

    Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...

  9. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow

    USDA-ARS?s Scientific Manuscript database

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, agrichemical, and sediment loss from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess lo...

  10. Assessing coastal plain risk indices for subsurface phosphorus loss

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) Indices are important tools for nutrient management planning in the U.S. whose evaluation often has been deemphasized in favor of research and development. Assessing P Indices in artificially drained agroecosystems is especially important, as subsurface flow is the predominant mode of...

  11. Hydrologic response of catchments to precipitation: Quantification of mechanical carriers and origins of water

    NASA Astrophysics Data System (ADS)

    Park, Y.-J.; Sudicky, E. A.; Brookfield, A. E.; Jones, J. P.

    2011-12-01

    Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study.

  12. Hydrologic response of catchments to precipitation: Quantification of mechanical carriers and origins of water

    USGS Publications Warehouse

    Park, Y.-J.; Sudicky, E.A.; Brookfield, A.E.; Jones, J.P.

    2011-01-01

    Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study. Copyright 2011 by the American Geophysical Union.

  13. Laboratory experiments on solute transport in bimodal porous media under cyclic precipitation-evaporation boundary conditions

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa

    2016-04-01

    Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and significantly influenced solute leaching. Dynamic boundary conditions generally resulted in faster initial breakthrough and stronger tailing. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.

  14. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning

    USGS Publications Warehouse

    Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.

    2018-01-01

    Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.

  15. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan

    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states frommore » PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of changes subsurface electrical conductivity, in both the saturated and unsaturated zones, arising from water table changes and from river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev .« less

  16. Soils as sinks or sources for diffuse pollution of the water cycle

    NASA Astrophysics Data System (ADS)

    Grathwohl, Peter

    2010-05-01

    Numerous chemical compounds have been released into the environment by human activities and can nowadays be found everywhere, i.e. in the compartments water, soil, and air, at the poles and in high mountains. Examples for a global distribution of toxic compounds are the persistent organic pollutants (PCB, dioxins, PAH, fluorinated surfactants and flame retardants, etc.: "the Stockholm dirty dozen") but also mercury and other metals. Many of these compounds reached a global distribution via the atmo¬sphere; others have been and are still directly applied to top soils at the large scale by agriculture or are released into groundwater at landfill sites or by discharge of treated or untreated waste waters. Sooner or later such compounds end up in the water cycle - often via an intermediate storage in soils. Pollutants in soils are leached by seepage waters, transferred to ground¬water, and transported to rivers via groundwater flow. Adsorbed compounds may be transported from soils into surface waters by erosion processes and will end up in the sediments. Diffuse pollution of the subsurface environment not only reflects the history of the economic development of the modern society but it is still ongoing - e.g. the number of organic pollutants released into the environment is increasing even though the con¬centrations may decrease compared to the past. Evidence shows that many compounds are persistent in the subsurface environment at large time scales (up to centuries). Thus polluted soils already are or may become a future source for pollution of adjacent compartments such as the atmosphere and groundwater. A profound understanding on how diffuse pollutants are stored and processed in the subsurface environment is crucial to assess their long term fate and transport at large scales. Thus integrated studies e.g. at the catchment scale and models are needed which couple not only the relevant compartments (soil - atmosphere - groundwater/surface waters) but also flow and reactive transport. Field observations must allow long-term monitoring (e.g. in hydrological observatories, TERENO etc.), new cross-compartment monitoring strategies need to be applied, and massive parallel numerical codes for prediction of reactive transport of potential water pollutants at catchment scale have to be developed. This is also a prerequisite to assess the impact of climate change as well as land use change on future surface and groundwater quality.

  17. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study

    PubMed Central

    Frank, Yulia A.; Kadnikov, Vitaly V.; Gavrilov, Sergey N.; Banks, David; Gerasimchuk, Anna L.; Podosokorskaya, Olga A.; Merkel, Alexander Y.; Chernyh, Nikolai A.; Mardanov, Andrey V.; Ravin, Nikolai V.; Karnachuk, Olga V.; Bonch-Osmolovskaya, Elizaveta A.

    2016-01-01

    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of 5 years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a temperature of ca. 50°C. Its chemical composition varies, but it steadily contains acetate, propionate, and traces of hydrocarbons and gives rise to microbial mats along the surface flow. Community analysis by PCR-DGGE 16S rRNA genes profiling, repeatedly performed within 5 years, revealed several dominating phylotypes consistently found in the borehole water, and highly variable diversity of prokaryotes, brought to the surface with the borehole outflow. The major planktonic components of the microbial community were Desulfovirgula thermocuniculi and Methanothermobacter spp. The composition of the minor part of the community was unstable, and molecular analysis did not reveal any regularity in its variations, except some predominance of uncultured Firmicutes. Batch cultures with complex organic substrates inoculated with water samples were set in order to enrich prokaryotes from the variable part of the community. PCR-DGGE analysis of these enrichments yielded uncultured Firmicutes, Chloroflexi, and Ignavibacteriae. A continuous-flow microaerophilic enrichment culture with a water sample amended with acetate contained Hydrogenophilus thermoluteolus, which was previously detected in the microbial mat developing at the outflow of the borehole. Cultivation results allowed us to assume that variable components of the 3P well community are hydrolytic organotrophs, degrading buried biopolymers, while the constant planktonic components of the community degrade dissolved fermentation products to methane and CO2, possibly via interspecies hydrogen transfer. Occasional washout of minor community components capable of oxygen respiration leads to the development of microbial mats at the outflow of the borehole where residual dissolved fermentation products are aerobically oxidized. Long-term community analysis with the combination of molecular and cultivation techniques allowed us to characterize stable and variable parts of the community and propose their environmental roles. PMID:28082967

  18. 10 CFR 20.1501 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1501 General. (a) Each licensee shall make or cause to be made, surveys of areas, including the subsurface, that— (1) May be... surveys describing the location and amount of subsurface residual radioactivity identified at the site...

  19. 10 CFR 20.1501 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1501 General. (a) Each licensee shall make or cause to be made, surveys of areas, including the subsurface, that— (1) May be... surveys describing the location and amount of subsurface residual radioactivity identified at the site...

  20. Electrical Resistivity Imaging of Saltwater and Freshwater Along the Coast of Monterey Bay

    NASA Astrophysics Data System (ADS)

    Knight, R. J.; Pidlisecky, A.; Moran, T.; Goebel, M.

    2014-12-01

    A coastal region represents a dynamic interface where the processes of saltwater intrusion and freshwater flow create complex spatial and temporal changes in water chemistry. These changes in water chemistry affect both human use of coastal groundwater aquifers and the functioning of coastal ecosystems. Mapping out the subsurface distribution of saltwater and freshwater is a critical step in predicting, and managing, changes in water chemistry in coastal regions. Our research is focused on California's Monterey Bay region where agriculturally-intensive land meets the sensitive marine environment of the Monterey Bay National Marine Sanctuary. Along the coast of Monterey Bay extensive groundwater extraction (groundwater provides more than 80% of the area's water supply) has led to saltwater intrusion into aquifers at various locations. To date, the mapping of saltwater intrusion has relied on measurements of changing water chemistry in monitoring wells. But it is challenging with wells to capture the spatially complex hydrostratigraphy resulting from changing depositional environments and numerous faulting events. We suggest that geophysical methods be used to map and monitor the distribution of saltwater and freshwater by acquiring non-invasive, high-resolution continuous images of the subsurface. In a pilot study conducted over the past four years, we used electrical resistivity imaging to successfully identify regions of saltwater and freshwater 150 m below sea level along a 7 km stretch of the southern Monterey Bay coast. We employed large-offset electrical resistance tomography using a 96-electrode system with an overall array length of 860 m. The results showed excellent agreement with measurements in nearby monitoring wells. The large-scale image provided by the geophysical measurements revealed the hydrostratigraphic controls on the spatial distribution of the saltwater/freshwater interface. In October 2014 we will expand this study, using large-offset electrical resistance tomography to image to a depth of 300 m along a 40 km stretch of the Monterey Bay coast. The acquisition of this continuous dataset will provide an improved understanding of the biophysical and human factors controlling the processes of saltwater intrusion and freshwater flow in this coastal region.

  1. Local Helioseismology of Emerging Active Regions: A Case Study

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis

    2018-04-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation

  2. Understanding Subsurface Flow Mechanisms by Studying Recession Flow Curves

    NASA Astrophysics Data System (ADS)

    patnaik, S.; Biswal, B.; D, N.

    2013-12-01

    The recession flows offer valuable information on the subsurface systems of the drainage which cannot be observed due to technological limitations. Many analytical frameworks have been proposed in the past to analyze recession flow curves assess. Among them the most widely used one is Brutsaert-Neiber method of expressing negative time derivative of Q (discharge at the basin outlet at time t), -dQ/dt, as a function of Q itself, which eliminates the need of finding a reference time. Typically, basins across geographical regions display a power law relationship of the type: -dQ/dt = kQ^α. For a particular basin, the exponent α remains fairly constant recession events while the coefficient k varies greatly from one recession event to another, indicating the dynamic nature -dQ/dt-Q relationship. Recent observations show that subsurface storage in a basin mainly controls the dynamic parameter k. As subsurface water takes long time to fully drain, k of a recession event can also be influenced by the storage that occurred during the past rainfall events. We indirectly analyze the effect of past storage on recession flow by considering past streamflow as a proxy of past storage. A stronger relationship implies that the basin is able to store water for longer duration, and vice versa. In this study, we used streamflow data from 388 USGS basins that are relatively unaffected by human activities to find out the factors that affect the relationship between the power law correlation (R^2_PN) between past discharge and k, where the subscript N is the number of days of past streamflow observations considered for the recession event. For most of the basins R^2_PN decreases with N. We then selected 18 physical and climatological parameters for each study basin and investigated how they influence the value of R^2_PN for each N. We followed multiple linear regression method and found that R^2_PN is strongly influenced by the selected parameters (R^2 = 0.58) for N =30 days. We also employed principal component analysis to identify influence of individual parameters on R^2_PN. Our findings strongly indicate the possibility of understanding subsurface flow mechanism by merely analyzing recession flow curves.

  3. Temporal and Spatial Patterns of Preferential Flow Occurrence in the Shale Hills Catchment: From the Hillslope to the Catchment Scales

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lin, H.

    2013-12-01

    Understanding temporal and spatial patterns of preferential flow (PF) occurrence is important in revealing hillslope and catchment hydrologic and biogeochemical processes. Quantitative assessment of the frequency and control of PF occurrence in the field, however, has been limited, especially at the landscape scale of hillslope and catchment. By using 5.5-years' (2007-2012) real-time soil moisture at 10 sites response to 323 precipitation events, we tested the temporal consistency of PF occurrence at the hillslope scale in the forested Shale Hills Catchment; and by using 25 additional sites with at least 1-year data (2011-2012), we evaluated the spatial patterns of PF occurrence across the catchment. To explore the potential effects of PF occurrence on catchment hydrology, wavelet analysis was performed on the recorded time series of hydrological signals (i.e., precipitation, soil moisture, catchment discharge). Considerable temporal consistence was observed in both the frequency and the main controls of PF occurrence at the hillslope scale, which was attributed largely to the statistical stability of precipitation pattern over the monitoring period and the relatively stable subsurface preferential pathways. Preferential flow tended to occur more often in response to intense rainfall events, and favored the conditions at dry hilltop or wet valley floor sites. When upscaling to the entire catchment, topographic control on the PF occurrence was amplified remarkably, leading to the identification of a subsurface PF network in the catchment. Higher frequency of PF occurrence was observed at the valley floor (average 48%), hilltop (average 46%), and swales/hillslopes near the stream (average 40%), while the hillslopes in the eastern part of the catchment were least likely to experience PF (0-20%). No clear relationship, however, was observed between terrain attributes and PF occurrence, because the initiation and persistency of PF in this catchment was controlled jointly by complex interactions among landform units, soil types, initial soil moisture, precipitation features, and season. Through the wavelet method (coherence spectrum and phase differences), dual-pore filtering effects of soil system were proven, rendering it possible to further infer characteristic properties of the underlying hydrological processes in the subsurface. We found that preferential flow dominates the catchment discharge response at short-time periods (< 3 days), while the matrix flow may dominate the discharge response at the time scales of around 10-12 days. The temporal and spatial patterns of PF occurrence revealed in this study can help advance the modeling and prediction of complex PF dynamics in this and other similar landscapes.

  4. Urban heat fluxes in the subsurface of Cologne, Germany

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Bayer, P.; Blum, P.

    2012-04-01

    Urbanization during the last hundred years has led to both environmental and thermal impacts on the subsurface. The urban heat island (UHI) effect is mostly described as an atmospheric phenomenon, where the measured aboveground temperatures in cities are elevated in comparison to undisturbed rural regions. However, UHIs can be found below, as well as above ground. A large amount of anthropogenic heat migrates into the urban subsurface, which also raises the ground temperature and permanently changes the thermal conditions in shallow aquifers. The main objective of our work is to study and determine the urban heat fluxes in Cologne, Germany, and to improve our understanding of the dynamics of subsurface energy fluxes in UHIs. Ideally, our findings will contribute to strategic and more sustainable geothermal use in cities. For a quantitative analysis of the energy fluxes within the subsurface and across the atmospheric boundary, two and three-dimensional coupled numerical flow and heat transport models were developed. The simulation results indicate that during the past hundred years, an average vertical urban heat flux that ranges between 80 and 375 mW m-2 can be deduced. Thermal anomalies have migrated into the local urban aquifer system and they reach a depth of about 150 m. In this context, the influence of the regional groundwater flow on the subsurface heat transport and temperature development is comprehensively discussed.

  5. Impact of topography on groundwater salinization due to ocean surge inundation

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.

    2016-08-01

    Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.

  6. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja

    2015-05-22

    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire themore » scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research. In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis methods to determine the ;rates and mechanisms of fluid-rock processes, and to test predictive models of such phenomena. Many of the key energy challenges of the future demand a greater understanding of the subsurface world in all of its complexity. This greater under- standing will improve the ability to control and manipulate the subsurface world in ways that will benefit both the economy and the environment. This report provides specific basic research pathways to address some of the most fundamental issues of energy-related subsurface engineering.« less

  7. Imaging Saltwater Intrusion Along the Coast of Monterey Bay Using Long-Offset Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Goebel, M.; Knight, R. J.; Pidlisecky, A.

