Sample records for monitoring system drilling

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudleson, B.; Arnold, M.; McCann, D.

    Rapid detection of unexpected drilling events requires continuous monitoring of drilling parameters. A major R and D program by a drilling contractor has led to the introduction of a computerized monitoring system on its offshore rigs. System includes advanced color graphics displays and new smart alarms to help both contractor and operator personnel detect and observe drilling events before they would normally be apparent with conventional rig instrumentation. This article describes a module of this monitoring system, which uses expert system technology to detect the earliest stages of drillstring washouts. Field results demonstrate the effectiveness of the smart alarm incorporatedmore » in the system. Early detection allows the driller to react before a twist-off results in expensive fishing operations.« less

  2. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    PubMed

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.

    PubMed

    Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim

    2014-01-01

    Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due to mixing. In situ thermogenic gas production at depths shallower 2000 mbsf is unlikely based on in situ temperature estimations between 81°C and 85°C and a cumulative time-temperature index of 0.23. In conclusion, the onboard SciGas data acquisition helps to provide a preliminary, qualitative evaluation of the gas composition, the in situ temperature and the possibility of gas migration.

  4. Downhole telemetry system

    DOEpatents

    Normann, R.A.; Kadlec, E.R.

    1994-11-08

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.

  5. Downhole telemetry system

    DOEpatents

    Normann, Randy A.; Kadlec, Emil R.

    1994-01-01

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.

  6. Colorado Water Watch: real-time groundwater monitoring for possible contamination from oil and gas activities.

    PubMed

    Son, Ji-Hee; Hanif, Asma; Dhanasekar, Ashwin; Carlson, Kenneth H

    2018-02-13

    Currently, only a few states in the USA (e.g., Colorado and Ohio) require mandatory baseline groundwater sampling from nearby groundwater wells prior to drilling a new oil or gas well. Colorado is the first state to regulate groundwater testing before and after drilling, which requires one pre-drilling sample and two additional post-drilling samples within 6-12 months and 5-6 years of drilling. However, the monitoring method is limited to the state's regulatory agency and to ex situ sampling, which offers only a snapshot in time. To overcome the limitations and increase monitoring performance, a new groundwater monitoring system, Colorado Water Watch (CWW), was introduced as a decision-making tool to support the state's regulatory agency and also to provide real-time groundwater quality data to both the industry and the public. The CWW uses simple in situ water quality sensors based on the surrogate sensing technology that employs an event detection system to screen the incoming data in near real-time.

  7. New mud gas monitoring system aboard D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki

    2013-04-01

    Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.

  8. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (Editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  9. Approach to in-process tool wear monitoring in drilling: Application of Kalman filter theory

    NASA Astrophysics Data System (ADS)

    He, Ning; Zhang, Youzhen; Pan, Liangxian

    1993-05-01

    The two parameters often used in adaptive control, tool wear and wear rate, are the important factors affecting machinability. In this paper, it is attempted to use the modern cybernetics to solve the in-process tool wear monitoring problem by applying the Kalman filter theory to monitor drill wear quantitatively. Based on the experimental results, a dynamic model, a measuring model and a measurement conversion model suitable for Kalman filter are established. It is proved that the monitoring system possesses complete observability but does not possess complete controllability. A discriminant for selecting the characteristic parameters is put forward. The thrust force Fz is selected as the characteristic parameter in monitoring the tool wear by this discriminant. The in-process Kalman filter drill wear monitoring system composed of force sensor microphotography and microcomputer is well established. The results obtained by the Kalman filter, the common indirect measuring method and the real drill wear measured by the aid of microphotography are compared. The result shows that the Kalman filter has high precision of measurement and the real time requirement can be satisfied.

  10. An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique

    NASA Astrophysics Data System (ADS)

    Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.

    2018-05-01

    To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.

  11. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  12. Seismic Monitoring Prior to and During DFDP-2 Drilling, Alpine Fault, New Zealand: Matched-Filter Detection Testing and the Real-Time Monitoring System

    NASA Astrophysics Data System (ADS)

    Boese, C. M.; Chamberlain, C. J.; Townend, J.

    2015-12-01

    In preparation for the second stage of the Deep Fault Drilling Project (DFDP) and as part of related research projects, borehole and surface seismic stations were installed near the intended DFDP-2 drill-site in the Whataroa Valley from late 2008. The final four borehole stations were installed within 1.2 km of the drill-site in early 2013 to provide near-field observations of any seismicity that occurred during drilling and thus provide input into operational decision-making processes if required. The basis for making operational decisions in response to any detected seismicity had been established as part of a safety review conducted in early 2014 and was implemented using a "traffic light" system, a communications plan, and other operational documents. Continuous real-time earthquake monitoring took place throughout the drilling period, between September and late December 2014, and involved a team of up to 15 seismologists working in shifts near the drill-site and overseas. Prior to drilling, records from 55 local earthquakes and 14 quarry blasts were used as master templates in a matched-filter detection algorithm to test the capabilities of the seismic network for detecting seismicity near the drill site. The newly detected microseismicity was clustered near the DFDP-1 drill site at Gaunt Creek, 7.4 km southwest of DFDP-2. Relocations of these detected events provide more information about the fault geometry in this area. Although no detectable seismicity occurred within 5 km of the drill site during the drilling period, the region is capable of generating earthquakes that would have required an operational response had they occurred while drilling was underway (including a M2.9 event northwest of Gaunt Creek on 15 August 2014). The largest event to occur while drilling was underway was of M4.5 and occurred approximately 40 km east of the DFDP-2 drill site. In this presentation, we summarize the setup and operations of the seismic network and discuss key aspects of seismicity recorded prior to and during drilling operations.

  13. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  14. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less

  15. Designing a monitoring network for contaminated ground water in fractured chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nativ, R.; Adar, E.M.; Becker, A.

    1999-01-01

    One of the challenges of monitoring network design in a fractured rock setting is the heterogeneity of the rocks. This paper summarizes the activities and problems associated with the monitoring of contaminated groundwater in porous, low-permeability fractured chalk in the Negev Desert, Israel. Preferential flow documented in the study area required siting the monitoring boreholes in the predominant fracture systems. Lineaments traced from aerial photographs were examined in the field to sort out the large-extension, through-going, multilayer fracture systems crossing the study area. At each proposed drilling site, these fractures were exposed below the sediment cover using trenches. Slanted boreholesmore » were drilled at a distance from the fracture systems so that each borehole would intersect the targeted fracture plane below the water table. Based on their short recovery period and contaminated ground water, these newly drilled, fracture-oriented boreholes appeared to be better connected to preferential flowpaths crossing the industrial site than the old boreholes existing on site. Other considerations concerning the drilling and logging of monitoring boreholes in a fractured media were: (1) coring provides better documentation of the vertical fracture distribution, but dry augering is less costly and enables immediate ground water sampling and the sampling of vadose rock for contaminant analysis; (2) caliper and TV camera logs appear to provide only partial information regarding the vertical fracture distribution; and (3) the information gained by deepening the monitoring boreholes and testing fractures crossing their uncased walls has to be carefully weighed against the risk of potential cross-contamination through the monitoring boreholes, which is enhanced in fractured media.« less

  16. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor drilling fluids? Once you... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What equipment is required to monitor drilling...

  17. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  19. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  20. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What equipment is required to monitor drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required to monitor...

  1. Blowout Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    C Language Integrated Production System (CLIPS), a NASA-developed software shell for developing expert systems, has been embedded in a PC-based expert system for training oil rig personnel in monitoring oil drilling. Oil drilling rigs if not properly maintained for possible blowouts pose hazards to human life, property and the environment may be destroyed. CLIPS is designed to permit the delivery of artificial intelligence on computer. A collection of rules is set up and, as facts become known, these rules are applied. In the Well Site Advisor, CLIPS provides the capability to accurately process, predict and interpret well data in a real time mode. CLIPS was provided to INTEQ by COSMIC.

  2. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release tomore » the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.« less

  3. Sea Bed Drilling Technology MARUM-MeBo: Overview on recent scientific drilling campaigns and technical developments

    NASA Astrophysics Data System (ADS)

    Freudenthal, Tim; Bergenthal, Markus; Bohrmann, Gerhard; Pape, Thomas; Kopf, Achim; Huhn-Frehers, Katrin; Gohl, Karsten; Wefer, Gerold

    2017-04-01

    The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for a drilling depth of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2016 it was deployed on 17 research expeditions and drilled about 3 km into different types of geology including carbonate and crystalline rocks, gas hydrates, glacial tills, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of about 70 %. We used the development and operational experiences of MARUM-MeBo70 for the development of a second generation drill rig MARUM-MeBo200. This drill rig is dedicated for conducting core drilling down to 200 m below sea floor. After successful sea trials in the North Sea in October 2014 the MeBo200 was used on a scientific expedition on the research vessel RV SONNE (SO247) in March/April 2016. During 12 deployments we drilled altogether 514 m in hemipelagic sediments with volcanic ashes as well as in muddy and sandy slide deposits off New Zealand. The average core recovery was about 54%. The maximum drilling depth was 105 m below sea floor. Developments for the MeBo drilling technology include the development of a pressure core barrel that was successfully deployed on two research expeditions so far. Bore hole logging adds to the coring capacity. Several autonomous logging probes have been developed in the last years for a deployment with MeBo in the logging while tripping mode - a sonic probe measuring in situ p-wave velocity being the latest development. Various bore hole monitoring systems where developed and deployed with the MeBo system. They allow for long-term monitoring of pressure variability within the sealed bore holes. References: Freudenthal, T and Wefer, G (2013) Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-2013

  4. Applications of optical sensing for laser cutting and drilling.

    PubMed

    Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C

    2002-08-20

    Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.

  5. KIGAM Seafloor Observation System (KISOS) for the baseline study in monitoring of gas hydrate test production in the Ulleung Basin, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Sung-rock; Chun, Jong-hwa

    2013-04-01

    For the baseline study in the monitoring gas hydrate test production in the Ulleung Basin, Korea Institute of Geoscience and Mineral Resources (KIGAM) has developed the KIGAM Seafloor Observation System (KISOS) for seafloor exploration using unmanned remotely operated vehicle connected with a ship by a cable. The KISOS consists of a transponder of an acoustic positioning system (USBL), a bottom finding pinger, still camera, video camera, water sampler, and measuring devices (methane, oxygen, CTD, and turbidity sensors) mounted on the unmanned ROV, and a sediment collecting device collecting sediment on the seafloor. It is very important to monitoring the environmental risks (gas leakage and production water/drilling mud discharge) which may be occurred during the gas hydrate test production drilling. The KISOS will be applied to solely conduct baseline study with the KIGAM seafloor monitoring system (KIMOS) of the Korean gas hydrate program in the future. The large scale of environmental monitoring program includes the environmental impact assessment such as seafloor disturbance and subsidence, detection of methane gas leakage around well and cold seep, methane bubbles and dissolved methane, change of marine environments, chemical factor variation of water column and seabed, diffusion of drilling mud and production water, and biological factors of biodiversity and marine habitats before and after drilling test well and nearby areas. The design of the baseline survey will be determined based on the result of SIMAP simulation in 2013. The baseline survey will be performed to provide the gas leakage and production water/drilling mud discharge before and after gas hydrate test production. The field data of the baseline study will be evaluated by the simulation and verification of SIMAP simulator in 2014. In the presentation, the authors would like introduce the configuration of KISOS and applicability to the seafloor observation for the gas hydrate test production in the Ulleung Basin. This work was financially supported by the the Ministry of Knowledge Economy(MKE) and Gas Hydrate R/D Organization(GHDO)

  6. Ambient changes in tracer concentrations from a multilevel monitoring system in Basalt

    USGS Publications Warehouse

    Bartholomay, Roy C.; Twining, Brian V.; Rose, Peter E.

    2014-01-01

    Starting in 2008, a 4-year tracer study was conducted to evaluate ambient changes in groundwater concentrations of a 1,3,6-naphthalene trisulfonate tracer that was added to drill water. Samples were collected under open borehole conditions and after installing a multilevel groundwater monitoring system completed with 11 discrete monitoring zones within dense and fractured basalt and sediment layers in the eastern Snake River aquifer. The study was done in cooperation with the U.S. Department of Energy to test whether ambient fracture flow conditions were sufficient to remove the effects of injected drill water prior to sample collection. Results from thief samples indicated that the tracer was present in minor concentrations 28 days after coring, but was not present 6 months after coring or 7 days after reaming the borehole. Results from sampling the multilevel monitoring system indicated that small concentrations of the tracer remained in 5 of 10 zones during some period after installation. All concentrations were several orders of magnitude lower than the initial concentrations in the drill water. The ports that had remnant concentrations of the tracer were either located near sediment layers or were located in dense basalt, which suggests limited groundwater flow near these ports. The ports completed in well-fractured and vesicular basalt had no detectable concentrations.

  7. Preliminary geologic framework developed for a proposed environmental monitoring study of a deep, unconventional Marcellus Shale drill site, Washington County, Pennsylvania

    USGS Publications Warehouse

    Stamm, Robert G.

    2018-06-08

    BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly completed. This was done for three principal reasons. First, there was an immediate need to know the distribution of the relatively undisturbed surface to near-surface bedrock geology and unconsolidated materials for the collection of baseline surface data prior to drill site development (drill pad access road, drill pad leveling) and later during monitoring associated with well drilling, well development, and well production. Second, it was necessary to know the bedrock geology to support the siting of: (1) multiple shallow groundwater monitoring wells (possibly as many as four) surrounding and located immediately adjacent to the drill pad, and (2) deep groundwater monitoring wells (possibly two) located at distance from the drill pad with one possibly being sited along one of the deviated production drill legs. Lastly, the framework geology would provide the lateral extent, thickness, lithology, and expected discontinuities of geologic units (to be parsed or grouped as hydrostratigraphic units) and regional structure trends as inputs into the groundwater model.This report provides the methodology of geologic data accumulation and aggregation, and its integration into a geographic information system (GIS) based program. The GIS program will allow multiple data to be exported in various formats (shapefiles [.shp], database files [.dbf], and Keyhole Markup Language files [.KML]) for use in surface and subsurface geologic site characterization, for sampling strategies, and for inputs for groundwater modeling.

  8. Evaluation of Electronic Counter-Countermeasures Training Using Microcomputer-Based Technology: Phase I. Basic Jamming Recognition.

    ERIC Educational Resources Information Center

    Gardner, Susan G.; Ellis, Burl D.

    Seven microcomputer-based training systems with videotape players/monitors were installed to provide electronic counter-countermeasures (ECCM) simulation training, drill and practice, and performance testing for three courses at a fleet combat training center. Narrated videotape presentations of simulated and live jamming followed by a drill and…

  9. Monroe, Utah, Hydrothermal System: Results from Drilling of Test Wells MC1 and MC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, D.S.; Harrison, Roger

    1978-10-01

    Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah hydrothermal system, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the hydrothermal system which may be used as a basis for selecting production wells.« less

  10. 30 CFR 250.457 - What equipment is required to monitor drilling fluids?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.457 What equipment is required... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What equipment is required to monitor drilling...

  11. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    NASA Astrophysics Data System (ADS)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  12. Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Elphic, Richard C.; Forgione, Joshua; White, Bruce; McMurray, Robert; Cook, Amanda M.; Bielawski, Richard; Fritzler, Erin L.; Thompson, Sarah J.; hide

    2016-01-01

    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method.

  13. Environmental Measurement-While-Drilling system for real-time field screening of contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, G.J.; Normann, R.A.; Bishop, L.B.

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ``steer`` the drill bit in or out hazardous zones. During measurement-while-drilling,more » down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented.« less

  14. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  15. The influence of drilling process automation on improvement of blasting works quality in open pit mining

    NASA Astrophysics Data System (ADS)

    Bodlak, Maciej; Dmytryk, Dominik; Mertuszka, Piotr; Szumny, Marcin; Tomkiewicz, Grzegorz

    2018-01-01

    The article describes the monitoring system of blasthole drilling process called HNS (Hole Navigation System), which was used in blasting works performed by Maxam Poland Ltd. Developed by Atlas Copco's, the HNS system - using satellite data - allows for a very accurate mapping of the designed grid of blastholes. The article presents the results of several conducted measurements of ground vibrations triggered by blasting, designed and performed using traditional technology and using the HNS system and shows first observations in this matter.

  16. Remote laser drilling and sampling system for the detection of concealed explosives

    NASA Astrophysics Data System (ADS)

    Wild, D.; Pschyklenk, L.; Theiß, C.; Holl, G.

    2017-05-01

    The detection of hazardous materials like explosives is a central issue in national security in the field of counterterrorism. One major task includes the development of new methods and sensor systems for the detection. Many existing remote or standoff methods like infrared or raman spectroscopy find their limits, if the hazardous material is concealed in an object. Imaging technologies using x-ray or terahertz radiation usually yield no information about the chemical content itself. However, the exact knowledge of the real threat potential of a suspicious object is crucial for disarming the device. A new approach deals with a laser drilling and sampling system for the use as verification detector for suspicious objects. Central part of the system is a miniaturised, diode pumped Nd:YAG laser oscillator-amplifier. The system allows drilling into most materials like metals, synthetics or textiles with bore hole diameters in the micron scale. During the drilling process, the hazardous material can be sampled for further investigation with suitable detection methods. In the reported work, laser induced breakdown spectroscopy (LIBS) is used to monitor the drilling process and to classify the drilled material. Also experiments were carried out to show the system's ability to not ignite even sensitive explosives like triacetone triperoxide (TATP). The detection of concealed hazardous material is shown for different explosives using liquid chromatography and ion mobility spectrometry.

  17. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, ormore » excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.« less

  18. The installation of a sub sea floor observatory using the sea floor drill rig MeBo

    NASA Astrophysics Data System (ADS)

    Wefer, G.; Freudenthal, T.; Kopf, A.

    2012-04-01

    Sea floor drill rigs that can be deployed from standard research vessels are bridging the gap between dedicated drill ships that are used for deep drillings in the range of several hundred meters below sea floor and conventional sampling tools like gravity corers, piston corer or dredges that only scratch the surface of the sea floor. A major advantage of such robotic drill rigs is that the drilling action is conducted from a stable platform at the sea bed independent of any ship movements due to waves, wind or currents. At the MARUM Center for Marine Environmental Sciences at the University of Bremen we developed the sea bed drill rig MeBo that can be deployed from standard research vessels. The drill rig is deployed on the sea floor and controlled from the vessel. Drilling tools for coring the sea floor down to 70 m can be stored on two magazines on the rig. A steel-armoured umbilical is used for lowering the rig to the sea bed in water depths up to 2000 m in the present system configuration. It was successfully operated on ten expeditions since 2005 and drilled more than 1000 m in different types of geology including hemipelagic mud, glacial till as well as sedimentary and crystalline rocks. MeBo boreholes be equipped with sensors and used for long term monitoring are planned. Depending on the scientific demands, a MeBoCORK monitoring system will allow in situ measurements of eg. temperature and pressure. The "MeBoCORK" will be equipped with data loggers and data transmission interface for reading out the collected data from the vessel. By additional payload installation on the MeBoCORK with an ROV it will be possible to increase the energy capacity as well as to conduct fluid sampling in the bore hole for geochemical analyses. It is planned to install a prototype of this additional payload with the MARUM ROV QUEST4000M during the following R/V SONNE cruise in July 2012.

  19. Comparison of Activity Profiles and Physiological Demands Between International Rugby Sevens Matches and Training.

    PubMed

    Higham, Dean G; Pyne, David B; Anson, Judith M; Hopkins, Will G; Eddy, Anthony

    2016-05-01

    The specificity of contemporary training practices of international rugby sevens players is unknown. We quantified the positional group-specific activity profiles and physiological demands of on-field training activities and compared these with match demands. Twenty-two international matches and 63 rugby-specific training drills were monitored in 25 backs and 17 forwards from a national squad of male rugby sevens players over a 21-month period. Drills were classified into 3 categories: low-intensity skill refining (n = 23 drills, 560 observations), moderate- to high-intensity skill refining (n = 28 drills, 600 observations), and game simulation (n = 12 drills, 365 observations). Movement patterns (via Global Positioning System devices) and physiological load (via heart rate monitors) were recorded for all activities, and the differences between training and matches were quantified using magnitude-based inferential statistics. Distance covered in total and at ≥3.5 m·s, maximal velocity, and frequency of accelerations and decelerations were lower for forwards during competition compared with those for backs by a small but practically important magnitude. No clear positional group differences were observed for physiological load during matches. Training demands exceeded match demands only for frequency of decelerations of forwards during moderate- to high-intensity skill-refining drills and only by a small amount. Accelerations and distance covered at ≥6 m·s were closer to match values for forwards than for backs during all training activities, but training drills consistently fell below the demands of international competition. Coaches could therefore improve physical and physiological specificity by increasing the movement demands and intensity of training drills.

  20. Accuracy study of computer-assisted drilling: the effect of bone density, drill bit characteristics, and use of a mechanical guide.

    PubMed

    Hüfner, T; Geerling, J; Oldag, G; Richter, M; Kfuri, M; Pohlemann, T; Krettek, C

    2005-01-01

    This study was designed to determine the clinical relevant accuracy of CT-based navigation for drilling. Experimental model. Laboratory. Twelve drills of varying lengths and diameters were tested with 2 different set-ups. Group 1 used free-hand navigated drilling technique with foam blocks equipped with titanium target points. Group 2 (control) used a newly developed 3-dimensional measurement device equipped with titanium target points with a fixed entry for the navigated drill to minimize bending forces. One examiner performed 690 navigated drillings using solely the monitor screen for control in both groups. The difference between the planned and the actual starting and target point (up to 150 mm distance) was measured (mm). Levene test and a nonpaired t test. Significance level was set as P < 0.05. The core accuracy of the navigation system measured with the 3-dimensional device was 0.5 mm. The mean distance from planned to actual entry points in group 1 was 1.3 (range, 0.6-3.4 mm). The mean distance between planned and actual target point was 3.4 (range, 1.7-5.8 mm). Free-hand navigated drilling showed an increased difference with increased length of the drill bits as well as with increased drilling channel for drill bits 2.5 and 3.2 mm and not for 3.5 and 4.5 mm (P < 0.05). The core accuracy of the navigation system is high. Compared with the navigated free-hand technique, the results suggest that drill bit deflection interferes directly with the precision. The precision is decreased when using small diameter and longer drill bits.

  1. Developing monitoring plans to detect spills related to natural gas production.

    PubMed

    Harris, Aubrey E; Hopkinson, Leslie; Soeder, Daniel J

    2016-11-01

    Surface water is at risk from Marcellus Shale operations because of chemical storage on drill pads during hydraulic fracturing operations, and the return of water high in total dissolved solids (up to 345 g/L) from shale gas production. This research evaluated how two commercial, off-the-shelf water quality sensors responded to simulated surface water pollution events associated with Marcellus Shale development. First, peak concentrations of contaminants from typical spill events in monitored watersheds were estimated using regression techniques. Laboratory measurements were then conducted to determine how standard in-stream instrumentation that monitor conductivity, pH, temperature, and dissolved oxygen responded to three potential spill materials: ethylene glycol (corrosion inhibitor), drilling mud, and produced water. Solutions ranging from 0 to 50 ppm of each spill material were assessed. Over this range, the specific conductivity increased on average by 19.9, 27.9, and 70 μS/cm for drilling mud, ethylene glycol, and produced water, respectively. On average, minor changes in pH (0.5-0.8) and dissolved oxygen (0.13-0.23 ppm) were observed. While continuous monitoring may be part of the strategy for detecting spills to surface water, these minor impacts to water quality highlight the difficulty in detecting spill events. When practical, sensors should be placed at the mouths of small watersheds where drilling activities or spill risks are present, as contaminant travel distance strongly affects concentrations in surface water systems.

  2. Small-scale mechanical characterization of viscoelastic adhesive systems

    NASA Astrophysics Data System (ADS)

    Shean, T. A. V.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical and experimental work.

  3. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  4. GOS hook type wells, directional planning, techniques applied and problems encountered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A /Azim, M.; Fahmy, H.; Salem, A.

    1995-10-01

    This paper addresses the various aspects of hook type wells introduced and drilled within GUPCO operations during he last two years. The first well of this category was October-G10, drilled in October 1992 from October ``G`` platform to a target point in the Nubia formation. Several wells of the same type have been drilled through 1993 and 1994. This group includes October-H1, Ramadan 3-57, July 62-69 and SB 374-3. Drilling hook type well profiles has resulted in increased production and more reserve recovery. The driving force behind using this profile was the reservoir requirements where it was required to hitmore » a target within few meters at a certain angle and direction. Torque and drag models have been used to optimize well path planning, resulting in lower torque and drag values. Daily pot appraisal of the drilling operations to monitor hole cleaning effectiveness. Combination of advanced steerable systems and PDC bits enabled GUPCO to drill these wells cost effectively.« less

  5. [Bone drilling simulation by three-dimensional imaging].

    PubMed

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  6. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system.

    PubMed

    Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Lee, Seung Hwan; Lim, Hoon; Lee, Seongpung; Yi, Byung-Ju; Chung, Jong Woo

    2017-10-01

    Surgical precision would be better achieved with the development of an anatomical monitoring and controlling robot system than by traditional surgery techniques alone. We evaluated the feasibility of robot-assisted mastoidectomy in terms of duration, precision, and safety. Human cadaveric study. We developed a multi-degree-of-freedom robot system for a surgical drill with a balancing arm. The drill system is manipulated by the surgeon, the motion of the drill burr is monitored by the image-guided system, and the brake is controlled by the robotic system. The system also includes an alarm as well as the brake to help avoid unexpected damage to vital structures. Experimental mastoidectomy was performed in 11 temporal bones of six cadavers. Parameters including duration and safety were assessed, as well as intraoperative damage, which was judged via pre- and post-operative computed tomography. The duration of mastoidectomy in our study was comparable with that required for chronic otitis media patients. Although minor damage, such as dura exposure without tearing, was noted, no critical damage to the facial nerve or other important structures was observed. When the brake system was set to 1 mm from the facial nerve, the postoperative average bone thicknesses of the facial nerve was 1.39, 1.41, 1.22, 1.41, and 1.55 mm in the lateral, posterior pyramidal and anterior, lateral, and posterior mastoid portions, respectively. Mastoidectomy can be successfully performed using our robot-assisted system while maintaining a pre-set limit of 1 mm in most cases. This system may thus be useful for more inexperienced surgeons. NA.

  7. Fiber sensors for control and health monitoring system for mining machinery

    NASA Astrophysics Data System (ADS)

    Claus, Richard O.; Gunther, Michael F.; Greene, Jonathan A.; Tran, Tuan A.; Murphy, Kent A.

    1994-05-01

    This paper describes initial results of a fiber optic-based sensor during on-site testing performed by FEORC and Fiber and Sensor Technologies at Ingersol-Rand. Advantages of the fiber optic sensor are a demonstrated enhanced survivability, higher sensitivity, smaller size, electromagnetic interference immunity, and reduced risk of explosion. The conventional wire strain gages typically survive only a few minutes attached to the drill steel and drive chain, while the fiber sensors described here have survived over 400 hours and are currently still functioning properly. The tests described include the demonstration of strain energy measurements on the drive chain and drill steel, and displacement measurements of the piston within the drifter. All of the sensors tested can be used as both a laboratory evaluation and testing tools, as well as being an integral part of a proposed control and health monitoring system.

  8. Calendar years 1989 and 1990 monitoring well installation program Y-12 plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-10-01

    This report documents the well-construction activities at the Y-12 Plant in Oak Ridge, Tennessee during 1989 and 1990. The well- construction program consisted of installing seventy-five monitoring wells. Geologists from ERCE (formally the Engineering, Design and Geosciences Group) and Martin Marietta Energy Systems (Energy Systems), supervised and documented well-construction activities and monitored for health and safety concerns. Sixty-seven monitoring wells were installed under the supervision of an ERCE geologist from March 1989 to September 1990. Beginning in September 1990, Energy Systems supervised drilling activities for eight monitoring wells, the last of which was completed in December 1990. 9 refs., 3more » figs., 2 tabs.« less

  9. VSAT: opening new horizons to oil and gas explorations

    NASA Astrophysics Data System (ADS)

    Al-Dhamen, Muhammad I.

    2002-08-01

    Whether exploring in the Empty Quarter, drilling offshore in the Gulf of Mexico, or monitoring gas pipelines or oil wells in the deserts, communications is a key element to the success of oil and gas operations. Secure, efficient communications is required between remote, isolated locations and head offices to report on work status, dispatch supplies and repairs, report on-site emergencies, transfer geophysical surveys and real-time drilling data. Drilling and exploration firms have traditionally used land-based terrestrial networks that rely on radio transmissions for voice and data communications to offshore platforms and remote deep desert drilling rigs. But these systems are inefficient and have proven inflexible with today's drilling and exploration communications demands, which include high-speed data access, telephone and video conferencing. In response, numerous oil and gas exploration entities working in deep waters and remote deep deserts have all tapped into what is an ideal solution for these needs: Very Small Aperture Terminal Systems (VSAT) for broadband access services. This led to the use of Satellite Communication Systems for a wide range of applications that were difficult to achieve in the past, such as real-time applications transmission of drilling data and seismic information. This paper provides a thorough analysis of opportunities for satellite technology solutions in support of oil and gas operations. Technologies, architecture, service, networking and application developments are discussed based upon real field experience. More specifically, the report addresses: VSAT Opportunities for the Oil and Gas Operations, Corporate Satellite Business Model Findings, Satellite Market Forecasts

  10. In situ study of the effect of ground source heat pump on shallow ground-water quality in the late Pleistocene terrace area of Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Uemura, K.; Akiba, Y.; Ota, M.

    2015-12-01

    The implementation of ground source heat pump (GSHP) systems has rapidly increased around the world, since they reduce carbon dioxide emissions and save electric energy. The GSHP system transfer heat into the geosphere zone when air conditioners are used to cool rooms or buildings. However, the effects of temperature increase on the quality of underground water has yet to be fully investigated. In order to reduce the risks of ground-water pollution by the installed GSHPs, it is important to evaluate the effect of temperature change on the ground-water quality. In this study, we installed a closed loop GSHP system on a heat exchange well along with a monitoring well drilled to measure ground-water quality and temperature. The monitoring well was drilled at 0.1cm away from the heat exchange well. We observed that changes of temperature in the heat exchange well affected the water quality, especially turbidity, in gravelly layer.

  11. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  12. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    PubMed Central

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  13. Pods: a Powder Delivery System for Mars In-situ Organic, Mineralogic and Isotopic Analysis Instruments

    NASA Technical Reports Server (NTRS)

    Saha, C. P.; Bryson, C. E.; Sarrazin, P.; Blake, D. F.

    2005-01-01

    Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.

  14. A Time Series Study of Lophelia pertusa and Reef Megafauna Responses to Drill Cuttings Exposure on the Norwegian Margin

    PubMed Central

    Purser, Autun

    2015-01-01

    As hotspots of local biodiversity in the deep sea, preservation of cold-water coral reef communities is of great importance. In European waters the most extensive reefs are found at depths of 300 – 500 m on the continental margin. In Norwegian waters many of these reefs are located in areas of interest for oil and gas exploration and production. In this study drilling was carried out in the Morvin drill field in proximity to a number of small Lophelia pertusa coral reefs (closest reefs 100 m upstream and 350 m downstream of point of waste drill material release). In a novel monitoring study, ROV video surveys of 9 reefs were conducted prior, during, immediately after and >1 year after drilling operations. Behavior of coral polyps inhabiting reefs exposed to differing concentrations of drill cuttings and drilling fluids (waste drilling material) were compared. Levels of expected exposure to these waste materials were determined for each reef by modelling drill cutting transport following release, using accurate in-situ hydrodynamic data collected during the drilling period and drill cutting discharge data as parameters of a dispersal model. The presence / absence of associate reef species (Acesta excavata, Paragorgia arborea and Primnoa resedaeformis) were also determined from each survey video. There were no significant differences in Lophelia pertusa polyp behavior in corals modelled to have been exposed to pulses of >25 ppm drill cutting material and those modelled to be exposed to negligible concentrations of material. From the video data collected, there were no observed degradations of reef structure over time, nor reductions of associate fauna abundance, regardless of modelled exposure concentration at any of the surveyed reefs. This study focused exclusively on adult fauna, and did not assess the potential hazard posed by waste drilling material to coral or other larvae. Video data was collected by various ROV’s, using different camera and lighting setups throughout the survey campaign, making comparison of observations prior, during and post drilling problematic. A standardization of video monitoring in future monitoring campaigns is recommended. PMID:26218658

  15. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  16. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  17. A cadaver study of mastoidectomy using an image‐guided human–robot collaborative control system

    PubMed Central

    Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Lee, Seung Hwan; Lim, Hoon; Lee, Seongpung

    2017-01-01

    Objective Surgical precision would be better achieved with the development of an anatomical monitoring and controlling robot system than by traditional surgery techniques alone. We evaluated the feasibility of robot‐assisted mastoidectomy in terms of duration, precision, and safety. Study Design Human cadaveric study. Materials and Methods We developed a multi‐degree‐of‐freedom robot system for a surgical drill with a balancing arm. The drill system is manipulated by the surgeon, the motion of the drill burr is monitored by the image‐guided system, and the brake is controlled by the robotic system. The system also includes an alarm as well as the brake to help avoid unexpected damage to vital structures. Experimental mastoidectomy was performed in 11 temporal bones of six cadavers. Parameters including duration and safety were assessed, as well as intraoperative damage, which was judged via pre‐ and post‐operative computed tomography. Results The duration of mastoidectomy in our study was comparable with that required for chronic otitis media patients. Although minor damage, such as dura exposure without tearing, was noted, no critical damage to the facial nerve or other important structures was observed. When the brake system was set to 1 mm from the facial nerve, the postoperative average bone thicknesses of the facial nerve was 1.39, 1.41, 1.22, 1.41, and 1.55 mm in the lateral, posterior pyramidal and anterior, lateral, and posterior mastoid portions, respectively. Conclusion Mastoidectomy can be successfully performed using our robot‐assisted system while maintaining a pre‐set limit of 1 mm in most cases. This system may thus be useful for more inexperienced surgeons. Level of Evidence NA. PMID:29094065

  18. Laser drilling of thermal barrier coated jet-engine components

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical and experimental work.

  19. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system wasmore » designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650°C, even exceeding 3000°C, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.« less

  20. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Alan Black; Homer Robertson

    2006-03-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).« less

  1. A feasibility investigation for modeling and optimization of temperature in bone drilling using fuzzy logic and Taguchi optimization methodology.

    PubMed

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2014-11-01

    Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.

  2. Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Wefer, G.

    2014-12-01

    Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: The development and installation of shallow borehole observatories. Three different systems have been developed for the MeBo seafloor drill, which is operated by MARUM, Univ. Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: The CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hostab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to two weeks while sending the long-term data sets to shore. In 2012, 2 MeBoPLUGs, 1 MeBoCORK-A and 1 MeBoCORK-B were installed with MeBo in the Nankai Trough, Japan, and data were successfully downloaded from the CORKs.

  3. Field instrumentation, monitoring of drilled shafts for landslide stabilization and development of pertinent design method.

    DOT National Transportation Integrated Search

    2010-11-01

    The design method for using a single row, spaced drilled shafts, socketed into a firm rock strata, to stabilize : an unstable slope has been developed in this research. The soil arching due to the presence of spaced : drilled shafts in a slope was ob...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, D.; White, D.

    This paper reports on a smart alarm system installed on a number of offshore rigs and one land rig which can detect kicks more quickly than conventional systems. This rapid kick detection improves rig safety because the smaller the detected influx, the easier it is to control the well. The extensive computerized monitoring system helps drilling personnel detect fluid influxes and fluid losses before the changes in flow would normally be apparent.

  5. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  6. Simple, affordable and sustainable borehole observatories for complex monitoring objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.

    2014-12-01

    Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: the CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hotstab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to two weeks while sending the long-term data sets to shore. In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on German RV Sonne in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by ROV is planned for 2016.

  7. Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer.

    PubMed

    Malard, Florian; Datry, Thibault; Gibert, Janine

    2005-10-01

    Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 +/- 118 mg kg(-1) dry sediment (n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg(-1)). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  9. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.

  10. Microhole Test Data

    DOE Data Explorer

    Su, Jiann

    2016-05-23

    Drilling results from the microhole project at the Sandia High Operating Temperature test facility. The project is seeking to help reduce the cost of exploration and monitoring of geothermal wells and formations by drilling smaller holes. The tests were part of a control algorithm development to optimize the weight-on-bit (WOB) used during drilling with a percussive hammer.

  11. A proven record in changing attitudes about MWD logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, L.; Paxson, K.B.; Keyser, W.L.

    1993-07-01

    Measurement while drilling (MWD) logs for quantitative reservoir characterization were evaluated during drilling of Gulf of Mexico flexure trend projects, Kilauea (Green Canyon Blocks 6 and 50) and Tick (Garden Banks Block 189). Comparisons confirmed that MWD can be used as an accurate replacement for wireline logging when borehole size is not a limiting factor. Texaco MWD experience evolved from last resort' to primary formation evaluation logging, which resulted in rigtime and associated cost savings. Difficult wells are now drilled and evaluated with confidence, geopressure is safely monitored, conventional core interval tops are selected, and geologic interpretations and operational decisionsmore » are made before wells TD. This paper reviews the performance, accuracy, and limitations of the MWD systems and compares the results to standard geophysical well logging techniques. Four case histories are presented.« less

  12. Altering the Speed Profiles of Wheelchair Rugby Players With Game-Simulation Drill Design.

    PubMed

    Rhodes, James M; Mason, Barry S; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L

    2018-01-01

    To examine the speed profiles of elite wheelchair rugby (WCR) players during game-simulation training drills of differing player number and shot-clock regulations. A secondary aim was to determine whether the profiles were further influenced by player classification. Eight elite WCR players (low-point n = 3, high-point n = 5) were monitored using a radio-frequency-based indoor tracking system during training sessions over a 5-mo period. Speed profiles were collected for 3 modified game-simulation drills-3-versus-3 drills (n = 8 observations), 30-s shot clock (n = 24 observations), and 15-s shot clock (n = 16 observations)-and were compared with regular game-simulation drills (4 vs 4, 40-s shot clock; n = 16 observations). Measures included mean and peak speed; exercise-intensity ratios, defined as the ratio of time spent performing at high and low speeds; and the number of high-speed activities performed. Compared with regular game-simulation drills, 3-versus-3 drills elicited a moderate increase in mean speed (6.3%; effect size [ES] = 0.7) and the number of high-speed activities performed (44.1%; ES = 1.1). Minimal changes in speed profiles were observed during the 30-s shot clock, although moderate to large increases in all measures were observed during the 15-s shot-clock drills. Classification-specific differences were further identified, with increased activity observed for high-point players during the 3-versus-3 drill and for low-point players during the 15-s shot clock. By reducing the number of players on court and the shot clock to 15 s, coaches can significantly increase elite WCR players' speed profiles during game-simulation drills.

