Sample records for monitoring system software

  1. Maintaining the Health of Software Monitors

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Rungta, Neha

    2013-01-01

    Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.

  2. Software design of a remote real-time ECG monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Chengbo; Tao, Hongyan

    2005-12-01

    Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.

  3. Information technologies in optimization process of monitoring of software and hardware status

    NASA Astrophysics Data System (ADS)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Ryabov, I. V.

    2018-05-01

    The article describes a model of a hardware and software monitoring system for a large company that provides customers with software as a service (SaaS solution) using information technology. The main functions of the monitoring system are: provision of up-todate data for analyzing the state of the IT infrastructure, rapid detection of the fault and its effective elimination. The main risks associated with the provision of these services are described; the comparative characteristics of the software are given; author's methods of monitoring the status of software and hardware are proposed.

  4. Automated Cryocooler Monitor and Control System Software

    NASA Technical Reports Server (NTRS)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  5. Design and implementation of a 3-lead ECG wireless remote monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Shi; Jia, Xiaonan; Shang, Shuai

    2006-11-01

    Cardiovascular disease is one of the main diseases that menaces human health. It is necessary to monitor the patient's real-time electrocardiograph (ECG) for a long time to realize diagnosis and salvage. Remote ECG monitoring system is the solution. This paper introduces the design and implement of a 3-lead ECG wireless remote monitoring system. It collects, stores and transmits user's ECG which can be received by hospital and diagnosed by doctors. The development of the whole system contains three parts, the hardware and embedded software implementation of MONITOR, software of the MONITORING CENTER, and the routing software of NETWORK CENTER. According to the clinic experimentation, this system has high reliability and utility. There will be great social and economic benefit if this system is put into use.

  6. Copilot: Monitoring Embedded Systems

    NASA Technical Reports Server (NTRS)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  7. Software for marine ecological environment comprehensive monitoring system based on MCGS

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.

    2017-08-01

    The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.

  8. TMS communications software. Volume 1: Computer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, J. S.; Lenker, M. D.

    1979-01-01

    A prototype bus communications system, which is being used to support the Trend Monitoring System (TMS) as well as for evaluation of the bus concept is considered. Hardware and software interfaces to the MODCOMP and NOVA minicomputers are included. The system software required to drive the interfaces in each TMS computer is described. Documentation of other software for bus statistics monitoring and for transferring files across the bus is also included.

  9. WE-D-9A-06: Open Source Monitor Calibration and Quality Control Software for Enterprise Display Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevins, N; Vanderhoek, M; Lang, S

    2014-06-15

    Purpose: Medical display monitor calibration and quality control present challenges to medical physicists. The purpose of this work is to demonstrate and share experiences with an open source package that allows for both initial monitor setup and routine performance evaluation. Methods: A software package, pacsDisplay, has been developed over the last decade to aid in the calibration of all monitors within the radiology group in our health system. The software is used to calibrate monitors to follow the DICOM Grayscale Standard Display Function (GSDF) via lookup tables installed on the workstation. Additional functionality facilitates periodic evaluations of both primary andmore » secondary medical monitors to ensure satisfactory performance. This software is installed on all radiology workstations, and can also be run as a stand-alone tool from a USB disk. Recently, a database has been developed to store and centralize the monitor performance data and to provide long-term trends for compliance with internal standards and various accrediting organizations. Results: Implementation and utilization of pacsDisplay has resulted in improved monitor performance across the health system. Monitor testing is now performed at regular intervals and the software is being used across multiple imaging modalities. Monitor performance characteristics such as maximum and minimum luminance, ambient luminance and illuminance, color tracking, and GSDF conformity are loaded into a centralized database for system performance comparisons. Compliance reports for organizations such as MQSA, ACR, and TJC are generated automatically and stored in the same database. Conclusion: An open source software solution has simplified and improved the standardization of displays within our health system. This work serves as an example method for calibrating and testing monitors within an enterprise health system.« less

  10. Research of real-time communication software

    NASA Astrophysics Data System (ADS)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  11. Developing Software For Monitoring And Diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1993-01-01

    Expert-system software shell produces executable code. Report discusses beginning phase of research directed toward development of artificial intelligence for real-time monitoring of, and diagnosis of faults in, complicated systems of equipment. Motivated by need for onboard monitoring and diagnosis of electronic sensing and controlling systems of advanced aircraft. Also applicable to such equipment systems as refineries, factories, and powerplants.

  12. Reconfigurable Sensor Monitoring System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  13. Micro sensor node for air pollutant monitoring: hardware and software issues.

    PubMed

    Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan

    2009-01-01

    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems.

  14. Trend Monitoring System (TMS) graphics software

    NASA Technical Reports Server (NTRS)

    Brown, J. S.

    1979-01-01

    A prototype bus communications systems, which is being used to support the Trend Monitoring System (TMS) and to evaluate the bus concept is considered. A set of FORTRAN-callable graphics subroutines for the host MODCOMP comuter, and an approach to splitting graphics work between the host and the system's intelligent graphics terminals are described. The graphics software in the MODCOMP and the operating software package written for the graphics terminals are included.

  15. Self-assembled software and method of overriding software execution

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  16. Application research of Ganglia in Hadoop monitoring and management

    NASA Astrophysics Data System (ADS)

    Li, Gang; Ding, Jing; Zhou, Lixia; Yang, Yi; Liu, Lei; Wang, Xiaolei

    2017-03-01

    There are many applications of Hadoop System in the field of large data, cloud computing. The test bench of storage and application in seismic network at Earthquake Administration of Tianjin use with Hadoop system, which is used the open source software of Ganglia to operate and monitor. This paper reviews the function, installation and configuration process, application effect of operating and monitoring in Hadoop system of the Ganglia system. It briefly introduces the idea and effect of Nagios software monitoring Hadoop system. It is valuable for the industry in the monitoring system of cloud computing platform.

  17. Formal verification of medical monitoring software using Z language: a representative sample.

    PubMed

    Babamir, Seyed Morteza; Borhani, Mehdi

    2012-08-01

    Medical monitoring systems are useful aids assisting physicians in keeping patients under constant surveillance; however, taking sound decision by the systems is a physician concern. As a result, verification of the systems behavior in monitoring patients is a matter of significant. The patient monitoring is undertaken by software in modern medical systems; so, software verification of modern medial systems have been noticed. Such verification can be achieved by the Formal Languages having mathematical foundations. Among others, the Z language is a suitable formal language has been used to formal verification of systems. This study aims to present a constructive method to verify a representative sample of a medical system by which the system is visually specified and formally verified against patient constraints stated in Z Language. Exploiting our past experience in formal modeling Continuous Infusion Insulin Pump (CIIP), we think of the CIIP system as a representative sample of medical systems in proposing our present study. The system is responsible for monitoring diabetic's blood sugar.

  18. The CUORE slow monitoring systems

    NASA Astrophysics Data System (ADS)

    Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.

    2017-09-01

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.

  19. Software Health Management with Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole; Schumann, JOhann

    2011-01-01

    Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.

  20. Advanced communications technology satellite high burst rate link evaluation terminal experiment control and monitor software user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    1992-01-01

    The Experiment Control and Monitor (EC&M) software was developed at NASA Lewis Research Center to support the Advanced Communications Technology Satellite (ACTS) High Burst Rate Link Evaluation Terminal (HBR-LET). The HBR-LET is an experimenter's terminal to communicate with the ACTS for various investigations by government agencies, universities, and industry. The EC&M software is one segment of the Control and Performance Monitoring (C&PM) software system of the HBR-LET. The EC&M software allows users to initialize, control, and monitor the instrumentation within the HBR-LET using a predefined sequence of commands. Besides instrument control, the C&PM software system is also responsible for computer communication between the HBR-LET and the ACTS NASA Ground Station and for uplink power control of the HBR-LET to demonstrate power augmentation during rain fade events. The EC&M Software User's Guide, Version 1.0 (NASA-CR-189160) outlines the commands required to install and operate the EC&M software. Input and output file descriptions, operator commands, and error recovery procedures are discussed in the document.

  1. The CUORE slow monitoring systems

    DOE PAGES

    Gladstone, L.; Biare, D.; Cappelli, L.; ...

    2017-09-20

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less

  2. The CUORE slow monitoring systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladstone, L.; Biare, D.; Cappelli, L.

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay inmore » $$^{130}$$Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.« less

  3. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  4. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    NASA Technical Reports Server (NTRS)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  5. Real-Time Monitoring of Scada Based Control System for Filling Process

    NASA Astrophysics Data System (ADS)

    Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi

    2008-10-01

    This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.

  6. Runtime Performance Monitoring Tool for RTEMS System Software

    NASA Astrophysics Data System (ADS)

    Cho, B.; Kim, S.; Park, H.; Kim, H.; Choi, J.; Chae, D.; Lee, J.

    2007-08-01

    RTEMS is a commercial-grade real-time operating system that supports multi-processor computers. However, there are not many development tools for RTEMS. In this paper, we report new RTEMS-based runtime performance monitoring tool. We have implemented a light weight runtime monitoring task with an extension to the RTEMS APIs. Using our tool, software developers can verify various performance- related parameters during runtime. Our tool can be used during software development phase and in-orbit operation as well. Our implemented target agent is light weight and has small overhead using SpaceWire interface. Efforts to reduce overhead and to add other monitoring parameters are currently under research.

  7. Autonomous Performance Monitoring System: Monitoring and Self-Tuning (MAST)

    NASA Technical Reports Server (NTRS)

    Peterson, Chariya; Ziyad, Nigel A.

    2000-01-01

    Maintaining the long-term performance of software onboard a spacecraft can be a major factor in the cost of operations. In particular, the task of controlling and maintaining a future mission of distributed spacecraft will undoubtedly pose a great challenge, since the complexity of multiple spacecraft flying in formation grows rapidly as the number of spacecraft in the formation increases. Eventually, new approaches will be required in developing viable control systems that can handle the complexity of the data and that are flexible, reliable and efficient. In this paper we propose a methodology that aims to maintain the accuracy of flight software, while reducing the computational complexity of software tuning tasks. The proposed Monitoring and Self-Tuning (MAST) method consists of two parts: a flight software monitoring algorithm and a tuning algorithm. The dependency on the software being monitored is mostly contained in the monitoring process, while the tuning process is a generic algorithm independent of the detailed knowledge on the software. This architecture will enable MAST to be applicable to different onboard software controlling various dynamics of the spacecraft, such as attitude self-calibration, and formation control. An advantage of MAST over conventional techniques such as filter or batch least square is that the tuning algorithm uses machine learning approach to handle uncertainty in the problem domain, resulting in reducing over all computational complexity. The underlying concept of this technique is a reinforcement learning scheme based on cumulative probability generated by the historical performance of the system. The success of MAST will depend heavily on the reinforcement scheme used in the tuning algorithm, which guarantees the tuning solutions exist.

  8. The Wettzell System Monitoring Concept and First Realizations

    NASA Technical Reports Server (NTRS)

    Ettl, Martin; Neidhardt, Alexander; Muehlbauer, Matthias; Ploetz, Christian; Beaudoin, Christopher

    2010-01-01

    Automated monitoring of operational system parameters for the geodetic space techniques is becoming more important in order to improve the geodetic data and to ensure the safety and stability of automatic and remote-controlled observations. Therefore, the Wettzell group has developed the system monitoring software, SysMon, which is based on a reliable, remotely-controllable hardware/software realization. A multi-layered data logging system based on a fanless, robust industrial PC with an internal database system is used to collect data from several external, serial, bus, or PCI-based sensors. The internal communication is realized with Remote Procedure Calls (RPC) and uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. Each data monitoring stream can be configured individually via configuration files to define the logging rates or analog-digital-conversion parameters. First realizations are currently installed at the new laser ranging system at Wettzell to address safety issues and at the VLBI station O Higgins as a meteorological data logger. The system monitoring concept should be realized for the Wettzell radio telescope in the near future.

  9. Advanced Communications Technology Satellite high burst rate link evaluation terminal experiment control and monitor software maintenance manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    1992-01-01

    The Experiment Control and Monitor (EC&M) software was developed at NASA Lewis Research Center to support the Advanced Communications Technology Satellite (ACTS) High Burst Rate Link Evaluation Terminal (HBR-LET). The HBR-LET is an experimenter's terminal to communicate with the ACTS for various investigations by government agencies, universities, and industry. The EC&M software is one segment of the Control and Performance Monitoring (C&PM) software system of the HBR-LET. The EC&M software allows users to initialize, control, and monitor the instrumentation within the HBR-LET using a predefined sequence of commands. Besides instrument control, the C&PM software system is also responsible for computer communication between the HBR-LET and the ACTS NASA Ground Station and for uplink power control of the HBR-LET to demonstrate power augmentation during rain fade events. The EC&M Software User's Guide, Version 1.0 (NASA-CR-189160) outlines the commands required to install and operate the EC&M software. Input and output file descriptions, operator commands, and error recovery procedures are discussed in the document. The EC&M Software Maintenance Manual, Version 1.0 (NASA-CR-189161) is a programmer's guide that describes current implementation of the EC&M software from a technical perspective. An overview of the EC&M software, computer algorithms, format representation, and computer hardware configuration are included in the manual.

  10. Efficient Software Systems for Cardio Surgical Departments

    NASA Astrophysics Data System (ADS)

    Fountoukis, S. G.; Diomidous, M. J.

