Process control monitoring systems, industrial plants, and process control monitoring methods
Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA
2010-09-07
A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.
Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes
NASA Astrophysics Data System (ADS)
Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.
2007-06-01
We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.
2016-07-27
ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Wireless Power Transfer , Structural Health Monitoring...efficient strongly coupled magnetic resonant systems, Wireless Power Transfer , (03 2014): 0. doi: 10.1017/wpt.2014.3 TOTAL: 1 Received Paper TOTAL...2016 Received Paper . Miniaturized Strongly Coupled Magnetic Resonant Systems for Wireless Power Transfer , 2016 IEEE Antennas Propagat. Society
DC coupled Doppler radar physiological monitor.
Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga
2011-01-01
One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.
Reconfigurable Drive Current System
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2017-01-01
A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.
Evaluation of a video image detection system : final report.
DOT National Transportation Integrated Search
1994-05-01
A video image detection system (VIDS) is an advanced wide-area traffic monitoring system : that processes input from a video camera. The Autoscope VIDS coupled with an information : management system was selected as the monitoring device because test...
Reconfigurable Sensor Monitoring System
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2017-01-01
A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.
Wireless device monitoring systems and monitoring devices, and associated methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W
Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.
Systems and methods for an integrated electrical sub-system powered by wind energy
Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY
2008-06-24
Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.
Introduction of a Novel Smartphone-Coupled Blood Glucose Monitoring System
Jendrike, Nina; Baumstark, Annette; Chen, Chieh-Hsiao; Rittmeyer, Delia; Haug, Cornelia; Freckmann, Guido
2017-01-01
The novel system for self-monitoring of blood glucose (SMBG) PixoTest couples SMBG to a smartphone and does not require a separate glucose meter. The integrated system includes all components necessary for a glucose measurement, and owing to a colorimetric measurement principle, a smartphone camera can capture color changes and a software app calculates the corresponding glucose value. In the presented study, the system was evaluated in terms of system accuracy as described in ISO 15197:2013. It was shown to fulfill system accuracy requirements with 97-99% of results from three different reagent system lots within the accuracy limits and 100% of results within zone A of the consensus error grid. PMID:28459160
Structural health monitoring system/method using electroactive polymer fibers
NASA Technical Reports Server (NTRS)
Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)
2013-01-01
A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.
Low temperature monitoring system for subsurface barriers
Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX
2009-08-18
A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.
Triply redundant integrated navigation and asset visibility system
Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN
2011-11-29
Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.
Triply redundant integrated navigation and asset visibility system
Smith, Stephen F.; Moore, James A.
2013-01-22
Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.
Health Monitoring System for Car Seat
NASA Technical Reports Server (NTRS)
Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)
2004-01-01
A health monitoring system for use with a child car seat has sensors mounted in the seat to monitor one or more health conditions of the seat's occupant. A processor monitors the sensor's signals and generates status signals related to the monitored conditions. A transmitter wireless transmits the status signals to a remotely located receiver. A signaling device coupled to the receiver produces at least one sensory (e.g., visual, audible, tactile) output based on the status signals.
Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian J.; Bender, Donald A.
Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less
Three-dimensional dynamic deformation monitoring using a laser-scanning system
NASA Astrophysics Data System (ADS)
Al-Hanbali, Nedal N.; Teskey, William F.
1994-10-01
Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolben, H.; Wehling, H.J.
Incipient damage to mechanical structure may be detected early in time by deviations from normal dynamic behavior. For vibration monitoring of coupled systems, only a small number of transducers are necessary, in general. On the basis, Kraftwerk Union has been involved in the development and construction of vibration monitoring systems for pressurized water reactors over the last 20 yr. The current state of the art permits vibration monitoring during normal operation by reactor personnel without expert assistance. The new SUS-86 microprocessor-based system allows further expansion toward an expert system.
Multiplexed fluorescence detector system for capillary electrophoresis
Yeung, E.S.; Taylor, J.A.
1996-03-12
A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.
Multiplexed fluorescence detector system for capillary electrophoresis
Yeung, E.S.; Taylor, J.A.
1994-06-28
A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.
Multiplexed fluorescence detector system for capillary electrophoresis
Yeung, Edward S.; Taylor, John A.
1996-03-12
A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.
Multiplexed fluorescence detector system for capillary electrophoresis
Yeung, Edward S.; Taylor, John A.
1994-06-28
A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derr, Kurt W.; Richardson, John G.
Monitoring devices and systems comprise a plurality of data channel modules coupled to processing circuitry. Each data channel module of the plurality of data channel modules is configured to capture wireless communications for a selected frequency channel. The processing circuitry is configured to receive captured wireless communications from the plurality of data channel modules and to organize received wireless communications according to at least one parameter. Related methods of monitoring wireless communications are also disclosed.
Design and field tests of a directly coupled waveguide-on-access-tube soil water sensor
USDA-ARS?s Scientific Manuscript database
Sensor systems capable of monitoring soil water content can provide a useful tool for irrigation control. Current systems are limited by installation depth, labor, accuracy, and cost. Time domain reflectometry (TDR) is an approach for monitoring soil water content that relates the travel time of an ...
NASA Technical Reports Server (NTRS)
Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.
2017-01-01
This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.
NASA Technical Reports Server (NTRS)
Bentley, Nicole; Brower, David; Le, Suy Q.; Seaman, Calvin; Tang, Henry
2017-01-01
This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.
Heidi Asbjornsen; Alex S. Mayer; Kelly W. Jones; Theresa Selfa; Leonardo Saenz; Randall K. Kolka; Kathleen E. Halvorsen
2015-01-01
Payments for watershed services (PWS) as a policy tool for enhancing water quality and supply have gained momentum in recent years, but their ability to lead to sustainable watershed outcomes is uncertain. Consequently, the demand for effective monitoring and evaluation (M&E) of PWS impacts on coupled human and natural systems (CHANS) and their implications for...
Development and Testing of a Post-Installable Deepwater Monitoring System Using Fiber-Optic Sensors
NASA Technical Reports Server (NTRS)
Seaman, Calvin H.; Brower, David V.; Le, Suy Q.; Tang, Henry H.
2015-01-01
This paper addresses the design and development of a fiber-optic monitoring system that can be deployed on existing deepwater risers and flowlines; and provides a summary of test article fabrication and the subsequent laboratory testing performed at the National Aeronautics and Space Administration-Johnson Space Center (NASA-JSC). A major challenge of a post-installed instrumentation system is to ensure adequate coupling between the instruments and the riser or flowline of interest. This work investigates the sensor coupling for pipelines that are suspended in a water column (from topside platform to seabed) using a fiber-optic sensor clamp and subsea bonding adhesive. The study involved the design, fabrication, and test of several prototype clamps that contained fiber-optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the casting of polyurethane clamp test articles to accommodate 4-inch and 8-inch diameter pipes. The prototype clamps were installed with a subsea adhesive in a "wet" environment and then tested in the NASA Structures Test Laboratory (STL). The tension, compression, and bending test data showed that the prototype sensor clamps achieved good structural coupling, and could provide high quality strain measurement for active monitoring.
Detecting GNSS spoofing attacks using INS coupling
NASA Astrophysics Data System (ADS)
Tanil, Cagatay
Vulnerability of Global Navigation Satellite Systems (GNSS) users to signal spoofing is a critical threat to positioning integrity, especially in aviation applications, where the consequences are potentially catastrophic. In response, this research describes and evaluates a new approach to directly detect spoofing using integrated Inertial Navigation Systems (INS) and fault detection concepts based on integrity monitoring. The monitors developed here can be implemented into positioning systems using INS/GNSS integration via 1) tightly-coupled, 2) loosely-coupled, and 3) uncoupled schemes. New evaluation methods enable the statistical computation of integrity risk resulting from a worst-case spoofing attack - without needing to simulate an unmanageably large number of individual aircraft approaches. Integrity risk is an absolute measure of safety and a well-established metric in aircraft navigation. A novel closed-form solution to the worst-case time sequence of GNSS signals is derived to maximize the integrity risk for each monitor and used in the covariance analyses. This methodology tests the performance of the monitors against the most sophisticated spoofers, capable of tracking the aircraft position - for example, by means of remote tracking or onboard sensing. Another contribution is a comprehensive closed-loop model that encapsulates the vehicle and compensator (estimator and controller) dynamics. A sensitivity analysis uses this model to quantify the leveraging impact of the vehicle's dynamic responses (e.g., to wind gusts, or to autopilot's acceleration commands) on the monitor's detection capability. The performance of the monitors is evaluated for two safety-critical terminal area navigation applications: 1) autonomous shipboard landing and 2) Boeing 747 (B747) landing assisted with Ground Based Augmentation Systems (GBAS). It is demonstrated that for both systems, the monitors are capable of meeting the most stringent precision approach and landing integrity requirements of the International Civil Aviation Organization (ICAO). The statistical evaluation methods developed here can be used as a baseline procedure in the Federal Aviation Administration's (FAA) certification of spoof-free navigation systems. The final contribution is an investigation of INS sensor quality on detection performance. This determines the minimum sensor requirements to perform standalone GNSS positioning in general en route applications with guaranteed spoofing detection integrity.
Development of a Post-Installed Deepwater Monitoring System
NASA Technical Reports Server (NTRS)
Seaman, C.; Brower, D. V.; Tang, H.; Le, S.
2015-01-01
A monitoring system that can be deployed on already existing deep water risers and flowlines has been developed. This paper describes the design concepts and testing that was performed in developing the monitoring system. A major challenge of a post-installed instrumentation system is to ensure adequate coupling is achieved between the instruments and the riser or flowline. This work investigates the sensor coupling for pipelines that are suspended in both the water column (from topside platform to the seabed) and for those that are located directly on the seabed. These different environments have resulted in two sensor attachment methods: (1) subsea adhesive sensor clamp design and (2) a friction surface sensor attachment method. This paper presents the adhesive attachment method. The monitoring elements consist of fiber optic sensors that are encased in a polyurethane clamp. With a subsea adhesive, the clamp can be installed by divers in shallow depths or by use of an ROV for deeper applications. The NASA Johnson Space Center was initially involved in the selection and testing of subsea adhesives. It was determined that up to 75 percent of the bonding strength could be achieved with the adhesive from optimal dry bonding versus bonding in submerged sea water environments. The next phase of the study involved the design, fabrication, and testing of several prototype clamps that contained the fiber optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the fabrication of subscale test articles that would accommodate 4-inch and 8-inch diameter pipes. The clamps were installed with adhesive in a "wet" environment on the pipe test articles and tested in the NASA Structures Test Laboratory. The tension/compression and bending tests showed that the prototype sensor clamps achieved good coupling, and could provide high quality strain measurement for active monitoring.
A Coupled model for ERT monitoring of contaminated sites
NASA Astrophysics Data System (ADS)
Wang, Yuling; Zhang, Bo; Gong, Shulan; Xu, Ya
2018-02-01
The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.
An evaluation of continuous emissions monitoring systems for improving industrial boiler efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerlin, H.M.; Hall, R.C.
1996-12-31
An experimental evaluation of currently available continuous emissions monitoring systems has been conducted at an industrial boiler facility. The analyzers used in the study represented a range of sensors and sampling systems. The performance of three systems was monitored and compared over a six-month period. Careful records were also kept on installation, calibration and maintenance requirements. Research results suggest that (at present) the close-coupled extractive systems using a zirconium oxide sensor (for O{sub 2}) and a catalytic combustibles sensor (for CO/combustibles) offer the most reliable, trouble-free performance. The project also provided valuable insights on a variety of issues relating tomore » the continuous monitoring of emissions from industrial boilers.« less
An evaluation of continuous emissions monitoring systems for improving industrial boiler efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerlin, H.M.; Hall, R.C.
1996-05-01
An experimental evaluation of currently available continuous emissions monitoring systems has been conducted at an industrial boiler facility. The analyzers used in the study represented a range of sensors and sampling systems. The performance of three systems was monitored and compared over a six-month period. Careful records were also kept on installation, calibration and maintenance requirements. Research results suggest that (at present) the close-coupled extractive systems using a zirconium oxide sensor (for O{sub 2}) and a catalytic combustibles sensor (for CO/combustibles) offer the most reliable, trouble-free performance. The project also provided valuable insights on a variety of issues relating tomore » the continuous monitoring of emissions from industrial boilers.« less
System and Method for Monitoring Piezoelectric Material Performance
NASA Technical Reports Server (NTRS)
Moses, Robert W. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Chattin, Richard L. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor)
2007-01-01
A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.
NASA Astrophysics Data System (ADS)
da Costa, Renata F.; Marques, Marcia T. A.; M Macedo, Fernanda de; Andrade, Izabel da Silva; Araujo, Elaine Cristina; Correa, Thais; de Andrade Salani, Maria Helena Goncalves; Lopes, Daniel Silveira; Goncalves Guardani, Maria Lucia; Landulfo, Eduardo; Guardani, Roberto
2018-04-01
Field campaigns with a scanning multiwavelength elastic lidar coupled with a Doppler system to monitor industrial atmospheric aerosol emissions were carried out, with the objective of monitoring aerosol emission sources and plume dispersion. Since the technique provides information on the spatial and temporal distribution of aerosol concentration, the implementation of a systematic monitoring procedure is proposed as a valuable tool in air quality monitoring applied to regions of interest.
NASA Astrophysics Data System (ADS)
Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.
2000-03-01
The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.
Embedded wireless sensors for turbomachine component defect monitoring
Tralshawala, Nilesh; Sexton, Daniel White
2015-11-24
Various embodiments include detection systems adapted to monitor at least one physical property of a component in a turbomachine. In some embodiments a detection system includes at least one sensor configured to be affixed to a component of a turbomachine, the at least one sensor for sensing information regarding at least one physical property of the turbomachine component during operation of the turbomachine, a signal converter communicatively coupled to the at least one sensor and at least one RF communication device configured to be affixed to a stationary component of the turbomachine, the radio frequency communication device configured to communicate with the at least one signal converter via an RF antenna coupled to the signal converter.
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Aggarwal, Kamal; Yang, Mimi X.; Parizi, Kokab B.; Xu, Xiaoqing; Akin, Demir; Poon, Ada S. Y.; Wong, H.-S. Philip
2017-07-01
We report the design, analysis, and characterization of a three-inductor radio-frequency identification (RFID) and transceiver system for potential applications in individual cell tracking and monitoring. The RFID diameter is 22 μ m and can be naturally internalized by living cells. Using magnetic resonance coupling, the system shows resonance shifts when the RFID is present and also when the RFID loading capacitance changes. It operates at 60 GHz with a high signal magnitude up to -50 dB and a sensitivity of 0.2. This miniaturized RFID with a high signal magnitude is a promising step toward continuous, real-time monitoring of activities at cellular levels.
NASA Technical Reports Server (NTRS)
Deb, Somnath (Inventor); Ghoshal, Sudipto (Inventor); Malepati, Venkata N. (Inventor); Kleinman, David L. (Inventor); Cavanaugh, Kevin F. (Inventor)
2004-01-01
A network-based diagnosis server for monitoring and diagnosing a system, the server being remote from the system it is observing, comprises a sensor for generating signals indicative of a characteristic of a component of the system, a network-interfaced sensor agent coupled to the sensor for receiving signals therefrom, a broker module coupled to the network for sending signals to and receiving signals from the sensor agent, a handler application connected to the broker module for transmitting signals to and receiving signals therefrom, a reasoner application in communication with the handler application for processing, and responding to signals received from the handler application, wherein the sensor agent, broker module, handler application, and reasoner applications operate simultaneously relative to each other, such that the present invention diagnosis server performs continuous monitoring and diagnosing of said components of the system in real time. The diagnosis server is readily adaptable to various different systems.
A new venous infusion path monitoring system utilizing electrostatic induced potential.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W Morton
2008-01-01
A new venous infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear and digital integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. A 330 kHz AC voltage, which is induced on the patient's body by electrostatic coupling from a 330 kHz pulse oscillator, can be recorded by main and reference electrodes wrapped around the infusion polyvinyl chloride tube. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).
NASA Astrophysics Data System (ADS)
Huber, Rupert; Kübler, Carl; Tübel, Stefan; Leitenstorfer, Alfred
2006-02-01
We study the ultrafast transition of a pure longitudinal optical phonon resonance to a coupled phonon-plasmon system. Following 10-fs photoexcitation of intrinsic indium phosphide, ultrabroadband THz opto-electronics monitors the buildup of coherent beats of the emerging hybrid modes directly in the time domain with sub-cycle resolution. Mutual repulsion and redistribution of the oscillator strength of the interacting phonons and plasmons are seen to emerge on a delayed femtosecond time scale. Both branches of the mixed modes are monitored for various excitation densities N. We observe a pronounced anticrossing of the coupled resonances as a function of N. The characteristic formation time for phonon-plasmon coupling exhibits density dependence. The time is approximately set by one oscillation cycle of the upper branch of the mixed modes.
PERFORMANCE RESULTS OF JET-REMPI AS A REAL-TIME PCDD/F EMISSION MONITOR
The Jet REMPI monitor was recently tested on a hazardous-waste firing boiler for its ability to determine real time concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI consists of a laser system coupled with a time of flight mass spectrometer ...
Utilizing GCaMP transgenic mice to monitor endogenous Gq/11-coupled receptors
Partridge, John G.
2015-01-01
The family of GCaMPs are engineered proteins that contain Ca2+ binding motifs within a circularly permutated variant of the Aequorea Victoria green fluorescent protein (cp-GFP). The rapidly advancing field of utilizing GCaMP reporter constructs represents a major step forward in our ability to monitor intracellular Ca2+ dynamics. With the use of these genetically encoded Ca2+ sensors, investigators have studied activation of endogenous Gq types of G protein-coupled receptors (GPCRs) and subsequent rises in intracellular calcium. Escalations in intracellular Ca2+ from GPCR activation can be faithfully monitored in space and time as an increase in fluorescent emission from these proteins. Further, transgenic mice are now commercially available that express GCaMPs in a Cre recombinase dependent fashion. These GCaMP reporter mice can be bred to distinct Cre recombinase driver mice to direct expression of this sensor in unique populations of cells. Concerning the central nervous system (CNS), sources of calcium influx, including those arising from Gq activation can be observed in targeted cell types like neurons or astrocytes. This powerful genetic method allows simultaneous monitoring of the activity of dozens of cells upon activation of endogenous Gq-coupled GPCRs. Therefore, in combination with pharmacological tools, this strategy of monitoring GPCR activation is amenable to analysis of orthosteric and allosteric ligands of Gq-coupled receptors in their endogenous environments. PMID:25805995
Coupling sensing to crop models for closed-loop plant production in advanced life support systems
NASA Astrophysics Data System (ADS)
Cavazzoni, James; Ling, Peter P.
1999-01-01
We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.
Health monitoring system for transmission shafts based on adaptive parameter identification
NASA Astrophysics Data System (ADS)
Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.
2018-05-01
A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.
A new infusion pathway intactness monitoring system.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Ninomiya, Ishio; Sata, Koji; Hamada, Shingo; Caldwell, W Morton
2006-01-01
A new infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. An AC (alternating current) voltage is induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. The induced AC voltage can be recorded by a main electrode wrapped around the infusion polyvinyl chloride tube. A reference electrode is wrapped on the electrode to monitor the AC voltage around the main electrode. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).
Piezoelectric and Semiconducting Ribbon for Flexible Energy Harvesting
2012-06-08
ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Space and Naval Warfare Systems Command SPA WAR 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION...rubbers could yield breakthroughs in implantable or wearable energy harvesting systems . Being electromechanically coupled, piezoelectric crystals...ctuator d33 (pm/V) PZT PVDF Quartz Bone PZT > 80% Conversion Efficiency 3333 dk VdE 2233 Energy 250 25 2.5
Bellofiore, Alessandro; Chesler, Naomi C
2013-07-01
The right ventricle (RV) is a pulsatile pump, the efficiency of which depends on proper hemodynamic coupling with the compliant pulmonary circulation. The RV and pulmonary circulation exhibit structural and functional differences with the more extensively investigated left ventricle (LV) and systemic circulation. In light of these differences, metrics of LV function and efficiency of coupling to the systemic circulation cannot be used without modification to characterize RV function and efficiency of coupling to the pulmonary circulation. In this article, we review RV physiology and mechanics, established and novel methods for measuring RV function and hemodynamic coupling, and findings from application of these methods to RV function and coupling changes with pulmonary hypertension. We especially focus on non-invasive measurements, as these may represent the future for clinical monitoring of disease progression and the effect of drug therapies.
Minimizing a Wireless Passive LC-Tank Sensor to Monitor Bladder Pressure: A Simulation Study.
Melgaard, Jacob; Struijk, Johannes J; Rijkhoff, Nico J M
2017-01-01
In this simulation study, a wireless passive LC-tank sensor system was characterized. Given the application of continuous bladder monitoring, a specific system was proposed in terms of coil geometries and electronic circuitry. Coupling coefficients were spatially mapped by simulation, as a function of both coil distance, and longitudinal and transverse translation of the sensor relative to the antenna. Further, two interrogation schemes were outlined. One was an auto-balancing bridge for computing the sensor-system impedance. In this case, the theoretical noise limit of the analogue part of the system was found by simulations. As the full system is not necessary for obtaining a pressure reading from the sensor, a simplified circuit more suited for an implantable system was deduced. For this system, both the analogue and digital parts were simulated. First, the required ADC resolution for operating the system at a given coupling was found by simulations in the noise-free case. Then, for one selected typical operational point, noise was added gradually, and through Monte-Carlo type simulations, the system performance was obtained. Combining these results, it was found that it at least is possible to operate the proposed system for distances up to 12 mm, or equivalently for coupling coefficients above 0.005. In this case a 14 bit ADC is required, and a carrier SNR of 27 dB can be tolerated.
A new infusion pathway monitoring system utilizing electrostatic induced potential.
Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Alien W; Caldwell, W Morton
2006-01-01
We have developed a new infusion pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer. The system is available for hospital and home use and it constantly monitors the intactness of the pathway. The sensor is an electro-conductive polymer electrode wrapped around the infusion polyvinyl chloride infusion tube. This records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltage and alerts the nursing station, via the nurse call system or PHS (personal handy phone System).
Detection of system failures in multi-axes tasks. [pilot monitored instrument approach
NASA Technical Reports Server (NTRS)
Ephrath, A. R.
1975-01-01
The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.
USDA-ARS?s Scientific Manuscript database
In the southern United States, corn production encounters moisture deficit coupled with high temperature stress, particularly during the reproductive stage of the plant. In evaluating plants for environmental stress tolerance, it is important to monitor changes in their physical environment under na...
Toxin detection using a tyrosinase-coupled oxygen electrode.
Smit, M H; Rechnitz, G A
1993-02-15
An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.
Demonstration of the application of traffic management center decision support tools : [summary].
DOT National Transportation Integrated Search
2013-03-01
Among the most important advances in transportation systems in recent years has been the development and implementation of intelligent transportation systems (ITS), which relies on several means of monitoring traffic flows, coupled with real-time and...
Wireless energizing system for an automated implantable sensor.
Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P
2016-07-01
The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.
Remote maintenance monitoring system
NASA Technical Reports Server (NTRS)
Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)
1992-01-01
A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.
Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.
Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel
2017-04-01
Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.
NASA Technical Reports Server (NTRS)
Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.
2017-01-01
This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system capable of measuring pressure, strain, and temperature that can be deployed on existing subsea structures. A summary is provided of the design concept, prototype development, prototype performance testing, and subsequent design refinements of the device. The results of laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are also included. Limitations of the initial concept were identified during testing and future design improvements were proposed and later implemented. These new features enhance the coupling of the sensor device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on flowlines, risers, and other subsea structures. The work described in this paper investigates the design and test of a friction-based coupling device (herein referred to as a friction clamp) which is suitable for pipelines and structures that are suspended in the water column as well as for those that are resting on the seabed. The monitoring elements consist of fiberoptic sensors that are bonded to a stainless steel clamshell assembly with a high-friction surface coating. The friction clamp incorporates a single hinge design to facilitate installation of the clamp and dual rows of opposing fasteners to distribute the clamping force along the structure. The friction clamp can be modified to be installed by commercial divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance technologies that will benefit the environment, the public, and commercial industries.
Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA
2010-07-13
A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.
Flexible Organic Tribotronic Transistor Memory for a Visible and Wearable Touch Monitoring System.
Li, Jing; Zhang, Chi; Duan, Lian; Zhang, Li Min; Wang, Li Duo; Dong, Gui Fang; Wang, Zhong Lin
2016-01-06
A new type of flexible organic tribotronic transistor memory is proposed, which can be written and erased by externally applied touch actions as an active memory. By further coupling with an organic light-emitting diode (OLED), a visible and wearable touch monitoring system is achieved, in which touch triggering can be memorized and shown as the emission from the OLED. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[A non-invasive portable blood-glucose monitoring system: sampling of suction effusion fluid].
Arai, T; Kayashima, S; Kikuchi, M; Kaneyoshi, A; Itoh, N
1995-04-01
We developed a new portable transcutaneous blood glucose monitoring system using non-invasive collection of suction effusion fluid (SEF) from human skin. A ion sensitive field effect transistor (ISFET) sensor was employed to measure glucose concentration in a very small quantity of the SEF. The system was composed of a couple of portions. One structure was a suction cell, and the other was a main frame. The suction cell included the ISFET glucose sensor, a dilution mechanism, and a sucking interface to human skin. The main frame contained a dilution solution reservoir, a liquid waste reservoir, a fluid pump, a vacuum pump, a micro processor, batteries, and a user interface. The system is self-contained for portable usage during up to 6 hrs monitoring. This system may be the first blood glucose monitoring equipment which does not use blood sampling.
Mbuligwe, Stephen E
2005-01-01
A septic tank (ST)/engineered wetland coupled system used to treat and recycle wastewater from a small community in Dar es Salaam, Tanzania was monitored to assess its performance. The engineered wetland system (EWS) had two parallel units each with two serial beds packed with different sizes of media and vegetated differently. The larger-sized medium bed was upstream and was planted with Phragmites (reeds) and the smaller-sized medium bed was downstream and was planted with Typha (cattails). The ST/EWS coupled system was able to remove ammonia by an average of 60%, nitrate by 71%, sulfate by 55%, chemical oxygen demand by 91%, and fecal coliform as well as total coliform by almost 100%. The effluent from the ST/EWS coupled system is used for irrigation. Notably, users of the recycled irrigation water do not harbor any negative feelings about it. This study demonstrates that it is possible to treat and recycle domestic wastewater using ST/ EWS coupled systems. The study also brings attention to the fact that an ST/EWS coupled system has operation and maintenance (O&M) needs that must be fulfilled for its effectiveness and acceptability. These include removal of unwanted weeds, harvesting of wetland plants when the EWS becomes unappealingly bushy, and routine repair.
Vender, John; Waller, Jennifer; Dhandapani, Krishnan; McDonnell, Dennis
2011-08-01
Intracranial pressure measurements have become one of the mainstays of traumatic brain injury management. Various technologies exist to monitor intracranial pressure from a variety of locations. Transducers are usually placed to assess pressure in the brain parenchyma and the intra-ventricular fluid, which are the two most widely accepted compartmental monitoring sites. The individual reliability and inter-reliability of these devices with and without cerebrospinal fluid diversion is not clear. The predictive capability of monitors in both of these sites to local, regional, and global changes also needs further clarification. The technique of monitoring intraventricular pressure with a fluid-coupled transducer system is also reviewed. There has been little investigation into the relationship among pressure measurements obtained from these two sources using these three techniques. Eleven consecutive patients with severe, closed traumatic brain injury not requiring intracranial mass lesion evacuation were admitted into this prospective study. Each patient underwent placement of a parenchymal and intraventricular pressure monitor. The ventricular catheter tubing was also connected to a sensor for fluid-coupled measurement. Pressure from all three sources was measured hourly with and without ventricular drainage. Statistically significant correlation within each monitoring site was seen. No monitoring location was more predictive of global pressure changes or more responsive to pressure changes related to patient stimulation. However, the intraventricular pressure measurements were not reliable in the presence of cerebrospinal fluid drainage whereas the parenchymal measurements remained unaffected. Intraparenchymal pressure monitoring provides equivalent, statistically similar pressure measurements when compared to intraventricular monitors in all care and clinical settings. This is particularly valuable when uninterrupted cerebrospinal fluid drainage is desirable.
A new passive radon-thoron discriminative measurement system.
Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M
2010-10-01
A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.
Portable system for auscultation and lung sound analysis.
Nabiev, Rustam; Glazova, Anna; Olyinik, Valery; Makarenkova, Anastasiia; Makarenkov, Anatolii; Rakhimov, Abdulvosid; Felländer-Tsai, Li
2014-01-01
A portable system for auscultation and lung sound analysis has been developed, including the original electronic stethoscope coupled with mobile devices and special algorithms for the automated analysis of pulmonary sound signals. It's planned that the developed system will be used for monitoring of health status of patients with various pulmonary diseases.
Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer
NASA Technical Reports Server (NTRS)
Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.
2005-01-01
Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.
Development of a head impact monitoring "Intelligent Mouthguard".
Hedin, Daniel S; Gibson, Paul L; Bartsch, Adam J; Samorezov, Sergey
2016-08-01
The authors present the development and laboratory system-level testing of an impact monitoring "Intelligent Mouthguard" intended to help with identification of potentially concussive head impacts and cumulative head impact dosage. The goal of Intelligent Mouthguard is to provide an indicator of potential concussion risk, and help caregiver identify athletes needing sideline concussion protocol testing. Intelligent Mouthguard may also help identify individuals who are at higher risk based on historical dosage. Intelligent Mouthguard integrates inertial sensors to provide 3-degree of freedom linear and rotational kinematics. The electronics are fully integrated into a custom mouthguard that couples tightly to the upper teeth. The combination of tight coupling and highly accurate sensor data means the Intelligent Mouthguard meets the National Football League (NFL) Level I validity specification based on laboratory system-level test data presented in this study.
Electrical appliance energy consumption control methods and electrical energy consumption systems
Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA
2006-03-07
Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.
Electrical appliance energy consumption control methods and electrical energy consumption systems
Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA
2008-09-02
Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.
Vital Sign Monitoring Through the Back Using an UWB Impulse Radar With Body Coupled Antennas.
Schires, Elliott; Georgiou, Pantelis; Lande, Tor Sverre
2018-04-01
Radar devices can be used in nonintrusive situations to monitor vital sign, through clothes or behind walls. By detecting and extracting body motion linked to physiological activity, accurate simultaneous estimations of both heart rate (HR) and respiration rate (RR) is possible. However, most research to date has focused on front monitoring of superficial motion of the chest. In this paper, body penetration of electromagnetic (EM) wave is investigated to perform back monitoring of human subjects. Using body-coupled antennas and an ultra-wideband (UWB) pulsed radar, in-body monitoring of lungs and heart motion was achieved. An optimised location of measurement in the back of a subject is presented, to enhance signal-to-noise ratio and limit attenuation of reflected radar signals. Phase-based detection techniques are then investigated for back measurements of vital sign, in conjunction with frequency estimation methods that reduce the impact of parasite signals. Finally, an algorithm combining these techniques is presented to allow robust and real-time estimation of both HR and RR. Static and dynamic tests were conducted, and demonstrated the possibility of using this sensor in future health monitoring systems, especially in the form of a smart car seat for driver monitoring.
A Primary Study of Indirect ECG Monitor Embedded in a Bed for Home Health Care
NASA Astrophysics Data System (ADS)
Ueno, Akinori; Shiogai, Yuuki; Ishiyama, Yoji
A system for monitoring electrocardiogram (ECG) through clothes inserted between the measuring electrodes and the body surface of a subject when lying on a mattress has been proposed. The principle of the system is based on capacitive coupling involving the electrode, the clothes, and the skin. Validation of the system revealed the following: (1) In spite of the gain attenuation in the pass band of the system, distortion of the detected signal was subtle even when clothes thicker than 1mm were inserted, (2) The system was able to yield a stable ECG from a subject particularly during sound sleep, (3) The system succeeded in detecting ECG after changing the posture into any of supine, right lateral, or left lateral positions by adopting a newly devised electrode configuration. Therefore, the proposed system appears promising for application to bedding as a non-invasive and awareness-free system for ECG monitoring during sleep.
Application of a microcomputer-based system to control and monitor bacterial growth.
Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R
1984-02-01
A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.
Application of a Microcomputer-Based System to Control and Monitor Bacterial Growth
Titus, Jeffrey A.; Luli, Gregory W.; Dekleva, Michael L.; Strohl, William R.
1984-01-01
A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO2, and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations. PMID:16346462
Wireless energizing system for an automated implantable sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.
The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonantmore » frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.« less
A novel pulse height analysis technique for nuclear spectroscopic and imaging systems
NASA Astrophysics Data System (ADS)
Tseng, H. H.; Wang, C. Y.; Chou, H. P.
2005-08-01
The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.
Multi-field coupled sensing network for health monitoring of composite bolted joint
NASA Astrophysics Data System (ADS)
Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav
2016-04-01
Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.
Soft bio-integrated systems for continuous health monitoring
NASA Astrophysics Data System (ADS)
Raj, M.; Wei, P. H.; Morey, B.; Wang, X.; Keen, B.; DePetrillo, P.; Hsu, Y. Y.; Ghaffari, R.
2014-06-01
Electronically-enabled wearable systems that monitor physiological activity and electrophysiological activity hold the key to truly personalized medical care outside of the hospital setting. However, fundamental technical challenges exist in achieving medical systems that are comfortable, unobtrusive and fully integrated without external connections to bench top instruments. In particular, there is a fundamental mismatch in mechanical coupling between existing classes of rigid electronics and soft biological substrates, like the skin. Here we describe new mechanical and electrical design strategies for wearable devices with mechanical properties that approach that of biological tissue. These systems exploit stretchable networks of conformal sensors (i.e. electrodes, temperature sensors, and accelerometers) and associated circuitry (i.e. microcontroller, memory, voltage regulators, rechargeable battery, wireless communication modules) embedded in ultrathin, elastomeric substrates. Quantitative analyses of sensor performance and mechanics under tensile and torsional stresses illustrate the ability to mechanically couple with soft tissues in a way that is mechanically invisible to the user. Representative examples of these soft biointegrated systems can be applied for continuous sensing of muscle and movement activity in the home and ambulatory settings.
Coupled Oscillators System in the True Slime Mold
NASA Astrophysics Data System (ADS)
Takamatsu, A.; Fujii, T.; Endo, I.
The Plasmodium of true slime mold, Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a coupled nonlinear oscillators system. The partial bodies of the Plasmodium are interconnected by microscale tubes, whose dimension can be related to the coupling strength between the plasmodial oscillators. Investigation on the collective behavior of the oscillators under the condition that the configuration of the tube structure can be manipulated gives significant information on the characteristics of the Plasmodium from the viewpoint of nonlinear dynamics. In this study, we propose a living coupled oscillators system. Using a microfabricated structure, we patterned the geometry and the dimensions of the microscale tube structure of the Plasmodium. As the first step, the Plasmodium was grown in the microstructure for coupled two oscillators system that has two wells (oscillator part) and a microchannel (coupling part). We investigated the oscillation bahavior by monitoring the thickness oscillation of Plasmodium in the strucutre with various width (W) and length (L) of microchannel. We found that there are various types of oscillation bahavior, such as anti-phase and in-phase oscillations depending on the channel dimension W and L. The present method is suitable for further studies of the network of the Plasmodium as a collective nonlinear oscillators system.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Steinrock, T. (Technical Monitor)
2001-01-01
An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user interface is very intuitive and easy to operate. The system has successfully supported four launches to date. It is currently being permanently installed as the primary system monitoring the Space Shuttles during ground processing and launch operations. Time and cost savings will be substantial over the current systems when it is fully implemented in the field. Tests were performed to demonstrate the performance of the system. Low limits-of-detection coupled with small drift make the system a major enhancement over the current systems. Though this system is currently optimized for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
NASA Astrophysics Data System (ADS)
Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.
2018-03-01
We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.
Transregional Collaborative Research Centre 32: Patterns in Soil-Vegetation-Atmosphere-Systems
NASA Astrophysics Data System (ADS)
Masbou, M.; Simmer, C.; Kollet, S.; Boessenkool, K.; Crewell, S.; Diekkrüger, B.; Huber, K.; Klitzsch, N.; Koyama, C.; Vereecken, H.
2012-04-01
The soil-vegetation-atmosphere system is characterized by non-linear exchanges of mass, momentum and energy with complex patterns, structures and processes that act at different temporal and spatial scales. Under the TR32 framework, the characterisation of these structures and patterns will lead to a deeper qualitative and quantitative understanding of the SVA system, and ultimately to better predictions of the SVA state. Research in TR32 is based on three methodological pillars: Monitoring, Modelling and Data Assimilation. Focusing our research on the Rur Catchment (Germany), patterns are monitored since 2006 continuously using existing and novel geophysical and remote sensing techniques from the local to the catchment scale based on ground penetrating radar methods, induced polarization, radiomagnetotellurics, electrical resistivity tomography, boundary layer scintillometry, lidar techniques, cosmic-ray, microwave radiometry, and precipitation radars with polarization diversity. Modelling approaches involve development of scaled consistent coupled model platform: high resolution numerical weather prediction (NWP; 400m) and hydrological models (few meters). In the second phase (2011-2014), the focus is on the integration of models from the groundwater to the atmosphere for both the m- and km-scale and the extension of the experimental monitoring in respect to vegetation. The coupled modelling platform is based on the atmospheric model COSMO, the land surface model CLM and the hydrological model ParFlow. A scale consistent two-way coupling is performed using the external OASIS coupler. Example work includes the transfer of laboratory methods to the field; the measurements of patterns of soil-carbon, evapotranspiration and respiration measured in the field; catchment-scale modeling of exchange processes and the setup of an atmospheric boundary layer monitoring network. These modern and predominantly non-invasive measurement techniques are exploited in combination with advanced modelling systems by data assimilation to yield improved numerical models for the prediction of water-, energy and CO2-transfer by accounting for the patterns occurring at various scales.
Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system
NASA Astrophysics Data System (ADS)
Yan, Yingying; Lin, Jintai; Chen, Jinxuan; Hu, Lu
2016-02-01
Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3), but these processes are not captured by current global chemical transport models (CTMs) and chemistry-climate models that are limited by coarse horizontal resolutions (100-500 km, typically 200 km). These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5° long. × 2° lat.) and its three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs) from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from the World Data Centre for Greenhouse Gases (WDCGG), the United States National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory Global Monitoring Division (GMD), the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP), and the United States Environmental Protection Agency Air Quality System (AQS)), aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC)) and satellite measurements (two Ozone Monitoring Instrument (OMI) products). The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3 with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled system reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO (for remote areas) and MOZAIC (for polluted regions) data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5 %, annual mean), bringing them closer to the OMI data in all seasons. Additionally, the two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5 % with improved estimates of methyl chloroform and methane lifetimes. Simulation improvements are more significant in the Northern Hemisphere, and are mainly driven by improved representation of spatial inhomogeneity in chemistry/emissions. Within the nested domains, the two-way coupled simulation reduces surface ozone biases relative to typical GEOS-Chem one-way nested simulations, due to much improved LBCs. The bias reduction is 1-7 times the bias reduction from the global to the one-way nested simulation. Improving model representations of small-scale processes is important for understanding the global and regional tropospheric chemistry.
Tools for monitoring system suitability in LC MS/MS centric proteomic experiments.
Bereman, Michael S
2015-03-01
With advances in liquid chromatography coupled to tandem mass spectrometry technologies combined with the continued goals of biomarker discovery, clinical applications of established biomarkers, and integrating large multiomic datasets (i.e. "big data"), there remains an urgent need for robust tools to assess instrument performance (i.e. system suitability) in proteomic workflows. To this end, several freely available tools have been introduced that monitor a number of peptide identification (ID) and/or peptide ID free metrics. Peptide ID metrics include numbers of proteins, peptides, or peptide spectral matches identified from a complex mixture. Peptide ID free metrics include retention time reproducibility, full width half maximum, ion injection times, and integrated peptide intensities. The main driving force in the development of these tools is to monitor both intra- and interexperiment performance variability and to identify sources of variation. The purpose of this review is to summarize and evaluate these tools based on versatility, automation, vendor neutrality, metrics monitored, and visualization capabilities. In addition, the implementation of a robust system suitability workflow is discussed in terms of metrics, type of standard, and frequency of evaluation along with the obstacles to overcome prior to incorporating a more proactive approach to overall quality control in liquid chromatography coupled to tandem mass spectrometry based proteomic workflows. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
Online Bridge Crack Monitoring with Smart Film
Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2013-01-01
Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496
Millimeter-wave radar for vital signs sensing
NASA Astrophysics Data System (ADS)
Petkie, Douglas T.; Benton, Carla; Bryan, Erik
2009-05-01
In this paper, we will describe the development of a 228 GHz heterodyne radar system as a vital signs sensing monitor that can remotely measure respiration and heart rates from distances of 1 to 50 meters. We will discuss the design of the radar system along with several studies of its performance. The system includes the 228 GHz transmitter and heterodyne receiver that are optically coupled to the same 6 inch optical mirror that is used to illuminate the subject under study. Intermediate Frequency (IF) signal processing allows the system to track the phase of the reflected signal through I and Q detection and phase unwrapping. The system monitors the displacement in real time, allowing various studies of its performance to be made. We will review its successes by comparing the measured rates with a wireless health monitor and also describe the challenges of the system.
B-Plant Canyon Ventilation Control System Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCDANIEL, K.S.
1999-08-31
Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.
Reconfigurable assembly work station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yhu-Tin; Abell, Jeffrey A.; Spicer, John Patrick
A reconfigurable autonomous workstation includes a multi-faced superstructure including a horizontally-arranged frame section supported on a plurality of posts. The posts form a plurality of vertical faces arranged between adjacent pairs of the posts, the faces including first and second faces and a power distribution and position reference face. A controllable robotic arm suspends from the rectangular frame section, and a work table fixedly couples to the power distribution and position reference face. A plurality of conveyor tables are fixedly coupled to the work table including a first conveyor table through the first face and a second conveyor table throughmore » the second face. A vision system monitors the work table and each of the conveyor tables. A programmable controller monitors signal inputs from the vision system to identify and determine orientation of the component on the first conveyor table and control the robotic arm to execute an assembly task.« less
Cortical spreading depression occurs during elective neurosurgical procedures.