    2016-12-01

    Coastal regions represent a complex dynamic interface where saltwater intrusion moves seawater landward and groundwater discharge moves freshwater seaward. These processes can have a dramatic impact on water quality, affecting both humans and coastal ecosystems. The ability to map the subsurface distribution of fresh and salt water is a critical step in predicting and managing water quality in coastal regions. This is commonly accomplished using wells, which are expensive and provide point information, which may fail to capture the spatial complexity in subsurface conditions. We present an alternate method for acquiring data, long-offset Electrical Resistivity Tomography (ERT), which is non-invasive, cost effective, and can address the problem of poor spatial sampling. This geophysical method can produce continuous profiles of subsurface electrical resistivity to a depth of 300 m, with spatial resolution on the order of tens of meters. Our research focuses on the Monterey Bay region, where sustained groundwater extraction over the past century has led to significant saltwater intrusion. ERT was acquired along 40 kilometers of the coast using the roll along method, allowing for continuous overlap in data acquisition. Electrodes were spaced every 22.2 m, with a total of 81 electrodes along the 1.8 km active cable length. The data show a complex distribution of fresh and salt water, influenced by geology, groundwater pumping, recharge, and land-use. While the inverted ERT resistivity profiles correspond well with existing data sets and geologic interpretations in the region, the spatial complexity revealed through the ERT data goes beyond what is known from traditional data sources alone. This leads us to conclude that this form of data can be extremely useful in informing and calibrating groundwater flow models, making targeted management decisions, and monitoring changes in subsurface salinities over time.

  8. A multi-decadal study of Polar and Atlantic Water changes on the North Iceland shelf during the last Millennium

    NASA Astrophysics Data System (ADS)

    Perner, Kerstin; Moros, Matthias; Simon, Margit; Berben, Sarah; Griem, Lisa; Dokken, Trond; Wacker, Lukas; Jansen, Eystein

    2017-04-01

    The region offshore North Iceland is known to be sensitive to broad scale climatic and oceanographic changes in the North Atlantic Ocean. Changes in surface and subsurface water conditions link to the varying influence of Polar-sourced East Icelandic Current (EIC) and Atlantic-sourced North Irminger Icelandic Current (NIIC). Cold/fresh Polar waters from the East Greenland Current feed the surface flowing EIC, while warm/saline Subpolar Mode Waters (SPMW) from the Irminger Current (IC) feed the subsurface flowing NIIC. Here, we present a new and well-dated multi-proxy record that allows high-resolution reconstruction of surface and subsurface water mass changes on the western North Iceland shelf. An age-depth model for the last Millennium has been developed based on the combined information from radionuclide measurements (137Cs, 210Pb) dating, 25 AMS 14C radiocarbon dates, and identified Tephra horizons. Our dating results provide further support to previous assumptions that North of Iceland a conventional reservoir age correction application of 400 years (ΔR=0) is inadequate (e.g., Eikíksson et al., 2000; Wanamaker Jr. et al., 2012). The combined evidence from radionuclide dating and the identified Tephra horizons point to a ΔR of c. 360 years during the last Millennium. Our benthic and planktic foraminiferal assemblage and stable oxygen isotope (18O) record of Neogloboquadrina pachyderma s. (NPS) resolve the last Millennium at a centennial to multi-decadal resolution. Comparison of abundance changes of the Atlantic Water related species Cassidulina neoteretis and NPS, as well as the 18O record agree well with the instrumental data time series from the monitoring station Hunafloi nearby. This provides further support that our data is representative of relative temperature and salinity changes in surface and subsurface waters. Hence, this new record allows a more detailed investigation on the timing of Polar (EIC) and Atlantic (NIIC, IC) Water contribution to the North Iceland shelf that links to large-scale atmospheric and oceanic changes in the North Atlantic region. We find, during the time of the Medieval Climate Anomaly (MCA), an increased influence of Atlantic waters on surface water conditions, suggesting a stronger inflow of the NIIC, and thus of SPMW from the IC. This influence decreases markedly at the transition from the MCA to the Little Ice Age (LIA) and remains weak during the 20th Century, which likely relates to an enhanced inflow of cold/fresh Polar surface waters to the North Iceland shelf. During the MCA and LIA subsurface water conditions remain predominantly influenced by SPMW from the IC. However, from c. 1950 AD towards the present, this influence and thus likely subsurface water temperatures, decrease on the western North Iceland shelf.

  9. A reference data set of hillslope rainfall-runoff response, Panola Mountain Research Watershed, United States

    USGS Publications Warehouse

    Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.

    2008-01-01

    Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.

  10. ENVIRONMENTAL IMPACTS AND MONITORING: A HISTORICAL PERSPECTIVE ON THE USE OF NATURAL ATTENUATION FOR SUBSURFACE REMEDIATION

    EPA Science Inventory

    The collective processes that constitute the broadly used term Anatural attenuation,@ as it relates to subsurface remediation of contaminants, refer to the physical, chemical, and biological interactions that, without human intervention, reduce or contain contaminants in the sub...

  11. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...

  12. Hydrology of two slopes in subarctic Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  13. The Subsurface Flow and Transport Laboratory: A New Department of Energy User's Facility for Intermediate-Scale Experimentation

    NASA Astrophysics Data System (ADS)

    Wietsma, T. W.; Oostrom, M.; Foster, N. S.

    2003-12-01

    Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  14. High performance constructed wetlands for cold climates.

    PubMed

    Jenssen, Petter D; Maehlum, Trend; Krogstad, Tore; Vråle, Lasse

    2005-01-01

    In 1991, the first subsurface flow constructed wetland for treatment of domestic wastewater was built in Norway. Today, this method is rapidly becoming a popular method for wastewater treatment in rural Norway. This is due to excellent performance even during winter and low maintenance. The systems can be constructed regardless of site conditions. The Norwegian concept for small constructed wetlands is based on the use of a septic tank followed by an aerobic vertical down-flow biofilter succeeded by a subsurface horizontal-flow constructed wetland. The aerobic biofilter, prior to the subsurface flow stage, is essential to remove BOD and achieve nitrification in a climate where the plants are dormant during the cold season. When designed according to present guidelines a consistent P-removal of > 90% can be expected for 15 years using natural iron or calcium rich sand or a new manufactured lightweight aggregate with P-sorption capacities, which exceeds most natural media. When the media is saturated with P it can be used as soil conditioner and P-fertilizer. Nitrogen removal in the range of 40-60% is achieved. Removal of indicator bacteria is high and < 1000 thermotolerant coliforms/100 ml is normally achieved.

  15. Determining temperature and thermal properties for heat-based studies of surface-water ground-water interactions: Appendix A of Heat as a tool for studying the movement of ground water near streams (Cir1260)

    USGS Publications Warehouse

    Stonestrom, David A.; Blasch, Kyle W.; Stonestrom, David A.; Constantz, Jim

    2003-01-01

    Advances in electronics leading to improved sensor technologies, large-scale circuit integration, and attendant miniaturization have created new opportunities to use heat as a tracer of subsurface flow. Because nature provides abundant thermal forcing at the land surface, heat is particularly useful in studying stream-groundwater interactions. This appendix describes methods for obtaining the thermal data needed in heat-based investigations of shallow subsurface flow.

  16. Quasi 3D modeling of water flow in vadose zone and groundwater

    USDA-ARS?s Scientific Manuscript database

    The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In ...

  17. Soil pipe flow tracer experiments: 2. Application of a transient storage zone model

    USDA-ARS?s Scientific Manuscript database

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  18. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

    USGS Publications Warehouse

    Malone, Robert W.; Nolan, Bernard T.; Ma, Liwang; Kanwar, Rameshwar S.; Pederson, Carl H.; Heilman, Philip

    2014-01-01

    Well tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model's ability to simulate pesticide transport to subsurface drain flow over a long term period under different tillage systems and application rates is not clear. Therefore, we calibrated and tested RZWQM using six years of data from Nashua, Iowa. In this experiment, atrazine was spring applied at 2.8 (1990–1992) and 0.6 kg/ha/yr (1993–1995) to two 0.4 ha plots with different tillage (till and no-till). The observed and simulated average annual flow weighted atrazine concentrations (FWAC) in subsurface drain flow from the no-till plot were 3.7 and 3.2 μg/L, respectively for the period with high atrazine application rates, and 0.8 and 0.9 μg/L, respectively for the period with low application rates. The 1990–1992 observed average annual FWAC difference between the no-till and tilled plot was 2.4 μg/L while the simulated difference was 2.1 μg/L. These observed and simulated differences for 1993–1995 were 0.1 and 0.1 μg/L, respectively. The Nash–Sutcliffe model performance statistic (EF) for cumulative atrazine flux to subsurface drain flow was 0.93 for the no-till plot testing years (1993–1995), which is comparable to other recent model tests. The value of EF is 1.0 when simulated data perfectly match observed data. The order of selected parameter sensitivity for RZWQM simulated FWAC was atrazine partition coefficient > number of macropores > atrazine half life in soil > soil hydraulic conductivity. Simulations from 1990 to 1995 with four different atrazine application rates applied at a constant rate throughout the simulation period showed concentrations in drain flow for the no-till plot to be twice those of the tilled plot. The differences were more pronounced in the early simulation period (1990–1992), partly because of the characteristics of macropore flow during large storms. The results suggest that RZWQM is a promising tool to study pesticide transport to subsurface drain flow under different tillage systems and application rates over several years, the concentrations of atrazine in drain flow can be higher with no-till than tilled soil over a range of atrazine application rates, and atrazine concentrations in drain flow are sensitive to the macropore flow characteristics under different tillage systems and rainfall timing and intensity.

  19. Geophysical Monitoring of Two types of Subsurface Injection

    EPA Science Inventory

    Nano-scale particles of zero-valent iron (ZVI) were injected into the subsurface at the 100-D area of the DOE Hanford facility. The intent of this iron injection was to repair a gap in the existing in-situ redox manipulation barrier located at the site. A number of geophysical me...

  20. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow

    USGS Publications Warehouse

    Brown, V.A.; McDonnell, Jeffery J.; Burns, Douglas A.; Kendall, C.

    1999-01-01

    Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.

  1. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  2. Tidal Response of Europa's Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Comblen, R.; Deleersnijder, E.; Dehant, V. M.

    2010-12-01

    Time-variable tides in the subsurface oceans of icy satellites cause large periodic surface displacements and tidal dissipation can become a major energy source that can affect long-term orbital and internal evolution. In the present study, we investigate the response of the subsurface ocean of Europa to a time-varibale tidal potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities,dissipation and surface displacements will be presented.

  3. Reconstruction of paleoenvironmental changes based on the planktonic foraminiferal assemblages off Shimokita (Japan) in the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi

    2006-08-01

    Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.

  4. Optimization of remediation strategies using vadose zone monitoring systems

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in the unsaturated zone including enhanced bioremediation of contaminated deep vadose zone (40 m depth). Manipulating subsurface conditions for enhanced bioremediation was demonstrated through two remediation projects. One site is characterized by 20 m deep vadose zone that is contaminated with gasoline products and the other is a 40 m deep vadose zone that is contaminated with perchlorate. In both cases temporal variation of the sediment water content as well as the variations in the vadose zone chemical and isotopic composition allowed real time detection of water flow velocities, contaminants transport rates and bio-degradation degree. Results and conclusions from each wetting cycle were used to improve the following wetting cycles in order to optimize contaminants degradation conditions while minimizing leaching of contaminants to the groundwater.

  5. Quantifying groundwater exchange rates in a beach barrier lagoon using a radioisotopic tracer and geophysical methods: Younger Lagoon, Santa Cruz, CA

    NASA Astrophysics Data System (ADS)

    Richardson, C. M.; Swarzenski, P. W.; Johnson, C.

    2013-12-01

    Coastal lagoons are highly productive systems with a strong dependence on the physico-chemical regime of their surrounding environment. Groundwater interactions with the nearshore environment can drive ecosystem stability and productivity. Lagoons with restricted surface connectivity interact with coastal waters via subsurface flow paths that follow natural hydraulic gradients, producing a dynamic freshwater-saltwater mixing zone with submarine groundwater discharge (SGD) regions that are tidally influenced. Recent studies demonstrate the importance of SGD in maintaining nearshore ecology through a number of processes, including enhanced chemical loadings, focused biogeochemical transformations, and complex water mixing scenarios (Slomp and Van Cappellen, 2004 and Taniguchi et al., 2002). Groundwater discharge to the coastal ocean is often slow, diffuse and site-specific. Traditional methods used to evaluate SGD fluxes operate at varying scales and typically result in over or underestimates of SGD. Novel monitoring and evaluation methods are required in order to better understand how coastal aquifer systems influence multi-scalar water and nutrient budgets. Recently developed methods to determine fluid exchange rates include the use of select U- and Th-series radionuclides, multi-channel resistivity imaging, as well as the integration of temperature data and 1-D analytical modeling. Groundwater fluxes were examined in a coastal lagoon system to characterize the physics of subsurface fluid transport evidenced by visible seepage faces at low tide. Fluid exchange rates were quantified to determine the spatial and temporal variability of groundwater movement using thermal time series, water level data, and a coupled radiotracer-geophysical method. Our investigation of subsurface characteristics and groundwater fluxes using both traditional and newly-developed methods indicated that seasonal water inputs and tidal controls on water table elevation significantly influence the magnitude and direction of seepage fluxes. Hydraulic gradients created focused discharge regions towards the seepage faces with average flow rates of up to 0.67 m3/day that were tidally influenced. Thermally-derived vertical groundwater flow rates ranged from -0.59 m3/day to -1.0 m3/day showing no correlation to tide. Radon-222 was used as a complimentary tracer and multi-channel resistivity surveys confirmed the presence of a freshwater conduit. Our time-series analyses of groundwater fluxes into and out of the lagoon demonstrate the importance of monitoring these dynamic systems for longer time periods with a multi-scale approach. Slomp, C. P., & Van Cappellen, P. (2004). Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295(1), 64-86. Taniguchi, M., Burnett, W. C., Cable, J. E., & Turner, J. V. (2002). Investigation of submarine groundwater discharge. Hydrological Processes, 16(11), 2115-2129.

  6. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  7. Electrical resistance tomography during in-situ trichloroethylene remediation at the Savannah River Site

    NASA Astrophysics Data System (ADS)

    Daily, W.; Ramirez, A.

    1995-04-01

    Electrical resistance tomography was used to monitor in-situ remediation processes for removal of volatile organic compounds from subsurface water and soil at the Savannah River Site near Aiken, South Carolina. This work was designed to test the feasibility of injecting a weak mixture of methane in air as a metabolic carbon source for natural microbial populations which are capable of trichloroethylene degradation. Electrical resistance tomograms were constructed of the subsurface during the test to provide detailed images of the process. These images were made using an iterative reconstruction algorithm based on a finite element forward model and Newton-type least-squares minimization. Changes in the subsurface resistivity distribution were imaged by a pixel-by-pixel subtraction of images taken before and during the process. This differential tomography removed all static features of formation resistivity but clearly delineated dynamic features induced by remediation processes. The air-methane mixture was injected into the saturated zone and the intrained air migration paths were tomographically imaged by the increased resistivity of the path as air displaced formation water. We found the flow paths to be confined to a complex three-dimensional network of channels, some of which extended as far as 30 m from the injection well. These channels were not entirely stable over a period of months since new channels appeared to form with time. Also, the resistivity of the air injection paths increased with time. In another series of tests, resistivity images of water infiltration from the surface support similar conclusions about the preferential permeability paths in the vadose zone. In this case, the water infiltration front is confined to narrow channels which have a three-dimensional structure. Here, similar to air injection in the saturated zone, the water flow is controlled by local variations in formation permeability. However, temporal changes in these channels are minor, indicating that the permeable paths do not seem to be modified by continued infiltration.