  13. Use of FBG sensors for health monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Felli, Ferdinando; Paolozzi, Antonio; Vendittozzi, Cristian; Paris, Claudio; Asanuma, Hiroshi

    2016-04-01

    The infrastructures for oil and gas production and distribution need reliable monitoring systems. The risks for pipelines, in particular, are not only limited to natural disasters (landslides, earthquakes, extreme environmental conditions) and accidents, but involve also the damages related to criminal activities, such as oil theft. The existing monitoring systems are not adequate for detecting damages from oil theft, and in several occasion the illegal activities resulted in leakage of oil and catastrophic environmental pollution. Systems based on fiber optic FBG (Fiber Bragg Grating) sensors present a number of advantages for pipeline monitoring. FBG sensors can withstand harsh environment, are immune to interferences, and can be used to develop a smart system for monitoring at the same time several physical characteristics, such as strain, temperature, acceleration, pressure, and vibrations. The monitoring station can be positioned tens of kilometers away from the measuring points, lowering the costs and the complexity of the system. This paper describes tests on a sensor, based on FBG technology, developed specifically for detecting damages of pipeline due to illegal activities (drilling of the pipes), that can be integrated into a smart monitoring chain.

  14. 3 CFR 13543 - Executive Order 13543 of May 21, 2010. National Commission on the BP Deepwater Horizon Oil Spill...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling 13543 Order 13543 Presidential... Deepwater Horizon Oil Spill and Offshore Drilling By the authority vested in me as President by the... applicable to offshore drilling that would ensure effective oversight, monitoring, and response capabilities...

  15. 30. VIEW OF DRILL HALL FROM SECOND FLOOR EAST BALCONY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF DRILL HALL FROM SECOND FLOOR EAST BALCONY FACING WEST. SHOWS ALTERNATE BAY X BRACING OF ROOF TRUSSES. ALSO SHOWS TRUSSES, WINDOWS IN THE MONITOR, STAIRWAY AT THE SOUTHWEST CORNER OF THE DRILL HALL AND THE THREE LEVELS OF BENCHES ON THE BALCONY. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA

  16. Geochemical monitoring of drilling fluids; A powerful tool to forecast and detect formation waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuataz, F.D.; Brach, M.; Criaud, A.

    1990-06-01

    This paper describes a method based on the difference between the chemical compositions of formation and drilling fluids for analyzing drilling mud to forecast fluid-producing zones. The method was successfully applied in three boreholes in crystalline rocks in France. Subsequent geophysical logs and hydraulic tests confirmed the occurrence of flowing fractures.

  17. High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling activities.

    PubMed

    Lanzén, Anders; Lekang, Katrine; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2016-09-01

    As global exploitation of available resources increases, operations extend towards sensitive and previously protected ecosystems. It is important to monitor such areas in order to detect, understand and remediate environmental responses to stressors. The natural heterogeneity and complexity of communities means that accurate monitoring requires high resolution, both temporally and spatially, as well as more complete assessments of taxa. Increased resolution and taxonomic coverage is economically challenging using current microscopy-based monitoring practices. Alternatively, DNA sequencing-based methods have been suggested for cost-efficient monitoring, offering additional insights into ecosystem function and disturbance. Here, we applied DNA metabarcoding of eukaryotic communities in marine sediments, in areas of offshore drilling on the Norwegian continental shelf. Forty-five samples, collected from seven drilling sites in the Troll/Oseberg region, were assessed, using the small subunit ribosomal RNA gene as a taxonomic marker. In agreement with results based on classical morphology-based monitoring, we were able to identify changes in sediment communities surrounding oil platforms. In addition to overall changes in community structure, we identified several potential indicator taxa, responding to pollutants associated with drilling fluids. These included the metazoan orders Macrodasyida, Macrostomida and Ceriantharia, as well as several ciliates and other protist taxa, typically not targeted by environmental monitoring programmes. Analysis of a co-occurrence network to study the distribution of taxa across samples provided a framework for better understanding the impact of anthropogenic activities on the benthic food web, generating novel, testable hypotheses of trophic interactions structuring benthic communities. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  18. Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.

    2005-12-01

    Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).

  19. Optimizing Drilling Efficiency by PWD (Pressure-While-Drilling) Sensor in wells which were drilled in the Khazar-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2017-04-01

    Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig management system, surface and downhole measurements, can be compared for more accurate and extensive analysis. PWD sensor was utilized with encouraging results in many wells up to 3000-6000m subsurface reservoirs (these wells were drilled in the Khazar-Caspian region of the Azerbaijan Republic) and acquired PWD RT/RM data implemented for best drilling practices in other brand new drilled offset wells in order to help us achieve our mission to drill safe, faster, on target, optimize drilling efficiency, maximize well value and reservoir insight.

  20. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.« less

  1. Online gas monitoring and sampling during drilling of the INFLUINS borehole EF-FB 1/12 into the Thuringian Syncline, Germany

    NASA Astrophysics Data System (ADS)

    Görlitz, Marco; Abratis, Michael; Wiersberg, Thomas

    2014-05-01

    Online monitoring and sampling of drill mud gas (OLGA) was conducted during standard rotary drilling and core drilling of the INFLUINS borehole EF-FB 1/12 to gain information on the composition of gases and their distribution at depth within the Thuringian Syncline (Germany). The method can help to identify areas of enhanced permeability and/or porosity, open fractures, and other strata associated with gases at depth. The gas-loaded drill mud was continuously degassed in a modified gas-water separator, which was installed in the mud ditch in close distance to the drill mud outlet. The extracted gas phase was pumped in a nearby field laboratory for continuous on-line analysis. First information on the gas composition (H2, He, N2, O2, CO2, CH4, Ar, Kr) was available only few minutes after gas extraction. More than 40 gas samples were taken from the gas line during drilling and pumping tests for further laboratory studies. Enhanced concentration of methane, helium, hydrogen and carbon dioxide were detected in drill mud when the drill hole encountered gas-rich strata. Down to a depth of 620 m, the drill mud contained maximum concentration of 55 ppmv He, 1400 ppmv of CH4, 400 ppmv of hydrogen and 1.1 vol-% of CO2. The drilling mud gas composition is linked with the drilled strata. Buntsandstein and Muschelkalk show different formation gas composition and are therefore hydraulically separated. Except for helium, the overall abundance of formation gases in drilling mud is relatively low. We therefore consider the INFLUINS borehole to be dry. The correlation between hydrogen and helium and the relatively high helium abundance rules out any artificial origin of hydrogen and suggest a radiolytic origin of hydrogen. Values CH4/(C2H6/C3H8)

  2. Development of a Tool Condition Monitoring System for Impregnated Diamond Bits in Rock Drilling Applications

    NASA Astrophysics Data System (ADS)

    Perez, Santiago; Karakus, Murat; Pellet, Frederic

    2017-05-01

    The great success and widespread use of impregnated diamond (ID) bits are due to their self-sharpening mechanism, which consists of a constant renewal of diamonds acting at the cutting face as the bit wears out. It is therefore important to keep this mechanism acting throughout the lifespan of the bit. Nonetheless, such a mechanism can be altered by the blunting of the bit that ultimately leads to a less than optimal drilling performance. For this reason, this paper aims at investigating the applicability of artificial intelligence-based techniques in order to monitor tool condition of ID bits, i.e. sharp or blunt, under laboratory conditions. Accordingly, topologically invariant tests are carried out with sharp and blunt bits conditions while recording acoustic emissions (AE) and measuring-while-drilling variables. The combined output of acoustic emission root-mean-square value (AErms), depth of cut ( d), torque (tob) and weight-on-bit (wob) is then utilized to create two approaches in order to predict the wear state condition of the bits. One approach is based on the combination of the aforementioned variables and another on the specific energy of drilling. The two different approaches are assessed for classification performance with various pattern recognition algorithms, such as simple trees, support vector machines, k-nearest neighbour, boosted trees and artificial neural networks. In general, Acceptable pattern recognition rates were obtained, although the subset composed by AErms and tob excels due to the high classification performances rates and fewer input variables.

  3. Sediment studies associated with drilling activity on a tropical shallow shelf.

    PubMed

    Souza, Claudete R; Vital, Helenice; Melo, Germano; Souza, Cleuneide R; da Silva Nogueira, Mary Lucia; Tabosa, Werner Farkatt

    2015-02-01

    Environmental monitoring studies were developed in an area located on the outer shelf in the Potiguar Basin, Brazilian equatorial margin. This tropical shelf represents a modern, highly dynamic mixed carbonate-siliciclastic system. Field sampling was carried out during 3 cruises surrounding a shallow-water exploratory well to compare sediment properties of the seafloor, including grain size, texture, mineral composition, carbonate content, and organic matter, prior to drilling with samples obtained 3 and 12 months after drilling. The sample grid used had 16 stations located along 4 radials from 50 m the well up to a distance of 500 m. Sediments were analyzed in the first 0-2 cm and 0-10 cm layers. The results show that sedimentary cover around the well is dominated by bioclastic sediments, poor to very poorly sorted. Only minor sedimentological variations occurred in the area affected by drilling operations. The most noticeable effects were observed during the second cruise, in terms of a change in grain size distribution associated to a slight increase in siliciclastic content. This impact occurred in the most surficial sediment (0-2 cm), in the radials closest to the well (50 m), and could suggest the effects of drilling. However, in the third cruise, 1 year after drilling, the sediments return to show the same characteristics as in the first cruise. These results show no significant sedimentological variations due to drilling activity and indicate that ocean dynamics in this area was high enough to recover the environment original characteristics.

  4. Survey of seismic conditions of drilling and blasting operations near overhead electricity power lines

    NASA Astrophysics Data System (ADS)

    Korshunov, G. I.; Afanasev, P. I.; Bulbasheva, I. A.

    2017-10-01

    The monitoring and survey results of drilling and blasting operations are specified during the development of Afanasyevsky deposit of cement raw materials for a 110 kV electricity power lines structure. Seismic explosion waves and air shock waves were registered in the course of monitoring. The dependency of peak particle velocities on the scaled distance and explosive weight by the delay time was obtained.

  5. High Temperature 300°C Directional Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°Cmore » capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.« less

  6. Use of geostatistics in planning optimum drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose S.

    1989-08-01

    Application of geostatistics in the natural resources industry is well established. In a typical process of estimation, the statistically dependent geological data are used to predict the characteristics of a deposit. The estimator used is the best linear unbiased estimator (or BLUE), and a numerical factor of confidence is also provided. The natural inhomogeneity and anisotropy of a deposit are also quantified with preciseness. Drilling is the most reliable way of obtaining data for mining and related industries. However, it is often difficult to decide what is the optimum number of drill holes necessary for evaluation. In this paper, sequentialmore » measures of percent variation at 95% confidence level of a geological variable have been used to decipher economically optimum drilling density. A coal reserve model has been used to illustrate the method and findings. Fictitious drilling data were added (within the domain of population characteristics) in stages, to obtain a point of stability, beyond which the gain was significant (diminishing marginal benefit). The final relations are established by graphically projecting and comparing two variables - cost and precision. By mapping the percent variation at each stage, the localized areas of discrepancies can be identified. These are the locations where additional drilling is needed. The system can be controlled if performed at progressive stages and the preciseness toward stability is monitored.« less

  7. Simple, affordable, and sustainable borehole observatories for complex monitoring objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.

    2015-05-01

    Seafloor drill rigs are remotely operated systems that provide a cost-effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. Here we report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo (Meeresboden-Bohrgerat) seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK (Circulation Obviation Retrofit Kit), is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. In these MeBoCORKs, two systems have to be distinguished: the CORK-A (A stands for autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference); the CORK-B (B stands for bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by a remotely operated underwater vehicle (ROV) and utilises a hot-stab connection in the upper portion of the drill string. Either design relies on a hot-stab connection from beneath in which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect porewater in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data on command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to 2 weeks while sending the long-term data sets to shore. In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on RV Sonne, Germany, in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked, and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by a ROV is planned for 2016.

  8. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Homer Robertson; Alan Black

    2006-06-22

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).« less

  9. Geohydrologic and drill-hole data for test well USW H-3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Thordarson, William; Rush, F.E.; Spengler, R.W.; Waddell, S.J.

    1984-01-01

    Test well USW H-3 is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy as part of the Nevada Nuclear Waste Storage investigations. The well penetrated volcanic tuffs of Tertiary age to a depth of 1,219 meters. This report presents data collected to determine the hydraulic characteristics of rocks penetrated. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, pumping, swabbing, and injection tests for the well are contained in this report. (USGS)

  10. Well-based stable carbon isotope leakage monitoring of an aquifer overlying the CO2 storage reservoir at the Ketzin pilot site, Germany

    NASA Astrophysics Data System (ADS)

    Nowak, Martin; Myrttinen, Anssi; Zimmer, Martin; van Geldern, Robert; Barth, Johannes A. C.

    2014-05-01

    At the pilot site for CO2 storage in Ketzin, a new well-based leakage-monitoring concept was established, comprising geochemical and hydraulic observations of the aquifer directly above the CO2 reservoir (Wiese et al., 2013, Nowak et al. 2013). Its purpose was to allow early detection of un-trapped CO2. Within this monitoring concept, we established a stable carbon isotope monitoring of dissolved inorganic carbon (DIC). If baseline isotope values of aquifer DIC (δ13CDIC) and reservoir CO2 (δ13CCO2) are known and distinct from each other, the δ13CDIC has the potential to serve as an an early indicator for an impact of leaked CO2 on the aquifer brine. The observation well of the overlying aquifer was equipped with an U-tube sampling system that allowed sampling of unaltered brine. The high alkaline drilling mud that was used during well drilling masked δ13CDIC values at the beginning of the monitoring campaign. However, subsequent monitoring allowed observing on-going re-equilibration of the brine, indicated by changing δ13CDIC and other geochemical values, until values ranging around -23 ‰ were reached. The latter were close to baseline values before drilling. Baselineδ13CDIC and δ13CCO2 values were used to derive a geochemical and isotope model that predicts evolution of δ13CDIC, if CO2 from the reservoir would leak into the aquifer. The model shows that equilibrium isotope fractionation would have to be considered if CO2 dissolves in the brine. The model suggests that stable carbon isotope monitoring is a suitable tool to assess the impact of injected CO2 in overlying groundwater aquifers. However, more data are required to close gaps of knowledge about fractionation behaviour within the CO2(g) - DIC system under elevated pressures and temperatures. Nowak, M., Myrttinen, A., Zimmer, M., Wiese, B., van Geldern, R., Barth, J.A.C., 2013. Well-based, Geochemical Leakage Monitoring of an Aquifer Immediately Above a CO2 Storage Reservoir by Stable Carbon Isotopes at the Ketzin Pilot Site, Germany. Energy Procedia 40, 346-354. Wiese, B., Zimmer, M., Nowak, M., Pellizzari, L., Pilz, P., 2013. Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environmental Earth Sciences, 1-18.

  11. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  12. Impacts of gas drilling on human and animal health.

    PubMed

    Bamberger, Michelle; Oswald, Robert E

    2012-01-01

    Environmental concerns surrounding drilling for gas are intense due to expansion of shale gas drilling operations. Controversy surrounding the impact of drilling on air and water quality has pitted industry and lease-holders against individuals and groups concerned with environmental protection and public health. Because animals often are exposed continually to air, soil, and groundwater and have more frequent reproductive cycles, animals can be used as sentinels to monitor impacts to human health. This study involved interviews with animal owners who live near gas drilling operations. The findings illustrate which aspects of the drilling process may lead to health problems and suggest modifications that would lessen but not eliminate impacts. Complete evidence regarding health impacts of gas drilling cannot be obtained due to incomplete testing and disclosure of chemicals, and nondisclosure agreements. Without rigorous scientific studies, the gas drilling boom sweeping the world will remain an uncontrolled health experiment on an enormous scale.

  13. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  14. Collaboration Between Government and Commercial Space Weather Information Providers

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie

    2007-10-01

    Many systems and situations require up-to-date space weather information. These include navigation systems in cars, boats, and commercial freight; the specific location information needed for construction and oil drilling; communications; airline navigation; avionic systems; and passengers and personnel on polar airline flights. Thus, as the world's industries become increasingly more reliant on satellite data and more vulnerable to space weather conditions, new collaborations will have to be formed between commercial providers of space weather information and the government scientists who monitor space weather.

  15. While drilling system and method

    DOEpatents

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  16. Development of software and hardware models of monitoring, control, and data transfer to improve safety of downhole motor during drilling

    NASA Astrophysics Data System (ADS)

    Kostarev, S. N.; Sereda, T. G.

    2017-10-01

    The article is concerned with the problem of transmitting data from telemetric devices in order to provide automated systems for the electric drive control of oil-extracting equipment. The paper given discusses the possibility to use a logging cable as means of signal transfer. Simulation models of signaling and relay-contact circuits for monitoring critical drive parameters are under discussion. The authors suggest applying the operator ⊕ (excluding OR) to increase anti-jamming effects and to get a more reliable noise filter.

  17. Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.

    2009-01-01

    Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.

  18. Progress in the Mallik 2002 Data and Information System

    NASA Astrophysics Data System (ADS)

    Loewner, R.; Conze, R.; Laframboise, R. R.; Working Group, M.

    2002-12-01

    Since December 2001 scientific investigations in a gas hydrate research well program were undertaken in the Mackenzie Delta in the Canadian Arctic, supported by a new Data and Information System. The program comprised a main production well and two scientific observation wells. During the drilling period of the main Mallik well hole we were able to elaborate an information system very close in time and space to the activities and operations at the drill site and in the laboratories of the Inuvik Research Center. Due to the particular conditions and characteristics of Methane Drilling Projects, the technical realization and the structure of the data management required adapted individual solutions. On the one hand, the physical properties of the Methane and the climate in the Arctic enforced working under extreme conditions not only for the staff but also for the technical equipment. On the other hand, the sensitive data demanded security on a very high level. Considering these characteristics, a database structure has been set up successfully on a server in Inuvik, supported by our Drilling Information System (DIS). The drilling period ended in March 2002 and the scientific evaluation phase began. Until now a detailed database with all on-site gained information and data from the succeeding analyses has been made available in the ICDP information network (http://www.icdp-online.de/html/sites/mallik/index/index.html). Lithological descriptions, borehole measurements, monitoring data and an archive of all the core runs and samples are stored in the Mallik Data Warehouse. A request started from the Internet generates results dynamically which accomplish the needs of the user. The user even can generate own litho-logs which enables him/her to compare all kinds of borehole information for his/her scientific work. All these functions and sevices are covered by an highly sophisticated security management due to different defined areas of confidentiality within the Mallik Science Team.

  19. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steve McRae; Thomas Walsh; Michael Dunn

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrowmore » Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.« less

  20. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    PubMed

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  2. Resonance: The science behind the art of sonic drilling

    NASA Astrophysics Data System (ADS)

    Lucon, Peter Andrew

    The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on the bit as the primary two control variables. The sonic drill can also be controlled using feedback from sensors mounted on the sonic drill head, which is the driver for the sonic drill located above ground

  3. Field instrumentation, monitoring of drilled shafts for landslide stabilization and development of pertinent design method : executive summary report.

    DOT National Transportation Integrated Search

    2010-11-01

    The use of a row of spaced drilled shafts to stabilize unstable slopes along the highways offers many advantages compared to other slope stabilization techniques. Some of these advantages may include: (1) various construction techniques are available...

  4. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    PubMed

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  5. Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic.

    PubMed

    Juck, D F; Whissell, G; Steven, B; Pollard, W; McKay, C P; Greer, C W; Whyte, L G

    2005-02-01

    Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-microm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses.

  6. Utilization of Fluorescent Microspheres and a Green Fluorescent Protein-Marked Strain for Assessment of Microbiological Contamination of Permafrost and Ground Ice Core Samples from the Canadian High Arctic

    PubMed Central

    Juck, D. F.; Whissell, G.; Steven, B.; Pollard, W.; McKay, C. P.; Greer, C. W.; Whyte, L. G.

    2005-01-01

    Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-μm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses. PMID:15691963

  7. Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling.

    PubMed

    Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Kotev, Vladimir; Delchev, Kamen; Zagurski, Kazimir; Vitkov, Vladimir

    2013-12-01

    Many orthopaedic operations involve drilling and tapping before the insertion of screws into a bone. This drilling is usually performed manually, thus introducing many problems. These include attaining a specific drilling accuracy, preventing blood vessels from breaking, and minimizing drill oscillations that would widen the hole. Bone overheating is the most important problem. To avoid such problems and reduce the subjective factor, automated drilling is recommended. Because numerous parameters influence the drilling process, this study examined some experimental methods. These concerned the experimental identification of technical drilling parameters, including the bone resistance force and temperature in the drilling process. During the drilling process, the following parameters were monitored: time, linear velocity, angular velocity, resistance force, penetration depth, and temperature. Specific drilling effects were revealed during the experiments. The accuracy was improved at the starting point of the drilling, and the error for the entire process was less than 0.2 mm. The temperature deviations were kept within tolerable limits. The results of various experiments with different drilling velocities, drill bit diameters, and penetration depths are presented in tables, as well as the curves of the resistance force and temperature with respect to time. Real-time digital indications of the progress of the drilling process are shown. Automatic bone drilling could entirely solve the problems that usually arise during manual drilling. An experimental setup was designed to identify bone drilling parameters such as the resistance force arising from variable bone density, appropriate mechanical drilling torque, linear speed of the drill, and electromechanical characteristics of the motors, drives, and corresponding controllers. Automatic drilling guarantees greater safety for the patient. Moreover, the robot presented is user-friendly because it is simple to set robot tasks, and process data are collected in real time. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Problem analysis of geotechnical well drilling in complex environment

    NASA Astrophysics Data System (ADS)

    Kasenov, A. K.; Biletskiy, M. T.; Ratov, B. T.; Korotchenko, T. V.

    2015-02-01

    The article examines primary causes of problems occurring during the drilling of geotechnical wells (injection, production and monitoring wells) for in-situ leaching to extract uranium in South Kazakhstan. Such a drilling problem as hole caving which is basically caused by various chemical and physical factors (hydraulic, mechanical, etc.) has been thoroughly investigated. The analysis of packing causes has revealed that this problem usually occurs because of insufficient amount of drilling mud being associated with small cross section downward flow and relatively large cross section upward flow. This is explained by the fact that when spear bores are used to drill clay rocks, cutting size is usually rather big and there is a risk for clay particles to coagulate.

  9. Systems and Methods for Gravity-Independent Gripping and Drilling

    NASA Technical Reports Server (NTRS)

    Thatte, Nitish (Inventor); King, Jonathan P. (Inventor); Parness, Aaron (Inventor); Frost, Matthew A. (Inventor)

    2016-01-01

    Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.

  10. USE OF DRILLING FLUIDS IN MONITORING WELL NETWORK INSTALLATION: LANL AND OPEN DISCUSSION

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to provide a technical analysis of the impacts of well drilling practices implemented at the Los Alamos National Laboratory (LANL) as part of the development of their grou...

  11. Generating false negatives and false positives for As and Mo concentrations in groundwater due to well installation.

    PubMed

    Wallis, Ilka; Pichler, Thomas

    2018-08-01

    Groundwater monitoring relies on the acquisition of 'representative' groundwater samples, which should reflect the ambient water quality at a given location. However, drilling of a monitoring well for sample acquisition has the potential to perturb groundwater conditions to a point that may prove to be detrimental to the monitoring objective. Following installation of 20 monitoring wells in close geographic proximity in central Florida, opposing concentration trends for As and Mo were observed. In the first year after well installation As and Mo concentrations increased in some wells by a factor of 2, while in others As and Mo concentrations decreased by a factor of up to 100. Given this relatively short period of time, a natural change in groundwater composition of such magnitude is not expected, leaving well installation itself as the likely cause for the observed concentration changes. Hence, initial concentrations were identified as 'false negatives' if concentrations increased with time or as 'false positives' if concentrations decreased. False negatives were observed if concentrations were already high, i.e., the As or Mo were present at the time of drilling. False positives were observed if concentrations were relatively lower, i.e., As or Mo were present at low concentrations of approximately 1 to 2μg/L before drilling, but then released from the aquifer matrix as a result of drilling. Generally, As and Mo were present in the aquifer matrix in either pyrite or organic matter, both of which are susceptible to dissolution if redox conditions change due to the addition of oxygen. Thus, introduction of an oxidant into an anoxic aquifer through use of an oxygen saturated drilling fluid served as the conceptual model for the trends where concentrations decreased with time. Mixing between drilling fluid and groundwater (i.e., dilution) was used as the conceptual model for scenarios where increasing trends were observed. Conceptual models were successfully tested through formulation and application of data-driven reactive transport models, using the USGS code MODFLOW in conjunction with the reactive multicomponent transport code PHT3D. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Identification of water-bearing fractures by the use of geophysical logs, May to July 1998, former Naval Air Warfare Center, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.; Bird, Philip H.

    1999-01-01

    Between May and July 1998, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center (NAWC), Warminster, Bucks County, Pa., to monitor water levels and sample ground water in shallow and intermediate water-bearing fractures. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected sources. Three boreholes were drilled on the property at 960 Jacksonville Road, at the northwestern side of NAWC, along strike from Area A; seven boreholes were drilled in Area B in the southeastern corner of NAWC. Depths range from 40.5 to 150 feet below land surface.Borehole geophysical logging and video surveys were used to identify water-bearing fractures so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Video surveys were obtained at three monitor wells in the southeastern corner of the NAWC property.Caliper logs and video surveys were used to locate fractures. Inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures. Heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing fractures in each monitor well.

  13. Carbonate system at Iheya North in Okinawa Trough~IODP drilling and post drilling environment~

    NASA Astrophysics Data System (ADS)

    Noguchi, T.; Hatta, M.; Sunamura, M.; Fukuba, T.; Suzue, T.; Kimoto, H.; Okamura, K.

    2012-12-01

    The Iheya North hydrothermal field in middle Okinawa Trough is covered with thick hemipelagic and volcanic sediment. Geochemical characteristics of Okinawa Trough is to provide abundant of CO2, CH4, NH4, H2, and H2S which originated from magmatic gases, sedimentary organic matters. On this hydrothermal field, a scientific drilling by Integrated Ocean Drilling Program (IODP) Expedition 331 was conducted to investigate metabolically diverse subseafloor microbial ecosystem and their physical and chemical settings. To clarify the spatial distribution of physical condition beneath seafloor around the hydrothermal filed, we focus on the carbonate species analysis to reconstruct in-situ pH, which regulate the diversities of microbial community and mineral composition. We developed the small sample volume dissolved total inorganic carbon (DIC) analyzer and conducted the onboard analysis for the interstitial water during IODP Exp.331. Total alkalinity, boron, phosphate, and ammonium also analyzed for thermodynamic calculation. In this presentation, we represent the spatial distribution of pH beneath the Iheya North hydrothermal field. In addition, we developed a 128 bottles multiple water sampler (ANEMONE) for post drilling environmental monitoring. ANEMONE sampler was deployed on the manned submersible Shinkai 6500 with other chemical sensors (CTD, turbidity, pH, ORP, and H2S), and collected the hydrothermal plume samples every 5 minutes during YK12-05 cruise by R/V Yokosuka (Japan Agency for Marine-Earth Science and Technology, JAMSTEC). DIC concentration of plume samples collected by ANEMONE sampler were analyzed just after submersible retrieve, and nutrients, manganese, density, and total cell counts determination were conducted onshore analysis. Based on these results, we describe the spatial distribution of DIC and carbonate system on Iheya North hydrothermal field (interstitial water, hydrothermal fluid, and hydrothermal plume).

  14. Continuous Monitoring of CH4 Emissions from Marcellus Shale Gas Extraction in South West Pennsylvania Using Top Down Methodology

    NASA Astrophysics Data System (ADS)

    Sarmiento, D. P.; Belmecheri, S.; Lauvaux, T.; Sowers, T. A.; Bryant, S.; Miles, N. L.; Richardson, S.; Aikins, J.; Sweeney, C.; Petron, G.; Davis, K. J.

    2012-12-01

    Natural gas extraction from shale formations via hydraulic-fracturing (fracking) is expanding rapidly in several regions of North America. In Pennsylvania, the number of wells drilled to extract natural gas from the Marcellus shale has grown from 195 in 2008 to 1,386 in 2010. The gas extraction process using the fracking technology results in the escape of methane (CH4), a potent greenhouse gas and the principal component of natural gas, into the atmosphere. Emissions of methane from fracking operations remain poorly quantified, leading to a large range of scenarios for the contribution of fracking to climate change. A mobile measurement campaign provided insights on methane leakage rates and an improved understanding of the spatio-temporal variability in active drilling areas in the South West of Pennsylvania. Two towers were then instrumented to monitor fugitive emissions of methane from well pads, pipelines, and other infrastructures in the area. The towers, one within a drilling region and one upwind of active drilling, measured atmospheric CH4 mixing ratios continuously. Isotopic measurements from air flasks were also collected. Data from the initial mobile campaign were used to estimate emission rates from single sites such as wells and compressor stations. Tower data will be used to construct a simple atmospheric inversion for regional methane emissions. Our results show the daily variability in emissions and allow us to estimate leakage rates over a one month period in South West Pennsylvania. We discuss potential deployment strategies in drilling zones to monitor emissions of methane over longer periods of time.

  15. Drill System Development for the Lunar Subsurface Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, Kris; Davis, Kiel; Paulsen, Gale; Roberts, Dustyn; Wilson, Jack; Hernandez, Wilson

    Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization efforts. As part of the development of a lunar drill capable of reaching a depth of two meters or more, Honeybee Robotics has built a laboratory drill system with a total linear stroke of 1 meter, capability to produce as much as 45 N-m of torque at a rotational speed of 200 rpm, and a capability of delivering maximum downforce of 1000 N. Since this is a test-bed, the motors were purposely chosen to be relative large to provide ample power to the drill system (the Apollo drill was a 500 Watt drill, i.e. not small in current standards). In addition, the drill is capable of using three different drilling modes: rotary, rotary percussive and percussive. The frequency of percussive impact can be varied if needed while rotational speed can be held constant. An integral part of this test bed is a vacuum chamber that is currently being constructed. The drill test-bed is used for analyzing various drilling modes and testing different drill bit and auger systems under low pressure conditions and in lunar regolith simulant. The results of the tests are used to develop final lunar drill design as well as efficient drilling protocols. The drill was also designed to accommodate a downhole neutron spectrometer for measuring the amount of hydrated material in the area surrounding the borehole, as well as downhole temperature sensors, accelerometers, and electrical properties tester. The presentation will include history of lunar drilling, challenges of drilling on the Moon, a description of the drill and chamber as well as preliminary drilling test results conducted in the ice-bound lunar regolith simulant with a variety of drill bits and augers systems.

  16. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  17. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  18. Accuracy improvements of gyro-based measurement-while-drilling surveying instruments by a laser testing method

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhao, Jianhui; Li, Fan

    2009-07-01

    Gyroscope used as surveying sensor in the oil industry has been proposed as a good technique for measurement-whiledrilling (MWD) to provide real-time monitoring of the position and the orientation of the bottom hole assembly (BHA).However, drifts in the measurements provided by gyroscope might be prohibitive for the long-term utilization of the sensor. Some usual methods such as zero velocity update procedure (ZUPT) introduced to limit these drifts seem to be time-consuming and with limited effect. This study explored an in-drilling dynamic -alignment (IDA) method for MWD which utilizes gyroscope. During a directional drilling process, there are some minutes in the rotary drilling mode when the drill bit combined with drill pipe are rotated about the spin axis in a certain speed. This speed can be measured and used to determine and limit some drifts of the gyroscope which pay great effort to the deterioration in the long-term performance. A novel laser assembly is designed on the wellhead to count the rotating cycles of the drill pipe. With this provided angular velocity of the drill pipe, drifts of gyroscope measurements are translated into another form that can be easy tested and compensated. That allows better and faster alignment and limited drifts during the navigation process both of which can reduce long-term navigation errors, thus improving the overall accuracy in INS-based MWD system. This article concretely explores the novel device on the wellhead designed to test the rotation of the drill pipe. It is based on laser testing which is simple and not expensive by adding a laser emitter to the existing drilling equipment. Theoretical simulations and analytical approximations exploring the IDA idea have shown improvement in the accuracy of overall navigation and reduction in the time required to achieve convergence. Gyroscope accuracy along the axis is mainly improved. It is suggested to use the IDA idea in the rotary mode for alignment. Several other practical aspects of implementing this approach are evaluated and compared.

  19. Geo-navigation system for rotary percussion drilling in rocks of high and low electrical conductivity

    NASA Astrophysics Data System (ADS)

    Konurin, AI; Khmelinin, AP; Denisova, EV

    2018-03-01

    The currently available drill navigation systems, with their benefits and shortcomings are reviewed. A mathematical model is built to describe the inertial navigation system movement in horizontal and inclined drilling. A prototype model of the inertial navigation system for rotary percussion drills has been designed.

  20. Impacts on seafloor geology of drilling disturbance in shallow waters.

    PubMed

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L

    2010-08-01

    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place.

  1. Mechatronical system for testing small diameter drills

    NASA Astrophysics Data System (ADS)

    Vekteris, Vladas; Jurevichius, Mindaugas; Daktariunas, Algis

    2008-08-01

    This paper describes a technique and mechatronical system for testing drills of a small diameter at different stages of production. The goal is to realize a system for drill testing which automatically increases the load applied to a drill under testing conditions and measure the drill's breaking torsion moment and deflection angle before a break occurs. The system's apparatus part and algorithms for the control of actuators and data acquisition from sensors are explained in the article. Also, a testing technique was applied in theoretical investigations to define the stress concentrations in dangerous places of the drill. The proposed technique and system have been verified by testing the drills of a small diameter at different stages of production—after thermal, mechanical treatment, and for quality control of the finished product.

  2. Flexible roof drill for low coal. Volume 2. Phase III and Phase IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, N.H.

    1977-09-01

    Design specifications were developed for a flexible drilling and bolting system. The system configuration is based on the use of the Galis dual-boom roof drill as a vehicle for the drilling/bolting system. The WSU Flex-drill drivehead is mounted on the Galis drill boom and the Galis parts are modified to accommodate the revised system. The flexible drillhead supports a bolt bender/inserter designed by Bendix Corporation and is integrated into the system operation. A supplemental bolt thruster was designed to complete insertion of the roof bolt following operation and removal of the Bendix bender from the bolt shank. The complete cyclemore » of drilling a 1-3/8-in. diameter bolt hole, bending a roof bolt into the hole, thrusting the bolt head and washer to the roof surface, and final torquing of the bolt is manually controlled by the operator located in the new position behind the bolting line. The new operating position is beneath newly bolted roof in a safer location in back of the stab jack ad roof jacks positioning the drill boom and drivehead. The Flex-drill/bolting system prototype was constructed from both purchased components and parts specially fabricated in the shops for this design. This unit was assembled and test-operated with appropriate support equipment in a laboratory test stand. Numerous test holes were drilled in blocks of concrete at feed rates of 5 ft/min with drill rotation speeds of 360 rpm. The drill feeds uniformly and cuts smoothly with no difficulty in collection of dust or clogging of the drill bit. The holes drilled were straight, as evidence by passage of a 1-1/4-in. diameter bar full depth into the hole with no binding or evidence of curvature. The flexible drill is capable of drilling 8-ft-deep roof bolt holes in low coal 36 in. in height.« less

  3. Drilling and completion specifications for CA series multilevel piezometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clawson, T.S.

    1986-08-01

    CX Series multilevel piezometer boreholes will provide information on hydraulic heads in the Rosalia, Sentinel Gap, Ginkgo, Rocky Coulee, Cohassett, Birkett, and Umtanum flow tops. The borehole sites will be located adjacent to the reference repository location. In addition, information from the boreholes will provide input data used to determine horizontal and vertical flow rates, and identify possible geologic structures. This specification includes details for drilling, piezometer design, hydrologic testing, and hydrochemical sampling of the boreholes. It includes drilling requirements, design, and installation procedures for the series piezometer nests, intervals selected for head monitoring and schedules for drilling and piezometermore » installation. Specific drilling and piezometer installation specifications for boreholes DC-24CX and DC-25CX are also included. 27 refs., 5 figs., 3 tabs.« less

  4. Mud Gas Logging In A Deep Borehole: IODP Site C0002, Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Toczko, S.; Hammerschmidt, S.; Maeda, L.

    2014-12-01

    Mud logging, a tool in riser drilling, makes use of the essentially "closed-circuit" drilling mud flow between the drilling platform downhole to the bit and then back to the platform for analyses of gas from the formation in the drilling mud, cuttings from downhole, and a range of safety and operational parameters to monitor downhole drilling conditions. Scientific riser drilling, with coincident control over drilling mud, downhole pressure, and returning drilling mud analyses, has now been in use aboard the scientific riser drilling vessel Chikyu since 2009. International Ocean Discovery Program (IODP) Expedition 348, as part of the goal of reaching the plate boundary fault system near ~5000 mbsf, has now extended the deep riser hole (Hole C0002 N & P) to 3058.5 mbsf. The mud gas data discussed here are from two approximately parallel boreholes, one a kick-off from the other; 860-2329 mbsf (Hole C0002N) and 2163-3058 mbsf (Hole C0002P). An approximate overlap of 166 m between the holes allows for some slight depth comparison between the two holes. An additional 55 m overlap at the top of Hole C0002P exists where a 10-5/8-inch hole was cored, and then opened to 12-1/4-inch with logging while drilling (LWD) tools (Fig. 1). There are several fault zones revealed by LWD data, confirmed in one instance by coring. One of the defining formation characteristics of Holes C0002 N/P are the strongly dipping bedding planes, typically exceeding 60º. These fault zones and bedding planes can influence the methane/ethane concentrations found in the returning drilling mud. A focused comparison of free gas in drilling mud between one interval in Hole C0002 P, drilled first with a 10 5/8-inch coring bit and again with an 12 ¼-inch logging while drilling (LWD) bit is shown. Hole C0002N above this was cased all the way from the sea floor to the kick-off section. A fault interval (in pink) was identified from the recovered core section and from LWD resistivity and gamma. The plot of methane and ethane free gas (C1 and C2; ppmv) shows that the yield of free gas (primarily methane) was greater when the LWD bit returned to open the cored hole to a greater diameter. One possible explanation for this is the time delay between coring and LWD operations; approximately 3 days passed between the end of coring and the beginning of LWD (25-28 December 2013).