    2009-08-01

    Herein, the design implementation and deployment of an object oriented software system, suitable for the monitoring of cardio surgical departments, is investigated. Distributed design architectures are applied and the implemented software system can be deployed on distributed infrastructures. The software is flexible and adaptable to any cardio surgical environment regardless of the department resources used. The system exploits the relations and the interdependency of the successive bed positions that the patients occupy at the different health care units during their stay in a cardio surgical department, to determine bed availabilities and to perform patient scheduling and instant rescheduling whenever necessary. It also aims to successful monitoring of the workings of the cardio surgical departments in an efficient manner.

  11. Grid Stability Awareness System (GSAS) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuerborn, Scott; Ma, Jian; Black, Clifton

    The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less

  12. Diagnosis and Prognosis of Weapon Systems

    NASA Technical Reports Server (NTRS)

    Nolan, Mary; Catania, Rebecca; deMare, Gregory

    2005-01-01

    The Prognostics Framework is a set of software tools with an open architecture that affords a capability to integrate various prognostic software mechanisms and to provide information for operational and battlefield decision-making and logistical planning pertaining to weapon systems. The Prognostics NASA Tech Briefs, February 2005 17 Framework is also a system-level health -management software system that (1) receives data from performance- monitoring and built-in-test sensors and from other prognostic software and (2) processes the received data to derive a diagnosis and a prognosis for a weapon system. This software relates the diagnostic and prognostic information to the overall health of the system, to the ability of the system to perform specific missions, and to needed maintenance actions and maintenance resources. In the development of the Prognostics Framework, effort was focused primarily on extending previously developed model-based diagnostic-reasoning software to add prognostic reasoning capabilities, including capabilities to perform statistical analyses and to utilize information pertaining to deterioration of parts, failure modes, time sensitivity of measured values, mission criticality, historical data, and trends in measurement data. As thus extended, the software offers an overall health-monitoring capability.

  13. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.

    2016-01-01

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.

  14. Traffic-Light-Preemption Vehicle-Transponder Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically

  15. Design for Run-Time Monitor on Cloud Computing

    NASA Astrophysics Data System (ADS)

    Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.

  16. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  17. Tank Monitoring and Document control System (TMACS) As Built Software Design Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GLASSCOCK, J.A.

    This document describes the software design for the Tank Monitor and Control System (TMACS). This document captures the existing as-built design of TMACS as of November 1999. It will be used as a reference document to the system maintainers who will be maintaining and modifying the TMACS functions as necessary. The heart of the TMACS system is the ''point-processing'' functionality where a sample value is received from the field sensors and the value is analyzed, logged, or alarmed as required. This Software Design Document focuses on the point-processing functions.

  18. Tank Monitor and Control System (TMACS) Rev 11.0 Acceptance Test Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLM, M.J.

    The purpose of this document is to describe tests performed to validate Revision 11 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

  19. FFI: A software tool for ecological monitoring

    Treesearch

    Duncan C. Lutes; Nathan C. Benson; MaryBeth Keifer; John F. Caratti; S. Austin Streetman

    2009-01-01

    A new monitoring tool called FFI (FEAT/FIREMON Integrated) has been developed to assist managers with collection, storage and analysis of ecological information. The tool was developed through the complementary integration of two fire effects monitoring systems commonly used in the United States: FIREMON and the Fire Ecology Assessment Tool. FFI provides software...

  20. Using iKidTools™ Software Support Systems to Develop and Implement Self-Monitoring Interventions

    ERIC Educational Resources Information Center

    Patti, Angela L.; Miller, Kevin J.

    2011-01-01

    Educational teams often are faced with the task of developing and implementing Behavioral Intervention Plans (BIPs) for students who present challenging and/or disruptive behaviors. This article describes the steps used to develop and implement a self-monitoring BIP that incorporated an innovative software system, iKidTools™. An authentic case…

  1. Remote monitoring system for the cryogenic system of superconducting magnets in the SuperKEKB interaction region

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.

    2017-12-01

    A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.

  2. Improvement of Computer Software Quality through Software Automated Tools.

    DTIC Science & Technology

    1986-08-30

    information that are returned from the tools to the human user, and the forms in which these outputs are presented. Page 2 of 4 STAGE OF DEVELOPMENT: What... AUTOMIATED SOFTWARE TOOL MONITORING SYSTEM APPENDIX 2 2-1 INTRODUCTION This document and Automated Software Tool Monitoring Program (Appendix 1) are...t Output Output features provide links from the tool to both the human user and the target machine (where applicable). They describe the types

  3. Towards an Ontology-Based Approach to Support Monitoring the Data of the International Monitoring System (IMS)

    NASA Astrophysics Data System (ADS)

    Laban, Shaban; El-Desouky, Ali

    2010-05-01

    The heterogeneity of the distributed processing systems, monitored data and resources is an obvious challenge in monitoring the data of International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban Treaty organization (CTBTO). Processing engineers, analysts, operators and other interested parties seek for intelligent tools and software that hide the underlying complexity of the systems, allowing them to manage the operation and monitoring the systems at a higher level, focusing on what the expected behavior and results should be instead of how to specifically achieve it. Also, it is needed to share common understanding of the structure of organization information, data, and products among staff, software agents, and policy making organs. Additionally, introducing new monitoring object or system should not complicate the overall system and should be feasible. An ontologybased approach is presented in this paper aiming to support monitoring real-time data processing and supervising the various system resources, focusing on integrating and sharing same knowledge and status information of the system among different environments. The results of a prototype framework is presented and analyzed.

  4. Research on Safety Monitoring System of Tailings Dam Based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Wang, Ligang; Yang, Xiaocong; He, Manchao

    2018-03-01

    The paper designed and implemented the safety monitoring system of tailings dam based on Internet of things, completed the hardware and software design of sensor nodes, routing nodes and coordinator node by using ZigBee wireless sensor chip CC2630 and 3G/4G data transmission module, developed the software platform integrated with geographic information system. The paper achieved real-time monitoring and data collection of tailings dam dam deformation, seepage line, water level and rainfall for all-weather, the stability of tailings dam based on the Internet of things monitoring is analyzed, and realized intelligent and scientific management of tailings dam under the guidance of the remote expert system.

  5. Monitoring the CMS strip tracker readout system

    NASA Astrophysics Data System (ADS)

    Mersi, S.; Bainbridge, R.; Baulieu, G.; Bel, S.; Cole, J.; Cripps, N.; Delaere, C.; Drouhin, F.; Fulcher, J.; Giassi, A.; Gross, L.; Hahn, K.; Mirabito, L.; Nikolic, M.; Tkaczyk, S.; Wingham, M.

    2008-07-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system.

  6. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yussup, F., E-mail: nolida@nm.gov.my; Ibrahim, M. M., E-mail: maslina-i@nm.gov.my; Soh, S. C.

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves devicemore » configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.« less

  7. ARC Software and Models

    Science.gov Websites

    produce software code and methodologies that are transferred to TARDEC and industry partners. These constraints", ASME Dynamic Systems and Control Conference, 2013, DOI:10.1115/DSCC2013-3935 Software Monitoring",IEEE Transactions on Control Systems Technology, DOI:10.1109/TCST.2012.2217143 Fast

  8. Intelligent Software Agents: Sensor Integration and Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesz, James J; Lee, Ronald W

    2013-01-01

    Abstract In a post Macondo world the buzzwords are Integrity Management and Incident Response Management. The twin processes are not new but the opportunity to link the two is novel. Intelligent software agents can be used with sensor networks in distributed and centralized computing systems to enhance real-time monitoring of system integrity as well as manage the follow-on incident response to changing, and potentially hazardous, environmental conditions. The software components are embedded at the sensor network nodes in surveillance systems used for monitoring unusual events. When an event occurs, the software agents establish a new concept of operation at themore » sensing node, post the event status to a blackboard for software agents at other nodes to see , and then react quickly and efficiently to monitor the scale of the event. The technology addresses a current challenge in sensor networks that prevents a rapid and efficient response when a sensor measurement indicates that an event has occurred. By using intelligent software agents - which can be stationary or mobile, interact socially, and adapt to changing situations - the technology offers features that are particularly important when systems need to adapt to active circumstances. For example, when a release is detected, the local software agent collaborates with other agents at the node to exercise the appropriate operation, such as: targeted detection, increased detection frequency, decreased detection frequency for other non-alarming sensors, and determination of environmental conditions so that adjacent nodes can be informed that an event is occurring and when it will arrive. The software agents at the nodes can also post the data in a targeted manner, so that agents at other nodes and the command center can exercise appropriate operations to recalibrate the overall sensor network and associated intelligence systems. The paper describes the concepts and provides examples of real-world implementations including the Threat Detection and Analysis System (TDAS) at the International Port of Memphis and the Biological Warning and Incident Characterization System (BWIC) Environmental Monitoring (EM) Component. Technologies developed for these 24/7 operational systems have applications for improved real-time system integrity awareness as well as provide incident response (as needed) for production and field applications.« less

  9. Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing

    PubMed Central

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811

  10. Design and development of a run-time monitor for multi-core architectures in cloud computing.

    PubMed

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  11. Model-based reasoning for power system management using KATE and the SSM/PMAD

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Gonzalez, Avelino J.; Carreira, Daniel J.; Mckenzie, F. D.; Gann, Brian

    1993-01-01

    The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications.

  12. Data link test and analysis system/TCAS monitor user's guide

    NASA Astrophysics Data System (ADS)

    Vandongen, John; Wapelhorst, Leo

    1991-02-01

    This document is a user's guide for the Data Link Test and Analysis System (DATAS) Traffic Alert and Collision Avoidance System (TCAS) monitor. It provides a brief overall hardware description of DATAS configured as a TCAS monitor, and the applications software.

  13. General Purpose Data-Driven Monitoring for Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.

    2009-01-01

    As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault and anomaly detection algorithms and diagnosis tools with executive and adaptive planning functions contained in the flight software on-board the Air Force Research Laboratory TacSat-3 satellite. The TVSM software package will be uploaded after launch to monitor spacecraft subsystems such as power and guidance, navigation, and control (GN&C). It will analyze data in real-time to demonstrate detection of faults and unusual conditions, diagnose problems, and react to threats to spacecraft health and mission goals. The experiment will demonstrate the feasibility and effectiveness of integrated system health management (ISHM) technologies with both ground and on-board experiments.

  14. The Open Source DataTurbine Initiative: Streaming Data Middleware for Environmental Observing Systems

    NASA Technical Reports Server (NTRS)

    Fountain T.; Tilak, S.; Shin, P.; Hubbard, P.; Freudinger, L.

    2009-01-01

    The Open Source DataTurbine Initiative is an international community of scientists and engineers sharing a common interest in real-time streaming data middleware and applications. The technology base of the OSDT Initiative is the DataTurbine open source middleware. Key applications of DataTurbine include coral reef monitoring, lake monitoring and limnology, biodiversity and animal tracking, structural health monitoring and earthquake engineering, airborne environmental monitoring, and environmental sustainability. DataTurbine software emerged as a commercial product in the 1990 s from collaborations between NASA and private industry. In October 2007, a grant from the USA National Science Foundation (NSF) Office of Cyberinfrastructure allowed us to transition DataTurbine from a proprietary software product into an open source software initiative. This paper describes the DataTurbine software and highlights key applications in environmental monitoring.

  15. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  16. SIMPATIQCO: a server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on Orbitrap instruments.

    PubMed

    Pichler, Peter; Mazanek, Michael; Dusberger, Frederico; Weilnböck, Lisa; Huber, Christian G; Stingl, Christoph; Luider, Theo M; Straube, Werner L; Köcher, Thomas; Mechtler, Karl

    2012-11-02

    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge.

  17. SIMPATIQCO: A Server-Based Software Suite Which Facilitates Monitoring the Time Course of LC–MS Performance Metrics on Orbitrap Instruments

    PubMed Central

    2012-01-01

    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC–MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge. PMID:23088386

  18. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  19. A system for beach video-monitoring: Beachkeeper plus

    NASA Astrophysics Data System (ADS)

    Brignone, Massimo; Schiaffino, Chiara F.; Isla, Federico I.; Ferrari, Marco

    2012-12-01

    A suitable knowledge of coastal systems, of their morphodynamic characteristics and their response to storm events and man-made structures is essential for littoral conservation and management. Nowadays webcams represent a useful device to obtain information from beaches. Video-monitoring techniques are generally site specific and softwares working with any image acquisition system are rare. Therefore, this work aims at submitting theory and applications of an experimental video monitoring software: Beachkeeper plus, a freeware non-profit software, can be employed and redistributed without modifications. A license file is provided inside software package and in the user guide. Beachkeeper plus is based on Matlab® and it can be used for the analysis of images and photos coming from any kind of acquisition system (webcams, digital cameras or images downloaded from internet), without any a-priori information or laboratory study of the acquisition system itself. Therefore, it could become a useful tool for beach planning. Through a simple guided interface, images can be analyzed by performing georeferentiation, rectification, averaging and variance. This software was initially operated in Pietra Ligure (Italy), using images from a tourist webcam, and in Mar del Plata (Argentina) using images from a digital camera. In both cases the reliability in different geomorphologic and morphodynamic conditions was confirmed by the good quality of obtained images after georeferentiation, rectification and averaging.

  20. Control Software for the VERITAS Cerenkov Telescope System

    NASA Astrophysics Data System (ADS)

    Krawczynski, H.; Olevitch, M.; Sembroski, G.; Gibbs, K.