Carlson, Andrew P; William Shuttleworth, C; Mead, Brittany; Burlbaw, Brittany; Krasberg, Mark; Yonas, Howard
2017-01-01
OBJECTIVE Cortical spreading depression (CSD) has been observed with relatively high frequency in the period following human brain injury, including traumatic brain injury and ischemic/hemorrhagic stroke. These events are characterized by loss of ionic gradients through massive cellular depolarization, neuronal dysfunction (depression of electrocorticographic [ECoG] activity) and slow spread (2-5 mm/min) across the cortical surface. Previous data obtained in animals have suggested that even in the absence of underlying injury, neurosurgical manipulation can induce CSD and could potentially be a modifiable factor in neurosurgical injury. The authors report their initial experience with direct intraoperative ECoG monitoring for CSD. METHODS The authors prospectively enrolled patients undergoing elective craniotomy for supratentorial lesions in cases in which the surgical procedure was expected to last > 2 hours. These patients were monitored for CSD from the time of dural opening through the time of dural closure, using a standard 1 × 6 platinum electrode coupled with an AC or full-spectrum DC amplifier. The data were processed using standard techniques to evaluate for slow potential changes coupled with suppression of high-frequency ECoG propagating across the electrodes. Data were compared with CSD validated in previous intensive care unit (ICU) studies, to evaluate recording conditions most likely to permit CSD detection, and identify likely events during the course of neurosurgical procedures using standard criteria. RESULTS Eleven patients underwent ECoG monitoring during elective neurosurgical procedures. During the periods of monitoring, 2 definite CSDs were observed to occur in 1 patient and 8 suspicious events were detected in 4 patients. In other patients, either no events were observed or artifact limited interpretation of the data. The DC-coupled amplifier system represented an improvement in stability of data compared with AC-coupled systems. Compared with more widely used postoperative ICU monitoring, there were additional challenges with artifact from saturation during bipolar cautery as well as additional noise peaks detected. CONCLUSIONS CSD can occur during elective neurosurgical procedures even in brain regions distant from the immediate operative site. ECoG monitoring with a DC-coupled full-spectrum amplifier seemed to provide the most stable signal despite significant challenges to the operating room environment. CSD may be responsible for some cases of secondary surgical injury. Though further studies on outcome related to the occurrence of these events is needed, efforts to decrease the occurrence of CSD by modification of anesthetic regimen may represent a novel target for study to increase the safety of neurosurgical procedures.
NASA Astrophysics Data System (ADS)
Nugroho, W. H.; Purnomo, N. J. H.; Soedarto, T.
2016-11-01
This paper presents an experimental work to monitor the health of submarine hull structures using strain sensors and wireless communication technology. The monitored - submarine hull was built in a hydro elastic model scale 1: 30 with a steel bar backbone and tested on water tank of Indonesian Hydrodynamic Laboratory (IHL). Specifically, this health monitoring system for the submarine model was developed using wireless modems, data communication software and conventional strain sensors. This system was used to monitor the loads on a steel bar backbone of the running submarine model from the edge of the water tank. Commands were issued from a notebook to instruct the health monitoring system to acquire data from sensors mounted externally to the steel bar. Data from measurements made on the structure are then transmitted wirelessly back to a notebook computer for processing and analysis. The results of the tank test have been validated and showed no loss of communication signal over an area of the tank. This work also presents a potential use of involving complete automation of this system with an in-service structure coupled with an on-line warning/damage detection capability.
System study of the utilization of space for carbon dioxide research
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Vranka, R.
1985-01-01
The objectives included: compiling and selecting the Scientific Data Requirements (SDRs) pertinent to the CO2 Research Program that have the potential to be more successfully achieved by utilizing space-based sensor systems; assessment of potential space technology in monitoring those parameters which may be important first indicators of climate change due to increasing atmospheric CO2, including the behavior of the West Antarctic ice sheet; and determine the potential of space technology for monitoring those parameters to improve understanding of the coupling between CO2 and cloud cover.
Monitoring invasive plants using hand-held GIS technology
Theresa M. Mau-Crimmins; Barron J. Orr
2005-01-01
Successful control of invasive species requires a clear picture of the spatial extent of infestations. The latest mapping technology involves coupling global position systems and handheld computers running geographic information systems software in the field. A series of workshops applying this technology to mapping weeds was developed and presented to Weed Management...
DOT National Transportation Integrated Search
1981-06-01
A low cost, off-the-shelf, X-band marine radar coupled to an FAA BRITE display system was installed at Boston Logan International Airport for evaluation by the Department of Transportation/Transportation Systems Center. The radar was evaluated for us...
Rapid Identification of Key Pathogens in Wound Infection by Molecular Means
2006-01-01
diagnosis and monitoring of infectious diseases [4]. Rapid diagnosis can be achieved by the direct detection of characteristic bacterial genes in clinical... System ABI PRISM® 7500 Sequence Detection System (Applied Biosystems, Foster City, Calif.) was purchased, set up and standardized. This system ...integrated system for real-time detection of PCR. The system includes a built-in thermal cycler, a laser to induce fluorescence, CCD (charge-coupled device
Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C
2010-01-01
The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.
Chen, Hung-Cheng; Hsu, Chao-Ping
2005-12-29
To calculate electronic couplings for photoinduced electron transfer (ET) reactions, we propose and test the use of ab initio quantum chemistry calculation for excited states with the generalized Mulliken-Hush (GMH) method. Configuration-interaction singles (CIS) is proposed to model the locally excited (LE) and charge-transfer (CT) states. When the CT state couples with other high lying LE states, affecting coupling values, the image charge approximation (ICA), as a simple solvent model, can lower the energy of the CT state and decouple the undesired high-lying local excitations. We found that coupling strength is weakly dependent on many details of the solvent model, indicating the validity of the Condon approximation. Therefore, a trustworthy value can be obtained via this CIS-GMH scheme, with ICA used as a tool to improve and monitor the quality of the results. Systems we tested included a series of rigid, sigma-linked donor-bridge-acceptor compounds where "through-bond" coupling has been previously investigated, and a pair of molecules where "through-space" coupling was experimentally demonstrated. The calculated results agree well with experimentally inferred values in the coupling magnitudes (for both systems studied) and in the exponential distance dependence (for the through-bond series). Our results indicate that this new scheme can properly account for ET coupling arising from both through-bond and through-space mechanisms.
Tuning quantum measurements to control chaos.
Eastman, Jessica K; Hope, Joseph J; Carvalho, André R R
2017-03-20
Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.
Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.
2005-01-01
A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.
Predictability of North Atlantic Multidecadal Climate Variability
Griffies; Bryan
1997-01-10
Atmospheric weather systems become unpredictable beyond a few weeks, but climate variations can be predictable over much longer periods because of the coupling of the ocean and atmosphere. With the use of a global coupled ocean-atmosphere model, it is shown that the North Atlantic may have climatic predictability on the order of a decade or longer. These results suggest that variations of the dominant multidecadal sea surface temperature patterns in the North Atlantic, which have been associated with changes in climate over Eurasia, can be predicted if an adequate and sustainable system for monitoring the Atlantic Ocean exists.
Using Self Potential and Multiphase Flow Modeling to Optimize Groundwater Pumping
NASA Astrophysics Data System (ADS)
Gasperikova, E.; Zhang, Y.; Hubbard, S.
2008-12-01
Numerical and field hydrological and geophysical studies have been conducted to investigate the impact of groundwater pumping on near-river hydrology for a segment of the Russian River at the Wohler Site, California, which is a riverbed filtration system managed by the Sonoma County Water Agency. Groundwater pumping near streams can cause a creation of unsaturated regions and hence reduce the pumping capacity and change the flow paths. A three-dimensional multiphase flow and transport model can be calibrated to the temperature, and water levels at monitoring wells based on known pumping rates, and the river stage. Streaming (self) potential (SP) is one of the electrokinetic processes that describes the coupled behavior of hydraulic and electrical flow within a porous medium, and is easily measured on the surface or in boreholes. Observing temporal and spatial variations in geophysical signatures provides a powerful approach for monitoring changes in the natural systems due to natural or forced (pumping) system perturbations. Geophysical and hydrological data were collected before, during and after a pumping experiment at the Wohler Site. Using this monitoring dataset, we illustrate how loose coupling between hydrogeological and geophysical (SP) processes and data can be used to calibrate the flow model and to optimize pumping schedules as needed to guide sustainable water resource development.
Müller, Achim Josef; Knuth, Monika; Nikolaus, Katharina Sibylle; Krivánek, Roland; Küster, Frank; Hasslacher, Christoph
2013-01-01
This article describes a new fiber-coupled, percutaneous fluorescent continuous glucose monitoring (CGM) system that has shown 14 days of functionality in a human clinical trial. The new optical CGM system (FiberSense) consists of a transdermal polymer optical fiber containing a biochemical glucose sensor and a small fluorescence photometer optically coupled to the fiber. The glucose-sensitive optical fiber was implanted in abdominal and upper-arm subcutaneous tissue of six diabetes patients and remained there for up to 14 days. The performance of the system was monitored during six visits to the study center during the trial. Blood glucose changes were induced by oral carbohydrate intake and insulin injections, and capillary blood glucose samples were obtained from the finger tip. The data were analyzed using linear regression and the consensus error grid analysis. The FiberSense worn at the upper arm exhibited excellent results during 14 wearing days, with an overall mean absolute relative difference (MARD) of 8.3% and 94.6% of the data in zone A of the consensus error grid. At the abdominal application site, FiberSense resulted in a MARD of 11.4 %, with 93.8% of the data in zone A. The FiberSense CGM system provided consistent, reliable measurements of subcutaneous glucose levels in human clinical trial patients with diabetes for up to 14 days. © 2013 Diabetes Technology Society.
Computerized Monitoring of the Inventory and Distribution of Research Chemicals
ERIC Educational Resources Information Center
And Others; Frycki, Stephen J.
1973-01-01
A one-time data entry system, coupled with an efficient use of the computer, which provides inventory management, distribution, and audit reporting, the ability to answer special queries, and to produce customized reports is described. (3 references) (Author)
Pathogen Treatment Guidance and Monitoring Approaches fro ...
On-site non-potable water reuse is increasingly used to augment water supplies, but traditional fecal indicator approaches for defining and monitoring exposure risks are limited when applied to these decentralized options. This session emphasizes risk-based modeling to define pathogen log-reduction requirements coupled with alternative targets for monitoring enabled by genomic sequencing (i.e., the microbiome of reuse systems). 1. Discuss risk-based modeling to define pathogen log-reduction requirements 2. Review alternative targets for monitoring 3. Gain an understanding of how new tools can help improve successful development of sustainable on-site non-potable water reuse Presented at the Water Wastewater Equipment Treatment & Transport Show.
In situ health monitoring of piezoelectric sensors
NASA Technical Reports Server (NTRS)
Drouant, George J. (Inventor); Jensen, Scott L. (Inventor)
2013-01-01
An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.
Quench monitoring and control system and method of operating same
Ryan, David Thomas; Laskaris, Evangelos Trifon; Huang, Xianrui
2006-05-30
A rotating machine comprising a superconductive coil and a temperature sensor operable to provide a signal representative of superconductive coil temperature. The rotating machine may comprise a control system communicatively coupled to the temperature sensor. The control system may be operable to reduce electric current in the superconductive coil when a signal representative of a defined superconducting coil temperature is received from the temperature sensor.
Detecting Lyme disease using antibody-functionalized carbon nanotubes
NASA Astrophysics Data System (ADS)
Dailey, Jennifer; Lerner, Mitchell; Goldsmith, Brett; Brisson, Dustin; Johnson, A. T. Charlie
2011-03-01
We combine antibodies for Lyme flagellar protein with carbon nanotube transistors to create an electronic sensor capable of definitive detection of Lyme disease. Over 35,000 cases of Lyme disease are reported in the United States each year, of which more than 23 percent are originally misdiagnosed. Rational design of the coupling of the biological system to the electronic system gives us a flexible sensor platform which we can apply to several biological systems. By coupling these antibodies to carbon nanotubes in particular, we allow for fast, sensitive, highly selective, electronic detection. Unlike antibody or biomarker detection, bacterial protein detection leads to positive identification of both early and late stage bacterial infections, and is easily expandable to environmental monitoring.
Alternate energy source usage for in situ heat treatment processes
Stone, Jr., Francis Marion; Goodwin, Charles R [League City, TX; Richard, Jr., James
2011-03-22
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.
Results of prototype software development for automation of shuttle proximity operations
NASA Technical Reports Server (NTRS)
Hiers, Hal; Olszweski, Oscar
1991-01-01
The effort involves demonstration of expert system technology application to Shuttle rendezvous operations in a high-fidelity, real-time simulation environment. The JSC Systems Engineering Simulator (SES) served as the test bed for the demonstration. Rendezvous applications were focused on crew procedures and monitoring of sensor health and trajectory status. Proximity operations applications were focused on monitoring, crew advisory, and control of the approach trajectory. Guidance, Navigation, and Control areas of emphasis included the approach, transition and stationkeeping guidance, and laser docking sensor navigation. Operator interface displays for monitor and control functions were developed. A rule-based expert system was developed to manage the relative navigation system/sensors for nominal operations and simple failure contingencies. Testing resulted in the following findings; (1) the developed guidance is applicable for operations with LVLH stabilized targets; (2) closing rates less than 0.05 feet per second are difficult to maintain due to the Shuttle translational/rotational cross-coupling; (3) automated operations result in reduced propellant consumption and plume impingement effects on the target as compared to manual operations; and (4) braking gates are beneficial for trajectory management. A versatile guidance design was demonstrated. An accurate proximity operations sensor/navigation system to provide relative attitude information within 30 feet is required and redesign of the existing Shuttle digital autopilot should be considered to reduce the cross-coupling effects. This activity has demonstrated the feasibility of automated Shuttle proximity operations with the Space Station Freedom. Indications are that berthing operations as well as docking can be supported.
A new venous infusion pathway monitoring system.
Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sata, Koji; Hamada, Shingo; Caldwell, W Morton
2007-01-01
A new infusion catheter pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer has been developed for hospital and home use. The sensor consists of coaxial three-layer conductive tapes wrapped around the polyvinyl chloride infusion tube. The inner tape is the main electrode, which records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. The outside tape layer is a reference electrode to monitor the AC voltage around the main electrode. The center tape layer is connected to system ground and functions as a shield. The microcomputer calculates the ratio of the induced AC voltages recorded by the main and reference electrodes and if the ratio indicates a detached infusion, alerts the nursing station, via the nurse call system or low transmitting power mobile phone.
Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors
NASA Astrophysics Data System (ADS)
Zhou, Changjiang
Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack monitoring on large-scale steel test specimens using piezoelectric film AE sensors. Continuous monitoring of fatigue crack growth in steel structures is demonstrated in these fatigue test specimens. The use of piezoelectric film AE sensor for field monitoring of existing fatigue crack is also demonstrated in a real steel I-girder bridge located in Maryland. The sensor couple theory based AE source localization is validated using a limited number of piezoelectric film AE sensor data from both fatigue test specimens and field monitoring bridge. Through both laboratory fatigue test and field monitoring of steel structures with active fatigue cracks, the signal characteristics of piezoelectric film AE sensor have been studied in real-world environment.
Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure.
Epp, Tyler; Svecova, Dagmar; Cha, Young-Jin
2018-03-29
Structural Health Monitoring (SHM) has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN) application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC) structures.
Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure
Epp, Tyler; Svecova, Dagmar; Cha, Young-Jin
2018-01-01
Structural Health Monitoring (SHM) has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN) application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC) structures. PMID:29596332
NASA Astrophysics Data System (ADS)
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.
2017-08-01
The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing housings. The procedure for calculating misalignments of turbo generator shaft line supports is set out.
NASA Astrophysics Data System (ADS)
Zhao, Fusheng; Zenasni, Oussama; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Localized surface plasmon resonance (LSPR) arises from the interaction of light with noble metal nanoparticles, which induces a collective oscillation in the free electrons. The size and shape of the metallic nanostructure significantly impact LSPR frequency and strength. Nanoplasmonic sensor has become a recent research focus due to its significant signal enhancement and robust signal transduction measured by extinction spectroscopy, fluorescence, Raman scattering, and absorption spectroscopy. Dark-field microscopy, in contrast, reports the scattered photons after light-matter interactions. In this case, the nanoparticles can be understood as dipole radiators whose free electrons oscillate in concert. Coupled with spectroscopy, this platform allows the collection of plasmonically scattered spectra from gold nanoparticles. Plasmonic coupling between electron-beam lithography patterned gold nanodisks (AuND) and colloidal gold nanoparticles (AuNP) can change the plasmonic resonance of the original entities, and can be effectively studied by dark-field hyperspectral microscopy. Typically, a pronounced redshift can be observed when plasmonic coupling occurs. When these nano-entities are functionalized with interactive surface moieties, biochemistry and molecular processes can be studied. In this paper, we will present the capability of assessing the process of immobilizing streptavidin-functionalized AuNPs on an array of biotin-terminated AuNDs. By monitoring changes in the LSPR band of AuNDs, we are able to evaluate similar processes in other molecular systems. In addition, plasmon coupling induced scattering intensity variations can be measured by an electron-multiplied charge-coupled device camera for rapid in situ monitoring. This method can potentially be useful in studying dynamic biophysical and biochemical processes in situ.
Space Station requirements for in-flight exercise countermeasures
NASA Technical Reports Server (NTRS)
Hayes, Judith C.; Harris, Bernard A.
1990-01-01
In an effort to retard the deleterious effects of space adaptation, NASA has defined requirements for an Exercise Countermeasure Facility (ECF) within the Space Station Crew Health Care System (CHeCS). The application of exercise as a countermeasure to spaceflight-induced deconditioning has been utilized in the past by both the United States and the Soviet space programs. The ECF will provide exercise hardware, physiological monitoring capabilities, and an interactive motivational display system. ECF operations and data will be coupled through the Space Station Freedom Data Management System for monitoring of inflight training and testing from ground control, thus allowing for real-time evaluation of crewmember performance and modification of exercise prescriptions. Finally, the objective of the ECF is to monitor and control the exercise of crewmembers for the maintenance of an operational level of fitness to ensure mission success.
Li, Qiliang; Lu, Shanshan; Bao, Qi; Chen, Dewang; Hu, Miao; Zeng, Ran; Yang, Guowei; Li, Shuqin
2018-01-10
In this paper, we propose a chaos-based scheme allowing for trilateral communication among three mutually coupled chaotic semiconductor lasers. The coupling through a partially transparent optical mirror between two lasers induces the chaotic dynamics. We numerically solve the delay rate equations of three lasers and demonstrate that the dynamics is completely synchronous. Herein, each laser is not only a transmitter but a receiver; three different messages are encoded by simultaneously modulating bias current of the three lasers. By monitoring the synchronization error between transmitter and receiver, and comparing the error with the message of the local laser, we can decipher the message of the sender. The investigation indicates that these messages introduced on the two ends of each link among three lasers can be simultaneously transmitted and restored, so the system can realize simultaneous trilateral communication. In this scheme, an eavesdropper can monitor the synchronization error, but one has no way to obtain the bits that are being sent, so the trilateral communication is secure.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2009-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Surface acoustic wave probe implant for predicting epileptic seizures
Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL
2012-04-24
A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.
Conductivity detection for monitoring mixing reactions in microfluidic devices.
Liu, Y; Wipf, D O; Henry, C S
2001-08-01
A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.
Damage tolerance and structural monitoring for wind turbine blades
McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.
2015-01-01
The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858
ERIC Educational Resources Information Center
Azevedo, Roger; Mudrick, Nicholas; Taub, Michelle; Wortha, Franz
2017-01-01
Metacognition and emotions play a critical role in learners' ability to monitor and regulate their learning about 21st-century skills related to science, technology, engineering, and mathematics (STEM) content while using advanced learning technologies (ALTs; e.g., intelligent tutoring systems, serious games, hypermedia, augmented reality). In…
Monitoring induced denitrification during managed aquifer recharge in an infiltration pond
NASA Astrophysics Data System (ADS)
Grau-Martínez, Alba; Folch, Albert; Torrentó, Clara; Valhondo, Cristina; Barba, Carme; Domènech, Cristina; Soler, Albert; Otero, Neus
2018-06-01
Managed aquifer recharge (MAR) is a well-known technique for improving water quality and increasing groundwater resources. Denitrification (i.e. removal of nitrate) can be enhanced during MAR by coupling an artificial recharge pond with a permeable reactive layer (PRL). In this study, we examined the suitability of a multi-isotope approach for assessing the long-term effectiveness of enhancing denitrification in a PRL containing vegetal compost. Batch laboratory experiments confirmed that the PRL was still able to enhance denitrification two years after its installation in the infiltration pond. At the field scale, changes in redox indicators along a flow path and below the MAR-PRL system were monitored over 21 months during recharge and non-recharge periods. Results showed that the PRL was still releasing non-purgeable dissolved organic carbon five years after its installation. Nitrate concentration coupled with isotopic data collected from the piezometer network at the MAR system indicated that denitrification was occurring in the saturated zone immediately beneath the infiltration pond, where recharged water and native groundwater mix. Furthermore, longer operational periods of the MAR-PRL system increased denitrification extent. Multi-isotope analyses are therefore proved to be useful tools in identifying and quantifying denitrification in MAR-PRL systems.
Esenaliev, Rinat O.
2017-01-01
Abstract. Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels. PMID:28444150
NASA Astrophysics Data System (ADS)
Esenaliev, Rinat O.
2017-09-01
Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels.
Multiple sensor multifrequency eddy current monitor for solidification and growth
NASA Technical Reports Server (NTRS)
Wallace, John
1990-01-01
A compact cylindrical multisensor eddy current measuring system with integral furnace was develop to monitor II-VI crystal growth to provide interfacial information, solutal segregation, and conductivities of the growth materials. The use of an array of sensors surrounding the furnace element allows one to monitor the volume of interest. Coupling these data with inverse multifrequency analysis allows radial conductivity profiles to be generated at each sensor position. These outputs were incorporated to control the processes within the melt volume. The standard eddy current system functions with materials whose electric conductivities are as low as 2E2 Mhos/m. A need was seen to extend the measurement range to poorly conducting media so the unit was modified to allow measurement of materials conductivities 4 order of magnitude lower and bulk dielectric properties. Typically these included submicron thick films and semiinsulating GaAs. This system was used to monitor complex heat transfer in grey bodies as well as semiconductor and metallic solidification.
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Watters, David G.; Pallix, Joan B.; Bahr, Alfred J.; Huestis, David L.; Arnold, Jim (Technical Monitor)
2001-01-01
Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and SRI International to develop 'SensorTags,' radio frequency identification devices coupled with event-recording sensors, that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. Two prototype SensorTag designs containing thermal fuses to indicate a temperature overlimit are presented and discussed.
NASA Technical Reports Server (NTRS)
Alekanyan, T. M.; Dorman, L. I.; Yanke, V. G.; Korotkov, V. K.
1985-01-01
The latitudinal behavior of intensities and multiplicities was registered by the neutron monitor 2 NM and the lead-free neutron monitor 3 SND (slow-neuron detector) in the equator-Kaliningrad line in the Atlantic Ocean. Coupling coefficients for 3 SND show the sensitivity of this detector to primary particles of cosmic rays of energies on the average lower than for 2 NM. As multiplicities increase, the coupling coefficients shift towards higher energies.
Implant for in-vivo parameter monitoring, processing and transmitting
Ericson, Milton N [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Smith, Stephen F [London, TN; Hylton, James O [Clinton, TN
2009-11-24
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.
2003-01-01
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Sjöstrand, Henrik; Andersson Sundén, E; Conroy, S; Ericsson, G; Gatu Johnson, M; Giacomelli, L; Gorini, G; Hellesen, C; Hjalmarsson, A; Popovichev, S; Ronchi, E; Tardocchi, M; Weiszflog, M
2009-06-01
Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.
Sejdić, E.; Millecamps, A.; Teoli, J.; Rothfuss, M. A.; Franconi, N. G.; Perera, S.; Jones, A. K.; Brach, J. S.; Mickle, M. H.
2015-01-01
Gait function is traditionally assessed using well-lit, unobstructed walkways with minimal distractions. In patients with subclinical physiological abnormalities, these conditions may not provide enough stress on their ability to adapt to walking. The introduction of challenging walking conditions in gait can induce responses in physiological systems in addition to the locomotor system. There is a need for a device that is capable of monitoring multiple physiological systems in various walking conditions. To address this need, an Android-based gait-monitoring device was developed that enabled the recording of a patient's physiological systems during walking. The gait-monitoring device was tested during self-regulated overground walking sessions of fifteen healthy subjects that included 6 females and 9 males aged 18 to 35 years. The gait-monitoring device measures the patient's stride interval, acceleration, electrocardiogram, skin conductance and respiratory rate. The data is stored on an Android phone and is analyzed offline through the extraction of features in the time, frequency and time-frequency domains. The analysis of the data depicted multisystem physiological interactions during overground walking in healthy subjects. These interactions included locomotion-electrodermal, locomotion-respiratory and cardiolocomotion couplings. The current results depicting strong interactions between the locomotion system and the other considered systems (i.e., electrodermal, respiratory and cardivascular systems) warrant further investigation into multisystem interactions during walking, particularly in challenging walking conditions with older adults. PMID:26390946
In-Vehicle Safety Advisory And Warning System (Ivsaws), Volume Iv, Appendices I Through K
DOT National Transportation Integrated Search
2001-01-01
The importance of timely corrective action for rutted pavements, coupled with the need for safe and efficient data collection, has led many state highway agencies to use automated survey vehicles to collect the data needed to assess and monitor the e...
Active photo-thermal self-healing of shape memory polyurethanes
NASA Astrophysics Data System (ADS)
Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.
2017-05-01
Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.
Analysis of methods for growth detection in the search for extraterrestrial life.
Merek, E L; Oyama, V I
1968-05-01
In the search for life on other planets, experiments designed to detect the growth of microorganisms may prove to be definitive when coupled with chemical characterization and metabolic experiments. If organisms are not abundant, growth provides the only means for obtaining a large mass of biological material suitable for chemical compositional analyses and metabolic assays. Several methods of monitoring growth are described. Of these, optical monitoring in a unique system free of soil particles is advanced as the most appropriate. Theoretical problems related to the formulation of culture media are discussed, and several possible solutions are proposed. The sampling system, the type of monitoring, the size and placement of inoculum, and the medium volume and composition are contingent upon one another and must be integrated without sacrifice to the biological demands.
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Baaklini, George Y.
2005-01-01
Impedance-based structural-health-monitoring uses piezoelectric (PZT) patches that are bonded onto or embedded in a structure. Each individual patch behaves as both an actuator of the surrounding structural area as well as a sensor of the structural response. The size of the excited area varies with the geometry and material composition of the structure, and an active patch is driven by a sinusoidal voltage sweep. When a PZT patch is subjected to an electric field, it produces a mechanical strain; and when it is stressed, it produces an electric charge. Since the patch is bonded to the structure, driving a patch deforms and vibrates the structure. The structure then produces a localized dynamic response. This structural system response is transferred back to the PZT patch, which in turn produces an electrical response. The electromechanical impedance method is based on the principle of electromechanical coupling between the active sensor and the structure, which allows researchers to assess local structural dynamics directly by interrogating a distributed sensor array. Because of mechanical coupling between the sensor and the host structure, this mechanical effect is picked up by the sensor and, through electromechanical coupling inside the active element, is reflected in electrical impedance measured at the sensor s terminals.
SensInDenT-Noncontact Sensors Integrated Into Dental Treatment Units.
Teichmann, Daniel; Teichmann, Maren; Weitz, Philippe; Wolfart, Stefan; Leonhardt, Steffen; Walter, Marian
2017-02-01
This paper presents the first system design (SensInDenT) for noncontact cardiorespiratory monitoring during dental treatment. The system is integrated into a dental treatment unit, and combines sensors based on electromagnetic, optical, and mechanical coupling at different sensor locations. The measurement principles and circuits are described and a system overview is presented. Furthermore, a first proof of concept is provided by taking measurements in healthy volunteers under laboratory conditions.
Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system
NASA Astrophysics Data System (ADS)
Vítek, S.
2017-07-01
The purpose of this experiment was to measure light pollution in the capital of Czech Republic, Prague. As a measuring instrument is used calibrated consumer level digital single reflex camera with IR cut filter, therefore, the paper reports results of measuring and monitoring of the light pollution in the wavelength range of 390 - 700 nm, which most affects visual range astronomy. Combining frames of different exposure times made with a digital camera coupled with fish-eye lens allow to create high dynamic range images, contain meaningful values, so such a system can provide absolute values of the sky brightness.
Cavity Coupled Aeroramp Injector Combustion Study
2009-06-01
Fluorescence RC-18 Propulsion Research Cell 18 at Wright-Patterson Air Force Base Scramjet Supersonic Combustion Ramjet TDLAS Tunable Diode Laser...aerothrottle starting device. There were also mass flow meters on the vitiator oxygen and natural gas supplies. The ethylene fuel used in the DMSJ...PSI System 10 Hz Health Monitoring System ~0.75 Hz Sensors A/D Converters Buffer Database/Console 5 Hz 22 Figure 16: Nominal
Air-coupled ultrasound: a novel technique for monitoring the curing of thermosetting matrices.
Lionetto, Francesca; Tarzia, Antonella; Maffezzoli, Alfonso
2007-07-01
A custom-made, air-coupled ultrasonic device was applied to cure monitoring of thick samples (7-10 mm) of unsaturated polyester resin at room temperature. A key point was the optimization of the experimental setup in order to propagate compression waves during the overall curing reaction by suitable placement of the noncontact transducers, placed on the same side of the test material, in the so-called pitch-catch configuration. The progress of polymerization was monitored through the variation of the time of flight of the propagating longitudinal waves. The exothermic character of the polymerization was taken into account by correcting the measured value of time of flight with that one in air, obtained by sampling the air velocity during the experiment. The air-coupled ultrasonic results were compared with those obtained from conventional contact ultrasonic measurements. The good agreement between the air-coupled ultrasonic results and those obtained by the rheological analysis demonstrated the reliability of air-coupled ultrasound in monitoring the changes of viscoelastic properties at gelation and vitrification. The position of the transducers on the same side of the sample makes this technique suitable for on-line cure monitoring during several composite manufacturing technologies.
Schafer, Erin C; Romine, Denise; Musgrave, Elizabeth; Momin, Sadaf; Huynh, Christy
2013-01-01
Previous research has suggested that electrically coupled frequency modulation (FM) systems substantially improved speech-recognition performance in noise in individuals with cochlear implants (CIs). However, there is limited evidence to support the use of electromagnetically coupled (neck loop) FM receivers with contemporary CI sound processors containing telecoils. The primary goal of this study was to compare speech-recognition performance in noise and subjective ratings of adolescents and adults using one of three contemporary CI sound processors coupled to electromagnetically and electrically coupled FM receivers from Oticon. A repeated-measures design was used to compare speech-recognition performance in noise and subjective ratings without and with the FM systems across three test sessions (Experiment 1) and to compare performance at different FM-gain settings (Experiment 2). Descriptive statistics were used in Experiment 3 to describe output differences measured through a CI sound processor. Experiment 1 included nine adolescents or adults with unilateral or bilateral Advanced Bionics Harmony (n = 3), Cochlear Nucleus 5 (n = 3), and MED-EL OPUS 2 (n = 3) CI sound processors. In Experiment 2, seven of the original nine participants were tested. In Experiment 3, electroacoustic output was measured from a Nucleus 5 sound processor when coupled to the electromagnetically coupled Oticon Arc neck loop and electrically coupled Oticon R2. In Experiment 1, participants completed a field trial with each FM receiver and three test sessions that included speech-recognition performance in noise and a subjective rating scale. In Experiment 2, participants were tested in three receiver-gain conditions. Results in both experiments were analyzed using repeated-measures analysis of variance. Experiment 3 involved electroacoustic-test measures to determine the monitor-earphone output of the CI alone and CI coupled to the two FM receivers. The results in Experiment 1 suggested that both FM receivers provided significantly better speech-recognition performance in noise than the CI alone; however, the electromagnetically coupled receiver provided significantly better speech-recognition performance in noise and better ratings in some situations than the electrically coupled receiver when set to the same gain. In Experiment 2, the primary analysis suggested significantly better speech-recognition performance in noise for the neck-loop versus electrically coupled receiver, but a second analysis, using the best performance across gain settings for each device, revealed no significant differences between the two FM receivers. Experiment 3 revealed monitor-earphone output differences in the Nucleus 5 sound processor for the two FM receivers when set to the +8 setting used in Experiment 1 but equal output when the electrically coupled device was set to a +16 gain setting and the electromagnetically coupled device was set to the +8 gain setting. Individuals with contemporary sound processors may show more favorable speech-recognition performance in noise electromagnetically coupled FM systems (i.e., Oticon Arc), which is most likely related to the input processing and signal processing pathway within the CI sound processor for direct input versus telecoil input. Further research is warranted to replicate these findings with a larger sample size and to develop and validate a more objective approach to fitting FM systems to CI sound processors. American Academy of Audiology.
Tilapia fish microbial spoilage monitored by a single optical gas sensor.
Semeano, Ana T S; Maffei, Daniele F; Palma, Susana; Li, Rosamaria W C; Franco, Bernadette D G M; Roque, Ana C A; Gruber, Jonas
2018-07-01
As consumption of fish and fish-based foods increases, non-destructive monitoring of fish freshness also becomes more prominent. Fish products are very perishable and prone to microbiological growth, not always easily detected by organoleptic evaluation. The analysis of the headspace of fish specimens through gas sensing is an interesting approach to monitor fish freshness. Here we report a gas sensing method for monitoring Tilapia fish spoilage based on the application of a single gas sensitive gel material coupled to an optical electronic nose. The optical signals of the sensor and the extent of bacterial growth were followed over time, and results indicated good correlation between the two determinations, which suggests the potential application of this simple and low cost system for Tilapia fish freshness monitoring.
Non-invasive Continuous Monitoring of Cerebral Edema Using Portable Microwave Based System
NASA Astrophysics Data System (ADS)
Jiang, Yuhao; Zhao, Minji; Wang, Huiqian; Li, Guoquan
2018-01-01
A portable non-invasive head detecting system based on microwave technology was developed for evaluation of cerebral edema change inside human brain. Real-time monitoring of cerebral edema in the brain helps the clinician to assess medical condition and treatment. In this work, a microwave signal was transmitted and coupled into an open-end circular waveguide sensor, incident on a 3D printed head phantom, and reflected back to receiver. Theoretically, the operation of this instrument depends on the conductivity contrast between cerebral edema and healthy brain tissues. The efficacy of the proposed detecting system is verified using 3D printed anatomically and dielectrically realistic human head phantoms with simulated cerebral edema targets with different size. Changes in the amplitude of time domain result were shown to be induced by the expansion or decrease of the edema volume. The eventual goal of this proposed head evaluating system is use in the hospital as an effective real-time monitoring tool.
Near infrared spectroscopy for fibre based gas detection
NASA Astrophysics Data System (ADS)
Stewart, George; Johnstone, Walter; Thursby, Graham; Culshaw, Brian
2010-04-01
Gas sensing systems based on fibre optic linked near infra red absorption cells are potentially a flexible and effective tool for monitoring accumulations of hazardous and noxious gases in enclosed areas such as tunnels and mines. Additionally the same baseline technology is readily modified to measure concentrations of hydrocarbon fuels - notably but not exclusively methane, and monitoring emissions of greenhouse gases. Furthermore the system can be readily implemented to provide intrinsically safe monitoring over extensive areas at up to ~250 points from a single interrogation unit. In this paper we review our work on fibre coupled gas sensing systems. We outline the basic principles through which repeatable and accurate self calibrating gas measurements may be realised, including the recover of detailed line shapes for non contact temperature and / or pressure measurements in addition to concentration assessments in harsh environments. We also outline our experience in using these systems in extensive networks operating under inhospitable conditions over extended periods extending to several years.
Apparatus for Controlling Low Power Voltages in Space Based Processing Systems
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor)
2017-01-01
A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.
Damage tolerance and structural monitoring for wind turbine blades.
McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K
2015-02-28
The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Night Sky Weather Monitoring System Using Fish-Eye CCD
NASA Astrophysics Data System (ADS)
Tomida, Takayuki; Saito, Yasunori; Nakamura, Ryo; Yamazaki, Katsuya
Telescope Array (TA) is international joint experiment observing ultra-high energy cosmic rays. TA employs fluorescence detection technique to observe cosmic rays. In this technique, tho existence of cloud significantly affects quality of data. Therefore, cloud monitoring provides important information. We are developing two new methods for evaluating night sky weather with pictures taken by charge-coupled device (CCD) camera. One is evaluating the amount of cloud with pixels brightness. The other is counting the number of stars with contour detection technique. The results of these methods show clear correlation, and we concluded both the analyses are reasonable methods for weather monitoring. We discuss reliability of the star counting method.
Stretchable inorganic nanomembrane electronics for healthcare devices
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Son, Donghee; Kim, Jaemin
2015-05-01
Flexible or stretchable electronic devices for healthcare technologies have attracted much attention in terms of usefulness to assist doctors in their operating rooms and to monitor patients' physical conditions for a long period of time. Each device to monitor the patients' physiological signals real-time, such as strain, pressure, temperature, and humidity, etc. has been reported recently. However, their limitations are found in acquisition of various physiological signals simultaneously because all the functions are not assembled in one skin-like electronic system. Here, we describe a skin-like, multi-functional healthcare system, which includes single crystalline silicon nanomembrane based sensors, nanoparticle-integrated non-volatile memory modules, electro-resistive thermal actuators, and drug delivery. Smart prosthetics coupled with therapeutic electronic system would provide new approaches to personalized healthcare.
Apparatus and method for detecting tampering in flexible structures
Maxey, Lonnie C [Knoxville, TN; Haynes, Howard D [Knoxville, TN
2011-02-01
A system for monitoring or detecting tampering in a flexible structure includes taking electrical measurements on a sensing cable coupled to the structure, performing spectral analysis on the measured data, and comparing the spectral characteristics of the event to those of known benign and/or known suspicious events. A threshold or trigger value may used to identify an event of interest and initiate data collection. Alternatively, the system may be triggered at preset intervals, triggered manually, or triggered by a signal from another sensing device such as a motion detector. The system may be used to monitor electrical cables and conduits, hoses and flexible ducts, fences and other perimeter control devices, structural cables, flexible fabrics, and other flexible structures.
Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belhadj, T.; Amand, T.; Kunz, S.
2010-08-02
We report strong heavy hole-light hole mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k{center_dot}p theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.
[Evaluation of Medical Instruments Cleaning Effect of Fluorescence Detection Technique].
Sheng, Nan; Shen, Yue; Li, Zhen; Li, Huijuan; Zhou, Chaoqun
2016-01-01
To compare the cleaning effect of automatic cleaning machine and manual cleaning on coupling type surgical instruments. A total of 32 cleaned medical instruments were randomly sampled from medical institutions in Putuo District medical institutions disinfection supply center. Hygiena System SUREII ATP was used to monitor the ATP value, and the cleaning effect was evaluated. The surface ATP values of the medical instrument of manual cleaning were higher than that of the automatic cleaning machine. Coupling type surgical instruments has better cleaning effect of automatic cleaning machine before disinfection, the application is recommended.
Chip-scale sensor system integration for portable health monitoring.
Jokerst, Nan M; Brooke, Martin A; Cho, Sang-Yeon; Shang, Allan B
2007-12-01
The revolution in integrated circuits over the past 50 yr has produced inexpensive computing and communications systems that are powerful and portable. The technologies for these integrated chip-scale sensing systems, which will be miniature, lightweight, and portable, are emerging with the integration of sensors with electronics, optical systems, micromachines, microfluidics, and the integration of chemical and biological materials (soft/wet material integration with traditional dry/hard semiconductor materials). Hence, we stand at a threshold for health monitoring technology that promises to provide wearable biochemical sensing systems that are comfortable, inauspicious, wireless, and battery-operated, yet that continuously monitor health status, and can transmit compressed data signals at regular intervals, or alarm conditions immediately. In this paper, we explore recent results in chip-scale sensor integration technology for health monitoring. The development of inexpensive chip-scale biochemical optical sensors, such as microresonators, that are customizable for high sensitivity coupled with rapid prototyping will be discussed. Ground-breaking work in the integration of chip-scale optical systems to support these optical sensors will be highlighted, and the development of inexpensive Si complementary metal-oxide semiconductor circuitry (which makes up the vast majority of computational systems today) for signal processing and wireless communication with local receivers that lie directly on the chip-scale sensor head itself will be examined.
Shen, Dantong; Huang, Huai; Yuan, Hui; Zhang, Xu; Li, Min
2014-12-22
The treatment for orthostatic hypotension (OH) after spinal cord injury (SCI) is an important part of rehabilitation in late-stage SCI. Electric uprise bed training is a relatively commonly used method in treating OH, and how to carry out uprise bed training safely and effectively is an urgent problem. In the early stage of SCI, we used a remote monitoring system to monitor the whole process of uprise bed training, and we explored a safe and efficient method of electric uprise bed training. The experimental group consisted of 36 patients diagnosed with orthostatic hypotension (OH) after SCI and who received training with an electric uprise bed coupled with remote monitoring system, and the control group of 18 subjects who used a traditional training method. There were no differences in baseline data between the 2 groups. There were no severe symptoms during training in the experimental group, but 3 patients had severe symptoms in the control group. Among the 32 enrolled subjects reaching upright training status within 30 days (17 subjects in the experimental group and 15 subjects in the control group), time interval of training from horizontal position to erect position in the experimental group was 18.00±3.12 days and 21.40±4.95 days in the control group. Time interval in the experimental group was significantly less than in the control group. However, among all 36 subjects, by combining results of follow-up, there was no significant difference of time interval of training from horizontal position to erect position between the experimental group and the control group. In the experimental group 90.52% of patients finished training compared to 78.19% in the control group (P<0.01). After training, values of OCs and OCd of the experimental group were lower than in the control group. There was no significant difference between groups in number of re-diagnosed OH. Implementation of training with electric uprise bed coupled with remote monitoring system is generally safe for patients with OH after SCI. For patients who could reach standing training status within 30 days, implementation can improve efficiency of training by shortening time interval of training from horizontal position to erect position. It can increase orthostatic blood pressure change during position change.