  8. Watershed models for instructional films

    Treesearch

    Peter E. Black; Raymond E. Leonard

    1970-01-01

    Watershed models, with a special sponge material that simulates soil drainage, were used to make an instructional film on subsurface flow and stream flow. Construction of the models and filming techniques are described.

  9. Subsurface event detection and classification using Wireless Signal Networks.

    PubMed

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  10. Subsurface Event Detection and Classification Using Wireless Signal Networks

    PubMed Central

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowland, Joel C; Manga, Michael

    The origin of increased stream flow and spring discharge following earthquakes have been the subject of controversy, in large part because there are many models to explain observations and few measurements suitable for distinguishing between hypotheses. On October 30, 2007 a magnitude 5.5 earthquake occurred near the Alum Rock springs, California, USA. Within a day we documented a several-fold increase in discharge. Over the following year, we have monitored a gradual return towards pre-earthquake properties, but for the largest springs there appears to be a permanent increase in the steady discharge at all the springs. The Alum Rock springs dischargemore » waters that represent a mixture between modern ('shallow') meteoric water and old ('deep') connate waters expelled by regional transpression. After the earthquake, the increased discharge at the largest springs was accompanied by a small decrease in the fraction of connate water in the spring discharge. Combined with the rapid response, this implies that the increased discharge has a shallow origin. Increased discharge at these springs occurs for earthquakes that cause static volumetric expansion and those that cause contraction, supporting models in which dynamic strains are responsible for the subsurface changes that cause flow to increase. We show that models in which the permeability of the fracture system feeding the springs increases after the earthquake are in general consistent with the changes in discharge. The response of these springs to another earthquake will provide critical constraints on the changes that occur in the subsurface.« less

  12. [Nitrogen leaching and associated environmental health effect in sloping cropland of purple soil].

    PubMed

    Chen, Wei-Liang; Gao, Yang; Lin, Yong-Ming; Zhu, Bo; Xu, Ya-Juan; Yu, Gui-Rui; Wu, Cheng-Zhen

    2014-06-01

    In this paper, we monitored different forms of nitrogen (N) transported by the subsurface flow under three different natural rainfall events and different fertilizations and conducted an associated risk evaluation on environmental health, which provides scientific basis for controlling N non-point pollution and establishing a reasonable fertilization system in purple soil area. The results showed that there were different forms of N transport by subsurface flow under different rainfall events, where in dissolved nitrogen (DN) accounted for about 53.74% - 99.21%, and nitrate (NO3(-) -N) accounted for about 35.70% - 93.65% of DN, and especially under the moderate rainfall, NO3(-) -N could reach 84.09% - 93.65% of DN. The different N fluxes were the highest under moderate rainfall among different rainfall events, in which the flux of total nitrogen (TN), DN, particle nitrogen (PN), ammonia (NH4(+) -N) and nitrite (NO2(-) -N) reached 737.17, 711.12, 26.06, 12.70 and 0.46 mg x m(-2), respectively, and the NO3(-)-N flux was as high as 686.12 mg x m(-2), showing a huge potential threat on groundwater health. Through the risk assessment on N pollution for groundwater quality, we concluded that the straw returning could be used to effectively alleviate the N leaching and groundwater N pollution; especially, the combined application of organic and chemical fertilizer could effectively mitigate the groundwater pollution, improve soil fertility and increase crop yield.

  13. Analysis of Self-Potential Response beyond the Fixed Geometry Technique

    NASA Astrophysics Data System (ADS)

    Mahardika, Harry

    2018-03-01

    The self-potential (SP) method is one of the oldest geophysical methods that are still available for today’s application. Since its early days SP data interpretation has been done qualitatively until the emerging of the fixed geometry analysis that was used to characterize the orientation and the electric-dipole properties of a mineral ore structure. Through the expansion of fundamental theories, computational methods, field-and-lab experiments in the last fifteen years, SP method has emerge from its low-class reputation to become more respectable. It became a complementary package alongside electric-resistivity tomography (ERT) for detecting groundwater flow in the subsurface, and extends to the hydrothermal flow in geothermal areas. As the analysis of SP data becomes more quantitative, its potential applications become more diverse. In this paper, we will show examples of our current SP studies such as the groundwater flow characterization inside a fault area. Lastly we will introduce the application of the "active" SP method - that is the seismoelectric method - which can be used for 4D real-time monitoring systems.

  14. Adapting HYDRUS-1D to simulate overland flow and reactive transport during sheet flow deviations

    USDA-ARS?s Scientific Manuscript database

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil sur...

  15. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange

    USGS Publications Warehouse

    Harvey, Judson W.; Wagner, Brian J.; Bencala, Kenneth E.

    1996-01-01

    Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reachscale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream tracer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL s−1 m−1), determined by hydrometric methods, was largest when stream base flow was low (10 L s−1); hyporheic exchange persisted when base flow was 10-fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward characterizing only a fast component of hyporheic exchange. Stream tracer models with multiple rate constants to consider both fast exchange with streambed gravel and slower exchange with deeper alluvium appear to be warranted.

  16. Catchment Tomography - Joint Estimation of Surface Roughness and Hydraulic Conductivity with the EnKF

    NASA Astrophysics Data System (ADS)

    Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.

    2017-12-01

    Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.

  17. INFLUENCE OF GROUNDWATER GEOCHEMISTRY ON THE LONG-TERM PERFORMANCE OF IN-SITU PERMEABLE REACTIVE BARRIERS CONTAINING ZERO-VALENT IRON

    EPA Science Inventory

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  18. An information theory application to improve understanding of subsurface flow and transport conditions at the BARC OPE3 site

    USDA-ARS?s Scientific Manuscript database

    Improving understanding of subsurface conditions includes comparison and discrimination of concurrent models. Additional observations can be useful for that purpose. The objective of this work was to implement and test a novel method for optimization of selecting locations for additional observation...

  19. Measurements of Capillary Pressure-Saturation Relationships for Silica Sands Using Light Transmission Visualization and a Rapid Pseudo Static Methods

    EPA Science Inventory

    Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...

  20. Storm event-scale nutrient attenuation in constructed wetlands experiencing a Mediterranean climate: A comparison of a surface flow and hybrid surface-subsurface flow system.

    PubMed

    Adyel, Tanveer M; Oldham, Carolyn E; Hipsey, Matthew R

    2017-11-15

    Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Marte

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluidmore » flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in underground formations, and the evaluation of the risk of potential CO{sub 2} leakage to the atmosphere and underground aquifers.« less

  2. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    PubMed

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  3. Subsurface injection of liquid waste in Florida, United States of America

    USGS Publications Warehouse

    Vecchioli, John

    1981-01-01

    In 1979, liquid waste was injected into the subsurface of Florida by 10 injection systems at an aggregate average rate of 165,000 m3/d. All the systems inject into carbonate rocks that contain salty water. Extensive precautions are taken in the construction of the injection wells and in the monitoring of their operation to provide assurance that overlying and laterally contiguous freshwater resources do not become contaminated with either the injected waste or the saltwater displaced by the waste. Several concerns relating to the effectiveness of the confining bed above the injection zone for containing the injected wastes have arisen over the years. These concerns accentuate the value of a well-planned and implemented monitoring program from which one can evaluate the potential impact of waste injection on the subsurface environment.

  4. Automated permanent resistivity monitoring of charge and discharge processes of subsurface aquifer at the Membach station, Belgium

    NASA Astrophysics Data System (ADS)

    Deceuster, J.; Kaufmann, O.; van Camp, M. J.; Lecocq, T.

    2010-12-01

    Permanent monitoring of changes in soil properties is of increasing interest in many engineering applications such as management of groundwater contamination, landslide and sinkhole risks prevention, detection of saline water intrusion, comprehension of charge and discharge processes of subsurface aquifer. As geophysical investigations allow detecting contrasts in physical properties of the subsurface, field and lab experiments have been conducted for a few years to assess the reliability of these methods to monitor temporal changes in soil properties. Among the methods available, DC resistivity tomography is recognized as one of the most promising techniques. In order to assess the efficiency of electrical resistivity in monitoring charge and discharge processes of subsurface aquifer, and also to better model hydrological effects on the gravity measurements, an on-going field experiment is conducted at the Membach station located in the eastern part of Belgium. This geophysical station is equipped with an accelerometer, seismometers and a superconducting gravimeter, installed at the end of a 130 m long tunnel excavated in a low-porosity argillaceous sandstone mount at 48.5 m depth. Continuous gravimetric observations have been taken since August 1995. Since 2004 rainfall and soil moisture changes are measured in situ. In July 2010, an automated permanent geoelectrical acquisition system was installed to monitor subsurface resistivity variations during a test period of about 6 months. The aim of this experiment is to better understand charge and discharge processes of the subsurface aquifer, which are expected to be mainly due to rainfall variations. This aquifer is localized at the top of the weathered bedrock at a depth of 4 to 5 meters. The acquisition system consists in a straight profile of 48 buried electrodes (with a 2 meters spacing) connected to a Syscal R1 resistivimeter which is automatically controlled by a computer. Resistivity measurements are taken at least twice a day at fixed hours using a combination of dipole-dipole and Wenner-Schlumberger arrays. Acquired data are filtered in order to reject faulty measures. Time-lapse inversion (Loke (1999)) is then carried out to reconstruct a 2D model of resistivity changes. Preliminary results obtained during July show changes in inverted resistivities of about 30% in the first 4 to 5 meters layer. These observations are consistent with changes in measured gravimetric water content. This seems to indicate that subsurface aquifer charge and discharge processes are mainly due to rainfall, as expected. However, inversion errors remain high even after data filtering. This could be a consequence of weather occurring in July, leading to a poor contact between the electrodes and dry host soils near the surface. This problem should not happen anymore as the rest of the monitoring experiment is conducted during the wet season. Acknowledgments This work is conducted under the auspices of the Walloon Region Ministry under the First Spin-Off program (visa n° 916974).

  5. Groundwater Flow Through a Constructed Treatment Wetland

    DTIC Science & Technology

    2002-03-01

    sediments or has the water found preferential flow paths? (2) Does the behavior of groundwater flow change with varying loading rates or environmental...surface of the wetland. Water flows through a subsurface flow wetland in a similar fashion as groundwater flows through an aquifer. The concept is...circuiting of the wetland media. Groundwater Flow Various physical properties influence the flow of water through soil. In wetlands, the type of soil

  6. US Environmental rotection Agency's strategy for ground-water-quality monitoring at hazardous-waste land-disposal facilities located in karst terranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, M.S.

    1988-11-01

    Ground-water monitoring of hazardous-waste land-disposal units by a network of wells is ineffective when located in karstic terranes. The U.S. Environmental Protection Agency (EPA) is currently proposing to modify its current ground-water-quality monitoring requirement of one upgradient well and three downgradient wells for disposal units located in karstic terranes. The convergent nature of subsurface flow to cave streams in karstic terranes requires that effective monitoring wells intercept the cave streams. Wells located around a hazardous-waste disposal unit, but not in the specific cave stream draining the site, are only providing irrelevant data and a false sense of security because themore » water samples from such wells are not necessarily from the hazardous-waste disposal unit. A case study is provided in this paper. EPA is drafting a guidance document that will allow monitoring by wells, only if the up- and down-gradient wells can be demonstrated to be hydraulically connected by means of dye-trace studies. If not, then the monitoring of springs shown to be hydraulically connected to the facility by dye-tracing studies would be required. Monitoring for sinkhole development will also be required to provide advance warning of sinkhole collapse. The investigation and determination of the probability of sinkhole collapse is given special treatment.« less

  7. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, ormore » excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.« less

  8. Biofilm Effect on Flow Structure over a Permeable Bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Aybar, M.; Perez-Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.

    2017-12-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  9. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.

  10. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  11. High Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Framgos, William

    1999-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  12. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2002-11-20

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  13. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring, and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex

    2000-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  14. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2001-06-10

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Findlay, Rick

    The Gnome-Coach, New Mexico, Site was the location of a 3-kiloton-yield underground nuclear test in 1961 and a groundwater tracer test in 1963. The U.S. Geological Survey conducted the groundwater tracer test using four dissolved radionuclides--tritium, iodine-131, strontium-90, and cesium-137--as tracers. Site reclamation and remediation began after the underground testing, and was conducted in several phases at the site. The New Mexico Environment Department (NMED) issued a Conditional Certificate of Completion in September 2014, which documents that surface remediation activities have been successfully completed in accordance with the Voluntary Remediation Program. Subsurface activities have included annual sampling and monitoring ofmore » wells at and near the site since 1972. These annual monitoring activities were enhanced in 2008 to include monitoring hydraulic head and collecting samples from the onsite wells USGS-4, USGS-8, and LRL-7 using the low-flow sampling method. In 2010, the annual monitoring was focused to the monitoring wells within the site boundary. A site inspection and annual sampling were conducted on January 27-28, 2015. A second site visit was conducted on April 21, 2015, to install warning/notification signs to fulfill a requirement of the Conditional Certificate of Completion that was issued by the NMED for the surface.« less

  16. Debates - Stochastic subsurface hydrology from theory to practice: Introduction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar

    2016-12-01

    This paper introduces the papers in the "Debates - Stochastic Subsurface Hydrology from Theory to Practice" series. Beginning in the 1970s, the field of stochastic subsurface hydrology has been an active field of research, with over 3500 journal publications, of which over 850 have appeared in Water Resources Research. We are fortunate to have insightful contributions from four groups of distinguished authors who discuss the reasons why the advanced research framework established in stochastic subsurface hydrology has not impacted the practice of groundwater flow and transport modeling and design significantly. There is reasonable consensus that a community effort aimed at developing "toolboxes" for applications of stochastic methods will make them more accessible and encourage practical applications.

  17. Geotechnical sensing using electromagnetic attenuation between radio transceivers

    NASA Astrophysics Data System (ADS)

    Ghazanfari, Ehsan; Pamukcu, Sibel; Yoon, Suk-Un; Suleiman, Muhannad T.; Cheng, Liang

    2012-12-01

    Monitoring the onset of a geo-event such as the intrusion of a chemical plume or a slow progressive mass slide that results in marked changes in the physical properties of the host soil could be potentially accomplished using a distributed network of embedded radio transceivers. This paper introduces a new concept of subsurface geo-event monitoring, which takes advantage of the spatial and temporal variations in signal strength of electromagnetic (EM) waves transmitted within the net of distributed radios within a sensing area. Results of experiments in the laboratory and the field demonstrated that variations in EM signal strength could be used to detect physical changes in the subsurface. Changes in selected physical properties of host soil including water content, density, and formation of discontinuities could be discerned from the changes in the signal strength of the transmitted wave between embedded radio transceivers. Good agreement was observed between a theoretical model and the experimental results for inter-transceiver distances less than 55 cm. These results demonstrated a viable new approach for distributed sensing and monitoring of subsurface hazards for civil infrastructure within a networked domain of radio transceivers.

  18. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    USGS Publications Warehouse

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  19. HYDROGEOLOGIC CASE STUDIES

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  20. Remote real-time monitoring of subsurface landfill gas migration.