  5. Preliminary Research on Possibilities of Drilling Process Robotization

    NASA Astrophysics Data System (ADS)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  6. Borehole Data Package for One CY 2005 CERCLA Well 699-S20-E10, 300-FF-5 Operable Unit, Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Bruce A.; Bjornstad, Bruce N.; Lanigan, David C.

    2006-03-29

    This report supplies the information obtained during drilling, characterization, and installation of the new groundwater monitoring well. This document also provides a compilation of hydrogeologic and well construction information obtained during drilling, well development, and sample collection/analysis activities.

  7. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  8. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  9. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  10. NanTroSEIZE observatories: Installation of a long-term borehole monitoring systems offshore the Kii Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Saffer, D. M.; Davis, E. E.; Araki, E.; Kinoshita, M.; Lauer, R. M.; Wheat, C. G.; Kitada, K.; Kimura, T.; Toczko, S.; Eguchi, N. O.; Science Parties, E.

    2010-12-01

    The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a multi-expedition drilling program designed to investigate fault mechanics, fault slip behavior, and strain accumulation along subduction megathrusts, through coring, logging, and long-term monitoring experiments. One key objective is the development and installation of a borehole observatory network extending from locations above the outer, presumably aseismic accretionary wedge to the seismogenic and interseismically locked plate interface, to record seismicity and slip transients, monitor strain accumulation, document hydraulic transients associated with deformation events, and quantify in situ pore fluid pressure and temperature. As part of recent NanTroSEIZE operations, borehole instruments have been developed for deployment at two sites: (1) Site C0010, which penetrates a major out-of-sequence thrust fault termed the “megasplay” at ca. 400 mbsf, and (2) Site C0002 in the Kumano forearc basin at a location that overlies both the updip edge of the inferred interseismically locked portion of the plate interface, and clusters of very low frequency thrust and reverse earthquakes located within the accretionary prism and potentially on the megasplay fault. In 2009, Site C0010 was drilled and cased with screens to access the megasplay fault, and a simple pore pressure and temperature monitoring system (a ”smartplug”) was installed. The simple observatory unit includes pressure and temperature sensors and a data logging package mounted beneath a mechanically set retrievable casing packer, and includes two pressure sensors, one in hydraulic communication with the formation through the casing screens below the packer, and the other to the open borehole above the packer to record hydrostatic reference pressure and ocean loading signals. Temperatures are recorded within the instrument package using a platinum thermometer and by a self-contained miniature temperature logger (MTL). In fall 2010, the smartplug will be retrieved and replaced with an upgraded instrument package that also includes an autonomous osmotic geochemical sampling system and microbial colonization experiment. Fall 2010 operations will also drill and case Site C0002 to ca. 1000 m depth and install a newly developed multi-sensor permanent observatory system, which includes a volumetric strainmeter, a broadband seismometer, tiltmeter, thermister string, and multi-level pore-pressure sensors. The strain, seismometer, and tilt sensors will be cemented with the basal mudstones of the Kumano basin, and pore pressure will be monitored within both the underlying accretionary prism and within the lower basin sediments. The observatory will ultimately be connected to the seafloor fiber-optic cable network DONET. Here, we report on the retrieval of the smartplug, installation and configuration of the new multi-sensor permanent observatory, and preliminary data obtained from the smartplug deployment.

  11. Subterranean drilling and in situ treatment of wastes using a contamination control system and methods relating thereto

    DOEpatents

    Jessmore, James J.; Loomis, Guy G.; Pettet, Mark C.; Flyckt, Melissa C.

    2004-09-28

    Systems and methods relating to subterranean drilling while maintaining containment of any contaminants released during the drilling. A thrust block installed over a zone of interest provides an overflow space for retaining any contaminants and excess sealant returns. Negative air pressure may be maintained in the overflow space by a ventilation system. Access ports in the thrust block seal the overflow space from the surrounding environment with a membrane seal. A flexible sack seal in the access port may be connected to a drill shroud prior to drilling, providing containment during drilling after the drill bit penetrates the membrane seal. The drill shroud may be adapted to any industry standard drilling rig and includes a connection conduit for connecting to the flexible sack seal and a flexible enclosure surrounding the drill shaft and of a length to accommodate full extension thereof. Upon withdrawal, the sack seal may be closed off and separated, maintaining containment of the overflow space and the drill shroud.

  12. Integrated environmental monitoring and multivariate data analysis-A case study.

    PubMed

    Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle

    2017-03-01

    The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate statistics. Integr Environ Assess Manag 2017;13:387-395. © 2016 SETAC. © 2016 SETAC.

  13. HYDROGEOLOGIC CASE STUDIES

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  14. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  15. Mini-CORK observatories using the MeBo seafloor drill rig - a new development for long-term data acquisition and sampling in shallow boreholes

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Renken, J.; Zabel, M.; Wefer, G.

    2011-12-01

    State of the art technology for long-term monitoring of fluid migration within the sea floor is the sealing of a borehole with a Circulation Obviation Retrofit Kit (CORK) after sensor installation and/or fluid sampling devices within the drill string. However, the combined used of a drilling vessels and a remotely operated drilling (ROV) required for a CORK installation in the deep sea is a costly exercise that limits the number of monitoring stations installed. Robotic sea floor drill rigs are a cost effective alternative for shallow drillings down to 50-100 m below sea floor. Here we present a Mini-CORK system that is developed for installation with the sea floor drill rig MeBo. This rig was developed at MARUM Research Centre, University of Bremen in 2005 and can sample the sea floor in water depths up to 2000 m. The MeBo is deployed on the seabed and remotely controlled from the vessel. All required drill tools for wire-line core drilling down to 70 m below sea floor are stored on two rotating magazines and can be loaded below the top drive drill head for assembling the drill string. For one of the upcoming cruises with RV Sonne offshore Japan (Nankai Trough accretionary prism), MeBo will be used for the first time to place observatories. Two different designs have been developed. The first, relatively simple long-term device resembles a MeBo drill rod in its geometry, and contains a pressure and temperature transducer in the borehole plus an identical pair of transducers for seafloor reference. The device also contains a data logger, battery unit, and an acoustic modem so that data can be downloaded at any time from a ship of opportunity. The key element at the base of the observatory rod is a seal at the conical thread to separate the borehole hydraulically from the overlying water body. It is realized by an adapter, which also contains a hotstab hydraulic connection and an electrical connection. The second observatory device is a seafloor unit, which replaces part of the first unit and which is deployed by ROV. In essence, the upper portion of the former observatory is taken away by ROV, and an umbilical containing hydraulic lines and tubing to withdraw formation water from the borehole is plugged into the hotstab female adapter by ROV. At the far end, the umbilical is connected to a seafloor unit with battery power, data logger, P and T transducers, and the same acoustic modem as the former one. In addition, the latter contains osmo samplers and biological chambers (FLOCS) for in situ sampling and experiments. After the envisaged deployment period, the entire unit is replaced while an identical one is prepared on deck and lowered from the vessel. In theory, the MeBo hole infinitely serves as an access to depth since no electronic, but only tubing is lowered into the (open) hole. In summary, long-term borehole installations with MeBo offer an affordable way to measure key physical properties over time and sample the formation fluids for geochemistry and microbiology (in case of the second, ROV-deployed CORK).

  16. Smart laser hole drilling for gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Laraque, Edy

    1991-04-01

    A smart laser drilling system, which incorporates air flow inspection-in-process of the holes and intelligent real-time process parameter corrections, is described. The system along with good laser parameter developments is proved to be efficient for producing cooling holes which meet the highest aeronautical standards. To date, the system is used for percussion drilling of combustion chamber cooling holes. The system is considered to be very economical due to the drilling-on-the-fly capability that is capable of drilling up to 3 holes of 0.025-in. dia. per second.

  17. Data Report for Monitoring at Six West Virginia Marcellus Shale Development Sites using NETL’s Mobile Air Monitoring Laboratory (July–November 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekney, Natalie J.; Reeder, Matthew; Veloski, Garret A.

    The West Virginia Department of Environmental Protection’s Office of Oil and Gas was directed according to the Natural Gas Horizontal Well Control Act of December 14, 2011 (West Virginia Code §22-6A) to conduct studies of horizontal well drilling activities related to air quality. The planned study, “Noise, Light, Dust, Volatile Organic Compounds Related to Well Location Restrictions,” required determination of the effectiveness of a 625 ft minimum set-back from the center of the pad of a horizontal well drilling site to the nearest occupied dwelling. An investigation was conducted at seven drilling sites by West Virginia University (WVU) and themore » National Energy Technology Laboratory (NETL) to collect data on dust, hydrocarbon compounds and on noise, radiation, and light levels. NETL’s role in this study was to collect measurements of ambient pollutant concentrations at six of the seven selected sites using NETL’s Mobile Air Monitoring Laboratory. The trailer-based laboratory was situated a distance of 492–1,312 ft from each well pad, on which activities included well pad construction, vertical drilling, horizontal drilling, hydraulic fracturing, and flaring, with the objective of evaluating the air quality impact of each activity for 1–4 weeks per site. Measured pollutants included volatile organic compounds (VOCs), coarse and fine particulate matter (PM 10 and PM 2.5, respectively), ozone, methane (CH 4), carbon dioxide (CO 2), carbon isotopes of CH 4 and CO 2, organic carbon (OC), elemental carbon (EC), oxides of nitrogen (NOx), and sulfur dioxide (SO 2).« less

  18. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling

    PubMed Central

    Kasahara, Yusuke; Kawana, Hiromasa; Usuda, Shin; Ohnishi, Kouhei

    2012-01-01

    Background Drilling is used in the medical field, especially in oral surgery and orthopaedics. In recent years, oral surgery involving dental implants has become more common. However, the risky drilling process causes serious accidents. To prevent these accidents, supporting systems such as robotic drilling systems are required. Methods A telerobotic-assisted drilling system is proposed. An acceleration-based four-channel bilateral control system is implemented in linear actuators in a master–slave system for drill feeding. A reaction force observer is used instead of a force sensor for measuring cutting force. Cutting force transmits from a cutting material to a surgeon, who may feel a static cutting resistance force and vigorous cutting vibrations, via the master–slave system. Moreover, position scaling and force scaling are achieved. Scaling functions are used to achieve precise drilling and hazard detection via force sensation. Results Cutting accuracy and reproducibility of the cutting force were evaluated by angular velocity/position error and frequency analysis of the cutting force, respectively, and errors were > 2.0 rpm and > 0.2 mm, respectively. Spectrum peaks of the cutting vibration were at the theoretical vibration frequencies of 30, 60 and 90 Hz. Conclusions The proposed telerobotic-assisted drilling system achieved precise manipulation of the drill feed and vivid feedback from the cutting force. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22271710

  19. Internal coaxial cable seal system

    DOEpatents

    Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.

    2006-07-25

    The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  20. In-situ test site at the International Geothermal Centre Bochum

    NASA Astrophysics Data System (ADS)

    Bracke, Rolf; Wittig, Volker; Güldenhaupt, Jonas; Duda, Mandy; Stöckhert, Ferdinand; Bussmann, Gregor; Tünte, Henry; Saenger, Erik H.; Eicker, Timm; Löer, Katrin; Schäfers, Klaus; Macit, Osman; Jagert, Felix

    2017-04-01

    The in-situ test site at the International Geothermal Centre (GZB) is located on the campus of the Bochum University of Applied Sciences. The area represents a 10.000 m2 drill site with existing research, observation and production wells and allows further drill tests and drilling down to depths of 5.000 m - also in conjunction with the approved authorized 50 km2 mining area "Future Energies" and the GZB's own mobile dual drive drilling rig Bo.Rex capable of drilling down to depths of 1000 m. The site allows for a comprehensive characterization of the subsurface underneath the university's campus in terms of a case study in Bochum pursuing the objective to provide an in-situ test field to researchers from geosciences and other disciplines. The local geology comprises folded and fractured carboniferous sediments including sandstones, siltstones, claystones and coal seams with low matrix permeabilies. Currently, one research well, 29 production wells, and seven monitoring wells are available. The research well reaching to a depth of about 500 m with an open-hole section between 450 m and 500 m has been fully cored down to 200 m, selected sections were additionally cored down to 450 m. Production wells with depths of up to 200 m are equipped with borehole heat exchangers providing heating and cooling for the GZB and a new lecture building. Monitoring wells vary in depth and reach down to 200 m. The majority of wells were comprehensively characterized using the GZB's borehole geophysical logging system with deviation, caliper, gamma ray and acoustic imaging, but also full waveform sonic, flowmeter and electrical conductivity. Cuttings were collected, documented and partly stored. The in-situ test site will be complemented by a seismic and hydrogeological observatory comprising borehole seismometers at depths of up to 200 m. The seismic network will ensure permanent observation of natural and potential anthropogenic seismicity. Additionally, drilling activities interpreted as seismic source can be used to develop a better understanding of the geological and geophysical structure of the subsurface. Hydrogeological monitoring wells will be used for field experiments such as flowmeter tests, pumping tests or chemical analysis of groundwater. Synergies arise from linking the field-scale infrastructure with laboratory equipment at the GZB covering basic and advanced physicochemical characterization as well as high resolution 3D imaging technologies under high pressure and high temperature reservoir conditions at various scales from mm to m. The GZB invites students, researchers and interested parties to participate in and shape the GZB's in-situ research infrastructure activities by addressing fundamental and applied questions related to geothermal energy provision and georesources in general.

  1. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  2. SPI Conformance Gel Applications in Geothermal Zonal Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Lyle

    Zonal isolation in geothermal injection and producing wells is important while drilling the wells when highly fractured geothermal zones are encountered and there is a need to keep the fluids from interfering with the drilling operation. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) objectives are to advance technologies to make it more cost effective to develop, produce, and monitor geothermal reservoirs and produce geothermal energy. Thus, zonal isolation is critical to well cost, reservoir evaluation and operations. Traditional cementing off of the lost circulation or thief zones during drilling is often done to stem the drilling mudmore » losses. This is an expensive and generally unsuccessful technique losing the potential of the remaining fracture system. Selective placement of strong SPI gels into only the offending fractures can maintain and even improve operational efficiency and resource life. The SPI gel system is a unique silicate based gel system that offers a promising solution to thief zones and conformance problems with water and CO2 floods and potentially geothermal operations. This gel system remains a low viscosity fluid until an initiator (either internal such as an additive or external such as CO2) triggers gelation. This is a clear improvement over current mechanical methods of using packers, plugs, liners and cementing technologies that often severely damage the highly fractured area that is isolated. In the SPI gels, the initiator sets up the fluid into a water-like (not a precipitate) gel and when the isolated zone needs to be reopened, the SPI gel may be removed with an alkaline solution without formation damage occurring. In addition, the SPI gel in commercial quantities is expected to be less expensive than competing mechanical systems and has unique deep placement possibilities. This project seeks to improve upon the SPI gel integrity by modifying the various components to impart temperature stability for use in geothermal.« less

  3. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    NASA Astrophysics Data System (ADS)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  4. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  5. CHARACTERIZING SITE HYDROLOGY (REGION 5)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  6. Hydrogeologic Case Studies (Seattle, WA)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  7. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  8. The Georges Bank monitoring program 1985; analysis of trace metals in bottom sediments during the third year of monitoring

    USGS Publications Warehouse

    Bothner, Michael H.; Rendigs, R. R.; Campbell, Esma; Doughten, M.W.; Parmenter, C.M.; O'Dell, C. H.; DiLisio, G.P.; Johnson, R.G.; Gillison, J.R.; Rait, Norma

    1986-01-01

    Of the 12 elements analyzed in bulk (undifferentiated) sediments collected adjacent to drilling rigs on Georges Bank, only barium was found to increase in concentration during the period when eight exploratory wells were drilled (July 1981 until September 1982). The maximum postdrilling concentration of barium (a major element in drilling mud) reached 172 ppm in bulk sediments near the drill site in block 410. This concentration is higher than the predrilling concentration at this location by a factor of 5.9. This maximum barium concentration is within the range of predrilling concentrations (28-300 ppm) measured in various sediment types from the regional stations of this program. No drilling-related changes in the concentrations of the 11 other metals have been observed in bulk sediments at any of the locations sampled in this program. We estimate that about 25 percent of the barite discharged at block 312 was present in the sediments within 6 km of the rig, 4 weeks after drilling was completed at this location (drilling period was December 8, 1981-June 27, 1982). For almost a year following completion of this well, the inventory of barite decreased rapidly, with a half-life of 0.34 year. During the next year, the inventory decreased at a slower rate (half-life of 3.4 years). The faster rate probably reflects resuspension and sediment transport of bariterich material residing at the sediment surface. Elevated barium concentrations in post-drilling sediment-trap samples from block 312 indicate that such resuspension can occur up to at least 25 m above the sea floor. As the remaining barite particles are reworked deeper into the sediments by currents and bioturbation, removal by sediment-transport processes is slower. The barite discharged during the exploratory phase of drilling is associated with the fine fraction of sediment and is widely distributed around the bank. We found evidence for barium transport to Great South Channel, 115 km west of the drilling, and to stations 2 and 3, 35 km east of the easternmost drilling site. Small increases in barium concentrations, present in the fine fraction of sediment only, were measured also at the heads of both Lydonia and Oceanographer Canyons, located 8 and 39 km, respectively, seaward of the nearest exploratory well.

  9. Neurosurgical robotic arm drilling navigation system.

    PubMed

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  11. Benthos response following petroleum exploration in the southern Caspian Sea: Relating effects of nonaqueous drilling fluid, water depth, and dissolved oxygen.

    PubMed

    Tait, R D; Maxon, C L; Parr, T D; Newton, F C

    2016-09-15

    The effects of linear alpha olefin (LAO) nonaqueous drilling fluid on benthic macrofauna were assessed over a six year period at a southern Caspian Sea petroleum exploration site. A wide-ranging, pre-drilling survey identified a relatively diverse shelf-depth macrofauna numerically dominated by amphipods, cumaceans, and gastropods that transitioned to a less diverse assemblage dominated by hypoxia-tolerant annelid worms and motile ostracods with increasing depth. After drilling, a similar transition in macrofauna assemblage was observed with increasing concentration of LAO proximate to the shelf-depth well site. Post-drilling results were consistent with a hypothesis of hypoxia from microbial degradation of LAO, supported by the presence of bacterial mats and lack of oxygen penetration in surface sediment. Chemical and biological recoveries at ≥200m distance from the well site were evident 33months after drilling ceased. Our findings show the importance of monitoring recovery over time and understanding macrofauna community structure prior to drilling. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  13. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  14. Instrumentation used for hydraulic testing of potential water-bearing formations at the Waste Isolation Pilot Plant site in southeastern New Mexico

    USGS Publications Warehouse

    Basler, J.A.

    1983-01-01

    Requirements for testing hydrologic test wells at the proposed Waste Isolation Pilot Plant near Carlsbad, New Mexico, necessitated the use of inflatable formation packers and pressure transducers. Observations during drilling and initial development indicated small formation yields which would require considerable test times by conventional open-casing methods. A pressure-monitoring system was assembled for performance evaluation utilizing commercially available components. Formation pressures were monitored with a down-hole strain-gage transducer. An inflatable packer equipped with a 1/4-inch-diameter steel tube extending through the inflation element permitted sensing formation pressures in isolated test zones. Surface components of the monitoring system provided AC transducer excitation, signal conditioning for recording directly in engineering units, and both analog and digital recording. Continuous surface monitoring of formation pressures provided a means of determining test status and projecting completion times during any phase of testing. Maximum portability was afforded by battery operation with all surface components mounted in a small self-contained trailer. (USGS)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site;more » (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.« less

  16. Pre-operative Screening and Manual Drilling Strategies to Reduce the Risk of Thermal Injury During Minimally Invasive Cochlear Implantation Surgery.

    PubMed

    Dillon, Neal P; Fichera, Loris; Kesler, Kyle; Zuniga, M Geraldine; Mitchell, Jason E; Webster, Robert J; Labadie, Robert F

    2017-09-01

    This article presents the development and experimental validation of a methodology to reduce the risk of thermal injury to the facial nerve during minimally invasive cochlear implantation surgery. The first step in this methodology is a pre-operative screening process, in which medical imaging is used to identify those patients that present a significant risk of developing high temperatures at the facial nerve during the drilling phase of the procedure. Such a risk is calculated based on the density of the bone along the drilling path and the thermal conductance between the drilling path and the nerve, and provides a criterion to exclude high-risk patients from receiving the minimally invasive procedure. The second component of the methodology is a drilling strategy for manually-guided drilling near the facial nerve. The strategy utilizes interval drilling and mechanical constraints to enable better control over the procedure and the resulting generation of heat. The approach is tested in fresh cadaver temporal bones using a thermal camera to monitor temperature near the facial nerve. Results indicate that pre-operative screening may successfully exclude high-risk patients and that the proposed drilling strategy enables safe drilling for low-to-moderate risk patients.

  17. Spectroscopic detection and analysis of atomic emissions during industrial pulsed laser-drilling of structural aerospace alloys

    NASA Astrophysics Data System (ADS)

    Bright, Robin Michael

    The ability to adequately cool internal gas-turbine engine components in next-generation commercial and military aircraft is of extreme importance to the aerospace industry as the demand for high-efficiency engines continues to push operating temperatures higher. Pulsed laser-drilling is rapidly becoming the preferred method of creating cooling holes in high temperature components due a variety of manufacturing advantages of laser-drilling over conventional hole-drilling techniques. As cooling requirements become more demanding, the impact of drilling conditions on material removal behavior and subsequent effects on hole quality becomes critical. In this work, the development of emission spectroscopy as a method to probe the laser-drilling process is presented and subsequently applied to the study of material behavior of various structural aerospace materials during drilling. Specifically, emitted photons associated with energy level transitions within excited neutral atoms in material ejected during drilling were detected and analyzed. Systematic spectroscopic studies indicated that electron energy level populations and calculated electron temperatures within ejected material are dependent on both laser pulse energy and duration. Local thermal conditions detected by the developed method were related to the characteristics of ejected material during drilling and to final hole quality. Finally, methods of utilizing the observed relationships for spectroscopic process monitoring and control were demonstrated.

  18. Counter-Rotating Tandem Motor Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively comparedmore » to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.« less

  19. Near Real-Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Colaprete, A.; Heldmann, J. L.; Mattes, G.; Ennico, K.; Sanders, G. B.; Quinn, J.; Fritzler, E.; Marinova, M.; Roush, T. L.; Stoker, C.; Larson, W.; Picard, M.; McMurray, R.; Morse, S.

    2012-12-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this lunar mission is being designed to, prospecting needs to occur in near real-time. The two prospecting instruments are the neutron and NIR spectrometers. In the field demo a small radioactive source was provided the neutron flux. The NIR spectrometer, which includes its own light source, looks at surface reflectance for signatures of bound H2O/OH and general mineralogy. Once a "hot spot" was found by the prospecting instruments, the drill could either auger or core. The auger drill worked to a depth of 50 cm and is monitored with a drill camera and the NIR spectrometer. As cuttings are brought up the NIR spectra is monitored. If a particular location is considered of high-interest then the decision to core could be made. The coring drill (a push-tube) allowed a 1-meter sample to be acquired processed by the OVEN/LAVA sys-tem. This presentation will provide details as how these instruments worked together and how and if the planned measurements and science was obtained.

  20. Near Real Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Colaprete, Anthony; Heldmann, Jennifer; Mattes, Gregory W.; Ennico, Kimberly; Sanders, Gerald; Quinn, Jacqueline; Tegnerud, Erin Leigh; Marinova, Margarita; Larson, William E.; hide

    2012-01-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this lunar mission is being designed to, prospecting needs to occur in near real-time. The two prospecting instruments are the neutron and NIR spectrometers. In the field demo a small radioactive source was provided the neutron flux. The NIR spectrometer, which includes its own light source, looks at surface reflectance for signatures of bound H20/0H and general mineralogy. Once a "hot spot" was found by the prospecting instruments, the drill could either auger or core. The auger drill worked to a depth of 50 cm and is monitored with a drill camera and the NIR spectrometer. As cuttings are brought up the NIR spectra is monitored. If a particular location is considered of high -interest then the decision to core could be made. The coring drill (a push-tube) allowed a meter sample to be acquired processed by the OVEN/LAVA sys-tem. This presentation will provide details as how these instruments worked together and how and if the planned measurements and science was obtained.

  1. CHARACTERIZING SITE HYDROLOGY (WORKSHOP MSA PRESENTATION)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  2. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  3. Characterizing Site Hydrology (Region 10, Seattle, WA)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  4. CHARACTERIZING SITE HYDROLOGY (REGION 8 WORKSHOP)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  5. Microseismic Monitoring of the Mounds Drill Cuttings Injection Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branagan, P.T.; Mahrer, K.D.; Moschovidis, Z.A.

    This paper describes the microseismic mapping of repeated injections of drill cuttings into two separate formations at a test site near Mounds, OK. Injections were performed in sandstone and shale formations at depths of 830 and 595 m, respectively. Typical injection disposal was simulated using multiple small-volume injections over a three-day period, with long shut-in periods interspersed between the injections. Microseismic monitoring was achieved using a 5-level array of wireline-run, triaxial- accelerometer receivers in a monitor well 76 m from the disposed well. Results of the mapped microseismic locations showed that the disposal domti W= generally aligns with the majormore » horizontal stress with some variations in azimuth and that wide variations in height and length growth occurred with continued injections. These experiments show that the cuttings injection process cm be adequately monitored from a downhole, wireline-run receiver array, thus providing process control and environmental assurance.« less

  6. An Internal Coaxil Cable Seal System

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-23

    The invention is a seal system for a coaxial cable more specifically an internal seal system placed within the coaxial cable and its constituent components. A series of seal stacks including flexible rigid rings and elastomeric rings are placed on load bearing members within the coaxial cable. The current invention is adapted to seal the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. During oil and gas exploration, a drill string can see a range of pressures and temperatures thus resulting in multiple combinations of temperature and pressure and increasing the difficulty of creating a robust seal for all combinations. The seal system can be used in a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  7. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  8. Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.

    PubMed

    Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.

  9. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, L.R.; Aguilar, R.; Mercer, J.W.

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with boreholemore » locations and times-of-drilling charts are included.« less

  10. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    NASA Astrophysics Data System (ADS)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  11. Test wells T23, T29, and T30, White Sands Missile Range and Fort Bliss Military Reservation, Dona Ana County, New Mexico

    USGS Publications Warehouse

    Myers, R.G.; Pinckley, K.M.

    1984-01-01

    Three test wells, T23, T29, and T30, were drilled in south-central New Mexico as part of a joint military training program sponsored by the U.S. Army in November 1982. Test well T23 was drilled as an exploratory and monitoring well in the proposed Soledad well field at the Fort Bliss Military Reservation. Test wells T29 and T30 were drilled at White Sands Missile Range. Test well T29 was drilled as an observation well in the vicinity of the outfall channel from the sewage treatment plant. Test well T30 was drilled as an observation well for a landfill south of the well site. Information obtained from these wells includes lithologic logs for all wells and borehole-geophysical logs from the cased wells for test wells T29 and T30. (USGS)

  12. The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities.

    PubMed

    Josset, Jean-Luc; Westall, Frances; Hofmann, Beda A; Spray, John; Cockell, Charles; Kempe, Stephan; Griffiths, Andrew D; De Sanctis, Maria Cristina; Colangeli, Luigi; Koschny, Detlef; Föllmi, Karl; Verrecchia, Eric; Diamond, Larryn; Josset, Marie; Javaux, Emmanuelle J; Esposito, Francesca; Gunn, Matthew; Souchon-Leitner, Audrey L; Bontognali, Tomaso R R; Korablev, Oleg; Erkman, Suren; Paar, Gerhard; Ulamec, Stephan; Foucher, Frédéric; Martin, Philippe; Verhaeghe, Antoine; Tanevski, Mitko; Vago, Jorge L

    The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.

  13. Method and system for determining formation porosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittman, R.W.; Hermes, C.E.

    1977-12-27

    The invention discloses a method and/or system for measuring formation porosity from drilling response. It involves measuring a number of drilling parameters and includes determination of tooth dullness as well as determining a reference torque empirically. One of the drilling parameters is the torque applied to the drill string.

  14. 30 CFR 250.1625 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... SHELF Sulphur Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to... manifold valves, upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to...

  15. 30 CFR 250.617 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drills. 250.617 Section 250.617 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.617 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...

  16. 30 CFR 250.1625 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...

  17. 30 CFR 250.616 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drills. 250.616 Section 250.616 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.616 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...

  18. 30 CFR 250.617 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drills. 250.617 Section 250.617 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.617 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...

  19. 30 CFR 250.1625 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...

  20. 30 CFR 250.1625 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...

  1. Digital signal processing and interpretation of full waveform sonic log for well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    Along the Great Sand Dunes National Park and Preserve boundary (fig. 1), 10 monitoring wells were drilled by the National Park Service in order to monitor water flow in an unconfined aquifer spanning the park boundary. Adjacent to the National Park Service monitoring well named Boundary Piezometer Well No. 3, or BP-3, the U.S. Geological Survey (USGS) drilled the BP-3-USGS well. This well was drilled from September 14 through 17, 2009, to a total depth of 99.4 meters (m) in order to acquire additional subsurface information. The BP-3-USGS well is located at lat 37 degrees 43'18.06' and long -105 degrees 43'39.30' at a surface elevation of 2,301 m. Approximately 23 m of core was recovered beginning at a depth of 18 m. Drill cuttings were also recovered. The wireline geophysical logs acquired in the well include natural gamma ray, borehole caliper, temperature, full waveform sonic, density, neutron, resistivity, and induction logs. The BP-3-USGS well is now plugged and abandoned. This report details the full waveform digital signal processing methodology and the formation compressional-wave velocities determined for the BP-3-USGS well. These velocity results are compared to several velocities that are commonly encountered in the subsurface. The density log is also discussed in context of these formation velocities.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhleman, T.; Dempsey, P.

    Examples of new technology in drilling reflect, for the most part, the industry's determination to overcome harsh drilling environments and to improve drilling efficiency through new methods and better equipment. The technology addressed includes a BOP fire prevention device; a diverter systems for floaters; a unique telescoping derrick; Sohio's mobile drilling island; more power from existing SCR's; a radio-based MWD system; better field tool joint inspection; a combined drilling/production platform, and a subsea BOP protection method.

  3. Data on cost analysis of drilling mud displacement during drilling operation.

    PubMed

    Okoro, Emeka Emmanuel; Dosunmu, Adewale; Iyuke, Sunny E

    2018-08-01

    The focus of this research was to present a data article for analyzing the cost of displacing a drilling fluid during the drilling operation. The cost of conventional Spud, KCl and Pseudo Oil base (POBM) muds used in drilling oil and gas wells are compared with that of a Reversible Invert Emulsion Mud. The cost analysis is limited to three sections for optimum and effective Comparison. To optimize drilling operations, it is important that we specify the yardstick by which drilling performance is measured. The most relevant yardstick is the cost per foot drilled. The data have shown that the prices for drilling mud systems are a function of the mud system formulation cost for that particular mud weight and maintenance per day. These costs for different mud systems and depend on the base fluid. The Reversible invert emulsion drilling fluid, eliminates the cost acquired in displacing Pseudo Oil Based mud (POBM) from the well, possible formation damage (permeability impairment) resulting from the use of viscous pill in displacing the POBM from the wellbore, and also eliminates the risk of taking a kick during mud change-over. With this reversible mud system, the costs of special fluids that are rarely applied for the well-completion purpose (cleaning of thick mud filter cake) may be reduced to the barest minimum.

  4. Test wells SF-1A, 1B, 1C, and SF-2A, 2B, 2C, Santa Fe County, New Mexico

    USGS Publications Warehouse

    Hart, D.L.

    1989-01-01

    Two well nests, SF-1 and SF-2, were drilled in Santa Fe County, New Mexico, to monitor the hydraulic head within selected zones of the aquifer. Each well nest consists of three piezometers of shallow, middle, and deep completion within the aquifer. Each set of wells was drilled to a depth of about 2,000 ft before actual construction of the piezometers. Each piezometer was completed using either 5 or 10 ft of wire-wrapped screen. These piezometers were constructed as part of a larger ongoing program with the Santa Fe Metropolitan Water Board and New Mexico State Engineer Office to establish a regional observation-well network and to define better the groundwater flow system in the vicinity of Santa Fe and Santa Fe well fields. (USGS)

  5. Ejector subassembly for dual wall air drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolle, J.J.

    1996-09-01

    The dry drilling system developed for the Yucca Mountain Site Characterization Project incorporates a surface vacuum system to prevent drilling air and cuttings from contaminating the borehole wall during coring operations. As the drilling depth increases, however there is a potential for borehole contamination because of the limited volume of air which can be removed by the vacuum system. A feasibility analysis has shown that an ejector subassembly mounted in the drill string above the core barrel could significantly enhance the depth capacity of the dry drilling system. The ejector subassembly would use a portion of the air supplied tomore » the core bit to maintain a vacuum on the hole bottom. The results of a design study including performance testing of laboratory scale ejector simulator are presented here.« less

  6. 30 CFR 250.616 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drills. 250.616 Section 250.616 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... drills. (a) BOP pressure tests. When you pressure test the BOP system you must conduct a low-pressure... engaged in well-workover operations shall participate in a weekly BOP drill to familiarize crew members...

  7. State-of-the-art in coalbed methane drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less

  8. A new thermal model for bone drilling with applications to orthopaedic surgery.

    PubMed

    Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak

    2011-12-01

    This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.

  9. From Target Selection to Post-Stimulation Analysis: Example of an Unconventional Faulted Reservoir

    NASA Astrophysics Data System (ADS)

    LeCalvez, J. H.; Williams, M.; Xu, W.; Stokes, J.; Moros, H.; Maxwell, S. C.; Conners, S.

    2011-12-01

    As the global balance of supply and demand forces the hydrocarbon industry toward unconventional resources, technology- and economics-driven shale oil and gas production is gaining momentum throughout many basins worldwide. Production from such unconventional plays is facilitated by massive hydraulic fracturing treatments aimed at increasing permeability and reactivating natural fractures. Large-scale faulting and fracturing partly control stress distribution, hence stimulation-derived hydraulically-induced fracture systems development. Therefore, careful integrated approaches to target selection, treatment staging, and stimulation methods need to be used to economically maximize ultimate hydrocarbon recovery. We present a case study of a multistage, multilateral stimulation project in the Fort Worth Basin, Texas. Wells had to be drilled within city limits in a commercially developing building area. Well locations and trajectories were determined in and around large-scale faults using 3D surface seismic with throws varying from seven to thirty meters. As a result, three horizontal wells were drilled in the Lower Barnett Shale section, 150 m apart with the central well landed about 25 m shallower than the outside laterals. Surface seismic indicates that the surface locations are on top of a major fault complex with the lateral sections drilling away from the major fault system and through a smaller fault. Modeling of the borehole-based microseismic monitoring options led to the selection of an optimum set of configurations given the operational restrictions faced: monitoring would mainly take place using a horizontal array to be tractored downhole and moved according to the well and stage to be monitored. Wells were completed using a perf-and-plug approach allowing for each stimulation stage to obtain a precise orientation of the various three-component accelerometers of the monitoring array as well as the calibration of the velocity model used to process the microseismic data acquired. Real-time microseismic monitoring allowed (i) to avoid the water-bearing formation below the zone of interest, (ii) to bypass the faulted zone, and (iii) to modify as needed the perforation and stimulation plans. Completion led to an initial gas production of over 3 MMCF/day each. Early decline rates confirm successful completion in avoiding the faulted areas. Initial observations of the slickwater fracturing stimulation treatments for these three wells using an integrated approach involving mechanical modelling calibrated using microseismic data indicate that (i) a long bi-wing-like fracture system initiated prior to being followed by a complex fracture network; thus, explaining the fact that some events are mapped relatively far away from the injection site, (ii) proppant generally settled down in the near wellbore area during the fracture network development due to rapid decrease of fluid flow velocity away from the injection side. Initial b-value results seem to indicate that the target reservoir is naturally fractured and that the influence of a large fault system in the vicinity of the treated zone could be asserted.

  10. Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA

    Treesearch

    Jill A. McMurray; Dave W. Roberts; Mark E. Fenn; Linda H. Geiser; Sarah Jovan

    2013-01-01

    Rapid expansion of natural gas drilling in Sublette County, WY (1999-present), has raised concerns about the potential ecological effects of enhanced atmospheric nitrogen (N) deposition to the Wind River Range (WRR) including the Class I BridgerWilderness. We sampled annual throughfall (TF) N deposition and lichen thalli N concentrations under forest canopies in four...

  11. Effects of non-aqueous fluids cuttings discharge from exploratory drilling activities on the deep-sea macrobenthic communities

    NASA Astrophysics Data System (ADS)

    Santos, M. F. L.; Lana, P. C.; Silva, J.; Fachel, J. G.; Pulgati, F. H.

    2009-01-01

    This paper assesses the effects of non-aqueous fluids (NAFs-type III) cuttings discharge from exploratory drilling activities on deep-sea macrobenthic communities in the Campos Basin, off the southeastern Brazilian coast, Rio de Janeiro State. One hundred and fifty nine sediment samples were taken with a 0.25 m 2 box corer at a depth of 902 m on three monitoring cruises: first cruise—before drilling (April 2001), second cruise—after drilling (July 2001), and third cruise—one year after drilling (July 2002). The results indicated no significant changes in values of density, number of families and functional groups related to drilling activities in the reference area (2500 m distance), and biological variations may be result from the natural variability of the fauna. Evidence indicates that drilling activities led to measurable effects on the community structure related to NAF cuttings discharge but were limited to a 500 m radius from the drilling well. Such effects were much more evident at isolated sites in the impact area (WBF and WBF+NAF areas) and are characterized as localized impacts. One year after drilling, a recolonization was observed, with the probable recovery of the macrobenthic community in most of the study area; only at part of the WBF+NAF area (stations 05, 24 and 36) was the community still undergoing recovery.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, G.W.