Mattei, E; Calcagnini, G; Triventi, M; Delogu, A; Del Guercio, M; Angeloni, A; Bartolini, P
2013-01-01
The time-varying gradient fields generated during Magnetic Resonance Imaging (MRI) procedures have the potential to induce electrical current on implanted endocardial leads. Whether this current can result in undesired cardiac stimulation is unknown. This paper presents an optically coupled system with the potential to quantitatively measure the currents induced by the gradient fields into endocardial leads during MRI procedures. Our system is based on a microcontroller that works as analog-to-digital (A/D) converter and sends the current signal acquired from the lead to an optical high-speed light-emitting-diode transmitter. Plastic fiber guides the light outside the MRI chamber, to a photodiode receiver and then to an acquisition board connected to a PC. The preliminary characterization of the performances of the system is also presented.
Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor
NASA Technical Reports Server (NTRS)
Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.
2002-01-01
Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.
Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Toliyat, Hamid A.
2005-01-01
An end-of-life prediction system developed for electric machines and their loads could be used in integrated vehicle health monitoring at NASA and in other government agencies. This system will provide on-line, real-time condition assessment and end-of-life prediction of electric machines (e.g., motors, generators) and/or their loads of mechanically coupled machinery (e.g., pumps, fans, compressors, turbines, conveyor belts, magnetic levitation trains, and others). In long-duration space flight, the ability to predict the lifetime of machinery could spell the difference between mission success or failure. Therefore, the system described here may be of inestimable value to the U.S. space program. The system will provide continuous monitoring for on-line condition assessment and end-of-life prediction as opposed to the current off-line diagnoses.
NASA Astrophysics Data System (ADS)
Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond
2016-11-01
We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.
Development of a luminous textile for reflective pulse oximetry measurements
Krehel, Marek; Wolf, Martin; Boesel, Luciano F.; Rossi, René M.; Bona, Gian-Luca; Scherer, Lukas J.
2014-01-01
In this paper, a textile-based sensing principle for long term photopletysmography (PPG) monitoring is presented. Optical fibers were embroidered into textiles such that out-coupling and in-coupling of light was possible. The “light-in light-out” properties of the textile enabled the spectroscopic characterization of human tissue. For the optimization of the textile sensor, three different carrier fabrics and different fiber modifications were compared. The sample with best light coupling efficiency was successfully used to measure heart rate and SpO2 values of a subject. The latter was determined by using a modified Beer-Lambert law and measuring the light attenuation at two different wavelengths (632 nm and 894 nm). Moreover, the system was adapted to work in reflection mode which makes the sensor more versatile. The measurements were additionally compared with commercially available system and showed good correlation. PMID:25136484
Development of a luminous textile for reflective pulse oximetry measurements.
Krehel, Marek; Wolf, Martin; Boesel, Luciano F; Rossi, René M; Bona, Gian-Luca; Scherer, Lukas J
2014-08-01
In this paper, a textile-based sensing principle for long term photopletysmography (PPG) monitoring is presented. Optical fibers were embroidered into textiles such that out-coupling and in-coupling of light was possible. The "light-in light-out" properties of the textile enabled the spectroscopic characterization of human tissue. For the optimization of the textile sensor, three different carrier fabrics and different fiber modifications were compared. The sample with best light coupling efficiency was successfully used to measure heart rate and SpO2 values of a subject. The latter was determined by using a modified Beer-Lambert law and measuring the light attenuation at two different wavelengths (632 nm and 894 nm). Moreover, the system was adapted to work in reflection mode which makes the sensor more versatile. The measurements were additionally compared with commercially available system and showed good correlation.
Remote shock sensing and notification system
Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN
2010-11-02
A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.
Remote shock sensing and notification system
Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.
2008-11-11
A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.
Zhang, Zong-Mian; Liu, Jing-Fu; Liu, Rui; Sun, Jie-Fang; Wei, Guo-Hua
2014-08-05
By coupling surface-enhanced Raman spectroscopy (SERS) with thin layer chromatography (TLC), a facile and powerful method was developed for on-site monitoring the process of chemical reactions. Samples were preseparated on a TLC plate following a common TLC procedure, and then determined by SERS after fabricating a large-area, uniform SERS substrate on the TLC plate by spraying gold nanoparticles (AuNPs). Reproducible and strong SERS signals were obtained with substrates prepared by spraying 42-nm AuNPs at a density of 5.54 × 10(10) N/cm(2) on the TLC plate. The capacity of this TLC-SERS method was evaluated by monitoring a typical Suzuki coupling reaction of phenylboronic acid and 2-bromopyridine as a model. Results showed that this proposed method is able to identify reaction product that is invisible to the naked eye, and distinguish the reactant 2-bromopyridine and product 2-phenylpyridine, which showed almost the same retention factors (R(f)). Under the optimized conditions, the peak area of the characteristic Raman band (755 cm(-1)) of the product 2-phenylpyridine showed a good linear correlation with concentration in the range of 2-200 mg/L (R(2) = 0.9741), the estimated detection limit (1 mg/L 2-phenylpyridine) is much lower than the concentration of the chemicals in the common organic synthesis reaction system, and the product yield determined by the proposed TLC-SERS method agreed very well with that by UPLC-MS/MS. In addition, a new byproduct in the reaction system was found and identified through continuous Raman detection from the point of sample to the solvent front. This facile TLC-SERS method is quick, easy to handle, low-cost, sensitive, and can be exploited in on-site monitoring the processes of chemical reactions, as well as environmental and biological processes.
Singh, Ravendra; Román-Ospino, Andrés D; Romañach, Rodolfo J; Ierapetritou, Marianthi; Ramachandran, Rohit
2015-11-10
The pharmaceutical industry is strictly regulated, where precise and accurate control of the end product quality is necessary to ensure the effectiveness of the drug products. For such control, the process and raw materials variability ideally need to be fed-forward in real time into an automatic control system so that a proactive action can be taken before it can affect the end product quality. Variations in raw material properties (e.g., particle size), feeder hopper level, amount of lubrication, milling and blending action, applied shear in different processing stages can affect the blend density significantly and thereby tablet weight, hardness and dissolution. Therefore, real time monitoring of powder bulk density variability and its incorporation into the automatic control system so that its effect can be mitigated proactively and efficiently is highly desired. However, real time monitoring of powder bulk density is still a challenging task because of different level of complexities. In this work, powder bulk density which has a significant effect on the critical quality attributes (CQA's) has been monitored in real time in a pilot-plant facility, using a NIR sensor. The sensitivity of the powder bulk density on critical process parameters (CPP's) and CQA's has been analyzed and thereby feed-forward controller has been designed. The measured signal can be used for feed-forward control so that the corrective actions on the density variations can be taken before they can influence the product quality. The coupled feed-forward/feed-back control system demonstrates improved control performance and improvements in the final product quality in the presence of process and raw material variations. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Fonseca, Rafael A.; Richardson, C. Joan; Shanina, Ekaterina; Prough, Donald S.; Esenaliev, Rinat O.
2018-03-01
Noninvasive measurement of cerebral venous oxygenation in neonates could provide critical information for clinicians such as cerebral hypoxia without the risks involved with invasive catheterization. Evaluation of cerebral hypoxia is important in many clinical settings such as hypoxic-ischemic encephalopathy, perfusion monitoring in cardiovascular surgery or in traumatic brain injury. By probing the superior sagittal sinus (SSS), a large central cerebral vein, we can obtain stable signals with our recently developed multi-wavelength, fiber-coupled laser diode optoacoustic system for measurement of SSS blood oxygenation. The neonatal SSS oxygenation was measured in the reflection mode through open anterior and posterior fontanelles without obscuration by the overlying calvarium. In the transmission mode it was measured through the skull in the occipital area. Our device is lightweight, easily maneuverable, and user friendly for physicians. We monitored the SSS oxygenation in neonates admitted to the Neonatal Intensive Care Unit (NICU) of UTMB with varying gestation, birth weight and clinical histories to identify normal range and difference between neonates with and without risk factors for cerebral hypoxia.
NASA Astrophysics Data System (ADS)
Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.
2010-05-01
Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.
Tawk, Youssef; Tomé, Phillip; Botteron, Cyril; Stebler, Yannick; Farine, Pierre-André
2014-01-01
The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone. PMID:24569773
Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don
2005-08-01
We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad
Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less
A differential detection scheme of spectral shifts in long-period fiber gratings
NASA Astrophysics Data System (ADS)
Zhelyazkova, Katerina; Eftimov, Tinko; Smietana, Mateusz; Bock, Wojtek
2010-10-01
In this work we present an analysis of the response of a compact, simple and inexpensive optoelectronic sensor system intended to detect spectral shifts of a long-period fiber grating (LPG). The system makes use of a diffraction grating and a couple of receiving optical fibers that pick up signals at two different wavelengths. This differential detection system provides the same useful information from an LPG-based sensor as with a conventional laboratory system using optical spectrum analyzers for monitoring the minimum offset of LPG. The design of the fiber detection pair as a function of the parameters of the dispersion grating, the pick-up fiber and the LPG parameters, is presented in detail. Simulation of the detection system responses is presented using real from spectral shifts in nano-coated LPGs caused by the evaporation of various liquids such as water, ethanol and acetone, which are examples of corrosive, flammable and hazardous substances. Fiber optic sensors with similar detection can find applications in structural health monitoring for moisture detection, monitoring the spillage of toxic and flammable substances in industry etc.
Ha, Unsoo; Lee, Yongsu; Kim, Hyunki; Roh, Taehwan; Bae, Joonsung; Kim, Changhyeon; Yoo, Hoi-Jun
2015-12-01
A multimodal mental management system in the shape of the wearable headband and earplugs is proposed to monitor electroencephalography (EEG), hemoencephalography (HEG) and heart rate variability (HRV) for accurate mental health monitoring. It enables simultaneous transcranial electrical stimulation (tES) together with real-time monitoring. The total weight of the proposed system is less than 200 g. The multi-loop low-noise amplifier (MLLNA) achieves over 130 dB CMRR for EEG sensing and the capacitive correlated-double sampling transimpedance amplifier (CCTIA) has low-noise characteristics for HEG and HRV sensing. Measured three-physiology domains such as neural, vascular and autonomic domain signals are combined with canonical correlation analysis (CCA) and temporal kernel canonical correlation analysis (tkCCA) algorithm to find the neural-vascular-autonomic coupling. It supports highly accurate classification with the 19% maximum improvement with multimodal monitoring. For the multi-channel stimulation functionality, after-effects maximization monitoring and sympathetic nerve disorder monitoring, the stimulator is designed as reconfigurable. The 3.37 × 2.25 mm(2) chip has 2-channel EEG sensor front-end, 2-channel NIRS sensor front-end, NIRS current driver to drive dual-wavelength VCSEL and 6-b DAC current source for tES mode. It dissipates 24 mW with 2 mA stimulation current and 5 mA NIRS driver current.
Ice Detector and Deicing Fluid Effectiveness Monitoring System
NASA Technical Reports Server (NTRS)
Seegmiller, H. Lee B. (Inventor)
1996-01-01
An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.
Deep-brain stimulator and control of Parkinson's disease
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Harbaugh, Robert; Abraham, Jose K.
2004-07-01
The design of a novel feedback sensor system with wireless implantable polymer MEMS sensors for detecting and wirelessly transmitting physiological data that can be used for the diagnosis and treatment of various neurological disorders, such as Parkinson's disease, epilepsy, head injury, stroke, hydrocephalus, changes in pressure, patient movements, and tremors is presented in this paper. The sensor system includes MEMS gyroscopes, accelerometers, and pressure sensors. This feedback sensor system focuses on the development and integration of implantable systems with various wireless sensors for medical applications, particularly for the Parkinson's disease. It is easy to integrate and modify the sensor network feed back system for other neurological disorders mentioned above. The monitoring and control of tremor in Parkinson's disease can be simulated on a skeleton via wireless telemetry system communicating with electroactive polymer actuator, and microsensors attached to the skeleton hand and legs. Upon sensing any abnormal motor activity which represent the characteristic rhythmic motion of a typical Parkinson's (PD) patient, these sensors will generate necessary control pulses which will be transmitted to a hat sensor system on the skeleton head. Tiny inductively coupled antennas attached to the hat sensor system can receive these control pulses, demodulate and deliver it to actuate the parts of the skeleton to control the abnormal motor activity. This feedback sensor system can further monitor and control depending on the amplitude of the abnormal motor activity. This microsystem offers cost effective means of monitoring and controlling of neurological disorders in real PD patients. Also, this network system offers a remote monitoring of the patients conditions without visiting doctors office or hospitals. The data can be monitored using PDA and can be accessed using internet (or cell phone). Cellular phone technology will allow a health care worker to be automatically notified if monitoring indicates an emergency situation. The main advantage of such system is that it can effectively monitor large number of patients at the same time, which helps to compensate the present shortage of health care workers.
Autschbach, Jochen
2009-09-14
A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.
Improved control of the betatron coupling in the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Persson, T.; Tomás, R.
2014-05-01
The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f1001 to the ΔQmin is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM) pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.
Patterson, Eric E; Pritchett, Jeanita S; Shippy, Scott A
2009-02-01
A system is presented demonstrating the high-temporal resolution coupling of low-flow push-pull perfusion sampling (LFPS) to capillary electrophoresis for the absorbance measurement of ascorbate at the rat vitreoretinal interface. This system holds all separation components at a low pressure as the means for withdrawing sample during LFPS. The system uses a flow-gated interface to directly couple the withdrawal capillary from the LFPS probe to a separation capillary and eliminates the need for any offline sample handling. The temporal resolution of the system was limited by injection time and is less than 16 s. This high temporal resolution was applied to the monitoring of in vivo ascorbate levels at the rat vitreoretinal interface. Baseline concentrations of ascorbate were found to be 86 microM +/- 18 microM at the vitreoretinal interface. Baseline concentrations matched well with those obtained for the postmortem bulk vitreous analysis. Upon stimulation with 145 mM K(+), a maximum increase in baseline values between 32-107% for n = 3 was observed. This system demonstrates the first in vivo temporal study of ascorbate at the rat vitreoretinal interface.
Szigeti, Stuart S; Carvalho, Andre R R; Morley, James G; Hush, Michael R
2014-07-11
A "no-knowledge" measurement of an open quantum system yields no information about any system observable; it only returns noise input from the environment. Surprisingly, performing such a no-knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge monitoring has reversible noise, which can be canceled by directly feeding back the measurement signal. We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general and robust, and can operate in conjunction with any other quantum control protocol. As an application, we show that no-knowledge feedback could be used to improve the performance of dissipative quantum computers subjected to local loss.
Miniaturized, on-head, invasive electrode connector integrated EEG data acquisition system.
Ives, John R; Mirsattari, Seyed M; Jones, D
2007-07-01
Intracranial electroencephalogram (EEG) monitoring involves recording multi-contact electrodes. The current systems require separate wires from each recording contact to the data acquisition unit resulting in many connectors and cables. To overcome limitations of such systems such as noise, restrictions in patient mobility and compliance, we developed a miniaturized EEG monitoring system with the amplifiers and multiplexers integrated into the electrode connectors and mounted on the head. Small, surface-mounted instrumentation amplifiers, coupled with 8:1 analog multiplexers, were assembled into 8-channel modular units to connect to 16:1 analog multiplexer manifold to create a small (55 cm(3)) head-mounted 128-channel system. A 6-conductor, 30 m long cable was used to transmit the EEG signals from the patient to the remote data acquisition system. Miniaturized EEG amplifiers and analog multiplexers were integrated directly into the electrode connectors. Up to 128-channels of EEG were amplified and analog multiplexed directly on the patient's head. The amplified EEG data were obtained over one long wire. A miniaturized system of invasive EEG recording has the potential to reduce artefact, simplify trouble-shooting, lower nursing care and increase patient compliance. Miniaturization technology improves intracranial EEG monitoring and leads to >128-channel capacity.
Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.
Cook, Colin A; Huri, Pinar Y; Ginn, Brian P; Gilbert-Honick, Jordana; Somers, Sarah M; Temple, Joshua P; Mao, Hai-Quan; Grayson, Warren L
2016-08-01
In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a powerful tool that will enable improved engineering of functional 3D ligaments, tendons, and skeletal muscles. Biotechnol. Bioeng. 2016;113: 1825-1837. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Orbital Express fluid transfer demonstration system
NASA Astrophysics Data System (ADS)
Rotenberger, Scott; SooHoo, David; Abraham, Gabriel
2008-04-01
Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging of receiving tank, purging of coupling and de-mate of the coupling.
Fast frame rate rodent cardiac x-ray imaging using scintillator lens coupled to CMOS camera
NASA Astrophysics Data System (ADS)
Swathi Lakshmi, B.; Sai Varsha, M. K. N.; Kumar, N. Ashwin; Dixit, Madhulika; Krishnamurthi, Ganapathy
2017-03-01
Micro-Computed Tomography (MCT) systems for small animal imaging plays a critical role for monitoring disease progression and therapy evaluation. In this work, an in-house built micro-CT system equipped with a X-ray scintillator lens coupled to a commercial CMOS camera was used to test the feasibility of its application to Digital Subtraction Angiography (DSA). Literature has reported such studies being done with clinical X-ray tubes that can be pulsed rapidly or with rotating gantry systems, thus increasing the cost and infrastructural requirements.The feasibility of DSA was evaluated by injected Iodinated contrast agent (ICA) through the tail vein of a mouse. Projection images of the heart were acquired pre and post contrast using the high frame rate X-ray detector and processing done to visualize transit of ICA through the heart.
Su, Cheng-Kuan; Hsia, Sheng-Chieh; Sun, Yuh-Chang
2014-08-01
We have developed a simple and low-cost flow injection system coupled to a quadruple ICP-MS for the direct and continuous determination of multi-element in microdialysates. To interface microdialysis sampling to an inductively coupled plasma mass spectrometer (ICP-MS), we employed 3D printing to manufacture an as-designed sample load/inject valve featuring an in-valve sample loop for precise handling of microliter samples with a dissolved solids content of 0.9% NaCl (w/v). To demonstrate the practicality of our developed on-line system, we applied the 3D printed valve equipped a 5-μL sample loop to minimize the occurrence of salt matrix effects and facilitate an online dynamic monitoring of extracellular calcium and zinc ions in living rat brains. Under the practical condition (temporal resolution: 10h(-1)), dynamic profiling of these two metal ions in living rat brain extracellular fluid after probe implantation (the basal values for Ca and Zn were 12.11±0.10mg L(-1) and 1.87±0.05μg L(-1), respectively) and real-time monitoring of the physiological response to excitotoxic stress elicited upon perfusing a solution of 2.5mM N-methyl-d-aspartate were performed. Copyright © 2014 Elsevier B.V. All rights reserved.
A Web-Based System for Monitoring and Controlling Multidisciplinary Design Projects
NASA Technical Reports Server (NTRS)
Salas, Andrea O.; Rogers, James L.
1997-01-01
In today's competitive environment, both industry and government agencies are under enormous pressure to reduce the time and cost of multidisciplinary design projects. A number of frameworks have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. An examination of current frameworks reveals weaknesses in various areas such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, in conjunction with an existing framework, can improve these areas of weakness. This paper describes a system that executes a sequence of programs, monitors and controls the design process through a Web-based interface, and visualizes intermediate and final results through the use of Java(Tm) applets. A small sample problem, which includes nine processes with two analysis programs that are coupled to an optimizer, is used to demonstrate the feasibility of this approach.
NASA Astrophysics Data System (ADS)
Kido, Michael H.; Mundt, Carsten W.; Montgomery, Kevin N.; Asquith, Adam; Goodale, David W.; Kaneshiro, Kenneth Y.
2008-10-01
Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.
Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y
2008-10-01
Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.
Tsunoda, Koichi; Tsunoda, Atsunobu; Ishimoto, ShinnIchi; Kimura, Satoko
2006-01-01
The exclusive charge-coupled device (CCD) camera system for the endoscope and electronic fiberscopes are in widespread use. However, both are usually stationary in an office or examination room, and a wheeled cart is needed for mobility. The total costs of the CCD camera system and electronic fiberscopy system are at least US Dollars 10,000 and US Dollars 30,000, respectively. Recently, the performance of audio and visual instruments has improved dramatically, with a concomitant reduction in their cost. Commercially available CCD video cameras with small monitors have become common. They provide excellent image quality and are much smaller and less expensive than previous models. The authors have developed adaptors for the popular mini-digital video (mini-DV) camera. The camera also provides video and acoustic output signals; therefore, the endoscopic images can be viewed on a large monitor simultaneously. The new system (a mini-DV video camera and an adaptor) costs only US Dollars 1,000. Therefore, the system is both cost-effective and useful for the outpatient clinic or casualty setting, or on house calls for the purpose of patient education. In the future, the authors plan to introduce the clinical application of a high-vision camera and an infrared camera as medical instruments for clinical and research situations.
Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture
Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz
2014-01-01
We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178
NASA Astrophysics Data System (ADS)
Skouloudis, A. N.; Rickerby, D. G.
2012-12-01
Leptospirosis became recently a major public-health problem that is closely related with the environment (Nature review Oct 2009, Vol 7, pp 736-747). This disease originates from zoonotic pathogens associated with asymptomatic rodent carriers. Unfortunately, it effects human populations via various direct and indirect routes. This disease can claim many victims with large outbreaks during natural disasters or floods occurring during seasonal conditions. The severity of the illness ranges from subclinical infection to a fulminating fatal disease. Improved water quality monitoring techniques based on biosensor, optical, micro-fluidic and information technologies are leading to radical changes in our ability to perceive and monitor the aquatic environment. Biosensors are capable of providing specific, high spatial resolution information and allow unattended operation that will be particularly useful for water borne related diseases. Current research on biosensors is leading to solutions to problems for several contaminants that were previously irresolvable due to their high degree of complexity. Networking of the sensors enables sensitive monitoring systems allowing real-time monitoring of pollutants and facilitates data transmission between the measurement points and central control stations for continuous surveillance and to provide an early warning capability. The application of intelligent biosensor networks for water quality monitoring and detection of localized sources of pollution are discussed together with the setting up of a methodology that utilizes images from satellite coupled with in-situ sensors for anticipating the zones of potential evolution of this disease and assessing the population at risk. Environmental and climatic conditions that are associated the outbreaks are described and the rational of combining earth observations coupled with advanced in-situ biosensors is explained. The implementation of sensor networks for data collection and exposure mapping is reliant on the identification of location where such networks could be of use. Systematic monitoring from satellite images are utilized for increasing the potential areas of application, for assessing the geographical representativeness on the measurements of the sensors and proposing the methodology on assessing the environmental conditions that are associated with outbreaks of leptospirosis. Unfortunately, several combined deployments of earth observations with ground sensors are required before for the understanding of the connections between hydrology and the human health. Ultimately this will lead to the establishment of early warning system that might investigate the effectiveness of key control measures, including vaccine (when they will become available) and affront the water decontamination, and animal control issues.
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Amperometric Solid Electrolyte Oxygen Microsensors with Easy Batch Fabrication; Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications; Target Assembly to Check Boresight Alignment of Active Sensors; Virtual Sensor Test Instrumentation; Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas; Miniaturized Ka-Band Dual-Channel Radar; Continuous-Integration Laser Energy Lidar Monitor; Miniaturized Airborne Imaging Central Server System; Radiation-Tolerant, SpaceWire-Compatible Switching Fabric; Small Microprocessor for ASIC or FPGA Implementation; Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters; High-Voltage-Input Level Translator Using Standard CMOS; Monitoring Digital Closed-Loop Feedback Systems; MASCOT - MATLAB Stability and Control Toolbox; MIRO Continuum Calibration for Asteroid Mode; GOATS Image Projection Component; Coded Modulation in C and MATLAB; Low-Dead-Volume Inlet for Vacuum Chamber; Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler; Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces; Infrared-Bolometer Arrays with Reflective Backshorts; Commercialization of LARC (trade mark) -SI Polyimide Technology; Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s; Carbon Nanotubes on Titanium Substrates for Stray Light Suppression; Monolithic, High-Speed Fiber-Optic Switching Array for Lidar; Grid-Tied Photovoltaic Power System; Spectroelectrochemical Instrument Measures TOC; A Miniaturized Video System for Monitoring Drosophila Behavior; Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids; Creep Measurement Video Extensometer; Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker n-B-pi-p Superlattice Infrared Detector; Safe Onboard Guidance and Control Under Probabilistic Uncertainty; General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets; Hidden Statistics of Schroedinger Equation; Optimal Padding for the Two-Dimensional Fast Fourier Transform; Spatial Query for Planetary Data; Higher Order Mode Coupling in Feed Waveguide of a Planar Slot Array Antenna; Evolutionary Computational Methods for Identifying Emergent Behavior in Autonomous Systems; Sampling Theorem in Terms of the Bandwidth and Sampling Interval; Meteoroid/Orbital Debris Shield Engineering Development Practice and Procedure; Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror; Wireless Orbiter Hang-Angle Inclinometer System; and Internal Electrostatic Discharge Monitor - IESDM.
Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit
Feng, M.; Zhong, Y.P.; Liu, T.; Yan, L.L.; Yang, W.L.; Twamley, J.; Wang, H.
2015-01-01
Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed-matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalize the critical spin-field coupling strength, we have observed a four-qubit nonequilibrium quantum phase transition in a dynamical manner; that is, we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the nonequilibrium quantum phase transition, which is in good agreement with the driven Tavis–Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition-related science, such as scaling behaviours, parity breaking and long-range quantum correlations. PMID:25971985
Nguyen, Mai; Kanaev, Andrei; Sun, Xiaonan; Lacaze, Emmanuelle; Lau-Truong, Stéphanie; Lamouri, Aazdine; Aubard, Jean; Felidj, Nordin; Mangeney, Claire
2015-11-24
A smart and highly SERS-active plasmonic platform was designed by coupling regular arrays of nanotriangles to colloidal gold nanorods via a thermoresponsive polymer spacer (poly(N-isopropylacrylamide), PNIPAM). The substrates were prepared by combining a top-down and a bottom-up approach based on nanosphere lithography, surface-initiated controlled radical polymerization, and colloidal assembly. This multistep strategy provided regular hexagonal arrays of nanotriangles functionalized by polymer brushes and colloidal gold nanorods, confined exclusively on the nanotriangle surface. Interestingly, one could finely tune the gold nanorod impregnation on the polymer-coated nanostructures by adjusting the polymer layer thickness, leading to highly coupled plasmonic systems for intense SERS signal. Moreover, the thermoresponsive properties of the PNIPAM brushes could be wisely handled in order to monitor the SERS activity of the nanostructures coupled via this polymer spacer. The coupled hybrid plasmonic nanostructures designed in this work are therefore very promising smart platforms for the sensitive detection of analytes by SERS.
Remote physiological monitoring in an austere environment: a future for battlefield care provision?
Smyth, Matthew J; Round, J A; Mellor, A J
2018-05-14
Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Scott, David E.; Willis, Sean D.; Gabbert, Seth; Johnson, Dave A.; Naylor, Erik; Janle, Elsa M.; Krichevsky, Janice E.; Lunte, Craig E.; Lunte, Susan M.
2015-01-01
The development of an on-animal separation-based sensor that can be employed for monitoring drug metabolism in a freely roaming sheep is described. The system consists of microdialysis sampling coupled directly to microchip electrophoresis with electrochemical detection (MD-ME-EC). Separations were accomplished using an all-glass chip with integrated platinum working and reference electrodes. Discrete samples from the microdialysis flow were introduced into the electrophoresis chip using a flow-gated injection approach. Electrochemical detection was accomplished in-channel using a two-electrode isolated potentiostat. Nitrite was separated by microchip electrophoresis using reverse polarity and a run buffer consisting of 50 mM phosphate at pH 7.4. The entire system was under telemetry control. The system was first tested with rats to monitor the production of nitrite following introduction of nitroglycerin into the subdermal tissue using a linear probe. The data acquired using the on-line MD-ME-EC system was compared to that obtained off-line analysis by liquid chromatography with electrochemical detection (LC-EC), using a second microdialysis probe implanted parallel to the first probe in the same animal. The MD-ME-EC device was then used on-animal to monitor the subdermal metabolism of nitroglycerin in sheep. The ultimate goal is to use this device to simultaneously monitor drug metabolism and behavior in a freely roaming animal. PMID:25697221
Portable System for Monitoring the Microclimate in the Footwear-Foot Interface
Sandoval-Palomares, José de Jesús; Yáñez-Mendiola, Javier; Gómez-Espinosa, Alfonso; López-Vela, José Martin
2016-01-01
A new, continuously-monitoring portable device that monitors the diabetic foot has shown to help in reduction of diabetic foot complications. Persons affected by diabetic foot have shown to be particularly sensitive in the plantar surface; this sensitivity coupled with certain ambient conditions may cause dry skin. This dry skin leads to the formation of fissures that may eventually result in a foot ulceration and subsequent hospitalization. This new device monitors the micro-climate temperature and humidity areas between the insole and sole of the footwear. The monitoring system consists of an array of ten sensors that take readings of relative humidity within the range of 100% ± 2% and temperature within the range of −40 °C to 123.8 ± 0.3 °C. Continuous data is collected using embedded C software and the recorded data is processed in Matlab. This allows for the display of data; the implementation of the iterative Gauss-Newton algorithm method was used to display an exponential response curve. Therefore, the aim of our system is to obtain feedback data and provide the critical information to various footwear manufacturers. The footwear manufactures will utilize this critical information to design and manufacture diabetic footwear that reduce the risk of ulcers in diabetic feet. PMID:27399718
Zou, Xue; Kang, Meng; Li, Aiyue; Shen, Chengyin; Chu, Yannan
2016-03-15
Rapid and sensitive monitoring of benzene in water is very important to the health of people and for environmental protection. A novel and online detection method of spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS) was introduced for rapid and sensitive monitoring of trace benzene in water. A spraying extraction system was coupled with the self-developed PTR-MS. The benzene was extracted from the water sample in the spraying extraction system and continuously detected with PTR-MS. The flow of carrier gas and salt concentration in water were optimized to be 50 sccm and 20% (w/v), respectively. The response time and the limit of detection of the SI-PTR-MS for detection of benzene in water were 55 s and 0.14 μg/L at 10 s integration time, respectively. The repeatability of the SI-PTR-MS was evaluated, and the relative standard deviation of five replicate determinations was 4.3%. The SI-PTR-MS system was employed for monitoring benzene in different water matrices, such as tap water, lake water, and wastewater. The results indicated that the online SI-PTR-MS can be used for rapid and sensitive monitoring of trace benzene in water.
NASA Astrophysics Data System (ADS)
Hund, S. V.; Johnson, M. S.; Steyn, D. G.; Keddie, T.; Morillas, L.
2015-12-01
Water supply is highly disputed in the tropics of northwestern Costa Rica where rainfall exhibits high seasonal variability and long annual dry seasons. Water shortages are common during the dry season, and water conflicts emerge between domestic water users, intensively irrigated agriculture, the tourism industry, and ecological flows. Climate change may further increase the variability of precipitation and the risk for droughts, and pose challenges for small rural agricultural communities experiencing water stress. To adapt to seasonal droughts and improve resilience of communities to future changes, it is essential to increase understanding of interactions between components of the coupled hydrological-social system. Yet, hydrological monitoring and data on water use within developing countries of the humid tropics is limited. To address these challenges and contribute to extended monitoring networks, low-cost and open-source monitoring platforms were developed based off Arduino microelectronic boards and software and combined with hydrological sensors to monitor river stage and groundwater levels in two watersheds of Guanacaste, Costa Rica. Hydrologic monitoring stations are located in remote locations and powered by solar panels. Monitoring efforts were made possible through collaboration with local rural communities, and complemented with a mix of digitized water extraction data and community water use narratives to increase understanding of water use and challenges. We will present the development of the Arduino logging system, results of water supply in relation to water use for both the wet and dry season, and discuss these results within a socio-hydrological system context.
The review of dynamic monitoring technology for crop growth
NASA Astrophysics Data System (ADS)
Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong
2010-10-01
In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.
NASA Astrophysics Data System (ADS)
Yoshikawa, Akimasa; Fujimoto, Akiko; Ikeda, Akihiro; Uozumi, Teiji; Abe, Shuji
2017-10-01
For study of coupling processes in the Solar-Terrestrial System, International Center for Space Weather Science and Education (ICSWSE), Kyushu University has developed a real time magnetic data acquisition system (the MAGDAS project) around the world. The number of observational sites is increasing every year with the collaboration of host countries. Now at this time, the MAGDAS Project has installed 78 real time magnetometers - so it is the largest magnetometer array in the world. The history of global observation at Kyushu University is over 30 years and number of developed observational sites is over 140. Especially, Collaboration between IKIR is extended back to 1990's. Now a time, we are operating Flux-gate magnetometer and FM-CW Radar. It is one of most important collaboration for space weather monitoring. By using MAGDAS data, ICSWSE produces many types of space weather index, such as EE-index (for monitoring long tern and shot term variation of equatorial electrojet), Pc5 index (for monitoring solar-wind velocity and high energy electron flux), Sq-index (for monitoring global change of ionospheric low and middle latitudinal current system), and Pc3 index (for monitoring of plasma density variation at low latitudes). In this report, we will introduce recent development of MAGDAS/ICSWSE Indexes project and topics for new open policy for MAGDAS data will be also discussed.
A review of microdialysis coupled to microchip electrophoresis for monitoring biological events
Saylor, Rachel A.; Lunte, Susan M.
2015-01-01
Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011
Optical Displacement Sensor for Sub-Hertz Applications
NASA Technical Reports Server (NTRS)
Abramovici, Alexander; Chiao, Meng P.; Dekens, Frank G.
2008-01-01
A document discusses a sensor made from off-the-shelf electro-optical photodiodes and electronics that achieves 20 nm/(Hz)(exp 1/2) displacement sensitivity at 1 mHz. This innovation was created using a fiber-coupled laser diode (or Nd:YAG) through a collimator and an aperture as the illumination source. Together with a germanium quad photodiode, the above-mentioned displacement sensor sensitivities have been achieved. This system was designed to aid the Laser Interferometer Space Antenna (LISA) with microthruster tests and to be a backup sensor for monitoring the relative position between a proof mass and a spacecraft for drag-free navigation. The optical displacement sensor can be used to monitor any small displacement from a remote location with minimal invasion on the system.
Monitoring and evaluating civil structures using measured vibration
NASA Astrophysics Data System (ADS)
Straser, Erik G.; Kiremidjian, Anne S.
1996-04-01
The need for a rapid assessment of the state of critical and conventional civil structures, such as bridges, control centers, airports, and hospitals, among many, has been amply demonstrated during recent natural disasters. Research is underway at Stanford University to develop a state-of-the-art automated damage monitoring system for long term and extreme event monitoring based on both ambient and forced response measurements. Such research requires a multi-disciplinary approach harnessing the talents and expertise of civil, electrical, and mechanical engineering to arrive at a novel hardware and software solution. Recent advances in silicon micro-machining and microprocessor design allow for the economical integration of sensing, processing, and communication components. Coupling these technological advances with parameter identification algorithms allows for the realization of extreme event damage monitoring systems for civil structures. This paper addresses the first steps toward the development of a near real-time damage diagnostic and monitoring system based on structural response to extreme events. Specifically, micro-electro-mechanical- structures (MEMS) and microcontroller embedded systems (MES) are demonstrated to be an effective platform for the measurement and analysis of civil structures. Experimental laboratory tests with small scale model specimens and a preliminary sensor module are used to evaluate hardware and obtain structural response data from input accelerograms. A multi-step analysis procedure employing ordinary least squares (OLS), extended Kalman filtering (EKF), and a substructuring approach is conducted to extract system characteristics of the model. Results from experimental tests and system identification (SI) procedures as well as fundamental system design issues are presented.
Coupled Mechanical and Electrochemical Phenomena in Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Cannarella, John
Lithium-ion batteries are complee electro-chemo-mechanical systems owing to a number of coupled mechanical and electrochemical phenomena that occur during operation. In this thesis we explore these phenomena in the context of battery degradation, monitoring/diagnostics, and their application to novel energy systems. We begin by establishing the importance of bulk stress in lithium-ion batteries through the presentation of a two-year exploratory aging study which shows that bulk mechanical stress can significantly accelerate capacity fade. We then investigate the origins of this coupling between stress and performance by investigating the effects of stress in idealized systems. Mechanical stress is found to increase internal battery resistance through separator deformation, which we model by considering how deformation affects certain transport properties. When this deformation occurs in a spatially heterogeneous manner, local hot spots form, which accelerate aging and in some cases lead to local lithium plating. Because of the importance of separator deformation with respect to mechanically-coupled aging, we characterize the mechanical properties of battery separators in detail. We also demonstrate that the stress state of a lithium-ion battery cell can be used to measure the cell's state of health (SOH) and state of charge (SOC)--important operating parameters that are traditionally difficult to measure outside of a laboratory setting. The SOH is shown to be related to irreversible expansion that occurs with degradation and the SOC to the reversible strains characteristic of the cell's electrode materials. The expansion characteristics and mechanical properties of the constituent cell materials are characterized, and a phenomenological model for the relationship between stress and SOH/SOC is developed. This work forms the basis for the development of on-board monitoring of SOH/SOC based on mechanical measurements. Finally we study the coupling between mechanical stress and voltage in lithium-ion batteries. While the voltage changes at typical levels of stress are relatively insignificant from the standpoint of battery performance, we show that this piezoelectrochemical phenomenon is well-suited for certain mechanical energy harvesting applications. We demonstrate the working principle for mechanical energy harvesting and explore the potential of this technology.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)
2005-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
2003-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
1999-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi
2017-12-01
In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.
Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets
NASA Astrophysics Data System (ADS)
Wielgosz, Maciej; Skoczeń, Andrzej; Mertik, Matej
2017-09-01
The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyzes voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed triggers which launches protection procedures when a misbehavior of the magnets is detected. All the procedures used in the protection equipment were designed and implemented according to known working scenarios of the system and are updated and monitored by human operators. This paper proposes a novel approach to monitoring and fault protection of the Large Hadron Collider (LHC) superconducting magnets which employs state-of-the-art Deep Learning algorithms. Consequently, the authors of the paper decided to examine the performance of LSTM recurrent neural networks for modeling of voltage time series of the magnets. In order to address this challenging task different network architectures and hyper-parameters were used to achieve the best possible performance of the solution. The regression results were measured in terms of RMSE for different number of future steps and history length taken into account for the prediction. The best result of RMSE = 0 . 00104 was obtained for a network of 128 LSTM cells within the internal layer and 16 steps history buffer.
Multi-Dimensional Damage Detection
NASA Technical Reports Server (NTRS)
Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Lewis, Mark E. (Inventor); Snyder, Sarah J. (Inventor); Medelius, Pedro J. (Inventor)
2016-01-01
Methods and systems may provide for a structure having a plurality of interconnected panels, wherein each panel has a plurality of detection layers separated from one another by one or more non-detection layers. The plurality of detection layers may form a grid of conductive traces. Additionally, a monitor may be coupled to each grid of conductive traces, wherein the monitor is configured to detect damage to the plurality of interconnected panels in response to an electrical property change with respect to one or more of the conductive traces. In one example, the structure is part of an inflatable space platform such as a spacecraft or habitat.
Wavelet decomposition and radial basis function networks for system monitoring
NASA Astrophysics Data System (ADS)
Ikonomopoulos, A.; Endou, A.
1998-10-01
Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.
Detection of generalized synchronization using echo state networks
NASA Astrophysics Data System (ADS)
Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.
2018-03-01
Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.
Airborne SAR systems for infrastructures monitoring
NASA Astrophysics Data System (ADS)
Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio
2017-04-01
The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.
Use of monitoring data to support conservation management and policy decisions in Micronesia.
Montambault, Jensen Reitz; Wongbusarakum, Supin; Leberer, Trina; Joseph, Eugene; Andrew, Wayne; Castro, Fran; Nevitt, Brooke; Golbuu, Yimnang; Oldiais, Noelle W; Groves, Craig R; Kostka, Willy; Houk, Peter
2015-10-01
Adaptive management implies a continuous knowledge-based decision-making process in conservation. Yet, the coupling of scientific monitoring and management frameworks remains rare in practice because formal and informal communication pathways are lacking. We examined 4 cases in Micronesia where conservation practitioners are using new knowledge in the form of monitoring data to advance marine conservation. These cases were drawn from projects in Micronesia Challenge jurisdictions that received funding for coupled monitoring-to-management frameworks and encompassed all segments of adaptive management. Monitoring in Helen Reef, Republic of Palau, was catalyzed by coral bleaching and revealed evidence of overfishing that led to increased enforcement and outreach. In Nimpal Channel, Yap, Federated States of Micronesia (FSM), monitoring the recovery of marine food resources after customary restrictions were put in place led to new, more effective enforcement approaches. Monitoring in Laolao Bay, Saipan, Commonwealth of the Northern Mariana Islands, was catalyzed by observable sediment loads from poor land-use practices and resulted in actions that reduced land-based threats, particularly littering and illegal burning, and revealed additional threats from overfishing. Pohnpei (FSM) began monitoring after observed declines in grouper spawning aggregations. This data led to adjusting marine conservation area boundaries and implementing market-based size class restrictions. Two themes emerged from these cases. First, in each case monitoring was conducted in a manner relevant to the social and ecological systems and integrated into the decision-making process. Second, conservation practitioners and scientists in these cases integrated culturally appropriate stakeholder engagement throughout all phases of the adaptive management cycle. More broadly, our study suggests, when describing adaptive management, providing more details on how monitoring and management activities are linked at similar spatial scales and across similar time frames can enhance the application of knowledge. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Hybrid RTM process: Monitoring and processing of composites based on reactive thermoplastic systems
NASA Astrophysics Data System (ADS)
Dkier, Mohamed; Lamnawar, Khalid; Maazouz, Abderrahim
2017-10-01
In this work, hybrid process coupling "Reactive Extrusion" and "Resin Transfer Molding" machine (T-ERTM) equipped with an instrumented mold was designed and developed. Polyamides model matrix according to two kinds of polymerizations were studied as well anionic and chain extension reactions. For the former, different ratios of catalyst and activator were investigated. For the latter, various formulations of prepolymer with chain extender (CA) were studied at different stoichiometry ratios and temperatures. Since that both reaction kinetics are very fast to be monitored at short times by usual technics, the chemo-rheological evolutions were firstly studied ex-situ by coupling rheology with FTIR and dielectric spectroscopy (DRS). Secondly, the T-ERTM process with an "instrumented mold" was developed with specific dielectric sensors in order to in-situ track viscosity and reaction evolution. The in-situ results corroborate the ex-situ ones aforementioned. Overall, a processing window was obtained for each reactive system to ensure a good preform impregnation for the manufacturing of complex and continuous glass fiber-reinforced parts. Herein, the Time-Temperature-Transformation-equivalent diagrams were established to obtain Thermoplastic composites with tailored mechanical and physical properties.