    2003-07-01

    The VERITAS collab oration is developing a system of initially 4 and ˇ eventually 7 Cerenkov telescopes of the 12 m diameter class for high sensitivity gamma-ray astronomy in the >50 GeV energy range. In this contribution we describe the software that controls and monitors the various VERITAS subsystems. The software uses an object-oriented approach to cop e with the complexities that arise from using sub-groups of the 7 VERITAS telescopes to observe several sources at the same time. Inter-pro cess communication is based on the CORBA object Request Broker proto col and watch-dog processes monitor the sub-system performance.

  1. Unobtrusive Software and System Health Management with R2U2 on a Parallel MIMD Coprocessor

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Moosbrugger, Patrick

    2017-01-01

    Dynamic monitoring of software and system health of a complex cyber-physical system requires observers that continuously monitor variables of the embedded software in order to detect anomalies and reason about root causes. There exists a variety of techniques for code instrumentation, but instrumentation might change runtime behavior and could require costly software re-certification. In this paper, we present R2U2E, a novel realization of our real-time, Realizable, Responsive, and Unobtrusive Unit (R2U2). The R2U2E observers are executed in parallel on a dedicated 16-core EPIPHANY co-processor, thereby avoiding additional computational overhead to the system under observation. A DMA-based shared memory access architecture allows R2U2E to operate without any code instrumentation or program interference.

  2. Coma Patient Monitoring System Using Image Processing

    NASA Astrophysics Data System (ADS)

    Sankalp, Meenu

    2011-12-01

    COMA PATIENT MONITORING SYSTEM provides high quality healthcare services in the near future. To provide more convenient and comprehensive medical monitoring in big hospitals since it is tough job for medical personnel to monitor each patient for 24 hours.. The latest development in patient monitoring system can be used in Intensive Care Unit (ICU), Critical Care Unit (CCU), and Emergency Rooms of hospital. During treatment, the patient monitor is continuously monitoring the coma patient to transmit the important information. Also in the emergency cases, doctor are able to monitor patient condition efficiently to reduce time consumption, thus it provides more effective healthcare system. So due to importance of patient monitoring system, the continuous monitoring of the coma patient can be simplified. This paper investigates about the effects seen in the patient using "Coma Patient Monitoring System" which is a very advanced product related to physical changes in body movement of the patient and gives Warning in form of alarm and display on the LCD in less than one second time. It also passes a sms to a person sitting at the distant place if there exists any movement in any body part of the patient. The model for the system uses Keil software for the software implementation of the developed system.

  3. Use of Continuous Integration Tools for Application Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergara Larrea, Veronica G; Joubert, Wayne; Fuson, Christopher B

    High performance computing systems are becom- ing increasingly complex, both in node architecture and in the multiple layers of software stack required to compile and run applications. As a consequence, the likelihood is increasing for application performance regressions to occur as a result of routine upgrades of system software components which interact in complex ways. The purpose of this study is to evaluate the effectiveness of continuous integration tools for application performance monitoring on HPC systems. In addition, this paper also describes a prototype system for application perfor- mance monitoring based on Jenkins, a Java-based continuous integration tool. The monitoringmore » system described leverages several features in Jenkins to track application performance results over time. Preliminary results and lessons learned from monitoring applications on Cray systems at the Oak Ridge Leadership Computing Facility are presented.« less

  4. Specification and Verification of Medical Monitoring System Using Petri-nets.

    PubMed

    Majma, Negar; Babamir, Seyed Morteza

    2014-07-01

    To monitor the patient behavior, data are collected from patient's body by a medical monitoring device so as to calculate the output using embedded software. Incorrect calculations may endanger the patient's life if the software fails to meet the patient's requirements. Accordingly, the veracity of the software behavior is a matter of concern in the medicine; moreover, the data collected from the patient's body are fuzzy. Some methods have already dealt with monitoring the medical monitoring devices; however, model based monitoring fuzzy computations of such devices have been addressed less. The present paper aims to present synthesizing a fuzzy Petri-net (FPN) model to verify behavior of a sample medical monitoring device called continuous infusion insulin (INS) because Petri-net (PN) is one of the formal and visual methods to verify the software's behavior. The device is worn by the diabetic patients and then the software calculates the INS dose and makes a decision for injection. The input and output of the infusion INS software are not crisp in the real world; therefore, we present them in fuzzy variables. Afterwards, we use FPN instead of clear PN to model the fuzzy variables. The paper follows three steps to synthesize an FPN to deal with verification of the infusion INS device: (1) Definition of fuzzy variables, (2) definition of fuzzy rules and (3) design of the FPN model to verify the software behavior.

  5. The Management and Security Expert (MASE)

    NASA Technical Reports Server (NTRS)

    Miller, Mark D.; Barr, Stanley J.; Gryphon, Coranth D.; Keegan, Jeff; Kniker, Catherine A.; Krolak, Patrick D.

    1991-01-01

    The Management and Security Expert (MASE) is a distributed expert system that monitors the operating systems and applications of a network. It is capable of gleaning the information provided by the different operating systems in order to optimize hardware and software performance; recognize potential hardware and/or software failure, and either repair the problem before it becomes an emergency, or notify the systems manager of the problem; and monitor applications and known security holes for indications of an intruder or virus. MASE can eradicate much of the guess work of system management.

  6. [Portable Epileptic Seizure Monitoring Intelligent System Based on Android System].

    PubMed

    Liang, Zhenhu; Wu, Shufeng; Yang, Chunlin; Jiang, Zhenzhou; Yu, Tao; Lu, Chengbiao; Li, Xiaoli

    2016-02-01

    The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2. 3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications.

  7. Application of Kingview and PLC in friction durability test system

    NASA Astrophysics Data System (ADS)

    Gao, Yinhan; Cui, Jing; Yang, Kaiyu; Ke, Hui; Song, Bing

    2013-01-01

    Using PLC and Kingview software, a friction durability test system is designed. The overall program, hardware configuration, software structure and monitoring interface are described in detail. PLC ensures the stability of data acquisition, and the KingView software makes the HMI easy to manipulate. The practical application shows that the proposed system is cheap, economical and highly reliable.

  8. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  9. Development of a patch type embedded cardiac function monitoring system using dual microprocessor for arrhythmia detection in heart disease patient.

    PubMed

    Jang, Yongwon; Noh, Hyung Wook; Lee, I B; Jung, Ji-Wook; Song, Yoonseon; Lee, Sooyeul; Kim, Seunghwan

    2012-01-01

    A patch type embedded cardiac function monitoring system was developed to detect arrhythmias such as PVC (Premature Ventricular Contraction), pause, ventricular fibrillation, and tachy/bradycardia. The overall system is composed of a main module including a dual processor and a Bluetooth telecommunication module. The dual microprocessor strategy minimizes power consumption and size, and guarantees the resources of embedded software programs. The developed software was verified with standard DB, and showed good performance.

  10. Final Report: Enabling Exascale Hardware and Software Design through Scalable System Virtualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Patrick G.

    2015-02-01

    In this grant, we enhanced the Palacios virtual machine monitor to increase its scalability and suitability for addressing exascale system software design issues. This included a wide range of research on core Palacios features, large-scale system emulation, fault injection, perfomrance monitoring, and VMM extensibility. This research resulted in large number of high-impact publications in well-known venues, the support of a number of students, and the graduation of two Ph.D. students and one M.S. student. In addition, our enhanced version of the Palacios virtual machine monitor has been adopted as a core element of the Hobbes operating system under active DOE-fundedmore » research and development.« less

  11. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  12. Tevatron beam position monitor upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolbers, Stephen; Banerjee, B.; Barker, B.

    2005-05-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980's, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiprotonmore » position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, M; Kim, T; Kang, S

    Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  14. TMS communications software. Volume 2: Bus interface unit

    NASA Technical Reports Server (NTRS)

    Gregor, P. J.

    1979-01-01

    A data bus communication system to support the space shuttle's Trend Monitoring System (TMS) and to provide a basis for evaluation of the bus concept is described. Installation of the system included developing both hardware and software interfaces between the bus and the specific TMS computers and terminals. The software written for the microprocessor-based bus interface units is described. The software implements both the general bus communications protocol and also the specific interface protocols for the TMS computers and terminals.

  15. Implementation of medical monitor system based on networks

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Cao, Yuzhen; Zhang, Lixin; Ding, Mingshi

    2006-11-01

    In this paper, the development trend of medical monitor system is analyzed and portable trend and network function become more and more popular among all kinds of medical monitor devices. The architecture of medical network monitor system solution is provided and design and implementation details of medical monitor terminal, monitor center software, distributed medical database and two kind of medical information terminal are especially discussed. Rabbit3000 system is used in medical monitor terminal to implement security administration of data transfer on network, human-machine interface, power management and DSP interface while DSP chip TMS5402 is used in signal analysis and data compression. Distributed medical database is designed for hospital center according to DICOM information model and HL7 standard. Pocket medical information terminal based on ARM9 embedded platform is also developed to interactive with center database on networks. Two kernels based on WINCE are customized and corresponding terminal software are developed for nurse's routine care and doctor's auxiliary diagnosis. Now invention patent of the monitor terminal is approved and manufacture and clinic test plans are scheduled. Applications for invention patent are also arranged for two medical information terminals.

  16. Intelligent Extruder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlperEker; Mark Giammattia; Paul Houpt

    ''Intelligent Extruder'' described in this report is a software system and associated support services for monitoring and control of compounding extruders to improve material quality, reduce waste and energy use, with minimal addition of new sensors or changes to the factory floor system components. Emphasis is on process improvements to the mixing, melting and de-volatilization of base resins, fillers, pigments, fire retardants and other additives in the :finishing'' stage of high value added engineering polymer materials. While GE Plastics materials were used for experimental studies throughout the program, the concepts and principles are broadly applicable to other manufacturers materials. Themore » project involved a joint collaboration among GE Global Research, GE Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of compounding equipment. Scope of the program included development of a algorithms for monitoring process material viscosity without rheological sensors or generating waste streams, a novel detection scheme for rapid detection of process upsets and an adaptive feedback control system to compensate for process upsets where at line adjustments are feasible. Software algorithms were implemented and tested on a laboratory scale extruder (50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at GE Plastics was used to validate the monitoring and detection software. Although not evaluated experimentally, a new concept for extruder process monitoring through estimation of high frequency drive torque without strain gauges is developed and demonstrated in simulation. A plan to commercialize the software system is outlined, but commercialization has not been completed.« less

  17. Integrity Constraint Monitoring in Software Development: Proposed Architectures

    NASA Technical Reports Server (NTRS)

    Fernandez, Francisco G.

    1997-01-01

    In the development of complex software systems, designers are required to obtain from many sources and manage vast amounts of knowledge of the system being built and communicate this information to personnel with a variety of backgrounds. Knowledge concerning the properties of the system, including the structure of, relationships between and limitations of the data objects in the system, becomes increasingly more vital as the complexity of the system and the number of knowledge sources increases. Ensuring that violations of these properties do not occur becomes steadily more challenging. One approach toward managing the enforcement or system properties, called context monitoring, uses a centralized repository of integrity constraints and a constraint satisfiability mechanism for dynamic verification of property enforcement during program execution. The focus of this paper is to describe possible software architectures that define a mechanism for dynamically checking the satisfiability of a set of constraints on a program. The next section describes the context monitoring approach in general. Section 3 gives an overview of the work currently being done toward the addition of an integrity constraint satisfiability mechanism to a high-level program language, SequenceL, and demonstrates how this model is being examined to develop a general software architecture. Section 4 describes possible architectures for a general constraint satisfiability mechanism, as well as an alternative approach that, uses embedded database queries in lieu of an external monitor. The paper concludes with a brief summary outlining the, current state of the research and future work.

  18. Open Source Platform Application to Groundwater Characterization and Monitoring

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  19. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  20. Space shuttle onboard navigation console expert/trainer system

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bochsler, Dan

    1987-01-01

    A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.

  1. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less

  2. The KATE shell: An implementation of model-based control, monitor and diagnosis

    NASA Technical Reports Server (NTRS)

    Cornell, Matthew

    1987-01-01

    The conventional control and monitor software currently used by the Space Center for Space Shuttle processing has many limitations such as high maintenance costs, limited diagnostic capabilities and simulation support. These limitations have caused the development of a knowledge based (or model based) shell to generically control and monitor electro-mechanical systems. The knowledge base describes the system's structure and function and is used by a software shell to do real time constraints checking, low level control of components, diagnosis of detected faults, sensor validation, automatic generation of schematic diagrams and automatic recovery from failures. This approach is more versatile and more powerful than the conventional hard coded approach and offers many advantages over it, although, for systems which require high speed reaction times or aren't well understood, knowledge based control and monitor systems may not be appropriate.

  3. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  4. [Extension of cardiac monitoring function by used of ordinary ECG machine].

    PubMed

    Chen, Zhencheng; Jiang, Yong; Ni, Lili; Wang, Hongyan

    2002-06-01

    This paper deals with a portable monitor system on liquid crystal display (LCD) based on this available ordinary ECG machine, which is low power and suitable for China's specific condition. Apart from developing the overall scheme of the system, this paper also has completed the design of the hardware and the software. The 80c196 single chip microcomputer is taken as the central microprocessor and real time electrocardiac single is data treated and analyzed in the system. With the performance of ordinary monitor, this machine also possesses the following functions: five types of arrhythmia analysis, alarm, freeze, and record of automatic pappering, convenient in carrying, with alternate-current (AC) or direct-current (DC) powered. The hardware circuit is simplified and the software structure is optimized in this paper. Multiple low power designs and LCD unit design are adopted and completed in it. Popular in usage, low in cost price, the portable monitor system will have a valuable influence on China's monitor system field.