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation`s drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy,more » Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool).« less

  13. Evaluation of site-selection criteria, well design, monitoring techniques, and cost analysis for a ground-water supply in Piedmont crystalline rocks, North Carolina

    USGS Publications Warehouse

    Daniel, Charles C.

    1990-01-01

    A statistical analysis of data from wells drilled into the crystalline rocks of the Piedmont and Blue Ridge provinces of North Carolina verified and refined previously proposed criteria for the siting of wells to obtain greater than average yields. An opportunity to test the criteria was provided by the expansion of the town of Cary's municipal ground-water system. Three criteria were used: type of rock, thickness of saturated regolith based upon topography, and presence of fractures and joints based upon drainage lineations. A conceptual model of the local hydrogeologic system was developed to guide the selection of the most favorable well sites, and on the basis of the model, six type sites were determined. Eleven of 12 test wells that were located on the basis of type sites yielded from slightly above average to as much as six times the average yield to be expected from particular rock types as reported in the literature. Only one well drilled at a type site had a less than average yield. One well not located at any of the type sites produced little water. Long-term testing and monitoring after the wells were put into production showed that an 18-hour-on, 6-hour-off pumping cycle was much more effective in terms of total production, reduced head loss, and less drawdown than a 5-day-on and 2-day-off cycle. It was also observed that long-term yields by the production wells were about 75 percent of those predicted on the basis of 24-hour pumping tests and only about 60 percent of the driller's reported yields. Cost analysis showed that, by using criteria-selected well sites, a cost-effective well system can be developed that will provide water at an equivalent or lower cost than a surface-water supply. The analysis showed that the system would be cost effective if only one high-yield well were obtained out of every four drilled.

  14. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important, either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi distinct failure modes of the drill: cuttings-removal issues with low-power drilling into permafrost, and successful steps at executive control and initial automation.

  15. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.

  16. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    NASA Astrophysics Data System (ADS)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  17. 30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...

  18. 30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...

  19. 30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...

  20. 30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...

  1. 30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...

  2. 30 CFR 250.442 - What are the requirements for a subsea BOP stack?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...) When you drill with a subsea BOP stack, you must install the BOP system before drilling below surface casing. The District Manager may require you to install a subsea BOP system before drilling below the...

  3. Aerospace Mechanisms Symposium (22nd) Held at Hampton, Virginia on 4-6 May 1988.

    DTIC Science & Technology

    1988-05-06

    monitoring is accomplished by a pressure transducer located near the hole drilled through the vessel wall between seals. A lip is machined on the...are presented and a design example involving a machine tool metrology bench is given. Design goals included thousandfold strain attenuation in the...systems such as a metrology bench, etc. These bodies must be supported. Six degrees of freedom must be fixed, but if the base upon which they are

  4. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...

  5. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...

  6. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...

  7. Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.

    2016-12-01

    IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  8. Contamination tracer testing with seabed drills: IODP Expedition 357

    NASA Astrophysics Data System (ADS)

    Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.

    2017-11-01

    IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  9. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of microspine toes that independently find holes and ledges on a rock to create an anchor. Once the system is anchored, a linear translation mechanism moves the drill axially into the surface while maintaining the proper WOB. The linear translation mechanism is composed of a ball screw and stepper motor that can translate a carriage with high precision and applied load. The carriage slides along rails using self-aligning linear bearings that correct any axial misalignment caused by bending and torsion. The carriage then compresses a series of springs that simultaneously transmit the load to the drill along the bit axis and act as a suspension that compensates for the vibration caused by percussive drilling. The drill is a compacted, modified version of an off-the-shelf rotary percussive drill, which uses a custom carbide-tipped coring bit. By using rotary percussive drilling, the drill time is greatly reduced. The percussive action fractures the rock debris, which is removed during rotation. The final result is a 0.75-in. (.1.9- cm) diameter hole and a preserved 0.5- in. (.1.3-cm) diameter rock core. This work extends microspine technology, making it applicable to astronaut missions to asteroids and a host of robotic sampling concepts. At the time of this reporting, it is the first instrument to be demonstrated using microspine anchors, and is the first self-contained drill/anchor system to be demonstrated that is capable of drilling in inverted configurations and would be capable of drilling in microgravity.

  10. Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system

    NASA Astrophysics Data System (ADS)

    Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin

    2010-09-01

    Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.

  11. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  12. Long-term changes in sediment barium inventories associated with drilling-related discharges in the Santa Maria Basin, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Evans, J.; Hom, W.

    1998-09-01

    Nine-year (1986--1995) records of barium (Ba) concentrations in surficial, subsurface, and suspended sediments near offshore oil and gas platforms in the Santa Maria Basin, California, USA, were analyzed to evaluate temporal trends related to drilling activities. These trends provide important information on the long-term effects of drilling discharges on geochemical conditions. Drilling during the 1986 through 1989 (phase II) monitoring period resulted in significant changes in Ba concentrations in suspended particles and surficial sediments, whereas the relatively shorter 1993 through 1994 (phase III) drilling operations resulted in only minor increases in Ba concentrations in suspended sediments. Residual excess Ba wasmore » present in some sediments within 500 m of the platforms at concentrations up to an order of magnitude above background. These elevated levels probably were associated with cuttings particles deposited near the base of the platforms. Calculated excess Ba in sediments within 500 m of the platforms represented 6 to 11% of the total Ba discharged during the two drilling periods.« less

  13. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real time. The GeoTap tester obtains direct pore-pressure measurements as the well is being drilled, with accuracy and precision comparable to that of wireline testers. The GeoTap service can eliminate the time, risk, and cost associated with running pipe-conveyed wireline test tools. It also measures annular and bore pressure while drilling, providing accurate, continuous, real-time hydrostatic pressure, and equivalent circulating density (ECD) information. This aids in determining and maintaining optimal mud weight, reduces formation damage, increases the rate of penetration, and increases operational safety. GeoTap benefits can be improvement of formation evaluation, real-time fluid gradients and fluid mobility (permeability/viscosity indicator), identification of fluid contact points, determination of reservoir connectivity/compartmentalization and depletion, increase safety of operation, determination of optimal mud weight and manage of ECD. We can also continuously monitor wellbore stability for assessments in order to reduce formation damage which in turns will help to increase drilling effectiveness (determine precise overbalance for maximizing ROP and continuously monitor hole-cleaning effectiveness with pressure-while-drilling, while reducing formation damage due to swab/surge). Save time and money by reducing rig down time associated with wireline testing. GeoTap Tool capable of performing more than 150 pressure tests per run and optional orientation of pressure measurement is available (top, right, bottom or left). GeoTap testing has been completed with encouraging results in many wells up to circa 3000m deep. Data has been acquired successfully both in a "Drill-Test-Drill' mode and a "Post-Drill-Test" mode. GeoTap tests have spanned wide ranges of borehole temperature, pressure, mobility as well as formation permeability and overbalance conditions. GeoTap tests in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic have proved that a logging while drilling approach can be successfully employed to acquire formation pressure data in open hole (which is also very useful for fluid gradient analysis, oil water and gas oil contacts delineation/identification).

  14. Communication adapter for use with a drilling component

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Hall,; Jr,; Tracy, H [Provo, UT; Bradford, Kline [Orem, UT; Rawle, Michael [Springville, UT

    2007-04-03

    A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

  15. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

  16. Advancing the dual reciprocating drill design for efficient planetary subsurface exploration

    NASA Astrophysics Data System (ADS)

    Pitcher, Craig

    Accessing the subsurface of planetary bodies with drilling systems is vital for furthering our understanding of the solar system and in the search for life and volatiles. The extremely stringent mass and sizing mission constraints have led to the examination of novel low-mass drilling techniques. One such system is the Dual-Reciprocating Drill (DRD), inspired by the ovipositor of the sirex noctilio, which uses the reciprocation of two halves lined with backwards-facing teeth to engage with and grip the surrounding substrate. For the DRD to become a viable alternative technique, further work is required to expand its testing, improve its efficiency and evolve it from the current proof-of-concept to a system prototype. To do this, three areas of research were identified. This involved examining how the drill head design affects the drilling depth, exploring the effects of ice content in regolith on its properties and drilling performance, and determining the benefits of additional controlled lateral motions in an integrated actuation mechanism. The tests performed in this research revealed that the cross-sectional area of the drill head was by far the most significant geometrical parameter with regards to drilling performance, while the teeth shape had a negligible effect. An ice content of 5 +/- 1% in the regolith corresponded to an increase in drilling time and a clear change in the regolith's physical properties. Finally, it was demonstrated that the addition of lateral motions allowed the drill to achieve greater depths. This work has advanced both the understanding and design of the DRD considerably. It has continued the exploration of the geometrical and substrate parameters that affect drilling performance and provided the first characterisation of the properties of an icy lunar polar simulant. The construction and testing of the complex motion internal actuation mechanism has both evolved the DRD design and opened a new avenue through which the system can be further optimised.

  17. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  18. A novel drill design for photoacoustic guided surgeries

    NASA Astrophysics Data System (ADS)

    Shubert, Joshua; Lediju Bell, Muyinatu A.

    2018-02-01

    Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.

  19. Implementing Monitored Natural Attenuation and Expediting Closure at Fuel-Release Sites

    DTIC Science & Technology

    2004-08-01

    Center for Environmental Excellence AFCEE/ERS Air Force Center for Environmental Excellence/Science and Engineering Division AFRPA Air Force Real...auger, air - or mud- rotary , cable-tool) was and is dependent on the target drilling depths and the types of subsurface materials expected to be...95(2000) ASTM. 1995c. Guide for the use of direct air - rotary drilling for geoenvironmental exploration and installation of subsurface water quality

  20. Installation of Groundwater Monitoring Wells TAV-MW15 and TAV-MW16.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lum, Clinton C. L.

    This report documents the installation of two groundwater monitoring wells at the Technical Area V Groundwater (TAVG) Area of Concern at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA- 0003525. Well installation activities were conducted in accordance with the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB)-approved work plan Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern (Workmore » Plan) (SNL/NM March 2016). The Work Plan was approved by NMED HWB prior to the start of field work (NMED May 2016). Project activities were performed from November 2016 through January 2017 by SNL/NM Environmental Restoration (ER) Operations personnel, and the SNL/NM drilling contractor Cascade Drilling LP. Drilling activities began with borehole drilling and sampling on November 30, 2016. Well construction and development fieldwork was completed on January 31, 2017. Land surveys to establish the location coordinates and elevations of the two wells were completed on March 23, 2017, and transmitted to SNL/NM personnel on April 17, 2017.« less

  1. Geohydrologic and drill-hole data for test well USW H-3, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.; Rush, F.E.; Spengler, R.W.

    This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-3. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, pumping, swabbing, and injection tests for the well are contained in this report.

  2. Considerations, constraints and strategies for drilling on Mars

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2006-04-01

    The effect of the environmental conditions on Mars - low temperature, low pressure, the uncertainty in the nature of the formations to be penetrated and the possibility of encountering ice - imply that a successful drilling system will have to be able to cope with a wide range of conditions. Systems using continuous drill pipe or wireline both offer attractive features and disadvantages, and the preferred choice may depend on the target depth. The drill bit will have to cope with a range of terrain, and we offer some suggestions for making a bit that will be able to drill in both hard and soft formations, and also be able to resist choking if it encounters ice or ice-bound materials. Since it will not be possible to use a liquid to remove the drilled cuttings on Mars, the cuttings removal system will probably use some form of auger, although it may be possible to use continuous or intermittent gas blasts. The sublimation of ice resulting from the heat of drilling in ice-containing formations may help in removing the cuttings, particularly as they are expected to be very fine as a result of the low power available for drilling. Drilling into ice bound soils was also found to be akin to drilling into ice-bound sandstones.

  3. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing.

    PubMed

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-04-27

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  4. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    PubMed Central

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-01-01

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445

  5. Wireless Infrared Data Link

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.

    1995-01-01

    Infrared transmitter and receiver designed for wireless transmission of information on measured physical quantity (for example, temperature) from transducer device to remote-acquisition system. In transmitter, output of transducer amplified and shifted with respect to bias or reference level, then fed to voltage-to-frequency converter to control frequency of repetition of current pulses applied to infrared-light-emitting diode. In receiver, frequency of repetition of pulses converted back into voltage indicative of temperature or other measured quantity. Potential applications include logging data while drilling for oil, transmitting measurements from rotors in machines without using slip rings, remote monitoring of temperatures and pressures in hazardous locations, and remote continuous monitoring of temperatures and blood pressures in medical patients, who thus remain mobile.

  6. Seismic while drilling: Operational experiences in Viet Nam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, M.; Einchcomb, C.

    1997-03-01

    The BP/Statoil alliance in Viet Nam has used seismic while drilling on four wells during the last two years. Three wells employed the Western Atlas Tomex system, and the last well, Schlumberger`s SWD system. Perceived value of seismic while drilling (SWD) lies in being able to supply real-time data linking drill bit position to a seismic picture of the well. However, once confidence in equipment and methodology is attained, SWD can influence well design and planning associated with drilling wells. More important, SWD can remove uncertainty when actually drilling wells, allowing risk assessment to be carried out more accurately andmore » confidently.« less

  7. National Pharmaceutical Stockpile drill analysis using XML data collection on wireless Java phones.

    PubMed

    Karras, B T; Huq, S Huq; Bliss, D; Lober, W B

    2002-01-01

    This study describes an informatics effort to track subjects through a National Pharmaceutical Stockpile (NPS) distribution drill. The drill took place in Seattle on 1/24/2002. Washington and the State Department of Health are among the first in the nation to stage a NPS drill testing the distribution of medications to mock patients, thereby testing the treatment capacity of the plan given a post-anthrax exposure scenario. The goal of the Public Health Informatics Group at the University of Washington (www.phig.washington.edu) was to use informatics approaches to monitor subject numbers and elapsed time. This study compares accuracy of time measurements using a mobile phone Java application to traditional paper recording in a live drill of the NPS. Pearson correlation = 1.0 in 2 of 3 stations. Differences in last station measurements can be explained by delay in recording of the exit time. We discuss development of the application itself and lessons learned. (MeSH Bioterrorism, Informatics, Public Health)

  8. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  9. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  10. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  11. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  12. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  13. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    PubMed

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  14. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    PubMed Central

    Ramachandran, Rahul; Menezes, Pradeep L.

    2017-01-01

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint. PMID:28956819

  15. IceBreaker: Mars Drill and Sample Delivery System

    NASA Astrophysics Data System (ADS)

    Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.

    2012-12-01

    We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The IceBreaker drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling and sample transfer on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in dis-crete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.

  16. An inexpensive and portable drill rig for bedrock groundwater studies in headwater catchments

    Treesearch

    C. Gabrielli; J.J. McDonnell

    2011-01-01

    Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Here, we present an inexpensive and portable bedrock drilling system designed for use in remote locations. Our system is capable of drilling bedrock wells up to 11 m deep and 38 mm in diameter in a wide range of bedrock types. The drill consists of a lawn mower engine...

  17. Health monitoring display system for a complex plant

    DOEpatents

    Ridolfo, Charles F [Bloomfield, CT; Harmon, Daryl L [Enfield, CT; Colin, Dreyfuss [Enfield, CT

    2006-08-08

    A single page enterprise wide level display provides a comprehensive readily understood representation of the overall health status of a complex plant. Color coded failure domains allow rapid intuitive recognition of component failure status. A three-tier hierarchy of displays provide details on the health status of the components and systems displayed on the enterprise wide level display in a manner that supports a logical drill down to the health status of sub-components on Tier 1 to expected faults of the sub-components on Tier 2 to specific information relative to expected sub-component failures on Tier 3.

  18. Hydraulic impulse generator and frequency sweep mechanism for borehole applications

    DOEpatents

    Kolle, Jack J.; Marvin, Mark H.; Theimer, Kenneth J.

    2006-11-21

    This invention discloses a valve that generates a hydraulic negative pressure pulse and a frequency modulator for the creation of a powerful, broadband swept impulse seismic signal at the drill bit during drilling operations. The signal can be received at monitoring points on the surface or underground locations using geophones. The time required for the seismic signal to travel from the source to the receiver directly and via reflections is used to calculate seismic velocity and other formation properties near the source and between the source and receiver. This information can be used for vertical seismic profiling of formations drilled, to check the location of the bit, or to detect the presence of abnormal pore pressure ahead of the bit. The hydraulic negative pressure pulse can also be used to enhance drilling and production of wells.

  19. Development of an advanced support system for site investigations

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Hama, K.; Iwatsuki, T.; Semba, T.

    2009-12-01

    JAEA has the responsibility for R&D to enhance reliability of High Level Waste (HLW) disposal technology and to develop safety assessment methodology with associated databases; these should support both the implementer (NUMO) and the relevant regulatory organizations. With this responsibility, JAEA has initiated development of advanced technology in the field of Knowledge Engineering. Known as the Information Synthesis and Interpretation System (ISIS), it incorporates knowledge currently being obtained in the Underground Research Laboratory (URL) projects in Expert System (ES) modules for the Japanese HLW disposal program. This knowledge includes fundamental understanding of relevant geological environments, technical know-how for the application of complex investigation techniques, experience gained in earlier site work, etc. However, much knowledge is not undocumented because the knowledge is treated as tacit knowledge and, without focused action soon, may be permanently lost. Therefore, a new approach is necessary to transfer the knowledge obtained in these URL projects to support the site characterization and subsequent safety assessment of potential repository sites by NUMO and the formulation of guidelines by regulatory organizations. In this paper, we introduce the ES for selecting tracers for borehole drilling. ES is the system built by applying electronic information technology to support the planning, conducting investigations and assessing of investigation results. Tracers are generally used for borehole drilling to monitor and quantitatively assess the degree of contamination of groundwater by drilling fluid. JAEA uses fluorescent dye as tracer in drilling fluid. When a fluorescent dye is used for drilling, suitable type and concentration must be selected. The technical points to be considered are; 1) linearity of fluorescent spectrum intensity with variations in concentration, 2) pH dependence of fluorescent spectrum intensity, 3) stability of fluorescent dye, 4) sorption/adsorption properties for rock being investigated, 5) detection limit of analyzer, 6) comparison of the fluorescent spectrum with dissolved organics and tracers used in other boreholes. In addition, costs and environmental impact are important factors to be considered. Thus, significant knowledge is needed in selecting the tracer for actual investigations. Fortunately, the ES for tracer selection already contains much knowledge needed. For example, the chemical data set for a suite of fluorescence dyes is in the ES, along with guidelines for their use. Therefore, this ES can support the use of fluorescent dye as tracer in actual investigations, even if the investigating scientists have little or no experience with it. In conclusion, the ES modules are and will be built as a support system for future researchers to perform optimized site investigations in a user-friendly manner. In this paper, we introduce the ES for selection of borehole drilling fluid tracer. Eventually, ES covering the full range of site investigation methods will be developed.

  20. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal.

    PubMed

    Feldmann, Arne; Gavaghan, Kate; Stebinger, Manuel; Williamson, Tom; Weber, Stefan; Zysset, Philippe

    2017-09-01

    Bone drilling is a surgical procedure commonly required in many surgical fields, particularly orthopedics, dentistry and head and neck surgeries. While the long-term effects of thermal bone necrosis are unknown, the thermal damage to nerves in spinal or otolaryngological surgeries might lead to partial paralysis. Previous models to predict the temperature elevation have been suggested, but were not validated or have the disadvantages of computation time and complexity which does not allow real time predictions. Within this study, an analytical temperature prediction model is proposed which uses the torque signal of the drilling process to model the heat production of the drill bit. A simple Green's disk source function is used to solve the three dimensional heat equation along the drilling axis. Additionally, an extensive experimental study was carried out to validate the model. A custom CNC-setup with a load cell and a thermal camera was used to measure the axial drilling torque and force as well as temperature elevations. Bones with different sets of bone volume fraction were drilled with two drill bits ([Formula: see text]1.8 mm and [Formula: see text]2.5 mm) and repeated eight times. The model was calibrated with 5 of 40 measurements and successfully validated with the rest of the data ([Formula: see text]C). It was also found that the temperature elevation can be predicted using only the torque signal of the drilling process. In the future, the model could be used to monitor and control the drilling process of surgeries close to vulnerable structures.

  1. Drilling Regolith: Why Is It So Difficult?

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    2017-10-01

    The Apollo rotary percussive drill system penetrated the lunar regolith with reasonable efficiency; however, extraction of the drill core stem proved to be very difficult on all three missions. Retractable drill stem flutes may solve this problem.

  2. Design and evaluation of a portable intra-operative unified-planning-and-guidance framework applied to distal radius fracture surgery.

    PubMed

    Magaraggia, Jessica; Wei, Wei; Weiten, Markus; Kleinszig, Gerhard; Vetter, Sven; Franke, Jochen; John, Adrian; Egli, Adrian; Barth, Karl; Angelopoulou, Elli; Hornegger, Joachim

    2017-01-01

    During a standard fracture reduction and fixation procedure of the distal radius, only fluoroscopic images are available for planning of the screw placement and monitoring of the drill bit trajectory. Our prototype intra-operative framework integrates planning and drill guidance for a simplified and improved planning transfer. Guidance information is extracted using a video camera mounted onto a surgical drill. Real-time feedback of the drill bit position is provided using an augmented view of the planning X-rays. We evaluate the accuracy of the placed screws on plastic bones and on healthy and fractured forearm specimens. We also investigate the difference in accuracy between guided screw placement versus freehand. Moreover, the accuracy of the real-time position feedback of the drill bit is evaluated. A total of 166 screws were placed. On 37 plastic bones, our obtained accuracy was [Formula: see text] mm, [Formula: see text] and [Formula: see text] in tip position and orientation (azimuth and elevation), respectively. On the three healthy forearm specimens, our obtained accuracy was [Formula: see text] mm, [Formula: see text] and [Formula: see text]. On the two fractured specimens, we attained: [Formula: see text] mm, [Formula: see text] and [Formula: see text]. When screw plans were applied freehand (without our guidance system), the achieved accuracy was [Formula: see text] mm, [Formula: see text], while when they were transferred under guidance, we obtained [Formula: see text] mm, [Formula: see text]. Our results show that our framework is expected to increase the accuracy in screw positioning and to improve robustness w.r.t. freehand placement.

  3. Comparison of the SidePak personal monitor with the Aerosol Particle Sizer (APS).

    PubMed

    Sánchez Jiménez, Araceli; van Tongeren, Martie; Galea, Karen S; Steinsvåg, Kjersti; MacCalman, Laura; Cherrie, John W

    2011-06-01

    The aim of this study was to compare the performance of the TSI Aerodynamic Particle Sizer (APS) and the TSI portable photometer SidePak to measure airborne oil mist particulate matter (PM) with aerodynamic diameters below 10 μm, 2.5 μm and 1 μm (PM(10), PM(2.5) and PM(1)). Three SidePaks each fitted with either a PM(10), PM(2.5) or a PM(1) impactor and an APS were run side by side in a controlled chamber. Oil mist from two different mineral oils and two different drilling fluid systems commonly used in offshore drilling technologies were generated using a nebulizer. Compared to the APS, the SidePaks overestimated the concentration of PM(10) and PM(2.5) by one order of magnitude and PM(1) concentrations by two orders of magnitude after exposure to oil mist for 3.3-6.5 min at concentrations ranging from 0.003 to 18.1 mg m(-3) for PM(10), 0.002 to 3.96 mg m(-3) for PM(2.5) and 0.001 to 0.418 mg m(-3) for PM(1) (as measured by the APS). In a second experiment a SidePak monitor previously exposed to oil mist overestimated PM(10) concentrations by 27% compared to measurements from another SidePak never exposed to oil mist. This could be a result of condensation of oil mist droplets in the optical system of the SidePak. The SidePak is a very useful instrument for personal monitoring in occupational hygiene due to its light weight and quiet pump. However, it may not be suitable for the measurement of particle concentrations from oil mist.

  4. Identification of sandstone core damage using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn

    2017-12-01

    Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.

  5. Monitoring-well installation, slug testing, and groundwater quality for selected sites in South Park, Park County, Colorado, 2013

    USGS Publications Warehouse

    Arnold, Larry R. Rick

    2015-01-01

    During May–June, 2013, the U.S. Geological Survey, in cooperation with Park County, Colorado, drilled and installed four groundwater monitoring wells in areas identified as needing new wells to provide adequate spatial coverage for monitoring water quality in the South Park basin. Lithologic logs and well-construction reports were prepared for each well, and wells were developed after drilling to remove mud and foreign material to provide for good hydraulic connection between the well and aquifer. Slug tests were performed to estimate hydraulic-conductivity values for aquifer materials in the screened interval of each well, and groundwater samples were collected from each well for analysis of major inorganic constituents, trace metals, nutrients, dissolved organic carbon, volatile organic compounds, ethane, methane, and radon. Documentation of lithologic logs, well construction, well development, slug testing, and groundwater sampling are presented in this report.

  6. Reaching 1 m deep on Mars: the Icebreaker drill.

    PubMed

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  7. Experimental analysis of drilling process in cortical bone.

    PubMed

    Wang, Wendong; Shi, Yikai; Yang, Ning; Yuan, Xiaoqing

    2014-02-01

    Bone drilling is an essential part in orthopaedics, traumatology and bone biopsy. Prediction and control of drilling forces and torque are critical to the success of operations involving bone drilling. This paper studied the drilling force, torque and drilling process with automatic and manual drill penetrating into bovine cortical bone. The tests were performed on a drilling system which is used to drill and measure forces and torque during drilling. The effects of drilling speed, feed rate and drill bit diameter on force and torque were discussed separately. The experimental results were proven to be in accordance with the mathematic expressions introduced in this paper. The automatic drilling saved drilling time by 30-60% in the tested range and created less vibration, compared to manual drilling. The deviation between maximum and average force of the automatic drilling was 5N but 25N for manual drilling. To conclude, using the automatic method has significant advantages in control drilling force, torque and drilling process in bone drilling. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Progress in the ICDP Mallik 2002 Data and Information System

    NASA Astrophysics Data System (ADS)

    Loewner, R.; Conze, R.; Mallik Working Group

    2003-04-01

    This contribution forms part of the scientific activities for the Mallik 2002 Production Research Well Program. The program participants include 8 partners: The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Since December 2001 the scientific investigations of the Mallik Gas Hydrate Production Research Well Program in the Canadian Mackenzie Delta were supported by a new Data and Information System. Due to the particular conditions and characteristics of methane drilling projects, we were able to elaborate a data management system in three main phases. These phases were realized very close in time and space to the activities and operations at the drill site, and in the laboratories of the Inuvik Research Center: 1. The first approach was to set up a database structure supported by the ICDP Drilling Information System (DIS) during the planning phase since fall 2001. This system encompasses various components helping in administration and operation of the system as well as in presentation of the data. 2. During the second phase, the drilling period of the main well hole (Mallik5L-38), we installed the Mallik-DIS in a small local network at the Inuvik Research Center, and maintained this system for data acquisition and core scanning. Each day we transferred all digital core pictures and archiving information of the core runs to the confidential Mallik Web sites, under extremely high security precautions. 3. While the scientific evaluation phase still continues since end of March 2002, several data sets have been already collected, prepared and incorporated into the Mallik Data Warehouse. These processed data have been made available on the Mallik Web sites within the ICDP Information Network (http://www.icdp-online.de/html/sites/mallik/index/index.html). Until now it comprises lithological descriptions, geophysical borehole measurements, gas monitoring data and an archive of all core runs and samples. A request started from the Internet generates results dynamically which accomplish the needs of the user. The user can generate even own litho-logs which enables him/her to compare all kinds of borehole information for his/her scientific work. A highly sophisticated security management due to different defined sub-groups of confidentiality within the Mallik Science Team covers all these functions and services. After the critical part of the Mallik project, which was our first involvement in the highly sensitive gas hydrate research, we gathered a lot of practical experiences. We can underline the success of the data management up to the present. In the remaining project time we intend to integrate more data from further analyses, to realise an integrative database for GSC and GFZ, to approve a general access to these data for all authorized Mallik group members, and to integrate data from previous Mallik drilling investigations (e.g. Mallik2L-38). References Conze, R., Wächter, J. (1998): The ICDP Information Network (http://www.icdp-online.de). - (poster and on-line presentation), AGU Fall Meeting, December 6-10, 1998, San Francisco, California, USA. Conze, R., Krysiak, F. (1999): ICDP On-Site Drilling Information System. - Demo CD including an exemplary data set of HSDP2 drilling, GFZ Potsdam, Germany.

  9. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy

    NASA Astrophysics Data System (ADS)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer

    2018-05-01

    We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.

  10. Multi-gradient drilling method and system

    DOEpatents

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  11. In-process and post-process measurements of drill wear for control of the drilling process

    NASA Astrophysics Data System (ADS)

    Liu, Tien-I.; Liu, George; Gao, Zhiyu

    2011-12-01

    Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevallier, J.J.; Quetier, F.P.; Marshall, D.W.

    Sedco Forex has developed an integrated computer system to enhance the technical performance of the company at various operational levels and to increase the understanding and knowledge of the drill crews. This paper describes the system and how it is used for recording and processing drilling data at the rig site, for associated technical analyses, and for well design, planning, and drilling performance studies at the operational centers. Some capabilities related to the statistical analysis of the company's operational records are also described, and future development of rig computing systems for drilling applications and management tasks is discussed.

  13. Swamp Works- Multiple Projects

    NASA Technical Reports Server (NTRS)

    Carelli, Jonathan M.

    2013-01-01

    My Surface Systems internship over the summer 2013 session covered a broad range of projects that ranged multiple aspects and fields of engineering and technology. This internship included a project to create a command center for a 120 ton regolith bin, a design and build for a blast shield to add further protection for the Surface Systems engineers, a design for a portable four monitor hyper wall that can extend as large as needed, research and programming a nano drill for a next generation robot, and social media tasks including the making of videos, posting to social networking websites and implementation of a new weekly outreach program to help spread the word about the Swamp Works laboratory. The objectives for the command center were to create a central computer controlled area for the still in production lunar regolith bin. It needed to be easy to use and the operating systems had to be Linux. The objectives for the hyper wall were to build a mobile transport of monitors that could potentially attach to one another. It needed to be light but sturdy, and have the ability to last. The objectives for the blast shield included a robust design that could withstand a small equipment malfunction, while also being convenient for use. The objectives for the nano-drill included the research and implementation of programming for vertical and horizontal movement. The hyper wall and blasts shield project were designed by me in the Pro/Engineer/Creo2 software. Each project required a meeting with the Swamp Works engineers and was declared successful.

  14. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  15. Selective placement disposal of drilling fluids in west Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, M.L.

    1988-01-01

    Burial of spent drilling fluids used in petroleum and natural gas exploration was evaluated as an alternative disposal technique for reducing surface soil contamination in western Texas. Simulated reserve pits were constructed to provide burial depths of 30, 90, and 150 cm below the surface, with orderly replacement of stockpiled subsoil and topsoil. Movement of soluble salts and heavy metals from drilling fluids into the overlying soil was monitored over a 20-month period. The effects of depth of drilling fluid burial on establishment, yields, and chemical composition of transplanted fourwing saltbush (Atriplex canescens (Pursh) Nutt.) and buffalograss (Buchloe dactyloides (Nutt.)more » Engelm.) were determined for two growing seasons. Sodium, Ca{sup +2}, and Cl{sup {minus}} were the dominant mobile ions, while migration of Mg{sup +2}, K{sup +}, and SO{sub 4}{sup {minus}2} was observed to a lesser degree. Exchangeable sodium percentages in the 15-cm zone immediately above drilling fluid ranged from 1.9 to 19.0 after 20 months. Total concentrations of Ba, Cr, Cu, Ni, and Zn were greater in drilling fluids than in native soil, but there was no evidence of migration of these metals into overlying soil.« less

  16. Kick Detection at the Bit: Early Detection via Low Cost Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tost, Brian; Rose, Kelly; Aminzadeh, Fred

    2016-06-07

    Formation fluid influxes (i.e. kicks) pose persistent challenges and operational costs during drilling operations. Implications of kicks range in scale but cumulatively result in substantial costs that affect drilling safety, environment, schedule, and infrastructure. Early kick detection presents a low-cost, easily adopted solution for avoiding well control challenges associated with kicks near the bit. Borehole geophysical tools used during the drilling process as part of the logging-while-drilling (LWD) and measurement-while-drilling (MWD) provide the advantage of offering real-time downhole data. LWD/MWD collect data on both the annulus and borehole wall. The annular data are normally treated as background, and are filteredmore » out to isolate the formation measurements. Because kicks will change the local physical properties of annular fluids, bottom-hole measurements are among the first indicators that a formation fluid has invaded the wellbore. This report describes and validates a technique for using the annular portion of LWD/MWD data to facilitate early kick detection using first order principles. The detection technique leverages data from standard and cost-effective technologies that are typically implemented during well drilling, such as MWD/LWD data in combination with mud-pulse telemetry for data transmission.« less

  17. Experimental system for drilling simulated lunar rock in ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Roepke, W. W.

    1975-01-01

    An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.

  18. Geohydrologic and drill-hole data for test well USW H-1, adjacent to Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Rush, F. Eugene; Thordarson, William; Bruckheimer, Laura

    1983-01-01

    This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-1. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted on behalf of the U.S. Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground-water chemistry and pumping and injection tests for well USW H-1 are contained in this report.

  19. a Self-Excited System for Percussive-Rotary Drilling

    NASA Astrophysics Data System (ADS)

    Batako, A. D.; Babitsky, V. I.; Halliwell, N. A.

    2003-01-01

    A dynamic model for a new principle of percussive-rotary drilling is presented. This is a non-linear mechanical system with two degrees of freedom, in which friction-induced vibration is used for excitation of impacts, which influence the parameters of stick-slip motion. The model incorporates the friction force as a function of sliding velocity, which allows for the self-excitation of the coupled vibration of the rotating bit and striker, which tends to a steady state periodic cycle. The dynamic coupling of vibro-impact action with the stick-slip process provides an entirely new adaptive feature in the drilling process. The dynamic behaviour of the system with and without impact is studied numerically. Special attention is given to analysis of the relationship between the sticking and impacting phase of the process in order to achieve an optimal drilling performance. This paper provides an understanding of the mechanics of percussive -rotary drilling and design of new drilling tools with advanced characteristics. Conventional percussive-rotary drilling requires two independent actuators and special control for the synchronization of impact and rotation. In the approach presented, a combined complex interaction of drill bit and striker is synchronized by a single rotating drive.

  20. Toxicity assessment in marine sediment for the Terra Nova environmental effects monitoring program (1997-2010)

    NASA Astrophysics Data System (ADS)

    Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given the lack of association between Microtox results and discharge from Terra Nova, coupled with the confounding effects of other variables, the usefulness of Microtox toxicity tests within the context of environmental monitoring for the Terra Nova and, potentially, other offshore oil operations needs to be questioned. The amphipod toxicity tests showed that sediments in the vicinity of discharges of synthetic-based drilling mud cuttings are rarely toxic.

  1. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie

    2014-01-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  2. No vintage year ahead, but it will be better than '89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garb, F.A.

    1989-12-01

    Activities in the upstream petroleum industry react to prices received for hydrocarbons and related products. Prices, in turn, are the result of supply, demand, politics and emotions. The author presents a forecast of 1990 oil industry activities and reviews the status of the pressures establishing oil and gas. According to this analysis, 1990 should be the first of a series of transition years. Oil and gas prices should be more stable than in the past. It will not be good drilling year, but will not be as bad as 1989. Gas exploration will again dominate exploration drilling. Development drilling willmore » account for more wells, if not for more budget dollars than exploration, with horizontal drilling developments being monitored closely industry-wide. Consolidation of mature producing properties into independent oil companies will continue. Decline in domestic production and an increase in hydrocarbon use and in imports should continue.« less

  3. External cooling efficiently controls intraosseous temperature rise caused by drilling in a drilling guide system: an in vitro study.

    PubMed

    Boa, Kristof; Varga, Endre; Pinter, Gabor; Csonka, Akos; Gargyan, Istvan; Varga, Endre

    2015-12-01

    The purpose of this study was to measure the rise in intraosseous temperature caused by drilling through a drilling guide system. We compared the rise in temperature generated, and the number of increases of more than 10 °C, between drills that had been cooled with saline at room temperature (25 °C) and those that had not been cooled, for every step of the drilling sequence. Cortical layers of bovine ribs were used as specimens, and they were drilled through 3-dimensional printed surgical guides. Heat was measured with an infrared thermometer. The significance of differences was assessed with either a two-sample t test or Welch's test, depending on the variances. The mean rises (number of times that the temperature rose above 10 °C) for each group of measurements were: for the 2mm drill, 4.8 °C (0/48) when cooled and 7.0 °C (8/48) when not cooled; with the 2.5mm drill, 5.2 °C (1/48) when cooled and 8.5 °C (17/48) when not cooled (2 mm canal); with the 3 mm drill, 3.3 °C when cooled (0/48) and 8.5 °C (18/24) when not cooled (2.5 mm canal); and with the 3.5 mm drill, 4.8 °C when cooled (0/24) and 9.4 °C when not cooled (10/23) (3 mm canal). The temperature rose significantly less with cooling at every step of the drilling sequence (p<0.001). We conclude that external cooling can maintain the intraosseous temperature within the safe range while drilling through an implant guide system, whereas drilling without irrigation can lead to temperatures that exceed the acceptable limit. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. 30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... foundations; drilling, production, and pipeline risers and riser tensioning systems; turrets and turret-and... component design; pile foundations; drilling, production, and pipeline risers and riser tensioning systems... Loads imposed by jacket; decks; production components; drilling, production, and pipeline risers, and...

  5. 30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... foundations; drilling, production, and pipeline risers and riser tensioning systems; turrets and turret-and... component design; pile foundations; drilling, production, and pipeline risers and riser tensioning systems... Loads imposed by jacket; decks; production components; drilling, production, and pipeline risers, and...