NASA Astrophysics Data System (ADS)
Iinuma, Takeshi
2018-04-01
A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi-oki earthquakes and the recovery of the interplate coupling around the rupture area of the 1994 M7.6 Sanriku-Haruka-oki earthquake. The results also indicate the semi-periodic occurrence of slow slip events and the expansion of the area of slow slip events before the 2011 Tohoku-oki earthquake (M9.0) approaching the hypocentre of the Tohoku-oki earthquake.
Fast and Accurate Exhaled Breath Ammonia Measurement
Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.
2014-01-01
This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141
Local Leak Detection and Health Monitoring of Pressurized Tanks
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam
2011-01-01
An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.
Theory and methods for measuring the effective multiplication constant in ADS
NASA Astrophysics Data System (ADS)
Rugama Saez, Yolanda
2001-10-01
In the thesis an absolute measurements technique for the subcriticality determination is presented. The ADS is a hybrid system where a subcritical system is fed by a proton accelerator. There are different proposals to define an ADS, one is to use plutonium and minor actinides from power plants waste as fuel to be transmuted into non radioactive isotopes (transmuter/burner, ATW). Another proposal is to use a Th232-U233 cycle (Energy Amplifier), being that thorium is an interesting and abundant fertile isotope. The development of accelerator driven systems (ADS) requires the development of methods to monitor and control the subcriticality of this kind of system without interfering with its normal operation mode. With this finality, we have applied noise analysis techniques that allow us to characterise the system when it is operating. The method presented in this thesis is based on the stochastic neutron and photon transport theory that can be implemented by presently available neutron/photon transport codes. In this work, first we analyse the stochastic transport theory which has been applied to define a parameter to determine the subcritical reactivity monitoring measurements. Finally we give the main limitations and recommendations for these subcritical monitoring methodology. As a result of the theoretical methodology, done in the first part of this thesis, a monitoring measurement technique has been developed and verified using two coupled Monte Carlo programs. The first one, LAHET, simulates the spallation collisions and the high energy transport and the other, MCNP-DSP, is used to estimate the counting statistics from a neutron/photon ray counter in a fissile system, as well as the transport for neutron with energies less than 20 MeV. From the coupling of both codes we developed the LAHET/MCNP-DSP code which, has the capability to simulate the total process in the ADS from the proton interaction to the signal detector processing. In these simulations, we compute the cross power spectral densities between pairs of detectors located inside the system which, is defined as the measured parameter. From the comparison of the theoretical predictions with the Monte Carlo simulations, we obtain some practical and simple methods to determine the system multiplication constant. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Carstea, E.; Baker, A.; Johnson, R.; Reynolds, D. M.
2009-12-01
In-line fluorescence EEM monitoring has been performed over an eleven-day period for Bournbrook River, Birmingham, UK. River water was diverted to a portable laboratory via a continuous flow pump and filter system. Fluorescence excitation-emission matrices data was recorded every 3 minutes using a flow cell (1cm pathlength) coupled to a fiber optic probe. This real-time fluorescence EEM data (Excitation, 225-400 nm at 5 nm steps, emission, 280-500 nm at 2 nm steps) was collected 'in-line'and directly compared with the spectrophotometric properties and physical and chemical parameters of river water samples collected off-line at known time intervals. Over the monitoring period, minor pollution pulses from cross connections were detected and identified hourly along with a random diesel pollution event. This work addresses the practicalities of measuring and detecting fluorescence EEM in the field and discusses the potential of this technological approach for further understanding important hydrological and biogeochemical processes. Problems associated with fouling and system failure are also reported. Example of the data generated from the continuous fluorescence EEM monitoring.
Monitoring long-term evolution of engineered barrier systems using magnets: Magnetic response.
Rigonat, N; Isnard, O; Harley, S L; Butler, I B
2018-01-05
Remote and non-destructive monitoring of the stability and performance of Engineered Barrier Systems for Geological Disposal Facility of is gaining considerable importance in establishing the safety cases for Higher Activity Wastes disposal. This study offers an innovative use of mineral magnetism for monitoring groundwater saturation of the barrier. Four mixtures of permanent magnets (Nd-Fe-B, coated and uncoated; SmCo and AlNiCo) and bentonite were reacted for 4, 8 and 12 months with mildly-saline, high-pH leachates, representing the fluids saturating a time-evolved engineered barrier. Coupled hysteresis and thermomagnetic analyses demonstrate how Nd-Fe-B feature a time-dependent transition from square-like ferromagnetic to superparamagnetic loop via pot-bellied and wasp-waist loops, whereas SmCo and AlNiCo do not show so extensive corrosion-related variations of the intrinsic and extrinsic magnetic properties. This study allowed to identify magnetic materials suitable for shorter- (Nd-Fe-B) and longer-term (SmCo and AlNiCo) monitoring purposes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M
2006-02-01
Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.
A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring.
Wu, Jian; Cui, Xingmei; Xu, Yunpeng
2016-01-28
In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag's antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt's information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system.
Lucisano, Joseph Y; Routh, Timothy L; Lin, Joe T; Gough, David A
2017-09-01
The use of a fully implanted first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 min to external receivers. The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched, respectively, to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is, therefore, included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of -2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Continuous long-term glucose monitoring in individuals with diabetes is feasible with this system. All therapies for diabetes are based on glucose control, and therefore, require glucose monitoring. This fully implanted long-term sensor/telemetry system may facilitate a new era of management of the disease.
A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring
Wu, Jian; Cui, Xingmei; Xu, Yunpeng
2016-01-01
In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag’s antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt’s information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system. PMID:26828498
Lucisano, Joseph Y.; Routh, Timothy L.; Lin, Joe T.; Gough, David A.
2017-01-01
Objective The use of a fully implanted, first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Methods Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 minutes to external receivers. Results The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched respectively to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is therefore included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of −2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Conclusions Continuous, long-term glucose monitoring in individuals with diabetes is feasible with this system. Significance All therapies for diabetes are based on glucose control and therefore require glucose monitoring. This fully implanted, long-term sensor/telemetry system may facilitate a new era of management of the disease. PMID:27775510
Characterization of Model-Based Reasoning Strategies for Use in IVHM Architectures
NASA Technical Reports Server (NTRS)
Poll, Scott; Iverson, David; Patterson-Hine, Ann
2003-01-01
Open architectures are gaining popularity for Integrated Vehicle Health Management (IVHM) applications due to the diversity of subsystem health monitoring strategies in use and the need to integrate a variety of techniques at the system health management level. The basic concept of an open architecture suggests that whatever monitoring or reasoning strategy a subsystem wishes to deploy, the system architecture will support the needs of that subsystem and will be capable of transmitting subsystem health status across subsystem boundaries and up to the system level for system-wide fault identification and diagnosis. There is a need to understand the capabilities of various reasoning engines and how they, coupled with intelligent monitoring techniques, can support fault detection and system level fault management. Researchers in IVHM at NASA Ames Research Center are supporting the development of an IVHM system for liquefying-fuel hybrid rockets. In the initial stage of this project, a few readily available reasoning engines were studied to assess candidate technologies for application in next generation launch systems. Three tools representing the spectrum of model-based reasoning approaches, from a quantitative simulation based approach to a graph-based fault propagation technique, were applied to model the behavior of the Hybrid Combustion Facility testbed at Ames. This paper summarizes the characterization of the modeling process for each of the techniques.
Remily-Wood, Elizabeth R.; Liu, Richard Z.; Xiang, Yun; Chen, Yi; Thomas, C. Eric; Rajyaguru, Neal; Kaufman, Laura M.; Ochoa, Joana E.; Hazlehurst, Lori; Pinilla-Ibarz, Javier; Lancet, Jeffrey; Zhang, Guolin; Haura, Eric; Shibata, David; Yeatman, Timothy; Smalley, Keiran S.M.; Dalton, William S.; Huang, Emina; Scott, Ed; Bloom, Gregory C.; Eschrich, Steven A.; Koomen, John M.
2012-01-01
Purpose The Quantitative Assay Database (QuAD), http://proteome.moffitt.org/QUAD/, facilitates widespread implementation of quantitative mass spectrometry in cancer biology and clinical research through sharing of methods and reagents for monitoring protein expression and modification. Experimental Design Liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) assays are developed using SDS-PAGE fractionated lysates from cancer cell lines. Pathway maps created using GeneGO Metacore provide the biological relationships between proteins and illustrate concepts for multiplexed analysis; each protein can be selected to examine assay development at the protein and peptide level. Results The coupling of SDS-PAGE and LC-MRM screening has been used to detect 876 peptides from 218 cancer-related proteins in model systems including colon, lung, melanoma, leukemias, and myeloma, which has led to the development of 95 quantitative assays including stable-isotope labeled peptide standards. Methods are published online and peptide standards are made available to the research community. Protein expression measurements for heat shock proteins, including a comparison with ELISA and monitoring response to the HSP90 inhibitor, 17-DMAG, are used to illustrate the components of the QuAD and its potential utility. Conclusions and Clinical Relevance This resource enables quantitative assessment of protein components of signaling pathways and biological processes and holds promise for systematic investigation of treatment responses in cancer. PMID:21656910
Bandodkar, Amay J; Molinnus, Denise; Mirza, Omar; Guinovart, Tomás; Windmiller, Joshua R; Valdés-Ramírez, Gabriela; Andrade, Francisco J; Schöning, Michael J; Wang, Joseph
2014-04-15
This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains. © 2013 Published by Elsevier B.V.
Gellynck, Karolien; Kodeck, Valérie; Van De Walle, Elke; Kersemans, Ken; De Vos, Filip; Declercq, Heidi; Dubruel, Peter; Vlaminck, Lieven
2015-01-01
Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) – enabling glucose monitoring in the near-infrared (NIR) spectrum – were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring. PMID:25304314
Power system distributed oscilation detection based on Synchrophasor data
NASA Astrophysics Data System (ADS)
Ning, Jiawei
Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed methods could achieve faster and more reliable results. Subsequently, this claim is tested and approved by test results of IEEE Two-area simulation test system and real power system historian synchrophasor data case studies.
The non-contact heart rate measurement system for monitoring HRV.
Huang, Ji-Jer; Yu, Sheng-I; Syu, Hao-Yi; See, Aaron Raymond
2013-01-01
A noncontact ECG monitoring and analysis system was developed using capacitive-coupled device integrated to a home sofa. Electrodes were placed on the backrest of a sofa separated from the body with only the chair covering and the user's clothing. The study also incorporates measurements using different fabric materials, and a pure cotton material was chosen to cover the chair's backrest. The material was chosen to improve the signal to noise ratio. The system is initially implemented on a home sofa and is able to measure non-contact ECG through thin cotton clothing and perform heart rate analysis to calculate the heart rate variability (HRV) parameters. It was also tested under different conditions and results from reading and sleeping exhibited a stable ECG. Subsequently, results from our calculated HRV were found to be identical to those of a commercially available HRV analyzer. However, HRV parameters are easily affected by motion artifacts generated during drinking or eating with the latter producing a more severe disturbance. Lastly, parameters measured are saved on a cloud database, providing users with a long-term monitoring and recording for physiological information.
NASA Astrophysics Data System (ADS)
Allasia, P.; Baldo, M.; Giordan, D.; Lollino, G.
2009-04-01
Following heavy rainfalls and due to the particular meteo-climatic conditions occurred on October 16th, 2000, the north western part of Italy was interested by widespread landslides and flood phenomena. In particular a landslide phenomenon was triggered along the left side of Val Germanasca that exposed the Provincial Road No. 169 to risk. The extent of the unstable volume (about 700,000 cubic meters) could have led, in case of failure, to a natural damming of the valley that could have been followed by a dam-break flood. Thus the urgent need to monitor the evolving phenomenon and to assess all the available actions to be taken in order to mitigate the risk. After the installation of a first provisional monitoring system, a permanent monitoring system, able to follow the phenomenon evolution, was set up. The system was progressively expanded and it is still running. The monitoring network is made up of an automatic total station and a network of wire - extensometers. This coupled measuring system was designed to make monitoring possible even in bad atmospheric conditions Then the monitoring network was expanded with the addition of a borehole inclinometer and a piezometer. Continuous monitoring brings added value for both emergencies management and the study of the dynamical evolution of the phenomenon. As far as phenomena that are subject to seasonal reactivations are concerned, the use of monitoring systems brings a significant improvement of knowledge. This proves to be even more useful during the risk mitigation phase than during the study of the evolutionary trends of the phenomena. The case of Gardiola demonstrated how a careful analysis of the phenomenon makes possible an effective management of the most critical moments, together with a careful design of effective and not expensive mitigation works. Data provided by the monitoring system allowed the realisation of less expensive and less invasive facilities that work only during the acme of the phenomenon. On the contrary the monitoring system allows a careful surveillance during the year, which increases in case of heavy rainfalls. This system is therefore effective in order to manage and get through critical phases, when it may be necessary a continuous monitoring. Moreover, the large amount of data gathered in eight years of continuous monitoring, has been used to define a relationships between displacements and rainfalls and to recognise a new landslide sector now particular active.
The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eden, H.F.; Mooers, C.N.K.
1990-06-01
The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological,more » chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions.« less
The USGS geomagnetism program and its role in space weather monitoring
Love, Jeffrey J.; Finn, Carol A.
2011-01-01
Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.
The USGS Geomagnetism Program and its role in Space-Weather Monitoring
Love, Jeffrey J.; Finn, Carol A.
2011-01-01
Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.
NASA Missions Monitor a Waking Black Hole
2015-06-30
On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this system, a stream of gas from a star much like the sun flows toward a 10 solar mass black hole. Instead of spiraling toward the black hole, the gas accumulates in an accretion disk around it. Every couple of decades, the disk switches into a state that sends the gas rushing inward, starting a new outburst. Read more: www.nasa.gov/feature/goddard/nasa-missions-monitor-a-waki... Credits: NASA's Goddard Space Flight Center Download this video in HD formats from NASA Goddard's Scientific Visualization Studio svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11110
Can we predict failure in couple therapy early enough to enhance outcome?
Pepping, Christopher A; Halford, W Kim; Doss, Brian D
2015-02-01
Feedback to therapists based on systematic monitoring of individual therapy progress reliably enhances therapy outcome. An implicit assumption of therapy progress feedback is that clients unlikely to benefit from therapy can be detected early enough in the course of therapy for corrective action to be taken. To explore the possibility of using feedback of therapy progress to enhance couple therapy outcome, the current study tested whether weekly therapy progress could detect off-track clients early in couple therapy. In an effectiveness trial of couple therapy, 136 couples were monitored weekly on relationship satisfaction and an expert derived algorithm was used to attempt to predict eventual therapy outcome. As expected, the algorithm detected a significant proportion of couples who did not benefit from couple therapy at Session 3, but prediction was substantially improved at Session 4 so that eventual outcome was accurately predicted for 70% of couples, with little improvement of prediction thereafter. More sophisticated algorithms might enhance prediction accuracy, and a trial of the effects of therapy progress feedback on couple therapy outcome is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop
Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An
2016-01-01
Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors—together with their interfaces in the transponder—are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546
Remote-Reading Safety and Safeguards Surveillance System for 3013 Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lechelt, W. M.; Skorpik, J. R.; Silvers, K. L.
2002-02-26
At Hanford's Plutonium Finishing Plant (PFP), plutonium oxide is being loaded into stainless steel containers for long-term storage on the Hanford Site. These containers consist of two weld-sealed stainless steel cylinders nested one within the other. A third container holds the plutonium within the inner cylinder. This design meets the U.S. Department of Energy (DOE) storage standard, DOE-STD- 3013-2000, which anticipates a 50-year storage lifetime. The 3013 standard also requires a container surveillance program to continuously monitor pressure and to assure safeguards are adequate. However, the configuration of the container system makes using conventional measurement and monitoring methods difficult. Tomore » better meet the 3013 monitoring requirements, a team from Fluor Hanford (who manages the PFP), Pacific Northwest National Laboratory (PNNL), and Vista Engineering Technologies, LLC, developed a safer, cost-efficient, remote PFP 3013 container surveillance system. This new surveillance system is a combination of two successfully deployed technologies: (1) a magnetically coupled pressure gauge developed by Vista Engineering and (2) a radio frequency (RF) tagging device developed by PNNL. This system provides continuous, 100% monitoring of critical parameters with the containers in place, as well as inventory controls. The 3013 container surveillance system consists of three main elements: (1) an internal magnetic pressure sensor package, (2) an instrument pod (external electronics package), and (3) a data acquisition storage and display computer. The surveillance system described in this paper has many benefits for PFP and DOE in terms of cost savings and reduced personnel exposure. In addition, continuous safety monitoring (i.e., internal container pressure and temperature) of every container is responsible nuclear material stewardship and fully meets and exceeds DOE's Integrated Surveillance Program requirements.« less
A contact-free respiration monitor for smart bed and ambulatory monitoring applications.
Hart, Adam; Tallevi, Kevin; Wickland, David; Kearney, Robert E; Cafazzo, Joseph A
2010-01-01
The development of a contact-free respiration monitor has a broad range of clinical applications in the home and hospital setting. Current approaches suffer from a variety of problems including unreliability, low sensitivity, and high cost. This work describes a novel approach to contact-free respiration monitoring that addresses these shortcomings by employing a highly sensitive capacitance sensor to detect variations in capacitive coupling caused by breathing. A prototype system consisting of a synthetic-metallic pad, sensor electronics, and iPhone interface was built and its performance compared experimentally to the gold standard technique (Respiratory Inductance Plethysmography) on both a healthy volunteer and SimMan robotic mannequin. The prototype sensor effectively captured respiratory movements over breathing rates of 5-55 bpm; achieving an average spectral correlation of 0.88 (CI: 0.86-0.90) and 0.95 (CI: 0.95-0.96) to the gold standard using the SimMan and healthy volunteer respectively.
Dark-cycle monitoring of biological subjects on Space Station Freedom
NASA Technical Reports Server (NTRS)
Chuang, Sherry; Mian, Arshad
1992-01-01
The operational environment for biological research on Space Station Freedom will incorporate video technology for monitoring plant and animal subjects. The video coverage must include dark-cycle monitoring because early experiments will use rodents that are nocturnal and therefore most active during the dark part of the daily cycle. Scientific requirements for monitoring during the dark cycle are exacting. Infrared (IR) or near-IR sensors are required. The trade-offs between these two types of sensors are based on engineering constraints, sensitivity spectra, and the quality of imagery possible from each type. This paper presents results of a study conducted by the Biological Flight Research Projects Office in conjunction with the Spacecraft Data Systems Branch at ARC to investigate the use of charged-coupled-device and IR cameras to meet the scientific requirements. Also examined is the effect of low levels of near-IR illumination on the circadian rhythm in rats.
Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi
2011-01-01
This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room. 2011 © The Japan Society for Analytical Chemistry
2000-04-01
be an extension of Utah’s nascent Quarks system, oriented to closely coupled cluster environments. However, the grant did not actually begin until... Intel x86, implemented ten virtual machine monitors and servers, including a virtual memory manager, a checkpointer, a process manager, a file server...Fluke, we developed a novel hierarchical processor scheduling frame- work called CPU inheritance scheduling [5]. This is a framework for scheduling
Optical Readout System for Bi-Material Terahertz Sensors
2011-09-01
CCD Charged-Coupled Device DFG Difference-Frequency Generation FOV Field of View FPA Focal Plane Array fps Frames Per Second FTIR Fourier ...techniques in the THz range may be classified as either coherent or incoherent. Basically, coherent detection measures the amplitude and phase of the field...using a lock-in amplifier. In a piezoresistive detector, two electrodes are connected to two deformable temperature–sensitive legs. Monitoring the
Nonlinear dynamics and health monitoring of 6-DOF breathing cracked Jeffcott rotor
NASA Astrophysics Data System (ADS)
Zhao, Jie; DeSmidt, Hans; Yao, Wei
2015-04-01
Jeffcott rotor is employed to study the nonlinear vibration characteristics of breathing cracked rotor system and explore the possibility of further damage identification. This paper is an extension work of prior study based on 4 degree-of-freedom Jeffcott rotor system. With consideration of disk tilting and gyroscopic effect, 6-dof EOM is derived and the crack model is established using SERR (strain energy release rate) in facture mechanics. Same as the prior work, the damaged stiffness matrix is updated by computing the instant crack closure line through Zero Stress Intensity Factor method. The breathing crack area is taken as a variable to analyze the breathing behavior in terms of eccentricity phase and shaft speed. Furthermore, the coupled vibration among lateral, torsional and longitudinal d.o.f is studied under torsional/axial excitation. The final part demonstrates the possibility of using vibration signal of damaged system for the crack diagnosis and health monitoring.
Management of atmospheric pollutants from waste incineration processes: the case of Bozen.
Ragazzi, Marco; Tirler, Werner; Angelucci, Giulio; Zardi, Dino; Rada, Elena Cristina
2013-03-01
This article presents the case study of a waste incinerator located in a region rich in natural and environmental resources, and close to the city of Bozen, where there are about 100,000 inhabitants. Local authorities paid special attention to the effect of the plant on human health and the surrounding environment. Indeed, among the measures adopted to control the emissions, in 2003 an automatic sampling system was installed specifically to monitor polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emissions during the complete operation time of the plant. The continuous sampling system was coupled directly to aerosol spectrometers for the determination of fine and ultra-fine particles in the emissions of the plant. The measurement results suggest that the waste incineration plant of Bozen is not a significant source of PCDD/F, or fine and ultra-fine particles. Immission measurements from other monitoring systems confirmed these results.
Application of active magnetic bearings in flexible rotordynamic systems - A state-of-the-art review
NASA Astrophysics Data System (ADS)
Siva Srinivas, R.; Tiwari, R.; Kannababu, Ch.
2018-06-01
In this paper a critical review of literature on applications of Active Magnetic Bearings (AMBs) systems in flexible rotordynamic systems have been presented. AMBs find various applications in rotating machinery; however, this paper mainly focuses on works in vibration suppression and associated with the condition monitoring using AMBs. It briefly introduces reader to the AMB working principle, provides details of various hardware components of a typical rotor-AMB test rig, and presents a background of traditional methods of vibration suppression in flexible rotors and the condition monitoring. It then moves on to summarize the basic features of AMB integrated flexible rotor test rigs available in literature with necessary instrumentation and its main objectives. A couple of lookup tables provide summary of important information of test rigs in papers within the scope of this article. Finally, future directions in AMB research within the paper's scope have been suggested.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Phan, T.; Smith, R. E.
1979-01-01
The paper examines the coupling between the ionosphere and the troposphere during time periods with isolated tornadoes on the stormy day of November 20, 1973. Observations are made with a high-frequency CW Doppler array system, in which radio receivers located at a central site monitored signals transmitted from three independent remote sites on three sets of frequencies (4.0125, 4.759, 5.734 MHz) and reflected off the ionosphere approximately halfway between the transmitter and receiver sites. It is shown that the sources of the gravity waves associated with tornadoes are always on the squall lines and near the tornado touchdown locations, and that analyses of ionospheric Doppler sounder observations of medium-scale gravity waves can contribute to the understanding of the coupling between the ionosphere and the troposphere during periods of severe storm activity.
NASA Astrophysics Data System (ADS)
Travis, B. J.; Sauer, J.; Dubey, M. K.
2017-12-01
Methane (CH4) leaks from oil and gas production fields are a potentially significant source of atmospheric methane. US DOE's ARPA-E office is supporting research to locate methane emissions at 10 m size well pads to within 1 m. A team led by Aeris Technologies, and that includes LANL, Planetary Science Institute and Rice University has developed an autonomous leak detection system (LDS) employing a compact laser absorption methane sensor, a sonic anemometer and multiport sampling. The LDS system analyzes monitoring data using a convolutional neural network (cNN) to locate and quantify CH4 emissions. The cNN was trained using three sources: (1) ultra-high-resolution simulations of methane transport provided by LANL's coupled atmospheric transport model HIGRAD, for numerous controlled methane release scenarios and methane sampling configurations under variable atmospheric conditions, (2) Field tests at the METEC site in Ft. Collins, CO., and (3) Field data from other sites where point-source surface methane releases were monitored downwind. A cNN learning algorithm is well suited to problems in which the training and observed data are noisy, or correspond to complex sensor data as is typical of meteorological and sensor data over a well pad. Recent studies with our cNN emphasize the importance of tracking wind speeds and directions at fine resolution ( 1 second), and accounting for variations in background CH4 levels. A few cases illustrate the importance of sufficiently long monitoring; short monitoring may not provide enough information to determine accurately a leak location or strength, mainly because of short-term unfavorable wind directions and choice of sampling configuration. Length of multiport duty cycle sampling and sample line flush time as well as number and placement of monitoring sensors can significantly impact ability to locate and quantify leaks. Source location error at less than 10% requires about 30 or more training cases.
Data for development in health: a case study and monitoring framework from Kazakhstan
Obermann, Konrad; Chanturidze, Tata; Richardson, Erica; Tanirbergenov, Serik; Shoranov, Marat; Nurgozhaev, Ali
2016-01-01
Healthcare reforms are often not coupled with a relevant and appropriate monitoring framework, leaving policymakers and the public without evidence about the implications of such reforms. Kazakhstan has embarked on a large-scale reform of its healthcare system in order to achieve Universal Health Coverage. The health-related 2020 Strategic Development Goals reflect this political ambition. In a case-study approach and on the basis of published and unpublished evidence as well as personal involvement and experience (A) the indicators in the 2020 Strategic Development Goals were assessed and (B) a ‘data-mapping’ exercise was conducted, where the WHO health system framework was used to describe the data available at present in Kazakhstan and comment on the different indicators regarding their usefulness for monitoring the current health-related 2020 Strategic Development Goals in Kazakhstan. It was concluded that the country’s current monitoring framework needs further development to track the progress and outcomes of policy implementation. The application of a modified WHO/World Bank/Global Fund health system monitoring framework was suggested to examine the implications of recent health sector reforms. Lessons drawn from the Kazakhstan experience on tailoring the suggested framework, collecting the data, and using the generated intelligence in policy development and decision-making can serve as a useful example for other middle-income countries, potentially enabling them to fast-track developments in the health sector. PMID:28588905
Development of an all-in-one gamma camera/CCD system for safeguard verification
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo
2014-12-01
For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.
Intelligent instrumentation applied in environment management
NASA Astrophysics Data System (ADS)
Magheti, Mihnea I.; Walsh, Patrick; Delassus, Patrick
2005-06-01
The use of information and communications technology in environment management and research has witnessed a renaissance in recent years. From optical sensor technology, expert systems, GIS and communications technologies to computer aided harvesting and yield prediction, these systems are increasable used for applications developing in the management sector of natural resources and biodiversity. This paper presents an environmental decision support system, used to monitor biodiversity and present a risk rating for the invasion of pests into the particular systems being examined. This system will utilise expert mobile technology coupled with artificial intelligence and predictive modelling, and will emphasize the potential for expansion into many areas of intelligent remote sensing and computer aided decision-making for environment management or certification. Monitoring and prediction in natural systems, harnessing the potential of computing and communication technologies is an emerging technology within the area of environmental management. This research will lead to the initiation of a hardware and software multi tier decision support system for environment management allowing an evaluation of areas for biodiversity or areas at risk from invasive species, based upon environmental factors/systems.
Wireless sensor systems and methods, and methods of monitoring structures
Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.
2007-02-20
A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.
An improved sample loading technique for cellular metabolic response monitoring under pressure
NASA Astrophysics Data System (ADS)
Gikunda, Millicent Nkirote
To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.
Review on developments in fiber optical sensors and applications
NASA Astrophysics Data System (ADS)
Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav
2010-04-01
The last couple of decades had witnessed a rise in the research of optoelectronic and fiber optical communication fields, which resulted in applications focused initially in military and aerospace equipments, and later in health monitoring for medicine, heritage culture and various engineering fields. The monitoring of existing or /and new engineering, biomedical structures has become a regular feature throughout the world. Monitoring is fast emerging as a pioneering field with high precision and quality equipments. This field is very vast, consisting of both traditional as well as smart materials based methods. The fiber optics belong to the finest class of smart materials, there are many types and classifications based on the necessity, manufacturer and the end user. In this paper, a complete over view of fiber sensing systems and their usefulness is briefly presented.
Remote sensing of a coupled carbon-water-energy-radiation balances from the Globe to plot scales
NASA Astrophysics Data System (ADS)
Ryu, Y.; Jiang, C.; Huang, Y.; Kim, J.; Hwang, Y.; Kimm, H.; Kim, S.
2016-12-01
Advancements in near-surface and satellite remote sensing technologies have enabled us to monitor the global terrestrial ecosystems at multiple spatial and temporal scales. An emergent challenge is how to formulate a coupled water, carbon, energy, radiation, and nitrogen cycles from remote sensing. Here, we report Breathing Earth System Simulator (BESS), which coupled radiation (shortwave, longwave, PAR, diffuse PAR), carbon (gross primary productivity, ecosystem respiration, net ecosystem exchange), water (evaporation), and energy (latent and sensible heat) balances across the global land at 1 km resolution, 8 daily between 2000 and 2015 using multiple satellite remote sensing. The performance of BESS was tested against field observations (FLUXNET, BSRN) and other independent products (MPI-BGC, MODIS, GLASS). We found that the coupled model, BESS showed on par with, or better performance than the other products which computed land surface fluxes individually. Lastly, we show one plot-level study conducted in a paddy rice to demonstrate how to couple radiation, carbon, water, nitrogen balances with a series of near-surface spectral sensors.
Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua
Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.
2008-01-01
Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.
Aguilar-Raab, Corina; Grevenstein, Dennis; Gotthardt, Linda; Jarczok, Marc N; Hunger, Christina; Ditzen, Beate; Schweitzer, Jochen
2018-06-01
We examine the sensitivity to change in the Evaluation of Social Systems (EVOS) scale, which assesses relationship quality and collective efficacy. In Study 1 we conducted a waitlist-control, short-term couple therapy RCT study (N = 43 couples) with five systemic therapy sessions treating communication and partnership problems; our intent was to provide high external validity. Construct validity of EVOS was assessed by comparison with additionally applied scales (Family Scales; Outcome Questionnaire, OQ-45.2). In Study 2, N = 332 individuals completed an experiment with high internal validity in order to verify sensitivity to change in three different social contexts. Results from Study 1 revealed a significant increase in relationship quality in the treatment group directly after treatment, as compared to the control group. Sensitivity to change was slightly better for EVOS than for other measures. While this positive change could not be fully sustained between posttreatment and a 4-week follow-up, EVOS score did not fall below baseline and pretreatment levels, supporting moderate-to-large sensitivity to change. Study 2 supported high sensitivity to change in EVOS for couple relations, family relations, and work-team relationships. Therefore, EVOS can be used as an outcome measure to monitor the process of systemic interventions focusing on relationship quality and collective efficacy. Due to its sensitivity to change, EVOS can provide evidence for treatment success with regard to relationship aspects. © 2017 Family Process Institute.
NASA Astrophysics Data System (ADS)
Huynh, Thanh-Canh; Kim, Jeong-Tae
2017-12-01
In this study, the quantification of temperature effect on impedance monitoring via a PZT interface for prestressed tendon-anchorage is presented. Firstly, a PZT interface-based impedance monitoring technique is selected to monitor impedance signatures by predetermining sensitive frequency bands. An analytical model is designed to represent coupled dynamic responses of the PZT interface-tendon anchorage system. Secondly, experiments on a lab-scaled tendon anchorage are described. Impedance signatures are measured via the PZT interface for a series of temperature and prestress-force changes. Thirdly, temperature effects on measured impedance responses of the tendon anchorage are estimated by quantifying relative changes in impedance features (such as RMSD and CCD indices) induced by temperature variation and prestress-force change. Finally, finite element analyses are conducted to investigate the mechanism of temperature variation and prestress-loss effects on the impedance responses of prestressed tendon anchorage. Temperature effects on impedance monitoring are filtered by effective frequency shift-based algorithm for distinguishing prestress-loss effects on impedance signatures.
Passive in-home health and wellness monitoring: overview, value and examples.
Alwan, Majd
2009-01-01
Modern sensor and communication technology, coupled with advances in data analysis and artificial intelligence techniques, is causing a paradigm shift in remote management and monitoring of chronic disease. In-home monitoring technology brings the added benefit of measuring individualized health status and reporting it to the care provider and caregivers alike, allowing timely and targeted preventive interventions, even in home and community based settings. This paper presents a paradigm for geriatric care based on monitoring older adults passively in their own living settings through placing sensors in their living environments or the objects they use. Activity and physiological data can be analyzed, archived and mined to detect indicators of early disease onset or changes in health conditions at various levels. Examples of monitoring systems are discussed and results from field evaluation pilot studies are summarized. The approach has shown great promise for a significant value proposition to all the stakeholders involved in caring for older adults. The paradigm would allow care providers to extend their services into the communities they serve.
NASA Astrophysics Data System (ADS)
Xiao, Zhili; Tan, Chao; Dong, Feng
2017-08-01
Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.
Method and apparatus for monitoring the power of a laser beam
Paris, R.D.; Hackel, R.P.
1996-02-06
A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.
Method and apparatus for monitoring the power of a laser beam
Paris, Robert D.; Hackel, Richard P.
1996-01-01
A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.
Synchronization of Coupled Mechanical Oscillators
NASA Astrophysics Data System (ADS)
Kennedy, Linda; Andereck, Barbara
2007-10-01
The Kuramoto model is used to describe synchronization of non-linear oscillators in biological, chemical, and physics systems. Using identical metronomes with similar frequencies on a movable platform, as per J. Pantaleone Am. J. Phys. 70, 992 (2002), we hope to realize a mechanical example of this model. A variety of materials were used for the movable platforms that coupled the metronomes. Platforms were either allowed to roll on cylindrical supports or suspended in pendulum fashion from the ceiling. Metronomes were started out of phase and allowed to synchronize. Measurements by PASCO photogates monitored by a LabView program were used to determine the phase difference between the two metronomes as a function of time. The dynamics of the metronome coupling was described by two second-order differential equations involving four key parameters: platform coupling, oscillation angle, damping/driving strength, and intrinsic frequency difference. Outstanding agreement between theory and experiment was achieved when the vertical motion of the platform and metronomes was included in the governing equations.
Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping
2014-01-31
Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.
Shoe-Insole Technology for Injury Prevention in Walking
Nagano, Hanatsu
2018-01-01
Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i) ankle joint support for falls prevention; (ii) shock absorption by utilising lower-resilience materials at the heel; (iii) improving reaction speed by stimulating cutaneous receptors; and (iv) preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS) could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics. PMID:29738486
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong (Inventor); Herath, Jeffrey A. (Inventor)
2010-01-01
An integrated system mitigates the effects of a single event upset (SEU) on a reprogrammable field programmable gate array (RFPGA). The system includes (i) a RFPGA having an internal configuration memory, and (ii) a memory for storing a configuration associated with the RFPGA. Logic circuitry programmed into the RFPGA and coupled to the memory reloads a portion of the configuration from the memory into the RFPGA's internal configuration memory at predetermined times. Additional SEU mitigation can be provided by logic circuitry on the RFPGA that monitors and maintains synchronized operation of the RFPGA's digital clock managers.
Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source
NASA Technical Reports Server (NTRS)
Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.
2013-01-01
The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.
Coupled Responses of Sewol, Twin Barges and Slings During Salvage
NASA Astrophysics Data System (ADS)
Yao, Zong; Wang, Wei-ping; Jiang, Yan; Chen, Shi-hai
2018-04-01
Korean Sewol is successfully lifted up with the strand jack system based on twin barges. During the salvage operation, two barges and Sewol encounter offshore environmental conditions of wave, current and wind. It is inevitable that the relative motions among the three bodies are coupled with the sling tensions, which may cause big dynamic loads for the lifting system. During the project engineering phase and the site operation, it is necessary to build up a simulation model that can precisely generate the coupled responses in order to define a suitable weather window and monitor risks for the salvage operation. A special method for calculating multibody coupled responses is introduced into Sewol salvage project. Each body's hydrodynamic force and moment in multibody configuration is calculated in the way that one body is treated as freely moving in space, while other bodies are set as fixed globally. The hydrodynamic force and moment are then applied into a numerical simulation model with some calibration coefficients being inserted. These coefficients are calibrated with the model test results. The simulation model built up this way can predict coupled responses with the similar accuracy as the model test and full scale measurement, and particularly generate multibody shielding effects. Site measured responses and the responses only resulted from from the simulation keep project management simultaneously to judge risks of each salvage stage, which are important for success of Sewol salvage.
Rovero, Francesco; Ahumada, Jorge
2017-01-01
While there are well established early warning systems for a number of natural phenomena (e.g. earthquakes, catastrophic fires, tsunamis), we do not have an early warning system for biodiversity. Yet, we are losing species at an unprecedented rate, and this especially occurs in tropical rainforests, the biologically richest but most eroded biome on earth. Unfortunately, there is a chronic gap in standardized and pan-tropical data in tropical forests, affecting our capacity to monitor changes and anticipate future scenarios. The Tropical Ecology, Assessment and Monitoring (TEAM) Network was established to contribute addressing this issue, as it generates real time data to monitor long-term trends in tropical biodiversity and guide conservation practice. We present the Network and focus primarily on the Terrestrial Vertebrates protocol, that uses systematic camera trapping to detect forest mammals and birds, and secondarily on the Zone of Interaction protocol, that measures changes in the anthroposphere around the core monitoring area. With over 3 million images so far recorded, and managed using advanced information technology, TEAM has created the most important data set on tropical forest mammals globally. We provide examples of site-specific and global analyses that, combined with data on anthropogenic disturbance collected in the larger ecosystem where monitoring sites are, allowed us to understand the drivers of changes of target species and communities in space and time. We discuss the potential of this system as a candidate model towards setting up an early warning system that can effectively anticipate changes in coupled human-natural system, trigger management actions, and hence decrease the gap between research and management responses. In turn, TEAM produces robust biodiversity indicators that meet the requirements set by global policies such as the Aichi Biodiversity Targets. Standardization in data collection and public sharing of data in near real time are essential features of such system. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, W; Feltus, A; Witkowski, A; Daunert, S
1996-05-01
A homogeneous bioluminescence competitive binding assay for folate was developed by using a coupled enzyme system of glucose-6-phosphate dehydrogenase (G6PDH) and bacterial luciferase. A highly substituted G6PDH-folate conjugate was prepared by employing an N-hydroxysuccinimide/carbodiimide method. Folate binding protein inhibits the activity of the conjugate. In the presence of folate, there is a competition between folate and the G6PDH-folate conjugate for the binding site of the folate binding protein, and the activity of the conjugate is recovered. Thus, the concentration of folate can be related to the activity of the G6PDH-folate conjugate, which is directly related to the bioluminescence produced by the coupled enzyme reaction. Using this assay, dose-response curves with a detection limit of 2.5 x 10(-8) M folate were obtained, which is an improvement of an order of magnitude with respect to an assay that monitors G6PDH activity spectrophotometrically. The assay was validated using vitamin tablets and a cell culture medium.
Cooperative solutions coupling a geometry engine and adaptive solver codes
NASA Technical Reports Server (NTRS)
Dickens, Thomas P.
1995-01-01
Follow-on work has progressed in using Aero Grid and Paneling System (AGPS), a geometry and visualization system, as a dynamic real time geometry monitor, manipulator, and interrogator for other codes. In particular, AGPS has been successfully coupled with adaptive flow solvers which iterate, refining the grid in areas of interest, and continuing on to a solution. With the coupling to the geometry engine, the new grids represent the actual geometry much more accurately since they are derived directly from the geometry and do not use refits to the first-cut grids. Additional work has been done with design runs where the geometric shape is modified to achieve a desired result. Various constraints are used to point the solution in a reasonable direction which also more closely satisfies the desired results. Concepts and techniques are presented, as well as examples of sample case studies. Issues such as distributed operation of the cooperative codes versus running all codes locally and pre-calculation for performance are discussed. Future directions are considered which will build on these techniques in light of changing computer environments.
Demagnetization monitoring and life extending control for permanent magnet-driven traction systems
NASA Astrophysics Data System (ADS)
Niu, Gang; Liu, Senyi
2018-03-01
This paper presents a novel scheme of demagnetization monitoring and life extending control for traction systems driven by permanent magnet synchronous motors (PMSMs). Firstly, the offline training is carried to evaluate fatigue damage of insulated gate bipolar transistors (IGBTs) under different flux loss based on first-principle modeling. Then an optimal control law can be extracted by turning down the power distribution factor of the demagnetizing PMSM until all damages of IGBTs turn to balance. Next, the similarity-based empirical modeling is employed to online estimate remaining flux of PMSMs, which is used to update the power distribution factor by referring the optimal control law for the health-oriented autonomous control. The proposed strategy can be demonstrated by a case study of traction drive system coupled with dual-PMSMs. Compared with traditional control strategy, the results show that the novel scheme can not only guarantee traction performance but also extend remaining useful life (RUL) of the system after suffering demagnetization fault.
Smoothed quantum-classical states in time-irreversible hybrid dynamics
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2017-09-01
We consider a quantum system continuously monitored in time which in turn is coupled to an arbitrary dissipative classical system (diagonal reduced density matrix). The quantum and classical dynamics can modify each other, being described by an arbitrary time-irreversible hybrid Lindblad equation. Given a measurement trajectory, a conditional bipartite stochastic state can be inferred by taking into account all previous recording information (filtering). Here, we demonstrate that the joint quantum-classical state can also be inferred by taking into account both past and future measurement results (smoothing). The smoothed hybrid state is estimated without involving information from unobserved measurement channels. Its average over recording realizations recovers the joint time-irreversible behavior. As an application we consider a fluorescent system monitored by an inefficient photon detector. This feature is taken into account through a fictitious classical two-level system. The average purity of the smoothed quantum state increases over that of the (mixed) state obtained from the standard quantum jump approach.