  5. Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey

    2015-01-01

    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.

  6. "Smart" Sensor Module

    NASA Technical Reports Server (NTRS)

    Mahajan, Ajay

    2007-01-01

    An assembly that contains a sensor, sensor-signal-conditioning circuitry, a sensor-readout analog-to-digital converter (ADC), data-storage circuitry, and a microprocessor that runs special-purpose software and communicates with one or more external computer(s) has been developed as a prototype of "smart" sensor modules for monitoring the integrity and functionality (the "health") of engineering systems. Although these modules are now being designed specifically for use on rocket-engine test stands, it is anticipated that they could also readily be designed to be incorporated into health-monitoring subsystems of such diverse engineering systems as spacecraft, aircraft, land vehicles, bridges, buildings, power plants, oilrigs, and defense installations. The figure is a simplified block diagram of the "smart" sensor module. The analog sensor readout signal is processed by the ADC, the digital output of which is fed to the microprocessor. By means of a standard RS-232 cable, the microprocessor is connected to a local personal computer (PC), from which software is downloaded into a randomaccess memory in the microprocessor. The local PC is also used to debug the software. Once the software is running, the local PC is disconnected and the module is controlled by, and all output data from the module are collected by, a remote PC via an Ethernet bus. Several smart sensor modules like this one could be connected to the same Ethernet bus and controlled by the single remote PC. The software running in the microprocessor includes driver programs for operation of the sensor, programs that implement self-assessment algorithms, programs that implement protocols for communication with the external computer( s), and programs that implement evolutionary methodologies to enable the module to improve its performance over time. The design of the module and of the health-monitoring system of which it is a part reflects the understanding that the main purpose of a health-monitoring system is to detect damage and, therefore, the health-monitoring system must be able to function effectively in the presence of damage and should be capable of distinguishing between damage to itself and damage to the system being monitored. A major benefit afforded by the self-assessment algorithms is that in the output of the module, the sensor data indicative of the health of the engineering system being monitored are coupled with a confidence factor that quantifies the degree of reliability of the data. Hence, the output includes information on the health of the sensor module itself in addition to information on the health of the engineering system being monitored.

  7. Archiving a Software Development Project

    DTIC Science & Technology

    2013-04-01

    an ongoing monitoring system that identifies attempts and requests for retrieval, and ensures that the attempts and requests cannot proceed without...Intelligence Division Peter Fisher has worked as a consultant, systems analyst, software developer and project manager in Australia, Holland, the USA...4 3.1.3 DRMS – Defence Records Management System

  8. Acceptance test procedure bldg. 271-U remote monitoring of project W-059 B-Plant canyon exhaust system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-09-01

    The test procedure provides for verifying indications and alarms The test procedure provides for verifying indications and alarms associated with the B Plant Canyon Ventilation System as they are being displayed on a remote monitoring workstation located in building 271-U. The system application software was installed by PLCS Plus under contract from B&W Hanford Company. The application software was installed on an existing operator workstation in building 271U which is owned and operated by Bechtel Hanford Inc.

  9. Data Processing And Machine Learning Methods For Multi-Modal Operator State Classification Systems

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan A.

    2015-01-01

    This document is intended as an introduction to a set of common signal processing learning methods that may be used in the software portion of a functional crew state monitoring system. This includes overviews of both the theory of the methods involved, as well as examples of implementation. Practical considerations are discussed for implementing modular, flexible, and scalable processing and classification software for a multi-modal, multi-channel monitoring system. Example source code is also given for all of the discussed processing and classification methods.

  10. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  11. Reuse Metrics for Object Oriented Software

    NASA Technical Reports Server (NTRS)

    Bieman, James M.

    1998-01-01

    One way to increase the quality of software products and the productivity of software development is to reuse existing software components when building new software systems. In order to monitor improvements in reuse, the level of reuse must be measured. In this NASA supported project we (1) derived a suite of metrics which quantify reuse attributes for object oriented, object based, and procedural software, (2) designed prototype tools to take these measurements in Ada, C++, Java, and C software, (3) evaluated the reuse in available software, (4) analyzed the relationship between coupling, cohesion, inheritance, and reuse, (5) collected object oriented software systems for our empirical analyses, and (6) developed quantitative criteria and methods for restructuring software to improve reusability.

  12. Intelligent fault management for the Space Station active thermal control system

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Faltisco, Robert M.

    1992-01-01

    The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.

  13. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  14. Modeling and analysis of selected space station communications and tracking subsystems

    NASA Technical Reports Server (NTRS)

    Richmond, Elmer Raydean

    1993-01-01

    The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.

  15. Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1994-01-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  16. Transmission monitoring and control of strategic communication systems

    NASA Astrophysics Data System (ADS)

    Farrow, J. E.; Skerjanec, R. E.

    1986-03-01

    This paper discusses a minicomputer-based communication system monitor used by the U.S. Department of Defense to improve the service availability and reduce the operating costs of the new multichannel digital transmission systems. A brief history of the development of the monitor and a general description of the present-generation hardware and software are included.

  17. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  18. Integrated software health management for aerospace guidance, navigation, and control systems: A probabilistic reasoning approach

    NASA Astrophysics Data System (ADS)

    Mbaya, Timmy

    Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.

  19. Improved Real-Time Monitoring Using Multiple Expert Systems

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia

    1993-01-01

    Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.

  20. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  1. Real-Time Event Detection for Monitoring Natural and Source ...

    EPA Pesticide Factsheets

    The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitoring source water quality prior to treatment. This work highlights the use of the CANARY event detection software in detecting suspected illicit events in an actively monitored watershed in South Carolina. CANARY is an open source event detection software that was developed by USEPA and Sandia National Laboratories. The software works with any type of sensor, utilizes multiple detection algorithms and approaches, and can incorporate operational information as needed. Monitoring has been underway for several years to detect events related to intentional or unintentional dumping of materials into the monitored watershed. This work evaluates the feasibility of using CANARY to enhance the detection of events in this watershed. This presentation will describe the real-time monitoring approach used in this watershed, the selection of CANARY configuration parameters that optimize detection for this watershed and monitoring application, and the performance of CANARY during the time frame analyzed. Further, this work will highlight how rainfall events impacted analysis, and the innovative application of CANARY taken in order to effectively detect the suspected illicit events. This presentation d

  2. Real time computer data system for the 40 x 80 ft wind tunnel facility at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Cambra, J. M.; Tolari, G. P.

    1974-01-01

    The wind tunnel realtime computer system is a distributed data gathering system that features a master computer subsystem, a high speed data gathering subsystem, a quick look dynamic analysis and vibration control subsystem, an analog recording back-up subsystem, a pulse code modulation (PCM) on-board subsystem, a communications subsystem, and a transducer excitation and calibration subsystem. The subsystems are married to the master computer through an executive software system and standard hardware and FORTRAN software interfaces. The executive software system has four basic software routines. These are the playback, setup, record, and monitor routines. The standard hardware interfaces along with the software interfaces provide the system with the capability of adapting to new environments.

  3. Performance Monitoring of Distributed Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ojha, Anand K.

    2000-01-01

    Test and checkout systems are essential components in ensuring safety and reliability of aircraft and related systems for space missions. A variety of systems, developed over several years, are in use at the NASA/KSC. Many of these systems are configured as distributed data processing systems with the functionality spread over several multiprocessor nodes interconnected through networks. To be cost-effective, a system should take the least amount of resource and perform a given testing task in the least amount of time. There are two aspects of performance evaluation: monitoring and benchmarking. While monitoring is valuable to system administrators in operating and maintaining, benchmarking is important in designing and upgrading computer-based systems. These two aspects of performance evaluation are the foci of this project. This paper first discusses various issues related to software, hardware, and hybrid performance monitoring as applicable to distributed systems, and specifically to the TCMS (Test Control and Monitoring System). Next, a comparison of several probing instructions are made to show that the hybrid monitoring technique developed by the NIST (National Institutes for Standards and Technology) is the least intrusive and takes only one-fourth of the time taken by software monitoring probes. In the rest of the paper, issues related to benchmarking a distributed system have been discussed and finally a prescription for developing a micro-benchmark for the TCMS has been provided.

  4. Off-the-shelf real-time monitoring of satellite constellations in a visual 3-D environment

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Hervias, Felipe; Cheng, Cecilia Han; Mactutis, Anthony; Angelino, Robert

    1996-01-01

    The multimission spacecraft analysis system (MSAS) data monitor is a generic software product for future real-time data monitoring and analysis. The system represents the status of a satellite constellation through the shape, color, motion and position of graphical objects floating in a three dimensional virtual reality environment. It may be used for the monitoring of large volumes of data, for viewing results in configurable displays, and for providing high level and detailed views of a constellation of monitored satellites. It is considered that the data monitor is an improvement on conventional graphic and text-based displays as it increases the amount of data that the operator can absorb in a given period, and can be installed and configured without the requirement for software development by the end user. The functionality of the system is described, including: the navigation abilities; the representation of alarms in the cybergrid; limit violation; real-time trend analysis, and alarm status indication.

  5. Development of software application dedicated to impulse- radar-based system for monitoring of human movements

    NASA Astrophysics Data System (ADS)

    Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Morawski, Roman Z.; Sudmann, Tobba T.; Børsheim, Ingebjørg T.; Øvsthus, Knut; Jacobsen, Frode F.; Ciamulski, Tomasz; Winiecki, Wiesław

    2016-11-01

    The importance of research on new technologies that could be employed in care services for elderly and disabled persons is highlighted. Advantages of radar sensors, when applied for non-invasive monitoring of such persons in their home environment, are indicated. A need for comprehensible visualisation of the intermediate results of measurement data processing is justified. Capability of an impulse-radar-based system to provide information, being of crucial importance for medical or healthcare personnel, are investigated. An exemplary software interface, tailored for non-technical users, is proposed, and preliminary results of impulse-radar-based monitoring of human movements are demonstrated.

  6. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  7. Hydrological Monitoring System Design and Implementation Based on IOT

    NASA Astrophysics Data System (ADS)

    Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang

    In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.

  8. A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support

    PubMed Central

    2017-01-01

    Background Although there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical. Objective The objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step. Methods A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework’s flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health’s operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents. Results IoT4Health’s construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers. Conclusions We conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion. PMID:28347973

  9. Novel Software for Performing Leksell Stereotactic Surgery without the Use of Printing Films: Technical Note.

    PubMed

    Hashizume, Akira; Akimitsu, Tomohide; Iida, Koji; Kagawa, Kota; Katagiri, Masaya; Hanaya, Ryosuke; Arita, Kazunori; Kurisu, Kaoru

    2016-01-01

    Hospitals in Japan have recently begun to employ the DICOM viewer system on desktop or laptop monitors. However, conventional embedding surgery for deep-brain stimulation with the Leksell stereotactic system (LSS) requires printed X-ray films for defining the coordination, coregistration of actual surgical films with the reference coordinates, and validation of the needle trajectories. While just performing these procedures on desktop or laptop monitors, the authors were able to develop novel software to facilitate complete digital manipulation with the Leksell frame without printing films. In this study, we validated the practical use of LSS, and benefit of this software in the Takanobashi Central Hospital and Kagoshima University Hospital.

  10. Monitoring and analysis of data from complex systems

    NASA Technical Reports Server (NTRS)

    Dollman, Thomas; Webster, Kenneth

    1991-01-01

    Some of the methods, systems, and prototypes that have been tested for monitoring and analyzing the data from several spacecraft and vehicles at the Marshall Space Flight Center are introduced. For the Huntsville Operations Support Center (HOSC) infrastructure, the Marshall Integrated Support System (MISS) provides a migration path to the state-of-the-art workstation environment. Its modular design makes it possible to implement the system in stages on multiple platforms without the need for all components to be in place at once. The MISS provides a flexible, user-friendly environment for monitoring and controlling orbital payloads. In addition, new capabilities and technology may be incorporated into MISS with greater ease. The use of information systems technology in advanced prototype phases, as adjuncts to mainline activities, is used to evaluate new computational techniques for monitoring and analysis of complex systems. Much of the software described (specially, HSTORESIS (Hubble Space Telescope Operational Readiness Expert Safemode Investigation System), DRS (Device Reasoning Shell), DART (Design Alternatives Rational Tool), elements of the DRA (Document Retrieval Assistant), and software for the PPS (Peripheral Processing System) and the HSPP (High-Speed Peripheral Processor)) is available with supporting documentation, and may be applicable to other system monitoring and analysis applications.

  11. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    PubMed

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  12. LogScope

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Smith, Margaret H.; Barringer, Howard; Groce, Alex

    2012-01-01

    LogScope is a software package for analyzing log files. The intended use is for offline post-processing of such logs, after the execution of the system under test. LogScope can, however, in principle, also be used to monitor systems online during their execution. Logs are checked against requirements formulated as monitors expressed in a rule-based specification language. This language has similarities to a state machine language, but is more expressive, for example, in its handling of data parameters. The specification language is user friendly, simple, and yet expressive enough for many practical scenarios. The LogScope software was initially developed to specifically assist in testing JPL s Mars Science Laboratory (MSL) flight software, but it is very generic in nature and can be applied to any application that produces some form of logging information (which almost any software does).