    PubMed

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  1. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  2. Preferential Flow Paths and Recirculation-Disrupting Jets in the Leeside of Self-Forming Coarse-Grained Laboratory Bedforms

    NASA Astrophysics Data System (ADS)

    Lichtner, D.; Christensen, K. T.; Best, J.; Blois, G.

    2014-12-01

    Exchange of fluid in the near-subsurface of a streambed is influenced by turbulence in the free flow, as well as by bed topography and permeability. Macro-roughness elements such as bedforms are known to produce pressure gradients that drive fluid into the streambed on their stoss sides and out of the bed on their lee sides. To study the modification of the near-bed flow field by self-forming permeable bedforms, laboratory experiments were conducted in a 5 mm wide flume filled with 1.3 mm glass beads. The narrow width of the flume permitted detailed examination of the fluid exiting the bed immediately downstream of a bedform. Dense 2-D velocity field measurements were gathered using particle image velocimetry (PIV). In up to 8% of instantaneous PIV realizations, the flow at the near-bed presented a component perpendicular to the streambed, indicating flow across the interface. At the downstream side of the bedform, such flow disrupted the mean recirculation pattern that is typically observed in finer sediment beds. It is hypothesized that the coarse grain size and the resulting high bed permeability promote such near-surface jet events. A qualitative analysis of raw image frames indicated that an in-place jostling of sediment is associated with these jets thus suggesting that subsurface flow may be characterized by impulsive events. These observations are relevant to hyporheic exchange rates in coarse sediments and can have strong morphodynamic implications as they can explain the lack of ripples and characteristics of dunes in high permeability gravels. Overall, further study of the flow structure over highly permeable streambeds is needed to understand subsurface exchange and bedform initiation.

  3. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT (EPA/600/SR-98/159)

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...

  4. Characterization of the Long-term Subsurface Warming Observed at the Apollo 15 and 17 Sites Utilizing the Newly Restored Heat Flow Experiment Data from 1975 to 1977

    NASA Astrophysics Data System (ADS)

    Nagihara, S.; Kiefer, W. S.; Taylor, P. T.; Williams, D. R.; Nakamura, Y.; Krell, J. W.

    2017-12-01

    The Apollo Heat Flow Experiment (HFE) was conducted at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiment Package (ALSEP) program. At each site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The probes monitored surface and subsurface temperatures. The Apollo 15 probes operated from July 1971 to January 1977. The Apollo 17 probes operated from December 1972 to September 1977. For both sites, only data from the beginning to December 1974 were archived previously. We have restored major portions of the 1975-1977 HFE data for both sites from two sets of sources recently recovered. One was the original ALSEP archival data tapes, from which raw HFE data were extracted and processed according to the procedure and the calibration data specified by the original investigators. The other was the ALSEP Performance Summary Reports, which included weekly logs of temperature readings from the deepest sensor of each of the probes. The original HFE investigators noted that temperature of the regolith well below the thermal skin depth ( 1 m) rose gradually through December 1974 at both sites. Possible causes of the warming have been debated since. The restored 1975-1977 HFE data allow more detailed characterization of this phenomenon, especially for the Apollo 17 site, for which the duration of data availability has more than doubled. For both sites, the subsurface warming continued till the end of observations. Simultaneously, thermal gradient decreased. Such behavior is consistent with one of the hypotheses proposed by the original investigators; temperature of the lunar surface around the probe increased by 2 to 4 K at the time of deployment. Consequently, the subsurface thermal regime gradually adjusted to the new boundary condition. The Lunar Reconnaissance Orbiter Camera images taken over the Apollo landing sites suggest that astronaut-induced surface disturbance resulted in lower albedo, and that should have raised average surface temperature. Other explanations may also be possible. For example, at the Apollo 15 site, it is known that radiation down the hole affected the upper section of the probe. In contrast, the Apollo 17 probes were installed with radiation shields at the top of the hole and at 0.3-m depth. Therefore, warming there is more likely to be conductive in nature.

  5. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer strips can reduce the delivery of NH3-N and PO4-P by overland flow to stream channels during storm events, the management of N-rich storm runoff as NO3 via sub-surface drains would require significant interference with the drainage network. This could have a negative impact on agricultural production in the catchment.

  6. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuan Lu; CHI Zhang; Hai Hanag

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoringmore » the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.« less

  7. Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion

    NASA Astrophysics Data System (ADS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2014-05-01

    A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.

  8. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands.

    PubMed

    Cui, Lihua; Ouyang, Ying; Yang, Weizhi; Huang, Zhujian; Xu, Qiaoling; Yu, Guangwei

    2015-04-15

    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs). Results showed that the optimal HRT was two days for maximal removal of N and P from the septic tank effluent among the four CWs. At this HRT, the Z1, Z2, Z3 and Z4 CWs removed, respectively, 49.93, 58.50, 46.01 and 44.44% of TN as well as 87.82, 93.23, 95.97 and 91.30% of TP. Our study further revealed that the Z3 CW was the best design for overall removal of N and P from the septic tank effluent due to its hybrid flow directions with better oxygen supply inside the CW system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Chapter 1: Hydrologic exchange flows and their ecological consequences in river corridors

    USGS Publications Warehouse

    Harvey, Judson

    2016-01-01

    The actively flowing waters of streams and rivers remain in close contact with surrounding off-channel and subsurface environments. These hydrologic linkages between relatively fast flowing channel waters, with more slowly flowing waters off-channel and in the subsurface, are collectively referred to as hydrologic exchange flows (HEFs). HEFs include surface exchange with a channel’s marginal areas and subsurface flow through the streambed (hyporheic flow), as well as storm-driven bank storage and overbank flows onto floodplains. HEFs are important, not only for storing water and attenuating flood peaks, but also for their role in influencing water conservation, water quality improvement, and related outcomes for ecological values and services of aquatic ecosystems. Biogeochemical opportunities for chemical transformations are increased by HEFs as a result of the prolonged contact between flowing waters and geochemically and microbially active surfaces of sediments and vegetation. Chemical processing is intensified and water quality is often improved by removal of excess nutrients, metals, and organic contaminants from flowing waters. HEFs also are important regulators of organic matter decomposition, nutrient recycling, and stream metabolism that helps establish a balanced and resilient aquatic food web. The shallow and protected storage zones associated with HEFs support nursery and feeding areas for aquatic organisms that sustain aquatic biological diversity. Understanding of these varied roles for HEFs has been driven by the related disciplines of stream ecology, fluvial geomorphology, surface-water hydraulics, and groundwater hydrology. A current research emphasis is on the role that HEFs play in altered flow regimes, including restoration to achieve diverse goals, such as expanding aquatic habitats and managing dissolved and suspended river loads to reduce over-fertilization of coastal waters and offset wetland loss. New integrative concepts and models are emerging (eg, hydrologic connectivity) that emphasize HEF functions in river corridors over a wide range of spatial and temporal scales.

  10. Low temperature monitoring system for subsurface barriers

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  11. Water table variability and runoff generation in an eroded peatland, South Pennines, UK

    NASA Astrophysics Data System (ADS)

    Daniels, S. M.; Agnew, C. T.; Allott, T. E. H.; Evans, M. G.

    2008-10-01

    SummaryHydrological monitoring in an eroded South Pennine peatland shows that persistent and frequent water table drawdowns occur at gully edge locations, defining a deeper and thicker acrotelm than is observed in intact peatlands (an erosional acrotelm). Antecedent water table elevation is a key control on the hydrological response to precipitation events, in particular runoff percent, the timing of peak discharges and maximum water table elevations. Significant discharge is generated whilst water table elevations are relatively low at gully edge locations, and this has a strong influence on flow pathways. Four characteristics of runoff response are recognised: (i) the rapid development of macropore/pipe flow at the start of the storm; (ii) peat rewetting, water table elevation increase and continued macropore/pipe flow; (iii) maximum water table elevations and peak stream discharge with throughflow occurring within the erosional acrotelm and rapid flow through the subsurface macropore/pipe network; (iv) rapidly declining water table elevations and stream flow following the cessation of rainfall. Gully edge peats provide a key linkage between the hillslope hydrological system and channel flow so that their influence on the hydrological functioning of the peatlands is disproportionate to their aerial extent within the catchment. Future climate change may lead to further degradation of the bogs and a reinforcement of the importance of erosion gullies to runoff generation and water quality.

  12. Application of a Transient Storage Zone Model o Soil Pipeflow Tracer Injection Experiments

    USDA-ARS?s Scientific Manuscript database

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  13. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data.

    PubMed

    Arenas Amado, A; Schilling, K E; Jones, C S; Thomas, N; Weber, L J

    2017-09-01

    Nitrogen losses from artificially drained watersheds degrade water quality at local and regional scales. In this study, we used an end-member mixing analysis (EMMA) together with high temporal resolution water quality and streamflow data collected in the 122 km 2 Otter Creek watershed located in northeast Iowa. We estimated the contribution of three end-members (groundwater, tile drainage, and quick flow) to streamflow and nitrogen loads and tested several combinations of possible nitrate concentrations for the end-members. Results indicated that subsurface tile drainage is responsible for at least 50% of the watershed nitrogen load between April 15 and November 1, 2015. Tiles delivered up to 80% of the stream N load while providing only 15-43% of the streamflow, whereas quick flows only marginally contributed to N loading. Data collected offer guidance about areas of the watershed that should be targeted for nitrogen export mitigation strategies.

  14. Numerische Szenariosimulationen zur Ausbreitung von hochmineralisiertem Wasser in oberflächennahen Süßwasseraquiferen

    NASA Astrophysics Data System (ADS)

    Wiegers, Carla Elisabeth; Schäfer, Dirk

    2015-06-01

    In areas where the geological subsurface is used for storage of gases or fracking, there is a risk of saline formation water entering protected aquifers. The impact of such potential leakage therefore needs to be evaluated at relevant sites to develop practical monitoring concepts. Three-dimensional numerical simulations and a sensitivity analysis are performed to determine the influence of aquifer parameters, ground water flow, aquifer morphology, leakage rate and NaCl-concentration of the intruding water on the propagation behaviour of saline water. Two example scenarios were simulated based on a realistic site-scale conceptual model, one with water from the lower Braunkohlensande, (NaCl = 7.61 g/l) the other with saline water from the Bunter sandstone formation (NaCl = 280.3 g/l). The simulations show that saltwater migrates along the bottom of the aquifer, and that groundwater flow can dominate the transport of chloride. In this case the spreading of denser water is not influenced by the aquifer's morphology.

  15. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...

  16. In-situ Subsurface Soil Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmer, Chris

    The Department of Energy’s (DOE’s) Terrestrial Ecosystem Science (TES) program is seeking improved sensor systems for monitoring hydro-biogeochemical processes in complex subsurface environments. The TES program is specifically interested in acquiring chemical and structural information regarding the type and nature of the hydration and redox states of subsurface chemical species. The technology should be able to perform on-site and real-time measurements to provide information not available using current sample acquisition and preservation processes. To address the needs of the DOE and the terrestrial science community, Physical Optics Corporation (POC) worked on the development of a new In-Situ Subsurface Soil Analyzermore » (ISSA) based on magnetic resonance technologies. Benchtop testing was performed to assess the feasibility of continuous wave electron pair resonance (CW-EPR) detection of chemical species in subsurface soil systems.« less

  17. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  18. CHARACTERIZING SITE HYDROLOGY (REGION 5)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  19. Hydrogeologic Case Studies (Seattle, WA)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  20. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  1. Potential for the Use of Wireless Sensor Networks for Monitoring of CO2 Leakage Risks

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Illangasekare, T. H.; Han, Q.; Jayasumana, A.

    2015-12-01

    Storage of supercritical CO2 in deep saline geologic formation is under study as a means to mitigate potential global climate change from green house gas loading to the atmosphere. Leakage of CO2 from these formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere,. Leaked CO2 that migrates into overlying groundwater aquifers may cause changes in groundwater quality that pose risks to environmental and human health. For these reasons, technologies for monitoring, measuring and accounting of injected CO2 are necessary for permitting of CO2 sequestration projects under EPA's class VI CO2 injection well regulations. While the probability of leakage related to CO2 injection is thought to be small at characterized and permitted sites, it is still very important to protect the groundwater resources and develop methods that can efficiently and accurately detect CO2 leakage. Methods that have been proposed for leakage detection include remote sensing, soil gas monitoring, geophysical techniques, pressure monitoring, vegetation stress and eddy covariance measurements. We have demonstrated the use of wireless sensor networks (WSN) for monitoring of subsurface contaminant plumes. The adaptability of this technology for leakage monitoring of CO2 through geochemical changes in the shallow subsurface is explored. For this technology to be viable, it is necessary to identify geochemical indicators such as pH or electrical conductivity that have high potential for significant change in groundwater in the event of CO2 leakage. This talk presents a conceptual approach to use WSNs for CO2 leakage monitoring. Based on our past work on the use of WSN for subsurface monitoring, some of the challenges that need to be over come for this technology to be viable for leakage detection will be discussed.

  2. Assessing environmental impacts of constructed wetland effluents for vegetable crop irrigation.

    PubMed

    Castorina, A; Consoli, S; Barbagallo, S; Branca, F; Farag, A; Licciardello, F; Cirelli, G L

    2016-01-01

    The objective of this study was to monitor and assess environmental impacts of reclaimed wastewater (RW), used for irrigation of vegetable crops, on soil, crop quality and irrigation equipment. During 2013, effluents of a horizontal sub-surface flow constructed treatment wetland (TW) system, used for tertiary treatment of sanitary wastewater from a small rural municipality located in Eastern Sicily (Italy), were reused by micro-irrigation techniques to irrigate vegetable crops. Monitoring programs, based on in situ and laboratory analyses were performed for assessing possible adverse effects on water-soil-plant systems caused by reclaimed wastewater reuse. In particular, experimental results evidenced that Escherichia coli content found in RW would not present a risk for rotavirus infection following WHO (2006) standards. Irrigated soil was characterized by a certain persistence of microbial contamination and among the studied vegetable crops, lettuce responds better, than zucchini and eggplants, to the irrigation with low quality water, evidencing a bettering of nutraceutical properties and production parameters.

  3. Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils

    NASA Astrophysics Data System (ADS)

    Carte, J.; Fantle, M. S.

    2017-12-01

    An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due to adsorption. This hypothesis will be further tested by modeling with the reactive transport code CrunchTope. This study provides evidence that trace element and isotopic composition of soils can be useful tracers of subsurface hydrologic pathways and elemental fate and transport.

  4. Multiphase, multicomponent simulations and experiments of reactive flow, relevant for combining geologic CO2 sequestration with geothermal energy capture

    NASA Astrophysics Data System (ADS)

    Saar, Martin O.

    2011-11-01

    Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.