López, S Herrera; Ulaszewska, M M; Hernando, M D; Martínez Bueno, M J; Gómez, M J; Fernández-Alba, A R
2014-11-01
This study describes a comprehensive strategy for detecting and elucidating the chemical structures of expected and unexpected transformation products (TPs) from chemicals found in river water and effluent wastewater samples, using liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight mass spectrometer (LC-ESI-QTOF-MS), with post-acquisition data processing and an automated search using an in-house database. The efficacy of the mass defect filtering (MDF) approach to screen metabolites from common biotransformation pathways was tested, and it was shown to be sufficiently sensitive and applicable for detecting metabolites in environmental samples. Four omeprazole metabolites and two venlafaxine metabolites were identified in river water samples. This paper reports the analytical results obtained during 2 years of monitoring, carried out at eight sampling points along the Henares River (Spain). Multiresidue monitoring, for targeted analysis, includes a group of 122 chemicals, amongst which are pharmaceuticals, personal care products, pesticides and PAHs. For this purpose, two analytical methods were used based on direct injection with a LC-ESI-QTOF-MS system and stir bar sorptive extraction (SBSE) with bi-dimensional gas chromatography coupled with a time-of-flight spectrometer (GCxGC-EI-TOF-MS).
Motion Artifact Quantification and Sensor Fusion for Unobtrusive Health Monitoring.
Hoog Antink, Christoph; Schulz, Florian; Leonhardt, Steffen; Walter, Marian
2017-12-25
Sensors integrated into objects of everyday life potentially allow unobtrusive health monitoring at home. However, since the coupling of sensors and subject is not as well-defined as compared to a clinical setting, the signal quality is much more variable and can be disturbed significantly by motion artifacts. One way of tackling this challenge is the combined evaluation of multiple channels via sensor fusion. For robust and accurate sensor fusion, analyzing the influence of motion on different modalities is crucial. In this work, a multimodal sensor setup integrated into an armchair is presented that combines capacitively coupled electrocardiography, reflective photoplethysmography, two high-frequency impedance sensors and two types of ballistocardiography sensors. To quantify motion artifacts, a motion protocol performed by healthy volunteers is recorded with a motion capture system, and reference sensors perform cardiorespiratory monitoring. The shape-based signal-to-noise ratio SNR S is introduced and used to quantify the effect on motion on different sensing modalities. Based on this analysis, an optimal combination of sensors and fusion methodology is developed and evaluated. Using the proposed approach, beat-to-beat heart-rate is estimated with a coverage of 99.5% and a mean absolute error of 7.9 ms on 425 min of data from seven volunteers in a proof-of-concept measurement scenario.
Standing Naval Forces and Global Security
1993-06-04
standards an- good engineering practices. The team submits a r:-,cr: to !PPC recommending that the prcject be accepted b NATO. 8. Audit . The...established. A system of common funds and trailing audits must be in effect to pay for the infrastructure. NATO infrastructure appears to be a good example to...Search And Rescue and maritime safety monitor marine polution 6. sharing maritime inteiiigence1 5 Commodore Bateman foresees coupling these activities or
Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saroop, Sudesh
1999-09-01
Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.
NASA Astrophysics Data System (ADS)
Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic
2014-05-01
Aging of transport infrastructures combined with traffic and climatic solicitations contribute to the reduction of their performances. To address and quantify the resilience of civil engineering structure, investigations on robust, fast and efficient methods are required. Among research works carried out at IFSTTAR, methods for long term monitoring face an increasing demand. Such works take benefits of this last decade technological progresses in ICT domain. The present study follows the ISTIMES European project [1], which aimed at demonstrate the ability of different electromagnetic sensing techniques, processing methods and ICT architecture, to be used for long term monitoring of critical transport infrastructures. Thanks to this project a multi-sensing techniques system, able to date and synchronize measurements carried out by infrared thermography coupled with various measurements data (i.e. weather parameters), have been designed, developed and implemented on real site [2]. Among experiments carried out on real transport infrastructure, it has been shown, for the "Musmesci" bridge deck (Italy), that by using infrared thermal image sequence with weather measurements during sevral days it was possible to develop analysis methods able to produce qualitative and quantitative data [3]. In the present study, added functionalities were designed and added to the "IrLAW" system in order to reach full autonomy in term of power supply, very long term measurement capability (at least 1 year) and automated data base feeding. The surveyed civil engineering structures consist in two concrete beams of 16 m long and 21 T weight each. One of the two beams was damage by high energy mechanical impact at the IFSTTAR falling rocks test station facilities located in the French Alpes [4]. The system is composed of one IR uncooled microbolometric camera (FLIR SC325) with a 320X240 Focal Plane Array detector in band III, a weather station VAISALA WXT520, a GPS, a failover power supply and a backup system. All the components of the system are connected to the IrLaW software through an IP network. The monitoring system is fully autonomous since August 2013 and provides data at 0. Hz sampling frequency. First results obtained by data post-processing is addressed. Finally, discussion on experimental feedback and main outcomes of several month of measurement in outdoor conditions will be presented. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, R. Averty ".Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", in Proc of 11th International Conference on Quantitative InfraRed Thermography, Naples Italy, 2012. [3]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [4]I. Catapano, R. Di Napoli, F. Soldovieri1, M. Bavusi, A. Loperte and J. Dumoulin, "Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site", Journal of Geophysics and Engineering, Volume 9, Number 4, August 2012, pp 100-107, IOP Science, doi:10.1088/1742-2132/9/4/S100.
Control of interaction strength in a network of the true slime mold by a microfabricated structure.
Takamatsu, A; Fujii, T; Endo, I
2000-02-01
The plasmodium of the true slime mold, Physarum polycephalum, which shows various nonlinear oscillatory phenomena, for example, in its thickness, protoplasmic streaming and concentration of intracellular chemicals, can be regarded as a collective of nonlinear oscillators. The plasmodial oscillators are interconnected by microscale tubes whose dimensions can be closely related to the strength of interaction between the oscillators. Investigation of the collective behavior of the oscillators under the conditions in which the interaction strength can be systematically controlled gives significant information on the characteristics of the system. In this study, we proposed a living model system of a coupled oscillator system in the Physarum plasmodium. We patterned the geometry and dimensions of the microscale tube structure in the plasmodium by a microfabricated structure (microstructure). As the first step, we constructed a two-oscillator system for the plasmodium that has two wells (oscillator part) and a channel (coupling part). We investigated the oscillation behavior by monitoring the thickness oscillation of the plasmodium in the microstructure with various channel widths. It was found that the oscillation behavior of two oscillators dynamically changed depending on the channel width. Based on the results of measurements of the tube dimensions and the velocity of the protoplasmic streaming in the tube, we discuss how the channel width relates to the interaction strength of the coupled oscillator system.
THE NEAR-EQUILIBRIUM OF MICROBIALLY MEDIATED REDOX COUPLES IN REDUCING GROUNDWATER ENVIRONMENTS
Redox couples are commonly held to be in disequilibrium among each other in most natural waters. To evaluate this view for microbially mediated, reducing, groundwater environments, monitoring data were examined for several couples under conditions ranging from nitrate-detectable...
Position estimation of transceivers in communication networks
Kent, Claudia A [Pleasanton, CA; Dowla, Farid [Castro Valley, CA
2008-06-03
This invention provides a system and method using wireless communication interfaces coupled with statistical processing of time-of-flight data to locate by position estimation unknown wireless receivers. Such an invention can be applied in sensor network applications, such as environmental monitoring of water in the soil or chemicals in the air where the position of the network nodes is deemed critical. Moreover, the present invention can be arranged to operate in areas where a Global Positioning System (GPS) is not available, such as inside buildings, caves, and tunnels.
NASA Astrophysics Data System (ADS)
Peña, M.; Saha, S.; Wu, X.; Wang, J.; Tripp, P.; Moorthi, S.; Bhattacharjee, P.
2016-12-01
The next version of the operational Climate Forecast System (version 3, CFSv3) will be a fully coupled six-components system with diverse applications to earth system modeling, including weather and climate predictions. This system will couple the earth's atmosphere, land, ocean, sea-ice, waves and aerosols for both data assimilation and modeling. It will also use the NOAA Environmental Modeling System (NEMS) software super structure to couple these components. The CFSv3 is part of the next Unified Global Coupled System (UGCS), which will unify the global prediction systems that are now operational at NCEP. The UGCS is being developed through the efforts of dedicated research and engineering teams and through coordination across many CPO/MAPP and NGGPS groups. During this development phase, the UGCS is being tested for seasonal purposes and undergoes frequent revisions. Each new revision is evaluated to quickly discover, isolate and solve problems that negatively impact its performance. In the UGCS-seasonal model, components (e.g., ocean, sea-ice, atmosphere, etc.) are coupled through a NEMS-based "mediator". In this numerical infrastructure, model diagnostics and forecast validation are carried out, both component by component, and as a whole. The next stage, model optimization, will require enhanced performance diagnostics tools to help prioritize areas of numerical improvements. After the technical development of the UGCS-seasonal is completed, it will become the first realization of the CFSv3. All future development of this system will be carried out by the climate team at NCEP, in scientific collaboration with the groups that developed the individual components, as well as the climate community. A unique challenge to evaluate this unified weather-climate system is the large number of variables, which evolve over a wide range of temporal and spatial scales. A small set of performance measures and scorecard displays are been created, and collaboration and software contributions from research and operational centers are being incorporated. A status of the CFSv3/UGCS-seasonal development and examples of its performance and measuring tools will be presented.
Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor
NASA Astrophysics Data System (ADS)
O'Kelly, David Sean
Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, M.S.; Bostick, W.D.; Dinsmore, S.R.
1978-08-01
We describe a new concept in continuously referenced monitoring of the isoenzyme activities of creatine kinase (EC 2.7.3.2) after liquid-chromatographic separation. After separation on a diethylaminoethyl-Sephacel column, the three isoenzymes of creatine kinase undergo a series of coupled enzyme reactions, ultimately resulting in the formation of ultraviolet-detectable NADPH. A major advantage of this detection system is the immobilized-enzyme microreactor (2 x 17 mm), which may be removed and stored refrigerated when not in use. A split-stream configuration allows self-blanking of endogenous ultraviolet-absorbing constituents in authentic sera samples, which would otherwise make definitive diagnosis and quantitation difficult or impossible. This detectionmore » system is applicable to the automated analysis of creatine kinase isoenzymes in the clinical laboratory.« less
Ryan, M.J.
1987-05-04
A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.
Anomaly-based intrusion detection for SCADA systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, D.; Usynin, A.; Hines, J. W.
2006-07-01
Most critical infrastructure such as chemical processing plants, electrical generation and distribution networks, and gas distribution is monitored and controlled by Supervisory Control and Data Acquisition Systems (SCADA. These systems have been the focus of increased security and there are concerns that they could be the target of international terrorists. With the constantly growing number of internet related computer attacks, there is evidence that our critical infrastructure may also be vulnerable. Researchers estimate that malicious online actions may cause $75 billion at 2007. One of the interesting countermeasures for enhancing information system security is called intrusion detection. This paper willmore » briefly discuss the history of research in intrusion detection techniques and introduce the two basic detection approaches: signature detection and anomaly detection. Finally, it presents the application of techniques developed for monitoring critical process systems, such as nuclear power plants, to anomaly intrusion detection. The method uses an auto-associative kernel regression (AAKR) model coupled with the statistical probability ratio test (SPRT) and applied to a simulated SCADA system. The results show that these methods can be generally used to detect a variety of common attacks. (authors)« less
Applying Service-Oriented Architecture to Archiving Data in Control and Monitoring Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogiec, J. M.; Trombly-Freytag, K.
Current trends in the architecture of software systems focus our attention on building systems using a set of loosely coupled components, each providing a specific functionality known as service. It is not much different in control and monitoring systems, where a functionally distinct sub-system can be identified and independently designed, implemented, deployed and maintained. One functionality that renders itself perfectly to becoming a service is archiving the history of the system state. The design of such a service and our experience of using it are the topic of this article. The service is built with responsibility segregation in mind, therefore,more » it provides for reducing data processing on the data viewer side and separation of data access and modification operations. The service architecture and the details concerning its data store design are discussed. An implementation of a service client capable of archiving EPICS process variables (PV) and LabVIEW shared variables is presented. Data access tools, including a browser-based data viewer and a mobile viewer, are also presented.« less
Analytical chemistry in water quality monitoring during manned space missions
NASA Astrophysics Data System (ADS)
Artemyeva, Anastasia A.
2016-09-01
Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.
NASA Astrophysics Data System (ADS)
McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam
2015-08-01
While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.
Coupling flood forecasting and social media crowdsourcing
NASA Astrophysics Data System (ADS)
Kalas, Milan; Kliment, Tomas; Salamon, Peter
2016-04-01
Social and mainstream media monitoring is being more and more recognized as valuable source of information in disaster management and response. The information on ongoing disasters could be detected in very short time and the social media can bring additional information to traditional data feeds (ground, remote observation schemes). Probably the biggest attempt to use the social media in the crisis management was the activation of the Digital Humanitarian Network by the United Nations Office for the Coordination of Humanitarian Affairs in response to Typhoon Yolanda. The network of volunteers performing rapid needs & damage assessment by tagging reports posted to social media which were then used by machine learning classifiers as a training set to automatically identify tweets referring to both urgent needs and offers of help. In this work we will present the potential of coupling a social media streaming and news monitoring application ( GlobalFloodNews - www.globalfloodsystem.com) with a flood forecasting system (www.globalfloods.eu) and the geo-catalogue of the OGC services discovered in the Google Search Engine (WMS, WFS, WCS, etc.) to provide a full suite of information available to crisis management centers as fast as possible. In GlobalFloodNews we use advanced filtering of the real-time Twitter stream, where the relevant information is automatically extracted using natural language and signal processing techniques. The keyword filters are adjusted and optimized automatically using machine learning algorithms as new reports are added to the system. In order to refine the search results the forecasting system will be triggering an event-based search on the social media and OGC services relevant for crisis response (population distribution, critical infrastructure, hospitals etc.). The current version of the system makes use of USHAHIDI Crowdmap platform, which is designed to easily crowdsource information using multiple channels, including SMS, email, Twitter and the web we want to show the potential of monitoring floods at the global scale.
Capozzi, Vittorio; Yener, Sine; Khomenko, Iuliia; Farneti, Brian; Cappellin, Luca; Gasperi, Flavia; Scampicchio, Matteo; Biasioli, Franco
2017-05-11
Proton Transfer Reaction (PTR), combined with a Time-of-Flight (ToF) Mass Spectrometer (MS) is an analytical approach based on chemical ionization that belongs to the Direct-Injection Mass Spectrometric (DIMS) technologies. These techniques allow the rapid determination of volatile organic compounds (VOCs), assuring high sensitivity and accuracy. In general, PTR-MS requires neither sample preparation nor sample destruction, allowing real time and non-invasive analysis of samples. PTR-MS are exploited in many fields, from environmental and atmospheric chemistry to medical and biological sciences. More recently, we developed a methodology based on coupling PTR-ToF-MS with an automated sampler and tailored data analysis tools, to increase the degree of automation and, consequently, to enhance the potential of the technique. This approach allowed us to monitor bioprocesses (e.g. enzymatic oxidation, alcoholic fermentation), to screen large sample sets (e.g. different origins, entire germoplasms) and to analyze several experimental modes (e.g. different concentrations of a given ingredient, different intensities of a specific technological parameter) in terms of VOC content. Here, we report the experimental protocols exemplifying different possible applications of our methodology: i.e. the detection of VOCs released during lactic acid fermentation of yogurt (on-line bioprocess monitoring), the monitoring of VOCs associated with different apple cultivars (large-scale screening), and the in vivo study of retronasal VOC release during coffee drinking (nosespace analysis).
A compact muon tracking system for didactic and outreach activities
NASA Astrophysics Data System (ADS)
Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.
2016-07-01
We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.
NASA Astrophysics Data System (ADS)
Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca
2015-05-01
Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hechenblaikner, Gerald; Gerndt, Ruediger; Johann, Ulrich
We describe the first investigations of the complete engineering model of the optical metrology system (OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a technological precursor mission to LISA, a spaceborne gravitational wave detector. At its core, the OMS consists of four heterodyne Mach-Zehnder interferometers, a highly stable laser with an external modulator, and a phase meter. It is designed to monitor and track the longitudinal motion and attitude of two floating test masses in the optical reference frame with (relative) precision in the picometer and nanorad range, respectively. We analyze sensormore » signal correlations and determine a physical sensor noise limit. The coupling parameters between motional degrees of freedom and interferometer signals are analytically derived and compared to measurements. We also measure adverse cross-coupling effects originating from system imperfections and limitations and describe algorithmic mitigation techniques to overcome some of them. Their impact on system performance is analyzed within the context of the Pathfinder mission.« less
A new Concept for High Resolution Benthic Mapping and Data Aquisition: MANSIO-VIATOR
NASA Astrophysics Data System (ADS)
Flögel, S.
2015-12-01
Environmental conditions within sensitive seafloor ecosystems such as cold-seep provinces or cold-water coral reef communities vary temporally and spatially over a wide range of scales. Some of these are regularly monitored via short periods of intense shipborne activity or low resolution, fixed location studies by benthic lander systems. Long term measurements of larger areas and volumes are ususally coupled to costly infrastructure investments such as cabled observatories. In space exploration, a combination of fixed and mobile systems working together are commonly used, e.g. lander systems coupled to rovers, to tackle observational needs that are very similar to deep-sea data aquisition. The analogies between space and deep-sea research motivated the German Helmholtz Association to setup the joint research program ROBEX (Robotic Exploration under extreme conditions). The program objectives are to identify, develop and verify technological synergies between the robotic exploration of e.g. the moon and the deep-sea. Within ROBEX, the mobility of robots is a vital element for research missions due to valuable scientifice return potential from different sites as opposed to static landers. Within this context, we developed a new mobile crawler system (VIATOR, latin for traveller) and a fixed lander component for energy and data transfer (MANSIO, latin for housing/shelter). This innovative MANSIO-VIATOR system has been developed during the past 2.5 years. The caterpillar driven component is developed to conduct high resolution opitcal mapping and repeated monitoring of physical and biogeochemical parameters along transects. The system operates fully autonomously including navigational components such as camera and laser scanners, as well as marker based near-field navigation used in space technology. This new concept of data aquisition by a submarine crawler in combination with a fixed lander further opens up marine exploration possibilities.
An index to assess the health and benefits of the global ocean.
Halpern, Benjamin S; Longo, Catherine; Hardy, Darren; McLeod, Karen L; Samhouri, Jameal F; Katona, Steven K; Kleisner, Kristin; Lester, Sarah E; O'Leary, Jennifer; Ranelletti, Marla; Rosenberg, Andrew A; Scarborough, Courtney; Selig, Elizabeth R; Best, Benjamin D; Brumbaugh, Daniel R; Chapin, F Stuart; Crowder, Larry B; Daly, Kendra L; Doney, Scott C; Elfes, Cristiane; Fogarty, Michael J; Gaines, Steven D; Jacobsen, Kelsey I; Karrer, Leah Bunce; Leslie, Heather M; Neeley, Elizabeth; Pauly, Daniel; Polasky, Stephen; Ris, Bud; St Martin, Kevin; Stone, Gregory S; Sumaila, U Rashid; Zeller, Dirk
2012-08-30
The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human–ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human–ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36–86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research.
Post-Markovian dynamics of quantum correlations: entanglement versus discord
NASA Astrophysics Data System (ADS)
Mohammadi, Hamidreza
2017-02-01
Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.
Towards a geophysical decision-support system for monitoring and managing unstable slopes
NASA Astrophysics Data System (ADS)
Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.
2017-12-01
Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.
Action Monitoring Cortical Activity Coupled to Submovements
Sobolewski, Aleksander
2017-01-01
Numerous studies have examined neural correlates of the human brain’s action-monitoring system during experimentally segmented tasks. However, it remains unknown how such a system operates during continuous motor output when no experimental time marker is available (such as button presses or stimulus onset). We set out to investigate the electrophysiological correlates of action monitoring when hand position has to be repeatedly monitored and corrected. For this, we recorded high-density electroencephalography (EEG) during a visuomotor tracking task during which participants had to follow a target with the mouse cursor along a visible trajectory. By decomposing hand kinematics into naturally occurring periodic submovements, we found an event-related potential (ERP) time-locked to these submovements and localized in a sensorimotor cortical network comprising the supplementary motor area (SMA) and the precentral gyrus. Critically, the amplitude of the ERP correlated with the deviation of the cursor, 110 ms before the submovement. Control analyses showed that this correlation was truly due to the cursor deviation and not to differences in submovement kinematics or to the visual content of the task. The ERP closely resembled those found in response to mismatch events in typical cognitive neuroscience experiments. Our results demonstrate the existence of a cortical process in the SMA, evaluating hand position in synchrony with submovements. These findings suggest a functional role of submovements in a sensorimotor loop of periodic monitoring and correction and generalize previous results from the field of action monitoring to cases where action has to be repeatedly monitored. PMID:29071301
NASA Astrophysics Data System (ADS)
Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki
2012-10-01
A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.
NASA Astrophysics Data System (ADS)
Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barroso, Guillermo
2016-04-01
Since late 2014, the project Cloud2SM aims to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. Cloud2SM address three main goals, the management of distributed data and sensors network, the asynchronous processing of the data through network and the local management of the sensors themselves [1]. Integrated to this project Cloud2IR is an autonomous sensor system dedicated to the long term monitoring of infrastructures. Past experimentations have shown the need as well as usefulness of such system [2]. Before Cloud2IR an initially laboratory oriented system was used, which implied heavy operating system to be used [3]. Based on such system Cloud2IR has benefited of the experimental knowledge acquired to redefine a lighter architecture based on generics standards, more appropriated to autonomous operations on field and which can be later included in a wide distributed architecture such as Cloud2SM. The sensor system can be divided in two parts. The sensor side, this part is mainly composed by the various sensors drivers themselves as the infrared camera, the weather station or the pyranometers and their different fixed configurations. In our case, as infrared camera are slightly different than other kind of sensors, the system implement in addition an RTSP server which can be used to set up the FOV as well as other measurement parameter considerations. The second part can be seen as the data side, which is common to all sensors. It instantiate through a generic interface all the sensors and control the data access loop (not the requesting). This side of the system is weakly coupled (see data coupling) with the sensor side. It can be seen as a general framework able to aggregate any sensor data, type or size and automatically encapsulate them in various generic data format as HDF5 or cloud data as OGC SWE standard. This whole part is also responsible of the acquisition scenario the local storage management and the network management through SFTP or SOAP for the OGC frame. The data side only need an XML configuration file and if a configuration change occurs in time the system is automatically restarted with the new value. Cloud2IR has been deployed on field since several Monthat the SenseCity outdoor test bed in Marne La Vallée (France)[4]. The next step will be the full standardisation of the system and possibly the full separation between the sensor side and the data side which can be seen at term as an external framework. References: [1] A Crinière, J Dumoulin, L Mevel, G Andrade-Barosso, M Simonin. The Cloud2SM Project.European Geosciences Union General Assembly (EGU2015), Apr 2015, Vienne, Austria. 2015.
Multisensor Instrument for Real-Time Biological Monitoring
NASA Technical Reports Server (NTRS)
Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie
2004-01-01
The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically trapped individual particles. In addition to the multifunctionality not previously available in a single biological monitoring system, the FOBIS offers advantages of low mass, sensitivity, accuracy, portability, low cost, compactness (the overall dimensions of the fully developed FOBIS sensor head are expected to be less than 1 by 1 by 2 cm), and immunity to electromagnetic interference at suboptical frequencies. FOBIS could be useful in a variety of laboratory and field settings in such diverse endeavors as medical, veterinary, and general biological research; medical and veterinary diagnosis monitoring of industrial bioprocesses; and analysis of biological contaminants in air, water, and food.
Development of IoT-based Urban Sinkhole and Road Collapse Monitoring System
NASA Astrophysics Data System (ADS)
Jung, B.; Bang, E.; Lee, H. J.; Jeong, S. W.; Ryu, D.; Kim, S. W.; Kim, B. K.; Yum, B. W.; Lee, I. H.
2015-12-01
The consortium of Korean government-funded research institutes is developing IoT- (Internet of things) based underground safety monitoring and alerting system to manage risks arisen from land subsidence and road collapses in metropolitan areas in South Korea. The system consists of four major functional units: subsurface monitoring sensors sending data directly through the internet, centralized servers capable of collecting and processing big data, computational modules providing physical and statistical models for predicting high-risk areas, and geologic information service platforms visualizing underground safety maps for the public. The target urban area will be regionally covered by multi-sensors monitoring soil and groundwater conditions, and by high resolution satellite InSAR images filtering vertical land movements in a centimeter scale. Integrity of buried water supply and sewer lines are also monitored for the possibility of underground cavity formation. Once high-risk area is predicted, more tangible surveying methods such as ground penetrating radar (GPR) and resistivity survey can be applied for locating the cavities. Additionally, laboratory and field experiments are performed to understand overall road collapsing mechanism from the initial cavity creation to its progressive development depending on soil types, degree of compaction, and groundwater condition. Acquired results will update existing fully-coupled hydromechanical models for more accurate prediction of the collapsing-vulnerable area. Preliminary laboratory experiments show that the upward propagation of subsurface cavity is closely related to the soil properties, such as sand-clay ratios and moisture contents, and groundwater dynamics.
NASA Astrophysics Data System (ADS)
Oh, J.; Min, D.; Kim, W.; Huh, C.; Kang, S.
2012-12-01
Recently, the CCS (Carbon Capture and Storage) is one of the promising methods to reduce the CO2 emission. To evaluate the success of the CCS project, various geophysical monitoring techniques have been applied. Among them, the time-lapse seismic monitoring is one of the effective methods to investigate the migration of CO2 plume. To monitor the injected CO2 plume accurately, it is needed to interpret seismic monitoring data using not only the imaging technique but also the full waveform inversion, because subsurface material properties can be estimated through the inversion. However, previous works for interpreting seismic monitoring data are mainly based on the imaging technique. In this study, we perform the frequency-domain full waveform inversion for synthetic data obtained by the acoustic-elastic coupled modeling for the geological model made after Ulleung Basin, which is one of the CO2 storage prospects in Korea. We suppose the injection layer is located in fault-related anticlines in the Dolgorae Deformed Belt and, for more realistic situation, we contaminate the synthetic monitoring data with random noise and outliers. We perform the time-lapse full waveform inversion in two scenarios. One scenario is that the injected CO2 plume migrates within the injection layer and is stably captured. The other scenario is that the injected CO2 plume leaks through the weak part of the cap rock. Using the inverted P- and S-wave velocities and Poisson's ratio, we were able to detect the migration of the injected CO2 plume. Acknowledgment This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).
The automated counting of beating rates in individual cultured heart cells.
Collins, G A; Dower, R; Walker, M J
1981-12-01
The effect of drugs on the beating rate of cultured heart cells can be monitored in a number of ways. The simultaneous automated measurement of beating rates of a number of cells allows drug effects to be rapidly quantified. A photoresistive detector placed on a television image of a cell, when coupled to operational amplifiers, gives binary signals that can be processed by a microprocessor. On this basis, we have devised a system that is capable of simultaneously monitoring the individual beating of six single cultured heart cells. A microprocessor automatically processes data obtained under different experimental conditions and records it in suitable descriptive formats such as dose-response curves and double reciprocal plots.
Wireless communication devices and movement monitoring methods
Skorpik, James R.
2006-10-31
Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
Huang, Guoliang; Song, Fei; Wang, Xiaodong
2010-01-01
Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized.
A magnetostatic-coupling based remote query sensor for environmental monitoring
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.
1999-01-01
A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.
Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin
2012-12-21
Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.
[A capillary blood flow velocity detection system based on linear array charge-coupled devices].
Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang
2017-12-01
In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.
Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL
NASA Astrophysics Data System (ADS)
Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.
2016-02-01
A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.
NASA Astrophysics Data System (ADS)
Magu, M. M.; Govender, P. P.; Ngila, J. C.
2016-04-01
Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.
Magnetosphere-Ionosphere Coupling During a Geomagnetic Substorm on March 1, 2017
NASA Astrophysics Data System (ADS)
Coster, A. J.; Hampton, D. L.; Sazykin, S. Y.; Wolf, R.; Huba, J.; Varney, R. H.; Reimer, A.; Lynch, K. A.; Samara, M.; Michell, R.
2017-12-01
On March 1, 2017, at approximately 10 UT, magnetometers at Ft Yukon and Poker Flat in Alaska measured the classic signature of an auroral substorm: a rapid decrease in the northward component of the magnetic field. Nearby, a camera at Venetie Alaska captured intensive visual brightening of multiple auroral arcs at approximately the same time. Our data and model analysis focuses on this time period. We are taking advantage of the extensive instrumentation that was in place in Northern Alaska on this date due to the ISINGLASS rocket campaign. Although no rockets were flown on March 1, 2017, this substorm was monitored at Poker by the three-filter all-sky survey and at Venetie by three all-sky cameras running simultaneously with each filtered for a different wavelength. Our analysis includes co-incidental high precision GNSS receiver data providing total electron content (TEC) measurements during the overhead auroral arcs. The receiver at Venetie also monitored L-band scintillation. In addition, the Poker Flat Incoherent Scatter radar captured the rapid ionization enhancement in the 100-200 km region across multiple beams looking to the north of Poker. The timing of these events between the multiple sites is closely monitored, and inferences of the propagation of this event are described. The available SuperDARN data from this time period indicates this substorm happened at about the same time within the Harang discontinuity. This event presented an unprecedented opportunity to observe occurrence and development of a substorm with a combination of ground-based remote sensing instruments. To support our interpretation of the data, we present first simulations of the magnetosphere-ionosphere coupled system during a substorm with the self-consistently coupled SAMI/RCM code.
Effects-based monitoring of water quality is a proven approach to monitoring the status of a water source. Only biological material can integrate factors which dictate toxicity. Online Toxicity Monitors (OTMs) provide a means to digitize sentinel organism responses to dynamic wa...
System and Method of Locating Lightning Strikes
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)
2002-01-01
A system and method of determining locations of lightning strikes has been described. The system includes multiple receivers located around an area of interest, such as a space center or airport. Each receiver monitors both sound and electric fields. The detection of an electric field pulse and a sound wave are used to calculate an area around each receiver in which the lighting is detected. A processor is coupled to the receivers to accurately determine the location of the lighting strike. The processor can manipulate the receiver data to compensate for environmental variables such as wind, temperature, and humidity. Further, each receiver processor can discriminate between distant and local lightning strikes.
NASA Technical Reports Server (NTRS)
Richard, Jacques C.
1995-01-01
This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.
Interactive water monitoring system accessible by cordless telephone
NASA Astrophysics Data System (ADS)
Volpicelli, Richard; Andeweg, Pierre; Hagar, William G.
1985-12-01
A battery-operated, microcomputer-controlled monitoring device linked with a cordless telephone has been developed for remote measurements. This environmental sensor is self-contained and collects and processes data according to the information sent to its on-board computer system. An RCA model 1805 microprocessor forms the basic controller with a program encoded in memory for data acquisition and analysis. Signals from analog sensing devices used to monitor the environment are converted into digital signals and stored in random access memory of the microcomputer. This remote sensing system is linked to the laboratory by means of a cordless telephone whose base unit is connected to regular telephone lines. This offshore sensing system is simply accessed by a phone call originating from a computer terminal in the laboratory. Data acquisition is initiated upon request: Information continues to be processed and stored until the computer is reprogrammed by another phone call request. Information obtained may be recalled by a phone call after the desired environmental measurements are finished or while they are in progress. Data sampling parameters may be reset at any time, including in the middle of a measurement cycle. The range of the system is limited only by existing telephone grid systems and by the transmission characteristics of the cordless phone used as a communications link. This use of a cordless telephone, coupled with the on-board computer system, may be applied to other field studies requiring data transfer between an on-site analytical system and the laboratory.
A mathematical model of physiological processes and its application to the study of aging
NASA Technical Reports Server (NTRS)
Hibbs, A. R.; Walford, R. L.
1989-01-01
The behavior of a physiological system which, after displacement, returns by homeostatic mechanisms to its original condition can be described by a simple differential equation in which the "recovery time" is a parameter. Two such systems, which influence one another, can be linked mathematically by the use of "coupling" or "feedback" coefficients. These concepts are the basis for many mathematical models of physiological behavior, and we describe the general nature of such models. Next, we introduce the concept of a "fatal limit" for the displacement of a physiological system, and show how measures of such limits can be included in mathematical models. We show how the numerical values of such limits depend on the values of other system parameters, i.e., recovery times and coupling coefficients, and suggest ways of measuring all these parameters experimentally, for example by monitoring changes induced by X-irradiation. Next, we discuss age-related changes in these parameters, and show how the parameters of mortality statistics, such as the famous Gompertz parameters, can be derived from experimentally measurable changes. Concepts of onset-of-aging, critical or fatal limits, equilibrium value (homeostasis), recovery times and coupling constants are involved. Illustrations are given using published data from mouse and rat populations. We believe that this method of deriving survival patterns from model that is experimentally testable is unique.
NASA Astrophysics Data System (ADS)
Blessent, Daniela; Barco, Janet; Temgoua, André Guy Tranquille; Echeverrri-Ramirez, Oscar
2017-03-01
Numerical results are presented of surface-subsurface water modeling of a natural hillslope located in the Aburrá Valley, in the city of Medellín (Antioquia, Colombia). The integrated finite-element hydrogeological simulator HydroGeoSphere is used to conduct transient variably saturated simulations. The objective is to analyze pore-water pressure and saturation variation at shallow depths, as well as volumes of water infiltrated in the porous medium. These aspects are important in the region of study, which is highly affected by soil movements, especially during the high-rain seasons that occur twice a year. The modeling exercise considers rainfall events that occurred between October and December 2014 and a hillslope that is currently monitored because of soil instability problems. Simulation results show that rainfall temporal variability, mesh resolution, coupling length, and the conceptual model chosen to represent the heterogeneous soil, have a noticeable influence on results, particularly for high rainfall intensities. Results also indicate that surface-subsurface coupled modeling is required to avoid unrealistic increase in hydraulic heads when high rainfall intensities cause top-down saturation of soil. This work is a first effort towards fostering hydrogeological modeling expertise that may support the development of monitoring systems and early landslide warning in a country where the rainy season is often the cause of hydrogeological tragedies associated with landslides, mud flow or debris flow.
Advanced capability RFID system
Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.
2007-09-25
A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.
Saturation of the right-leg drive amplifier in low-voltage ECG monitors.
Freeman, Daniel K; Gatzke, Ronald D; Mallas, Georgios; Chen, Yu; Brouse, Chris J
2015-01-01
Electrocardiogram (ECG) monitoring is a critical tool in patient care, but its utility is often balanced with frustration from clinicians who are constantly distracted by false alarms. This has motivated the need to readdress the major factors that contribute to ECG noise with the goal of reducing false alarms. In this study, we describe a previously unreported phenomenon in which ECG noise can result from an unintended interaction between two systems: 1) the dc lead-off circuitry that is used to detect whether electrodes fall off the patient; and 2) the right-leg drive (RLD) system that is responsible for reducing ac common-mode noise that couples into the body. Using a circuit model to study this interaction, we found that in the presence of a dc lead-off system, even moderate increases in the right-leg skin-electrode resistance can cause the RLD amplifier to saturate. Such saturation can produce ECG noise because the RLD amplifier will no longer be capable of attenuating ac common-mode noise on the body. RLD saturation is particularly a problem for modern ECG monitors that use low-voltage supply levels. For example, for a 12-lead ECG and a 2 V power supply, saturation will occur when the right-leg electrode resistance reaches only 2 MΩ. We discuss several design solutions that can be used in low-voltage monitors to avoid RLD saturation.
Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling
NASA Astrophysics Data System (ADS)
Haaken, Klaus; Piero Deidda, Gian; Cassiani, Giorgio; Deiana, Rita; Putti, Mario; Paniconi, Claudio; Scudeler, Carlotta; Kemna, Andreas
2017-03-01
Saline-freshwater interaction in porous media is a phenomenon of practical interest particularly for the management of water resources in arid and semi-arid environments, where precious freshwater resources are threatened by seawater intrusion and where storage of freshwater in saline aquifers can be a viable option. Saline-freshwater interactions are controlled by physico-chemical processes that need to be accurately modeled. This in turn requires monitoring of these systems, a non-trivial task for which spatially extensive, high-resolution non-invasive techniques can provide key information. In this paper we present the field monitoring and numerical modeling components of an approach aimed at understanding complex saline-freshwater systems. The approach is applied to a freshwater injection experiment carried out in a hyper-saline aquifer near Cagliari (Sardinia, Italy). The experiment was monitored using time-lapse cross-hole electrical resistivity tomography (ERT). To investigate the flow dynamics, coupled numerical flow and transport modeling of the experiment was carried out using an advanced three-dimensional (3-D) density-driven flow-transport simulator. The simulation results were used to produce synthetic ERT inversion results to be compared against real field ERT results. This exercise demonstrates that the evolution of the freshwater bulb is strongly influenced by the system's (even mild) hydraulic heterogeneities. The example also highlights how the joint use of ERT imaging and gravity-dependent flow and transport modeling give fundamental information for this type of study.
Global and Regional Real-time Systems for Flood and Drought Monitoring and Prediction
NASA Astrophysics Data System (ADS)
Hong, Y.; Gourley, J. J.; Xue, X.; Flamig, Z.
2015-12-01
A Hydrometeorological Extreme Mapping and Prediction System (HyXtreme-MaP), initially built upon the Coupled Routing and Excess STorage (CREST) distributed hydrological model, is driven by real-time quasi-global TRMM/GPM satellites and by the US Multi-Radar Multi-Sensor (MRMS) radar network with dual-polarimetric upgrade to simulate streamflow, actual ET, soil moisture and other hydrologic variables at 1/8th degree resolution quasi-globally (http://eos.ou.edu) and at 250-meter 2.5-mintue resolution over the Continental United States (CONUS: http://flash.ou.edu). Multifaceted and collaborative by-design, this end-to-end research framework aims to not only integrate data, models, and applications but also brings people together (i.e., NOAA, NASA, University researchers, and end-users). This presentation will review the progresses, challenges and opportunities of such HyXTREME-MaP System used to monitor global floods and droughts, and also to predict flash floods over the CONUS.
Gx1-conjugated endostar nanoparticle: a new drug delivery system for anti-colorectal cancer in vivo
NASA Astrophysics Data System (ADS)
Zhang, Qian; Du, Yang; Li, Yaqian; Liang, Xiaolong; Yang, Xin; Tian, Jie
2014-03-01
In this study we describe a new theranostic nanostytem to combine those functions together. GX1, the peptide identified by phage display technology, is a tumor vasculature endothelium specific ligand. Endostar, a novel recombinant human endostatin, has been proved to inhibit tumor angiogenesis. In this study, Endostar-loaded PLA nanoparticles (EPNPs) were first prepared, and then GX1 was coupled to the surface of EPNPs for targeting therapy, last a near infrared (NIR) dye IRDye 800CW was conjugated to the surface of EPNPs for monitoring the biodistributon. This GX1-EPNPs-NIR dye IRDye 800CW (GEN) multifunction drug delivery system not only facilitates efficient delivery of chemotherapeutic agents to tumor site, while minimizing systemic toxicity and side effects, but also enables to real time monitor tumor targeting in vivo. Compare to the Endostar and EPNPs, the GEN inhibited the subcutaneous colon tumor more obviously both in tumor volume and bioluminescence imaging (BLI) light intensity during the 10 days drug treatment.
Podbreznik, Peter; Đonlagić, Denis; Lešnik, Dejan; Cigale, Boris; Zazula, Damjan
2013-10-01
A cost-efficient plastic optical fiber (POF) system for unobtrusive monitoring of human vital signs is presented. The system is based on speckle interferometry. A laser diode is butt-coupled to the POF whose exit face projects speckle patterns onto a linear optical sensor array. Sequences of acquired speckle images are transformed into one-dimensional signals by using the phase-shifting method. The signals are analyzed by band-pass filtering and a Morlet-wavelet-based multiresolutional approach for the detection of cardiac and respiratory activities, respectively. The system is tested with 10 healthy nonhospitalized persons, lying supine on a mattress with the embedded POF. Experimental results are assessed statistically: precisions of 98.8% ± 1.5% and 97.9% ± 2.3%, sensitivities of 99.4% ± 0.6% and 95.3% ± 3%, and mean delays between interferometric detections and corresponding referential signals of 116.6 ± 55.5 and 1299.2 ± 437.3 ms for the heartbeat and respiration are obtained, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gering, Kevin L.
A method, system, and computer-readable medium are described for characterizing performance loss of an object undergoing an arbitrary aging condition. Baseline aging data may be collected from the object for at least one known baseline aging condition over time, determining baseline multiple sigmoid model parameters from the baseline data, and performance loss of the object may be determined over time through multiple sigmoid model parameters associated with the object undergoing the arbitrary aging condition using a differential deviation-from-baseline approach from the baseline multiple sigmoid model parameters. The system may include an object, monitoring hardware configured to sample performance characteristics ofmore » the object, and a processor coupled to the monitoring hardware. The processor is configured to determine performance loss for the arbitrary aging condition from a comparison of the performance characteristics of the object deviating from baseline performance characteristics associated with a baseline aging condition.« less
Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A
Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.
Nanostructured plasmonic interferometers for ultrasensitive label-free biosensing
NASA Astrophysics Data System (ADS)
Gao, Yongkang
Optical biosensors that utilize surface plasmon resonance (SPR) technique to analyze the biomolecular interactions have been extensively explored in the last two decades and have become the gold standard for label-free biosensing. These powerful sensing tools allow fast, highly-sensitive monitoring of the interaction between biomolecules in real time, without the need for laborious fluorescent labeling, and have found widely ranging applications from biomedical diagnostics and drug discovery, to environmental sensing and food safety monitoring. However, the prism-coupling SPR geometry is complex and bulky, and has severely limited the integration of this technique into low-cost portable biomedical devices for point-of-care diagnostics and personal healthcare applications. Also, the complex prism-coupling scheme prevents the use of high numerical aperture (NA) optics to increase the spatial resolution for multi-channel, high-throughput detection in SPR imaging mode. This dissertation is focused on the design and fabrication of a promising new class of nanopatterned interferometric SPR sensors that integrate the strengths of miniaturized nanoplasmonic architectures with sensitive optical interferometry techniques to achieve bold advances in SPR biosensing. The nanosensor chips developed provide superior sensing performance comparable to conventional SPR systems, but employing a far simpler collinear optical transmission geometry, which largely facilitates system integration, miniaturization, and low-cost production. Moreover, the fabricated nanostructure-based SPR sensors feature a very small sensor footprint, allowing massive multiplexing on a chip for high-throughput detection. The successful transformation of SPR technique from bulky prism-coupling setup into this low-cost compact plasmonic platform would have a far-reaching impact on point-of-care diagnostic tools and also lead to advances in high-throughput sensing applications in proteomics, immunology, drug discovery, and fundamental cell biology research.