  6. Environmental impact studies for gas hydrate production test in the Ulleung Basin, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae

    2017-04-01

    To develop potential future energy resources, the Korean National Gas Hydrate Program has been carried out since 2005. The program has been supported by the Ministry of Trade, Industry and Energy (MOTIE), and carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM), the Korea Gas Corporation (KOGAS) and the Korea National Oil Corporation (KNOC) under the management of Gas Hydrate R&D Organization (GHDO). As a part of this national program, geophysical surveys, geological studies on gas hydrates and two deep drilling expeditions were performed. Gas hydrate-bearing sand layers suitable for production using current technologies were found during the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) in 2010. Environmental impact studies (EIS) also have been carried out since 2012 by KIGAM in cooperation with domestic and foreign universities and research organizations to ensure safe production test that will be performed in near future. The schedule of production test is being planned. The EIS includes assessment of environmental risks, examination on domestic environmental laws related with production test, collection of basic oceanographic information, and baseline and monitoring surveys. Oceanographic information and domestic environmental laws are already collected and analyzed. Baseline survey has been performed using the in-house developed system, KIGAM Seafloor Observation System (KISOS) since 2013. It will also be performed. R/V TAMHAE II of KIGAM used for KISOS operation. As a part of this EIS, pseudo-3D Chirp survey also was carried out in 2014 to determine the development of fault near the potential testing site. Using KIGAM Seafloor Monitoring System (KIMOS), monitoring survey is planned to be performed from three month before production test to three months after production test. The geophysical survey for determining the change of gas hydrate reservoirs and production-efficiency around the production well would also be conducted before and after the production test. KIMOS will be developed as the planning that was drawn up already. A period for monitoring survey and geophysical survey type, such as AUV or EM surveys will be decided according to the budget.

  7. Treatability Study in Support of Intrinsic Remediation for the Hangar 10 Site. Elmendorf Air Force Base, Anchorage, Alaska

    DTIC Science & Technology

    1995-03-01

    Monitoring Well Installation ....................................... 2-8 2.1.3.1 Well Materials Decontamination ..................... 2-9 2.1.3.2 Well...event, with a clean water/phosphate-free detergent mix and a clean water rinse. All well completion materials were factory sealed. All... materials were not stored near or in areas which could be affected by these substances. 2.1.2.3 Drilling and Soil Sampling Drilling was accomplished by using

  8. Automation of cutting and drilling of composite components

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1991-01-01

    The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.

  9. Results of test drilling in the Basalt aquifer near Fallon, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.

    2002-01-01

    Drilling of two test holes into the Fallon basalt aquifer commenced August 14, 2001. The basalt aquifer is located beneath the Carson Desert, near Fallon, Nevada, and is the sole source of drinking water for the City of Fallon, the Naval Air Station (NAS) Fallon, and the Fallon Paiute-Shoshone Tribe. Basalt comprising the aquifer is exposed at Rattlesnake Hill, an eroded volcanic cone, about 1 mile northeast of Fallon, and the remainder is buried beneath sediments deposited by the Carson River and ancient Lake Lahontan to depths of 600 feet near its edges (fig. 1). The basalt-aquifer system is a mushroom-shaped body of highly permeable volcanic rock. Viewed from above, the lateral extent of the basalt body is oval-shaped, about 4-miles wide and 10-miles long (fig. 1). Drilling was part of a cooperative study between the U.S. Geological Survey (USGS), the Bureau of Reclamation, and NAS Fallon. The study was started because of concern about the continued viability of the basalt-aquifer system as a source of municipal water supply. Increased pumping from about 1,700 acre-feet per year (acre-ft/yr) in the 1970?s to over 3,000 acre-ft/yr in the late 1990?s has caused water levels in the basalt to decline as much as 12 feet (fig. 2). During this same time period, water pumped from the aquifer at NAS Fallon and the City of Fallon wells showed that concentrations of dissolved chloride increased, although chloride concentrations were well within the U.S. Environmental Protection Agency?s (EPA) drinking-water standards; at this rate of increase, it would take decades to exceed the present standard (Maurer and Welch, 2001, p. 46). Concentrations of arsenic in the aquifer are about 0.1 milligrams per liter (mg/L), exceeding the drinking-water standard of 0.01 mg/L, but show no apparent change over time (Maurer and Welch, 2001, p. 10 and 48; U. S. Environmental Protection Agency, 2001). Increasing concentrations of chloride may be caused by increased pumping, that induces inflow of more saline water from aquifers surrounding or underlying the basalt, or from greater depths within the basalt itself. Prior to the drilling on August 14, 2001, few wells penetrated the basalt more than 70 feet below its upper surface (Maurer and Welch, 2001, p. 34). This prevented monitoring changes in water quality deeper in the aquifer that might be moving upward with continued pumping. Purposes of drilling were to fully penetrate the basalt, determine its hydrogeological character, the distribution of water quality in the basalt and in the underlying sedimentary aquifer, install monitoring wells.

  10. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discussmore » results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.« less

  11. Air distribution system with the discharge action in the working cavity of downhole air hammer drills

    NASA Astrophysics Data System (ADS)

    Timonin, VV; Alekseev, SE; Kokoulin, DI; Kubanychbek, B.

    2018-03-01

    It is proposed to carry out pre-mine methane drainage using underground degassing holes made by downhole air hammer drills. The features of downhole air drills are described. The downhole air drill layout with the simple-shape striking part is presented with its pluses and minuses. The researchers point at available options to eliminate the shortcomings. The improved layout of the downhole air hammer drill is suggested. The paper ends with the test data on the prototype air hammer drill, its characteristics and trial drilling results.

  12. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    PubMed

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils are very similar to white spirit. To reduce exposures, relevant technical control measures in this area are to cool the drilling fluid <50°C before it enters the shale shaker units, enclose shale shakers and related equipment, in addition to careful consideration of which fluid system to use.

  13. Microhole Coiled Tubing Bottom Hole Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Macune

    2008-06-30

    The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. Themore » equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.« less

  14. First implementation of burrowing motions in dual-reciprocating drilling using an integrated actuation mechanism

    NASA Astrophysics Data System (ADS)

    Pitcher, Craig; Gao, Yang

    2017-03-01

    The dual-reciprocating drill (DRD) is a biologically-inspired low-mass alternative to traditional drilling techniques, using backwards-facing teethed halves to grip the surrounding substrate, generating a traction force that reduces the required overhead penetration force. Previous experiments using a proof-of-concept test bench have provided evidence as to the significant role of sideways movements and lateral forces in improving drilling performance. The system is also progressing to a first system prototype concept, in which an actuation mechanism is integrated within the drill heads. To experimentally determine the effect of lateral motions, a new internal actuation mechanism was developed to allow the inclusion of controlled sideways movements, resulting in the creation of the circular and diagonal burrowing motions. This paper presents an investigation into the performance of the reciprocation and burrowing motions by testing them in a planetary regolith simulant. Analysis of force sensor measurements has shown a relationship between the penetration and traction forces and the internal friction of the mechanism and depth achieved. These tests have also experimentally demonstrated the benefit of lateral motions in drilling performance, with both the burrowing mechanisms and drilling tests performed at an angle able to penetrate further than traditional vertical reciprocation, leading to the proposition of new burrowing and diagonal drilling mechanics. From this, a new fully integrated system prototype can be developed which incorporates lateral motions that can optimise the drilling performance.

  15. Application of ALD Images and Caliper Data for the breakout analysis from the wells which were drilled in the Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    Wellbore instability while drilling, trip in or trip out can be cause of nonproductive time (NPT). Mainly this is the drilling surprises often encountered while drilling, trip in or trip out which were not predicted in advance, monitored, interpreted or recognized properly, which can give rise to wellbore instability problems. These surprises include also formation tops, overpressure zones occurring at different depths than predicted and the presence of unexpected faults or other fractured/fissile/compartmentalization zones. In general while drilling the wells, downhole PWD data cannot be very useful for understanding wellbore stability. Much of what we can use is indirect measurements such as torque and drag observations, rpm, vibrations, cavings, annular pressure measurements and etc. In order to understand what is going on in the subsurface and therefore mitigate the wellbore instability problems, we need more information from LWD (logging while drilling) tools. In order to monitor and get direct observations of the state of the borehole we need to determine where, how and in which direction the wellbore is failing and enlargement is taking place. LWD calipers and wellbore Azimuthal Lithodensity Images can provide such information for breakout analysis while drilling, trip in and trip out activity. The modes of wellbore instability can be generated in different ways and through different mechanisms. Therefore these zones of breakout can be potentially identified by the ALD imaging and LWD caliper tools. Instability can be governed by a combination of factors such as: the strength of the rock, the subsurface stress field, maximum and minimum horizontal stresses, pre-existing planes of weakness, the angle of the wellbore which intersects with these planes of weakness and chemical reaction of the rock (minerals) with the drilling fluid. Compressional failure (breakout) of an isotropic rock can occur when the compressive stresses around the borehole exceed the compressive strength of the rock. This can create the enlargement of the borehole with two failure zones opposite to each other with circumference at 180 degrees (for instance top side vs bottom side of the borehole or right side vs left side of the borehole). The image tracks for Rhob (density), Pe (photoelectric absorption) and Caliper can show the data such as edges of the track from the top, right, bottom and left sides of the hole (the center of the track is the bottom side of the borehole). Generally the color gradation (different spectrums) can be used in order to show the orientation change in the measurement around the wellbore. The azimuthal density, Pe, and Caliper data can be pointed and visualized as a log curves which can represent the average of all available data (an average of the top, right, bottom and left sides (or quadrants) or as 8 (RT) or 16 (RM) individual bins and as an ALD Image log. In addition, the Caliper data can give us information about the diameter and geometry of the borehole while drilling, trip in and trip out activities (for more detailed breakout analysis and interpretations). This paper (abstract) will present the results of a breakout analysis conducted from the wells which were drilled in the Caspian Sea of the Azerbaijan Republic in order to evaluate the available ALD images, caliper information and eventually incorporation of all available data into the wellbore stability monitoring service (breakout analysis).

  16. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  17. Research on high speed drilling technology and economic integration evaluation in Oilfield

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Ni, Hongjian; Cheng, Na; Song, Jingbo

    2018-01-01

    The carbonate reservoir in the oilfield mainly formed in Ordovician System and Carboniferous System. The geology here is very complicated, with high heterogeneity. It gets much more difficult to control the well deflection in Permian system so that high accident ratio could be expected. The buried depth of the reservoir is large, normally 4600-6600m deep. The temperature of the layer is higher than 132 and the pressure is greater than 62MPa. The reservoir is with a high fluid properties, mainly including thin oil, heavy oil, condensate oil, gas and so on; the ground is very hard to drill, so we can foresee low drilling speed, long drilling period and high drilling cost, which will surely restrict the employing progress of the reservoir.

  18. Recent Developments and Adaptations in Diamond Wireline Core Drilling Technology

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Nielson, D. L.; Howell, B. B.; Pardey, M.

    2001-05-01

    Scientific drilling using diamond wireline technology is presently undergoing a significant expansion and extension of activities that has allowed us to recover geologic samples that have heretofore been technically or financially unattainable. Under the direction and management of DOSECC, a high-capacity hybrid core drilling system was designed and fabricated for the Hawaii Scientific Drilling Project (HSDP) in 1998. This system, the DOSECC Hybrid Coring System (DHCS), has the capacity to recover H-sized core from depths of more than 6 km. In 1999, the DHCS completed the first phase of the HSDP to a depth of 3100 m at a substantially lower cost per foot than any previous scientific borehole to comparable depths and, in the process, established a new depth record for recovery of H-sized wireline core. This system has been offered for use in the Unzen Scientific Drilling Project, the Chicxulub (impact crater) Scientific Drilling Project, and the Geysers Deep Geothermal Reservoir Project. More recently, DOSECC has developed a smaller barge-mounted wireline core drilling system, the GLAD800, that is capable of recovering P-sized sediment core to depths of up to 800 m. The GLAD800 has been successfully deployed on Great Salt Lake and Bear Lake in Utah and is presently being mobilized to Lake Titicaca in South America for an extensive core recovery effort there. The coring capabilities of the GLAD800 system will be available to the global lakes drilling community for acquisition of sediment cores from many of the world's deep lakes for use in calibrating and refining global climate models. Presently under development by DOSECC is a heave-compensation system that will allow us to expand the capabilities of the moderate depth coring system to allow us to collect sediment and bottom core from the shallow marine environment. The design and capabilities of these coring systems will be presented along with a discussion of their potential applications for addressing a range of earth sciences questions.

  19. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  20. 30 CFR 250.447 - When must I pressure test the BOP system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... pressure test your BOP system (this includes the choke manifold, kelly valves, inside BOP, and drill-string... performance warrant; and (c) Before drilling out each string of casing or a liner. The District Manager may...

  1. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    PubMed Central

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  2. Status of the flora and fauna on the Nevada Test Site, 1993. Results of continuing basic environmental monitoring, January through December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, R.B.

    1994-09-01

    This report provides the results of monitoring of plants and animals on the Nevada Test Site during calendar year 1993. Monitoring was accomplished under the Department of Energy`s Basic Environmental Compliance and Monitoring Program, initiated in 1987. The program looks at both baseline study areas, chosen to represent undisturbed conditions as much as possible, and areas disturbed by Department of energy (DOE) activities or natural phenomena. DOE disturbances studied include areas blasted by above-ground nuclear tests before 1962, subsidence craters created by underground nuclear tests, road maintenance activities, areas cleared for drilling, and influences of man-made water sources. Natural phenomenamore » studied include recovery from range fires, effects of introduced species, damage to plants by insect outbreaks, and effects of weather fluctuations. In 1993 disturbances examined included several burned areas and roadsides, a drill pad on Pahute Mesa, introduced grasses and shrub removal effects on ephemeral plants, and effects on pine trees of an infestation of pinyon needle scale insects.« less

  3. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  4. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  5. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  6. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  7. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...

  8. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  9. The IODP NanTroSEIZE Transect: Accomplishments and Future Plans

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Kinoshita, M.; Araki, E.; Byrne, T. B.; Kimura, G.; McNeill, L. C.; Moore, G. F.; Saffer, D. M.; Underwood, M.; Saito, S.

    2009-12-01

    The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a decade-long project to investigate the processes and properties that determine the nature of frictional locking, creep and other fault behavior governing seismogenic rupture and tsunamigenesis on a major plate boundary where great subduction earthquakes occur. The main goal of the science plan is to sample and instrument the key faults in several locations across the transition from those dominated by frictionally stable, aseismic processes vs. those hypothesized to be frictionally locked (seismogenic) faults of the megathrust system. The transect includes primary drill sites from the incoming plate, across the outer accretionary complex of the lower slope, to the Kumano forearc basin and underlying up-dip end of the likely locked plate interface. The scale of this project required a division into multiple stages of operations, spanning a number of years and IODP expeditions. From September 2007 through October 2009, the NanTroSEIZE science team has achieved many of its primary goals during 5 expeditions. Completed drill sites to date include penetrations ranging from ~200 m to ~1600 m below the sea floor that have documented the faults and wall rocks of both the frontal thrust and out-of-sequence splay faults in the accretionary system, the sedimentary section of the subducting plate, and the thick forearc basin sedimentary record and underlying older subduction complex in the hanging wall of the main plate interface. Major results include characterization of: the fault zone geology, strain localization, and physical properties shallower than ~ 1 km, the distribution of ambient (and paleo-) stress orientations across the transect, the absence of evidence for focused fluid channeling along the principal shallow fault systems, and the tectonic history of the subduction system. Extensive downhole measurements and a 2-ship VSP have further documented stress, pressure, rock strength, and elastic properties around the boreholes. The first temporary long-term monitoring instruments are now in place in one sealed borehole, recording pore pressure and temperature. The most ambitious aspect of the NanTroSEIZE project remains for the now-scheduled next stage: drilling to ~ 7000 m below the sea bed across the faults of the main plate boundary, then placing long-term monitoring instruments into both deep and shallow sealed borehole observatories - all to test hypotheses of locking, strain accumulation, and interseismic fault processes.

  10. Comparison of athlete-coach perceptions of internal and external load markers for elite junior tennis training.

    PubMed

    Murphy, Alistair P; Duffield, Rob; Kellett, Aaron; Reid, Machar

    2014-09-01

    To investigate the discrepancy between coach and athlete perceptions of internal load and notational analysis of external load in elite junior tennis. Fourteen elite junior tennis players and 6 international coaches were recruited. Ratings of perceived exertion (RPEs) were recorded for individual drills and whole sessions, along with a rating of mental exertion, coach rating of intended session exertion, and athlete heart rate (HR). Furthermore, total stroke count and unforced-error count were notated using video coding after each session, alongside coach and athlete estimations of shots and errors made. Finally, regression analyses explained the variance in the criterion variables of athlete and coach RPE. Repeated-measures analyses of variance and interclass correlation coefficients revealed that coaches significantly (P < .01) underestimated athlete session RPE, with only moderate correlation (r = .59) demonstrated between coach and athlete. However, athlete drill RPE (P = .14; r = .71) and mental exertion (P = .44; r = .68) were comparable and substantially correlated. No significant differences in estimated stroke count were evident between athlete and coach (P = .21), athlete notational analysis (P = .06), or coach notational analysis (P = .49). Coaches estimated significantly greater unforced errors than either athletes or notational analysis (P < .01). Regression analyses found that 54.5% of variance in coach RPE was explained by intended session exertion and coach drill RPE, while drill RPE and peak HR explained 45.3% of the variance in athlete session RPE. Coaches misinterpreted session RPE but not drill RPE, while inaccurately monitoring error counts. Improved understanding of external- and internal-load monitoring may help coach-athlete relationships in individual sports like tennis avoid maladaptive training.

  11. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu

    2016-02-15

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reportsmore » were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.« less

  12. [Navigated drilling for femoral head necrosis. Experimental and clinical results].

    PubMed

    Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S

    2007-05-01

    In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.

  13. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling

    PubMed Central

    Zhang, Chunxi; Lin, Tie

    2016-01-01

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method. PMID:27483270

  14. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling.

    PubMed

    Zhang, Chunxi; Lin, Tie

    2016-07-28

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method.

  15. Automatic Bone Drilling - More Precise, Reliable and Safe Manipulation in the Orthopaedic Surgery

    NASA Astrophysics Data System (ADS)

    Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Delchev, Kamen; Zagurski, Kazimir

    2016-06-01

    Bone drilling manipulation often occurs in the orthopaedic surgery. By statistics, nowadays, about one million people only in Europe need such an operation every year, where bone implants are inserted. Almost always, the drilling is performed handily, which cannot avoid the subjective factor influence. The question of subjective factor reduction has its answer - automatic bone drilling. The specific features and problems of orthopaedic drilling manipulation are considered in this work. The automatic drilling is presented according the possibilities of robotized system Orthopaedic Drilling Robot (ODRO) for assuring the manipulation accuracy, precision, reliability and safety.

  16. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  17. Wear Detection of Drill Bit by Image-based Technique

    NASA Astrophysics Data System (ADS)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  18. Geohydrologic and drill-hole data for test well USW H-1, adjacent to Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rush, F.E.; Thordarson, W.; Bruckheimer, L.

    This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-1. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted on behalf of the US Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground-water chemistry and pumping and injection tests for well USW H-1 are inmore » this report.« less

  19. Effects of the Terra Nova offshore oil development on benthic macro-invertebrates over 10 years of development drilling on the Grand Banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    Paine, Michael D.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Pocklington, Patricia; Crowley, Roger D.; Williams, Urban P.; Gregory Janes, G.

    2014-12-01

    This paper describes effects of drilling with water and synthetic-based drilling muds on benthic macro-invertebrates over 10 years at the Terra Nova offshore oil development. As such, the paper provides insight on the effects of relatively new synthetic-based drilling muds (SBMs), and makes an important contribution to our understanding of the long-term chronic effects of drilling on benthic communities. The Terra Nova Field is located approximately 350 km offshore on the Grand Banks of Newfoundland (Canada). Sediment and invertebrate samples were collected in 1997 (baseline) prior to drilling, and subsequently in 2000, 2001, 2002, 2004, 2006, 2008 and 2010. Approximately 50 stations were sampled in each year at distances of less than 1 to approximately 20 km from drill centres. Summary benthic invertebrate community measures examined were total abundance, biomass, richness, diversity and multivariate measures of community composition based on non-Metric Dimensional Scaling (nMDS). Decreases in abundance, biomass and richness were noted at one station located nearest (0.14 km) to a drill centre in some environmental effects monitoring (EEM) years. These decreases coincided with higher levels of tracers of drill muds in sediments (barium and >C10-C21 hydrocarbons). Abundances of selected individual taxa were also examined to help interpret responses when project-related effects on summary measures occurred. Enrichment effects on some tolerant taxa (e.g., the polychaete family Phyllodocidae and the bivalve family Tellinidae) and decreased abundances of sensitive taxa (e.g., the polychaete families Orbiniidae and Paraonidae) were detected to within approximately 1-2 km from discharge source. Lagged responses three to five years after drilling started were noted for Phyllodocidae and Tellinidae, suggesting chronic or indirect effects. Overall, results of benthic community analyses at Terra Nova indicate that effects on summary measures of community composition were spatially limited but, as seen elsewhere, some taxa were more sensitive to drilling discharges.

  20. Examination of the relationship between project management critical success factors and project success of oil and gas drilling projects

    NASA Astrophysics Data System (ADS)

    Alagba, Tonye J.

    Oil and gas drilling projects are the primary means by which oil companies recover large volumes of commercially available hydrocarbons from deep reservoirs. These types of projects are complex in nature, involving management of multiple stakeholder interfaces, multidisciplinary personnel, complex contractor relationships, and turbulent environmental and market conditions, necessitating the application of proven project management best practices and critical success factors (CSFs) to achieve success. Although there is some practitioner oriented literature on project management CSFs for drilling projects, none of these is based on empirical evidence, from research. In addition, the literature has reported alarming rates of oil and gas drilling project failure, which is attributable not to technical factors, but to failure of project management. The aim of this quantitative correlational study therefore, was to discover an empirically verified list of project management CSFs, which consistent application leads to successful implementation of oil and gas drilling projects. The study collected survey data online, from a random sample of 127 oil and gas drilling personnel who were members of LinkedIn's online community "Drilling Supervisors, Managers, and Engineers". The results of the study indicated that 10 project management factors are individually related to project success of oil and gas drilling projects. These 10 CSFs are namely; Project mission, Top management support, Project schedule/plan, Client consultation, Personnel, Technical tasks, Client acceptance, Monitoring and feedback, Communication, and Troubleshooting. In addition, the study found that the relationships between the 10 CSFs and drilling project success is unaffected by participant and project demographics---role of project personnel, and project location. The significance of these findings are both practical, and theoretical. Practically, application of an empirically verified CSFs list to oil and gas drilling projects could help oil companies improve the performance of future drilling projects. Theoretically, the study's findings may help to bridge a gap in the project management CSFs literature, and add to the general project management body of knowledge.

  1. Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1977-01-01

    Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.

  2. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revil, Andre

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  3. Electrical transmission line diametrical retainer

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  4. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  5. Automated Cutting And Drilling Of Composite Parts

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1993-01-01

    Proposed automated system precisely cuts and drills large, odd-shaped parts made of composite materials. System conceived for manufacturing lightweight composite parts to replace heavier parts in Space Shuttle. Also useful in making large composite parts for other applications. Includes robot locating part to be machined, positions cutter, and positions drill. Gantry-type robot best suited for task.

  6. Subsurface multidisciplinary research results at ICTJA-CSIC downhole lab and test site

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Crespo, Jose; Salvany, Josep Maria; Teixidó, Teresa

    2017-04-01

    Two scientific boreholes, Almera-1 and Almera-2 were drilled in the Barcelona University campus area in 2011. The main purpose for this drilling was to create a new geophysical logging and downhole monitoring research facility and infrastructure. We present results obtained in the frame of multidisciplinary studies and experiments carried out since 2011 at the ICTJA "Borehole Geophysical Logging Lab - Scientific Boreholes Almera" downhole lab facilities. First results obtained from the scientific drilling, coring and logging allowed us to characterize the urban subsurface geology and hydrology adjacent to the Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) in Barcelona. The subsurface geology and structural picture has been completed with recent geophysical studies and monitoring results. The upper section of Almera-1 214m deep hole was cased with PVC after drilling and after the logging operations. An open hole interval was left from 112m to TD (Paleozoic section). Almera-2 drilling reached 46m and was cased also with PVC to 44m. Since completion of the drilling in 2011, both Almera-1 and Almera-2 have been extensively used for research purposes, tests, training, hydrological and geophysical monitoring. A complete set of geophysical logging measurements and borehole oriented images were acquired in open hole mode of the entire Almera-1 section. Open hole measurements included acoustic and optical imaging, spectral natural gamma ray, full wave acoustic logging, magnetic susceptibility, hydrochemical-temperature logs and fluid sampling. Through casing (PVC casing) measurements included spectral gamma ray logging, full wave sonic and acoustic televiewer. A Quaternary to Paleozoic section was characterized based on the geophysical logging and borehole images interpretation and also on the complete set of (wireline) cores of the entire section. Sample availability was intended for geological macro and micro-facies detailed characterization, mineralogical and petrophysical tests and analyses. The interpretation of the geophysical logging data and borehole oriented images, and core data allowed us to define the stratigraphy, structures and petrophysical properties in the subsurface. Quaternary sediments overlie unconformably weathered, deformed and partially metamorphosed Paleozoic rocks. A gap of the Tertiary rocks at the drillsite was detected. Structures at intensely fractured and faulted sections were measured and have yielded valuable data to understand the subsurface geology, hydrology and geological evolution in that area. Logging, borehole imaging and monitoring carried out in the scientific boreholes Almera-1 and Almera-2 has allowed also to identify three preferential groundwater flow paths in the subsurface. Geophysical logging data combined with groundwater monitoring allowed us to identify three zones of high permeability in the subsurface. Logging data combined with core analysis were used to characterize the aquifers lithology and their respective petrophysical properties. We also analyzed the aquifer dynamics and potential relationships between the variations in groundwater levels and the rainfalls by comparing the groundwater monitoring results and the rainfall. A seismic survey was carried out to outline the geological structures beyond Almera-1 borehole, a vertical reverse pseudo-3D (2.5D) seismic tomography experiment. The results allowed us to define the geological structure beyond the borehole wall and also a correlation between the different geological units in the borehole and their geometry and spatial geophysical and seismic image.

  7. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  8. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  9. 43 CFR 3162.2-1 - Drilling and producing obligations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Drilling and producing obligations. 3162.2... Requirements for Operating Rights Owners and Operators § 3162.2-1 Drilling and producing obligations. (a) The operator, at its election, may drill and produce other wells in conformity with any system of well spacing...

  10. 43 CFR 3162.2-1 - Drilling and producing obligations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Drilling and producing obligations. 3162.2... Requirements for Operating Rights Owners and Operators § 3162.2-1 Drilling and producing obligations. (a) The operator, at its election, may drill and produce other wells in conformity with any system of well spacing...

  11. 43 CFR 3162.2-1 - Drilling and producing obligations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Drilling and producing obligations. 3162.2... Requirements for Operating Rights Owners and Operators § 3162.2-1 Drilling and producing obligations. (a) The operator, at its election, may drill and produce other wells in conformity with any system of well spacing...

  12. 43 CFR 3162.2-1 - Drilling and producing obligations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Drilling and producing obligations. 3162.2... Requirements for Operating Rights Owners and Operators § 3162.2-1 Drilling and producing obligations. (a) The operator, at its election, may drill and produce other wells in conformity with any system of well spacing...

  13. Mathematical model of bone drilling for virtual surgery system

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    The bone drilling is an essential part of surgeries in ENT and Dentistry. A proper training of drilling machine handling skills is impossible without proper modelling of the drilling process. Utilization of high precision methods like FEM is limited due to the requirement of 1000 Hz update rate for haptic feedback. The study presents a mathematical model of the drilling process that accounts the properties of materials, the geometry and the rotation rate of a burr to compute the removed material volume. The simplicity of the model allows for integrating it in the high-frequency haptic thread. The precision of the model is enough for a virtual surgery system targeted on the training of the basic surgery skills.

  14. Development of an Ultra-Light Multipurpose Drill and Tooling for the Transportable Array in Alaska

    NASA Astrophysics Data System (ADS)

    Coyle, B. J.; Lundgren, M.; Busby, R. W.

    2014-12-01

    Over the next four years the EarthScope Transportable Array (TA) will install approximately 250 to 275 broadband seismic stations in Alaska and Western Canada. The station plans build on recent developments in posthole broadband seismometer design and call for sensors to be installed in boreholes 7 inches diameter, from 1 to 5 meters deep. These boreholes will be lined with PVC or steel casing, grouted in place. The proposed station locations are in a grid-like pattern with a nominal spacing of 85 km. Since most of these locations will only be accessible by helicopter, it was necessary to develop an ultra-light drilling system that could be transported to site in one sling load by a high performance light helicopter (i.e. AS350B2 or Bell 407) and still be able to drill the variety of ground conditions we expect to encounter. In the past year we have developed a working prototype, gasoline-hydraulic drill rig that can be configured to run auger, diamond core or DTH tools, and weighs <1,300 lbs, including tooling. We have successfully drilled over 30 boreholes with this drill, including 12 for TA installations in Alaska and 13 at the Piñon Flat Observatory for testing sensor performance and placement techniques. Our drilling solution comprises: - Hydraulic system using a variable flow pump with on-demand load sensing valves to reduce the engine size needed and to cut down on heat build-up; - Rotation head mounting system on the travelling block to enable quick change of drilling tools; - Low speed, high torque rotation head for the auger, and an anchoring system that enables us to apply up to 5,000 lbs downforce for augering in permafrost; - Custom DTH that can run on low air pressure and air flow, yet is still robust enough to drill a 7 inch hole 2.5 meters through solid rock; - One-trip casing advance drilling with the DTH, steel casing is loaded at the start of drilling and follows the drill bit down; - Grout-through bottom caps for sealing the borehole casing and cementing it in place. Our next step is to build a dedicated DTH drilling system that will be light enough to mobilize to sites in one helicopter sling, including an air compressor. This rig is currently on the drawing board and we expect to build it this winter for field testing in the spring.

  15. The ATLAS PanDA Monitoring System and its Evolution

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.

    2011-12-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  16. Precision of computer-assisted core decompression drilling of the knee.

    PubMed

    Beckmann, J; Goetz, J; Bäthis, H; Kalteis, T; Grifka, J; Perlick, L

    2006-06-01

    Core decompression by exact drilling into the ischemic areas is the treatment of choice in early stages of osteonecrosis of the femoral condyle. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision-navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. 20 sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany). Ten sawbones were drilled by fluoroscopic control only. A statistically significant difference with a mean distance of 0.58 mm in the navigated group and 0.98 mm in the control group regarding the distance to the desired mid-point of the lesion could be stated. Significant difference was further found in the number of drilling corrections as well as radiation time needed. The fluoroscopic-based VectorVision-navigation system shows a high feasibility and precision of computer-guided drilling with simultaneously reduction of radiation time and therefore could be integrated into clinical routine.

  17. Diverter bop system and method for a bottom supported offshore drilling rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, J. R.; Alexander, G. G.; Carbaugh, W. L.

    1985-06-25

    A system and method for installing a fluid flow controller and telescoping spools beneath an offshore bottom supported drilling rig rotary table is disclosed. Upper and lower telescoping spools are provided for initially connecting a Diverter/BOP convertible fluid flow controller between structural casing in the well and a permanent housing beneath the drilling rig rotary table. Clamp means are provided for clamping the rig vent line to an opening in the housing wall of the fluid flow controller during drilling of the borehole through the structural casing in preparation for setting and cementing the conductor casing. In that mode, themore » system is adapted as a diverter system. After the well is drilled for the conductor casing and the conductor casing is cemented and cut off at its top, a mandrel is fitted at the top of the conductor casing to which the lower end of the lower spool may be connected. The system may be used in this configuration as a diverter system, or after removal of the vent line and connection of a kill line to the housing outlet, the system may be used as a low pressure blowout preventer system.« less

  18. Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG.

    PubMed

    Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan

    2015-11-24

    To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the "HYSY-981" ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results.

  19. Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG

    PubMed Central

    Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan

    2015-01-01

    To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the “HYSY-981” ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results. PMID:26610517

  20. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, P.T.; Flanagan, S.M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances. Ground Water Monitoring & Remediation ?? 2011, National Ground Water Association. No claim to original US government works.

  1. Development of a high-temperature diagnostics-while-drilling tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavira, David J.; Huey, David; Hetmaniak, Chris

    2009-01-01

    The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picturemore » of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.« less

  2. Downhole drilling network using burst modulation techniques

    DOEpatents

    Hall,; David R. , Fox; Joe, [Spanish Fork, UT

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  3. Effect of bit wear on hammer drill handle vibration and productivity.

    PubMed

    Antonucci, Andrea; Barr, Alan; Martin, Bernard; Rempel, David

    2017-08-01

    The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s 2 (ISO weighted) and from 42.7-47.6 m/s 2 (unweighted) when comparing a new bit to a bit worn to 1,900 cm of cumulative drilling depth. Handle vibration did not increase further with bits worn more than 1900 cm of cumulative drilling depth. Neither x- nor y-axis handle vibration was effected by bit wear. The time to drill a hole increased by 58% for the bit with 5,700 cm of cumulative drilling depth compared to a new bit. Bit wear led to a small but significant increase in both ISO weighted and unweighted z-axis handle vibration. Perhaps more important, bit wear had a large effect on productivity. The effect on productivity will influence a worker's allowable daily drilling time if exposure to drill handle vibration is near the ACGIH Threshold Limit Value. [1] Construction contractors should implement a bit replacement program based on these findings.

  4. Smart Drill-Down: A New Data Exploration Operator

    PubMed Central

    Joglekar, Manas; Garcia-Molina, Hector; Parameswaran, Aditya

    2015-01-01

    We present a data exploration system equipped with smart drill-down, a novel operator for interactively exploring a relational table to discover and summarize “interesting” groups of tuples. Each such group of tuples is represented by a rule. For instance, the rule (a, b, ★, 1000) tells us that there are a thousand tuples with value a in the first column and b in the second column (and any value in the third column). Smart drill-down presents an analyst with a list of rules that together describe interesting aspects of the table. The analyst can tailor the definition of interesting, and can interactively apply smart drill-down on an existing rule to explore that part of the table. In the demonstration, conference attendees will be able to use the data exploration system equipped with smart drill-down, and will be able to contrast smart drill-down to traditional drill-down, for various interestingness measures, and resource constraints. PMID:26844008

  5. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.

    PubMed

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-21

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  6. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    PubMed Central

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-01

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety. PMID:28117721

  7. Lake Eĺ gygytgyn Drilling under way: State of the operation and first results

    NASA Astrophysics Data System (ADS)

    Melles, M.; Brigham-Grette, J.; Minyuk, P.; Koeberl, C.; Scientific Party, EĺGygytgyn

    2009-04-01

    Lake Eĺgygytgyn, located in central Chukotka, NE Siberia, was formed 3.6 million years ago by a meteorite impact and has never been glaciated or desiccated. This makes Lake Eĺgygytgyn a unique target of an interdisciplinary, multi-national drilling campaign, which currently is carried out as part of the International Continental Drilling Program (ICDP). Drilling operations started in Nov./Dec. 2008, when a 142 m long sediment core was retrieved from the permafrost deposits in the western lake catchment by the local drilling company Chaun Mine Geological Company (CGE). The core penetrated coarse-grained, ice-rich alluvial sediments with variable contents of fine-grained material. It will be investigated for the environmental history, including potential lake-level changes, and the permafrost characteristics, in order to learn more about the influences of catchment changes on the lake sedimentation. Besides, the hole was permanently instrumented for future ground temperature monitoring as part of the Global Terrestrial Network for Permafrost (www.gtnp.org/index_e.html). The major drilling effort will commence in Febr. 2009, when two sites in the central part of Lake Eĺgygytgyn shall be drilled down to 630 m below the lake floor. Drilling will be carried out by DOSECC, using a new GLAD 800 system that will be operated from an enclosed platform on the lake ice. Drilling objectives include replicate overlapping cores from the up to 420 m thick lake sediment fill. The cores promise to yield the longest, most continuous record of climate change in the terrestrial Arctic, extending back one million years prior to the intensification of the Northern Hemisphere Glaciation at the Pliocene/Pleistocene boundary, thus offering unique insight into the climatic and environmental history of the Arctic and its comparison with records from lower latitude marine and terrestrial sites to better understand hemispheric and global climate change. Coring shall be continued up to 300 m into the underlying impact breccia and brecciated bedrock in order to additionally investigate the impact process and the response of the volcanic bedrock to the impact event. The field season will continue into May, when surface melting on the lake will push to start evacuation of the drill rig. In summer 2009, the cores will be flown by chartered cargo plane to St. Petersburg. Later they will be trucked to the University of Cologne, Germany, for sub-sampling starting in September by the international team and their students. The archive core halves will be shipped to the University of Minnesota LacCore Facility in the US for post-moratorium studies. This talk will provide an introduction into the drilling objectives, summarize the first conclusions that can be drawn from the field data, and outline the next steps towards multidisciplinary investigation of the core material by the international science team.

  8. A study of an assisting robot for mandible plastic surgery based on augmented reality.

    PubMed

    Shi, Yunyong; Lin, Li; Zhou, Chaozheng; Zhu, Ming; Xie, Le; Chai, Gang

    2017-02-01

    Mandible plastic surgery plays an important role in conventional plastic surgery. However, its success depends on the experience of the surgeons. In order to improve the effectiveness of the surgery and release the burden of surgeons, a mandible plastic surgery assisting robot, based on an augmented reality technique, was developed. Augmented reality assists surgeons to realize positioning. Fuzzy control theory was used for the control of the motor. During the process of bone drilling, both the drill bit position and the force were measured by a force sensor which was used to estimate the position of the drilling procedure. An animal experiment was performed to verify the effectiveness of the robotic system. The position error was 1.07 ± 0.27 mm and the angle error was 5.59 ± 3.15°. The results show that the system provides a sufficient accuracy with which a precise drilling procedure can be performed. In addition, under the supervision's feedback of the sensor, an adequate safety level can be achieved for the robotic system. The system realizes accurate positioning and automatic drilling to solve the problems encountered in the drilling procedure, providing a method for future plastic surgery.

  9. Results and interpretation of exploratory drilling near the Picacho Fault, south-central Arizona

    USGS Publications Warehouse

    Holzer, Thomas L.