  5. Multi-scale hydrogeological and hydrogeophysical approach to monitor vadose zone hydrodynamics of a karst system

    NASA Astrophysics Data System (ADS)

    Watlet, Arnaud; Poulain, Amaël; Van Camp, Michel; Francis, Olivier; Triantafyllou, Antoine; Rochez, Gaëtan; Hallet, Vincent; Kaufmann, Olivier

    2016-04-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of weather conditions, reduced evapotranspiration and the vertical gradients of porosity and permeability. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside. We present a multi-scale study covering two years of hydrogeological and geophysical monitoring of the Lomme Karst System (LKS) located in the Variscan fold-and-thrust belt (Belgium), a region (~ 3000 ha) that shows many karstic networks within Devonian limestone units. Hydrogeological data cover the whole LKS and involve e.g. flows and levels monitoring or tracer tests performed in both vadose and saturated zones. Such data bring valuable information on the hydrological context of the studied area at the catchment scale. Combining those results with geophysical measurements allows validating and imaging them at a smaller scale, with more integrative techniques. Hydrogeophysical measurements are focused on only one cave system of the LKS, at the Rochefort site (~ 40 ha), taking benefit of the Rochefort Cave Laboratory (RCL) infrastructures. In this study, a microgravimetric monitoring and an Electrical Resistivity Tomography (ERT) monitoring are involved. The microgravimetric monitoring consists in a superconducting gravimeter continuously measuring gravity changes at the surface of the RCL and an additional relative gravimeter installed in the underlying cave located 35 meters below the surface. While gravimeters are sensible to changes that occur in both the vadose zone and the saturated zone of the whole cave system, combining their recorded signals allows enhancing vadose zone's gravity changes. Finally, the surface ERT monitoring provide valuable information at the (sub)-meter scale on the hydrological processes that occur in the vadose zone. Seasonal water variations and preferential flow path are observed. This helps separating the hydrological signature of the vadose zone from that of the saturated zone.

  6. Modeling the time-varying interaction between surface water and groundwater bodies

    NASA Astrophysics Data System (ADS)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were analyzed with regard to the intensity and duration of water exchange between kettle hole and surrounding groundwater. Finally the three variants with the smallest, average and largest number of days where water flow is directed from kettle hole to groundwater were chosen to extend the scope of this study to include solute transport. Therefore a non-reactive substance was injected at the kettle hole bed. As a result, the fluid dynamics and the spread of water flowing from surface to subsurface and vice versa could be closely monitored. Finally, the choice of these variants provides information on the range of distances and duration of water exchange between kettle hole and surrounding groundwater.

  7. Assessment of Alternative Conceptual Models Using Reactive Transport Modeling with Monitoring Data

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Price, V.; Heffner, D.; Hodges, R.; Temples, T.; Nicholson, T.

    2005-12-01

    Monitoring data proved very useful in evaluating alternative conceptual models, simulating contaminant transport behavior, and reducing uncertainty. A graded approach using three alternative conceptual site models was formulated to simulate a field case of tetrachloroethene (PCE) transport and biodegradation. These models ranged from simple to complex in their representation of subsurface heterogeneities. The simplest model was a single-layer homogeneous aquifer that employed an analytical reactive transport code, BIOCHLOR (Aziz et al., 1999). Due to over-simplification of the aquifer structure, this simulation could not reproduce the monitoring data. The second model consisted of a multi-layer conceptual model, in combination with numerical modules, MODFLOW and RT3D within GMS, to simulate flow and reactive transport. Although the simulation results from the second model were comparatively better than those from the simple model, they still did not adequately reproduce the monitoring well concentrations because the geological structures were still inadequately defined. Finally, a more realistic conceptual model was formulated that incorporated heterogeneities and geologic structures identified from well logs and seismic survey data using the Petra and PetraSeis software. This conceptual model included both a major channel and a younger channel that were detected in the PCE source area. In this model, these channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Simulation results using this conceptual site model proved compatible with the monitoring concentration data. This study demonstrates that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004; Ye et al., 2004). This case study integrated conceptual and numerical models, based on interpreted local hydrogeologic and geochemical data, with detailed monitoring plume data. It provided key insights for confirming alternative conceptual site models and assessing the performance of monitoring networks. A monitoring strategy based on this graded approach for assessing alternative conceptual models can provide the technical bases for identifying critical monitoring locations, adequate monitoring frequency, and performance indicator parameters for performance monitoring involving ground-water levels and PCE concentrations.

  8. Electrical resistivity investigation of fluvial geomorphology to evaluate potential seepage conduits to agricultural lands along the San Joaquin River, Merced County, California, 2012–13

    USGS Publications Warehouse

    Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.

    2017-02-08

    Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells installed onsite for monitoring flow in the channel deposits. Estimates of the cross-sectional area of channel deposits from DC resistivity pseudosections can provide critical input for groundwater-flow models designed to simulate river seepage and evaluate seepage-management alternatives.

  9. Laser Speckle Imaging of Blood Flow Beneath Static Scattering Media

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin Anderson

    Laser speckle imaging (LSI) is a wide-field optical imaging technique that provides information about the movement of scattering particles in biological samples. LSI is used to create maps of relative blood flow and perfusion in samples such as the skin, brain, teeth, gingiva, and other biological tissues. The presence of static, or non-moving, optical scatterers affects the ability of LSI to provide true quantitative and spatially resolved measurements of blood flow. With in vitro experiments using tissue-simulating phantoms, we determined that temporal analysis of raw speckle image sequences improved the quantitative accuracy of LSI to measure flow beneath a static scattering layer. We then applied the temporal algorithm to assess the potential of LSI to monitor oral health. We designed and tested two generations of miniature LSI devices to measure flow in the pulpal chamber of teeth and in the gingiva. Our preliminary clinical pilot data indicated that speckle contrast may correlate with gingival health. To improve visualization of subsurface blood vessels, we developed a technique called photothermal LSI. We applied a short pulse of laser energy to selectively perturb the motion of red blood cells, increasing the signal from vasculature relative to the surroundings. To study the spectral and depth dependence of laser speckle contrast, we developed a Monte Carlo model of light and momentum transport to simulate speckle contrast. With an increase in the thickness of the overlying static-scattering layer, we observed a quadratic decrease in the quantity of dynamically scattered light collected by the detector. We next applied the model to study multi-exposure speckle imaging (MESI), a method that purportedly improves quantitative accuracy of subsurface blood flow measurements. We unexpectedly determined that MESI faced similar depth limitations as conventional LSI, findings that were supported by in vitro experimental data. Finally, we used the model to study the effects of epidermal melanin absorption on LSI, and demonstrated that speckle contrast is less sensitive to varying melanin content than reflectance. We then proposed a two-wavelength measurement protocol that may enable melanin-independent LSI measurements of blood flow in patients with varying skin types. In conclusion, through in vitro and in silico experiments, we were able to further the understanding of the depth dependent origins of laser speckle contrast as well as the inherent limitations of this technology.

  10. Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK

    NASA Astrophysics Data System (ADS)

    Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David

    2017-04-01

    Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures

  11. Evaluating 10B-enriched Boric Acid, Bromide, and Heat as Tracers of Recycled Groundwater Flow near MAR Operations

    NASA Astrophysics Data System (ADS)

    Becker, T.; Clark, J. F.

    2012-12-01

    Coupled with the unpredictability of a changing climate, the projected growth in human population over the next century requires new and innovative ways to augment already-depleted water supplies. An increasingly popular and promising development is managed aquifer recharge (MAR), a cost-effective method of intentionally storing potable water in groundwater aquifers at engineered sites worldwide. Reclaimed (or recycled) water, defined as cleaned and treated wastewater, will account for a larger portion of MAR water in future years. A crucial component for managing groundwater recharged with reclaimed water is its subsurface travel time. The California Department of Public Health (CDPH), with the most recent draft of regulations issued on November 21, 2011, requires the application of groundwater tracers to demonstrate subsurface residence time. Residence time increases the quality of reclaimed water via soil-aquifer treatment (SAT), which includes mechanisms such as sorption, biological degradation, and microbial inactivation to remove potential contaminants or pathogens. This study addresses the need for an appropriate tracer to determine groundwater residence times near MAR facilities. Standard shallow groundwater dating techniques, such as T/3He and chlorofluorocarbon (CFC) methods, cannot be used because their uncertainties are typically ± 2 years, longer than the target CDPH retention time of ~6 months. These methods also cannot map preferential flow paths. Sulfur hexafluoride (SF6), a nonreactive synthetic gas, is well-established as a deliberate tracer for determining subsurface travel time; however, SF6 is a very strong greenhouse gas and the California Air Resources Board (CARB) is regulating its emission. Other tracers, such as noble gas isotopes, that have successfully determined subsurface retention times are impractical due to their high cost. A multi-tracer experiment at the San Gabriel Spreading Grounds test basin (Montebello Forebay, Los Angeles County, CA, USA) has been in progress since September 6, 2011, following injection of boric acid enriched in boron-10 (10B) and bromide (Br-) tracers. Tracer concentrations are collected at 9 monitoring wells that have pre-experiment estimated travel times between 0.5 to 180 days. Results indicate that 10B-enriched boric acid is an effective deliberate tracer at MAR sites; however, the ion's movement is slightly retarded relative to bromide by the substrate. 10B/Br- travel time ratios range from 1 to 1.4. In addition to the two deliberate geochemical tracers, heat is being evaluated as a possible intrinsic tracer at MAR sites. At the time of the experiment (late summer), reclaimed water was significantly warmer (~20°F) than the native groundwater as it entered the system. Time series are developed from loggers outfitted at each monitoring well, with measurements recorded hourly accurate to one thousandth of a degree. Results are similar to 10B & Br- travel times and validate the potential of heat as an intrinsic tracer.

  12. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makedonska, Nataliia; Kwicklis, Edward Michael; Birdsell, Kay Hanson

    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundarymore » calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.« less

  13. Effect of flow on bacterial transport and biofilm formation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Rusconi, R.

    2016-12-01

    Understanding the transport of bacteria in saturated porous media is crucial for many applications ranging from the management of pumping wells subject to bio-clogging to the design of new bioremediation schemes for subsurface contamination. However, little is known about the spatial distribution of bacteria at the pore scale, particularly when small-scale heterogeneities - always present even in seemingly homogeneous aquifers - lead to preferential pathways for groundwater flow. In particular, the coupling of flow and motility has recently been shown to strongly affect bacterial transport1, and this leads us to predict that subsurface flow may strongly affect the dispersal of bacteria and the formation of biofilms in saturated aquifers. I present here microfluidic experiments combined with numerical simulations to show how the topological features of the flow correlate with bacterial concentration and promote the attachment of bacteria to specific regions of the pore network, which will ultimately influence the formations of biofilms. These results highlight the intimate link between small-scale biological processes and transport in porous media.

  14. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-03-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoringmore » and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in good condition at the time of the site inspection. However, it was reported in September 2012 that the USGS-1 well head had been damaged by a water truck in April 2012.« less

  15. Time-lapse seismic waveform inversion for monitoring near-surface microbubble injection

    NASA Astrophysics Data System (ADS)

    Kamei, R.; Jang, U.; Lumley, D. E.; Mouri, T.; Nakatsukasa, M.; Takanashi, M.

    2016-12-01

    Seismic monitoring of the Earth provides valuable information regarding the time-varying changes in subsurface physical properties that are caused by natural or man-made processes. However, the resulting changes in subsurface properties are often small both in terms of magnitude and spatial extent, leading to seismic data differences that are difficult to detect at typical non-repeatable noise levels. In order to better extract information from the time-lapse data, exploiting the full seismic waveform information can be critical, since detected amplitude or traveltime changes may be minimal. We explore methods of waveform inversion that estimate an optimal model of time-varying elastic parameters at the wavelength scale to fit the observed time-lapse seismic data with modelled waveforms based on numerical solutions of the wave equation. We apply acoustic waveform inversion to time-lapse cross-well monitoring surveys of 64-m well intervals, and estimate the velocity changes that occur during the injection of microbubble water into shallow unconsolidated Quaternary sediments in the Kanto basin of Japan at a depth of 25 m below the surface. Microbubble water is comprised of water infused with air bubbles of a diameter less than 0.1mm, and may be useful to improve resistance to ground liquefaction during major earthquakes. Monitoring the space-time distribution and physical properties of microbubble injection is therefore important to understanding the full potential of the technique. Repeated monitoring surveys (>10) reveal transient behaviours in waveforms during microbubble injection. Time-lapse waveform inversion detects changes in P-wave velocity of less than 1 percent, initially as velocity increases and subsequently as velocity decreases. The velocity changes are mainly imaged within a thin (1 m) layer between the injection and the receiver well, inferring the fluid-flow influence of the fluvial sediment depositional environment. The resulting velocity models fit the observed waveforms very well, supporting the validity of the estimated velocity changes. In order to further improve the estimation of velocity changes, we investigate the limitations of acoustic waveform inversion, and apply elastic waveform inversion to the time-lapse data set.

  16. A fundamental study of gas formation and migration during leakage of stored carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Pawar, R. J.; Komatsu, M.; Jensen, K. H.; Illangasekare, T. H.

    2011-12-01

    Geologic sequestration of CO2 has received significant attention as a potential method for reducing the release of greenhouse gases into the atmosphere. Potential risk of leakage of the stored CO2 to the shallow zones of the subsurface is one of the critical issues that is needed to be addressed to design effective field storage systems. If a leak occurs, gaseous CO2 reaching shallow zones of the subsurface can potentially impact the surface and groundwater sources and vegetation. With a goal of developing models that can predict these impacts, a research study is underway to improve our understanding of the fundamental processes of gas-phase formation and multi-phase flow dynamics during CO2 migration in shallow porous media. The approach involves conducting a series of highly controlled experiments in soil columns and tanks to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. This paper presents the results from a set of column studies. A 3.6m long column was instrumented with 16 soil moisture sensors, 15 of which were capable of measuring electrical conductivity (EC) and temperature, eight water pressure, and two gas pressure sensors. The column was filled with test sands with known hydraulic and retention characteristics with predetermined packing configurations. Deionized water saturated with CO2 under ~0.3 kPa (roughly the same as the hydrostatic pressure at the bottom of the column) was injected at the bottom of the column using a peristaltic pump. Water and gas outflow at the top of the column were monitored continuously. The results, in general, showed that 1) gas phase formation can be triggered by multiple factors such as water pressure drop, temperature rise, and heterogeneity, 2) transition to gas phase tends to occur rather within a short period of time, 3) gas phase fraction was as high as ~40% so that gas flow was not via individual bubble movement but two-phase flow, 4) water outflow that was initially equal to the inflow rate increased when gas-phase started to form (i.e., water gets displaced), and 5) gas starts to flow upward after gas phase fraction stabilizes (i.e., buoyant force overcomes). These results suggest that the generation and migration processes of gas phase CO2 can be modelled as a traditional two-phase flow with source (when CO2 gas exsolved due to complex factors) as well as sink (when gas dissolved) terms. The experimental data will be used to develop and test the conceptual models that will guide the development of numerical simulators for applications involving CO2 storage and leakage.

  17. Application of Cement Science to Improved Wellbore Infrastructures Mileva Radonjic and Darko Kupresan Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, USA Corresponding author: mileva@lsu.edu Key words: micro-annular gas flow, nano-properties of wellbore cements, micro-porosity

    NASA Astrophysics Data System (ADS)

    Radonjic, M.