Florentin, Arnaud; Zmirou-Navier, Denis; Paris, Christophe
2017-08-01
To detect new hazards ("signals"), occupational health monitoring systems mostly rest on the description of exposures in the jobs held and on reports by medical doctors; these are subject to declarative bias. Our study aims to assess whether job-exposure matrices (JEMs) could be useful tools for signal detection by improving exposure reporting. Using the French national occupational disease surveillance and prevention network (RNV3P) data from 2001 to 2011, we explored the associations between disease and exposure prevalence for 3 well-known pathology/exposure couples and for one debatable couple. We compared the associations measured when using physicians' reports or applying the JEMs, respectively, for these selected diseases and across non-selected RNV3P population or for cases with musculoskeletal disorders, used as two reference groups; the ratio of exposure prevalences according to the two sources of information were computed for each disease category. Our population contained 58,188 subjects referred with pathologies related to work. Mean age at diagnosis was 45.8 years (95% CI 45.7; 45.9), and 57.2% were men. For experts, exposure ratios increase with knowledge on exposure causality. As expected, JEMs retrieved more exposed cases than experts (exposure ratios between 12 and 194), except for the couple silica/silicosis, but not for the MSD control group (ratio between 0.2 and 0.8). JEMs enhanced the number of exposures possibly linked with some conditions, compared to experts' assessment, relative to the whole database or to a reference group; they are less likely to suffer from declarative bias than reports by occupational health professionals.
NASA Astrophysics Data System (ADS)
Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Montero de Espinosa, Francisco; Razansky, Daniel
2017-03-01
Lack of haptic feedback during laser surgery hampers controlling the incision depth, leading to a high risk of undesired tissue damage. Here we present a new feedback sensing method that accomplishes non-contact realtime monitoring of laser ablation procedures by detecting shock waves emanating from the ablation spot with air-coupled transducers. Experiments in soft and hard tissue samples attained high reproducibity in real-time depth estimation of the laser-induced cuts. The advantages derived from the non-contact nature of the suggested monitoring approach are expected to greatly promote the general applicability of laser-based surgeries.
Townsend, Nicole T; Jones, Edward L; Paniccia, Alessandro; Vandervelde, Joel; McHenry, Jennifer R; Robinson, Thomas N
2015-04-01
Unintended thermal injury from patient monitoring devices (eg, electrocardiogram pads, neuromonitoring leads) results in third-degree burns. A mechanism for these injuries is not clear. The monopolar "bovie" emits radiofrequency energy that transfers to nearby, nonelectrically active cables or wires without direct contact by capacitive and antenna coupling. The purpose of this study was to determine if, and to what extent, radiofrequency energy couples to common patient monitoring devices. In an ex vivo porcine model, monopolar radiofrequency energy was delivered to a handheld "bovie" pencil. Nonelectrically active neuromonitoring and cardiac-monitoring leads were placed in proximity to the monopolar pencil and its cord. Temperature changes of tissue touched by the monitoring lead were measured using a thermal camera immediately after a 5-second activation. The energy-device cords were then separated by 15 cm, the power was reduced from 30 W coag to 15 W coag and different cord angulation was tested. An advanced bipolar device, a plasma-based device, and an ultrasonic device were also tested at standard settings. The neuromonitoring lead increased tissue temperature at the insertion site by 39 ± 13°C (P<0.001) creating visible char at the skin. The electrocardiogram lead raised tissue temperature by 1.3 ± 0.5°C (P<0.001). Decreasing generator power from 30 W to 15 W and separating the bovie cord from the neuromonitoring cord by 15 cm significantly reduced the temperature change (39 ± 13°C vs. 26±5°C; P<0.001 and 39 ± 13°C vs. 10 ± 5°C; P<0.001, respectively). Lastly, monopolar energy increased tissue temperatures significantly more than argon beam energy (34 ± 15°C), advanced bipolar energy (0.2 ± 0.4°C), and ultrasonic energy (0 ± 0.3°C) (all P<0.001). Stray energy couples to commonly used patient monitoring devices resulting in potentially significant thermal injury. The handheld bovie cord transfers energy via antenna coupling to neuromonitoring leads that can raise tissue temperatures over 100°F (39°C) using standard settings. The most effective ways to decrease this energy coupling is to reduce generator power, increase the separation between wires, or utilize lower voltage energy devices such as ultrasonic or bipolar energy.
Method and system for operating an electric motor
Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun
2013-01-22
Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.
NASA Astrophysics Data System (ADS)
Smiatek, G.; Kunstmann, H.; Werhahn, J.
2012-04-01
The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.
NASA Astrophysics Data System (ADS)
Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger
2016-05-01
Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.
Zahnert, Thomas; Metasch, Marie-Luise; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nicoloz; Neudert, Marcus
2016-12-01
Electromagnetical excitation of ossicular vibration is suitable for middle ear transmission measurements in the experimental and clinical setting. Thereby, it can be used as a real-time monitoring system for quality control in ossiculoplasty. Positioning and coupling of middle ear prosthesis are a precondition for good postoperative hearing results, but at the same time completely dependent upon the surgeon's subjective judgment during surgery. We evaluated an electromagnetically driven measurement system that enables for in vitro and in vivo transmission measurements and thus can be used as a real-time monitoring tool in ossicular reconstruction. For electromagnetical excitation a magnet was placed on the umbo of the malleus handle and driven by a magnetic field. The induced stapes displacement was picked up by laser Doppler vibrometry on the footplate. Measurements were performed on the intact ossicular chain in five cadaveric temporal bones and during five cochlear implant surgeries. Additionally, two ossiculoplasties were performed under real-time transmission feedback with the monitoring system. Experimentally, the equivalent sound pressure level of the electromagnetic excitation was about 70 to 80 dB which is 10 to 20 dB less than the acoustic stimulation. In the intraoperative setup the generated stapes displacements were about 5 to 20 dB smaller compared with the temporal bone experiments. Applied as real-time feedback system, an improvement in the middle ear transfer function of 4.5 dB in total and 20 dB in partial ossicular reconstruction were achieved. The electromagnetical excitation and measurement system is comparable to the gold standard with acoustical stimulation in both, the experimental setup in temporal bones as well as in vivo. The technical feasibility of the electromagnetical excitation method has been proven and it is shown that it can be used as a real-time monitoring system for ossiculoplasty in the operation room.
A Low Cost Automated Monitoring System for Landslides Using Dual Frequency GPS
NASA Astrophysics Data System (ADS)
Mills, H.; Edwards, S.
2006-12-01
Landslides are an existing and permanent threat to societies across the globe, generating financial and human losses whenever and wherever they occur. Drawing together the strands of science that provide increased understanding of landslide triggers through accurate modelling is therefore vital for the development of mitigation and management strategies. Together with climatic and geomorphological data a key input here is information on the precise location and timing of landslide events. However, the detailed monitoring of landslides and precursor movements is generally limited to episodic campaigns where limiting factors include equipment and mobilisation costs, time constraints and spatial resolution. This research has developed a geodetic tool of benefit to scientists involved in the development of closely coupled models that seek to explain trigger mechanisms such as rainfall duration and intensity and changes in groundwater pressure to actual real land movements. A fully automated low cost dual frequency GPS station for the continuous in-situ monitoring of landslide sites has been developed. System configuration combines a dual frequency GPS receiver, PC board with a GPRS modem and power supply to deliver 24hr/365day operation capability. Individual components have been chosen to provide the highest accuracies while minimising power consumption resulting in a system around half that of equivalent commercial systems. Measurement point-costs can be further reduced through the use of antenna switching and multi antenna arrays. Continuous data is delivered via mobile phone uplink and processed automatically using geodetic software. The developed system has been extensively tested on a purpose built platform capable of simulating ground movements. Co-mounted antennas have allowed direct comparisons with more expensive geodetic GPS receivers. The system is capable of delivering precise 3D coordinates with a 9 mm rms. The system can be up-scaled resulting in the increased spatial density of monitoring and yielding more detailed information on landslide movements for improved downstream modelling and monitoring.
An Integrated Gulf Coast Monitoring System Using Field, Remote Sensing and Model Results (Invited)
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Ko, D. S.; Stone, G.; Walker, N. D.
2010-12-01
The northern Gulf of Mexico is strongly influenced by the discharge of water, nutrients, dissolved and suspended particulate matter from the Mississippi-Atchafalaya River system, the largest in North America. It is also frequently impacted by energetic meteorological events that cause storm surge, high waves and affects water quality along its coastal waters. We describe the components of an integrated web-based Gulf Coast Information System (GCIS) (http://gulf-coast.lsu.edu) developed to serve remotely sensed products from a number of NASA satellite sensors such as the SeaWiFS and MODIS ocean color and the QuikSCAT wind sensors. GCIS also serves high-resolution nowcast and 48-hour forecast outputs (sea level variations, temperature, salinity and currents) from a 3-dimensional NCOM coastal circulation model for the coastal states of Mississippi, Louisiana and Texas. The GCIS is coupled to the near real-time outputs of a field monitoring and satellite receiving system, the Wave-Current Information System (WAVCIS) (http://www.wavcis.lsu.edu) and Earth Scan Laboratory (ESL) (www.esl.lsu.edu), respectively that provide critical decision support during hurricanes to the Gulf Coast. We present results on the use of the combined field, satellite and model outputs to monitor the effects of fronts, hurricanes, oil spill and the potential to study longer term climate impacts along the Gulf coast.
VOLUNTEER ESTUARY MONITORING: A METHOD MANUAL
Executive Summary: This manual focuses on volunteer estuary monitoring. As concern over the well-being of the environment has increased during the past couple of decades, volunteer monitoring has become an integral part of the effort to assess the health of our nation’s waters. G...
The Impact of Land-Atmosphere Coupling on the 2017 Northern Great Plains Drought
NASA Astrophysics Data System (ADS)
Roundy, J. K.; Santanello, J. A., Jr.
2017-12-01
In a changing climate, the potential for increased frequency and duration of drought implies devastating impacts on many aspects of society. The negative impacts of drought can be reduced through informing sustainable water management made possible by real-time monitoring and prediction. The refinement of forecast models is best realized through large-scale observation based datasets, yet there are few of these datasets currently available. The Coupling Drought Index (CDI) is a metric based on the persistence of Land-Atmosphere (L-A) coupling into distinct regimes derived from observations of the land and atmospheric state. The coupling regime persistence has been shown to relate to drought intensification and recovery and is the basis for the Coupling Statistical Model (CSM), which uses a Markov Chain framework to make statistical predictions. The CDI and CSM have been used to understand the predictability of L-A interactions in NCEP's Climate Forecasts System version 2 (CFSv2) and indicated that the forecasts exhibit strong biases in the L-A coupling that produced biases in the precipitation and limited the predictability of drought. The CDI can also be derived exclusively from satellite data which provides an observational large-scale metric of L-A coupling and drought evolution. This provides a unique observational tool for understanding the persistence and intensification of drought through land-atmosphere interactions. During the Spring and Summer of 2017, a drought developed over the Norther great plains that caused substantial agricultural losses in parts of Montana and North and South Dakota. In this work, we use satellite derived CDI to explore the impact of Land-Atmosphere Interactions on the persistence and intensification of the 2017 Northern Great Plains drought. To do this we analyze and quantify the change in CDI at various spatial and temporal scales and correlate these changes with other drought indicators including the U.S. Drought Monitor (http://droughtmonitor.unl.edu). The 2017 Northern Great Plains drought is compared to previous droughts in the region and the predictability of 2017 drought from the CSM as well as future droughts for the area is assessed.
Climate Reanalysis: Progress and Future Prospects
NASA Technical Reports Server (NTRS)
Gelaro, Ron
2018-01-01
Reanalysis is the process whereby an unchanging data assimilation system is used to provide a consistent reprocessing of observations, typically spanning an extended segment of the historical data record. The process relies on an underlying model to combine often-disparate observations in a physically consistent manner, enabling production of gridded data sets for a broad range of applications including the study of historical weather events, preparation of climatologies, business sector development and, more recently, climate monitoring. Over the last few decades, several generations of reanalyses of the global atmosphere have been produced by various operational and research centers, focusing more or less on the period of regular conventional and satellite observations beginning in the mid to late twentieth century. There have also been successful efforts to extend atmospheric reanalyses back to the late nineteenth and early twentieth centuries, using mostly surface observations. Much progress has resulted from (and contributed to) advancements in numerical weather prediction, especially improved models and data assimilation techniques, increased computing capacity, the availability of new observation types and efforts to recover and improve the quality of historical ones. The recent extension of forecast systems that allow integrated modeling of meteorological, oceanic, land surface, and chemical variables provide the basic elements for coupled data assimilation. This has opened the door to the development of a new generation of coupled reanalyses of the Earth system, or integrated Earth system analyses (IESA). Evidence so far suggests that this approach can improve the analysis of currently uncoupled components of the Earth system, especially at their interface, and lead to increased predictability. However, extensive analysis coupling as envisioned for IESA, while progressing, still presents significant challenges. These include model biases that can be exacerbated when coupled, component systems with different physical characteristics and different spatial and temporal scales, and component observations in different media with different spatial and temporal frequencies and different latencies. Quantification of uncertainty in reanalyses is also a critical challenge and is important for expanding their utility as a tool for climate change assessment. This talk provides a brief overview of the progress of reanalysis development during recent decades, and describes remaining challenges in the progression toward coupled Earth system reanalyses.
Quadruplet pregnancy: contemporary management and outcome.
Elliott, J P; Radin, T G
1992-09-01
Quadruplets are occurring more frequently as assisted-reproduction techniques improve fertility in couples previously unable to conceive. Ten quadruplet pregnancies cared for in one perinatal practice over 5 years had excellent outcome. The mean gestational age at delivery was 32.5 weeks, compared with approximately 30 weeks in the literature. There were no perinatal deaths and no long-term morbidity. Our patients were compared with a series of 57 consecutive patients with quadruplet pregnancies monitored by a home monitoring system. Parity of 1 or more appeared to improve outcome. Pregnancy-induced hypertension occurred in nine of our pregnancies and necessitated delivery in seven instances. Fetal distress was responsible for two deliveries and uncontrollable preterm labor for only one. Key points in our management protocol include prophylactic use of low-dose aspirin, home contraction monitoring, use of terbutaline pump tocolysis, and bed rest at home starting at 16 weeks.
Applications of remote sensing to watershed management
NASA Technical Reports Server (NTRS)
Rango, A.
1975-01-01
Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell
2013-12-01
In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR)more » spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.
2013-11-05
In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopymore » (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.« less
Using thermography to detect misalignment in coupled equipment
NASA Astrophysics Data System (ADS)
Kelch, Craig K.; Grover, Paul E.
1996-03-01
This paper describes and reports the findings of a study performed by the Miller Brewing Company. The researchers assembled a test bed consisting of a motor and generator linked by seven different interchangeable flexible couplings. They then misaligned the motor and generator and used different predictive technologies to monitor any coupling changes.
Modeling 3H-3He Gas-Liquid Phase Transport for Interpretation of Groundwater Age
NASA Astrophysics Data System (ADS)
Carle, S. F.; Esser, B.; Moran, J. E.
2009-12-01
California’s Groundwater Ambient Monitoring and Assessment (GAMA) Program has measured many hundreds of tritium (3H) and helium-3 (3He) concentrations in well water samples to derive estimates of groundwater age at production and monitoring wells in California basins. However, a 3H-3He age differs from an ideal groundwater age tracer in several respects: (1) the radioactive decay of 3H results in the accumulation of 3He being first-order with respect to 3H activity (versus a zero-order age-mass accumulation process for an ideal tracer), (2) surface concentrations of 3H as measured in precipitation over the last several decades have not been uniform, and (3) the 3H-3He “clock” begins at the water table and not at the ground surface where 3H source measurements are made. To better understand how these non-idealities affect interpretation of 3H-3He apparent groundwater age, we are modeling coupled gas-liquid phase flow and 3H-3He transport including processes of radiogenic decay, phase equilibrium, and molecular diffusion for water, air, 3H, and 3He components continuously through the vadose zone and saturated zone. Assessment of coupled liquid-gas phase processes enables consideration of 3H-3He residence time and dispersion within the vadose zone, including partitioning of tritiogenic 3He to the gas phase and subsequent diffusion into the atmosphere. The coupled gas-liquid phase modeling framework provides direct means to compare apparent 3H-3He age to ideal mean or advective groundwater ages for the same groundwater flow conditions. Examples are given for common groundwater flow systems involving areal recharge, discharge to streams or long-screened wells, and aquifer system heterogeneity. The Groundwater Ambient Monitoring and Assessment program is sponsored by the California State Water Resources Control Board and carried out in cooperation with the U.S. Geological Survey. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Biosensor System for Continuous Monitoring of Organophosphate Aerosols (Postprint)
2007-05-01
performed by chromatog- aphy coupled with mass selective detectors or various types of pectroscopy (Staaf and Ostman, 2005; Bjorklund et al., 2004...diverted to aste while the bubble-free flow was directed through the IMER olumns and into a single wavelength absorbance detector . The ow rate was...maintained at 2 ml/min by a second piston pump ositioned between the debubbler and the IMER columns so that he sample was under positive pressure as it
Laser pulse stretcher method and apparatus
Hawkins, Jon K.; Williams, William A.
1990-01-01
The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.
(abstract) Application of the GPS Worldwide Network in the Study of Global Ionospheric Storms
NASA Technical Reports Server (NTRS)
Ho, C. M.; Mannucci, A. J.; Lindqwister, U. J.; Pi, X.; Sparks, L. C.; Rao, A. M.; Wilsion, B. D.; Yuan, D. N.; Reyes, M.
1997-01-01
Ionospheric storm dynamics as a response to the geomagnetic storms is a very complicated global process involving many different mechanisms. Studying ionospheric storms will help us to understand the energy coupling process between the Sun and Earth and possibly also to effectively forecast space weather changes. Such a study requires a worldwide monitoring system. The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility.
Energy Monitoring and Control Systems Inspection Guidelines.
1982-12-01
When the pressure port is exposed to atmosphere, the transducer will indicate zero PSIG. An absolute pressure transducer measures pressure referenced...Environment. dbm: A measure of absolute power values. Zero dbm equals one milliwatt. Data Transmission Transmission equipment including cables and Media (DTM...the four listed, type "K" is the most linear of the T/C’s and type "E" has the highest voltage per degree farenheit . Some advantages of thermo- couples
Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C
2009-10-01
The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.
RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211
NASA Astrophysics Data System (ADS)
Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.
2004-10-01
We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.
Xia, Shaoxia; Liu, Yu; Yu, Xiubo; Fu, Bojie
2018-08-15
Environmental assessments estimate, evaluate and predict the consequences of natural processes and human activities on the environment. Long-term ecosystem observation and research networks (LTERs) are potentially valuable infrastructure to support environmental assessments. However, very few environmental assessments have successfully incorporated them. In this study, we try to reveal the current status of coupling LTERs with environmental assessments and look at the challenges involved in improving this coupling through exploring the role that Chinese Ecological Research Network (CERN), the LTER of China, currently plays in regional environment assessments. A review of official protocols and standards, regional assessments and CERN researches related to ecosystems and environment shows that there is great potential for coupling CERN with environment assessments. However in practice, CERN does not currently play the expected role. Remote sensing and irregular inventory data are still the main data sources currently used in regional assessments. Several causes led to the present situation: (1) insufficient cross-site research and failure to scale up site-level variables to the regional scale; (2) data barriers resulting from incompatible protocols and low data usability due to lack of data assimilation and scaling; and (3) absence of indicators relevant to human activities in existing monitoring protocols. For these reasons, enhancing cross-site monitoring and research, data assimilation and scaling up are critical steps required to improve coupling of LTER with environmental assessments. Site-focused long-term monitoring should be combined with wide-scale ground surveys and remote sensing to establish an effective connection between different environmental monitoring platforms for regional assessments. It is also necessary to revise the current monitoring protocols to include human activities and their impacts on the ecosystem, or change the LTERs into Long-Term Socio-Ecological Research (LTSER) networks. Copyright © 2018 Elsevier B.V. All rights reserved.
Celebi, M.
2006-01-01
An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.
Adaptable radiation monitoring system and method
Archer, Daniel E [Livermore, CA; Beauchamp, Brock R [San Ramon, CA; Mauger, G Joseph [Livermore, CA; Nelson, Karl E [Livermore, CA; Mercer, Michael B [Manteca, CA; Pletcher, David C [Sacramento, CA; Riot, Vincent J [Berkeley, CA; Schek, James L [Tracy, CA; Knapp, David A [Livermore, CA
2006-06-20
A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.
Strong Ferromagnetically-Coupled Spin Valve Sensor Devices for Droplet Magnetofluidics
Lin, Gungun; Makarov, Denys; Schmidt, Oliver G.
2015-01-01
We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays. PMID:26024419
Development of glucose-responsive 'smart' insulin systems.
Rege, Nischay K; Phillips, Nelson F B; Weiss, Michael A
2017-08-01
The complexity of modern insulin-based therapy for type I and type II diabetes mellitus and the risks associated with excursions in blood-glucose concentration (hyperglycemia and hypoglycemia) have motivated the development of 'smart insulin' technologies (glucose-responsive insulin, GRI). Such analogs or delivery systems are entities that provide insulin activity proportional to the glycemic state of the patient without external monitoring by the patient or healthcare provider. The present review describes the relevant historical background to modern GRI technologies and highlights three distinct approaches: coupling of continuous glucose monitoring (CGM) to deliver devices (algorithm-based 'closed-loop' systems), glucose-responsive polymer encapsulation of insulin, and molecular modification of insulin itself. Recent advances in GRI research utilizing each of the three approaches are illustrated; these include newly developed algorithms for CGM-based insulin delivery systems, glucose-sensitive modifications of existing clinical analogs, newly developed hypoxia-sensitive polymer matrices, and polymer-encapsulated, stem-cell-derived pancreatic β cells. Although GRI technologies have yet to be perfected, the recent advances across several scientific disciplines that are described in this review have provided a path towards their clinical implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
A portable measuring system for a competitive binding glucose biosensor
NASA Astrophysics Data System (ADS)
Colvin, Lydia E.; Means, A. Kristen; Grunlan, Melissa A.; Coté, Gerard L.
2018-02-01
Central to minimizing the long- and short-term complications associated with diabetes is careful monitoring and maintenance of blood glucose at normal levels. Towards replacing conventionally used finger-prick glucose testing, indwelling continuous glucose monitors (CGMs) based on amperometric electrodes have been introduced to the market. Envisioned to lead to a CGM with an increased lifetime, we report herein a fluorescently-labeled competitive binding assay contained within a hydrogel membrane whose glucose response is measured via a novel portable system. The optical system design included a laser source, bifurcated fiber, laser filter and simple fiber coupled spectrometer to obtain the change in FRET pair ratio of the assay. Glucose response of the assay in free solution was measured using this system across the physiologic range (0-200 mg/dL). The FRET pair ratio signal was seen to increase with glucose and the standard error of calibration was 22.42 mg/dL with a MARD value of 14.85%. When the assay was contained within the hydrogel membrane's central cavity and similarly analyzed, the standard error increased but the assay maintained its reversibility.
Corral Monitoring System assessment results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filby, E.E.; Haskel, K.J.
1998-03-01
This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitoredmore » as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system.« less
Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.
2017-04-04
AFRL -AFOSR-JP-TR-2017-0028 Investigating the role of sub-auroral polarization stream electric field in coupled magnetosphere-ionosphere-thermosphere...SPONSOR/MONITOR’S ACRONYM(S) AFRL /AFOSR IOA 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -AFOSR-JP-TR-2017-0028 12. DISTRIBUTION/AVAILABILITY STATEMENT...during the 31 August 2005 geomagnetic storm Date: 19-24 June 2016 Presenter: Dr Cheryl Huang, Senior Research Physicist, AFRL /RVBXP
Zhao, D; Campos, D; Yan, Y; Kimple, R; Jacques, S; van der Kogel, A; Kissick, M
2012-06-01
To demonstrate a novel interstitial optical fiber spectroscopic system, based on diffuse optical spectroscopies with spectral fitting, for the simultaneous monitoring of tumor blood volume and oxygen tension. The technique provides real-time, minimally-invasive and quantification of tissue micro-vascular hemodynamics. An optical fiber prototype probe characterizesthe optical transport in tissue between two large Numerical Aperture (NA) fibers of 200μm core diameter (BFH37-200, ThorLabs) spaced 3-mm apart. Two 21-Ga medical needles are used to protect fiber ends and to facilitate tissue penetration with minimum local blunt trauma in nude mice with xenografts. A 20W white light source (HL-2000-HP, Ocean Optics) is coupled to one fiber with SMA adapter. The other fiber is used to collect light, which is coupled into the spectrometer (QE65000 with Spectrasuite Operating software and OmniDriver, Ocean Optics). The wavelength response of the probe depends on the wavelength dependence of the light source, and of the light signal collection that includes considerable scatter, modeled with Monte-Carlo techniques (S. Jacques 2010 J. of Innov. Opt. Health Sci. 2 123-9). Measured spectra of tissue are normalized by a measured spectrum of a white standard, yielding the transmission spectrum. A head-and-neck xenograft on the flank of a live mouse is used for development. The optical fiber probe delivers and collects light at an arbitrary depth in the tumor. By spectral fitting of the measured transmission spectrum, an analysis of blood volume and oxygen tension is obtained from the fitting parameters in real time. A newly developed optical fiber spectroscopic system with an optical fiber probe takes spectroscopic techniques to a much deeper level in a tumor, which has potential applications for real-time monitoring hypoxic cell population dynamics for an eventual adaptive therapy metric of particular use in hypofractionated radiotherapy. © 2012 American Association of Physicists in Medicine.
Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists.
Ruiz, María Herrojo; Jabusch, Hans-Christian; Altenmüller, Eckart
2009-11-01
Music performance is an extremely rapid process with low incidence of errors even at the fast rates of production required. This is possible only due to the fast functioning of the self-monitoring system. Surprisingly, no specific data about error monitoring have been published in the music domain. Consequently, the present study investigated the electrophysiological correlates of executive control mechanisms, in particular error detection, during piano performance. Our target was to extend the previous research efforts on understanding of the human action-monitoring system by selecting a highly skilled multimodal task. Pianists had to retrieve memorized music pieces at a fast tempo in the presence or absence of auditory feedback. Our main interest was to study the interplay between auditory and sensorimotor information in the processes triggered by an erroneous action, considering only wrong pitches as errors. We found that around 70 ms prior to errors a negative component is elicited in the event-related potentials and is generated by the anterior cingulate cortex. Interestingly, this component was independent of the auditory feedback. However, the auditory information did modulate the processing of the errors after their execution, as reflected in a larger error positivity (Pe). Our data are interpreted within the context of feedforward models and the auditory-motor coupling.
Audio-based bolt-loosening detection technique of bolt joint
NASA Astrophysics Data System (ADS)
Zhang, Yang; Zhao, Xuefeng; Su, Wensheng; Xue, Zhigang
2018-03-01
Bolt joint, as the commonest coupling structure, is widely used in electro-mechanical system. However, it is the weakest part of the whole system. The increase of preload tension force can raise the reliability and strength of the bolt joint. Therefore, the pretension force is one of the most important factors to ensure the stability of bolt joint. According to the way of generating pretension force, the pretension force can be monitored by bolt torque, degrees and elongation. The existing bolt-loosening monitoring methods all require expensive equipment, which greatly restricts the practicality of the bolt-loosening monitoring. In this paper, a new method of bolt-loosening detection technique based on audio is proposed. The sound that bolt is hit by a hammer is recorded on the Smartphone, and the collected audio signal is classified and identified by support vector machine algorithm. First, a verification test was designed and the results show that this new method can identify the damage of bolt looseness accurately. Second, a variety of bolt-loosening was identified. The results indicate that this method has a high accuracy in multiclass classification of the bolt looseness. This bolt-loosening detection technique based on audio not only can reduce the requirements of technical and professional experience, but also make bolt-loosening monitoring simpler and easier.
An Assessment of Environmental Health Needs for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Macatangay, Ariel V.
2013-01-01
Environmental health fundamentally addresses the physical, chemical, and biological risks external to the human body that can impact the health of a person by assessing and controlling these risks in order to generate and maintain a health-supportive environment. Environmental monitoring coupled with other measures including active and passive controls and the implementation of environmental standards (SMACs, SWEGs, microbial and acoustics limits) are used to ensure environmental health in manned spacecraft. NASA scientists and engineers consider environmental monitoring a vital component to an environmental health management strategy for maintaining a healthy crew and achieving mission success. Environmental monitoring data confirms the health of ECLS systems, in addition to contributing to the management of the health of human systems. Crew health risks associated with the environment were reviewed by agency experts with the goal of determining risk-based environmental monitoring needs for future NASA manned missions. Once determined, gaps in knowledge and technology, required to address those risks, were identified for various types of Exploration missions. This agency-wide assessment of environmental health needs will help guide the activities/hardware development efforts to close those gaps and advance the knowledge required to meet NASA manned space exploration objectives. Details of this assessment and findings are presented in this paper.
Slurry wall containment performance: monitoring and modeling of unsaturated and saturated flow.
Pedretti, Daniele; Masetti, Marco; Marangoni, Tomaso; Beretta, Giovanni Pietro
2012-01-01
A specific 2-year program to monitor and test both the vadose zone and the saturated zone, coupled with a numerical analysis, was performed to evaluate the overall performance of slurry wall systems for containment of contaminated areas. Despite local physical confinement (slurry walls keyed into an average 2-m-thick aquitard), for at least two decades, high concentrations of chlorinated solvents (up to 110 mg l(-1)) have been observed in aquifers that supply drinking water close to the city of Milan (Italy). Results of monitoring and in situ tests have been used to perform an unsaturated-saturated numerical model. These results yielded the necessary quantitative information to be used both for the determination of the hydraulic properties of the different media in the area and for the calibration and validation of the numerical model. Backfill material in the shallower part of the investigated aquifer dramatically affects the natural recharge of the encapsulated area. A transient simulation from wet to drought periods highlights a change in the ratio between leakages from lateral barriers that support a specific scenario of water loss through the containment system. The combination of monitoring and modelling allows a reliable estimate of the overall performance of the physical confinement to be made without using any invasive techniques on slurry wall.
NASA Astrophysics Data System (ADS)
Spiegelman, M.; Wilson, C. R.
2011-12-01
A quantitative theory of magma production and transport is essential for understanding the dynamics of magmatic plate boundaries, intra-plate volcanism and the geochemical evolution of the planet. It also provides one of the most challenging computational problems in solid Earth science, as it requires consistent coupling of fluid and solid mechanics together with the thermodynamics of melting and reactive flows. Considerable work on these problems over the past two decades shows that small changes in assumptions of coupling (e.g. the relationship between melt fraction and solid rheology), can have profound changes on the behavior of these systems which in turn affects critical computational choices such as discretizations, solvers and preconditioners. To make progress in exploring and understanding this physically rich system requires a computational framework that allows more flexible, high-level description of multi-physics problems as well as increased flexibility in composing efficient algorithms for solution of the full non-linear coupled system. Fortunately, recent advances in available computational libraries and algorithms provide a platform for implementing such a framework. We present results from a new model building system that leverages functionality from both the FEniCS project (www.fenicsproject.org) and PETSc libraries (www.mcs.anl.gov/petsc) along with a model independent options system and gui, Spud (amcg.ese.ic.ac.uk/Spud). Key features from FEniCS include fully unstructured FEM with a wide range of elements; a high-level language (ufl) and code generation compiler (FFC) for describing the weak forms of residuals and automatic differentiation for calculation of exact and approximate jacobians. The overall strategy is to monitor/calculate residuals and jacobians for the entire non-linear system of equations within a global non-linear solve based on PETSc's SNES routines. PETSc already provides a wide range of solvers and preconditioners, from parallel sparse direct to algebraic multigrid, that can be chosen at runtime. In particular, we make extensive use of PETSc's FieldSplit block preconditioners that allow us to use optimal solvers for subproblems (such as Stokes, or advection/diffusion of temperature) as preconditioners for the full problem. Thus these routines let us reuse effective solving recipes/splittings from previous experience while monitoring the convergence of the global problem. These techniques often yield quadratic (Newton like) convergence for the work of standard Picard schemes. We will illustrate this new framework with examples from the Magma Dynamic Demonstration suite (MADDs) of well understood magma dynamics benchmark problems including stokes flow in ridge geometries, magmatic solitary waves and shear-driven melt bands. While development of this system has been driven by magma dynamics, this framework is much more general and can be used for a wide range of PDE based multi-physics models.
NASA Technical Reports Server (NTRS)
Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)
1984-01-01
A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.
Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions
NASA Technical Reports Server (NTRS)
Shelhamer, Mark
2015-01-01
NASA plans to send humans to Mars in about 20 years. The NASA Human Research Program supports research to mitigate the major risks to human health and performance on extended missions. However, there will undoubtedly be unforeseen events on any mission of this nature - thus mitigation of known risks alone is not sufficient to ensure optimal crew health and performance. Research should be directed not only to mitigating known risks, but also to providing crews with the tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory and network theory to assess crew and individual resilience. The entire crew or the individual crewmember can be viewed as a complex system that is composed of subsystems (individual crewmembers or physiological subsystems), and the interactions between subsystems are of crucial importance for overall health and performance. An understanding of the structure of the interactions can provide important information even in the absence of complete information on the component subsystems. This is critical in human spaceflight, since insufficient flight opportunities exist to elucidate the details of each subsystem. Enabled by recent advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and also during preflight training to establish baseline values and ranges. Coupled with appropriate mathematical modeling, this can provide real-time assessment of health and function, and detect early indications of imminent breakdown. Since the interconnected web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). There are many parameters and interactions to choose from. Normal variability is an established characteristic of a healthy physiological response. Healthy coupling has been investigated less extensively, but there are cases in which too tight or too loose coupling can be problematic. This might be in inter-individual behaviors, such as sleep cycles, coordination of work and meal times, and coupled motions during communication. Less apparent are couplings of physiological systems, nevertheless examples abound of coupled systems which might be monitored: cardio-respiratory rhythms; circadian rhythms, body temperature, and sleep; stress markers and cognition, sleep, and performance; profiles of biochemical markers related to immune function and nutritional status; sensorimotor aspects such as motion sickness, ataxia, reaction time, and manual control. Tools for resilience are then the means to measure and analyze these parameters, incorporate them into appropriate models of normal variability and interconnectedness, and recognize when parameters or their couplings are outside of normal limits. What to do when a problem is identified depends on its nature. Changes can be made to crew procedures, work pacing, interpersonal interactions, sleep cycles, meal timing and content, as guided by the model. Use and continued development of these methods could not only provide tools for resilience, but also meaningful autonomous work for the crew on an extended flight.
Stachowiak, Jeanne C; Shugard, Erin E; Mosier, Bruce P; Renzi, Ronald F; Caton, Pamela F; Ferko, Scott M; Van de Vreugde, James L; Yee, Daniel D; Haroldsen, Brent L; VanderNoot, Victoria A
2007-08-01
For domestic and military security, an autonomous system capable of continuously monitoring for airborne biothreat agents is necessary. At present, no system meets the requirements for size, speed, sensitivity, and selectivity to warn against and lead to the prevention of infection in field settings. We present a fully automated system for the detection of aerosolized bacterial biothreat agents such as Bacillus subtilis (surrogate for Bacillus anthracis) based on protein profiling by chip gel electrophoresis coupled with a microfluidic sample preparation system. Protein profiling has previously been demonstrated to differentiate between bacterial organisms. With the goal of reducing response time, multiple microfluidic component modules, including aerosol collection via a commercially available collector, concentration, thermochemical lysis, size exclusion chromatography, fluorescent labeling, and chip gel electrophoresis were integrated together to create an autonomous collection/sample preparation/analysis system. The cycle time for sample preparation was approximately 5 min, while total cycle time, including chip gel electrophoresis, was approximately 10 min. Sensitivity of the coupled system for the detection of B. subtilis spores was 16 agent-containing particles per liter of air, based on samples that were prepared to simulate those collected by wetted cyclone aerosol collector of approximately 80% efficiency operating for 7 min.
Nair, Erika L; Sousa, Rhonda; Wannagot, Shannon
Guidelines established by the AAA currently recommend behavioral testing when fitting frequency modulated (FM) systems to individuals with cochlear implants (CIs). A protocol for completing electroacoustic measures has not yet been validated for personal FM systems or digital modulation (DM) systems coupled to CI sound processors. In response, some professionals have used or altered the AAA electroacoustic verification steps for fitting FM systems to hearing aids when fitting FM systems to CI sound processors. More recently steps were outlined in a proposed protocol. The purpose of this research is to review and compare the electroacoustic test measures outlined in a 2013 article by Schafer and colleagues in the Journal of the American Academy of Audiology titled "A Proposed Electroacoustic Test Protocol for Personal FM Receivers Coupled to Cochlear Implant Sound Processors" to the AAA electroacoustic verification steps for fitting FM systems to hearing aids when fitting DM systems to CI users. Electroacoustic measures were conducted on 71 CI sound processors and Phonak Roger DM systems using a proposed protocol and an adapted AAA protocol. Phonak's recommended default receiver gain setting was used for each CI sound processor manufacturer and adjusted if necessary to achieve transparency. Electroacoustic measures were conducted on Cochlear and Advanced Bionics (AB) sound processors. In this study, 28 Cochlear Nucleus 5/CP810 sound processors, 26 Cochlear Nucleus 6/CP910 sound processors, and 17 AB Naida CI Q70 sound processors were coupled in various combinations to Phonak Roger DM dedicated receivers (25 Phonak Roger 14 receivers-Cochlear dedicated receiver-and 9 Phonak Roger 17 receivers-AB dedicated receiver) and 20 Phonak Roger Inspiro transmitters. Employing both the AAA and the Schafer et al protocols, electroacoustic measurements were conducted with the Audioscan Verifit in a clinical setting on 71 CI sound processors and Phonak Roger DM systems to determine transparency and verify FM advantage, comparing speech inputs (65 dB SPL) in an effort to achieve equal outputs. If transparency was not achieved at Phonak's recommended default receiver gain, adjustments were made to the receiver gain. The integrity of the signal was monitored with the appropriate manufacturer's monitor earphones. Using the AAA hearing aid protocol, 50 of the 71 CI sound processors achieved transparency, and 59 of the 71 CI sound processors achieved transparency when using the proposed protocol at Phonak's recommended default receiver gain. After the receiver gain was adjusted, 3 of 21 CI sound processors still did not meet transparency using the AAA protocol, and 2 of 12 CI sound processors still did not meet transparency using the Schafer et al proposed protocol. Both protocols were shown to be effective in taking reliable electroacoustic measurements and demonstrate transparency. Both protocols are felt to be clinically feasible and to address the needs of populations that are unable to reliably report regarding the integrity of their personal DM systems. American Academy of Audiology
NASA Technical Reports Server (NTRS)
Parker, David H.
1987-01-01
An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.
Gomes, Tara; Juurlink, David; Yao, Zhan; Camacho, Ximena; Paterson, J Michael; Singh, Samantha; Dhalla, Irfan; Sproule, Beth; Mamdani, Muhammad
2014-10-01
The increased use of opioid analgesics, sedative hypnotics and stimulants, coupled with the associated risks of overdose have raised concerns around the inappropriate prescribing of these monitored drugs. We assessed the impact of new legislation, the Narcotics Safety and Awareness Act, and a centralized Narcotics Monitoring System (implemented November 2011 and May 2012, respectively), on the dispensing of prescriptions suggestive of misuse. We conducted a time series analysis of publicly funded prescriptions for opioids, benzodiazepines and stimulants dispensed monthly in Ontario from January 2007 to May 2013, based on information in the Ontario Public Drug Benefit Database. In the primary analysis, a prescription was deemed potentially inappropriate if it was dispensed within 7 days of an earlier prescription and was for at least 30 tablets of a drug in the same class as the earlier prescription, but originated from a different physician and a different pharmacy. After enactment of the new legislation, the prevalence of potentially inappropriate opioid prescriptions decreased by 12.5% in 6 months (from 1.6% in October 2011 to 1.4% in April 2012; p = 0.01). No further significant change was observed after the introduction of the narcotic monitoring system (p = 0.8). By May 2013, the prevalence had dropped to 1.0%. Inappropriate benzodiazepine prescribing was significantly influenced by both the legislation (p < 0.001) and the monitoring system (p = 0.05), which together reduced potentially inappropriate prescribing by 50.0% between October 2011 and May 2013 (from 0.4% to 0.2%). The prevalence of potentially inappropriate prescribing of stimulants was significantly influenced by the introduction of the monitoring system in May 2012, falling from 0.7% in April 2012 to 0.3% in May 2013 (p = 0.02). For a select group of drugs prone to misuse and diversion, legislation and a prescription monitoring program reduced the prevalence of prescriptions suggestive of misuse. This suggests that regulatory interventions can promote appropriate prescribing which could potentially be applied to other jurisdictions and drugs of concern.
Lambert, Jean-Philippe; Ivosev, Gordana; Couzens, Amber L; Larsen, Brett; Taipale, Mikko; Lin, Zhen-Yuan; Zhong, Quan; Lindquist, Susan; Vidal, Marc; Aebersold, Ruedi; Pawson, Tony; Bonner, Ron; Tate, Stephen; Gingras, Anne-Claude
2013-12-01
Characterizing changes in protein-protein interactions associated with sequence variants (e.g., disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies in which cost and time are major considerations. We have coupled AP to data-independent mass spectrometric acquisition (sequential window acquisition of all theoretical spectra, SWATH) and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. We used AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes and propose a scalable pipeline for systems biology studies.