  13. [Advances of portable electrocardiogram monitor design].

    PubMed

    Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong

    2014-06-01

    Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.

  14. Automated Intelligent Monitoring and the Controlling Software System for Solar Panels

    NASA Astrophysics Data System (ADS)

    Nalamwar, H. S.; Ivanov, M. A.; Baidali, S. A.

    2017-01-01

    The inspection of the solar panels on a periodic basis is important to improve longevity and ensure performance of the solar system. To get the most solar potential of the photovoltaic (PV) system is possible through an intelligent monitoring & controlling system. The monitoring & controlling system has rapidly increased its popularity because of its user-friendly graphical interface for data acquisition, monitoring, controlling and measurements. In order to monitor the performance of the system especially for renewable energy source application such as solar photovoltaic (PV), data-acquisition systems had been used to collect all the data regarding the installed system. In this paper the development of a smart automated monitoring & controlling system for the solar panel is described, the core idea is based on IoT (the Internet of Things). The measurements of data are made using sensors, block management data acquisition modules, and a software system. Then, all the real-time data collection of the electrical output parameters of the PV plant such as voltage, current and generated electricity is displayed and stored in the block management. The proposed system is smart enough to make suggestions if the panel is not working properly, to display errors, to remind about maintenance of the system through email or SMS, and to rotate panels according to a sun position using the Ephemeral table that stored in the system. The advantages of the system are the performance of the solar panel system which can be monitored and analyzed.

  15. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory.

    PubMed

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a "Raspberry Pi" single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them.

  16. Real Time Network Monitoring and Reporting System

    ERIC Educational Resources Information Center

    Massengale, Ricky L., Sr.

    2009-01-01

    With the ability of modern system developers to develop intelligent programs that allows machines to learn, modify and evolve themselves, current trends of reactionary methods to detect and eradicate malicious software code from infected machines is proving to be too costly. Addressing malicious software after an attack is the current methodology…

  17. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  18. Software Estimation: Developing an Accurate, Reliable Method

    DTIC Science & Technology

    2011-08-01

    Lake, CA ,93555- 6110 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S...Activity, the systems engineering team is responsible for system and software requirements. 2 . Process Dashboard is a software planning and tracking tool... CA 93555- 6110 760-939-6989 Brad Hodgins is an interim TSP Mentor Coach, SEI-Authorized TSP Coach, SEI-Certified PSP/TSP Instructor, and SEI

  19. Sensors and systems for space applications: a methodology for developing fault detection, diagnosis, and recovery

    NASA Astrophysics Data System (ADS)

    Edwards, John L.; Beekman, Randy M.; Buchanan, David B.; Farner, Scott; Gershzohn, Gary R.; Khuzadi, Mbuyi; Mikula, D. F.; Nissen, Gerry; Peck, James; Taylor, Shaun

    2007-04-01

    Human space travel is inherently dangerous. Hazardous conditions will exist. Real time health monitoring of critical subsystems is essential for providing a safe abort timeline in the event of a catastrophic subsystem failure. In this paper, we discuss a practical and cost effective process for developing critical subsystem failure detection, diagnosis and response (FDDR). We also present the results of a real time health monitoring simulation of a propellant ullage pressurization subsystem failure. The health monitoring development process identifies hazards, isolates hazard causes, defines software partitioning requirements and quantifies software algorithm development. The process provides a means to establish the number and placement of sensors necessary to provide real time health monitoring. We discuss how health monitoring software tracks subsystem control commands, interprets off-nominal operational sensor data, predicts failure propagation timelines, corroborate failures predictions and formats failure protocol.

  20. OpenROCS: a software tool to control robotic observatories

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere

    2012-09-01

    We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).

  1. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    NASA Astrophysics Data System (ADS)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for promotion of data processing collected by the IMS Network.

  2. SMC Message Browser Projects

    NASA Technical Reports Server (NTRS)

    Wichmann, Benjamin C.

    2013-01-01

    I work directly with the System Monitoring and Control (SMC) software engineers who develop, test and release custom and commercial software in support of the Kennedy Space Center Spaceport Command and Control System. (SCCS). SMC uses Commercial Off-The-Shelf (COTS) Enterprise Management Systems (EMS) software which provides a centralized subsystem for configuring, monitoring, and controlling SCCS hardware and software used in the Control Rooms. There are multiple projects being worked on using the COTS EMS software. I am currently working with the HP Operations Manager for UNIX (OMU) software which allows Master Console Operators (MCO) to access, view and interpret messages regarding the status of the SCCS hardware and software. The OMU message browser gets cluttered with messages which can make it difficult for the MCO to manage. My main project involves determining ways to reduce the number of messages being displayed in the OMU message browser. I plan to accomplish this task in two different ways: (1) by correlating multiple messages into one single message being displayed and (2) to create policies that will determine the significance of each message and whether or not it needs to be displayed to the MCO. The core idea is to lessen the number of messages being sent to the OMU message browser so the MCO can more effectively use it.

  3. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  4. ATLAS tile calorimeter cesium calibration control and analysis software

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.; Solodkov, A.; Starchenko, E.; Karyukhin, A.; Isaev, A.; Shalanda, N.

    2008-07-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented.

  5. Description of real-time Ada software implementation of a power system monitor for the Space Station Freedom PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Ludwig, Kimberly; Mackin, Michael; Wright, Theodore

    1991-01-01

    The authors describe the Ada language software developed to perform the electrical power system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electric power system to be used in Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 386/20e computers connected through an 802.4 local area network. The power system monitor algorithm comprises several functions, including periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data are collected from the switchgear sensors every 100 ms, then passed through a 2-Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The system monitor required a hardware timer interrupt to activate the data acquisition function. The execution time of the code was optimized by using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities.

  6. MODIS. Volume 1: MODIS level 1A software baseline requirements

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Fleig, Albert; Ardanuy, Philip; Goff, Thomas; Carpenter, Lloyd; Solomon, Carl; Storey, James

    1994-01-01

    This document describes the level 1A software requirements for the moderate resolution imaging spectroradiometer (MODIS) instrument. This includes internal and external requirements. Internal requirements include functional, operational, and data processing as well as performance, quality, safety, and security engineering requirements. External requirements include those imposed by data archive and distribution systems (DADS); scheduling, control, monitoring, and accounting (SCMA); product management (PM) system; MODIS log; and product generation system (PGS). Implementation constraints and requirements for adapting the software to the physical environment are also included.

  7. LANDSAT-D flight segment operations manual. Appendix B: OBC software operations

    NASA Technical Reports Server (NTRS)

    Talipsky, R.

    1981-01-01

    The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.

  8. The DOE/NASA wind turbine data acquisition system. Part 3: Unattended power performance monitor

    NASA Technical Reports Server (NTRS)

    Halleyy, A.; Heidkamp, D.; Neustadter, H.; Olson, R.

    1983-01-01

    Software documentation, operational procedures, and diagnostic instructions for development version of an unattended wind turbine performance monitoring system is provided. Designed to be used for off line intelligent data acquisition in conjunction with the central host computer.

  9. Measurement and Control of the Variability of Scanning Pressure Transducer Measurements

    NASA Technical Reports Server (NTRS)

    Kuhl, David D.; Everhart, Joel L.; Hallissy, James B.

    2003-01-01

    This paper describes the new wall pressure measurement system and data-quality monitoring software installed at 14x22 Ft subsonic tunnel at the NASA Langley Research Center. The monitoring software was developed to enable measurement and control of the variability of the reference pressures and approximately 400 tunnel wall pressure measurements. Variability of the system, based upon data acquired over a year of wind tunnel tests and calibrations, is presented. The level of variation of the wall pressure measurements is shown to be predictable.

  10. Proposed patient motion monitoring system using feature point tracking with a web camera.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Matsuura, Takaaki; Yamada, Kiyoshi; Nagata, Yasushi

    2017-12-01

    Patient motion monitoring systems play an important role in providing accurate treatment dose delivery. We propose a system that utilizes a web camera (frame rate up to 30 fps, maximum resolution of 640 × 480 pixels) and an in-house image processing software (developed using Microsoft Visual C++ and OpenCV). This system is simple to use and convenient to set up. The pyramidal Lucas-Kanade method was applied to calculate motions for each feature point by analysing two consecutive frames. The image processing software employs a color scheme where the defined feature points are blue under stable (no movement) conditions and turn red along with a warning message and an audio signal (beeping alarm) for large patient movements. The initial position of the marker was used by the program to determine the marker positions in all the frames. The software generates a text file that contains the calculated motion for each frame and saves it as a compressed audio video interleave (AVI) file. We proposed a patient motion monitoring system using a web camera, which is simple and convenient to set up, to increase the safety of treatment delivery.

  11. Applying Standard Interfaces to a Process-Control Language

    NASA Technical Reports Server (NTRS)

    Berthold, Richard T.

    2005-01-01

    A method of applying open-operating-system standard interfaces to the NASA User Interface Language (UIL) has been devised. UIL is a computing language that can be used in monitoring and controlling automated processes: for example, the Timeliner computer program, written in UIL, is a general-purpose software system for monitoring and controlling sequences of automated tasks in a target system. In providing the major elements of connectivity between UIL and the target system, the present method offers advantages over the prior method. Most notably, unlike in the prior method, the software description of the target system can be made independent of the applicable compiler software and need not be linked to the applicable executable compiler image. Also unlike in the prior method, it is not necessary to recompile the source code and relink the source code to a new executable compiler image. Abstraction of the description of the target system to a data file can be defined easily, with intuitive syntax, and knowledge of the source-code language is not needed for the definition.

  12. Implementation of the AES as a Hash Function for Confirming the Identity of Software on a Computer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Randy R.; Bass, Robert B.; Kouzes, Richard T.

    2003-01-20

    This paper provides a brief overview of the implementation of the Advanced Encryption Standard (AES) as a hash function for confirming the identity of software resident on a computer system. The PNNL Software Authentication team chose to use a hash function to confirm software identity on a system for situations where: (1) there is limited time to perform the confirmation and (2) access to the system is restricted to keyboard or thumbwheel input and output can only be displayed on a monitor. PNNL reviewed three popular algorithms: the Secure Hash Algorithm - 1 (SHA-1), the Message Digest - 5 (MD-5),more » and the Advanced Encryption Standard (AES) and selected the AES to incorporate in software confirmation tool we developed. This paper gives a brief overview of the SHA-1, MD-5, and the AES and sites references for further detail. It then explains the overall processing steps of the AES to reduce a large amount of generic data-the plain text, such is present in memory and other data storage media in a computer system, to a small amount of data-the hash digest, which is a mathematically unique representation or signature of the former that could be displayed on a computer's monitor. This paper starts with a simple definition and example to illustrate the use of a hash function. It concludes with a description of how the software confirmation tool uses the hash function to confirm the identity of software on a computer system.« less

  13. Ship electric propulsion simulator based on networking technology

    NASA Astrophysics Data System (ADS)

    Zheng, Huayao; Huang, Xuewu; Chen, Jutao; Lu, Binquan

    2006-11-01

    According the new ship building tense, a novel electric propulsion simulator (EPS) had been developed in Marine Simulation Center of SMU. The architecture, software function and FCS network technology of EPS and integrated power system (IPS) were described. In allusion to the POD propeller in ship, a special physical model was built. The POD power was supplied from the simulative 6.6 kV Medium Voltage Main Switchboard, its control could be realized in local or remote mode. Through LAN, the simulated feature information of EPS will pass to the physical POD model, which would reflect the real thruster working status in different sea conditions. The software includes vessel-propeller math module, thruster control system, distribution and emergency integrated management, double closed loop control system, vessel static water resistance and dynamic software; instructor main control software. The monitor and control system is realized by real time data collection system and CAN bus technology. During the construction, most devices such as monitor panels and intelligent meters, are developed in lab which were based on embedded microcomputer system with CAN interface to link the network. They had also successfully used in practice and would be suitable for the future demands of digitalization ship.

  14. Using SFOC to fly the Magellan Venus mapping mission

    NASA Technical Reports Server (NTRS)

    Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.

    1993-01-01

    Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.

  15. Software requirements elicitation to support internal monitoring of quality assurance system for higher education in Indonesia

    NASA Astrophysics Data System (ADS)

    Amalia, A.; Gunawan, D.; Hardi, S. M.; Rachmawati, D.

    2018-02-01

    The Internal Quality Assurance System (in Indonesian: SPMI (Sistem Penjaminan Mutu Internal) is a systemic activity of quality assurance of higher education in Indonesia. SPMI should be done by all higher education or universities in Indonesia based on the Regulation of the Minister of Research, Technology and Higher Education of the Republic of Indonesia Number 62 of 2016. Implementation of SPMI must refer to the principle of SPMI that is independent, standardize, accurate, well planned and sustainable, documented and systematic. To assist the SPMI cycle properly, universities need a supporting software to monitor all the activities of SPMI. But in reality, many universities are not optimal in building this SPMI monitoring system. One of the obstacles is the determination of system requirements in support of SPMI principles is difficult to achieve. In this paper, we observe the initial phase of the engineering requirements elicitation. Unlike other methods that collect system requirements from users and stakeholders, we find the system requirements of the SPMI principles from SPMI guideline book. The result of this paper can be used as a choice in determining SPMI software requirements. This paper can also be used by developers and users to understand the scenario of SPMI so that could overcome the problems of understanding between this two parties.