    2015-12-01

    Recent focus on carbon emission from cement industry inspired researchers to improve CSH properties by reducing Ca/Si ratio at the nanoscale, and lower porosity (permeability) of hydrated cement at micro scale. If implemented in wellbore cement technology, both of these efforts could provide advanced properties for wellbore infrastructure. These advancements would further reduce the issue of leaky wellbores in fluid injections, hydraulic fracturing and subsurface storage for existing operating wells. Numerous inadequately abandoned wells, however, pose more complex engineering problems, primarily due to the difficulty in locating fluid flow pathways along the wellbore structure. In order to appreciate the difficulty of this problem, we need to remind ourselves that: a typical 30,000-ft. wellbore with an average production casing of 8 inches in diameter can be presented in scale by a 6-m long human hair of 150 μm these structures are placed in the subsurface, often not just vertical in geometry but deviated close to 90° tangent where monitoring and remediation becomes demanding and if we consider that wellbore cement is not continuously placed along the wellbore and it is approximately 1/10 of a wellbore diameter, we can see that the properties of these materials demand application of nano-science and a different scale phenomena than perhaps previously acknowledged. The key concept behind Ca/Si reduction associated with improved mechanical properties is traditionally achieved chemically, by addition of supplemental cementitious materials. In our study we have tried to evaluate CSH alterations due to mechanically induced phase transformation. The data suggest that confined compression-extrusion of hydrated wellbore cement and the consequent propagation of pore water can change cement composition by dissolving and removing Ca, therefore reducing Ca/Si of cement phases. The advantage of this approach is that the process is less impacted by pressure/temperature oscillations found in subsurface conditions. In addition, we have proved experimentally, that even cement samples stored in corrosive environment for two years can successfully be treated and healed by confined compression of tubular expansion for purpose of microannular gas flow remediation.

  18. Simulating Water Flow in Variably Saturated Soils - Exploring the Advantage of Three-dimensional Models

    NASA Astrophysics Data System (ADS)

    Hopp, L.; Ivanov, V. Y.

    2010-12-01

    There is still a debate in rainfall-runoff modeling over the advantage of using three-dimensional models based on partial differential equations describing variably saturated flow vs. models with simpler infiltration and flow routing algorithms. Fully explicit 3D models are computationally demanding but allow the representation of spatially complex domains, heterogeneous soils, conditions of ponded infiltration, and solute transport, among others. Models with simpler infiltration and flow routing algorithms provide faster run times and are likely to be more versatile in the treatment of extreme conditions such as soil drying but suffer from underlying assumptions and ad-hoc parameterizations. In this numerical study, we explore the question of whether these two model strategies are competing approaches or if they complement each other. As a 3D physics-based model we use HYDRUS-3D, a finite element model that numerically solves the Richards equation for variably-saturated water flow. As an example of a simpler model, we use tRIBS+VEGGIE that solves the 1D Richards equation for vertical flow and applies Dupuit-Forchheimer approximation for saturated lateral exchange and gravity-driven flow for unsaturated lateral exchange. The flow can be routed using either the D-8 (steepest descent) or D-infinity flow routing algorithms. We study lateral subsurface stormflow and moisture dynamics at the hillslope-scale, using a zero-order basin topography, as a function of storm size, antecedent moisture conditions and slope angle. The domain and soil characteristics are representative of a forested hillslope with conductive soils in a humid environment, where the major runoff generating process is lateral subsurface stormflow. We compare spatially integrated lateral subsurface flow at the downslope boundary as well as spatial patterns of soil moisture. We illustrate situations where both model approaches perform equally well and identify conditions under which the application of a fully-explicit 3D model may be required for a realistic description of the hydrologic response.

  19. Hillslope-scale experiment demonstrates role of convergence during two-step saturation

    USGS Publications Warehouse

    Gevaert, A. I.; Teuling, A. J.; Uijlenhoet, R.; DeLong, Stephen B.; Huxman, T. E.; Pangle, L. A.; Breshears, David D.; Chorover, J.; Pelletier, John D.; Saleska, S. R.; Zeng, X.; Troch, Peter A.

    2014-01-01

    Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO.

  20. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A clear distinction in the T2-distribution and D-T2 plots between live and dead cell pellets was also observed. These results will provide a basis for understanding the effect of microbes within geologic media on SIP and low-field NMR measurements. This research suggests that both SIP and NMR have the potential to monitor microbial growth and activities in the subsurface and could provide spatiotemporal variations in bacterial abundance in porous media.

  1. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repasky, Kevin

    2014-02-01

    A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program« less

  2. Identifying Hydrologic Flowpaths on Arctic Hillslopes Using Electrical Resistivity and Self Potential

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.

    2015-12-01

    Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.

  3. Viral Tracer Studies Indicate Contamination of Marine Waters by Sewage Disposal Practices in Key Largo, Florida

    PubMed Central

    Paul, J. H.; Rose, J. B.; Brown, J.; Shinn, E. A.; Miller, S.; Farrah, S. R.

    1995-01-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys. PMID:16535046

  4. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    PubMed

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.

  5. Coupled geophysical-hydrological modeling of controlled NAPL spill

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Majer, E.; Peterson, J. E.; Finsterle, S.; Mazzella, A.

    2006-12-01

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data interpretation. Combining multiple geophysical data types and incorporating constraints from hydrological models will potentially decrease the non-uniqueness in data interpretation and aid in site characterization. Large-scale laboratory experiments have been conducted over several years to evaluate the use of various geophysical methods, including ground-penetrating radar (GPR), seismic, and electrical methods, for monitoring controlled spills of tetrachloroethylene (PCE), a hazardous industrial solvent that is pervasive in the subsurface. In the current study, we consider an experiment in which PCE was introduced into a large tank containing a heterogeneous distribution of sand and clay mixtures, and allowed to migrate while time-lapse geophysical data were collected. We consider two approaches for interpreting the surface GPR and crosswell seismic data. The first approach involves (a) waveform inversion of the surface GPR data using a non-gradient based optimization algorithm to estimate the dielectric constant distributions and (b) conversion of crosswell seismic travel times to acoustic velocity distributions; the dielectric constant and acoustic velocity distributions are then related to NAPL saturation using appropriate petrophysical models. The second approach takes advantage of a recently developed framework for coupled hydrological-geophysical modeling, providing a hydrological constraint on interpretation of the geophysical data and additionally resulting in quantitative estimates of the most relevant hydrological parameters that determine NAPL behavior in the system. Specifically, we simulate NAPL migration using the multiphase multicomponent flow simulator TOUGH2 with a 2-D radial model that takes advantage of radial symmetry in the experimental setup. The flow model is coupled to forward models for simulating the GPR and seismic measurements, and joint inversion of the multiple data types results in images of time-varying NAPL saturation distributions. Comparison of the two approaches with results of the post-experiment excavation indicate that combining geophysical data types and incorporating hydrological constraints improves estimates of NAPL saturation relative to the conventional interpretation of the geophysical data sets. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect the official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02- 05CH11231.

  6. CHARACTERIZING SITE HYDROLOGY (WORKSHOP MSA PRESENTATION)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  7. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  8. Characterizing Site Hydrology (Region 10, Seattle, WA)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  9. CHARACTERIZING SITE HYDROLOGY (REGION 8 WORKSHOP)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  10. Evolution of 3-D geologic framework modeling and its application to groundwater flow studies

    USGS Publications Warehouse

    Blome, Charles D.; Smith, David V.

    2012-01-01

    In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.

  11. Optimization of subsurface flow and associated treatment processes.

    DOT National Transportation Integrated Search

    2006-02-01

    The Louisiana Department of Transportation and Development has long been interested in low maintenance waste treatment systems that can be used to treat small flows in situations where skilled operators are not available. The purpose of this project ...

  12. Nitrous Oxide Emissions From Northern Forested and Harvested Ecosystems

    NASA Astrophysics Data System (ADS)

    Kavanaugh, K. M.; Kellman, L. M.

    2005-12-01

    Very little is known about how deforestation alters the soil subsurface production and surface emissions of N2O from northern forest soils. Soil N2O surface fluxes and subsurface concentrations from two 3 year old harvested and intact forest pairs of contrasting soil texture were monitored during the 2004 and 2005 growing seasons in the Acadian forest of Atlantic Canada in order to: 1) quantify N2O emissions associated with each land-use type, 2) examine spatial and temporal variations in subsurface concentrations and surface fluxes at each site, and 3) determine the suitability of a photoacoustic gas monitor (PGM) for in- situ field measurements vs. field sample collection and laboratory analysis on a gas chromatograph. Each site was instrumented with 11 permanent collars for surface flux measurements designed to capture the microsite variability at the sites. Subsurface soil gas samplers, designed to identify the important zones of N2O production in the vertical profile were installed at depths of 0, 10, 20 and 35 cm below the organic-mineral soil interface. Surface fluxes were measured with non-steady-state vented surface flux chambers with measurements of all surface flux and subsurface data made on a bi-weekly basis. Results suggest that spatial and temporal variability in surface emissions are very high and routinely close to zero. Subsurface profile concentration data shows vertical concentration profiles at intact forest sites with concentrations close to atmospheric, while harvested sites show a pattern of increasing N2O concentration with depth, reaching a maximum of approximately 27000ppb at 35cm.

  13. Possible Habilability of Martian Regolity and Research of Ancient Life "Biomarkers"

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.

    2017-05-01

    We consider environments of modern subsurface martian regolith layer as possible habitats of the terrestrial like microorganisms. Recent experimental studies demonstrate that low atmospheric pressure, low temperature and high level of cosmic rays ionizing radiation are not able to sterilize the subsurface layer of Mars. Even nonextremofile microorganisms can reproduce in martian regolith using films of liquid water which are produced by absorption of water vapor of subsurface ice sublimation. Areas of possible seasonal subsurface water flow (recurring slope lineae, dark dune spots) and methane emission regions are discussed as perspective sites for discovering of modern life on Mars. Degradation of "biomarkers" (complex organic molecules and isotopic ratio 13C/12C) in martian soil under high level of cosmic rays radiation is analyzed. We show the ancient biomarkers are effectively destroyed within period 108 -109 years. As result, probability of its discovering in shallow subsurface martian layer is low.

  14. Paleomagnetic correlation and ages of basalt flow groups in coreholes at and near the Naval Reactors Facility, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Champion, Duane E.; Davis, Linda C.; Hodges, Mary K.V.; Lanphere, Marvin A.

    2013-01-01

    * The Jaramillo (Matuyama) flow group is found in corehole NRF 15, which is the deepest NRF corehole, and shows that the basalt flow group is thick in the subsurface at NRF. This flow group is thickest between the RWMC and INTEC and thins towards the ATRC and NRF.

  15. Stormflow generation: a meta-analysis of field studies and research catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke; Elsenbeer, Helmut

    2014-05-01

    Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The catalogue of catchments supports our hypothesis; however, it is afflicted with a relative high degree of uncertainty. Two theories exist that may explain the imbalance between surface and subsurface dominated catchments: (1) the selection of research sites for stormflow generation studies was guided by the leading research question in hydrology, i.e. to address the "old water paradox", and (2) catchments with prevailing subsurface flow paths are much more common in nature. In a next step, the proposed catalogue of research catchments allows correlation of environmental characteristics with runoff characteristics to address questions of catchment organization and similarity. However, the successful application and relevance of such an approach depends on the range of conceptual models for which field support exist. Our results prompt us to highlight future research needs: (1) in order to cover a broader range of combinations of runoff characteristics a careful selection of research sites is necessary and (2) propose guidelines for field studies in order achieve higher comparability of resulting conceptual models of research sites and increase the spatial and temporal relevance of the dominant conceptual model.

  16. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  17. Geo-material microfluidics at reservoir conditions for subsurface energy resource applications.

    PubMed

    Porter, Mark L; Jiménez-Martínez, Joaquín; Martinez, Ricardo; McCulloch, Quinn; Carey, J William; Viswanathan, Hari S

    2015-10-21

    Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. We have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works in both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. The experiments include fracture-matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO2 (scCO2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO2-brine-oil.

  18. An adaptive Gaussian process-based iterative ensemble smoother for data assimilation

    NASA Astrophysics Data System (ADS)

    Ju, Lei; Zhang, Jiangjiang; Meng, Long; Wu, Laosheng; Zeng, Lingzao

    2018-05-01

    Accurate characterization of subsurface hydraulic conductivity is vital for modeling of subsurface flow and transport. The iterative ensemble smoother (IES) has been proposed to estimate the heterogeneous parameter field. As a Monte Carlo-based method, IES requires a relatively large ensemble size to guarantee its performance. To improve the computational efficiency, we propose an adaptive Gaussian process (GP)-based iterative ensemble smoother (GPIES) in this study. At each iteration, the GP surrogate is adaptively refined by adding a few new base points chosen from the updated parameter realizations. Then the sensitivity information between model parameters and measurements is calculated from a large number of realizations generated by the GP surrogate with virtually no computational cost. Since the original model evaluations are only required for base points, whose number is much smaller than the ensemble size, the computational cost is significantly reduced. The applicability of GPIES in estimating heterogeneous conductivity is evaluated by the saturated and unsaturated flow problems, respectively. Without sacrificing estimation accuracy, GPIES achieves about an order of magnitude of speed-up compared with the standard IES. Although subsurface flow problems are considered in this study, the proposed method can be equally applied to other hydrological models.

  19. Factors Influencing the Sahelian Paradox at the Local Watershed Scale: Causal Inference Insights

    NASA Astrophysics Data System (ADS)

    Van Gordon, M.; Groenke, A.; Larsen, L.

    2017-12-01

    While the existence of paradoxical rainfall-runoff and rainfall-groundwater correlations are well established in the West African Sahel, the hydrologic mechanisms involved are poorly understood. In pursuit of mechanistic explanations, we perform a causal inference analysis on hydrologic variables in three watersheds in Benin and Niger. Using an ensemble of techniques, we compute the strength of relationships between observational soil moisture, runoff, precipitation, and temperature data at seasonal and event timescales. Performing analysis over a range of time lags allows dominant time scales to emerge from the relationships between variables. By determining the time scales of hydrologic connectivity over vertical and lateral space, we show differences in the importance of overland and subsurface flow over the course of the rainy season and between watersheds. While previous work on the paradoxical hydrologic behavior in the Sahel focuses on surface processes and infiltration, our results point toward the importance of subsurface flow to rainfall-runoff relationships in these watersheds. The hypotheses generated from our ensemble approach suggest that subsequent explorations of mechanistic hydrologic processes in the region include subsurface flow. Further, this work highlights how an ensemble approach to causal analysis can reveal nuanced relationships between variables even in poorly understood hydrologic systems.

  20. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE PAGES

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; ...