    1978-01-01

    Modern surface faulting along the Picacho fault, east of Picacho, Arizona, has been attributed to ground-water withdrawal. In September 1977, three exploratory test holes were drilled 5 km east of Picacho and across the Picacho fault to investigate subsurface conditions and the mechanism of the faulting. The holes were logged by conventional geophysical and geologic methods. Piezometers were set in each hole and have been monitored since September 1977. The drilling indicates that the unconsolidated alluvium beneath the surface fault is approximately 310 m thick. Drilling and piezometer data and an associated seismic refraction survey indicate that the modern faulting is coincident with a preexisting, high-angle, normal fault that offsets units within the alluvium as well as the underlying bedrock. Piezometer and neutron log data indicate that the preexisting fault behaves as a partial ground-water barrier. Monitoring of the piezometers indicates that the magnitude of the man-induced difference in water level across the preexisting fault is seasonal in nature, essentially disappearing during periods of water-level recovery. The magnitude of the seasonal difference in water level, however, appears to be sufficient to account for the modern fault offset by localized differential compaction caused by a difference in water level across the preexisting fault. In addition, repeated level surveys since September 1977 of bench marks across the surface fault and near the piezometers have indicated fault movement that corresponds to fluctuations of water level.

  10. Use of piezosurgery for internal auditory canal drilling in acoustic neuroma surgery.

    PubMed

    Grauvogel, Juergen; Scheiwe, Christian; Kaminsky, Jan

    2011-10-01

    Piezosurgery is based on microvibrations generated by the piezoelectrical effect and has a selective bone-cutting ability with preservation of soft tissue. This study examined the applicability of Piezosurgery compared to rotating drills (RD) for internal auditory canal (IAC) opening in acoustic neuroma (AN) surgery. Piezosurgery was used in eight patients for IAC drilling in AN surgery. After exposition of the IAC and tumor, the posterior wall of the IAC was drilled using Piezosurgery instead of RD. Piezosurgery was evaluated with respect to practicability, safety, preciseness of bone cutting, preservation of cranial nerves, influences on neurophysiological monitoring, and facial nerve and hearing outcome. Piezosurgery was successfully used for selective bone cutting, while cranial nerves were structurally and functionally preserved, which could be measured by means of neuromonitoring. Piezosurgery guaranteed a safe and precise cut by removing bone layer by layer in a shaping way. Compared to RD, limited influence on neurophysiological monitoring attributable to Piezosurgery was noted, allowing for continuous neuromonitoring. No disadvantage due to microvibrations was noticed concerning hearing function. The angled tip showed better handling in right-sided than in left-sided tumors in the hands of a right-handed surgeon. The short, thick handpiece may be improved for more convenient handling. Piezosurgery is a safe tool for selective bone cutting for opening of the IAC with preservation of facial nerve and hearing function in AN surgery. Piezosurgery has the potential to replace RD for this indication because of its safe and precise bone-cutting properties.

  11. Use of Nitrocarburizing for Strengthening Threaded Joints of Drill Pipes from Medium-Carbon Alloy Steels

    NASA Astrophysics Data System (ADS)

    Priymak, E. Yu.; Stepanchukova, A. V.; Yakovleva, I. L.; Tereshchenko, N. A.

    2015-05-01

    Nitrocarburizing is tested at the Drill Equipment Plant for reinforcing threaded joints of drill pipes for units with retrievable core receiver (RCR). The effect of the nitrocarburizing on the mechanical properties of steels of different alloying systems is considered. Steels for the production of threaded joints of drill pipes are recommended.

  12. Chemical Speciation of Chromium in Drilling Muds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-02-02

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. Wemore » have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.« less

  13. Real Time Seismic Prediction while Drilling

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling operation. First experiments indicate that parts of the ISIS system can be used for smaller diameters e.g. in vertical drilling. In unconsolidated rocks S-waves are strongly attenuated. For the Sonic Softground Probing (SSP) system P-waves are used. A vibration-seismic correlation positioning system was developed. One transmitter and several receiver are placed within the cutting wheel. During drilling, a specially coded transmitter signal is sent directly from the cutterhead via the face support medium in the direction of tunneling. With this geometry, boulders can be detected 50 m ahead of the working face. Fracture zones and other discontinuities can be localized, and the physical properties of the upcoming rocks can be partly determined nearly in real time, while using sound velocity and attenuation as indicators. All evaluation is based on real time 3D velocity models which are determined during the drilling operation. Different technologies allow a seismic prediction while drilling in various rock types and geologies. Seismic prediction during vertical drilling will significantly profit from the lesson learned from state of the art tunneling systems.

  14. Microcomponents manufacturing for precise devices by copper vapor laser

    NASA Astrophysics Data System (ADS)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  15. Interior Department Suggests Improvements for Offshore Arctic Oil and Gas Drilling

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    Shell's "difficulties" during its 2012 program to drill offshore oil and natural gas exploration wells in the Alaskan Arctic Ocean "have raised serious questions regarding its ability to operate safely and responsibly in the challenging and unpredictable conditions offshore Alaska," according to the report "Review of Shell's 2012 Alaska Offshore Oil and Gas Exploration Program," issued by the U.S. Department of the Interior (DOI) on 8 March. Noting the company's lack of adequate preparation for drilling in the Arctic, its failure to deploy a specialized Arctic Containment System, and the grounding of the Kulluk drilling rig near Kodiak Island last December, the report recommends that Shell develop a comprehensive and integrated plan describing its future drilling program and related operations and that it commission a third-party audit of its management systems, including its safety and environmental management systems program.

  16. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    NASA Astrophysics Data System (ADS)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  17. San Andreas drilling sites selected

    NASA Astrophysics Data System (ADS)

    Ellsworth, Bill; Zoback, Mark

    A new initiative for drilling and coring directly into the San Andreas fault at depths up to 10 km is being proposed by an international team of scientists led by Mark Zoback, Stanford University; Steve Hickman and Bill Ellsworth, U.S. Geological Survey; and Lee Younker, Lawrence Livermore Laboratory. In addition to exhuming samples of fault rock and fluids from seismogenic depths, the hole will be used to make a wide range of geophysical measurements within the fault zone and to monitor the fault zone over time. Four areas along the San Andreas have been selected as candidates for deep drilling: the Mojave segment of the San Andreas between Leona Valley and Big Pine, the Carrizo Plain, the San Francisco Peninsula between Los Altos and Daly City, and the Northern Gabilan Range between the Cienga winery and Melendy Ranch. These sites were chosen from an initial list compiled at the International Fault Zone Drilling Workshop held in Asilomar, Calif., in December 1992 and at meetings held this winter and spring in Menlo Park, Calif.

  18. Feasibility study of bioremediation of a drilling-waste-polluted soil: stimulation of microbial activities and hydrocarbon removal.

    PubMed

    Rojas-Avelizapa, Norma; Olvera-Barrera, Erika; Fernández-Linares, Luis

    2005-01-01

    The objective of this study was to determine the feasibility of bioremediation as a treatment option for an aged and chronically polluted drilling waste soil located at the Southeast of Mexico. The polluted drilling-waste site with a mean total petroleum hydrocarbon concentration (TPHs) of 39,397 +/- 858 mg/kg was treated with one dose of a nutrient-surfactant commercial product at 40 mg/kg soil and two doses of H2O2 (50 and 100 mg H2O2/kg soil). In this study, the parameters that were monitored include soil respiration, heterotrophic and hydrocarbon-degrading bacteria as biological indicators, catalase and dehydrogenase activities, and TPHs degradation as decontamination parameters. The results demonstrated that the microbial activities can be stimulated in a polluted drilling-waste site by the addition of H2O2 and commercial product, thereby resulting in increasing TPHs degradation. These aspects must be taken into account when biodegradation studies involve the application of a commercial product.

  19. Linking otolith microchemistry and surface water contamination from natural gas mining.

    PubMed

    Keller, David H; Zelanko, Paula M; Gagnon, Joel E; Horwitz, Richard J; Galbraith, Heather S; Velinsky, David J

    2018-09-01

    Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01-1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p < 0.05) relationship of increasing Sr and Ba concentrations in all but one treatment. Analyses indicate lesser concentrations than used in this experiment could be detectable in surface waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  1. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer (BOP). Deviation tools. Wireline packers. And more.

  2. Radiological survey of the covered and uncovered drilling mud depository.

    PubMed

    Jónás, Jácint; Somlai, János; Csordás, Anita; Tóth-Bodrogi, Edit; Kovács, Tibor

    2018-08-01

    In petroleum engineering, the produced drilling mud sometimes contains elevated amounts of natural radioactivity. In this study, a remediated Hungarian drilling mud depository was investigated from a radiological perspective. The depository was monitored before and after a clay layer was applied as covering. In this study, the ambient dose equivalent rate H*(10) of the depository has been measured by a Scintillator Probe (6150AD-b Dose Rate Meter). Outdoor radon concentration, radon concentration in soil gas, and in situ field radon exhalation measurements were carried out using a pulse-type ionization chamber (AlphaGUARD radon monitor). Soil gas permeability (k) measurements were carried out using the permeameter (RADON-JOK) in situ device. Geogenic radon potentials were calculated. The radionuclide content of the drilling mud and cover layer sample has been determined with an HPGe gamma-spectrometer. The gamma dose rate was estimated from the measured radionuclide concentrations and the results were compared with the measured ambient dose equivalent rate. Based on the measured results before and after covering, the ambient dose equivalent rates were 76 (67-85) nSv/h before and 86 (83-89) nSv/h after covering, radon exhalation was 9 (6-12) mBq/m 2 s before and 14 (5-28) mBq/m 2 s after covering, the outdoor radon concentrations were 11 (9-16) before and 13 (10-22) Bq/m 3 after covering and the soil gas radon concentrations were 6 (3-8) before and 24 (14-40) kBq/m 3 after covering. Soil gas permeability measurements were 1E-11 (7E-12-1E-11) and 1E-12 (5E-13-1E-12) m 2 and the calculated geogenic radon potential values were 6 (3-8) and 12 (6-21) before and after the covering. The main radionuclide concentrations of the drilling mud were C U-238 12 (10-15) Bq/kg, C Ra-226 31 (18-40) Bq/kg, C Th-232 35 (33-39) Bq/kg and C K-40 502 (356-673) Bq/kg. The same radionuclide concentrations in the clay were C U-238 31 (29-34) Bq/kg, C Ra-226 45 (40-51) Bq/kg, C Th-232 58 (55-60) Bq/kg and C K-40 651 (620-671) Bq/kg. According to our results, the drilling mud depository exhibits no radiological risk from any radiological aspects (radon, radon exhalation, gamma dose, etc.); therefore, long term monitoring activity is not necessary from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quo Vadis ICDP? The Science Plan of the International Continental Scientific Drilling Program.

    NASA Astrophysics Data System (ADS)

    Horsfield, Brian

    2014-05-01

    The rocks and fluids of our ever-changing planet contain heat, energy, and life as well as archived records of what has gone before. These precious relicts and living systems need to be probed, collected, monitored and analyzed. The science results obtained cover the spectrum of the earth sciences from climate change, natural hazards and earth resources to the origins of life on Earth. The need to drill has never been greater, and this requires improved coordination between the marine, terrestrial and ice-coring communities and the research and private sector communities, effectively addressing the needs of our growing population for energy, sustenance, and quality of life. The ICDP is an infrastructure for scientific drilling that facilitates outstanding science. It is the only international platform for scientific research drilling in terrestrial environments. ICDP brings together scientists and stakeholders from 24 nations to work together at the highest scientific and technical niveaux. More than 30 drilling projects and 55 planning workshops have been supported to date. It is an efficient organisation, run according to the philosophy "lean and mean", with an average annual budget of about 5 million, and further third-party drilling expenditures that more than doubles this yearly investment. Here we report on ICDP's 2013 Science Conference "Imaging the Past to Imagine our Future", held November 11-14, 2013 in Potsdam whose goal was to set the new ICDP Science Plan in motion. New insights into geoprocesses and the identification of hot topics were high on the agenda, and debated in closed sessions, via posters and through oral presentations, and where appropriate dovetailed with socio-economic challenges. The conference was used to strengthen and expand our ties with member countries, and to debate incorporating industry into selected ICDP strategic activities where it makes sense to do so (ICDP remains science-driven). In addition, the conference paved the way for outreach measures to media and policy makers. A White Paper is currently in preparation, and a Special Issue in a leading scientific journal is also underway that will provide a snapshot of the scientific framework within which ICDP operates.

  4. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Tsuboi, Seiji; Horikawa, Hiroki; Takaesu, Morifumi; Sueki, Kentaro; Araki, Eiichiro; Sonoda, Akira; Takahashi, Narumi

    2016-04-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP). We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough. We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site. Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor informations. In addition, before data download, user can check that data is abailable or not by data check function. In this presentation, we show our web application system and discuss our future plans for developments of monitoring data download system.

  5. 76 FR 81957 - Mobile Offshore Drilling Unit Guidance Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Purpose Dynamic Positioning Systems (DPSs), Emergency Disconnect Systems (EDSs), Blowout Preventers (BOPs..., ``Dynamically Positioned Mobile Offshore Drilling Unit (MODU) Critical Systems, Personnel and Training.'' We... association, business, labor union, etc.). You may review a Privacy Act, system of records notice regarding...

  6. The Great British Columbia ShakeOut - Seismology and kinaesthetic learning

    NASA Astrophysics Data System (ADS)

    Wynne, P.

    2011-12-01

    By the time this paper is presented British Columbia will have experienced two, province wide ShakeOut drills. In the first drill over 10% of the population (470,000 people) participated in the "Drop, Cover and Hold On" drill. Natural Resources Canada (NRCan) was one of several federal, provincial, municipal, non-governmental and private sector agencies who organized the drill under the auspices of the BC Earthquake Alliance. The BC drill followed the Great California ShakeOut model (which is coordinated by the Earthquake Country Alliance) and received tremendous support from the Southern California Earthquake Center. NRCan is responsible for the monitoring and research of earthquakes in Canada and is a science-based department. The ShakeOut drill afforded us an opportunity to take our authoritative science straight to the people and help them better understand the seismic hazard in the province. Universities, public schools, daycares, and entire offices participated in the drill and it became the subject of dinner-time conversations across the province. The drill prompted questions like: "How worried should we be about earthquakes?" "How prepared are we as a family or as a work place?" "What else do we need to do, to be prepared?". The kinaesthetic aspect of the drill, physically dropping to the ground, taking cover, and holding on makes it memorable - you end up in a bit of a silly position, so there are lots of giggles. Being memorable is important because in a real earthquake the natural instinct is to run - the very thing you must not do. The drill provides an opportunity for people to attain a body-memory, to practice appropriate behaviour so they know what to do, without thinking, in a real earthquake. The first drill was on January 26th, 2011 the date of the last Cascadia megathrust earthquake. That date conflicted with province wide high school exams, so almost no high schools participated in the drill - they represent an important target demographic because the students are the next generation of parents. The second drill is planned for October 20 at 10:20. Tying the drill date to an earthquake that was 311 years ago might also have been counter productive. People may have thought "If it hasn't happened in over 300 years, how worried should I be?". In October 2011 we are "growing the drill" by focussing our outreach efforts on people with mobility issues. In the future we plan to add messaging about securing your space and tsunamis. In 2012 Yukon Canada will be hosting their first ShakeOut drill.

  7. Assessing the accuracy of Greenland ice sheet ice ablation measurements by pressure transducer

    NASA Astrophysics Data System (ADS)

    Fausto, R. S.; van As, D.; Ahlstrøm, A. P.

    2012-04-01

    In the glaciological community there is a need for reliable mass balance measurements of glaciers and ice sheets, ranging from daily to yearly time scales. Here we present a method to measure ice ablation using a pressure transducer. The pressure transducer is drilled into the ice, en-closed in a hose filled with a liquid that is non-freezable at common Greenlandic temperatures. The pressure signal registered by the transducer is that of the vertical column of liquid over the sensor, which can be translated in depth knowing the density of the liquid. As the free-standing AWS moves down with the ablating surface and the hose melts out of the ice, an increasingly large part of the hose will lay flat on the ice surface, and the hydrostatic pressure from the vertical column of liquid in the hose will get smaller. This reduction in pressure provides us with the ablation rate. By measuring at (sub-) daily timescales this assembly is well-suited to monitor ice ablation in remote regions, with clear advantages over other well-established methods of measuring ice ablation in the field. The pressure transducer system has the potential to monitor ice ablation for several years without re-drilling and the system is suitable for high ablation areas. A routine to transform raw measurements into ablation values will also be presented, including a physically based method to remove air pressure variability from the signal. The pressure transducer time-series is compared to that recorded by a sonic ranger for the climatically hostile setting on the Greenland ice sheet.

  8. Results of the exploratory drill hole Ue5n,Frenchman Flat, Nevada Test Site. [Geologic and geophysical parameters of selected locations with anomalous seismic signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramspott, L.D.; McArthur, R.D.

    1977-02-18

    Exploratory hole Ue5n was drilled to a depth of 514 m in central Frenchmam Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA) to determine the geologic and geophysical parameters of selected locations with anomalous seismic signals. The specific goal of drilling Ue5n was to provide the site characteristics for emplacement sites U5b and U5e. We present here data on samples, geophysical logs, lithology and stratigraphy, and depth to the water table. From an analysis of the measurements of the physical properties, a set of recommendedmore » values is given.« less

  9. Drilling Magma for Science, Volcano Monitoring, and Energy

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known location and properties of magma to calibrate geophysics (Brown et al, this session) and understand signals of "unrest". How can we not make such observations when there is so much to learn, so much at stake in correctly monitoring volcanoes, and such a need for clean, renewable energy?

  10. Evaluation of geophysical logs, Phase II, at Willow Grove Naval Air Station Joint Reserve Base, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1999-01-01

    Between March and April 1998, the U.S. Navy contracted Tetra Tech NUS Inc., to drill two monitor wells in the Stockton Formation at the Willow Grove Naval Air Station Joint Reserve Base, Horsham Township, Montgomery County, Pa. The wells MG-1634 and MG-1635 were installed to monitor water levels and sample contaminants in the shallow, intermediate, and deep water-producing zones of the fractured bedrock. Chemical analyses of the samples will help determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Wells were drilled near the Fire Training Area (Site 5). Depths of all boreholes range from 69 to 149 feet below land surface. The U.S. Geological Survey conducted borehole geophysical logging and video surveys to identify water-producing zones in newly drilled monitor wells MG-1634 and MG-1635 and in wells MG-1675 and MG-1676. The logging was conducted from March 5, 1998, to April 16, 1998. This work is a continuation of the Phase I work. Caliper logs and video surveys were used to locate fractures; inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-producing fractures. Heatpulse-flowmeter measurements were used to verify the locations of water-producing or water-receiving zones and to measure rates of flow between water-bearing fractures. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's notes, wells MG-1634 and MG-1635 were screened such that water-levels fluctuations could be monitored and discrete water samples collected from one or more water-producing zones in each borehole.

  11. 30 CFR 250.441 - What are the requirements for a surface BOP stack?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...? (a) When you drill with a surface BOP stack, you must install the BOP system before drilling below... with blind-shear rams. The blind-shear rams must be capable of shearing the drill pipe that is in the...

  12. Evaluations of bit sleeve and twisted-body bit designs for controlling roof bolter dust

    PubMed Central

    Beck, T.W.

    2015-01-01

    Drilling into coal mine roof strata to install roof bolts has the potential to release substantial quantities of respirable dust. Due to the proximity of drill holes to the breathing zone of roof bolting personnel, dust escaping the holes and avoiding capture by the dust collection system pose a potential respiratory health risk. Controls are available to complement the typical dry vacuum collection system and minimize harmful exposures during the initial phase of drilling. This paper examines the use of a bit sleeve in combination with a dust-hog-type bit to improve dust extraction during the critical initial phase of drilling. A twisted-body drill bit is also evaluated to determine the quantity of dust liberated in comparison with the dust-hog-type bit. Based on the results of our laboratory tests, the bit sleeve may reduce dust emissions by one-half during the initial phase of drilling before the drill bit is fully enclosed by the drill hole. Because collaring is responsible for the largest dust liberations, overall dust emission can also be substantially reduced. The use of a twisted-body bit has minimal improvement on dust capture compared with the commonly used dust-hog-type bit. PMID:26257435

  13. Influence of drilling operations on drilling mud gas monitoring during IODP Exp. 338 and 348

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, Sebastian; Toczko, Sean; Kubo, Yusuke; Wiersberg, Thomas; Fuchida, Shigeshi; Kopf, Achim; Hirose, Takehiro; Saffer, Demian; Tobin, Harold; Expedition 348 Scientists, the

    2014-05-01

    The history of scientific ocean drilling has developed some new techniques and technologies for drilling science, dynamic positioning being one of the most famous. However, while industry has developed newer tools and techniques, only some of these have been used in scientific ocean drilling. The introduction of riser-drilling, which recirculates the drilling mud and returns to the platform solids and gases from the formation, to the International Ocean Drilling Program (IODP) through the launch of the Japan Agency of Marine Earth-Science and Technology (JAMSTEC) riser-drilling vessel D/V Chikyu, has made some of these techniques available to science. IODP Expedition 319 (NanTroSEIZE Stage 2: riser/riserless observatory) was the first such attempt, and among the tools and techniques used was drilling mud gas analysis. While industry regularly conducts drilling mud gas logging for safety concerns and reservoir evaluation, science is more interested in other components (e.g He, 222Rn) that are beyond the scope of typical mud logging services. Drilling mud gas logging simply examines the gases released into the drilling mud as part of the drilling process; the bit breaks and grinds the formation, releasing any trapped gases. These then circulate within the "closed circuit" mud-flow back to the drilling rig, where a degasser extracts these gases and passes them on to a dedicated mud gas logging unit. The unit contains gas chromatographs, mass spectrometers, spectral analyzers, radon gas analyzers, and a methane carbon isotope analyzer. Data are collected and stored in a database, together with several drilling parameters (rate of penetration, mud density, etc.). This initial attempt was further refined during IODP Expeditions 337 (Deep Coalbed Biosphere off Shimokita), 338 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 2) and finally 348 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 3). Although still in its development stage for scientific application, this technique can provide a valuable suite of measurements to complement more traditional IODP shipboard measurements. Here we present unpublished data from IODP Expeditions 338 and 348, penetrating the Nankai Accretionary wedge to 3058.5 meters below seafloor. Increasing mud density decreased degasser efficiency, especially for higher hydrocarbons. Blurring of the relative variations in total gas by depth was observed, and confirmed with comparison to headspace gas concentrations from the cored interval. Theoretically, overpressured zones in the formation can be identified through C2/C3 ratios, but these ratios are highly affected by changing drilling parameters. Proper mud gas evaluations will need to carefully consider the effects of variable drilling parameters when designing experiments and interpreting the data.

  14. Force and torque modelling of drilling simulation for orthopaedic surgery.

    PubMed

    MacAvelia, Troy; Ghasempoor, Ahmad; Janabi-Sharifi, Farrokh

    2014-01-01

    The advent of haptic simulation systems for orthopaedic surgery procedures has provided surgeons with an excellent tool for training and preoperative planning purposes. This is especially true for procedures involving the drilling of bone, which require a great amount of adroitness and experience due to difficulties arising from vibration and drill bit breakage. One of the potential difficulties with the drilling of bone is the lack of consistent material evacuation from the drill's flutes as the material tends to clog. This clogging leads to significant increases in force and torque experienced by the surgeon. Clogging was observed for feed rates greater than 0.5 mm/s and spindle speeds less than 2500 rpm. The drilling simulation systems that have been created to date do not address the issue of drill flute clogging. This paper presents force and torque prediction models that account for this phenomenon. The two coefficients of friction required by these models were determined via a set of calibration experiments. The accuracy of both models was evaluated by an additional set of validation experiments resulting in average R² regression correlation values of 0.9546 and 0.9209 for the force and torque prediction models, respectively. The resulting models can be adopted by haptic simulation systems to provide a more realistic tactile output.

  15. Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, S.L.; Harben, P.E.

    1997-01-07

    The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers withmore » temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.« less

  16. Disposable telemetry cable deployment system

    DOEpatents

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  17. CBCT Assessment of Root Dentine Removal by Gates-Glidden Drills and Two Engine-Driven Root Preparation Systems.

    PubMed

    Harandi, Azade; Mohammadpour Maleki, Fatemeh; Moudi, Ehsan; Ehsani, Maryam; Khafri, Soraya

    2017-01-01

    The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups ( n =13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey's post hoc tests were used for two-by-two comparisons. Gates-Glidden drills with hand files removed significantly more ( P <0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems ( P >0.05). The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls.

  18. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.

    2018-01-01

    A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.

  19. Environmental baseline monitoring in the area of general crude oil - Department of Energy Pleasant Bayou Number 1 - a geopressured-geothermal test well, 1978. Volume IV. Appendix III. Noise survey, Radian Corporation, Austin, Texas. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavson, T.C.

    1979-01-01

    Results are presented of a study to determine the acoustical noise distribution and impacts of the geothermal/geopressure well drilling operation near Chocolate Bayou in South Texas. Detailed noise survey data were included in a part of the study for computer simulations to develop representative and worst-case drilling operation noise predictions. Also conducted were baseline noise measurements throughout the Peterson Landing residential area. (MHT)

  20. Tanana River Monitoring and Research Program: Relationships Among Bank Recession, Vegetation, Soils, Sediments and Permafrost on the Tanana River Near Fairbanks, Alaska.

    DTIC Science & Technology

    1984-07-01

    field book for scale). Figure 2 (cont’d). Figure 3. Upstream portion of reach 2, 9 May 1980; USGS gauging station (A) and the approximate location...eral information was taken from maps, and site-specific data were obtained from the logs of wells drilled by the Corps of Engineers. The well log data...were drilled along or near this route, which runs approximately parallel to the bank, but not near the riverbank aL most locations (Fig. 1). The

  1. Lithologic and ground-water data for monitoring sites in the Mojave River and Warren Valley basins, San Bernardino County, California, 1992-1998

    USGS Publications Warehouse

    Huff, Julia A.; Clark, Dennis A.; Martin, Peter

    2002-01-01

    Lithologic and ground-water data were collected at 85 monitoring sites constructed in the Mojave Water Agency Management area in San Bernardino County, California, as part of a series of cooperative studies between the U.S. Geological Survey and the Mojave Water Agency. The data are being used to evaluate and address water-supply and water-quality issues. This report presents a compilation of the data collected at these sites from 1992 through 1998, including location and design of the monitoring sites, lithologic data, geophysical logs, ground-water-level measurements, and water-quality analyses.One to five small (generally 2-inch) diameter wells were installed at each of the 85 monitoring sites to collect depth-dependent hydrologic data. Lithologic logs were compiled from descriptions of drill cuttings collected at each site and from observations recorded during the drilling of the borehole. Generalized stratigraphic columns were compiled by grouping similar lithologic units. Geophysical logs provide information on the character of the lithologic units and on the presence of ground water and the chemical characteristics of that water. Water-level and water-quality data were collected periodically from the sites during 1992 through 1998.

  2. Horizontal wells in the Java Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, S.L.; Lyon, R.

    1988-05-01

    The utilization of the Navigation Drilling System in recent drilling activity has established that: Continuous build rates as high as 6.75 degrees/100 ft are achievable (with a .74 degree DTU), making possible the tapping of near platform reserves. The system provides the flexibility necessary to drill a continuous curve or an irregular path without bottomhole assembly changes. The system provides the flexibility for sidetracks to the ''low side'' of the well bore without coming out of the hole for bottomhole assembly changes or a cement plug. Geological objectives can be reached with a high degree of accuracy. The system greatlymore » reduces the costly learning curve associated with rotary bottomhole assemblies and substantially increases the confidence of the operator. Significant drilling cost reductions resulted from the use of the system. The cost per foot was further reduced as additional familiarity with the equipment was gained.« less

  3. Issues and Concerns in Robotic Drilling

    NASA Technical Reports Server (NTRS)

    Glass, Brian

    2003-01-01

    Exploration of the Martian subsurface will be essential in the search for life and water, given the desiccated and highly oxidized conditions on the surface. Discovery of these, at least in non-fossil form, is unlikely without drilling or other physical access to the subsurface. Hence subsurface access will be critical for both future in-situ science and Mars sample return. Drilling applications present many new challenges for diagnosis and control technology. Traditionally, diagnosis has concentrated on determining the internal state of a system, and detecting failures of system components. In the case of drilling applications, an additional challenge is to diagnose the interactions between the drill and its environment. This is necessary because particular observations of the drilling operation may be consistent with a number of possible problems, including faults in the equipment, but also changes in the material being drilled (for example, from rock to ice). The diagnosis of a particular observation may also depend on knowledge of geological formations previously encountered during drilling, and different remedial actions may be required for each diagnosis. Current 2009 Mars mission scenarios call for no more than 33 sols to be spent drilling. Yet they also call for a baseline of two 2m-deep holes in each of three target areas, for a total of six drilling operations. Using current levels of automation, it is estimated that 15-16 sols would be required to drill each hole. As a result of this, either the drilling part of the mission plan will need to be severely downscoped to no more than two holes total, or on-board automation and robotics must be increased in order to reduce the number of sols required per hole by removing ground control from the drilling control loop. This lecture will discuss salient issues and concerns of robotic drilling automation compares with other applications, and implementation constraints.

  4. Drilling into molten rock at Kilauea Iki

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colp, J.L.; Okamura, R.T.

    1978-01-01

    The scientific feasibility of extracting energy directly from buried circulating magma resources is being assessed. One of the tasks of the project is the study of geophysical measuring systems to locate and define buried molten rock bodies. To verify the results of a molten rock sensing experiment performed at Kilauea Iki lava lake, it is necessary to drill a series of holes through the solid upper crust and through the molten zone at that location. Thirteen holes have been drilled in Kilauea Iki. The results achieved during the drilling of the last two holes indicated that the molten zone inmore » Kilauea Iki is not a simple, relatively homogeneous fluid body as expected. The encountering of an unexpected, unknown rigid obstruction 2.5 ft below the crust/melt interface has led to the conceptual development of a drilling system intended to have the capability to drill through a hot, rigid obstruction while the drill stem is immersed in molten rock. The concept will be field tested at Kilauea Iki in the summer of 1978.« less

  5. Drill/borescope System for the Mars Polar Pathfinder

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Wood, S. E.; Vasavada, A. R.

    1993-01-01

    The primary goals of the Mars Polar Pathfinder (MPP) Discovery Mission are to characterize the composition and structure of Mars' north polar ice cap, and to determine whether a climate record may be preserved in layers of ice and dust. The MPP would land as close as possible to the geographic north pole of Mars and use a set of instruments similar to those used by glaciologists to study polar ice caps on Earth: a radar sounder, a drill/borescope system, and a thermal probe. The drill/borescope system will drill approximately 50 cm into the surface and image the sides of the hole at 10 micron resolution for compositional and stratigraphic analysis. Several uncertainties have guided the development of this instrument, and they are discussed.

  6. Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling

    NASA Astrophysics Data System (ADS)

    Gupta, Sunit K.; Wahi, Pankaj

    2018-01-01

    We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.

  7. Engineering for Deep Sea Drilling for Scientific Purposes

    DTIC Science & Technology

    1980-01-01

    Clyde Consultants JOSEPH E. BEALL, Triton Engineering Services Company DOUWE DE VRIES, N L Industries, Incorporated TERRY N. GARDNER, Exxon...estimate: $1 million additional cost for each site drilled and 25 to 35 wells to be drilled over the period. __ U 20 inclusion in a request for proposal...26 of a positively buoyant system would allow a nearly conventional rise tensioning system. However, the latter approach would require de - .aping a

  8. Analysis and design of trial well mooring in deepwater of the South China Sea

    NASA Astrophysics Data System (ADS)

    Guo, Yongfeng; Ji, Shaojun; Tang, Changquan; Li, Jiansong; Zhong, Huiquan; Ian, Ong Chin Yam

    2012-06-01

    Mooring systems play an important role for semi-submersible rigs that drill in deepwater. A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009. The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m. Following the mooring analysis, a mooring design was given that requires upgrading of the rig's original mooring system. The upgrade included several innovations, such as installing eight larger anchors, i.e. replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains. All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m. The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea. This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.

  9. Geologic and hydrologic data for the municipal solid waste landfill facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, P.F.

    1999-01-01

    Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.

  10. Launching the Next Generation IODP Site Survey Data Bank

    NASA Astrophysics Data System (ADS)

    Miller, S. P.; Helly, J.; Clark, D.; Eakins, B.; Sutton, D.; Weatherford, J.; Thatch, G.; Miville, B.; Zelt, B.

    2005-12-01

    The next generation all-digital Site Survey Data Bank (SSDB) became operational on August 15, 2005 as an online resource for Integrated Ocean Drilling Program (IODP) proponents, reviewers, panels and operations, worldwide. There are currently 123 active proposals for drilling at sites distributed across the globe, involving nearly 1000 proponents from more than 40 countries. The goal is to provide an authoritative, persistent, secure, password-controlled and easily-used home for contributed data objects, as proposals evolve through their life cycle from preliminary phases to planned drilling expeditions. Proposal status can be monitored graphically by proposal number, data type or date. A Java SSDBviewer allows discovery of all proposal data objects, displayed over a basemap of global topography, crustal age or other custom maps. Data can be viewed or downloaded under password control. Webform interfaces assist with the uploading of data and metadata. Thirty four different standard data types are currently supported. The system was designed as a fully functioning digital library, not just a database or a web archive, drawing upon the resources of the SIOExplorer Digital Library project. Blocks of metadata are organized to support discovery and use, as appropriate for each data type. The SSDB has been developed by a UCSD team of researchers and computer scientists at the Scripps Institution of Oceanography and the San Diego Supercomputer Center, under contract with IODP Management International Inc., supported by NSF OCE 0432224.

  11. Effective Dust Control Systems on Concrete Dowel Drilling Machinery

    PubMed Central

    Echt, Alan S.; Sanderson, Wayne T.; Mead, Kenneth R.; Feng, H. Amy; Farwick, Daniel R.; Farwick, Dawn Ramsey

    2016-01-01

    Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels. PMID:27074062

  12. Scientific drilling and the evolution of the earth system: climate, biota, biogeochemistry and extreme systems

    NASA Astrophysics Data System (ADS)

    Soreghan, G. S.; Cohen, A. S.

    2013-11-01

    A US National Science Foundation-funded workshop occurred 17-19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial-interglacial and icehouse-greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation-landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy-sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling applied to continental targets, provides unique opportunities to obtain continuous and unaltered material for increasingly sophisticated analyses, tapping the entire geologic record (extending through the Archean), and probing the full dynamic range of climate change and its impact on biotic history.

  13. 77 FR 26562 - Mobile Offshore Drilling Unit Dynamic Positioning Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... regarding a draft policy letter on Dynamic Positioning (DP) Systems, Emergency Disconnect Systems, Blowout... Coast Guard, NOSAC issued the report ``Recommendations for Dynamic Positioning System Design and... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-1106] Mobile Offshore Drilling Unit Dynamic...

  14. 46 CFR 58.60-1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...

  15. 46 CFR 58.60-1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...

  16. 46 CFR 58.60-1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...

  17. 46 CFR 58.60-1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...

  18. 46 CFR 58.60-1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...

  19. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.430 When must I install a diverter system? You must install a diverter system before you drill a conductor or surface hole. The diverter system...

  20. Wireline Deep Drill for the Exploration of Icy Bodies

    NASA Technical Reports Server (NTRS)

    Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.

    2013-01-01

    One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.

  1. Structure optimization of a micro drill bit with nonlinear constraints considering the effects of eccentricity, gyroscopic moments, lateral and torsional vibrations

    NASA Astrophysics Data System (ADS)

    Nguyen, Danh-Tuyen; Hoang, Tien-Dat; Lee, An-Chen

    2017-10-01

    A micro drill structure was optimized to give minimum lateral displacement at its drill tip, which plays an extremely important role on the quality of drilled holes. A drilling system includes a spindle, chuck and micro drill bit, which are modeled as rotating Timoshenko beam elements considering axial drilling force, torque, gyroscopic moments, eccentricity and bearing reaction force. Based on our previous work, the lateral vibration at the drill tip is evaluated. It is treated as an objective function in the optimization problem. Design variables are diameter and lengths of cylindrical and conical parts of the micro drill, along with nonlinear constraints on its mass and mass center location. Results showed that the lateral vibration was reduced by 15.83 % at a cutting speed of 70000 rpm as compared to that for a commercial UNION drill. Among the design variables, we found that the length of the conical part connecting to the drill shank plays the most important factor on the lateral vibration during cutting process.

  2. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  3. Combining conventional and thermal drilling in order to increase speed and reduce costs of drilling operations to access deep geothermal resources

    NASA Astrophysics Data System (ADS)

    Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.

    2017-04-01

    The exploitation of deep geothermal resources for energy production relies on finding cost effective solutions to increase the drilling performance in hard rocks. Conventional rotary drilling techniques, based on mechanical rock exportation, result in high rates of drilling tool wearing, causing significant costs. Additionally, rotary drilling results in low drilling speeds in the typically hard crystalline basement rocks targeted for enhanced geothermal energy utilization technologies. Furthermore, even lower overall drilling rates result, when considering tripping times required to exchange worn drill tools. Therefore, alternative drilling techniques, such as hammering, thermal drilling, plasma drilling, and jetting processes are widely investigated in order to provide cost-effective alternatives to conventional drilling methods. A promising approach, that combines conventional rotary and thermal drilling techniques, is investigated in the present work. Here, the rock material is thermally weakened before being exported by conventional cutters. Heat is locally provided by a flame, which moves over the rock surface, heat-treating the material. Besides reducing the rock strength, an in-depth smoothening effect of the mechanical rock properties is observed due to the thermal treatment. This results in reduced rates of drill bit wearing and higher rates of penetration, which in turn decreases drilling costs significantly, particularly for deep-drilling projects. Due to the high heating rates, rock-hardening, commonly observed at moderate temperatures, can be avoided. The flame action can be modelled as a localized, high heat transfer coefficient flame treatment, which results in orders of magnitude higher heating rates than conventional oven treatments. Therefore, we analyse rock strength variations after different maximum temperatures, flame-based heating rates, and rock confinement pressures. The results show that flame treatments lead to a monotonous decrease of rock strength with temperature. This is different from oven treatments, where an initial increase of strength is typically observed, followed by a steep decrease upon further (slow) oven-heating. Thus, the weakening of sandstone and granite samples due to flame treatments indicates the feasibility of a combined mechanical-thermal drilling system. These results suggest that the new combined method enables improved rates of penetration in hard rocks while reducing the rate of drill tool wear. We also present possible implementations of this combined drilling system in the field. From field test results, advantages and limitations of the proposed new technology are presented, with an emphasis on accessing geothermal energy resources in crystalline basement rocks.