  16. ARC-2007-ACD07-0140-001

    NASA Image and Video Library

    2007-07-31

    David L. Iverson of NASA Ames Research center, Moffett Field, California, led development of computer software to monitor the conditions of the gyroscopes that keep the International Space Station (ISS) properly oriented in space as the ISS orbits Earth. The gyroscopes are flywheels that control the station's attitude without the use of propellant fuel. NASA computer scientists designed the new software, the Inductive Monitoring System, to detect warning signs that precede a gyroscope's failure. According to NASA officials, engineers will add the new software tool to a group of existing tools to identify and track problems related to the gyroscopes. If the software detects warning signs, it will quickly warn the space station's mission control center.

  17. Software Quality Metrics: A Software Management Monitoring Method for Air Force Logistics Command in Its Software Quality Assurance Program for the Quantitative Assessment of the System Development Life Cycle under Configuration Management.

    DTIC Science & Technology

    1982-03-01

    pilot systems. Magnitude of the mutant error is classified as: o Program does not compute. o Program computes but does not run test data. o Program...14 Test and Integration ... ............ .. 105 15 The Mapping of SQM to the SDLC ........ ... 108 16 ADS Development .... .............. . 224 17...and funds. While the test phase concludes the normal development cycle, one should realize that with software the development continues in the

  18. CLOUDCLOUD : general-purpose instrument monitoring and data managing software

    NASA Astrophysics Data System (ADS)

    Dias, António; Amorim, António; Tomé, António

    2016-04-01

    An effective experiment is dependent on the ability to store and deliver data and information to all participant parties regardless of their degree of involvement in the specific parts that make the experiment a whole. Having fast, efficient and ubiquitous access to data will increase visibility and discussion, such that the outcome will have already been reviewed several times, strengthening the conclusions. The CLOUD project aims at providing users with a general purpose data acquisition, management and instrument monitoring platform that is fast, easy to use, lightweight and accessible to all participants of an experiment. This work is now implemented in the CLOUD experiment at CERN and will be fully integrated with the experiment as of 2016. Despite being used in an experiment of the scale of CLOUD, this software can also be used in any size of experiment or monitoring station, from single computers to large networks of computers to monitor any sort of instrument output without influencing the individual instrument's DAQ. Instrument data and meta data is stored and accessed via a specially designed database architecture and any type of instrument output is accepted using our continuously growing parsing application. Multiple databases can be used to separate different data taking periods or a single database can be used if for instance an experiment is continuous. A simple web-based application gives the user total control over the monitored instruments and their data, allowing data visualization and download, upload of processed data and the ability to edit existing instruments or add new instruments to the experiment. When in a network, new computers are immediately recognized and added to the system and are able to monitor instruments connected to them. Automatic computer integration is achieved by a locally running python-based parsing agent that communicates with a main server application guaranteeing that all instruments assigned to that computer are monitored with parsing intervals as fast as milliseconds. This software (server+agents+interface+database) comes in easy and ready-to-use packages that can be installed in any operating system, including Android and iOS systems. This software is ideal for use in modular experiments or monitoring stations with large variability in instruments and measuring methods or in large collaborations, where data requires homogenization in order to be effectively transmitted to all involved parties. This work presents the software and provides performance comparison with previously used monitoring systems in the CLOUD experiment at CERN.

  19. Software Design Improvements. Part 1; Software Benefits and Limitations

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom

    1997-01-01

    Computer hardware and associated software have been used for many years to process accounting information, to analyze test data and to perform engineering analysis. Now computers and software also control everything from automobiles to washing machines and the number and type of applications are growing at an exponential rate. The size of individual program has shown similar growth. Furthermore, software and hardware are used to monitor and/or control potentially dangerous products and safety-critical systems. These uses include everything from airplanes and braking systems to medical devices and nuclear plants. The question is: how can this hardware and software be made more reliable? Also, how can software quality be improved? What methodology needs to be provided on large and small software products to improve the design and how can software be verified?

  20. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application

    PubMed Central

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-01-01

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software. PMID:28420132

  1. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application.

    PubMed

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-04-15

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.

  2. Adopting Industry Standards for Control Systems Within Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Young, James Scott; Boulanger, Richard

    2002-01-01

    This paper gives a description of OPC (Object Linking and Embedding for Process Control) standards for process control and outlines the experiences at JSC with using these standards to interface with I/O hardware from three independent vendors. The I/O hardware was integrated with a commercially available SCADA/HMI software package to make up the control and monitoring system for the Environmental Systems Test Stand (ESTS). OPC standards were utilized for communicating with I/O hardware and the software was used for implementing monitoring, PC-based distributed control, and redundant data storage over an Ethernet physical layer using an embedded din-rail mounted PC.

  3. Software design for automated assembly of truss structures

    NASA Technical Reports Server (NTRS)

    Herstrom, Catherine L.; Grantham, Carolyn; Allen, Cheryl L.; Doggett, William R.; Will, Ralph W.

    1992-01-01

    Concern over the limited intravehicular activity time has increased the interest in performing in-space assembly and construction operations with automated robotic systems. A technique being considered at LaRC is a supervised-autonomy approach, which can be monitored by an Earth-based supervisor that intervenes only when the automated system encounters a problem. A test-bed to support evaluation of the hardware and software requirements for supervised-autonomy assembly methods was developed. This report describes the design of the software system necessary to support the assembly process. The software is hierarchical and supports both automated assembly operations and supervisor error-recovery procedures, including the capability to pause and reverse any operation. The software design serves as a model for the development of software for more sophisticated automated systems and as a test-bed for evaluation of new concepts and hardware components.

  4. Strain System for the Motion Base Shuttle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.

    2010-01-01

    The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.

  5. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    PubMed

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  6. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  7. The Automated Instrumentation and Monitoring System (AIMS) reference manual

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Hontalas, Philip; Listgarten, Sherry

    1993-01-01

    Whether a researcher is designing the 'next parallel programming paradigm,' another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software architects to uncover system behavior and to take advantage of specific application characteristics and hardware features. A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware test beds to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs written for Intel's NX operating system on the iPSC family of multi computers. A run-time performance-monitoring library for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC's CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI) supporting X-Windows (in particular, Xl IR5, Motif 1.1.3).

  8. A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support.

    PubMed

    Fernandes, Chrystinne Oliveira; Lucena, Carlos José Pereira De

    2017-03-27

    Although there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical. The objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step. A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework's flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health's operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents. IoT4Health's construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers. We conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion. ©Chrystinne Oliveira Fernandes, Carlos José Pereira De Lucena. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.03.2017.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benahmed, A.; Elkarch, H.

    This new portable radiological environmental monitor consists of 2 main components, Gamma ionization chamber and a FPGA-based electronic enclosure linked to convivial software for treatment and analyzing. The HPIC ion chamber is the heart of this radiation measurement system and is running in range from 0 to 100 mR/h, so that the sensitivity at the output is 20 mV/μR/h, with a nearly flat energy response from 0,07 to 10 MEV. This paper presents a contribution for developing a new nuclear measurement data acquisition system based on Cyclone III FPGA Starter Kit ALTERA, and a user-friendly software to run real-time controlmore » and data processing. It was developed to substitute the older radiation monitor RSS-112 PIC installed in CNESTEN's Laboratory in order to improve some of its functionalities related to acquisition time and data memory capacity. As for the associated acquisition software, it was conceived under the virtual LabView platform from National Instrument, and offers a variety of system setup for radiation environmental monitoring. It gives choice to display both the statistical data and the dose rate. Statistical data shows a summary of current data, current time/date and dose integrator values, and the dose rate displays the current dose rate in large numbers for viewing from a distance as well as the date and time. The prototype version of this new instrument and its data processing software has been successfully tested and validated for viewing and monitoring the environmental radiation of Moroccan nuclear center. (authors)« less

  10. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1977-01-01

    Design analysis of a microbial load monitor system flight engineering model was presented. Checkout of the card taper and media pump system was fabricated as well as the final two incubating reading heads, the sample receiving and card loading device assembly, related sterility testing, and software. Progress in these areas was summarized.

  11. Introduction of structural health and safety monitoring warning systems for Shenzhen-Hong Kong Western Corridor Shenzhen Bay Bridge

    NASA Astrophysics Data System (ADS)

    Li, N.; Zhang, X. Y.; Zhou, X. T.; Leng, J.; Liang, Z.; Zheng, C.; Sun, X. F.

    2008-03-01

    Though the brief introduction of the completed structural health and safety monitoring warning systems for Shenzhen-Hongkong western corridor Shenzhen bay highway bridge (SZBHMS), the self-developed system frame, hardware and software scheme of this practical research project are systematically discussed in this paper. The data acquisition and transmission hardware and the basic software based on the NI (National Instruments) Company virtual instruments technology were selected in this system, which adopted GPS time service receiver technology and so on. The objectives are to establish the structural safety monitoring and status evaluation system to monitor the structural responses and working conditions in real time and to analyze the structural working statue using information obtained from the measured data. It will be also provided the scientific decision-making bases for the bridge management and maintenance. Potential technical approaches to the structural safety warning systems, status identification and evaluation method are presented. The result indicated that the performance of the system has achieved the desired objectives, ensure the longterm high reliability, real time concurrence and advanced technology of SZBHMS. The innovate achievement which is the first time to implement in domestic, provide the reference for long-span bridge structural health and safety monitoring warning systems design.

  12. A Management Information System for Allocating, Monitoring and Reviewing Work Assignments.

    DTIC Science & Technology

    1986-06-01

    This thesis investigated the feasibility of developing a small scale management information system on a micro-computer. The working system was...ORSA journal. The management information system was designed using Ashton-Tate’s dBaseIII software. As designed, the system will operate on any...computer operating under microsoft’s Disk Operating System (MS-DOS). The user must provide his own dBaseIII software. A similar management information system could

  13. The Feasibility of Implementing Multicommand Software Functions on a Microcomputer Network.

    DTIC Science & Technology

    1979-10-01

    studies 20 ABSTRACT fConllnuo on revete &Ide it necessary and Identify by block number) ’This report presents the results of a study of design...considerations for hybrid monitor systems for distributed microcomputer networks. The objective of the study was to determine the feasibility of such monitor...Management Informa- tion and Computer Sciences. The study was one task on a project bentitled "The Feasibility of Implementing Multicommand Software

  14. The Curiosity Mars Rover's Fault Protection Engine

    NASA Technical Reports Server (NTRS)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  15. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    PubMed Central

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  16. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  17. MINDS: A microcomputer interactive data system for 8086-based controllers

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.

    1985-01-01

    A microcomputer interactive data system (MINDS) software package for the 8086 family of microcomputers is described. To enhance program understandability and ease of code maintenance, the software is written in PL/M-86, Intel Corporation's high-level system implementation language. The MINDS software is intended to run in residence with real-time digital control software to provide displays of steady-state and transient data. In addition, the MINDS package provides classic monitor capabilities along with extended provisions for debugging an executing control system. The software uses the CP/M-86 operating system developed by Digital Research, Inc., to provide program load capabilities along with a uniform file structure for data and table storage. Finally, a library of input and output subroutines to be used with consoles equipped with PL/M-86 and assembly language is described.

  18. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory

    PubMed Central

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a “Raspberry Pi” single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them. PMID:26771659

  19. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  20. System monitoring feedback in cinemas and harvesting energy of the air conditioning condenser

    NASA Astrophysics Data System (ADS)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.; Chiver, O.