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  1. Subsurface thermal regime to delineate the paleo-groundwater flow system in an arid area, Al Kufra, Libya

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom El-Said

    2016-12-01

    The purpose of this study was to understand the groundwater flow system in Al Kufra basin, Libya, as a case study of arid areas using subsurface temperature. The temperature-depth profiles and water levels were measured in eight boreholes in the area. Well 6 is considered a recharge type profile with low geothermal gradient (0.0068 °C/m) and an estimated paleo-temperature around 19.5 °C. The other profiles are of discharge type with higher geothermal gradient (0.0133 to 0.0166 °C/m). The constructed horizontal 2D distribution maps of the hydraulic heads and the subsurface temperature measurements reveal that the main recharge area is located to the south with low temperature while the main discharge area is located to the north with higher temperature. Vertical 2D distribution maps show that location of well 4 has low hydraulic heads and higher temperature indicating that the fault defined in the area may have affected the groundwater flow system. The estimated groundwater flux ranges from 0.001 to 0.1 mm/day for the recharge area and from -0.3 to -0.7 mm/day in average in the discharge area.

  2. Development of a hybrid 3-D hydrological model to simulate hillslopes and the regional unconfined aquifer system in Earth system models

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2015-12-01

    The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate the hydrological dynamics of the Delaware River basin will be assessed by comparing the model results (both hydrological performance and numerical efficiency) with the standard setup of the NOAH-MP model and a high-resolution (1km) version of NOAH-MP, which also explicitly accounts for lateral subsurface and overland flow.

  3. Dissolved-solids contribution to the Colorado River from public lands in southeastern Nevada, through September 1993

    USGS Publications Warehouse

    Westenburg, C.L.

    1995-01-01

    The Bureau of Land Management administers about 9,300 square miles of public lands in southeastern Nevada that are part of the Colorado River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, began a 5-year program in October 1988 to assess the contribution of dissolved solids to the fiver from those lands. About 6,200 square miles of public lands are in the Muddy River subbasin in Nevada. The estimated average dissolved-solids load contributed to the Colorado River from those lands was 28,000 tons per year from October 1988 through September 1993. Subsurface flow contributed about 86 percent (24,000 tons per year) of that load. About 730 square miles of public lands in the Las Vegas Wash subbasin contribute dissolved-solids load to the Colorado River. (About 120 square miles of public lands do not contribute to the river.) The estimated average dissolved-solids load contributed to the river from those lands was about 1,300 tons per year from October 1988 through September 1993. Subsurface flow contributed almost all of that load. About 1,100 square miles of public lands are in the Virgin River subbasin in Nevada. The estimated average dissolved- solids load contributed to the Colorado River from Nevada public lands in the subbasin was 8,700 tons per year. Subsurface flow contributed almost the entire load. About 1,200 square miles of Nevada public lands are in ephemeral tributaries that drain direcfly to the Colorado River or its impoundments (Lake Mead and Lake Mobave). The estimated average dissolved-solids load contributed to the river from those lands was 50 tons per year from surface runoff; however, the dissolved-solids load contributed by subsurface flow was not estimated. From October 1992 to September 1993, the Colorado River carried about 6,600,000 tons of dissolved solids past a streamflow gaging station 0.3 mile downstream from Hoover Dam. In contrast, surface runoff and subsurface flow contribute an estimated average dissolved-solids load of 38,000 tons per year from public lands in southeastern Nevada to the Colorado River. Land-management practices probably would not substantially reduce this contribution.

  4. Monitoring of subsurface injection of wastes, Florida

    USGS Publications Warehouse

    Vecchioli, John

    1979-01-01

    Injection of waste liquids into Florida's subsurface is physically feasible in many places but should be accompanied by monitoring of the waste-receiving aquifer system in addition to the injection facility. Monitoring of the interaction of factors including hydrogeologic conditions, well construction, waste volumes and characteristics, and potable-water sources is desirable to assure that fresh-water resources are not being adversely affected. An effective aquifer-system monitoring program includes on-site wells located close to an injection well and open to the next-higher permeable stratum, satellite wells located hundreds to several thousands of feet from an injection well and open to the receiving aquifer, and regional wells located miles from individual injection wells and open to the receiving aquifer. An extensive aquifer-system monitoring program associated with two waste-injection facilities near Pensacola, Florida, has provided data which have aided hydrologists to understand the aquifer system's response to the injection and, accordingly, to evaluate the potential for affecting the area's fresh-water resources.

  5. Hyporheic Passive Flux Meters Reveal Inverse Vertical Zonation and High Seasonality of Nitrogen Processing in an Anthropogenically Modified Stream (Holtemme, Germany)

    NASA Astrophysics Data System (ADS)

    Kunz, Julia Vanessa; Annable, Michael D.; Rao, Suresh; Rode, Michael; Borchardt, Dietrich

    2017-12-01

    Transformation and retention of nitrogen and other biologically reactive solutes in the hyporheic zones of running water contribute to an essential ecosystem service. However, the synoptic impact of intense agricultural or urban land-uses, elevated nutrient loading, flow alterations, riparian clear-cutting, and channelization on the source-sink behavior of solutes in hyporheic zones remains largely uncharacterized and unquantified. Therefore, we studied nutrient dynamics in a hydromorphologically and chemically modified stream reach using a new monitoring approach allowing the simultaneous measurement of nutrient and water flux through a screened area in the subsurface of rivers (hyporheic passive flux meter, HPFM). With HPFMs we directly assessed time-integrated lateral hyporheic nitrate fluxes during early spring and midsummer covering different temperature and discharge regimes. Contrary to our expectations, higher stream discharge coincided with substantially lower hyporheic exchange rates. While in streams featuring a natural morphology, bed form induced exchange commonly increases with surface flow, the influence of groundwater level was dominant in this reach. Furthermore, in contrast to less impacted environments, where progressive substrate depletion with depths reduces metabolic rates in the subsurface, we identified not the upper, but the intermediate layer of the hyporheic zone as hot spot of nutrient turnover. Overall, the hyporheic zone at the study site functioned partly as nitrate source, partly as a sink. Neither of the commonly used determinants redox state and residence time could explain this source or sink function. Our results give clear evidence to carefully transfer the knowledge of hyporheic zone processes from "natural" systems to anthropologically modified streams.

  6. Multi-stage hybrid subsurface flow constructed wetlands for treating piggery and dairy wastewater in cold climate.

    PubMed

    Zhang, Xiaomeng; Inoue, Takashi; Kato, Kunihiko; Izumoto, Hayato; Harada, June; Wu, Da; Sakuragi, Hiroaki; Ietsugu, Hidehiro; Sugawara, Yasuhide

    2017-01-01

    This study followed three field-scale hybrid subsurface flow constructed wetland (CW) systems constructed in Hokkaido, northern Japan: piggery O (2009), dairy G (2011), and dairy S (2006). Treatment performance was monitored from the outset of operation for each CW. The ranges of overall purification efficiency for these systems were 70-86%, 40-85%, 71-90%, 91-96%, 94-98%, 84-97%, and 70-97% for total N (TN), NH 4 -N, total P, chemical oxygen demand (COD), biochemical oxygen demand, suspended solid, and total Coliform, respectively. The hybrid system's removal rates were highest when influent loads were high. COD removal rates were 46.4 ± 49.2, 94.1 ± 36.6, and 25.1 ± 15.5 g COD m -2 d -1 in piggery O, dairy G, and dairy S, with average influent loads of 50.5 ± 51.5, 98.9 ± 37.1, and 26.9 ± 16.0 g COD m -2 d -1 , respectively. The systems had overall COD removal efficiencies of around 90%. TN removal efficiencies were 62 ± 19%, 82 ± 9%, and 82 ± 15% in piggery O, dairy G, and dairy S, respectively. NH 4 -N removal efficiency was adversely affected by the COD/TN ratio. Results from this study prove that these treatment systems have sustained and positive pollutant removal efficiencies, which were achieved even under extremely cold climate conditions and many years after initial construction.

  7. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2004-06-16

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  8. Effect of tillage on macropore flow and phosphorus transport to tile drains

    USDA-ARS?s Scientific Manuscript database

    Elevated phosphorus (P) concentrations in subsurface drainage water are thought to be the result of P bypassing the soil matrix via macropore flow. The objectives of this study were to quantify event water delivery to tile drains via macropore flow paths during storm events and to determine the effe...

  9. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less

  10. Biofilm effect on flow structure over a permeable bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook Smith, Gregory; Christensen, Kenneth

    2017-11-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction. Funded by UK Natural Environment Research Council.

  11. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE PAGES

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less

  12. Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2015-12-01

    High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.

  13. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph

    1997-01-01

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere.

  14. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, B.E.; May, C.P.; Rossabi, J.

    1997-06-24

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.

  15. Detecting subsurface fluid leaks in real-time using injection and production rates

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Huerta, Nicolas J.

    2017-12-01

    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to detecting the time when a leak is activated and the volume of that leakage, this method provides an insight about the leak location, and reservoir connectivity. We are proposing this as a complementary method that can be used with other, more expensive, methods early on in the injection process. This will allow an operator to conduct more expensive surveys less often because the proposed method can show if there are no leaks on a monthly basis that is cheap and fast.

  16. Use of electromagnetic induction methods to monitor remediation at the University of Connecticut landfill: 2004–2011

    USGS Publications Warehouse

    Johnson, Carole D.; White, Eric A.; Joesten, Peter K.

    2012-01-01

    Time‐lapse geophysical surveys using frequency‐domain electromagnetics (FDEM) can indirectly measure time‐varying hydrologic parameters such as fluid saturation or solute concentration. Monitoring of these processes provides insight into aquifer properties and the effectiveness of constructed controls (such as leachate interceptor trenches), as well as aquifer responses to natural or induced stresses. At the University of Connecticut landfill, noninvasive, electromagnetic induction (EMI) methods were used to monitor changes in subsurface electrical conductivity that were related to the landfill‐closure activities. After the landfill was closed, EMI methods were used to monitor changes in water saturation and water quality. As part of a long‐term monitoring plan to observe changes associated with closure, redevelopment, and remediation of the former landfill, EMI data were collected to supplement information from groundwater samples collected in wells to the south and north of the landfill. In comparison to single‐point measurements that could have been collected by conventional installation of additional monitoring wells, the EMI methods provided increased spatial coverage, and were less invasive and therefore less destructive to the wetland north of the landfill. To monitor effects of closure activities on the subsurface conductivity, EMI measurements were collected from 2004 to 2011 along discrete transects north and south of the landfill prior to, during, and after the landfill closure. In general, the results indicated an overall decline in subsurface electrical conductivity with time and with distance from the former landfill. This decline in electrical conductivity indicated that the closure and remediation efforts reduced the amount of leachate that originated from the landfill and that entered the drainages to the north and south of the landfill.

  17. Effects of a flood pulse on exchange flows along a sinuous stream

    NASA Astrophysics Data System (ADS)

    Käser, D.; Brunner, P.; Renard, P.; Perrochet, P.; Schirmer, M.; Hunkeler, D.

    2012-04-01

    Flood pulses are important events for river ecosystems: they create hydrological interactions at the terrestrial/aquatic interface that fuel biological productivity and shape the hyporheic-riparian habitats. For example, floods promote faunal activity and decomposition by increasing the supply of oxygenated water in downwelling areas, while the following recession periods tend to provide stable thermal conditions favoured by fish or insects in areas of groundwater upwelling. This 3-D modelling study investigates the effect of stream stage transience (with events characterised by their intensity and duration) on hydrological exchanges between the surface and the near-stream subsurface. It evaluates, in particular, its effect on streams of varying sinuosity by quantifying the dynamic response of: (1) subsurface flow paths, (2) the exchange pattern at the sediment-water interface, and (3) integrative measures such as total exchange flux and total storage. Understanding geomorphological controls on groundwater/surface water interactions is attractive because topography is generally better constrained than subsurface parameters, and can be used in data-poor situations. The numerical model represents a hypothetical alluvial plain limited by impervious bedrock on all four sides, and in which the channel meanders according to the sine-generated curve of Langbein and Leopold (1966). As the model (HydroGeoSphere) couples surface and subsurface flow, the stream stage transience is imposed by a fluctuating head at the channel inlet. Preliminary results show that a simple rectangular flood pulse in an idealised sinuous stream without additional complexity can generate multiple flow direction reversals at a single point in the channel. The initial conditions of the groundwater table, the channel sinuosity and the time characteristics of the flood pulse all control exchange flow features in different ways. Results are also compared with 'bank storage' analytical solutions that typically assume a straight channel. The discussion covers an evaluation of this work with respect to previous studies that considered the influence of sinuosity on interfacial exchange flows. It addresses the issue of steady vs. transient exchanges, which is of uppermost importance at the operational scale of river restoration schemes. Langbein WB, Leopold LB. 1966. River meanders - theory of minimum variance. U.S. Geol. Surv. Prof. Pap. 422-H: 15 p.

  18. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  19. Subsurface Remediation: Improving Long-Term Monitoring and Remedial Systems Performance Conference Proceedings

    EPA Pesticide Factsheets

    This document summarizes the presentations and workshops of a conference on improving long-term monitoring (LTM) and remedial systems performance that was held in St. Louis, Missouri between June 8th to 11th, 1999.

  20. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran.

    PubMed

    Bakhshoodeh, Reza; Alavi, Nadali; Paydary, Pooya

    2017-10-01

    Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD 5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.

  1. An In-Well Point Velocity Probe for the rapid determination of groundwater velocity at the centimeter-scale

    NASA Astrophysics Data System (ADS)

    Osorno, Trevor C.; Devlin, J. F.; Firdous, Rubina

    2018-02-01

    The In-Well Point Velocity Probe (IWPVP) is a novel device designed for obtaining rapid, initial measurements of groundwater velocity at the centimeter-scale using a standard monitoring well to access the subsurface. IWPVP measurements of groundwater speed are quantified on the basis of a mini-tracer test that is conducted within the body of the probe. Information regarding horizontal flow directions is obtained from differential responses at detectors placed in the four quadrants of the probe. The viability of the IWPVP design was confirmed by (1) numerical modeling that accounted for laminar flow in the porous medium outside the well and turbulent flow inside the well (and probe), and (2) a series of laboratory tank experiments in which the probe was calibrated to quantify seepage rates in a medium-grain sand. Laboratory tests were completed in less than 20 min in all cases, when seepage velocity was between 50 and 400 cm/day. The magnitude of the groundwater velocity was determined with a precision of ±7% on average, and accuracy of ±11% for seepage velocities up to 400 cm/day. The flow direction was determined within ±15°. The IWPVP appears to be a viable tool for rapid assessment of groundwater velocity.

  2. APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS

    EPA Science Inventory

    The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...

  3. Monitoring subsurface hydrologic response for precipitation-induced shallow landsliding in the San Francisco Bay area, California, USA

    USGS Publications Warehouse

    Collins, Brian D.; Stock, Jonathan; Weber, Lisa C.; Whitman, K.; Knepprath, N.