  4. Measuring Intracranial Pressure And Volume Noninvasively

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1994-01-01

    Ultrasonic technique eliminates need to drill into brain cavity. Intracranial dynamics instrument probes cranium ultrasonically to obtain data for determination of intracranial pressure (ICP) and pressure-volume index (PVI). Instrument determines sensitivity of skull to changes in pressure and by use of mechanical device to exert external calibrated pressure on skull. By monitoring volume of blood flowing into jugular vein, one determines change of volume of blood in cranial system. By measuring response of skull to increasing pressure (where pressure increased by tilting patient known amount) and by using cranial blood pressure, one determines intial pressure in cerebrospinal fluid. Once PVI determined, ICP determined.

  5. Ocean Drilling Program: Science Operator Site Index

    Science.gov Websites

    time estimator Long-Term Observatories and Legacy Holes (University of Miami site) Drilling Services systems Internet systems Help Desk Database services How to obtain ODP data Data types and examples Core

  6. Data from a thick unsaturated zone in Joshua Tree, San Bernardino County, California, 2007--09

    USGS Publications Warehouse

    Burgess, Matthew; Izbicki, John; Teague, Nicholas; O'Leary, David R.; Clark, Dennis; Land, Michael

    2012-01-01

    Data were collected on the physical properties of unsaturated alluvial deposits, the chemical composition of leachate extracted from unsaturated alluvial deposits, the chemical and isotopic composition of groundwater and unsaturated-zone water, and the chemical composition of unsaturated-zone gas at four monitoring sites in the southwestern part of the Mojave Desert in the town of Joshua Tree, San Bernardino County, California. The presence of denitrifying and nitrate-reducing bacteria from unsaturated alluvial deposits was evaluated for two of these monitoring sites that underlie unsewered residential development. Four unsaturated-zone monitoring sites were installed in the Joshua Tree area—two in an unsewered residential development and two adjacent to a proposed artificial-recharge site in an undeveloped area. The two boreholes in residential development areas were installed by using the ODEX air-hammer method. One borehole was drilled through the unsaturated zone to a depth of 541 ft (feet) below land surface; a well screened across the water table was installed. Groundwater was sampled from this well. The second borehole was drilled to a depth of 81 ft below land surface. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described. Core material was analyzed for water content, bulk density, matric potential, particle size, and water retention. The leachate from over 500 subsamples of cores and cuttings was analyzed for soluble anions, including fluoride, sulfate, bromide, chloride, nitrate, nitrite, and orthophosphate. Groundwater was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone water from suction-cup lysimeters was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone gas samples were analyzed for argon, oxygen, nitrogen, methane, carbon dioxide, ethane, nitrous oxide, and carbon monoxide. Drill cuttings were analyzed for denitrifying and nitrate-reducing bacteria. One of the boreholes installed adjacent to the Joshua Basin Water District proposed groundwater-recharge facility was installed by using the ODEX air-hammer method and the other was installed by using a 7.875-inch hollow-stem auger. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described; however, geochemical data were not available at the time of publication.

  7. Powder-Collection System for Ultrasonic/Sonic Drill/Corer

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Chang, Zensheu; Blake, David; Bryson, Charles

    2005-01-01

    A system for collecting samples of powdered rock has been devised for use in conjunction with an ultrasonic/sonic drill/corer (USDC) -- a lightweight, lowpower apparatus designed to cut into, and acquire samples of, rock or other hard material for scientific analysis. The USDC includes a drill bit, corer, or other tool bit, in which ultrasonic and sonic vibrations are excited by an electronically driven piezoelectric actuator. The USDC advances into the rock or other material of interest by means of a hammering action and a resulting chiseling action at the tip of the tool bit. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, a negligible amount of axial force is needed to make the USDC advance into the material. Also unlike a conventional twist drill, the USDC operates without need for torsional restraint, lubricant, or a sharp bit. The USDC generates powder as a byproduct of the drilling or coring process. The purpose served by the present samplecollection system is to remove the powder from the tool-bit/rock interface and deliver the powder to one or more designated location(s) for analysis or storage

  8. Methods and systems for determining angular orientation of a drill string

    DOEpatents

    Cobern, Martin E.

    2010-03-23

    Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.

  9. Test drilling and data collection in the Calaveras County portion of the Eastern San Joaquin Groundwater Subbasin, California, December 2009-June 2011

    USGS Publications Warehouse

    Metzger, Loren F.; Izbicki, John A.; Nawikas, Joseph M.

    2012-01-01

    Two multiple-well monitoring sites were drilled in the Calaveras County portion of the Eastern San Joaquin Groundwater Subbasin, about 100 miles east of San Francisco, California, during December 2009 and January 2010. Site 3N/9E-12G1-4 was drilled to a depth of 503 feet below land surface (bls), and four wells were installed. Site 4N/9E-36A1-3 was drilled to a depth of 400 feet bls, and three wells were installed. Lithologic and geophysical data collected during test drilling indicated the presence of volcanic sands interspersed with lahar deposits that are characteristic of the Mehrten Formation to about 420 feet bls at site 12G1-4, and the presence of volcanic sands interspersed with clay that are characteristic of the Valley Springs Formation at site 36A1-3. In January 2010, water levels at site 12G1-4 ranged from 120 to 127 feet bls (the shallowest well at the site, 12G4, screened from 90 to 110 feet bls, was dry). Between May and November 2010, water levels declined as much as 22 feet in wells 12G1 and 12G2, the deepest wells at this site, and declined about 6 feet in shallower well 12G3. During this same period, water-levels declined less than 8 feet in the three wells at site 36A1-3. Water levels in all monitoring wells recovered to near-May-2010 levels by mid-spring 2011. Dissolved solids in the six sampled monitoring wells (residue on evaporation) ranged from 154 to 239 milligrams per liter (mg/L); arsenic concentrations ranged from 1.8 to 13 micrograms per liter (μg/L), and were greater than the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) for arsenic of 10 μg/L in well 36A2. The oxygen-18 (δ18O) and deuterium (δD) stable-isotopic composition of water from the six monitoring wells and from nine domestic and public-supply wells sampled as part of this study ranged from -6.7 to -8.2 per mil (δ18O), and -50 to -60 per mil (δD), and was consistent with values expected for water recharged in the lower altitudes of the Sierra Nevada. Well 36A3, the shallowest well at site 36A1-3, was the only well that contained measurable tritium - indicative of water recharged after 1952. Carbon-14 activities from the six monitoring wells ranged from 76.0 to 18.9 percent modern carbon, and groundwater ages (time since recharge), not corrected for chemical reactions, ranged from 2,200 to 13,400 years before present.

  10. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    NASA Astrophysics Data System (ADS)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  11. Martian Terrain Near Curiosity Precipice Target

    NASA Image and Video Library

    2016-12-06

    This view from the Navigation Camera (Navcam) on the mast of NASA's Curiosity Mars rover shows rocky ground within view while the rover was working at an intended drilling site called "Precipice" on lower Mount Sharp. The right-eye camera of the stereo Navcam took this image on Dec. 2, 2016, during the 1,537th Martian day, or sol, of Curiosity's work on Mars. On the previous sol, an attempt to collect a rock-powder sample with the rover's drill ended before drilling began. This led to several days of diagnostic work while the rover remained in place, during which it continued to use cameras and a spectrometer on its mast, plus environmental monitoring instruments. In this view, hardware visible at lower right includes the sundial-theme calibration target for Curiosity's Mast Camera. http://photojournal.jpl.nasa.gov/catalog/PIA21140

  12. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  13. Environmental effects monitoring at the Terra Nova offshore oil development (Newfoundland, Canada): Program design and overview

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Tracy, Ellen; Janes, G. Gregory; Crowley, Roger D.; Wells, Trudy A.; Williams, Urban P.; Paine, Michael D.; Mathieu, Anne; Kilgour, Bruce W.

    2014-12-01

    An environmental effects monitoring (EEM) program was developed by Suncor (formerly Petro-Canada) in 1997/98 to assess effects of the Terra Nova offshore oil and gas development on the receiving environment. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada), at approximately 100 m water depth. The EEM program was developed with guidance from experts in government, academia and elsewhere, and with input from the public. The EEM program proposed by Suncor was accepted by Canadian regulatory agencies and the program was implemented in 2000, 2001, 2002, 2004, 2006, 2008 and 2010, with pre-development sampling in 1997. The program continues to be implemented every two years. EEM includes an assessment of alterations in sediment quality through examination of changes in sediment chemistry, particle size, toxicity and benthic invertebrate community structure. A second component of the program examines potential effects on two species of commercial fishing interest: Iceland scallop (Chlamys islandica) and American plaice (Hippoglossoides platessoides). Chemical body burden for these two species is examined and taste tests are performed to assess the presence of taint in edible tissues. Effects on American plaice bioindicators are also examined. A final component of the program assesses potential effects of the Terra Nova development on water quality and examines water column chemistry, chlorophyll concentration and physical properties. The papers presented in this collection focus on effects of drill cuttings and drilling muds on the seafloor environment and, as such, report results on sediment quality and bioaccumulation of drilling mud components in Iceland scallop and American plaice. This paper provides information on drilling discharges, an overview of the physical oceanography at the Terra Nova Field, and an overview of the field program designed to assess environmental effects of drilling at Terra Nova.

  14. Exposure to oil mist and oil vapour during offshore drilling in norway, 1979-2004.

    PubMed

    Steinsvåg, Kjersti; Bråtveit, Magne; Moen, Bente E

    2006-03-01

    To describe personal exposure to airborne hydrocarbon contaminants (oil mist and oil vapour) from 1979 to 2004 in the mud-handling areas of offshore drilling facilities operating on the Norwegian continental shelf when drilling with oil-based muds. Qualitative and quantitative information was gathered during visits to companies involved in offshore oil and gas production in Norway. Monitoring reports on oil mist and oil vapour exposure covered 37 drilling facilities. Exposure data were analysed using descriptive statistics and by constructing linear mixed-effects models. Samples had been taken during the use of three generations of hydrocarbon base oils, namely diesel oils (1979-1984), low-aromatic mineral oils (1985-1997) and non-aromatic mineral oils (1998-2004). Sampling done before 1984 showed high exposure to diesel vapour (arithmetic mean, AM = 1217 mg m(-3)). When low-aromatic mineral oils were used, the exposure to oil mist and oil vapour was 4.3 and 36 mg m(-3), and the respective AMs for non-aromatic mineral oils were reduced to 0.54 and 16 mg m(-3). Downward time trends were indicated for both oil mist (6% per year) and oil vapour (8% per year) when the year of monitoring was introduced as a fixed effect in a linear mixed-effects model analysis. Rig type, technical control measures and mud temperature significantly determined exposure to oil mist. Rig type, type of base oil, viscosity of the base oil, work area, mud temperature and season significantly determined exposure to oil vapour. Major decreases in variability were found for the between-rig components. Exposure to oil mist and oil vapour declined over time in the mud-handling areas of offshore drilling facilities. Exposure levels were associated with rig type, mud temperature, technical control measures, base oil, viscosity of the base oil, work area and season.

  15. Automatic control of oscillatory penetration apparatus

    DOEpatents

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  16. CBCT Assessment of Root Dentine Removal by Gates-Glidden Drills and Two Engine-Driven Root Preparation Systems

    PubMed Central

    Harandi, Azade; Mohammadpour Maleki, Fatemeh; Moudi, Ehsan; Ehsani, Maryam; Khafri, Soraya

    2017-01-01

    Introduction: The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). Methods and Materials: A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups (n=13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey’s post hoc tests were used for two-by-two comparisons. Results: Gates-Glidden drills with hand files removed significantly more (P<0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems (P>0.05). Conclusion: The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls. PMID:28179920

  17. Identification of potential water-bearing zones by the use of borehole geophysics in the vicinity of Keystone Sanitation Superfund Site, Adams County, Pennsylvania and Carroll County, Maryland

    USGS Publications Warehouse

    Conger, Randall W.

    1997-01-01

    Between April 23, 1996, and June 21, 1996, the U.S. Environmental Protection Agency contracted Haliburton-NUS, Inc., to drill four clusters of three monitoring wells near the Keystone Sanitation Superfund Site. The purpose of the wells is to allow monitoring and sampling of shallow, intermediate, and deep waterbearing zones for the purpose of determining the horizontal and vertical distribution of any contaminated ground water migrating from the Keystone Site. Twelve monitoring wells, ranging in depth from 50 to 397.9 feet below land surface, were drilled in the vicinity of the Keystone Site. The U.S. Geological Survey conducted borehole-geophysical logging and determined, with geophysical logs and other available data, the ideal intervals to be screened in each well. Geophysical logs were run on four intermediate and four deep wells, and a caliper log only was run on shallow well CL-AD-173 (HN-1S). Interpretation of geophysical logs and existing data determined the placement of screens within each borehole.

  18. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation

    PubMed Central

    Balachandran, Ramya; Labadie, Robert F.

    2015-01-01

    Purpose A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. Methods An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. Results The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of 45° and higher as well as longer cantilevered drill lengths. Conclusion The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure. PMID:26183149

  19. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    PubMed

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  20. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Araki, E.; Sonoda, A.; Takahashi, N.; Tsuboi, S.

    2015-12-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP).We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real-time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough.We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site (*1). Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor information. In addition, before data download, user can check that data is available or not by data check function.In this presentation, we briefly introduce NanTroSEIZE and then show our web application system. We also discuss our future plans for developments of monitoring data download system.*1 Long-Term Borehole Monitoring Data Site http://join-web.jamstec.go.jp/borehole/borehole_top_e.html

  1. Monitoring restoration impacts to endemic plant communities in soil inclusions of arid environments

    USGS Publications Warehouse

    Louhaichi, Mounir; Pyke, David A.; Shaff, Scott E.; Johnson, Douglas E.

    2013-01-01

    Soil inclusions are small patches of soil with different properties than the surrounding, dominant soil. In arid areas of western North America, soil inclusions called slickspot soils are saltier than adjacent soil and support different types of native vegetation. Traditional sagebrush restoration efforts, such as using drills to plant seeds or herbicides to control invasive vegetation, may damage sensitive slickspot soil and supporting vegetation. USGS scientists David Pyke and Scott Shaff and collaborators monitored slickspot size and cover of endangered slickspot peppergrass for two years to see if they were affected by the application of the herbicide glyphosate or by a minimum-till drill in the Snake River Plain, ID. The researchers examined the use of aerial photographs versus on-the-ground measurements and concluded that slickspot sizes were not affected by these treatments. Remote sensing using aerial photographs proved a useful method for mapping slickspot soils.

  2. Evaluating bump control techniques through convergence monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoli, A.A.

    1987-07-01

    A coal mine bump is the violent failure of a pillar or pillars due to overstress. Retreat coal mining concentrates stresses on the pillars directly outby gob areas, and the situation becomes critical when mining a coalbed encased in rigid associated strata. Bump control techniques employed by the Olga Mine, McDowell County, WV, were evaluated through convergence monitoring in a Bureau of Mines study. Olga uses a novel pillar splitting mining method to extract 55-ft by 70-ft chain pillars, under 1,100 to 1,550 ft of overburden. Three rows of pillars are mined simultaneously to soften the pillar line and reducemore » strain energy storage capacity. Localized stress reduction (destressing) techniques, auger drilling and shot firing, induced approximately 0.1 in. of roof-to-floor convergence in ''high'' -stress pillars near the gob line. Auger drilling of a ''low''-stress pillar located between two barrier pillars produced no convergence effects.« less

  3. Laser Drilling Development Trial Final Report CRADA No. TSB-1538-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, M. R.; Hebbar, R. R.

    This project performed various laser drilling tests to demonstrate femtosecond laser drilling of fuel injector nozzles with minimal recast, minimal heat affected zone and no collateral damage. LLNL had extensive experience in ultra short-pulse laser systems and developed specialized hardware for these applications.

  4. Geothermal Exploration and Resource Assessment | Geothermal Technologies |

    Science.gov Websites

    , drilling, and resource assessments and the widespread adoption of under-utilized low-temperature resources -temperature geothermal resource technologies. Drilling The drilling of wells to find and develop geothermal low-temperature, sedimentary, co-produced, and enhanced geothermal system resources. We also work to

  5. 30 CFR 250.442 - What are the requirements for a subsea BOP system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.442 What are the requirements for a subsea BOP system? When you drill with a subsea BOP system, you must install the BOP system...

  6. 30 CFR 250.442 - What are the requirements for a subsea BOP system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.442 What are the requirements for a subsea BOP system? When you drill with a subsea BOP system, you must install the BOP system...

  7. 30 CFR 250.442 - What are the requirements for a subsea BOP system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.442 What are the requirements for a subsea BOP system? When you drill with a subsea BOP system, you must install the BOP system...

  8. 30 CFR 250.442 - What are the requirements for a subsea BOP system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.442 What are the requirements for a subsea BOP system? When you drill with a subsea BOP system, you must install the BOP system...

  9. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, makingmore » them an effective way to access the U.S. energy resources currently locked under hard rock formations.« less

  10. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach.

    PubMed

    Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro

    2017-07-01

    The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Heat accumulation during sequential cortical bone drilling.

    PubMed

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from <0.5 °C to nearly 13 °C. The difference between drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Evaluation of Hard Coating Performance in Drilling Compacted Graphite Iron (CGI)

    NASA Astrophysics Data System (ADS)

    de Paiva, José M. F.; Amorim, Fred L.; Soares, P.; Torres, Ricardo D.

    2013-10-01

    The aim of this investigation was to compare the performance of the following commercial coatings system, TiAlN/TiN, AlCrN, and TiSiN/AlCrN, deposited in cemented carbide tools in drilling compact graphite iron (CGI). The drilling tests were conducted adopting two cutting speeds: 80 or 150 m/min. For each test condition, the tool flank wear, the machining feed force, and the circularity and the roughness of the resulting drilled hole were determined. At the cutting speed of 80 m/min, the results revealed that the tool life, in terms of flank wear, was improved for the Cr-based coatings, while the multilayered coatings presented a better performance at the cutting speed of 150 m/min. It was also found that feed force is substantially increased when drilling at a cutting speed of 150 m/min. The holes drilled with the TiSiN/AlCrN at a cutting speed of 150 m/min showed the best circularity. The drill roughness is directly influenced by the coating system wear and iron adhesion. Consequently, it was found that the lowest holes' roughness was obtained with TiSiN/AlCrN at 80 m/min.

  13. Analysis and 3D inspection system of drill holes in aeronautical surfaces

    NASA Astrophysics Data System (ADS)

    Rubio, R.; Granero, L.; Sanz, M.; García, J.; Micó, V.

    2017-06-01

    In aerospace industry, the structure of the aircraft is assembled using small parts or a combination of them that are made with different materials, such as for instance aluminium, titanium, composites or even 3D printed parts. The union between these small parts is a critical point for the integrity of the aircraft. The quality of this union will decide the fatigue of adjacent components and therefore the useful life of them. For the union process the most extended method is the rivets, mainly because their low cost and easy manufacturing. For this purpose it is necessary to made drill holes in the aeronautical surface to insert the rivets. In this contribution, we present the preliminary results of a 3D inspection system [1] for drill holes analysis in aeronautical surfaces. The system, based in optical triangulation, was developed by the Group of Optoelectronic Image Processing from the University of Valencia in the framework of the Airbus Defence and Space (AD&S), MINERVA project (Manufacturing industrial - means emerging from validated automation). The capabilities of the system permits to generate a point cloud with 3D information and GD&T (geometrical dimensions and tolerances) characteristics of the drill hole. For the inner surface defects detection, the system can generate an inner image of the drill hole with a scaled axis to obtain the defect position. In addition, we present the analysis performed for the drills in the wing station of the A-400 M. In this analysis the system was tested for diameters in the range of [10 - 15.96] mm, and for Carbon Fibre.

  14. Delineating the Groundwater Recharge Zone in the Pingtung Plan , Taiwan with Electrical Resistivity Surveys

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chang, P.; Chang, L.; Chen, J.; Huang, C.

    2012-12-01

    In this study we used the two-dimensional electrical resistivity imaging (ERI) method, as well as the core records of monitoring wells to help determine the groundwater recharge zone in Pingtung plain in southwestern Taiwan. Pingtung fluvial plain is one of the major groundwater resources in Taiwan which is composed of several alluvial fans deriving from the uplifted mountain area to the east and north of the plain. The thick gravel layer constitutes the main recharge area of the upper alluvial fans and the conductive clay sediments dominate most of the lower fans. With the core records, we found that, the gravel layers have higher resistivity (mostly over 200 Ohm-m) and the resistivities of the clayey layers are low (about 1~10 Ohm-m). Therefore with the resistivity surveys we can have more confidences for determining the boundary of the groundwater recharge area in the area in-between the monitoring wells. In the past two years, we have finished 24 two-dimensional electrical resistivity imaging profile lines from Meinong to Fangliao, the lines are oriented in the east-west direction, and each line was about 400 meters long. With the inverted results, we are able to characterize two major alluvial systems and their recharge zones in the Pingtung fluvial plain. The resistivities we measured almost are consistent to the core records of monitoring wells except for the Wanluan site, which shows thick gravel layer in the drilling records but has low resistivity in the nearby resistivity survey. A reasonable explanation is that the electrical resistivity is sensitive to clayey materials with lower resistivities. The intercalated clay within the gravel layers is not shown in the churn drilling records.

  15. The Search for Subsurface Life on Mars: Results from the MARTE Analog Drill Experiment in Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.

    2006-03-01

    The Mars Analog Research and Technology (MARTE) experiment has developed an automated drilling system on a simulated Mars lander platform including drilling, sample handling, core analysis and down-hole instruments relevant to searching for life in the Martian subsurface.

  16. Development of lunar drill to take core samples to 100-foot depths

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Lunar drill takes lunar surface cores to depths of 100 feet and is being developed to the samples at greater depths. The wireline drill system has been adapted to operate in the lunar environment by providing a sealed dc motor and solid metallic base lubricants.

  17. Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display

    ERIC Educational Resources Information Center

    Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami

    2016-01-01

    Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…

  18. Advantages and limitations of remotely operated sea floor drill rigs

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.

  19. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  20. Garden Banks 388 deepwater production riser structural and environmental monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrall, D.E.; Pokladnik, R.L.

    1995-12-01

    A deepwater production riser, to be installed in 1995 in Garden Banks 388 in the Gulf of Mexico, has been instrumented with bonded resistance strain gages so that the remaining operational fatigue life can be quantified. The riser supports flowlines from subsea oil and gas wells to a floating combination drilling/production vessel, and thus is fixed at its lower end and free to move at its upper terminus. The distribution of bending stresses throughout the riser, which is attached to a template at 2,096 foot depth and extends to within 150 feet of the surface, reaches a maximum at themore » bottom. The riser is instrumented with strain gages, inclinometers, and accelerometers at five locations along its length so that tension, bending, orientation, and motion of the riser can be monitored at these locations, including the bottom joint. Correlation of the riser response data with the excitation or environmental data, including wave motion, current velocities, wind velocities, and vessel mooring tensions and positions is enhanced by acquiring and archiving all data on a single common system having multiple redundant elements for reliability. This paper describes the production riser structural and environmental monitoring system used on the Garden Banks 388 project.« less

  1. Effective dust control systems on concrete dowel drilling machinery.

    PubMed

    Echt, Alan S; Sanderson, Wayne T; Mead, Kenneth R; Feng, H Amy; Farwick, Daniel R; Farwick, Dawn Ramsey

    2016-09-01

    Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels.

  2. Sample Acqusition Drilling System for the the Resource Prospector Mission

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; Quinn, J.; Smith, J.; Kleinhenz, J.

    2015-12-01

    The goal of the Lunar Resource Prospector Mission (RPM) is to capture and identify volatiles species within the top meter of the lunar regolith. The RPM drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RPM drill is based on the Mars Icebreaker drill developed for capturing samples of ice and ice cemented ground on Mars. The drill weighs approximately 10 kg and is rated at ~300 Watt. It is a rotary-percussive, fully autonomous system designed to capture cuttings for analysis. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing station, 4. Z-stage, 5. Deployment stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in ~10 cm intervals. The first generation drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama in 2012. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The third generation drill was tested in NASA GRC's vacuum chamber, VF13, at 10-5 torr and approximately 200 K. It demonstrated successful capture and transfer of icy samples to a crucible. The drill has been modified and integrated onto the NASA JSC RPM rover. It has been undergoing testing in a lab and in the field during the Summer of 2015.

  3. Tidal control on gas flux from the Precambrian continental bedrock revealed by gas monitoring at the Outokumpu Deep Drill Hole, Finland

    NASA Astrophysics Data System (ADS)

    Kietäväinen, Riikka; Ahonen, Lasse; Wiersberg, Thomas; Korhonen, Kimmo; Pullinen, Arto

    2017-04-01

    Deep groundwaters within Precambrian shields are characteristically enriched in non-atmospheric gases. High concentrations of methane are frequently observed especially in graphite bearing metasedimentary rocks and accumulation of hydrogen and noble gases due to water-rock interaction and radioactive decay within the U, Th and K containing bedrock takes place. These gases can migrate not only through fractures and faults, but also through tunnels and boreholes, thereby potentially mobilizing hazardous compounds for example from underground nuclear waste repositories. Better understanding on fluid migration may also provide tools to monitor changes in bedrock properties such as fracture density or deterioration and failure of engineered barriers. In order to study gas migration mechanisms and variations with time, we conducted a gas monitoring campaign in eastern Finland within the Precambrian Fennoscandian Shield. At the study site, the Outokumpu Deep Drill Hole (2516 m), spontaneous bubbling of gases at the well head has been on-going since the drilling was completed in 2005, i.e. over a decade. The drill hole is open below 39 m. In the experiment an inflatable packer was placed 15 cm above the water table inside the collar (Ø 32.4 cm), gas from below the packer was collected and the gas flow in the pipe line carefully assisted by pumping (130 ml/min). Composition of gas was monitored on-line for one month using a quadrupole mass spectrometer (QMS) with measurement interval of one minute. Changes in the hydraulic head and in situ temperature were simultaneously recorded with two pressure sensors which were placed 1 m apart from each other below the packer such that they remained above and below the water table. In addition, data was compared with atmospheric pressure data and theoretical effect of Earth tides at the study site. Methane was the dominant gas emanating from the bedrock, however, relative gas composition fluctuated with time. Subsurface derived gases i.e. methane, hydrogen and helium peaked at the same time and temperature within the drill hole remained constant indicating that solubility fractionation could be ruled out. The longest frequency phenomenon of ca. 14 days and daily variation in gas composition which occurred in periods of approximately 12 and 24 hours were clearly correlated with the Earth tides, i.e. dilatation and contraction of the Earth due to gravitational fields of the Moon and Sun such that the non-atmospheric gases peaked during tidal gravitation minima. Earth tides were also reflected in the hydraulic head which, unlike gas composition, closely followed changes in the atmospheric pressure. Thus, dilatation of bedrock porosity and fractures can be more clearly seen in the gas data than changes in the hydraulic head or water table.

  4. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.

  5. Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    A study of recently developed residential/commercial areas of Salt Lake Valley, Utah, was done from 1999 to 2001 in areas in which shallow ground water has the potential to move to a deeper aquifer that is used for public supply. Thirty monitoring wells were drilled and sampled in 1999 as part of the study. The ground water was either under unconfined or confined conditions, depending on depth to water and the presence or absence of fine-grained deposits. The wells were completed in the shallowest water-bearing zone capable of supplying water. Monitoring-well depths range from 23 to 154 feet. Lithologic, geophysical, hydraulic-conductivity, transmissivity, water-level, and water-temperature data were obtained for or collected from the wells.Silt and clay layers noted on lithologic logs correlate with increases in electrical conductivity and natural gamma radiation shown on many of the electromagnetic-induction and natural gamma logs. Relatively large increases in electrical conductivity, determined from the electromagnetic-induction logs, with no major changes in natural gamma radiation are likely caused by increased dissolved-solids content in the ground water. Some intervals with high electrical conductivity correspond to areas in which water was present during drilling.Unconfined conditions were present at 7 of 20 monitoring wells on the west side and at 2 of 10 wells on the east side of Salt Lake Valley. Fine-grained deposits confine the ground water. Anthropogenic compounds were detected in water sampled from most of the wells, indicating a connection with the land surface. Data were collected from 20 of the monitoring wells to estimate the hydraulic conductivity and transmissivity of the shallow ground-water system. Hydraulic-conductivity values of the shallow aquifer ranged from 30 to 540 feet per day. Transmissivity values of the shallow aquifer ranged from 3 to 1,070 feet squared per day. There is a close linear relation between transmissivity determined from slug-test analysis and transmissivity estimated from specific capacity.Water-level fluctuations were measured in the 30 monitoring wells from 1999 to July 2001. Generally, water-level changes measured in wells on the west side of the valley followed a seasonal trend and wells on the east side showed less fluctuation or a gradual decline during the 2-year period. This may indicate that a larger percentage of recharge to the shallow ground-water system on the west side is from somewhat consistent seasonal sources, such as canals and unconsumed irrigation water, as compared to sources on the east side. Water levels measured in monitoring wells completed in the shallow ground-water system near large-capacity public-supply wells varied in response to ground-water withdrawals from the deeper confined aquifer. Water temperature was monitored in 23 wells. Generally, little or no change in water temperature was measured in monitoring wells with a depth to water greater than about 40 feet. The shallower the water level in the well, the greater the water-temperature change measured during the study.Comparison of water levels measured in the monitoring wells and deeper wells in the same area indicate a downward gradient on the east side of the valley. Water levels in the shallow and deeper aquifers in the secondary recharge area on the west side of the valley were similar to those on the east side. Water levels measured in the monitoring wells and nearby wells completed in the deeper aquifer indicate that the vertical gradient can change with time and stresses on the system.

  6. Estimation and Control for Autonomous Coring from a Rover Manipulator

    NASA Technical Reports Server (NTRS)

    Hudson, Nicolas; Backes, Paul; DiCicco, Matt; Bajracharya, Max

    2010-01-01

    A system consisting of a set of estimators and autonomous behaviors has been developed which allows robust coring from a low-mass rover platform, while accommodating for moderate rover slip. A redundant set of sensors, including a force-torque sensor, visual odometry, and accelerometers are used to monitor discrete critical and operational modes, as well as to estimate continuous drill parameters during the coring process. A set of critical failure modes pertinent to shallow coring from a mobile platform is defined, and autonomous behaviors associated with each critical mode are used to maintain nominal coring conditions. Autonomous shallow coring is demonstrated from a low-mass rover using a rotary-percussive coring tool mounted on a 5 degree-of-freedom (DOF) arm. A new architecture of using an arm-stabilized, rotary percussive tool with the robotic arm used to provide the drill z-axis linear feed is validated. Particular attention to hole start using this architecture is addressed. An end-to-end coring sequence is demonstrated, where the rover autonomously detects and then recovers from a series of slip events that exceeded 9 cm total displacement.

  7. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    NASA Astrophysics Data System (ADS)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  8. The Immatsiak network of groundwater wells in a small catchment basin in the discontinuous permafrost zone of Northern Quebec, Canada: A unique opportunity for monitoring the impacts of climate change on groundwater (Invited)

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.

    2013-12-01

    During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the geochemistry of groundwater and surface water at the catchment outlet. Following synthesis of the available information, including a cryo-hydrogeophysical investigation in progress, a three-dimensional hydrogeological conceptual and numerical model of the catchment basin will be developed. According to different scenarios of climate change, the potential of using groundwater as a sustainable resource in northern regions will be assessed by simulating the present and future impacts of climate change on this groundwater system.

  9. The Krafla International Testbed (KMT): Ground Truth for the New Magma Geophysics

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Kim, D.; Malin, P. E.; Eichelberger, J. C.

    2017-12-01

    Recent developments in geophysics such as large N seismic arrays , 4D (time lapse) subsurface imaging and joint inversion algorithms represent fresh approaches to delineating and monitoring magma in the subsurface. Drilling at Krafla, both past and proposed, are unique opportunities to quantitatively corroborate and calibrate these new technologies. For example, dense seismic arrays are capable of passive imaging of magma systems with resolutions comparable to that achieved by more expensive (and often logistically impractical) controlled source surveys such as those used in oil exploration. Fine details of the geometry of magma lenses, feeders and associated fluid bearing fracture systems on the scale of meters to tens of meters are now realistic targets for surface seismic surveys using ambient energy sources, as are detection of their temporal variations. Joint inversions, for example of seismic and MT measurements, offer the promise of tighter quantitative constraints on the physical properties of the various components of magma and related geothermal systems imaged by geophysics. However, the accuracy of such techniques will remain captive to academic debate without testing against real world targets that have been directly sampled. Thus application of these new techniques to both guide future drilling at Krafla and to be calibrated against the resulting borehole observations of magma are an important step forward in validating geophysics for magma studies in general.

  10. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team

    PubMed Central

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-01-01

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus’ estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling. PMID:27618060

  11. Design and Implementation of Multifunctional Automatic Drilling End Effector

    NASA Astrophysics Data System (ADS)

    Wang, Zhanxi; Qin, Xiansheng; Bai, Jing; Tan, Xiaoqun; Li, Jing

    2017-03-01

    In order to realize the automatic drilling in aircraft assembly, a drilling end effector is designed by integrating the pressure unit, drilling unit, measurement unit, control system and frame structure. In order to reduce the hole deviation, this paper proposes a vertical normal adjustment program based on 4 laser distance sensors. The actual normal direction of workpiece surface can be calculated through the sensors measurements, and then robot posture is adjusted to realize the hole deviation correction. A base detection method is proposed to detect and locate the hole automatically by using the camera and the reference hole. The experiment results show that the position accuracy of the system is less than 0.3mm, and the normal precision is less than 0.5°. The drilling end effector and robot can greatly improve the efficiency of the aircraft parts and assembly quality, and reduce the product development cycle.

  12. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in other holes at the M3.5 seismogenic zone. As we successfully conducted DCDA with the above-mentioned drilled core, we look forward to shedding light on spatial variations of stress in the seismogenic zones following our ICDP DSeis drilling. A M5.5 earthquake which took place near Orkney, South Africa on 5 August 2014, offers a special opportunity to compare seismically inverted spatio-temporal evolution of both the main rupture and the aftershock activity with the information directly probed by the ICDP DSeis project. Moyer et al. (2016 Seismol. Res. Lett. submitted) calls for comparing seismic source models as part of a workshop proposed to the Southern California Earthquake Center for Fall 2017. In addition, the upper edge of the M5.5 rupture is located hundreds of meters below the mining horizon, sufficiently away from anthropogenic activity. This allows geomicrobiologists to investigate deep microbiological activity fueled by H2 from seismic rupture to address questions about Earth's early life. Drilling machines are being rigged underground soon to kick off our ICDP DSeis drilling in early 2017.

  13. Monitoring Conformance and Containment for Geological Carbon Storage: Can Technology Meet Policy and Public Requirements?

    NASA Astrophysics Data System (ADS)

    Lawton, D. C.; Osadetz, K.

    2014-12-01

    The Province of Alberta, Canada identified carbon capture and storage (CCS) as a key element of its 2008 Climate Change strategy. The target is a reduction in CO2 emissions of 139 Mt/year by 2050. To encourage uptake of CCS by industry, the province has provided partial funding to two demonstration scale projects, namely the Quest Project by Shell and partners (CCS), and the Alberta Carbon Trunk Line Project (pipeline and CO2-EOR). Important to commercial scale implementation of CCS will be the requirement to prove conformance and containment of the CO2 plume injected during the lifetime of the CCS project. This will be a challenge for monitoring programs. The Containment and Monitoring Institute (CaMI) is developing a Field Research Station (FRS) to calibrate various monitoring technologies for CO2 detection thresholds at relatively shallow depths. The objective being assessed with the FRS is sensitivity for early detection of loss of containment from a deeper CO2 storage project. In this project, two injection wells will be drilled to sandstone reservoir targets at depths of 300 m and 700 m. Up to four observation wells will be drilled with monitoring instruments installed. Time-lapse surface and borehole monitoring surveys will be undertaken to evaluate the movement and fate of the CO2 plume. These will include seismic, microseismic, cross well, electrical resistivity, electromagnetic, gravity, geodetic and geomechanical surveys. Initial baseline seismic data from the FRS will presented.

  14. Identification of water-bearing zones by the use of geophysical logs and borehole television surveys, collected February to September 1997, at the Former Naval Air Warfare Center, Warminster, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Between February 1997 and September 1997, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center, Warminster, Bucks County, Pa., to monitor water levels and sample ground-water contaminants in the shallow, intermediate, and deep water-bearing zones. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected contaminant sources. Four wells were drilled north of the property adjacent to Area A, three wells along strike located on Lewis Drive, and three wells directly down dip on Ivyland Road. Well depths range from 69 feet to 300 feet below land surface.Borehole-geophysical logging and television surveys were used to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Borehole television surveys were obtained at the four monitor wells adjacent to Area A.Caliper and borehole television surveys were used to locate fractures, inflections on fluidtemperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and heatpulse- flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, borehole television surveys, and driller's logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing zones in each borehole.

  15. 30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.443 What associated systems... components. (b) At least two BOP control stations. One station must be on the drilling floor. You must locate...

  16. Swamp Works- Multiple Projects

    NASA Technical Reports Server (NTRS)

    Carelli, Jonathan M.; Schuler, Jason M.; Chandler, Meredith L.

    2013-01-01

    My Surface Systems internship over the summer 2013 session covered a broad range of projects that utilized multiple fields of engineering and technology. This internship included a project to create a command center for a 120 ton regolith bin, for the design and assembly of a blast shield to add further protection for the Surface Systems engineers, for the design and assembly of a portable four monitor hyper wall strip that could extend as large as needed, research and programming a nano drill that could be utilized on a next generation robot or rover, and social media tasks including the making of videos, posting to social networking websites and creation of a new outreach program to help spread the word about the Swamp Works laboratory.