    2017-05-01

    Our article monitors the degree of emotional involvement of the audience in the action film in theaters by measuring the concentration of CO2. The software performs data processing obtained dispersion sensors and displays data during the film. The software will also trigger the start of the air conditioning condenser where we can get harvesting energy by installing a piezoelectric device. Useful energy can be recovered from various waste produced in cinema. The time lag between actions and changes in environmental systems determines that decisions made now will affect subsequent generations and the future of our environment.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Tsai, H.; Decision and Information Sciences

    The technical basis for extending the Model 9977 shipping package periodic maintenance beyond the one-year interval to a maximum of five years is based on the performance of the O-ring seals and the environmental conditions. The DOE Packaging Certification Program (PCP) has tasked Argonne National Laboratory to develop a Radio-Frequency Identification (RFID) temperature monitoring system for use by the facility personnel at DAF/NTS. The RFID temperature monitoring system, depicted in the figure below, consists of the Mk-1 RFId tags, a reader, and a control computer mounted on a mobile platform that can operate as a stand-alone system, or it canmore » be connected to the local IT network. As part of the Conditions of Approval of the CoC, the user must complete the prescribed training to become qualified and be certified for operation of the RFID temperature monitoring system. The training course will be administered by Argonne National Laboratory on behalf of the Headquarters Certifying Official. This is a complete documentation package for the RFID temperature monitoring system of the Model 9977 packagings at NTS. The documentation package will be used for training and certification. The table of contents are: Acceptance Testing Procedure of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Acceptance Testing Result of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Performance Test of the Single Bolt Seal Sensor for the Model 9977 Packaging; Calibration of Built-in Thermistors in RFID Tags for Nevada Test Site; Results of Calibration of Built-in Thermistors in RFID Tags; Results of Thermal Calibration of Second Batch of MK-I RFID Tags; Procedure for Installing and Removing MK-1 RFID Tag on Model 9977 Drum; User Guide for RFID Reader and Software for Temperature Monitoring of Model 9977 Drums at NTS; Software Quality Assurance Plan (SQAP) for the ARG-US System; Quality Category for the RFID Temperature Monitoring System; The Documentation Package for the RFID Temperature Monitoring System; Software Test Plan and Results for ARG-US OnSite; Configuration Management Plan (CMP) for the ARG-US System; Requirements Management Plan for the ARG-US System; and Design Management Plan for ARG-US.« less

  2. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  3. Sensor Placement Optimization using Chama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Nicholson, Bethany L.; Laird, Carl Damon

    Continuous or regularly scheduled monitoring has the potential to quickly identify changes in the environment. However, even with low - cost sensors, only a limited number of sensors can be deployed. The physical placement of these sensors, along with the sensor technology and operating conditions, can have a large impact on the performance of a monitoring strategy. Chama is an open source Python package which includes mixed - integer, stochastic programming formulations to determine sensor locations and technology that maximize monitoring effectiveness. The methods in Chama are general and can be applied to a wide range of applications. Chama ismore » currently being used to design sensor networks to monitor airborne pollutants and to monitor water quality in water distribution systems. The following documentation includes installation instructions and examples, description of software features, and software license. The software is intended to be used by regulatory agencies, industry, and the research community. It is assumed that the reader is familiar with the Python Programming Language. References are included for addit ional background on software components. Online documentation, hosted at http://chama.readthedocs.io/, will be updated as new features are added. The online version includes API documentation .« less

  4. Design and Implementation of a Modern Automatic Deformation Monitoring System

    NASA Astrophysics Data System (ADS)

    Engel, Philipp; Schweimler, Björn

    2016-03-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  5. Web-Based Real-Time Emergency Monitoring

    NASA Technical Reports Server (NTRS)

    Harvey, Craig A.; Lawhead, Joel

    2007-01-01

    The Web-based Real-Time Asset Monitoring (RAM) module for emergency operations and facility management enables emergency personnel in federal agencies and local and state governments to monitor and analyze data in the event of a natural disaster or other crisis that threatens a large number of people and property. The software can manage many disparate sources of data within a facility, city, or county. It was developed on industry-standard Geo- Spatial software and is compliant with open GIS standards. RAM View can function as a standalone system, or as an integrated plugin module to Emergency Operations Center (EOC) software suites such as REACT (Real-time Emergency Action Coordination Tool), thus ensuring the widest possible distribution among potential users. RAM has the ability to monitor various data sources, including streaming data. Many disparate systems are included in the initial suite of supported hardware systems, such as mobile GPS units, ambient measurements of temperature, moisture and chemical agents, flow meters, air quality, asset location, and meteorological conditions. RAM View displays real-time data streams such as gauge heights from the U.S. Geological Survey gauging stations, flood crests from the National Weather Service, and meteorological data from numerous sources. Data points are clearly visible on the map interface, and attributes as specified in the user requirements can be viewed and queried.

  6. S-Cube: Enabling the Next Generation of Software Services

    NASA Astrophysics Data System (ADS)

    Metzger, Andreas; Pohl, Klaus

    The Service Oriented Architecture (SOA) paradigm is increasingly adopted by industry for building distributed software systems. However, when designing, developing and operating innovative software services and servicebased systems, several challenges exist. Those challenges include how to manage the complexity of those systems, how to establish, monitor and enforce Quality of Service (QoS) and Service Level Agreements (SLAs), as well as how to build those systems such that they can proactively adapt to dynamically changing requirements and context conditions. Developing foundational solutions for those challenges requires joint efforts of different research communities such as Business Process Management, Grid Computing, Service Oriented Computing and Software Engineering. This paper provides an overview of S-Cube, the European Network of Excellence on Software Services and Systems. S-Cube brings together researchers from leading research institutions across Europe, who join their competences to develop foundations, theories as well as methods and tools for future service-based systems.

  7. Flat Surface Damage Detection System (FSDDS)

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  8. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musyurka, A. V., E-mail: musyurkaav@burges.rushydro.ru

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  9. Development of software for geodynamic processes monitoring system

    NASA Astrophysics Data System (ADS)

    Kabanov, M. M.; Kapustin, S. N.; Gordeev, V. F.; Botygin, I. A.; Tartakovsky, V. A.

    2017-11-01

    This article justifies the usage of natural pulsed electromagnetic Earth's noises logging method for mapping anomalies of strain-stress state of Earth's crust. The methods and technologies for gathering, processing and systematization of data gathered by ground multi-channel geophysical loggers for monitoring geomagnetic situation have been experimentally tested, and software had been developed. The data was consolidated in a network storage and can be accessed without using any specialized client software. The article proposes ways to distinguish global and regional small-scale time-space variations of Earth's natural electromagnetic field. For research purposes, the software provides a way to export data for any given period of time for any loggers and displays measurement data charts for selected set of stations.

  10. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  11. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

    PubMed

    Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher

    2012-08-01

    In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.

  12. Data Reduction and Control Software for Meteor Observing Stations Based on CCD Video Systems

    NASA Technical Reports Server (NTRS)

    Madiedo, J. M.; Trigo-Rodriguez, J. M.; Lyytinen, E.

    2011-01-01

    The SPanish Meteor Network (SPMN) is performing a continuous monitoring of meteor activity over Spain and neighbouring countries. The huge amount of data obtained by the 25 video observing stations that this network is currently operating made it necessary to develop new software packages to accomplish some tasks, such as data reduction and remote operation of autonomous systems based on high-sensitivity CCD video devices. The main characteristics of this software are described here.

  13. Effective organizational solutions for implementation of DBMS software packages

    NASA Technical Reports Server (NTRS)

    Jones, D.

    1984-01-01

    The space telescope management information system development effort is a guideline for discussing effective organizational solutions used in implementing DBMS software. Focus is on the importance of strategic planning. The value of constructing an information system architecture to conform to the organization's managerial needs, the need for a senior decision maker, dealing with shifting user requirements, and the establishment of a reliable working relationship with the DBMS vendor are examined. Requirements for a schedule to demonstrate progress against a defined timeline and the importance of continued monitoring for production software control, production data control, and software enhancements are also discussed.

  14. An Analysis of Botnet Vulnerabilities

    DTIC Science & Technology

    2007-06-01

    Definition Currently, the primary defense against botnets is prompt patching of vulnerable systems and antivirus software . Network monitoring can identify...IRCd software , none were identified during this effort. AFIT iv For my wife, for her caring and support throughout the course of this...are software agents designed to automatically perform tasks. Examples include web-spiders that catalog the Internet and bots found in popular online

  15. Engineering monitoring expert system's developer

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1991-01-01

    This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.

  16. Beam Position and Phase Monitor - Wire Mapping System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded formore » the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.« less

  17. Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.

    2004-01-01

    This viewgraph presentation describes the characteristics and advantages of autonomy and artificial intelligence in systems health monitoring. The presentation lists technologies relevant to Intelligent System Health Management (ISHM), and some potential applications.

  18. [The design of a cardiac monitoring and analysing system with low power consumption].

    PubMed

    Chen, Zhen-cheng; Ni, Li-li; Zhu, Yan-gao; Wang, Hong-yan; Ma, Yan

    2002-07-01

    The paper deals with a portable analyzing monitor system with liquid crystal display (LCD), which is low in power consumption and suitable for China's specific conditions. Apart from the development of the overall scheme of the system, the paper introduces the design of the hardware and the software. The 80196 single chip microcomputer is used as the central microprocessor to process and real-time electrocardiac signal data. The system have the following functions: five types of arrhythmia analysis, alarm, freeze, and record of automatic paperfeeding. The portable system can be operated by alternate-current (AC) or direct-current (DC). Its hardware circuit is simplified and its software structure is optimized. Multiple low power consumption and LCD unit are adopted in its modular designs.

  19. Hardware-software and algorithmic provision of multipoint systems for long-term monitoring of dynamic processes

    NASA Astrophysics Data System (ADS)

    Yakunin, A. G.; Hussein, H. M.

    2017-08-01

    An example of information-measuring systems for climate monitoring and operational control of energy resources consumption of the university campus that is functioning in the Altai State Technical University since 2009. The advantages of using such systems for studying various physical processes are discussed. General principles of construction of similar systems, their software, hardware and algorithmic support are considered. It is shown that their fundamental difference from traditional SCADA - systems is the use of databases for storing the results of the observation with a specialized data structure, and by preprocessing of the input signal for its compression. Another difference is the absence of clear criteria for detecting the anomalies in the time series of the observed process. The examples of algorithms that solve this problem are given.

  20. Central-Monitor Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    One of the software modules of the emergency-vehicle traffic-light-preemption system of the two preceding articles performs numerous functions for the central monitoring subsystem. This module monitors the states of all units (vehicle transponders and intersection controllers): It provides real-time access to the phases of traffic and pedestrian lights, and maps the positions and states of all emergency vehicles. Most of this module is used for installation and configuration of units as they are added to the system. The module logs all activity in the system, thereby providing information that can be analyzed to minimize response times and optimize response strategies. The module can be used from any location within communication range of the system; with proper configuration, it can also be used via the Internet. It can be integrated into call-response centers, where it can be used for alerting emergency vehicles and managing their responses to specific incidents. A variety of utility subprograms provide access to any or all units for purposes of monitoring, testing, and modification. Included are "sniffer" utility subprograms that monitor incoming and outgoing data for accuracy and timeliness, and that quickly and autonomously shut off malfunctioning vehicle or intersection units.

  1. Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.

    2010-01-01

    The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.

  2. Inductive System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2004-01-01

    The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS uses nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. IMS is able to monitor the system by comparing real time operational data with these classes. We present a description of learning and monitoring method used by IMS and summarize some recent IMS results.

  3. A WBAN System for Ambulatory Monitoring of Physical Activity and Health Status: Applications and Challenges.

    PubMed

    Jovanov, E; Milenkovic, A; Otto, C; De Groen, P; Johnson, B; Warren, S; Taibi, G

    2005-01-01

    Recent technological advances in sensors, low-power integrated circuits, and wireless communications have enabled the design of low-cost, miniature, lightweight, intelligent physiological sensor platforms that can be seamlessly integrated into a body area network for health monitoring. Wireless body area networks (WBANs) promise unobtrusive ambulatory health monitoring for extended periods of time and near real-time updates of patients' medical records through the Internet. A number of innovative systems for health monitoring have recently been proposed. However, they typically rely on custom communication protocols and hardware designs, lacking generality and flexibility. The lack of standard platforms, system software support, and standards makes these systems expensive. Bulky sensors, high price, and frequent battery changes are all likely to limit user compliance. To address some of these challenges, we prototyped a WBAN utilizing a common off-the-shelf wireless sensor platform with a ZigBee-compliant radio interface and an ultra low-power microcontroller. The standard platform interfaces to custom sensor boards that are equipped with accelerometers for motion monitoring and a bioamplifier for electrocardiogram or electromyogram monitoring. Software modules for on-board processing, communication, and network synchronization have been developed using the TinyOS operating system. Although the initial WBAN prototype targets ambulatory monitoring of user activity, the developed sensors can easily be adapted to monitor other physiological parameters. In this paper, we discuss initial results, implementation challenges, and the need for standardization in this dynamic and promising research field.

  4. Integrated Systems Health Management (ISHM) Toolkit

    NASA Technical Reports Server (NTRS)

    Venkatesh, Meera; Kapadia, Ravi; Walker, Mark; Wilkins, Kim

    2013-01-01

    A framework of software components has been implemented to facilitate the development of ISHM systems according to a methodology based on Reliability Centered Maintenance (RCM). This framework is collectively referred to as the Toolkit and was developed using General Atomics' Health MAP (TM) technology. The toolkit is intended to provide assistance to software developers of mission-critical system health monitoring applications in the specification, implementation, configuration, and deployment of such applications. In addition to software tools designed to facilitate these objectives, the toolkit also provides direction to software developers in accordance with an ISHM specification and development methodology. The development tools are based on an RCM approach for the development of ISHM systems. This approach focuses on defining, detecting, and predicting the likelihood of system functional failures and their undesirable consequences.

  5. Time Analyzer for Time Synchronization and Monitor of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Cole, Steven; Gonzalez, Jorge, Jr.; Calhoun, Malcolm; Tjoelker, Robert

    2003-01-01

    A software package has been developed to measure, monitor, and archive the performance of timing signals distributed in the NASA Deep Space Network. Timing signals are generated from a central master clock and distributed to over 100 users at distances up to 30 kilometers. The time offset due to internal distribution delays and time jitter with respect to the central master clock are critical for successful spacecraft navigation, radio science, and very long baseline interferometry (VLBI) applications. The instrument controller and operator interface software is written in LabView and runs on the Linux operating system. The software controls a commercial multiplexer to switch 120 separate timing signals to measure offset and jitter with a time-interval counter referenced to the master clock. The offset of each channel is displayed in histogram form, and "out of specification" alarms are sent to a central complex monitor and control system. At any time, the measurement cycle of 120 signals can be interrupted for diagnostic tests on an individual channel. The instrument also routinely monitors and archives the long-term stability of all frequency standards or any other 1-pps source compared against the master clock. All data is stored and made available for

  6. Automated validation of a computer operating system

    NASA Technical Reports Server (NTRS)

    Dervage, M. M.; Milberg, B. A.

    1970-01-01

    Programs apply selected input/output loads to complex computer operating system and measure performance of that system under such loads. Technique lends itself to checkout of computer software designed to monitor automated complex industrial systems.