Huang, Guoliang; Song, Fei; Wang, Xiaodong
2010-01-01
Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized. PMID:22319319
Gómez-Ríos, Germán Augusto; Liu, Chang; Tascon, Marcos; Reyes-Garcés, Nathaly; Arnold, Don W; Covey, Thomas R; Pawliszyn, Janusz
2017-04-04
In recent years, the direct coupling of solid phase microextraction (SPME) and mass spectrometry (MS) has shown its great potential to improve limits of quantitation, accelerate analysis throughput, and diminish potential matrix effects when compared to direct injection to MS. In this study, we introduce the open port probe (OPP) as a robust interface to couple biocompatible SPME (Bio-SPME) fibers to MS systems for direct electrospray ionization. The presented design consisted of minimal alterations to the front-end of the instrument and provided better sensitivity, simplicity, speed, wider compound coverage, and high-throughput in comparison to the LC-MS based approach. Quantitative determination of clenbuterol, fentanyl, and buprenorphine was successfully achieved in human urine. Despite the use of short extraction/desorption times (5 min/5 s), limits of quantitation below the minimum required performance levels (MRPL) set by the world antidoping agency (WADA) were obtained with good accuracy (≥90%) and linearity (R 2 > 0.99) over the range evaluated for all analytes using sample volumes of 300 μL. In-line technologies such as multiple reaction monitoring with multistage fragmentation (MRM 3 ) and differential mobility spectrometry (DMS) were used to enhance the selectivity of the method without compromising analysis speed. On the basis of calculations, once coupled to high throughput, this method can potentially yield preparation times as low as 15 s per sample based on the 96-well plate format. Our results demonstrated that Bio-SPME-OPP-MS efficiently integrates sampling/sample cleanup and atmospheric pressure ionization, making it an advantageous configuration for several bioanalytical applications, including doping in sports, in vivo tissue sampling, and therapeutic drug monitoring.
NASA Technical Reports Server (NTRS)
1995-01-01
Intelligent Vision Systems, Inc. (InVision) needed image acquisition technology that was reliable in bad weather for its TDS-200 Traffic Detection System. InVision researchers used information from NASA Tech Briefs and assistance from Johnson Space Center to finish the system. The NASA technology used was developed for Earth-observing imaging satellites: charge coupled devices, in which silicon chips convert light directly into electronic or digital images. The TDS-200 consists of sensors mounted above traffic on poles or span wires, enabling two sensors to view an intersection; a "swing and sway" feature to compensate for movement of the sensors; a combination of electronic shutter and gain control; and sensor output to an image digital signal processor, still frame video and optionally live video.
Wearable System for Acquisition and Monitoring of Biological Signals
NASA Astrophysics Data System (ADS)
Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.
2016-04-01
This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.
Efficient scalable solid-state neutron detector.
Moses, Daniel
2015-06-01
We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a (6)Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m(2), is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.
Fiber optic gas detection system for health monitoring of oil-filled transformer
NASA Astrophysics Data System (ADS)
Ho, H. L.; Ju, J.; Jin, W.
2009-10-01
This paper reports the development of a fiber-optic gas detection system capable of detecting three types of dissolved fault gases in oil-filled power transformers or equipment. The system is based on absorption spectroscopy and the target gases include acetylene (C2H2), methane (CH4) and ethylene (C2H4). Low-cost multi-pass sensor heads using fiber coupled micro-optic cells are employed for which the interaction length is up to 4m. Also, reference gas cells made of photonic bandgap (PBG) fiber are implemented. The minimum detectable gas concentrations for methane, acetylene and ethylene are 5ppm, 2ppm and 50ppm respectively.
NASA Technical Reports Server (NTRS)
Mahajan, Ajay
2007-01-01
An assembly that contains a sensor, sensor-signal-conditioning circuitry, a sensor-readout analog-to-digital converter (ADC), data-storage circuitry, and a microprocessor that runs special-purpose software and communicates with one or more external computer(s) has been developed as a prototype of "smart" sensor modules for monitoring the integrity and functionality (the "health") of engineering systems. Although these modules are now being designed specifically for use on rocket-engine test stands, it is anticipated that they could also readily be designed to be incorporated into health-monitoring subsystems of such diverse engineering systems as spacecraft, aircraft, land vehicles, bridges, buildings, power plants, oilrigs, and defense installations. The figure is a simplified block diagram of the "smart" sensor module. The analog sensor readout signal is processed by the ADC, the digital output of which is fed to the microprocessor. By means of a standard RS-232 cable, the microprocessor is connected to a local personal computer (PC), from which software is downloaded into a randomaccess memory in the microprocessor. The local PC is also used to debug the software. Once the software is running, the local PC is disconnected and the module is controlled by, and all output data from the module are collected by, a remote PC via an Ethernet bus. Several smart sensor modules like this one could be connected to the same Ethernet bus and controlled by the single remote PC. The software running in the microprocessor includes driver programs for operation of the sensor, programs that implement self-assessment algorithms, programs that implement protocols for communication with the external computer( s), and programs that implement evolutionary methodologies to enable the module to improve its performance over time. The design of the module and of the health-monitoring system of which it is a part reflects the understanding that the main purpose of a health-monitoring system is to detect damage and, therefore, the health-monitoring system must be able to function effectively in the presence of damage and should be capable of distinguishing between damage to itself and damage to the system being monitored. A major benefit afforded by the self-assessment algorithms is that in the output of the module, the sensor data indicative of the health of the engineering system being monitored are coupled with a confidence factor that quantifies the degree of reliability of the data. Hence, the output includes information on the health of the sensor module itself in addition to information on the health of the engineering system being monitored.
Multilevel Effects in a Driven Generalized Rabi Model
NASA Astrophysics Data System (ADS)
Pietikäinen, I.; Danilin, S.; Kumar, K. S.; Tuorila, J.; Paraoanu, G. S.
2018-01-01
We study numerically the onset of higher-level excitations and resonance frequency shifts in the generalized multilevel Rabi model with dispersive coupling under strong driving. The response to a weak probe is calculated using the Floquet method, which allows us to calculate the probe spectrum and extract the resonance frequency. We test our predictions using a superconducting circuit consisting of a transmon coupled capacitively to a coplanar waveguide resonator. This system is monitored by a weak probe field and at the same time driven at various powers by a stronger microwave tone. We show that the transition from the quantum to the classical regime is accompanied by a rapid increase of the transmon occupation and consequently that the qubit approximation is valid only in the extreme quantum limit.
Multilevel Effects in a Driven Generalized Rabi Model
NASA Astrophysics Data System (ADS)
Pietikäinen, I.; Danilin, S.; Kumar, K. S.; Tuorila, J.; Paraoanu, G. S.
2018-06-01
We study numerically the onset of higher-level excitations and resonance frequency shifts in the generalized multilevel Rabi model with dispersive coupling under strong driving. The response to a weak probe is calculated using the Floquet method, which allows us to calculate the probe spectrum and extract the resonance frequency. We test our predictions using a superconducting circuit consisting of a transmon coupled capacitively to a coplanar waveguide resonator. This system is monitored by a weak probe field and at the same time driven at various powers by a stronger microwave tone. We show that the transition from the quantum to the classical regime is accompanied by a rapid increase of the transmon occupation and consequently that the qubit approximation is valid only in the extreme quantum limit.
Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.
Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W
2016-09-14
The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.
Coupling between the continental carbon and water cycles
NASA Astrophysics Data System (ADS)
Gentine, P.; Lemordant, L. A.; Green, J. K.
2017-12-01
The continental carbon adn water cycles are fundamentally coupled through leaf gas exchange at the stomata level. IN this presnetation we will emphasize the importance of this coupling for the future of the water cycle (runoff, evaporation, soil moisture) and in turn the implications for the carbon cycle and the capacity of continents to act as a carbon dioxyde sink in the future. Opprtunites from coupled carbon-water monitoring platforms will be then emphasized.
System level modeling and component level control of fuel cells
NASA Astrophysics Data System (ADS)
Xue, Xingjian
This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the optimal design of tubular SOFC. With the system-level dynamic model as a basis, a framework for the robust, online monitoring of PEM fuel cell is developed in the dissertation. The monitoring scheme employs the Hotelling T2 based statistical scheme to handle the measurement noise and system uncertainties and identifies the fault conditions through a series of self-checking and conformal testing. A statistical sampling strategy is also utilized to improve the computation efficiency. Fuel/gas flow control is the fundamental operation for fuel cell energy systems. In the final part of the dissertation, a high-precision and robust tracking control scheme using piezoelectric actuator circuit with direct hysteresis compensation is developed. The key characteristic of the developed control algorithm includes the nonlinear continuous control action with the adaptive boundary layer strategy.
NASA Astrophysics Data System (ADS)
Boyajian, Tabetha; Fischer, Debra; Gaidos, Eric; Giguere, Matt
2013-07-01
Late type stars are ideal targets for the detection of low-mass planets residing in habitable zones. In such systems, not only is the stellar noise a minimum, but the lower stellar mass affords larger reflex velocities and the lower stellar luminosity moves the habitable zone inward. The M2K program is a high precision Doppler survey monitoring a couple hundred late-type stars over the past few years in search for such important exoplanetary systems. We present updated orbits of known exoplanet systems and newly detected exoplanet systems that have resulted from this program. We also advertise the Planethunters.org "Guest Scientist" program as well as our survey to measure stellar diameters and temperatures with long baseline optical interferometry.
Expert Systems for Real-Time Volcano Monitoring
NASA Astrophysics Data System (ADS)
Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.
2014-12-01
In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the operator in volcano real-time monitoring.
Hardware-efficient Bell state preparation using Quantum Zeno Dynamics in superconducting circuits
NASA Astrophysics Data System (ADS)
Flurin, Emmanuel; Blok, Machiel; Hacohen-Gourgy, Shay; Martin, Leigh S.; Livingston, William P.; Dove, Allison; Siddiqi, Irfan
By preforming a continuous joint measurement on a two qubit system, we restrict the qubit evolution to a chosen subspace of the total Hilbert space. This extension of the quantum Zeno effect, called Quantum Zeno Dynamics, has already been explored in various physical systems such as superconducting cavities, single rydberg atoms, atomic ensembles and Bose Einstein condensates. In this experiment, two superconducting qubits are strongly dispersively coupled to a high-Q cavity (χ >> κ) allowing for the doubly excited state | 11 〉 to be selectively monitored. The Quantum Zeno Dynamics in the complementary subspace enables us to coherently prepare a Bell state. As opposed to dissipation engineering schemes, we emphasize that our protocol is deterministic, does not rely direct coupling between qubits and functions only using single qubit controls and cavity readout. Such Quantum Zeno Dynamics can be generalized to larger Hilbert space enabling deterministic generation of many-body entangled states, and thus realizes a decoherence-free subspace allowing alternative noise-protection schemes.
Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.
Silva Elipe, Maria Victoria; Milburn, Robert R
2016-06-01
Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Automation of film densitometry for application in personal monitoring.
Taheri, M; Movafeghi, A; Rastkhah, N
2011-03-01
In this research work, a semi-automatic densitometry system has been developed for large-scale monitoring services by use of film badge dosemeters. The system consists of a charge-coupled device (CCD)-based scanner that can scan optical densities (ODs) up to 4.2, a computer vision algorithm to improve the quality of digitised films and an analyser program to calculate the necessary information, e.g. the mean OD of region of interest and radiation doses. For calibration of the system, two reference films were used. The Microtek scanner International Color Consortium (ICC) profiler is applied for determining the colour attributes of the scanner accurately and a reference of the density step tablet, Bundesanstalt für Materialforschung und-prüfung (BAM) is used for calibrating the automatic conversion of gray-level values to OD values in the range of 0.2-4.0 OD. The system contributes to achieve more objectives and reliable results. So by applying this system, we can digitise a set of 20 films at once and calculate their relative doses less than about 4 min, and meanwhile it causes to avoid disadvantages of manual process and to enhance the accuracy of dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Alan M; Killough, Stephen M; Bigelow, Tim S
2011-01-01
Power Supply Controls are being developed at Oak Ridge National Laboratory (ORNL) to test transmission line components of the Electron Cyclotron Heating (ECH) system, with a focus on gyrotrons and waveguides, in support of the International Thermonuclear Experimental Reactor (ITER). The control is performed by several Programmable Logic Controllers (PLC s) located near the different equipment. A technique of Supervisory Control and Data Acquisition (SCADA) is presented to monitor, control, and log actions of the PLC s on a PC through use of Allen Bradley s Remote I/O communication interface coupled with an Open Process Control/Object Linking and Embedding [OLE]more » for Process Control (OPC) Server/Client architecture. The OPC data is then linked to a National Instruments (NI) LabVIEW system for monitoring and control. Details of the architecture and insight into applicability to other systems are presented in the rest of this paper. Future integration with an EPICS (Experimental Physics Industrial Control System) based mini-CODAC (Control, Data Access and Communication) SCADA system is under consideration, and integration considerations will be briefly introduced.« less
Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites
NASA Astrophysics Data System (ADS)
Borkowski, Luke; Chattopadhyay, Aditi
2014-03-01
Physics-based wave propagation computational models play a key role in structural health monitoring (SHM) and the development of improved damage quantification methodologies. Guided waves (GWs), such as Lamb waves, provide the capability to monitor large plate-like aerospace structures with limited actuators and sensors and are sensitive to small scale damage; however due to the complex nature of GWs, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, the local interaction simulation approach (LISA) coupled with the sharp interface model (SIM) solution methodology is used to solve the fully coupled electro-magneto-mechanical elastodynamic equations for the piezoelectric and piezomagnetic actuation and sensing of GWs in fiber reinforced composite material systems. The final framework provides the full three-dimensional displacement as well as electrical and magnetic potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated experimentally and proven computationally efficient for a laminated composite plate. Studies are performed with surface bonded piezoelectric and embedded piezomagnetic sensors to gain insight into the physics of experimental techniques used for SHM. The symmetric collocation of piezoelectric actuators is modeled to demonstrate mode suppression in laminated composites for the purpose of damage detection. The effect of delamination and damage (i.e., matrix cracking) on the GW propagation is demonstrated and quantified. The developed model provides a valuable tool for the improvement of SHM techniques due to its proven accuracy and computational efficiency.
NASA Astrophysics Data System (ADS)
Kropf, M.; Pedrick, M.; Wang, X.; Tittmann, B. R.
2005-05-01
As per the recent advances in remote in situ monitoring of industrial equipment using long wire waveguides (~10m), novel applications of existing wave generation techniques and new acoustic modeling software have been used to advance waveguide technology. The amount of attainable information from an acoustic signal in such a system is limited by transmission through the waveguide along with frequency content of the generated waves. Magnetostrictive, and Electromagnetic generation techniques were investigated in order to maximize acoustic transmission along the waveguide and broaden the range of usable frequencies. Commercial EMAT, Magnetostrictive and piezoelectric disc transducers (through the innovative use of an acoustic horn) were utilized to generate waves in the wire waveguide. Insertion loss, frequency bandwidth and frequency range were examined for each technique. Electromagnetic techniques are shown to allow for higher frequency wave generation. This increases accessibility of dispersion curves providing further versatility in the selection of guided wave modes, thus increasing the sensitivity to physical characteristics of the specimen. Both electromagnetic and magnetostrictive transducers require the use of a ferromagnetic waveguide, typically coupled to a steel wire when considering long transmission lines (>2m). The interface between these wires introduces an acoustic transmission loss. Coupling designs were examined with acoustic finite element software (Coupled-Acoustic Piezoelectric Analysis). Simulations along with experimental results aided in the design of a novel joint which minimizes transmission loss. These advances result in the increased capability of remote sensing using wire waveguides.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.
Improved Speed Control System for the 87,000 HP Wind Tunnel Drive
NASA Technical Reports Server (NTRS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Improved speed control system for the 87,000 HP wind tunnel drive
NASA Astrophysics Data System (ADS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
NASA Astrophysics Data System (ADS)
Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.
2018-03-01
A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.
NASA Astrophysics Data System (ADS)
Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu
2017-04-01
High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.
NASA Technical Reports Server (NTRS)
Zanley, Nancy L.
1991-01-01
The NASA Science Internet (NSI) Network Operations Staff is responsible for providing reliable communication connectivity for the NASA science community. As the NSI user community expands, so does the demand for greater interoperability with users and resources on other networks (e.g., NSFnet, ESnet), both nationally and internationally. Coupled with the science community's demand for greater access to other resources is the demand for more reliable communication connectivity. Recognizing this, the NASA Science Internet Project Office (NSIPO) expands its Operations activities. By January 1990, Network Operations was equipped with a telephone hotline, and its staff was expanded to six Network Operations Analysts. These six analysts provide 24-hour-a-day, 7-day-a-week coverage to assist site managers with problem determination and resolution. The NSI Operations staff monitors network circuits and their associated routers. In most instances, NSI Operations diagnoses and reports problems before users realize a problem exists. Monitoring of the NSI TCP/IP Network is currently being done with Proteon's Overview monitoring system. The Overview monitoring system displays a map of the NSI network utilizing various colors to indicate the conditions of the components being monitored. Each node or site is polled via the Simple Network Monitoring Protocol (SNMP). If a circuit goes down, Overview alerts the Network Operations staff with an audible alarm and changes the color of the component. When an alert is received, Network Operations personnel immediately verify and diagnose the problem, coordinate repair with other networking service groups, track problems, and document problem and resolution into a trouble ticket data base. NSI Operations offers the NSI science community reliable connectivity by exercising prompt assessment and resolution of network problems.
Cloud-based privacy-preserving remote ECG monitoring and surveillance.
Page, Alex; Kocabas, Ovunc; Soyata, Tolga; Aktas, Mehmet; Couderc, Jean-Philippe
2015-07-01
The number of technical solutions for monitoring patients in their daily activities is expected to increase significantly in the near future. Blood pressure, heart rate, temperature, BMI, oxygen saturation, and electrolytes are few of the physiologic factors that will soon be available to patients and their physicians almost continuously. The availability and transfer of this information from the patient to the health provider raises privacy concerns. Moreover, current data encryption approaches expose patient data during processing, therefore restricting their utility in applications requiring data analysis. We propose a system that couples health monitoring techniques with analytic methods to permit the extraction of relevant information from patient data without compromising privacy. This proposal is based on the concept of fully homomorphic encryption (FHE). Since this technique is known to be resource-heavy, we develop a proof-of-concept to assess its practicality. Results are presented from our prototype system, which mimics live QT monitoring and detection of drug-induced QT prolongation. Transferring FHE-encrypted QT and RR samples requires about 2 Mbps of network bandwidth per patient. Comparing FHE-encrypted values--for example, comparing QTc to a given threshold-runs quickly enough on modest hardware to alert the doctor of important results in real-time. We demonstrate that FHE could be used to securely transfer and analyze ambulatory health monitoring data. We present a unique concept that could represent a disruptive type of technology with broad applications to multiple monitoring devices. Future work will focus on performance optimizations to accelerate expansion to these other applications. © 2014 Wiley Periodicals, Inc.
Hubbell, Joel M.; Sisson, James B.
2002-01-01
The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.
A surface acoustic wave ICP sensor with good temperature stability.
Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng
2017-07-20
Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.
An Open Source Framework for Coupled Hydro-Hydrogeo-Chemical Systems in Catchment Research
NASA Astrophysics Data System (ADS)
Delfs, J.; Sachse, A.; Gayler, S.; Grathwohl, P.; He, W.; Jang, E.; Kalbacher, T.; Klein, C.; Kolditz, O.; Maier, U.; Priesack, E.; Rink, K.; Selle, B.; Shao, H.; Singh, A. K.; Streck, T.; Sun, Y.; Wang, W.; Walther, M.
2013-12-01
This poster presents an open-source framework designed to assist water scientists in the study of catchment hydraulic functions with associated chemical processes, e.g. contaminant degradation, plant nutrient turnover. The model successfully calculates the feedbacks between surface water, subsurface water and air in standard benchmarks. In specific model applications to heterogeneous catchments, subsurface water is driven by density variations and runs through double porous media. Software codes of water science are tightly coupled by iteration, namely the Storm Water Management Model (SWMM) for urban runoff, Expert-N for simulating water fluxes and nutrient turnover in agricultural and forested soils, and OpenGeoSys (OGS) for groundwater. The coupled model calculates flow of hydrostatic shallow water over the land surface with finite volume and difference methods. The flow equations for water in the porous subsurface are discretized in space with finite elements. Chemical components are transferred through 1D, 2D or 3D watershed representations with advection-dispersion solvers or, as an alternative, random walk particle tracking. A transport solver can be in sequence with a chemical solver, e.g. PHREEQ-C, BRNS, additionally. Besides coupled partial differential equations, the concept of hydrological response units is employed in simulations at regional scale with scarce data availability. In this case, a conceptual hydrological model, specifically the Jena Adaptable Modeling System (JAMS), passes groundwater recharge through a software interface into OGS, which solves the partial differential equations of groundwater flow. Most components of the modeling framework are open source and can be modified for individual purposes. Applications range from temperate climate regions in Germany (Ammer catchment and Hessian Ried) to arid regions in the Middle East (Oman and Dead See). Some of the presented examples originate from intensively monitored research sites of the WESS research centre and the monitoring initiative TERENO. Other examples originate from the IWAS project on integrated water resources management. The model applications are primarily concerned with groundwater resources, which are endangered by overexploitation, intrusion of saltwater, and nitrate loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.
In 2008-2009, to address the carbon tetrachloride contamination detected on its former property, the CCC/USDA implemented a source area cleanup in accord with the document Interim Measure Work Plan/Design for Agra, Kansas (IMWP/D; Argonne 2008). The cleanup involves five large-diameter boreholes (LDBs) coupled with soil vapor extraction (SVE) and air sparge (AS) systems. The work plan was approved by the Kansas Department of Health and Environment (KDHE) in November 2008 (KDHE 2008b), and operation began in May 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.
In 2008-2009, to address the carbon tetrachloride contamination detected on its former property, the CCC/USDA implemented a source area cleanup in accord with the document Interim Measure Work Plan/Design for Agra, Kansas (IMWP/D; Argonne 2008). The cleanup involves five large-diameter boreholes (LDBs) coupled with soil vapor extraction (SVE) and air sparge (AS) systems. The work plan was approved by the Kansas Department of Health and Environment (KDHE) in November 2008 (KDHE 2008b), and operation began in May 2009.
A strip chart recorder pattern recognition tool kit for Shuttle operations
NASA Technical Reports Server (NTRS)
Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.
1993-01-01
During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.
A prototype detection system for atmospheric monitoring of xenon radioisotopes
NASA Astrophysics Data System (ADS)
Czyz, Steven A.; Farsoni, Abi T.; Ranjbar, Lily
2018-03-01
The design of a radioxenon detection system utilizing a CdZeTe crystal and a plastic scintillator coupled to an array of SiPMs to conduct beta-gamma coincidence detection for atmospheric radioxenon monitoring, as well as the measurement of 135Xe and 133/133mXe, have been detailed previously. This paper presents recent measurements of 133/133mXe and 131mXe and the observation of conversion electrons in their coincidence spectra, as well as a 48-hour background measurement to calculate the Minimum Detectable Concentration (MDC) of radioxenon isotopes in the system. The identification of Regions of Interest (ROIs) in the coincidence spectra yielded from the radioxenon measurements, and the subsequent calculation of the MDCs of the system for 135Xe, 133/133mXe, and 131mXe, are also discussed. Calculated MDCs show that the detection system preforms respectably when compared to other state of the art radioxenon detection systems and achieved an MDC of less than 1 mBq/m3 for 131mXe, 133Xe, and 133mXe, in accordance with limits set by the Comprehensive Nuclear-Test-Ban Treaty (CTBTO). The system also provides the advantage of room temperature operation, compactness, low noise operation and having simple readout electronics.
NASA Astrophysics Data System (ADS)
Hoi, Jennifer W.; Kim, Hyun K.; Khalil, Michael A.; Fong, Christopher J.; Marone, Alessandro; Shrikhande, Gautam; Hielscher, Andreas H.
2015-03-01
Dynamic optical tomographic imaging has shown promise in diagnosing and monitoring peripheral arterial disease (PAD), which affects 8 to 12 million in the United States. PAD is the narrowing of the arteries that supply blood to the lower extremities. Prolonged reduced blood flow to the foot leads to ulcers and gangrene, which makes placement of optical fibers for contact-based optical tomography systems difficult and cumbersome. Since many diabetic PAD patients have foot wounds, a non-contact interface is highly desirable. We present a novel non-contact dynamic continuous-wave optical tomographic imaging system that images the vasculature in the foot for evaluating PAD. The system images at up to 1Hz by delivering 2 wavelengths of light to the top of the foot at up to 20 source positions through collimated source fibers. Transmitted light is collected with an electron multiplying charge couple device (EMCCD) camera. We demonstrate that the system can resolve absorbers at various locations in a phantom study and show the system's first clinical 3D images of total hemoglobin changes in the foot during venous occlusion at the thigh. Our initial results indicate that this system is effective in capturing the vascular dynamics within the foot and can be used to diagnose and monitor treatment of PAD in diabetic patients.
NASA Astrophysics Data System (ADS)
Müller, Michelle; Maiwald, Verena; Thiele, Lothar; Beutel, Jan; Roman, Cosmin; Hierold, Christofer
2018-04-01
A micromechanical broadband vibration amplitude-amplifier for low power detection of acoustic emission signals is presented. It is based on a coupled mass-spring system and was fabricated in a two-level bulk microfabrication process. The device consists of ten resonators coupled in series, which decrease in mass by a factor of three each, to achieve a high amplification over a broad bandwidth. The fabrication process for this multiscale device is based on front- and backside etching of a silicon-on-insulator wafer. It enables coupling MEMS resonators of two different thicknesses with a weight ratio from largest to smallest mass of 26’244 and reduces die size by resonator stacking. The first ten eigenmodes of the device are in-plane and unidirectional. Steady-state and transient response of the device in comparison to a 1D lumped element model is presented. An average amplitude amplification of 295 over a bandwidth of 10.7 kHz (4.4-15.1 kHz) is achieved and can be reached in less than 1 ms. Applications are low-power detection of short broadband vibration signals e.g. for structural health monitoring (cliffs, pipelines, bridges).
A remotely interrogatable sensor for chemical monitoring
NASA Technical Reports Server (NTRS)
Stoyanov, P. G.; Doherty, S. A.; Grimes, C. A.; Seitz, W. R.
1998-01-01
A new type of continuously operating, in-situ, remotely monitored sensor is presented. The sensor is comprised of a thin film array of magnetostatically coupled, magnetically soft ferromagnetic thin film structures, adhered to or encased within a thin polymer layer. The polymer is made so that it swells or shrinks in response to the chemical analyte of interest, which in this case is pH. As the polymer swells or shrinks, the magnetostatic coupling between the magnetic elements changes, resulting in changes in the magnetic switching characteristics of the sensor. Placed within a sinusoidal magnetic field the magnetization vector of the coupled sensor elements periodically reverses directions, generating magnetic flux that can be remotely detected as a series of voltage spikes in appropriately placed pickup coils. one preliminary sensor design consists of four triangles, initially spaced approximately 50 micrometers apart, arranged to form a 12 mm x 12 mm square with the triangle tips centered at a common origin. Our preliminary work has focused on monitoring of pH using a lightly crosslinked pH sensitive polymer layer of hydroxyethylmethacrylate and 2-(dimethylamino) ethylmethacrylate. As the polymer swells or shrinks the magnetostatic coupling between the triangles changes, resulting in measurable changes in the amplitude of the detected voltage spirits.
NASA Astrophysics Data System (ADS)
Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric
2016-06-01
Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.
Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time
Gandelman, Olga A.; Church, Vicki L.; Moore, Cathy A.; Kiddle, Guy; Carne, Christopher A.; Parmar, Surendra; Jalal, Hamid; Tisi, Laurence C.; Murray, James A. H.
2010-01-01
Background The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Principal Findings Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. Conclusions The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings. PMID:21152399
NASA Astrophysics Data System (ADS)
Mann, Ian; Chi, Peter
2016-07-01
Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport, acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.
Tang, Dianping; Zhang, Bing; Liu, Bingqian; Chen, Guonan; Lu, Minghua
2014-05-15
A new digital multimeter (DMM)-based immunosensing system was designed for quantitative monitoring of biomarker (prostate-specific antigen, PSA used in this case) by coupling with an external capacitor and an enzymatic catalytic reaction. The system consisted of a salt bridge-linked reaction cell and a capacitor/DMM-joined electronic circuit. A sandwich-type immunoreaction with target PSA between the immobilized primary antibody and glucose oxidase (GOx)-labeled detection antibody was initially carried out in one of the two half-cells. Accompanying the sandwiched immunocomplex, the conjugated GOx could catalyze the oxidation of glucose, simultaneously resulting in the conversion of [Fe(CN)6](3-) to [Fe(CN)6](4-). The difference in the concentrations of [Fe(CN)6](3-)/[Fe(CN)6](4-) in two half-cells automatically produced a voltage that was utilized to charge an external capacitor. With the closing circuit switch, the capacitor discharged through the DMM, which could provide a high instantaneous current. Under the optimal conditions, the resulting currents was indirectly proportional to the concentration of target PSA in the dynamic range of 0.05-7 ng mL(-1) with a detection limit (LOD) of 6 pg mL(-1). The reproducibility, precision, and selectivity were acceptable. In addition, the methodology was validated by analyzing 12 clinical serum specimens, receiving a good accordance with the referenced values for the detection of PSA. Copyright © 2013 Elsevier B.V. All rights reserved.
Fiber-Coupled Acousto-Optical-Filter Spectrometer
NASA Technical Reports Server (NTRS)
Levin, Kenneth H.; Li, Frank Yanan
1993-01-01
Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.
Marko, Kathryn I; Krapf, Jill M; Meltzer, Andrew C; Oh, Julia; Ganju, Nihar; Martinez, Anjali G; Sheth, Sheetal G; Gaba, Nancy D
2016-11-18
Excessive weight gain and elevated blood pressure are significant risk factors for adverse pregnancy outcomes such as gestational diabetes, premature birth, and preeclampsia. More effective strategies to facilitate adherence to gestational weight gain goals and monitor blood pressure may have a positive health benefit for pregnant women and their babies. The impact of utilizing a remote patient monitoring system to monitor blood pressure and weight gain as a component of prenatal care has not been previously assessed. The objective of this study is to determine the feasibility of monitoring patients remotely in prenatal care using a mobile phone app and connected digital devices. In this prospective observational study, 8 women with low risk pregnancy in the first trimester were recruited at an urban academic medical center. Participants received a mobile phone app with a connected digital weight scale and blood pressure cuff for at-home data collection for the duration of pregnancy. At-home data was assessed for abnormal values of blood pressure or weight to generate clinical alerts to the patient and provider. As measures of the feasibility of the system, participants were studied for engagement with the app, accuracy of remote data, efficacy of alert system, and patient satisfaction. Patient engagement with the mobile app averaged 5.5 times per week over the 6-month study period. Weight data collection and blood pressure data collection averaged 1.5 times and 1.1 times per week, respectively. At-home measurements of weight and blood pressure were highly accurate compared to in-office measurements. Automatic clinical alerts identified two episodes of abnormal weight gain with no false triggers. Patients demonstrated high satisfaction with the system. In this pilot study, we demonstrated that a system using a mobile phone app coupled to remote monitoring devices is feasible for prenatal care. ©Kathryn I Marko, Jill M Krapf, Andrew C Meltzer, Julia Oh, Nihar Ganju, Anjali G Martinez, Sheetal G Sheth, Nancy D Gaba. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 18.11.2016.
Slavchev, Aleksandar; Kovacs, Zoltan; Koshiba, Haruki; Nagai, Airi; Bázár, György; Krastanov, Albert; Kubota, Yousuke; Tsenkova, Roumiana
2015-01-01
Development of efficient screening method coupled with cell functionality evaluation is highly needed in contemporary microbiology. The presented novel concept and fast non-destructive method brings in to play the water spectral pattern of the solution as a molecular fingerprint of the cell culture system. To elucidate the concept, NIR spectroscopy with Aquaphotomics were applied to monitor the growth of sixteen Lactobacillus bulgaricus one Lactobacillus pentosus and one Lactobacillus gasseri bacteria strains. Their growth rate, maximal optical density, low pH and bile tolerances were measured and further used as a reference data for analysis of the simultaneously acquired spectral data. The acquired spectral data in the region of 1100-1850nm was subjected to various multivariate data analyses - PCA, OPLS-DA, PLSR. The results showed high accuracy of bacteria strains classification according to their probiotic strength. Most informative spectral fingerprints covered the first overtone of water, emphasizing the relation of water molecular system to cell functionality.
Ryan, Michael J.
1988-01-01
A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.
Wang, Dongbin; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos
2015-04-01
This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5-10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2-4 h) without obvious shortcomings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coupled lagged ensemble weather- and river runoff prediction in complex Alpine terrain
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard; Kunstmann, Harald; Werhahn, Johannes
2013-04-01
It is still a challenge to predict fast reacting streamflow precipitation response in Alpine terrain. Civil protection measures require flood prediction in 24 - 48 lead time. This holds particularly true for the Ammer River region which was affected by century floods in 1999, 2003 and 2005. Since 2005 a coupled NWP/Hydrology model system is operated in simulating and predicting the Ammer River discharges. The Ammer River catchment is located in the Bavarian Ammergau Alps and alpine forelands, Germany. With elevations reaching 2185 m and annual mean precipitation between 1100 and 2000 mm it represents very demanding test ground for a river runoff prediction system. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. The major components of the system are the MM5 NWP model run at 3.5 km resolution and initialized twice a day, the hydrology model WaSiM-ETH run at 100 m resolution and Perl object environment (POE) implementing the networking and the system operation. Results obtained in the years 2005-2012 reveal that river runoff simulations depict already high correlation (NSC in range 0.53 and 0.95) with observed runoff in retrospective runs with monitored meteorology data, but suffer from errors in quantitative precipitation forecast (QPF) from the employed numerical weather prediction model. We evaluate the NWP model accuracy, especially the precipitation intensity, frequency and location and put a focus on the performance gain of bias adjustment procedures. We show how this enhanced QFP data help to reduce the uncertainty in the discharge prediction. In addition to the HND (Hochwassernachrichtendienst, Bayern) observations TERENO Longterm Observatory hydrometeorological observation data are available since 2011. They are used to evaluate the NWP performance and setup of a bias correction procedure based on ensemble postprocessing applying Bayesian (BMA) model averaging. We first present briefly the technical setup of the operational coupled lagged NWP/Hydrology model system and then focus on the evaluation of the NWP model, the BMA enhanced QPF and its application within the Ammer simulation system in the period 2011 - 2012
Optical cell monitoring system for underwater targets
NASA Astrophysics Data System (ADS)
Moon, SangJun; Manzur, Fahim; Manzur, Tariq; Demirci, Utkan
2008-10-01
We demonstrate a cell based detection system that could be used for monitoring an underwater target volume and environment using a microfluidic chip and charge-coupled-device (CCD). This technique allows us to capture specific cells and enumerate these cells on a large area on a microchip. The microfluidic chip and a lens-less imaging platform were then merged to monitor cell populations and morphologies as a system that may find use in distributed sensor networks. The chip, featuring surface chemistry and automatic cell imaging, was fabricated from a cover glass slide, double sided adhesive film and a transparent Polymethlymetacrylate (PMMA) slab. The optically clear chip allows detecting cells with a CCD sensor. These chips were fabricated with a laser cutter without the use of photolithography. We utilized CD4+ cells that are captured on the floor of a microfluidic chip due to the ability to address specific target cells using antibody-antigen binding. Captured CD4+ cells were imaged with a fluorescence microscope to verify the chip specificity and efficiency. We achieved 70.2 +/- 6.5% capturing efficiency and 88.8 +/- 5.4% specificity for CD4+ T lymphocytes (n = 9 devices). Bright field images of the captured cells in the 24 mm × 4 mm × 50 μm microfluidic chip were obtained with the CCD sensor in one second. We achieved an inexpensive system that rapidly captures cells and images them using a lens-less CCD system. This microfluidic device can be modified for use in single cell detection utilizing a cheap light-emitting diode (LED) chip instead of a wide range CCD system.
Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2009-01-01
In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.
Feasibility of Active Monitoring for Plate Coupling Using ACROSS
NASA Astrophysics Data System (ADS)
Yamaoka, K.; Watanabe, T.; Ikuta, R.
2004-12-01
Detectability of temporal changes in reflected wave from the boundary of subducting plates in Tokai district with active sources are studied. Based on rock experiments the change in the intensity of reflection wave can be caused by change in coupling between subducting and overriding plates. ACROSS (Accurately-Controlled Rountine-Operated Signal System) consists of sinusoidal vibration sources and receivers is proved to provide a data of excellent signal resolution. The following technical issues should be overcome to monitor the returned signal from boundaries of subducting plates. (1) Long term operation of the source. (2) Detection of temporal change. (3) Accurate estimation of source functions and their temporal change. First two issues have already overcome. We have already succeeded a long-term operation experiment with the ACROSS system in Awaji, Japan. The operation was carried out for 15 months with only minor troubles. Continuous signal during the experiment are successfully obtained. In the experiment we developed a technique to monitor the temporal change of travel time with a resolution of several tens of microseconds. The third issue is one of the most difficult problem for practical monitoring using artificial sources. In the 15-month experiment we correct the source function using the record of seismometers that were deployed around the source We also estimate the efficiency of the reflected wave detection using ACROSS system. We use a data of seismic exploration experiment by blasts that carried out above subducting plate in Tokai district. Clear reflection from the surface of the Philippine Sea plate is observed in the waveform. Assuming that the ACROSS source is installed at the same place of the blast source, the detectability of temporal variation of reflection wave can be estimated. As we have measured the variation of signal amplitude that depends on the distance from an ACROSS source, ground noise at seismic stations (receivers) provide us the signal-to-noise ratio for the signal from ACROSS. The resolution can be estimated only by the signal-to-noise ratio. We surveyed the noise level at the place where reflection from the boundary of subducting Philippine Sea Plate can be detected. The results show that the resolution will be better than 1% in amplitude and 0.1milisecond in travel time for the stacking of one week using three-unit source and ten-elements receiver arrays.
NASA Astrophysics Data System (ADS)
Chang, H.; Thiers, P.; Netusil, N. R.; Yeakley, J. A.; Rollwagen-Bollens, G.; Bollens, S. M.; Singh, S.
2013-06-01
We investigate relationships between environmental governance and water quality in two adjacent, growing metropolitan areas in the western US. While the Portland, Oregon and Vancouver, Washington metro areas share many biophysical characteristics, they have different land development histories and water governance structures, providing a unique opportunity for examining a coupled human and natural system (CHANS). We conceptualize feedback loops in which water quality influences governance directly, using monitoring efforts as a metric, and indirectly, using the metric of changes in the sale price of single-family residential properties. Governance then influences water quality directly through, for example, changes in the monitoring regime and riparian restoration and indirectly through land use policy. We investigate these hypotheses by presenting evidence of these linkages. Our results show that changes in monitoring regimes and land use differed in response to differences in governance systems. On the other hand, property sale prices increased in response to water quality improvement for both studied watersheds. Our results show that sales prices responded positively to improved water quality (i.e. DO) in both cities. Furthermore, riparian restoration efforts improved over time for both cities, indicating the positive effect of governance on this land-based resource that may result in improved water quality. However, as of yet, there were no substantial differences across study areas in changes in water temperature over time. While urban areas expanded more than 20% over 24 yr, water temperature did not change. The mechanisms by which water quality was maintained was similar in the sense that both cities benefited from riparian restoration, but different in the sense that Portland benefitted indirectly from land use policy. A combination of a long-term legacy effect of land development and a relatively short history of riparian restoration in both the Portland and Vancouver regions may have masked any subtle differences in both regions. An alternative explanation is that both cities exhibited combinations of positive indirect and direct water quality governance that resulted in maintenance of water quality in the face of increased urban growth. These findings suggest that a long-term water quality monitoring effort is needed to identify the effectiveness of alternative land development and water governance policies.
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.
Modelling impacts and recovery in benthic communities exposed to localised high CO2.
Lessin, Gennadi; Artioli, Yuri; Queirós, Ana M; Widdicombe, Stephen; Blackford, Jerry C
2016-08-15
Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of a novel noninvasive spectrometer for pesticide residues monitor
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-11-01
Although the gas or liquid chromatography had been widely used into pesticide residues monitoring, some drawbacks such as time-consuming, complicated operation and especially the destructivity for samples were existed. To overcome the limits of destructive detection methods, the noninvasive detection method based on spectroscopy was used to detect the pesticide residues in this paper. To overcome low resolution and light-efficiency due to the drawbacks of the classical plane and holography concave gratings, a novel noninvasive spectrometer for pesticide residues monitor (PRM) based on volume holography transmission (VHT) grating was designed. Meanwhile, a custom-built splitting light system for PRM based on the VHT grating was developed. In addition, the linear charge coupled device (CCD) with combined data acquisition (DAQ) card and the virtual-PRM based on LabVIEW were respectively used as the spectral acquisition hardware and software-platform. Experimental results showed that the spectral resolution of this spectrometer reached 2nm, and the VHT grating's diffraction efficiency was gotten via the simulation experiment.
Acoustic emission monitoring system
Romrell, Delwin M.
1977-07-05
Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227
Searching for optical transients in real-time : the RAPTOR experiment /.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vestrand, W. T.; Borozdin, K. N.; Brumby, Steven P.
2002-01-01
A rich, but relatively unexplored, region in optical astronomy is the study of transients with durations of less than a day. We describe a wide-field optical monitoring system, RAPTOR, which is designed to identify and make follow-up observations of optical transients in real-time. The system is composed of an array of telescopes that continuously monitor about 1500 square degrees of the sky for transients down to about 12' magnitude in 60 seconds and a central fovea telescope that can reach 16{approx}m' agnitude in 60 seconds. Coupled to the telescope array is a real-time data analysis pipeline that is designed tomore » identify transients on timescales of seconds. In a manner analogous to human vision, the entire array is mounted on a rapidly slewing robotic mount so that the fovea of the array can be rapidly directed at transients identified by the wide-field system. The goal of the project is to develop a ground-based optical system that can reliably identify transients in real-time and ultimately generate alerts with source locations to enable follow-up observations wilh other, larger, telescopes.« less
Pinghung Wei; Raj, Milan; Yung-Yu Hsu; Morey, Briana; DePetrillo, Paolo; McGrane, Bryan; Xianyan Wang; Lin, Monica; Keen, Bryan; Papakyrikos, Cole; Lowe, Jared; Ghaffari, Roozbeh
2014-01-01
In this paper, we present a stretchable wearable system capable of i) measuring multiple physiological parameters and ii) transmitting data via radio frequency to a smart phone. The electrical architecture consists of ultra thin sensors (<; 20 μm thick) and a conformal network of associated active and passive electronics in a mesh-like geometry that can mechanically couple with the curvilinear surfaces of the human body. Spring-like metal interconnects between individual chips on board the device allow the system to accommodate strains approaching ~30% A representative example of a smart patch that measures movement and electromyography (EMG) signals highlights the utility of this new class of medical skin-mounted system in monitoring a broad range of neuromuscular and cardiovascular diseases.