  17. System approach to automation and robotization of drivage

    NASA Astrophysics Data System (ADS)

    Zinov’ev, VV; Mayorov, AE; Starodubov, AN; Nikolaev, PI

    2018-03-01

    The authors consider the system approach to finding ways of no-man drilling and blasting in the face area by means of automation and robotization of operations with a view to reducing injuries in mines. The analysis is carried out in terms of the drilling and blasting technology applied in Makarevskoe Coal Field, Kuznetsk Coal Basin. Within the system-functional approach and using INDEFO procedure, the processes of drilling and blasthole charging are decomposed into related elementary operations. The automation and robotization methods to avoid the presence of miners in the face are found for each operation.

  18. Approaches for derivation of environmental quality criteria for substances applied in risk assessment of discharges from offshore drilling operations.

    PubMed

    Altin, Dag; Frost, Tone Karin; Nilssen, Ingunn

    2008-04-01

    In order to achieve the offshore petroleum industries "zero harm" goal to the environment, the environmental impact factor for drilling discharges was developed as a tool to identify and quantify the environmental risks associated with disposal of drilling discharges to the marine environment. As an initial step in this work the main categories of substances associated with drilling discharges and assumed to contribute to toxic or nontoxic stress were identified and evaluated for inclusion in the risk assessment. The selection were based on the known toxicological properties of the substances, or the total amount discharged together with their potential for accumulation in the water column or sediments to levels that could be expected to cause toxic or nontoxic stress to the biota. Based on these criteria 3 categories of chemicals were identified for risk assessment the water column and sediments: Natural organic substances, metals, and drilling fluid chemicals. Several approaches for deriving the environmentally safe threshold concentrations as predicted no effect concentrations were evaluated in the process. For the water column consensus were reached for using the species sensitivity distribution approach for metals and the assessment factor approach for natural organic substances and added drilling chemicals. For the sediments the equilibrium partitioning approach was selected for all three categories of chemicals. The theoretically derived sediment quality criteria were compared to field-derived threshold effect values based on statistical approaches applied on sediment monitoring data from the Norwegian Continental Shelf. The basis for derivation of predicted no effect concentration values for drilling discharges should be consistent with the principles of environmental risk assessment as described in the Technical Guidance Document on Risk Assessment issued by the European Union.

  19. Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Paulsen, Gale; Indyk, Stephen; Zacny, Kris

    2014-01-01

    A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems.

  20. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  1. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  2. 30 CFR 250.445 - What are the requirements for kelly valves, inside BOPs, and drill-string safety valves?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...

  3. 30 CFR 250.433 - What are the diverter actuation and testing requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...-control systems and control stations. You must also flow-test the vent lines. (a) For drilling operations... must conduct subsequent pressure tests within 7 days after the previous test. (b) For floating drilling...

  4. 30 CFR 250.445 - What are the requirements for kelly valves, inside BOPs, and drill-string safety valves?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...

  5. 30 CFR 250.445 - What are the requirements for kelly valves, inside BOPs, and drill-string safety valves?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...

  6. An experimental investigation on thermal exposure during bone drilling.

    PubMed

    Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed

    2012-12-01

    This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  8. Precision of computer-assisted core decompression drilling of the femoral head.

    PubMed

    Beckmann, J; Goetz, J; Baethis, H; Kalteis, T; Grifka, J; Perlick, L

    2006-08-01

    Osteonecrosis of the femoral head is a local destructive disease with progression into devastating stages. Left untreated it mostly leads to severe secondary osteoarthrosis and early endoprosthetic joint replacement. Core decompression by exact drilling into the ischemic areas can be performed in early stages according to Ficat or ARCO. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. Twenty sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany) and 10 sawbones by fluoroscopic control only. No gypsum sphere was missed. There was a statistically significant difference regarding the three-dimensional deviation (Euclidian norm) as well as maximum deviation in x-, y- or z-direction (maximum norm) to the desired mid-point of the lesion, with a mean of 0.51 and 0.4 mm in the navigated group and 1.1 and 0.88 mm in the control group, respectively. Furthermore, significant difference was found in the number of drilling corrections as well as the radiation time needed: no second drilling or correction of drilling direction was necessary in the navigated group compared to 1.4 in the control group. The radiation time needed was less than 1 s compared to 3.1 s, respectively. The fluoroscopy-based VectorVision navigation system shows a high feasibility of computer-guided drilling with a clear reduction of radiation exposure time and can therefore be integrated into clinical routine. The additional time needed is acceptable regarding the simultaneous reduction of radiation time.

  9. Mixed reality temporal bone surgical dissector: mechanical design.

    PubMed

    Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram

    2014-08-08

    The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.

  10. ERT, GPR, InSAR, and tracer tests to characterize karst aquifer systems under urban areas: The case of Quebec City

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Castellazzi, Pascal; Gloaguen, Erwan; Trépanier, Luc; Garfias, Jaime

    2018-06-01

    Urban infrastructures built over karst settings may be at risk of collapse due to hydro-chemical erosion of underlying rock structures. In such settings, mapping cave networks and monitoring ground stability is important to assure civil safety and guide future infrastructure development decisions. However, no technique can directly and comprehensively map these hydrogeological features and monitor their stability. The most reliable method to map a cave network is through speleological exploration, which is not always possible due to restrictions, narrow corridors/passages, or high water levels. Borehole drilling is expensive and is often only performed where the presence of karsts is suggested by other techniques. Numerous indirect and cost-effective methods exist to map a karst flow system, such as geophysics, geodesy, and tracer tests. This paper presents the outcomes from a challenging application in Quebec City, Canada, where a multidisciplinary approach was designed to better understand the groundwater dynamics and cave paths. Two tracer tests in groundwater flowing through the cave system indicated that water flows along an approximately straight path from the sinking stream to the spring. It also suggests the presence of a parallel flow path close to the one already partially mapped. This observation was confirmed by combining Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) techniques, and ultimately by observing voids in several boreholes drilled close to the main cave path. Lowering the water levels at the suspected infiltration zone and inside the karst, the infiltration cracks were identified and the hydraulic link between them was confirmed. In fact, almost no infiltration occurs into the karst system when the water level at the sinking stream drops below a threshold level. Finally, SAR interferometry (InSAR) using RADARSAT-2 images detected movements on few buildings located over a backfilled sinkhole intercepted by the karst system and confirmed the stability of the rest of the karst area. The knowledge of the flow system described in this paper is used by policy makers to assure civil security of this densely populated area.

  11. 30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System... must be on the drilling floor. You must locate the other station in a readily accessible location away...

  12. Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.

    NASA Astrophysics Data System (ADS)

    Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.

    2003-12-01

    The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.

  13. 50 CFR 18.126 - What does a Letter of Authorization allow?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Oil and Gas Exploration, Development, and Production Activities in the Beaufort Sea and Adjacent...) Developing oil fields and associated activities; (4) Drilling production wells and performing production support operations; (5) Conducting environmental monitoring activities associated with exploration...

  14. 50 CFR 18.126 - What does a Letter of Authorization allow?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Oil and Gas Exploration, Development, and Production Activities in the Beaufort Sea and Adjacent...) Developing oil fields and associated activities; (4) Drilling production wells and performing production support operations; (5) Conducting environmental monitoring activities associated with exploration...

  15. 50 CFR 18.126 - What does a Letter of Authorization allow?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Oil and Gas Exploration, Development, and Production Activities in the Beaufort Sea and Adjacent...) Developing oil fields and associated activities; (4) Drilling production wells and performing production support operations; (5) Conducting environmental monitoring activities associated with exploration...

  16. Report: Response to Congressional Inquiry Regarding the EPA’s Emergency Order to the Range Resources Gas Drilling Company

    EPA Pesticide Factsheets

    Report #14-P-0044, December 20, 2013. The EPA withdrew its emergency order regarding Range Resources hydraulic fracturing operations, but continues to monitor the situation for evidence of widespread contamination.

  17. Improved Dental Implant Drill Durability and Performance Using Heat and Wear Resistant Protective Coatings.

    PubMed

    Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman

    2018-06-01

    The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  18. Self-propelled instrumented deep drilling system

    NASA Technical Reports Server (NTRS)

    Myrick, Thomas M. (Inventor); Gorevan, Stephen (Inventor)

    2006-01-01

    An autonomous subsurface drilling device has spaced-apart forward and rearward feet sections coupled to an axial thruster mechanism between them to operate using an inchworm method of mobility. In one embodiment, forward and rearward drill sections are carried on forward and rearward feet sections for drilling into material in the borehole in both forward and rearward directions, to allow the device to maneuver in any direction underground. In another embodiment, a front drill section has a drill head for cutting into the borehole and conveying cuttings through a center spine tube to an on-board depository for the cuttings. The feet sections of the device employ a foot scroll drive unit to provide radial thrust and synchronous motion to the feet for gripping the borehole wall. The axial thrust mechanism has a tandem set of thrusters in which the second thruster is used to provide the thrust needed for drilling, but not walking. A steering mechanism composed of concentric inner and outer eccentric rings provided with the rearward feet section allow small corrections in both direction and magnitude to the drilling direction as drilling commences.

  19. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.

  20. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    USGS Publications Warehouse

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth.  Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data.  Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes.  Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes.  In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient.  Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.

  1. Development of an instructional expert system for hole drilling processes

    NASA Technical Reports Server (NTRS)

    Al-Mutawa, Souhaila; Srinivas, Vijay; Moon, Young Bai

    1990-01-01

    An expert system which captures the expertise of workshop technicians in the drilling domain was developed. The expert system is aimed at novice technicians who know how to operate the machines but have not acquired the decision making skills that are gained with experience. This paper describes the domain background and the stages of development of the expert system.

  2. Analysis and control of the dynamical response of a higher order drifting oscillator

    PubMed Central

    Páez Chávez, Joseph; Pavlovskaia, Ekaterina; Wiercigroch, Marian

    2018-01-01

    This paper studies a position feedback control strategy for controlling a higher order drifting oscillator which could be used in modelling vibro-impact drilling. Special attention is given to two control issues, eliminating bistability and suppressing chaos, which may cause inefficient and unstable drilling. Numerical continuation methods implemented via the continuation platform COCO are adopted to investigate the dynamical response of the system. Our analyses show that the proposed controller is capable of eliminating coexisting attractors and mitigating chaotic behaviour of the system, providing that its feedback control gain is chosen properly. Our investigations also reveal that, when the slider’s property modelling the drilled formation changes, the rate of penetration for the controlled drilling can be significantly improved. PMID:29507508

  3. Analysis and control of the dynamical response of a higher order drifting oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Páez Chávez, Joseph; Pavlovskaia, Ekaterina; Wiercigroch, Marian

    2018-02-01

    This paper studies a position feedback control strategy for controlling a higher order drifting oscillator which could be used in modelling vibro-impact drilling. Special attention is given to two control issues, eliminating bistability and suppressing chaos, which may cause inefficient and unstable drilling. Numerical continuation methods implemented via the continuation platform COCO are adopted to investigate the dynamical response of the system. Our analyses show that the proposed controller is capable of eliminating coexisting attractors and mitigating chaotic behaviour of the system, providing that its feedback control gain is chosen properly. Our investigations also reveal that, when the slider's property modelling the drilled formation changes, the rate of penetration for the controlled drilling can be significantly improved.

  4. Effect of irrigation and stainless steel drills on dental implant bed heat generation.

    PubMed

    Bullon, B; Bueno, E F; Herrero, M; Fernandez-Palacin, A; Rios, J V; Bullon, P; Gil, F J

    2015-02-01

    The objective of this study is assessing the influence of the use of different drill types and external irrigation on heat generation in the bone. In-vitro study to compare two different sequences for implant-bed preparation by means of two stainless steels: precipitation-hardening stainless steel (AISI 420B) (K drills), and martensitic stainless steel (AISI 440) (S drills). Besides, the drilled sequences were realized without irrigation, and with external irrigation by means of normal saline solution at room temperature. The study was realized on bovine ribs using: K without irrigation (KSI) and with irrigation (KCI) and S without irrigation (SSI) and with irrigation (SCI) with five drills for each system. Each drill was used 100 times. Bone temperature was measured with a thermocouple immediately after drilled. Average bone temperature with irrigation was for K drills 17.58±3.32 °C and for S drills 16.66±1.30 °C. Average bone temperature without irrigation was for K drills 23.58±2.94 °C and for S drills 19.41±2.27 °C. Statistically significant differences were found between K without irrigation versus S with irrigation and K with irrigation (p<0.05, Bonferroni correction). Lower temperature variation coefficient throughout the 50 measurements was observed in irrigated groups (K=5.6%, S=5.1% vs. without irrigation groups K=9.4%, S=9.3%). The first K drill generated more heat than the remaining drills. No significant differences were detected among temperature values in any of the analyzed drill groups. Unlike irrigation, drill use and type were observed to have no significant impact on heat generation. The stainless steel AISI 420B presents better mechanical properties and corrosion resistance than AISI440.

  5. An automated tool joint inspection device for the drill string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.

    1983-02-01

    This paper discusses the development of an automated tool joint inspection device (i.e., the Fatigue Crack Detector), which is capable of detecting defects in the threaded region of drill pipe and drill collars. On the basis of inspection tests conducted at a research test facility and at drilling rig sites, this device is capable of detecting both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system employs an electromagnetic flux-leakage principle and has several advantages over the conventional method of magnetic particle inspection.

  6. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    NASA Astrophysics Data System (ADS)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  7. New access to the deep interior of the Nankai accretionary complex and comprehensive characterization of subduction inputs and recent mega splay fault activity (IODP-NanTroSEIZE Expedition 338)

    NASA Astrophysics Data System (ADS)

    Strasser, Michael; Moore, Gregory F.; Kanagawa, Kyuichi; Dugan, Brandon; Fabbri, Olivier; Toczko, Sean; Maeda, Lena

    2013-04-01

    The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multi-expedition Integrated Ocean Drilling Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. IODP Expedition 338 (1 October 2012 - 13 January 2013), extended riser Hole C0002F from 856 meters below the sea floor (mbsf) to 2005 mbsf. Site C0002 is the centerpiece of the NanTroSEIZE project, and is planned to be deepened to eventually reach the seismogenic fault zone during upcoming drilling expeditions. The original Exp. 338 operational plan to case the hole to 3600 mbsf had to be revised as sudden changes in sea conditions resulted in damage to parts of the riser system, thus the hole was suspended at 2005 mbsf but left for future re-entry. The revised operation plan included additional riserless logging and coring of key targets not sampled during previous NanTroSEIZE expeditions, but relevant to comprehensively characterize the alteration stage of the oceanic basement input to the subduction zone, the early stage of Kumano Basin evolution and the recent activity of the shallow mega splay fault zone system and submarine landslides. Here we present preliminary results from IODP Exp. 338: Logging While Drilling (LWD), mud gas monitoring and analysis on cuttings from the deep riser hole characterize two lithological units within the internal accretionary prism, separated by a prominent fault zone at ~1640 mbsf. Internal style of deformation, downhole increase of thermogenically formed formation gas and evidence for mechanical compaction and cementation document a complex structural evolution and provide unprecedented insights into the mechanical state and behavior of the wedge at depth. Additionally, multiple samples of the unconformity between the Kumano Basin and accretionary prism at Site C0002 shed new light on this debatable unconformity boundary and suggest variable erosional processes active on small spatial scales. Results from riserless drilling at input Site C0012 include 178.7 m of detailed LWD characterization of the oceanic basement, indicating an upper ~100 m zone of altered pillow basalts and sheet flow deposits, and a lower, presumably less altered basement unit without indication for interlayered sediment horizons. Low angle faults identified in X-ray Computed Tomography images and structural investigation on cores from Site C0022, located in the slope basin immediately seaward of the megasplay fault zone, indicate splay-fault-related, out-of-sequence thrusting within slope basin sediments and shed new light on recent activity of the megasplay. Lastly, Exp. 338 added additional coring to improve our understanding of submarine landslides in the slope basins seaward of the splay fault and yields new LWD data to characterize in situ internal structures and properties of mass-transport deposits as it relates to the dynamics and kinematics of submarine landslides.

  8. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.

  9. Paleomagnetic and Magnetostratigraphic Studies in Drilling Projects of Impact Craters - Recent Studies, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.

    2013-05-01

    Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil exploration included several boreholes, and additionally we have drilled 11 boreholes with continuous core recovery. Contributions and limitations of paleomagnetism for investigating the impact age, crater stratigraphy, cratering, ejecta emplacement, impact dynamics, hydrothermal system and post-impact processes are discussed.

  10. Establish a Data Transmission Platform of the Rig Based on the Distributed Network

    NASA Astrophysics Data System (ADS)

    Bao, Zefu; Li, Tao

    In order to control in real-time ,closed-loop feedback the information, saving the money and labor,we distribute a platform of network data. It through the establishment of the platform in the oil drilling to achieve the easiest route of each device of the rig that conveying timely. The design proposed the platform to transfer networking data by PA which allows the rig control for optimal use. Against the idea,achieving first through on-site cabling and the establishment of data transmission module in the rig monitoring system. The results of standard field application show that the platform solve the problem of rig control.

  11. 30 CFR 250.445 - What are the requirements for kelly valves, inside BOPs, and drill-string safety valves?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.445 What...

  12. Drilling of bone: A comprehensive review

    PubMed Central

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  13. Usefulness of temporal bone prototype for drilling training: A prospective study.

    PubMed

    Aussedat, C; Venail, F; Nguyen, Y; Lescanne, E; Marx, M; Bakhos, D

    2017-12-01

    Dissection of cadaveric temporal bones (TBs) is considered the gold standard for surgical training in otology. For many reasons, access to the anatomical laboratory and cadaveric TBs is difficult for some facilities. The aim of this prospective and comparative study was to evaluate the usefulness of a physical TB prototype for drilling training in residency. Prospective study. Tertiary referral centre. Thirty-four residents were included. Seventeen residents (mean age 26.7±1.6) drilled on only cadaveric TBs ("traditional" group), in the traditional training method, while seventeen residents (mean age 26.5±1.7) drilled first on a prototype and then on a cadaveric TB ("prototype" group). Drilling performance was assessed using a validated scale. Residents completed a mastoid image before and after each drilling to enable evaluation of mental representations of the mastoidectomy. No differences were observed between the groups with respect to age, drilling experience and level of residency. Regarding drilling performance, we found a significant difference across the groups, with a better score in the prototype group (P=.0007). For mental representation, the score was statistically improved (P=.0003) after drilling in both groups, suggesting that TB drilling improves the mental representation of the mastoidectomy whether prototype or cadaveric TB is used. The TB prototype improves the drilling performance and mental representation of the mastoidectomy in the young resident population. A drilling simulation with virtual or physical systems seems to be a beneficial tool to improve TB drilling. © 2017 John Wiley & Sons Ltd.

  14. The Realization of Drilling Fault Diagnosis Based on Hybrid Programming with Matlab and VB

    NASA Astrophysics Data System (ADS)

    Wang, Jiangping; Hu, Yingcai

    This paper presents a method using hybrid programming with Matlab and VB based on ActiveX to design the system of drilling accident prediction and diagnosis. So that the powerful calculating function and graphical display function of Matlab and visual development interface of VB are combined fully. The main interface of the diagnosis system is compiled in VB,and the analysis and fault diagnosis are implemented by neural network tool boxes in Matlab.The system has favorable interactive interface,and the fault example validation shows that the diagnosis result is feasible and can meet the demands of drilling accident prediction and diagnosis.

  15. AURORA BOREALIS: a polar-dedicated European Research Platform

    NASA Astrophysics Data System (ADS)

    Wolff-Boenisch, Bonnie; Egerton, Paul; Thiede, Joern; Roberto, Azzolini; Lembke-Jene, Lester

    2010-05-01

    Polar research and in particular the properties of northern and southern high latitude oceans are currently a subject of intense scientific debate and investigations, because they are subject to rapid and dramatic climatic variations. Polar regions react more rapidly and intensively to global change than other regions of the earth. A shrinking of the Arctic sea-ice cover, potentially leading to an opening of sea passages to the north of North America and Eurasia, on the long to a "blue" Arctic Ocean would additionally have a strong impact on transport, commerce and tourism bearing potential risk for humans and complex ecosystems in the future. In spite of their critical role processes and feedbacks, especially in winter but not exclusively, are virtually unknown: The Arctic Ocean for example, it is the only basin of the world's oceans that has essentially not been sampled by the drill ships of the Deep-Sea Drilling Project (DSDP) or the Ocean Drilling Program (ODP) and its long-term environmental history and tectonic structure is therefore poorly known. Exceptions are the ODP Leg 151 and the more recent very successful ACEX-expedition of the Integrated Ocean Drilling Program (IODP) in 2004. To help to address the most pressing questions regarding climate change and related processes, a Pan-European initiative in the field of Earth system science has been put in place: AURORA BOREALIS is the largest environmental research infrastructure on the ESFRI roadmap of the European Community. AURORA BOREALIS is a very powerful research icebreaker, which will enable year-round operations in the Arctic and the Antarctic as well as in the adjacent ocean basins. Equipped with its drilling rig, the vessel is also capable to explore the presently completely unknown Arctic deep-sea floor. Last but not least, the ship is a floating observatory and mobile monitoring platform that permits to measure on a long-term basis comprehensive time series in all research fields relevant to global climate change. Chances and challenges rest in securing the construction and operation costs that need a dedicated consortium of interested countries and institutions to help tackling the biggest challenges of the next decades.

  16. 30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.443 What... all BOP components. (b) At least two BOP control stations. One station must be on the drilling floor...

  17. 30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.451 What must I... actions that lessees must take when certain situations occur with BOP systems during drilling activities...

  18. 30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.451 What must I do in... lessees must take when certain situations occur with BOP systems during drilling activities. If you...

  19. 30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.451 What must I... actions that lessees must take when certain situations occur with BOP systems during drilling activities...

  20. 30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.443 What... all BOP components. (b) At least two BOP control stations. One station must be on the drilling floor...

  1. 30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.443 What... all BOP components. (b) At least two BOP control stations. One station must be on the drilling floor...

  2. 30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.451 What must I... actions that lessees must take when certain situations occur with BOP systems during drilling activities...

  3. 30 CFR 250.1625 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high-pressure tests, all BOP systems shall be tested to a pressure of 200 to 300 psi. (b) Ram-type BOP's and the choke manifold shall be pressure tested with water to a rated working pressure or as otherwise approved by the...

  4. 30 CFR 250.616 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.616 Blowout preventer system testing, records, and drills. (a) BOP pressure tests. When you pressure test the BOP system you must conduct a low-pressure test and a high-pressure test for each...

  5. 40 CFR 144.33 - Area permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... characteristics; (2) Within the same well field, facility site, reservoir, project, or similar unit in the same...) The requirements for construction, monitoring, reporting, operation, and abandonment, for all wells...; and (3) The cumulative effects of drilling and operation of additional injection wells are considered...

  6. Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano

    NASA Astrophysics Data System (ADS)

    Jackson, M. D.; Gudmundsson, M. T.; Bach, W.; Cappelletti, P.; Coleman, N. J.; Ivarsson, M.; Jónasson, K.; Jørgensen, S. L.; Marteinsson, V.; McPhie, J.; Moore, J. G.; Nielson, D.; Rhodes, J. M.; Rispoli, C.; Schiffman, P.; Stefánsson, A.; Türke, A.; Vanorio, T.; Weisenberger, T. B.; White, J. D. L.; Zierenberg, R.; Zimanowski, B.

    2015-12-01

    A new International Continental Drilling Program (ICDP) project will drill through the 50-year-old edifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963-1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions. Abstracts of research projects are posted at http://surtsey.icdp-online.org.

  7. Microwave/Sonic Apparatus Measures Flow and Density in Pipe

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.

    2004-01-01

    An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.

  8. Monitoring of Hydrocarbons in Sediment and Biota Related to Oil and Gas Development in Near- and Off-Shore Areas of the Arctic Beaufort Sea, Alaska

    NASA Astrophysics Data System (ADS)

    Durell, G.; Hardin, J.; Libby, S.

    2016-02-01

    There is increasing interest in extracting oil and gas from offshore environments of Alaska. The Arctic Nearshore Impact Monitoring in Development Area (ANIMIDA) project, started in 1999, has been producing information to evaluate potential effects of oil and gas activities in the Alaskan Beaufort Sea. ANIMIDA was preceded by the Beaufort Sea Monitoring Program. Monitoring has mostly been in pre-drilling locations, but also during development and production periods. Surveys were conducted to assess bottom sediment, sediment cores, suspended sediment, and biota for polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons, biological and petroleum markers, and geophysical parameters. The concentrations measured in sediments and biota were at or near background throughout most of the Beaufort Sea. There were no significant differences between exploration, production, and background locations, and the concentrations were consistently below those of ecological concern. For instance, TPAH in sediment ranged from below 100 to about 1,000 µg/kg and were controlled primarily by sediment characteristics (e.g., grain size and organic carbon). Hydrocarbons in sediments were from petrogenic, pyrogenic, and biogenic sources. Small areas with indications of input of anthropogenic chemicals were identified by sensitive diagnostic analysis techniques and are possibly associated with historic exploratory drilling and vessels. Sediment cores indicate a uniform historical deposition of hydrocarbons, although some evidence of past drilling activities were observed. Fish, amphipods, and clams contained background levels of hydrocarbons and showed no evidence of effects from accumulation of contaminants; TPAH concentrations were below 100 µg/kg in most biota. Noteworthy interannual fluctuations were observed for PAH concentrations in sediment and biota, likely due to winnowing of sediment fines by large storms and annual variations in river discharges. Significant natural sources were identified; rivers deliver about 80% of the annual suspended solids to Beaufort Sea within a 2-3 week period each spring with significant input of hydrocarbons from terrestrial sources. The ANIMIDA project has provided monitoring information that can confidently be used for future environmental management.

  9. Treatment of petroleum drill cuttings using bioaugmentation and biostimulation supplemented with phytoremediation.

    PubMed

    Kogbara, Reginald B; Ogar, Innocent; Okparanma, Reuben N; Ayotamuno, Josiah M

    2016-07-28

    This study sought to compare the effectiveness of bioaugmentation and biostimulation, as well as the combination of both techniques, supplemented with phytoremediation, in the decontamination of petroleum drill cuttings. Drill cuttings with relatively low concentration of total petroleum hydrocarbons (TPH) and metals were mixed with soil in the ratio 5:1 and treated with three different combinations of the bioremediation options. Option A entailed bioaugmentation supplemented with phytoremediation. Option B had the combination of biostimulation and bioaugmentation supplemented with phytoremediation. While biostimulation supplemented with phytoremediation was deployed in option C. Option O containing the drill cuttings-soil mixture without treatment served as untreated control. Fertilizer application, tillage and watering were used for biostimulation treatment, while spent mushroom substrate (Pleurotus ostreatus) and elephant grass (Pennisetum purpureum) were employed for bioaugmentation and phytoremediation treatment, respectively. The drill cuttings-soil mixtures were monitored for TPH, organic carbon, total nitrogen, pH, metal concentrations, and fungal counts, over time. After 56 days of treatment, there was a decline in the initial TPH concentration of 4,114 mg kg(-1) by 5.5%, 68.3%, 75.6% and 48% in options O, A, B and C, respectively. Generally, higher TPH loss resulted from the phytoremediation treatment stage. The treated options also showed slight reductions in metal concentrations ranging from 0% to 16% of the initial low concentrations. The results highlight the effectiveness of bioaugmentation supplemented with phytoremediation. The combination of bioaugmentation and biostimulation supplemented with phytoremediation, however, may prove better in decontaminating petroleum drill cuttings to environmentally benign levels.

  10. Evaluation of geophysical logs, phase I, for Crossley Farms Superfund Site, Berks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Twenty-one wells were drilled at Crossley Farms Superfund Site between December 15, 1987, and May 1, 1988, to define and monitor the horizontal and vertical distribution of ground-water contamination emanating from a suspected contaminant source area (Blackhead Hill). Eight well clusters were drilled on or near the Crossley Site and three well clusters were drilled at locations hydrologically down gradient from the site. Depths of wells range from 21 to 299 feet below land surface. These wells were installed in saprolite in shallow, intermediate, and deep water-producing zones of the fractured bedrock aquifer. Borehole-geophysical and video logging were conducted between April 24, 1997, and May 8, 1997, to determine the water-producing zones, water-receiving zones, zones of vertical flow, borehole depth, and casing integrity in each well. This data and interpretation will be used to determine the location of the well intake for the existing open-hole wells, which will be retrofitted to isolate and monitor water-producing zones and prevent further cross-contamination within each open borehole, and identify wells that may need rehabilitation or replacement. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluidresistivity logs indicated possible fluid-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller?s notes, all wells will be constructed so that water-level fluctuations can be monitored and discrete water samples collected from shallow, intermediate, and deep water-bearing zones in each well. Geophysical logs were run on seven bedrock and two deep bedrock wells. Gamma logs were run on 10 bedrock wells. Twenty-two wells were inspected visually with the borehole video camera for casing integrity.

  11. Test wells TW1 and TW2, and TW3, White Sands Missile Range, Otero County, New Mexico

    USGS Publications Warehouse

    Myers, R.G.; Pinckley, K.M.

    1987-01-01

    Three test wells, TW1, TW2, and TW3, were drilled at White Sands Missile Range in south-central New Mexico in July, August, and October 1983 as part of a joint military training program sponsored by the U.S. Navy and U.S. Army in July, August, and October 1983. The test wells were drilled as exploratory and monitoring wells for the toxic waste storage facility at White Sands Missile Range. Information obtained from these wells includes lithologic logs for all wells and borehole-geophysical logs for the cased wells. (Author 's abstract)

  12. Tube cutter tool and method of use for coupon removal

    DOEpatents

    Nachbar, H.D.; Etten, M.P. Jr.; Kurowski, P.A.

    1997-05-06

    A tube cutter tool is insertable into a tube for cutting a coupon from a damaged site on the exterior of the tube. Prior to using the tool, the damaged site is first located from the interior of the tube using a multi-coil pancake eddy current test probe. The damaged site is then marked. A fiber optic probe is used to monitor the subsequent cutting procedure which is performed using a hole saw mounted on the tube cutter tool. Prior to completion of the cutting procedure, a drill in the center of the hole saw is drilled into the coupon to hold it in place. 4 figs.

  13. Tube cutter tool and method of use for coupon removal

    DOEpatents

    Nachbar, Henry D.; Etten, Jr., Marvin P.; Kurowski, Paul A.

    1997-01-01

    A tube cutter tool is insertable into a tube for cutting a coupon from a damaged site on the exterior of the tube. Prior to using the tool, the damaged site is first located from the interior of the tube using a multi-coil pancake eddy current test probe. The damaged site is then marked. A fiber optic probe is used to monitor the subsequent cutting procedure which is performed using a hole saw mounted on the tube cutter tool. Prior to completion of the cutting procedure, a drill in the center of the hole saw is drilled into the coupon to hold it in place.

  14. Laser Materials Processing Final Report CRADA No. TC-1526-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J.; Lehane, C. J.

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less

  15. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 250.430 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter... before you drill a conductor or surface hole. The diverter system consists of a diverter sealing element...

  16. Data Modeling, Development, Installation and Operation of the ACEX Offshore Drilling Information System for the Mission Specific Platform Expedition to the Lomonosov Ridge, Arctic Ocean.

    NASA Astrophysics Data System (ADS)

    Conze, R.; Krysiak, F.; Wallrabe-Adams, H.; Graham, C. C.

    2004-12-01

    During August/September 2004, the Arctic Coring Expedition (ACEX) was used to trial a new Offshore Drilling Information System (OffshoreDIS). ACEX was the first Mission Specific Platform (MSP) expedition of the Integrated Ocean Drilling Programme (IODP), funded by the European Consortium for Ocean Research Drilling (ECORD). The British Geological Survey in conjunction with the University of Bremen and the European Petrophysics Consortium were the ECORD Science Operator (ESO) for ACEX. IODP MSP expeditions have very similar data management requirements and operate in similar working environments to the lake drilling projects conducted by the International Continental Scientific Drilling Program (ICDP), for example, the GLAD800, which has very restricted space on board and operates in difficult conditions. Both organizations require data capture and management systems that are mobile, flexible and that can be deployed quickly on small- to medium-sized drilling platforms for the initial gathering of data, and that can also be deployed onshore in laboratories where the bulk of the scientific work is conducted. ESO, therefore, decided that an adapted version of the existing Drilling Information System (DIS) used by ICDP projects would satisfy its requirements. Based on the existing DIS, an OffshoreDIS has been developed for MSP expeditions. The underlying data model is compatible with IODP(JANUS), the Bremen Core Repository, WDC-MARE/PANGAEA and the LacCore in Minneapolis. According to the specific expedition platform configuration and on-board workflow requirements for the Arctic, this data model, data pumps and user interfaces were adapted for the ACEX-OffshoreDIS. On the drill ship Vidar Viking the cores were catalogued and petrophysically logged using a GeoTek Multi-Sensor Core Logger System, while further initial measurements, lithological descriptions and biostratigraphic investigations were undertaken on the Oden, which provided laboratory facilities for the expedition. Onboard samples were registered in a corresponding sample archive on both vessels. The ACEX-OffshoreDIS used a local area network covering the two ships of the three icebreaker fleet by wireless LAN between the ships and partly wired LAN on the ships. A DIS-server was installed on each ship. These were synchronized by database replication and linked to a total of 10 client systems and label printers across both ships. The ACEX-OffshoreDIS will also be used for the scientific measurement and analysis phase of the expedition during the post-field operations `shore-party' in November 2004 at the Bremen Core Repository (BCR). The data management system employed in the Arctic will be reconfigured and deployed at the BCR. In addition, an eXtended DIS (XDIS) Web interface will be available. This will allow controlled sample distribution (core curation, sub-sampling) as well as sharing of data (registration, upload and download) with other laboratories which will be undertaking additional sampling and analyses. The OffshoreDIS data management system will be of long-term benefit to both IODP and ICDP, being deployed in forthcoming MSP offshore projects, ICDP lake projects and joint IODP-ICDP projects such as the New Jersey Coastal Plain Drilling Project.

  17. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  18. The Newberry Deep Drilling Project (NDDP)

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  19. CALIPSO Borehole Instrumentation Project at Soufriere Hills Volcano, Montserrat, BWI: Overview and Prospects

    NASA Astrophysics Data System (ADS)

    Voight, B.; Mattioli, G. S.; Young, S. R.; Linde, A. T.; Sacks, I. S.; Malin, P.; Shalev, E.; Hidayat, D.; Elsworth, D.; Widiwijayanti, C.; Miller, V.; Sparks, R.; Neuberg, J.; Bass, V.; Dunkley, P.; Edmonds, M.; Herd, R.; Jolly, A.; Norton, G.; Thompson, G.

    2003-12-01

    Project CALIPSO (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) was developed in order to investigate the magmatic system at the exceedingly active Soufriere Hills Volcano (SHV), Montserrat. The collaborative project involves a number of institutions acting in partnership with the Montserrat Volcano Observatory (MVO), and is funded by NSF with a contribution to drilling costs provided by UK NERC. SHV remains active and dynamic after 7 years and is expected to remain so for the foreseeable future. Many aspects of andesite magmatic system dynamics remain poorly understood despite significant monitoring and research efforts, and CALIPSO is expected to improve our understanding of SHV and andesite systems generally. Drilling was carried out by DOSECC, Nov 02 to Mar 03. CALIPSO uses an integrated array of four strategically located 200-m boreholes, plus a few shallower holes and surface installations. The borehole instrument package is designed to have long life (decades) at moderately high temperatures. Each site includes a single-component,very broad band, Sacks-Evertson strainmeter, a three-component seismometer (about 1 Hz to 1 kHz), a Pinnacle Technologies tiltmeter, and a surface CGPS station with choke ring antenna. At one site a new CIW hot-hole strainmeter design, involving hydraulic sensors and no downhole electronics, has been used for the first time anywhere. Data will be streamed from the remote borehole sites using FreeWave telemetry coupled with Quanterra A/D converters. The borehole observatory is being fully integrated into the surface monitoring networks of the MVO and other PSU/U Ark monitor systems, enhancing the existing CGPS and surface broadband seismic-acoustic networks. These instruments are intended to probe changes in the andesitic volcanic system and underlying mafic sources with unprecedented sensitivity. Cyclic activity at a variety of timescales has been a feature of SHV volcanism, involving seismicity, ground deformation, dome activity and gas exhalation, at the about 10 hour time scale. Evidence exists also for 7 and/or 14 week, and some longer cycles, and the SHV eruption since 1995 is the fourth repetition of a 30 year cycle. The longer time scale cycles originate from the deeper plumbing system, and can sometimes be detected in the seismic, deformation and gas data. However, the data are close to the limit of detection by the MVO's surface monitoring network, and the need for a new monitoring approach to better investigate these longer-term cycles of deep origin has now been met by CALIPSO. Borehole instrumentation provides much reduced noise and the ability to locate effective stations farther from the volcano than possible with surface instruments, and both features aid the sampling of seismic and deformation signals from the deep transport, storage, and recharge systems. The design life of the borehole observatories is long, such that onset of the next 30 year cycle may be sampled after most PIs have passed on to their reward or otherwise, with some of us possibly obtaining personalised insights of the Mephistophelean magmatic environment.

  20. Investigation of prospects for forecasting non-linear time series by example of drilling oil and gas wells

    NASA Astrophysics Data System (ADS)

    Vlasenko, A. V.; Sizonenko, A. B.; Zhdanov, A. A.

    2018-05-01

    Discrete time series or mappings are proposed for describing the dynamics of a nonlinear system. The article considers the problems of forecasting the dynamics of the system from the time series generated by it. In particular, the commercial rate of drilling oil and gas wells can be considered as a series where each next value depends on the previous one. The main parameter here is the technical drilling speed. With the aim of eliminating the measurement error and presenting the commercial speed of the object to the current with a good accuracy, future or any of the elapsed time points, the use of the Kalman filter is suggested. For the transition from a deterministic model to a probabilistic one, the use of ensemble modeling is suggested. Ensemble systems can provide a wide range of visual output, which helps the user to evaluate the measure of confidence in the model. In particular, the availability of information on the estimated calendar duration of the construction of oil and gas wells will allow drilling companies to optimize production planning by rationalizing the approach to loading drilling rigs, which ultimately leads to maximization of profit and an increase of their competitiveness.

Top