    2012-01-01

    Intense winter storms in the San Francisco Bay area (SFBA) of California, USA often trigger shallow landslides. Some of these landslides mobilize into potentially hazardous debris flows. A growing body of research indicates that rainfall intensity-duration thresholds are insufficient for accurate prediction of landslide occurrence. In response, we have begun long-term monitoring of the hydrologic response of land-slide-prone hillslopes to rainfall in several areas of the SFBA. Each monitoring site is equipped with sensors for measuring soil moisture content and piezometric pressure at several soil depths along with a rain gauge connected to a cell phone or satellite telemetered data logger. The data are transmitted in near-real-time, providing the ability to monitor hydrologic conditions before, during, and after storms. Results are guiding the establishment of both antecedent and storm-specific rainfall and moisture content thresholds which must be achieved before landslide-causative positive pore water pressures are generated. Although widespread shallow landsliding has not yet occurred since the deployment of the monitoring sites, several isolated land-slides have been observed in the area of monitoring. The landslides occurred during a period when positive pore water pressures were measured as a result of intense rainfall that followed higher-than-average season precipitation totals. Continued monitoring and analysis will further guide the establishment of more general-ized thresholds for different regions of the SFBA and contribute to the development and calibration of physi-cally-based predictive models.

  4. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.

    2009-08-05

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1more » Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.« less

  5. Idaho National Laboratory Vadose Zone Research Park Geohydrological Monitoring Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Baker

    2006-01-01

    Vadose zone lithology, hydrological characterization of interbed sediments, and hydrological data from subsurface monitoring of Idaho Nuclear Technology and Engineering Center wastewater infiltration are presented. Three-dimensional subsurface lithology of the vadose zone beneath the Vadose Zone Research Park is represented in a 2 dimensional (2 D) diagram showing interpolated lithology between monitoring wells. Laboratory-measured values for saturated hydraulic conductivity and porosity are given for three major interbeds, denoted as the B BC interbed (20 to 35 m bls), the C D interbed (40 to 45 m bls), and the DE 1 2 interbed (55 to 65 m bls), along withmore » an overall physical description of the sediments and geologic depositional environments. Pre-operational pore water pressure conditions are presented to show the presence and location of perched water zones before pond discharge at the New Percolation Ponds. Subsurface infiltration conditions during initial high-volume discharge are presented to show water arrival times and arrival sequences. Steady-state conditions are then presented to show formation and locations of perched water zones and recharge sources after several months of discharge to the New Percolation Ponds.« less

  6. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR)

    NASA Astrophysics Data System (ADS)

    Gupta, Nishant; Syed, Tajdarul H.; Athiphro, Ashiihrii

    2013-10-01

    Coal fires in the Jharia coalfield pose a serious threat to India's vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10-27.8 mm), low (0-10 mm) and upliftment (-10-0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.

  7. Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.

    PubMed

    McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz

    2014-05-01

    This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.

  8. Gypsies in the palace: Experimentalist's view on the use of 3-D physics-based simulation of hillslope hydrological response

    USGS Publications Warehouse

    James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.

    2010-01-01

    As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub-surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. ?? 2010 John Wiley & Sons, Ltd.

  9. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy.

    PubMed

    Fan, Jinlin; Liang, Shuang; Zhang, Bo; Zhang, Jian

    2013-04-01

    Oxygen and carbon source supply are usually insufficient in subsurface flow constructed wetlands. Simultaneous removal of organic pollutants and nitrogen in five batch-operated vertical flow constructed wetlands under different operating conditions was investigated. Alternate aerobic and anaerobic regions were created well with intermittent aeration. Four-month experiments showed that the wetland-applied intermittent aeration combined with step feeding strategy (reactor E) greatly improved the removal of organics, ammonium nitrogen (NH4-N), and total nitrogen (TN) simultaneously, which were 97, 96, and 82%, respectively. It was much better than non-aerated reactors A and B and outperformed intermittently aerated reactor D without step feeding. Continuous aeration (reactor C) significantly enhanced the organics removal and nitrification, but it limited the TN removal (29%) seriously as a result of low denitrification level, and the high operation cost remained a question. The effect of plants was confirmed in this study, and the monitoring data showed that the plants could grow normally. Intermittent aeration as well as step feeding had no obvious influence on the growth of wetland plants in this study.

  10. Thermal performance and heat transport in aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  11. Evaluation of borehole geophysical logs at the Sharon Steel Farrell Works Superfund site, Mercer County, Pennsylvania

    USGS Publications Warehouse

    McAuley, Steven D.

    2004-01-01

    On April 14?15, 2003, geophysical logging was conducted in five open-borehole wells in and adjacent to the Sharon Steel Farrell Works Superfund Site, Mercer County, Pa. Geophysical-logging tools used included caliper, natural gamma, single-point resistance, fluid temperature, and heatpulse flowmeter. The logs were used to determine casing depth, locate subsurface fractures, identify water-bearing fractures, and identify and measure direction and rate of vertical flow within the borehole. The results of the geophysical logging were used to determine the placement of borehole screens, which allows monitoring of water levels and sampling of water-bearing zones so that the U.S. Environmental Protection Agency can conduct an investigation of contaminant movement in the fractured bedrock. Water-bearing zones were identified in three of five boreholes at depths ranging from 46 to 119 feet below land surface. Borehole MR-3310 (MW03D) showed upward vertical flow from 71 to 74 feet below land surface to a receiving zone at 63-68 feet below land surface, permitting potential movement of ground water, and possibly contaminants, from deep to shallow zones. No vertical flow was measured in the other four boreholes.

  12. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  13. Assessment of the subsurface hydrology of the UIC-NARL main camp, near Barrow, Alaska, 1993-94

    USGS Publications Warehouse

    McCarthy, K.A.; Solin, G.L.

    1995-01-01

    Imikpuk Lake serves as the drinking-water source for the Ukpeagvik Inupiat Corporation-National Arctic Research Laboratory (UIC-NARL, formerly known as the Naval Arctic Research Laboratory) near Barrow, Alaska. Previously acceptable hazardous-waste disposal practices and accidental releases of various fuels and solvents during the past several decades have resulted in contamination of soil and ground water in the vicinity of the lake. As part of an assessment of the risk that subsurface contamination poses to the quality of water in the lake, the subsurface hydrology of the UIC-NARL main camp was examined. The study area is located approximately 530 kilometers north of the Arctic Circle, on the northern coast of Alaska, and the short annual thaw season and the presence of shallow, areally continuous permafrost restrict hydrologic processes. A transient ground-water system is present within the active layer-the shallow subsurface layer that thaws each summer and refreezes each winter. Water-level and thaw-depth data collected during the summers of 1993 and 1994 show that the configurations of both the water table and the subsurface frost govern the ground- water flow system in the UIC-NARL main camp and indicate that recharge to and discharge from the system are small. Spatial irregularities in the vertical extent of the active layer result from variations in land-surface elevation, variations in soil type, and the presence of buildings and other structures that either act as a heat source or block heat transfer to and from the subsurface. Distinct features in the active-layer hydrologic system in the UIC-NARL main camp include a permafrost ridge, which generally acts as a flow-system divide between the Arctic Ocean and inland water bodies; a mound in the water table, which indicates increased impedance to ground- water flow toward Imikpuk Lake and acts as a flow-system divide between the lake and Middle Salt Lagoon; and a depression in the water table, which suggests a local breach in the permafrost ridge that allows some ground water to flow directly from the main camp to the Arctic Ocean. Similar thaw depths and water-table elevations were measured during the summers of 1993 and 1994, and little change occurred in the thickness of the ground-water zone between mid- and late-thaw- season measurements. These data suggest that the system is in a state of quasi-equilibrium and that ground-water discharge is small. The observed drop in the water table as the active layer develops over the summer is probably largely the result of evapotranspiration losses rather than system outflow.

  14. Development of monitoring and modelling tools as basis for sustainable thermal management concepts of urban groundwater bodies

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias H.; Epting, Jannis; Köhler, Mandy; Händel, Falk; Huggenberger, Peter

    2015-04-01

    Increasing groundwater temperatures observed in many urban areas strongly interfere with the demand of thermal groundwater use. The groundwater temperatures in these urban areas are affected by numerous interacting factors: open and closed-loop geothermal systems for heating and cooling, sealed surfaces, constructions in the subsurface (infrastructure and buildings), artificial groundwater recharge, and interaction with rivers. On the one hand, these increasing groundwater temperatures will negatively affect the potential for its use in the future e.g. for cooling purposes. On the other hand, elevated subsurface temperatures can be considered as an energy source for shallow geothermal heating systems. Integrated thermal management concepts are therefore needed to coordinate the thermal use of groundwater in urban areas. These concepts should be based on knowledge of the driving processes which influence the thermal regime of the aquifer. We are currently investigating the processes influencing the groundwater temperature throughout the urban area of Basel City, Switzerland. This involves a three-dimensional numerical groundwater heat-transport model including geothermal use and interactions with the unsaturated zone such as subsurface constructions reaching into the aquifer. The cantonal groundwater monitoring system is an important part of the data base in our model, which will help to develop sustainable management strategies. However, single temperature measurements in conventional groundwater wells can be biased by vertical thermal convection. Therefore, multilevel observation wells are used in the urban areas of the city to monitor subsurface temperatures reaching from the unsaturated zone to the base of the aquifer. These multilevel wells are distributed in a pilot area in order to monitor the subsurface temperatures in the vicinity of deep buildings and to quantify the influence of the geothermal use of groundwater. Based on time series of the conventional groundwater wells, the multilevel observation wells and the different boundary conditions we characterize the groundwater temperature regimes using a regional groundwater heat-transport model. In the urban area of Basel, mean annual groundwater temperatures are significantly increasing with 0.05 K per year in the period of 1994 to 2014, which is most likely due to anthropogenic influences. Overall, mean annual groundwater temperatures of Basel are 3.0

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, Douglas

    Planning for ultimate Decontamination and Decommissioning (D and D) of a nuclear facility is as much a part of a successful nuclear strategy as is the ultimate disposal of radioactive waste. As facilities, in this case radioactive waste disposal trenches, are closed and abandoned leading to ultimate decommissioning, long term monitoring may be required. However, preplanning by characterizing, modeling, and monitoring the environment around the facility prior to and during operations will allow a performance assessment to be made and future behavior predicted. In the radioactive waste burial grounds of the Savannah River Site new slit trenches were constructed tomore » receive demolition debris associated with site foot print reduction. Some of the construction debris and associated process waste contained small amounts of tritium. Since the trenches were constructed over an existing tritium groundwater plume the monitoring and performance assessment of the trench, particularly with respect to tritium contributions to the vadose zone and groundwater, were important. These disposal trenches vary in length and width but are typically constructed within the upper 7 to 8 meters (21 to 24 feet) of the local sediments. The unconfined aquifer (water table) typically underlies the area at depths varying from 20 to 24 meters (60 to 72 feet), depending on elevation. Therefore, with downward flow and 13 to 16 meters (40 to 48 feet) of unsaturated sediments separating the base of the waste trenches from the unconfined aquifer, there was potential for an environmental impact to the sediments within the vadose zone and to the underlying groundwater. Monitoring and predicting this impact can support ultimate D and D activities and future performance assessment evaluation. From this work several key observations were made that will support long term monitoring and subsequent D and D: - The observed lateral variation of thinly bedded sands and clays may be less than 20 meters particularly if lenticular sands are present. Ultimate D and D should consider monitoring and remedial activities that consider sampling on scales to address this issue. - The detailed modeling, when compared with the modeled depositional patterns, indicates flow paths for vadose zone fluids, therefore a plan should allow for these flow paths. - Detailed lithostratigraphic modeling, when based on correlations between soil properties, CPT soundings and borehole geophysical logs, can aid in precision placement of subsurface sensors and sample points for performance monitoring and D and D assessment.« less

  16. Integrating Near-Real Time Hydrologic-Response Monitoring and Modeling for Improved Assessments of Slope Stability Along the Coastal Bluffs of the Puget Sound Rail Corridor, Washington State

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Baum, R. L.; Stark, B.; Smith, J. B.; Michel, A.

    2015-12-01

    Previous USGS research on landslide potential in hillside areas and coastal bluffs around Puget Sound, WA, has identified rainfall thresholds and antecedent moisture conditions that correlate with heightened probability of shallow landslides. However, physically based assessments of temporal and spatial variability in landslide potential require improved quantitative characterization of the hydrologic controls on landslide initiation in heterogeneous geologic materials. Here we present preliminary steps towards integrating monitoring of hydrologic response with physically based numerical modeling to inform the development of a landslide warning system for a railway corridor along the eastern shore of Puget Sound. We instrumented two sites along the steep coastal bluffs - one active landslide and one currently stable slope with the potential for failure - to monitor rainfall, soil-moisture, and pore-pressure dynamics in near-real time. We applied a distributed model of variably saturated subsurface flow for each site, with heterogeneous hydraulic-property distributions based on our detailed site characterization of the surficial colluvium and the underlying glacial-lacustrine deposits that form the bluffs. We calibrated the model with observed volumetric water content and matric potential time series, then used simulated pore pressures from the calibrated model to calculate the suction stress and the corresponding distribution of the factor of safety against landsliding with the infinite slope approximation. Although the utility of the model is limited by uncertainty in the deeper groundwater flow system, the continuous simulation of near-surface hydrologic response can help to quantify the temporal variations in the potential for shallow slope failures at the two sites. Thus the integration of near-real time monitoring and physically based modeling contributes a useful tool towards mitigating hazards along the Puget Sound railway corridor.

  17. Time-Lapse Monitoring with 4D Seismic Coda Waves in Active, Passive and Ambient Noise Data

    NASA Astrophysics Data System (ADS)

    Lumley, D. E.; Kamei, R.; Saygin, E.; Shragge, J. C.

    2017-12-01

    The Earth's subsurface is continuously changing, due to temporal variations in fluid flow, stress, temperature, geomechanics and geochemistry, for example. These physical changes occur at broad tectonic and earthquake scales, and also at very detailed near-surface and reservoir scales. Changes in the physical states of the earth cause time-varying changes in the physical properties of rocks and fluids, which can be monitored with natural or manmade seismic waves. Time-lapse (4D) seismic monitoring is important for applications related to natural and induced seismicity, hydrocarbon and groundwater reservoir depletion, CO2 sequestration etc. An exciting new research area involves moving beyond traditional methods in order to use the full complex time-lapse scattered wavefield (4D coda waves) for both manmade active-source 3D/4D seismic data, and also to use continuous recordings of natural-source passive seismic data, especially (micro) earthquakes and ocean ambient noise. This research involves full wave-equation approaches including waveform inversion (FWI), interferometry, Large N sensor arrays, "big data" information theory, and high performance supercomputing (HPC). I will present high-level concepts and recent data results that are quite spectacular and highly encouraging.

  18. Simulation of rainfall-runoff response in mined and unmined watersheds in coal areas of West Virginia

    USGS Publications Warehouse

    Puente, Celso; Atkins, John T.

    1989-01-01

    Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou

  19. Monitored Natural Attenuation For Inorganic Contaminants In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  20. GROUND WATER REMEDIATION RESEARCH: ENHANCED BIOREMEDIATION AND MONITORED NATURAL ATTENUATION

    EPA Science Inventory

    An overview of ground water remediation research conducted at the Subsurface Protection and Remediation Division is provided. The focus of the overview is on Enhanced Bioremediation and Monitored Natural Attenuation research for the remediation of organic and inorganic contamina...

Top