Fault Management Technology Maturation for NASA's Constellation Program
NASA Technical Reports Server (NTRS)
Waterman, Robert D.
2010-01-01
This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.
Simple, affordable and sustainable borehole observatories for complex monitoring objectives
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.
2014-12-01
Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: the CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hotstab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to two weeks while sending the long-term data sets to shore. In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on German RV Sonne in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by ROV is planned for 2016.
Engineering research, development and technology FY99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R T
The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is tomore » develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF structural characterizations and analysis of large bridge structures for the State of California. Initial feasibility investigations into the development of monitoring and detection systems are described in the papers on imaging of underground structures with ground-penetrating radar, and the use of live insects as sensor platforms. These efforts are establishing the basic performance characteristics essential to the decision process for future development of sensor arrays for information gathering related to national security.« less
Mining the Sky for Explosive Optical Transients with Both Eyes Open
NASA Astrophysics Data System (ADS)
Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Davidoff, S.; Davis, H.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.
2004-09-01
While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as a minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution ``fovea'' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the ``fovea'' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the ``forest'' of false positives.
NASA Technical Reports Server (NTRS)
Holleman, Elizabeth; Sharp, David; Sheller, Richard; Styron, Jason
2007-01-01
This paper describes the application of a FUR Systems A40M infrared (IR) digital camera for thermal monitoring of a Liquid Oxygen (LOX) and Ethanol bi-propellant Reaction Control Engine (RCE) during Auxiliary Propulsion System (APS) testing at the National Aeronautics & Space Administration's (NASA) White Sands Test Facility (WSTF) near Las Cruces, New Mexico. Typically, NASA has relied mostly on the use of ThermoCouples (TC) for this type of thermal monitoring due to the variability of constraints required to accurately map rapidly changing temperatures from ambient to glowing hot chamber material. Obtaining accurate real-time temperatures in the JR spectrum is made even more elusive by the changing emissivity of the chamber material as it begins to glow. The parameters evaluated prior to APS testing included: (1) remote operation of the A40M camera using fiber optic Firewire signal sender and receiver units; (2) operation of the camera inside a Pelco explosion proof enclosure with a germanium window; (3) remote analog signal display for real-time monitoring; (4) remote digital data acquisition of the A40M's sensor information using FUR's ThermaCAM Researcher Pro 2.8 software; and (5) overall reliability of the system. An initial characterization report was prepared after the A40M characterization tests at Marshall Space Flight Center (MSFC) to document controlled heat source comparisons to calibrated TCs. Summary IR digital data recorded from WSTF's APS testing is included within this document along with findings, lessons learned, and recommendations for further usage as a monitoring tool for the development of rocket engines.
Mining the Sky for Explosive Optical Transients with Both Eyes Open
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vestrand, W.T.; Casperson, D.J.; Davis, H.
2004-09-28
While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as amore » minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution 'fovea' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the 'fovea' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the 'forest' of false positives.« less
Schwarz, A; Heumann, K G
2002-09-01
Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.
Content-addressable memory based enforcement of configurable policies
Berg, Michael J
2014-05-06
A monitoring device for monitoring transactions on a bus includes content-addressable memory ("CAM") and a response policy unit. The CAM includes an input coupled to receive a bus transaction tag based on bus traffic on the bus. The CAM stores data tags associated with rules of a security policy to compare the bus transaction tag to the data tags. The CAM generates an output signal indicating whether one or more matches occurred. The response policy unit is coupled to the CAM to receive the output signal from the CAM and to execute a policy action in response to the output signal.
The need for monitoring metabolic status
NASA Astrophysics Data System (ADS)
Vanderveen, John E.
2005-05-01
Modern military operations utilize complex technologies that require high levels of readiness and sustained cognitive and physical performance of combat military combat personnel. These military operations often depend on weapon systems that use advanced computer technology coupled with an array of sensors that provide continuous information on the battlefield environment and on equipment function. However there is a lack of real-time information on status of the personnel who control these systems and who are vital to mission success. Failure of the human element renders the weapon system useless so it is important to know if an individual is physically and cognitively fit to perform his or her task. Based on the premise that status of metabolic processes provide an early indication of a change in an individuals physiological status, monitoring of selective biomarkers of metabolism and organ function can provide insight on the individual"s ability to perform mission tasks. During combat individuals may not be aware that they have reached a compromised physiological condition due to dehydration, physical exertion, stress, fatigue, sleep deprivation, exposure to toxins or other condition that may affect physical and cognitive performance and health. Systems that can provide the individual or his or her commander with information about significant changes in one or more metabolic functions could permit timely intervention to correct the condition. In the event that serious injury has already occurred to an individual, metabolic monitoring can provide valuable intelligence needed for decisions on achieving mission objectives.
Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina
2014-01-01
Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839
Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina
2014-07-01
Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union.
Thermal protection system (TPS) monitoring using acoustic emission
NASA Astrophysics Data System (ADS)
Hurley, D. A.; Huston, D. R.; Fletcher, D. G.; Owens, W. P.
2011-04-01
This project investigates acoustic emission (AE) as a tool for monitoring the degradation of thermal protection systems (TPS). The AE sensors are part of an array of instrumentation on an inductively coupled plasma (ICP) torch designed for testing advanced thermal protection aerospace materials used for hypervelocity vehicles. AE are generated by stresses within the material, propagate as elastic stress waves, and can be detected with sensitive instrumentation. Graphite (POCO DFP-2) is used to study gas-surface interaction during degradation of thermal protection materials. The plasma is produced by a RF magnetic field driven by a 30kW power supply at 3.5 MHz, which creates a noisy environment with large spikes when powered on or off. AE are waveguided from source to sensor by a liquid-cooled copper probe used to position the graphite sample in the plasma stream. Preliminary testing was used to set filters and thresholds on the AE detection system (Physical Acoustics PCI-2) to minimize the impact of considerable operating noise. Testing results show good correlation between AE data and testing environment, which dictates the physics and chemistry of the thermal breakdown of the sample. Current efforts for the project are expanding the dataset and developing statistical analysis tools. This study shows the potential of AE as a powerful tool for analysis of thermal protection material thermal degradations with the unique capability of real-time, in-situ monitoring.
Near-real-time combustion monitoring for PCDD/PCDF indicators by GC-REMPI-TOFMS.
Gullett, Brian K; Oudejans, Lukas; Tabor, Dennis; Touati, Abderrahmane; Ryan, Shawn
2012-01-17
The boiler exit flue gas of a municipal waste combustor was sampled to evaluate an online monitoring system for chlorobenzene congeners as indicators of polychlorinated dibenzodioxin and dibenzofuran (PCDD/PCDF) concentrations. Continuous measurements of chlorobenzene congeners using gas chromatography coupled to a resonance-enhanced multiphoton ionization - time-of-flight mass spectrometry (GC-REMPI-TOFMS) system were compared over 5-min periods with conventional sampling methods for PCDD/PCDF. Three pairs of values were taken every hour over a period of three days to characterize the combustor's response to transient operating conditions (shutdowns and startups). Isolation of specific chlorobenzene congeners from other same-mass compounds was accomplished by using a GC column separator ahead of the REMPI-TOFMS. The 50-fold variation of PCDD/PCDF concentration was paralleled by similar changes in monitored compounds of 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,4,5-tetrachlorobenzene. A correlation of R = 0.85 and 0.89 was established between 40 pairs of simultaneous 5-min GC-REMPI-TOFMS measurements of 1,2,4-trichlorobenzene and 5 min conventional sampling and analysis for the TEQ and Total measures of PCDD/PCDF, respectively. The GC-REMPI-TOFMS system can be used to provide frequent measures of correlative PCDD/PCDF concentration thereby allowing for an understanding of measures to minimize PCDD/PCDF formation and develop operational feedback to limit emissions.
Yang, Jingjing; Li, Gaojie; Bishopp, Anthony; Heenatigala, P. P. M.; Hu, Shiqi; Chen, Yan; Wu, Zhigang; Kumar, Sunjeet; Duan, Pengfei; Yao, Lunguang; Hou, Hongwei
2018-01-01
Mercury (Hg) is a toxic heavy metal that can alter the ecological balance when it contaminates aquatic ecosystems. Previously, researchers have used various Lemnaceae species either to monitor and/or remove heavy metals from freshwater systems. As Hg contamination is a pressing issue for aquatic systems worldwide, we assessed its impact on the growth of three commonly species of Lemnaceae- Lemna gibba 6745, Lemna minor 6580 and Spirodela polyrhiza 5543. We exposed plants to different concentrations of mercuric chloride (HgCl2) and monitored their growth, including relative growth rate, frond number (FN), and fresh weight (FW). These data were coupled with measurements of starch content, levels of photosynthetic pigment and the activities of antioxidant substances. The growth of all three lines showed significant negative correlations with Hg concentrations, and starch content, photosynthetic pigment, soluble protein and antioxidant enzymes levels were all clearly affected. Our results indicate that the L. gibba line used in this study was the most suitable of the three for biomonitoring of water contaminated with Hg. Accumulation of Hg was highest in the S. polyrhiza line with a bioconcentration factor over 1,000, making this line the most suitable of the three tested for use in an Hg bioremediation system. PMID:29713627
Yang, Jingjing; Li, Gaojie; Bishopp, Anthony; Heenatigala, P P M; Hu, Shiqi; Chen, Yan; Wu, Zhigang; Kumar, Sunjeet; Duan, Pengfei; Yao, Lunguang; Hou, Hongwei
2018-01-01
Mercury (Hg) is a toxic heavy metal that can alter the ecological balance when it contaminates aquatic ecosystems. Previously, researchers have used various Lemnaceae species either to monitor and/or remove heavy metals from freshwater systems. As Hg contamination is a pressing issue for aquatic systems worldwide, we assessed its impact on the growth of three commonly species of Lemnaceae - Lemna gibba 6745 , Lemna minor 6580 and Spirodela polyrhiza 5543. We exposed plants to different concentrations of mercuric chloride (HgCl 2 ) and monitored their growth, including relative growth rate, frond number (FN), and fresh weight (FW). These data were coupled with measurements of starch content, levels of photosynthetic pigment and the activities of antioxidant substances. The growth of all three lines showed significant negative correlations with Hg concentrations, and starch content, photosynthetic pigment, soluble protein and antioxidant enzymes levels were all clearly affected. Our results indicate that the L. gibba line used in this study was the most suitable of the three for biomonitoring of water contaminated with Hg. Accumulation of Hg was highest in the S. polyrhiza line with a bioconcentration factor over 1,000, making this line the most suitable of the three tested for use in an Hg bioremediation system.
NASA Astrophysics Data System (ADS)
Yang, Jingjing; Li, Gaojie; Bishopp, Anthony; Heenatigala, P. P. M.; Hu, Shiqi; Chen, Yan; Wu, Zhigang; Kumar, Sunjeet; Duan, Pengfei; Yao, Lunguang; Hou, Hongwei
2018-04-01
Mercury (Hg) is a toxic heavy metal that can alter the ecological balance when it contaminates aquatic ecosystems. Previously, researchers have used various Lemnaceae species either to monitor and/or remove heavy metals from freshwater systems. As Hg contamination is a pressing issue for aquatic systems worldwide, we assessed its impact on the growth of three commonly species of Lemnaceae - Lemna gibba 6745, Lemna minor 6580 and Spirodela polyrhiza 5543. We exposed plants to different concentrations of mercuric chloride (HgCl2) and monitored their growth, including relative growth rate, frond number, and fresh weight. These data were coupled with measurements of starch content, levels of photosynthetic pigment and the activities of antioxidant substances. The growth of all three lines showed significant negative correlations with Hg concentrations, and starch content, photosynthetic pigment, soluble protein and antioxidant enzymes levels were all clearly affected. Our results indicate that the L. gibba line used in this study was the most suitable of the three for biomonitoring of water contaminated with Hg. Accumulation of Hg was highest in the S. polyrhiza line with a bioconcentration factor over 1000, making this line the most suitable of the three tested for use in an Hg bioremediation system.
A pilot study on diagnostic sensor networks for structure health monitoring.
DOT National Transportation Integrated Search
2013-08-01
The proposal was submitted in an effort to obtain some preliminary results on using sensor networks for real-time structure health : monitoring. The proposed work has twofold: to develop and validate an elective algorithm for the diagnosis of coupled...
REMOTE BIOSENSOR FOR IN SITU MONITORING OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)
A remote electrochemical biosensor for field monitoring of organophosphate nerve agents is described. The new sensor relies on the coupling of the effective biocatalytic action of organophosphorus hydrolase (OPH) with a submersible amperometric probe design. This combination resu...
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1984-01-01
The X-29A aircraft is the first manned, experimental high-performance aircraft to be fabricated and flown in many years. The approach for expanding the X-29 flight envelope and collecting research data is described including the methods for monitoring wind divergence, flutter, and aeroservoelastic coupling of the aerodynamic forces with the structure and the flight-control system. Examples of the type of flight data to be acquired are presented along with types of aircraft maneuvers that will be flown. A brief description of the program management structure is also presented and the program schedule is discussed.
Using lithium ion batteries in the aeromedical environment: a calculated risk?
Haggerty, Andrew; Keogh, Sean
2015-04-01
Lithium ion batteries are increasingly utilised within helicopter emergency medical services. Their favourable chemical profile confers many desirable properties: they are small, lightweight and provide a high specific capacity (energy to weight ratio) coupled with a slow self-discharge rate, ensuring a longer functional availability for vital equipment. They are frequently used in routine medical equipment including ventilators, monitors and intravenous pumps, and in aviation specific items, such as satellite and mobile phones, VHF radios and navigation systems. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Strongly localized donor level in oxygen doped gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, C.; Suski, T.; Ager, J.W. III
1996-08-01
A classification in terms of localization of donor defects in GaN is performed by Raman spectroscopy under large hydrostatic pressure. We observe a significant decrease of free carrier concentration in highly O doped GaN epitaxial films at 22 GPa, indicating the presence of a strongly localized donor defect at large pressure. Monitoring the phonon plasmon coupled mode, we find similarities with results on highly n-type bulk crystals. We refine the model of localized defects in GaN and transfer it to the AlGaN system.
Movement measurement of isolated skeletal muscle using imaging microscopy
NASA Astrophysics Data System (ADS)
Elias, David; Zepeda, Hugo; Leija, Lorenzo S.; Sossa, Humberto; de la Rosa, Jose I.
1997-05-01
An imaging-microscopy methodology to measure contraction movement in chemically stimulated crustacean skeletal muscle, whose movement speed is about 0.02 mm/s is presented. For this, a CCD camera coupled to a microscope and a high speed digital image acquisition system, allowing us to capture 960 images per second are used. The images are digitally processed in a PC and displayed in a video monitor. A maximal field of 0.198 X 0.198 mm2 and a spatial resolution of 3.5 micrometers are obtained.
Detection of Ionospheric Alfven Resonator Signatures in the Equatorial Ionosphere
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven;
2012-01-01
The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfven resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfven wave propagation, and troposphere24 ionosphere-magnetosphere coupling mechanisms.
Beam based measurement of beam position monitor electrode gains
NASA Astrophysics Data System (ADS)
Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.
2010-09-01
Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.
Photoacoustic detection of induced melanoma in vitro using a mouse model
NASA Astrophysics Data System (ADS)
Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.
2012-03-01
Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.
NASA Astrophysics Data System (ADS)
Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.
2018-02-01
Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.
Operational Monitoring and Forecasting in Regional Seas: the Aegean Sea example
NASA Astrophysics Data System (ADS)
Nittis, K.; Perivoliotis, L.; Zervakis, V.; Papadopoulos, A.; Tziavos, C.
2003-04-01
The increasing economic activities in the coastal zone and the associated pressure on the marine environment have raised the interest on monitoring systems able to provide supporting information for its effective management and protection. Such an integrated monitoring, forecasting and information system is being developed during the past years in the Aegean Sea. Its main component is the POSEIDON network that provides real-time data for meteorological and surface oceanographic parameters (waves, currents, hydrological and biochemical data) from 11 fixed oceanographic buoys. The numerical forecasting system is composed by an ETA atmospheric model, a WAM wave model and a POM hydrodynamic model that provide every day 72 hours forecasts. The system is operational since May 2000 and its products are published through Internet while a sub-set is also available through cellular telephony. New type of observing platforms will be available in the near future through a number of EU funded research projects. The Mediterranean Moored Multi-sensor Array (M3A) that was developed for the needs of the Mediterranean Forecasting System and was tested during 2000-2001 will be operational in 2004 during the MFSTEP project. The M3A system incorporates sensors for optical and chemical measurements (Oxygen, Turbidity, Chlorophyll-a, Nutrients and PAR) in the euphotic zone (0-100m) together with sensors for physical parameters (Temperature, Salinity, Current speed and direction) at the 0-500m layer. A Ferry-Box system will also operate during 2004 in the southern Aegean Sea, providing surface data for physical and bio-chemical properties. The ongoing modeling efforts include coupling with larger scale circulation models of the Mediterranean, high-resolution downscaling to coastal areas of the Aegean Sea and development of multi-variate data assimilation methods.
Visualization of stress wave propagation via air-coupled acoustic emission sensors
NASA Astrophysics Data System (ADS)
Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan
2017-02-01
We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.
Zhu, Zuhao; Zheng, Airong
2018-02-23
A method for daily monitoring of yttrium and rare earth elements (YREEs) in seawater using a cheap flow injection system online coupled to inductively coupled plasma-mass spectrometry is reported. Toyopearl AF Chelate 650M ® resin permits separation and concentration of YREEs using a simple external calibration. A running cycle consumed 6 mL sample and took 5.3 min, providing a throughput of 11 samples per hour. Linear ranges were up to 200 ng kg -1 except Tm (100 ng kg -1 ). The precision of the method was <6% (RSDs, n = 5), and recoveries ranged from 93% to 106%. Limits of detection (LODs) were in the range 0.002 ng kg -1 (Tm) to 0.078 ng kg -1 (Ce). Good agreement between YREEs concentrations in CASS-4 and SLEW-3 obtained in this work and results from other studies was observed. The proposed method was applied to the determination of YREEs in seawater from the Jiulong River Estuary and the Taiwan Strait.
Markert, Michael; Trautmann, Thomas; Krause, Florian; Cioaga, Marius; Mouriot, Sebastien; Wetzel, Miriam; Guth, Brian D
2018-03-26
A newly developed total implant telemetry system for cardiovascular (CV), electrophysiological and body temperature measurement was evaluated. A cloud-based transmission of the physiological signals allowed an assessment of the quality of the physiological signals despite the physical separation between the instrumented animals and the evaluating home laboratory. The new system is intended to be used for safety pharmacological evaluations of drug candidates in various species. Two female minipigs, 6 Labrador-mixed breed dogs and 4 female Cynomolgus monkeys were instrumented with a newly developed total implant system (TSE SYSTEMS). The implants feature a microprocessor, internal memory (1 GB), 2 solid state pressure-tipped catheters, amplifiers and a radio transmitter. Sampling rates for each measurement can be selected within a range between 0.1 and 1 kHz. Biological signals are selected in a programmable fashion on a session-by-session basis according to a user-defined protocol. The pressure sensors are at the tip of an electrical lead having a length customized to each species. Core temperature measurement and activity monitoring (3D accelerometer) are included in the system. Digital transmission range using a single antenna is 5 m with up to 16 animals held together and monitored simultaneously. The range can be expanded with more antennas in an array coupled to a single receiver. The antenna/receiver station consists of a single USB powered mobile unit connected to a PC or laptop. The battery life provides 110 days of continuous recording. The dogs and minipigs were instrumented and monitored in Germany. A novel cloud-based data transmission system was developed to monitor the physiological signals in real-time from the Cynomolgus monkeys, still kept in Mauritius, from the data evaluation laboratory in Germany. After recovery from the surgical implantation, aortic pressure (AP), left ventricular pressure (LVP), ECG and body temperature were recorded for 24 hr monitoring sessions in all animals. Additionally, moxifloxacin (10, 30 and 100 mg/kg) was tested in the dog model using a modified Latin square cross-over study design. The implant was well tolerated and the animals recovered rapidly from the implantation procedure. Excellent signal quality was obtained and stable hemodynamic and electrophysiological parameters could be measured, with little signal artefact or drop-out, over 24 h in each species. After oral dosing of moxifloxacin to the dogs, a substantial, dose-dependent increase in the QT-interval duration could be shown, as anticipated for this agent. Cloud-based data acquisition from the animals in Mauritius and the data evaluation lab in Germany worked well. This new CV telemetry system provides a novel alternative to fluid-filled catheter telemetry systems and the coupling to a cloud-based data transmission allows for flexibility in the location of the instrumented animals and data acquisition and the location of the site for data analysis. For the first time it is technically feasible to conduct a CV safety pharmacology study in Cynomolgus monkeys without having to ship them long distances to the home laboratory. Copyright © 2018 Elsevier Inc. All rights reserved.
Schock, Michael R; Hyland, Robert N; Welch, Meghan M
2008-06-15
Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.
Hooke, Rebecca; Pearson, Andy; O'Hagan, John
2014-01-01
Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.
Evaluation of a new microphysical aerosol module in the ECMWF Integrated Forecasting System
NASA Astrophysics Data System (ADS)
Woodhouse, Matthew; Mann, Graham; Carslaw, Ken; Morcrette, Jean-Jacques; Schulz, Michael; Kinne, Stefan; Boucher, Olivier
2013-04-01
The Monitoring Atmospheric Composition and Climate II (MACC-II) project will provide a system for monitoring and predicting atmospheric composition. As part of the first phase of MACC, the GLOMAP-mode microphysical aerosol scheme (Mann et al., 2010, GMD) was incorporated within the ECMWF Integrated Forecasting System (IFS). The two-moment modal GLOMAP-mode scheme includes new particle formation, condensation, coagulation, cloud-processing, and wet and dry deposition. GLOMAP-mode is already incorporated as a module within the TOMCAT chemistry transport model and within the UK Met Office HadGEM3 general circulation model. The microphysical, process-based GLOMAP-mode scheme allows an improved representation of aerosol size and composition and can simulate aerosol evolution in the troposphere and stratosphere. The new aerosol forecasting and re-analysis system (known as IFS-GLOMAP) will also provide improved boundary conditions for regional air quality forecasts, and will benefit from assimilation of observed aerosol optical depths in near real time. Presented here is an evaluation of the performance of the IFS-GLOMAP system in comparison to in situ aerosol mass and number measurements, and remotely-sensed aerosol optical depth measurements. Future development will provide a fully-coupled chemistry-aerosol scheme, and the capability to resolve nitrate aerosol.
APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING
The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...
Assessing the potential impact to the aquatic environment from emerging contaminants, entails monitoring a complex mixture (pharmaceuticals, polar pesticides, industrial by- products and degradation products) in natural waters. The presence of these chemicals, often at ultra-trac...
HOW SHOULD RESEARCH AND MONITORING BE INTEGRATED
Scientific knowledge of Chesapeake Bay and tidal tributaries has accumulated over many years beginning mostly with descriptive surveys prior to the 1960's and 1970's and evolving towards a coupling of monitoring and research in recent years. This essay discusses the need to more ...
Real Time Distributed Embedded Oscillator Operating Frequency Monitoring
NASA Technical Reports Server (NTRS)
Pollock, Julie (Inventor); Oliver, Brett D. (Inventor); Brickner, Christopher (Inventor)
2013-01-01
A method for clock monitoring in a network is provided. The method comprises receiving a first network clock signal at a network device and comparing the first network clock signal to a local clock signal from a primary oscillator coupled to the network device.
Glass, F.M.; Wilson, H.N.
1959-02-17
Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.
Reuse Metrics for Object Oriented Software
NASA Technical Reports Server (NTRS)
Bieman, James M.
1998-01-01
One way to increase the quality of software products and the productivity of software development is to reuse existing software components when building new software systems. In order to monitor improvements in reuse, the level of reuse must be measured. In this NASA supported project we (1) derived a suite of metrics which quantify reuse attributes for object oriented, object based, and procedural software, (2) designed prototype tools to take these measurements in Ada, C++, Java, and C software, (3) evaluated the reuse in available software, (4) analyzed the relationship between coupling, cohesion, inheritance, and reuse, (5) collected object oriented software systems for our empirical analyses, and (6) developed quantitative criteria and methods for restructuring software to improve reusability.
Use telecommunications for real-time process control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zilberman, I.; Bigman, J.; Sela, I.
1996-05-01
Process operators design real-time accurate information to monitor and control product streams and to optimize unit operations. The challenge is how to cost-effectively install sophisticated analytical equipment in harsh environments such as process areas and maintain system reliability. Incorporating telecommunications technology with near infrared (NIR) spectroscopy may be the bridge to help operations achieve their online control goals. Coupling communications fiber optics with NIR analyzers enables the probe and sampling system to remain in the field and crucial analytical equipment to be remotely located in a general purpose area without specialized protection provisions. The case histories show how two refineriesmore » used NIR spectroscopy online to track octane levels for reformate streams.« less
Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts.
Babo-Rebelo, Mariana; Richter, Craig G; Tallon-Baudry, Catherine
2016-07-27
The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought ("I"), and on another scale to what degree they were thinking about themselves ("Me"). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the "I" and the "Me" dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN. The default network (DN) has been consistently associated with self-processing but also with autonomic regulation. We hypothesized that these two functions could be functionally coupled in the DN, inspired by theories according to which selfhood is grounded in the neural monitoring of internal organs. Using magnetoencephalography, we show that heartbeat-evoked responses (HERs) in the DN covary with the self-relatedness of ongoing spontaneous thoughts. HER amplitude in the ventral precuneus covaried with the "I" self-dimension, whereas HER amplitude in the ventromedial prefrontal cortex encoded the "Me" self-dimension. Our experimental results directly support theories rooting selfhood in the neural monitoring of internal organs. We propose a novel functional framework for the DN, where self-processing is coupled with physiological monitoring. Copyright © 2016 Babo-Rebelo et al.
Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts
Babo-Rebelo, Mariana; Richter, Craig G.
2016-01-01
The default network (DN) has been consistently associated with self-related cognition, but also to bodily state monitoring and autonomic regulation. We hypothesized that these two seemingly disparate functional roles of the DN are functionally coupled, in line with theories proposing that selfhood is grounded in the neural monitoring of internal organs, such as the heart. We measured with magnetoencephalograhy neural responses evoked by heartbeats while human participants freely mind-wandered. When interrupted by a visual stimulus at random intervals, participants scored the self-relatedness of the interrupted thought. They evaluated their involvement as the first-person perspective subject or agent in the thought (“I”), and on another scale to what degree they were thinking about themselves (“Me”). During the interrupted thought, neural responses to heartbeats in two regions of the DN, the ventral precuneus and the ventromedial prefrontal cortex, covaried, respectively, with the “I” and the “Me” dimensions of the self, even at the single-trial level. No covariation between self-relatedness and peripheral autonomic measures (heart rate, heart rate variability, pupil diameter, electrodermal activity, respiration rate, and phase) or alpha power was observed. Our results reveal a direct link between selfhood and neural responses to heartbeats in the DN and thus directly support theories grounding selfhood in the neural monitoring of visceral inputs. More generally, the tight functional coupling between self-related processing and cardiac monitoring observed here implies that, even in the absence of measured changes in peripheral bodily measures, physiological and cognitive functions have to be considered jointly in the DN. SIGNIFICANCE STATEMENT The default network (DN) has been consistently associated with self-processing but also with autonomic regulation. We hypothesized that these two functions could be functionally coupled in the DN, inspired by theories according to which selfhood is grounded in the neural monitoring of internal organs. Using magnetoencephalography, we show that heartbeat-evoked responses (HERs) in the DN covary with the self-relatedness of ongoing spontaneous thoughts. HER amplitude in the ventral precuneus covaried with the “I” self-dimension, whereas HER amplitude in the ventromedial prefrontal cortex encoded the “Me” self-dimension. Our experimental results directly support theories rooting selfhood in the neural monitoring of internal organs. We propose a novel functional framework for the DN, where self-processing is coupled with physiological monitoring. PMID:27466329
Adapting inland fisheries management to a changing climate
Paukert, Craig P.; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.
2016-01-01
Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.
Operational Interoperability Challenges on the Example of GEOSS and WIS
NASA Astrophysics Data System (ADS)
Heene, M.; Buesselberg, T.; Schroeder, D.; Brotzer, A.; Nativi, S.
2015-12-01
The following poster highlights the operational interoperability challenges on the example of Global Earth Observation System of Systems (GEOSS) and World Meteorological Organization Information System (WIS). At the heart of both systems is a catalogue of earth observation data, products and services but with different metadata management concepts. While in WIS a strong governance with an own metadata profile for the hundreds of thousands metadata records exists, GEOSS adopted a more open approach for the ten million records. Furthermore, the development of WIS - as an operational system - follows a roadmap with committed downwards compatibility while the GEOSS development process is more agile. The poster discusses how the interoperability can be reached for the different metadata management concepts and how a proxy concept helps to couple two different systems which follow a different development methodology. Furthermore, the poster highlights the importance of monitoring and backup concepts as a verification method for operational interoperability.
Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.
Puskar, Ljiljana; Tuckermann, Rudolf; Frosch, Torsten; Popp, Jürgen; Ly, Vanalysa; McNaughton, Don; Wood, Bayden R
2007-09-01
Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells. The spectra obtained have an excellent signal-to-noise ratio and demonstrate for the first time the utility of the technique as a diagnostic and monitoring tool for minute sample volumes of living animal cells.
Contrast enhancement for in vivo visible reflectance imaging of tissue oxygenation.
Crane, Nicole J; Schultz, Zachary D; Levin, Ira W
2007-08-01
Results are presented illustrating a straightforward algorithm to be used for real-time monitoring of oxygenation levels in blood cells and tissue based on the visible spectrum of hemoglobin. Absorbance images obtained from the visible reflection of white light through separate red and blue bandpass filters recorded by monochrome charge-coupled devices (CCDs) are combined to create enhanced images that suggest a quantitative correlation between the degree of oxygenated and deoxygenated hemoglobin in red blood cells. The filter bandpass regions are chosen specifically to mimic the color response of commercial 3-CCD cameras, representative of detectors with which the operating room laparoscopic tower systems are equipped. Adaptation of this filter approach is demonstrated for laparoscopic donor nephrectomies in which images are analyzed in terms of real-time in vivo monitoring of tissue oxygenation.
Bidmanova, Sarka; Kotlanova, Marketa; Rataj, Tomas; Damborsky, Jiri; Trtilek, Martin; Prokop, Zbynek
2016-10-15
An advanced optical biosensor was developed based on the enzymatic reaction with halogenated aliphatic hydrocarbons that is accompanied by the fluorescence change of pH indicator. The device is applicable for the detection of halogenated contaminants in water samples with pH ranging from 4 to 10 and temperature ranging from 5 to 60°C. Main advantages of the developed biosensor are small size (60×30×190mm(3)) and portability, which together with short measurement time of 1min belong to crucial attributes of analytical technique useful for routine environmental monitoring. The biosensor was successfully applied for the detection of several important halogenated pollutants under laboratory conditions, e.g., 1,2-dichloroethane, 1,2,3-trichloropropane and γ-hexachlorocyclohexane, with the limits of detection of 2.7, 1.4 and 12.1mgL(-1), respectively. The continuous monitoring was demonstrated by repetitive injection of halogenated compound into measurement solution. Consequently, field trials under environmental settings were performed. The presence of 1,2-dichloroethane (10mgL(-1)) was proved unambiguously on one of three potentially contaminated sites in Czech Republic, and the same contaminant was monitored on contaminated locality in Serbia. Equipped by Global Positioning System, the biosensor was used for creation of a precise map of contamination. Concentrations determined by biosensor and by gas chromatograph coupled with mass spectrometer exhibited the correlation coefficient of 0.92, providing a good confidence for the routine use of the biosensor system in both field screening and monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
A Method to Test the Effect of Environmental Cues on Mating Behavior in Drosophila melanogaster.
Gorter, Jenke A; Billeter, Jean-Christophe
2017-07-17
An individual's sexual drive is influenced by genotype, experience and environmental conditions. How these factors interact to modulate sexual behaviors remains poorly understood. In Drosophila melanogaster, environmental cues, such as food availability, affect mating activity offering a tractable system to investigate the mechanisms modulating sexual behavior. In D. melanogaster, environmental cues are often sensed via the chemosensory gustatory and olfactory systems. Here, we present a method to test the effect of environmental chemical cues on mating behavior. The assay consists of a small mating arena containing food medium and a mating couple. The mating frequency for each couple is continuously monitored for 24 h. Here we present the applicability of this assay to test environmental compounds from an external source through a pressurized air system as well as manipulation of the environmental components directly in the mating arena. The use of a pressurized air system is especially useful to test the effect of very volatile compounds, while manipulating components directly in the mating arena can be of value to ascertain a compound's presence. This assay can be adapted to answer questions about the influence of genetic and environmental cues on mating behavior and fecundity as well as other male and female reproductive behaviors.
Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances
NASA Technical Reports Server (NTRS)
Weyland, Mark; Golightly, Michael
1999-01-01
In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated space weather monitoring and alarm system--SPE exposure analysis system, an advanced space weather data distribution and display system, and a high-fidelity space weather simulation system. In addition, significant new real-time space weather data sets, which will enhance the forecasting and now-casting of near-Earth space environment conditions, are being made available through unique NASA-NOAA-USAF collaborations. These new data sets include coronal mass ejection monitoring by the Solar and Heliospheric Observatory (SOHO) and in-situ plasma and particle monitoring at the L1 libration point by the Solar Wind Monitor (SWIM) and Advanced Composition Explorer (ACE) spacecraft. Advanced real-time radiation monitoring data from charged particle telescopes and tissue equivalent proportional counters will also be available to assist crew and flight controllers in monitoring the external and intravehicular radiation environment.
Archimedean Spiral Pairs with no Electrical Connections as a Passive Wireless Implantable Sensor
Drazan, John F; Gunko, Aleksandra; Dion, Matthew; Abdoun, Omar; Cady, Nathaniel C; Connor, Kenneth A; Ledet, Eric H
2015-01-01
We have developed, modeled, fabricated, and tested a passive wireless sensor system that exhibits a linear frequency-displacement relationship. The displacement sensor is comprised of two anti-aligned Archimedean coils separated by an insulating dielectric layer. There are no electrical connections between the two coils and there are no onboard electronics. The two coils are inductively and capacitively coupled due to their close proximity. The sensor system is interrogated wirelessly by monitoring the return loss parameter from a vector network analyzer. The resonant frequency of the sensor is dependent on the displacement between the two coils. Due to changes in the inductive and capacitive coupling between the coils at different distances, the resonant frequency is modulated by coil separation. In a specified range, the frequency shift can be linearized with respect to coil separation. Batch fabrication techniques were used to fabricate copper coils for experimental testing with air as the dielectric. Through testing, we validated the performance of sensors as predicted within acceptable errors. Because of its simplicity, this displacement sensor has potential applications for in vivo sensing. PMID:27430033
Niehoff, Ann-Christin; Moosmann, Aline; Söbbing, Judith; Wiehe, Arno; Mulac, Dennis; Wehe, Christoph A; Reifschneider, Olga; Blaske, Franziska; Wagner, Sylvia; Sperling, Michael; von Briesen, Hagen; Langer, Klaus; Karst, Uwe
2014-01-01
In this study, the cellular uptake of the second generation photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) was investigated using laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) at a spatial resolution of 10 μm. To achieve high sensitivity, the photosensitizer was tagged with palladium. As a tumor model system, a 3D cell culture of the TKF-1 cell line was used. These tumor spheroids were incubated with the Pd-tagged photosensitizer embedded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to investigate the efficiency of nanoparticle based drug delivery. An accumulation of the drug in the first cell layers of the tumor spheroid was observed. In the case of nanoparticle based drug delivery, a significantly more homogeneous distribution of the photosensitizer was achieved, compared to tumor spheroids incubated with the dissolved photosensitizer without the nanoparticular drug delivery system. The infiltration depth of the Pd-tagged photosensitizer could not be increased with rising incubation time, which can be attributed to the adsorption of the photosensitizer onto cellular components.
Decoupling thermal, chemical, and mechanical strain components in thin films
NASA Astrophysics Data System (ADS)
Silberstein, Meredith; Crumlin, Ethan; Shao-Horn, Yang; Boyce, Mary
2011-03-01
Many electrochemical systems have performance which is affected by internal strains due to thermal and/or chemical stimuli. The bi-material curvature method is a means to quantify these thermal and chemical strains and their coupling with mechanical stress. In this method, a thin layer of the material of interest is deposited on a substrate of intermediate thickness. The composite assumes a curvature that depends on the mismatch strains between the substrate and film. The Stoney formula provides an explicit expression for the film stress as a function of the elastic substrate properties, film and substrate thickness, and curvature. Here we study two distinct materials systems: Nafion used as the polymer electrolyte in low temperature fuel cells, and epitaxial perovskite thin films used as a catalyst for the oxygen reduction reaction in solid oxide fuel cells. The thermal, chemical, and mechanical strains are quantitatively determined as functions of temperature and atmospheric conditions by monitoring the curvature evolution with changes in these parameters. The extent of coupling of the thermal and chemical strains with mechanical stress is evaluated by conducting the experiment at multiple substrate thicknesses.
Plasmonic bio-sensing for the Fenna-Matthews-Olson complex
NASA Astrophysics Data System (ADS)
Chen, Guang-Yin; Lambert, Neill; Shih, Yen-An; Liu, Meng-Han; Chen, Yueh-Nan; Nori, Franco
2017-01-01
We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that “site 5” in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems.
NASA Technical Reports Server (NTRS)
Wilder, Peter (Editor); Su, Z.; Robeling, R. A.; Schulz, J.; Holleman, I.; Levizzani, V.; Timmermans, W. J.; Rott, H.; Mognard-Campbell, N.; de Jeu, R.;
2011-01-01
Improving water management can make a significant contribution to achieving most of the Millennium Development Goals established by the UN General Assembly in 2000, especially those related to poverty, hunger, and major diseases. The World Summit on Sustainable Development (WSSD) in 2002 recognized this need. Water and sanitation in particular received great attention from the Summit. The Johannesburg Plan of Implementation recommended to improve water resources management and scientific understanding of the water cycle through joint cooperation and research. For this purpose, it is recommended to promote knowledge sharing, provide capacity building, and facilitate the transfer of technology including remote-sensing (RS) and satellite technologies, especially to developing countries and countries with economies in transition, and to support these countries in their efforts to monitor and assess the quantity and quality of water resources, for example, by establishing and/or further developing national monitoring networks and water resources databases and by developing relevant national indicators. The Johannesburg Plan also adopted integrated water resources management as the overarching concept in addressing and solving water-related issues. As a result of the commitments made in the Johannesburg Plan of Implementation, several global and regional initiatives have emerged. Current international initiatives such as the Global Monitoring for Environment and Security (GMES) program of the European Commission and the European Space Agency (ESA), and the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan, have all identified Earth observation (EO) of the water cycle as the key in helping to solve the world s water problems. The availability of spatial information on water quantity and quality will also enable closure of the water budget at river basin and continental scales to the point where effective water management is essential (e.g., as requested by the European Union s Water Framework Directive (WFD), as well as national policies). Geo-information science and EO are vital in achieving a better understanding of the water cycle and better monitoring, analysis, prediction, and management of the world s water resources. The major components of the water cycle of the Earth system and their possible observations are presented. Such observations are essential to understand the global water cycle and its variability, both spatially and temporally, and can only be achieved consistently by means of EOs. Additionally, such observations are essential to advance our understanding of coupling between the terrestrial, atmospheric, and oceanic branches of the water cycle, and how this coupling may influence climate variability and predictability. Water resources management directly interferes with the natural water cycle in the forms of building dams, reservoirs, water transfer systems, and irrigation systems that divert and redistribute part of the water storages and fluxes on land. The water cycle is mainly driven and coupled to the energy cycle in terms of phase changes of water (changes among liquid, water vapor, and solid phases) and transport of water by winds in addition to gravity and diffusion processes. The water-cycle components can be observed with in situ sensors as well as airborne and satellite sensors in terms of radiative quantities. Processing and conversion of these radiative signals are necessary to retrieve the water-cycle components.
Terrain Commander: a next-generation remote surveillance system
NASA Astrophysics Data System (ADS)
Finneral, Henry J.
2003-09-01
Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.
NASA Astrophysics Data System (ADS)
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-12-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-01-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065
Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M
2014-12-08
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery
NASA Technical Reports Server (NTRS)
Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.
2013-01-01
This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.
Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.
Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk
2017-02-01
The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.
NASA Astrophysics Data System (ADS)
Chinn, Pauline W. U.
2011-03-01
This response to Mitchell and Mueller's "A philosophical analysis of David Orr's theory of ecological literacy" comments on their critique of Orr's use of the phrase "ecological crisis" and what I perceive as their conflicting views of "crisis." I present my views on ecological crisis informed by standpoint theory and the definition of crisis as turning point. I connect the concept of turning point to tipping point as used in ecology to describe potentially irreversible changes in coupled social-ecological systems. I suggest that sustainable societies may provide models of adaptive learning in which monitoring of ecological phenomena is coupled to human behavior to mitigate threats to sustainability before a crisis/tipping point is reached. Finally, I discuss the Hawai`i State Department of Education's removal of its Indigenous science content standard Mālama I Ka `Āina, Sustainability and its continued use in community-based projects.
Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M
2018-02-01
We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.
Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro
2016-08-01
Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.
Precision PEP-II optics measurement with an SVD-enhanced Least-Square fitting
NASA Astrophysics Data System (ADS)
Yan, Y. T.; Cai, Y.
2006-03-01
A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the phase advances and the Local Green's functions as well as the coupling ellipses among BPMs. The local Green's functions are specified by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green's functions, the phase advances and the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and interaction point (IP) optics characteristics can be measured and displayed.