  7. Analog Input Data Acquisition Software

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2009-01-01

    DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.

  8. RETScreen Plus Software Tutorial

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene D.; Stackhouse, Paul W., Jr.; DeYoung, Russell J.

    2014-01-01

    Greater emphasis is being placed on reducing both the carbon footprint and energy cost of buildings. A building's energy usage depends upon many factors one of the most important is the local weather and climate conditions to which it's electrical, heating and air conditioning systems must respond. Incorporating renewable energy systems, including solar systems, to supplement energy supplies and increase energy efficiency is important to saving costs and reducing emissions. Also retrofitting technologies to buildings requires knowledge of building performance in its current state, potential future climate state, projection of potential savings with capital investment, and then monitoring the performance once the improvements are made. RETScreen Plus is a performance analysis software module that supplies the needed functions of monitoring current building performance, targeting projected energy efficiency improvements and verifying improvements once completed. This tutorial defines the functions of RETScreen Plus as well as outlines the general procedure for monitoring and reporting building energy performance.

  9. Scalable and fail-safe deployment of the ATLAS Distributed Data Management system Rucio

    NASA Astrophysics Data System (ADS)

    Lassnig, M.; Vigne, R.; Beermann, T.; Barisits, M.; Garonne, V.; Serfon, C.

    2015-12-01

    This contribution details the deployment of Rucio, the ATLAS Distributed Data Management system. The main complication is that Rucio interacts with a wide variety of external services, and connects globally distributed data centres under different technological and administrative control, at an unprecedented data volume. It is therefore not possible to create a duplicate instance of Rucio for testing or integration. Every software upgrade or configuration change is thus potentially disruptive and requires fail-safe software and automatic error recovery. Rucio uses a three-layer scaling and mitigation strategy based on quasi-realtime monitoring. This strategy mainly employs independent stateless services, automatic failover, and service migration. The technologies used for deployment and mitigation include OpenStack, Puppet, Graphite, HAProxy and Apache. In this contribution, the interplay between these components, their deployment, software mitigation, and the monitoring strategy are discussed.

  10. Designing an autonomous environment for mission critical operation of the EUVE satellite

    NASA Technical Reports Server (NTRS)

    Abedini, Annadiana; Malina, Roger F.

    1994-01-01

    Since the launch of NASA's Extreme Ultraviolet Explorer (EUVE) satellite in 1992, there has only been a handful of occurrences that have warranted manual intervention in the EUVE Science Operations Center (ESOC). So, in an effort to reduce costs, the current environment is being redesigned to utilize a combination of off-the-shelf packages and recently developed artificial intelligence (AI) software to automate the monitoring of the science payload and ground systems. The successful implementation of systemic automation would allow the ESOC to evolve from a seven day/week, three shift operation, to a seven day/week one shift operation. First, it was necessary to identify all areas considered mission critical. These were defined as follows: (1) The telemetry stream must be monitored autonomously and anomalies identified. (2) Duty personnel must be automatically paged and informed of the occurrence of an anomaly. (3) The 'basic' state of the ground system must be assessed. (4) Monitors should check that the systems and processes needed to continue in a 'healthy' operational mode are working at all times. (5) Network loads should be monitored to ensure that they stay within established limits. (6) Connectivity to Goddard Space Flight Center (GSFC) systems should be monitored as well, not just for connectivity of the network itself but also for the ability to transfer files. (7) All necessary peripheral devices should be monitored. This would include the disks, routers, tape drives, printers, tape carousel, and power supplies. (8) System daemons such as the archival daemon, the Sybase server, the payload monitoring software, and any other necessary processes should be monitored to ensure that they are operational. (9) The monitoring system needs to be redundant so that the failure of a single machine will not paralyze the monitors. (10) Notification should be done by means of looking though a table of the pager numbers for current 'on call' personnel. The software should be capable of dialing out to notify, sending email, and producing error logs. (11) The system should have knowledge of when real-time passes and tape recorder dumps will occur and should know that these passes and data transmissions are successful. Once the design criteria were established, the design team split into two groups: one that addressed the tracking, commanding, and health and safety of the science payload and another group that addressed the ground systems and communications aspects of the overall system.

  11. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring

    PubMed Central

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-01-01

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394

  12. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.

    PubMed

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-08-19

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  13. Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  14. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  15. Integrated software system for improving medical equipment management.

    PubMed

    Bliznakov, Z; Pappous, G; Bliznakova, K; Pallikarakis, N

    2003-01-01

    The evolution of biomedical technology has led to an extraordinary use of medical devices in health care delivery. During the last decade, clinical engineering departments (CEDs) turned toward computerization and application of specific software systems for medical equipment management in order to improve their services and monitor outcomes. Recently, much emphasis has been given to patient safety. Through its Medical Device Directives, the European Union has required all member nations to use a vigilance system to prevent the reoccurrence of adverse events that could lead to injuries or death of patients or personnel as a result of equipment malfunction or improper use. The World Health Organization also has made this issue a high priority and has prepared a number of actions and recommendations. In the present workplace, a new integrated, Windows-oriented system is proposed, addressing all tasks of CEDs but also offering a global approach to their management needs, including vigilance. The system architecture is based on a star model, consisting of a central core module and peripheral units. Its development has been based on the integration of 3 software modules, each one addressing specific predefined tasks. The main features of this system include equipment acquisition and replacement management, inventory archiving and monitoring, follow up on scheduled maintenance, corrective maintenance, user training, data analysis, and reports. It also incorporates vigilance monitoring and information exchange for adverse events, together with a specific application for quality-control procedures. The system offers clinical engineers the ability to monitor and evaluate the quality and cost-effectiveness of the service provided by means of quality and cost indicators. Particular emphasis has been placed on the use of harmonized standards with regard to medical device nomenclature and classification. The system's practical applications have been demonstrated through a pilot evaluation trial.

  16. TES: A modular systems approach to expert system development for real-time space applications

    NASA Technical Reports Server (NTRS)

    Cacace, Ralph; England, Brenda

    1988-01-01

    A major goal of the Space Station era is to reduce reliance on support from ground based experts. The development of software programs using expert systems technology is one means of reaching this goal without requiring crew members to become intimately familiar with the many complex spacecraft subsystems. Development of an expert systems program requires a validation of the software with actual flight hardware. By combining accurate hardware and software modelling techniques with a modular systems approach to expert systems development, the validation of these software programs can be successfully completed with minimum risk and effort. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation tasks as they would otherwise be carried out by a knowledgeable designer. The development process and primary features of TES, a modular systems approach, and the lessons learned are discussed.

  17. Environmental Health Monitor: Advanced Development of Temperature Sensor Suite.

    DTIC Science & Technology

    1995-07-30

    systems was implemented using program code existing at Veritay. The software , written in Microsoft® QuickBASIC, facilitated program changes for...currently unforeseen reason re-calibration is needed, this can be readily * accommodated by a straightforward change in the software program---without...unit. A linear relationship between these differences * was obtained using curve fitting software . The ½/-inch globe to 6-inch globe correlation * was

  18. Technology for Manufacturing Efficiency

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Ground Processing Scheduling System (GPSS) was developed by Ames Research Center, Kennedy Space Center and divisions of the Lockheed Company to maintain the scheduling for preparing a Space Shuttle Orbiter for a mission. Red Pepper Software Company, now part of PeopleSoft, Inc., commercialized the software as their ResponseAgent product line. The software enables users to monitor manufacturing variables, report issues and develop solutions to existing problems.

  19. Tools to manage the enterprise-wide picture archiving and communications system environment.

    PubMed

    Lannum, L M; Gumpf, S; Piraino, D

    2001-06-01

    The presentation will focus on the implementation and utilization of a central picture archiving and communications system (PACS) network-monitoring tool that allows for enterprise-wide operations management and support of the image distribution network. The MagicWatch (Siemens, Iselin, NJ) PACS/radiology information system (RIS) monitoring station from Siemens has allowed our organization to create a service support structure that has given us proactive control of our environment and has allowed us to meet the service level performance expectations of the users. The Radiology Help Desk has used the MagicWatch PACS monitoring station as an applications support tool that has allowed the group to monitor network activity and individual systems performance at each node. Fast and timely recognition of the effects of single events within the PACS/RIS environment has allowed the group to proactively recognize possible performance issues and resolve problems. The PACS/operations group performs network management control, image storage management, and software distribution management from a single, central point in the enterprise. The MagicWatch station allows for the complete automation of software distribution, installation, and configuration process across all the nodes in the system. The tool has allowed for the standardization of the workstations and provides a central configuration control for the establishment and maintenance of the system standards. This report will describe the PACS management and operation prior to the implementation of the MagicWatch PACS monitoring station and will highlight the operational benefits of a centralized network and system-monitoring tool.

  20. Power, Avionics and Software Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  1. Spinoff 2013

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Topics covered include: Innovative Software Tools Measure Behavioral Alertness; Miniaturized, Portable Sensors Monitor Metabolic Health; Patient Simulators Train Emergency Caregivers; Solar Refrigerators Store Life-Saving Vaccines; Monitors Enable Medication Management in Patients' Homes; Handheld Diagnostic Device Delivers Quick Medical Readings; Experiments Result in Safer, Spin-Resistant Aircraft; Interfaces Visualize Data for Airline Safety, Efficiency; Data Mining Tools Make Flights Safer, More Efficient; NASA Standards Inform Comfortable Car Seats; Heat Shield Paves the Way for Commercial Space; Air Systems Provide Life Support to Miners; Coatings Preserve Metal, Stone, Tile, and Concrete; Robots Spur Software That Lends a Hand; Cloud-Based Data Sharing Connects Emergency Managers; Catalytic Converters Maintain Air Quality in Mines; NASA-Enhanced Water Bottles Filter Water on the Go; Brainwave Monitoring Software Improves Distracted Minds; Thermal Materials Protect Priceless, Personal Keepsakes; Home Air Purifiers Eradicate Harmful Pathogens; Thermal Materials Drive Professional Apparel Line; Radiant Barriers Save Energy in Buildings; Open Source Initiative Powers Real-Time Data Streams; Shuttle Engine Designs Revolutionize Solar Power; Procedure-Authoring Tool Improves Safety on Oil Rigs; Satellite Data Aid Monitoring of Nation's Forests; Mars Technologies Spawn Durable Wind Turbines; Programs Visualize Earth and Space for Interactive Education; Processor Units Reduce Satellite Construction Costs; Software Accelerates Computing Time for Complex Math; Simulation Tools Prevent Signal Interference on Spacecraft; Software Simplifies the Sharing of Numerical Models; Virtual Machine Language Controls Remote Devices; Micro-Accelerometers Monitor Equipment Health; Reactors Save Energy, Costs for Hydrogen Production; Cameras Monitor Spacecraft Integrity to Prevent Failures; Testing Devices Garner Data on Insulation Performance; Smart Sensors Gather Information for Machine Diagnostics; Oxygen Sensors Monitor Bioreactors and Ensure Health and Safety; Vision Algorithms Catch Defects in Screen Displays; and Deformable Mirrors Capture Exoplanet Data, Reflect Lasers.

  2. Software Development for the Hobby-Eberly Telescope's Segment Alignment Maintenance System using LABView

    NASA Technical Reports Server (NTRS)

    Hall, Drew P.; Ly, William; Howard, Richard T.; Weir, John; Rakoczy, John; Roe, Fred (Technical Monitor)

    2002-01-01

    The software development for an upgrade to the Hobby-Eberly Telescope (HET) was done in LABView. In order to improve the performance of the HET at the McDonald Observatory, a closed-loop system had to be implemented to keep the mirror segments aligned during periods of observation. The control system, called the Segment Alignment Maintenance System (SAMs), utilized inductive sensors to measure the relative motions of the mirror segments. Software was developed in LABView to tie the sensors, operator interface, and mirror-control motors together. Developing the software in LABView allowed the system to be flexible, understandable, and able to be modified by the end users. Since LABView is built using block diagrams, the software naturally followed the designed control system's block and flow diagrams, and individual software blocks could be easily verified. LABView's many built-in display routines allowed easy visualization of diagnostic and health-monitoring data during testing. Also, since LABView is a multi-platform software package, different programmers could develop the code remotely on various types of machines. LABView s ease of use facilitated rapid prototyping and field testing. There were some unanticipated difficulties in the software development, but the use of LABView as the software "language" for the development of SAMs contributed to the overall success of the project.

  3. Trigger Menu-aware Monitoring for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Hoad, Xanthe; ATLAS Collaboration

    2017-10-01

    We present a“trigger menu-aware” monitoring system designed for the Run-2 data-taking of the ATLAS experiment at the LHC. Unlike Run-1, where a change in the trigger menu had to be matched by the installation of a new software release at Tier-0, the new monitoring system aims to simplify the ATLAS operational workflows. This is achieved by integrating monitoring updates in a quick and flexible manner via an Oracle DB interface. We present the design and the implementation of the menu-aware monitoring, along with lessons from the operational experience of the new system with the 2016 collision data.

  4. Inductive monitoring system constructed from nominal system data and its use in real-time system monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L. (Inventor)

    2008-01-01

    The present invention relates to an Inductive Monitoring System (IMS), its software implementations, hardware embodiments and applications. Training data is received, typically nominal system data acquired from sensors in normally operating systems or from detailed system simulations. The training data is formed into vectors that are used to generate a knowledge database having clusters of nominal operating regions therein. IMS monitors a system's performance or health by comparing cluster parameters in the knowledge database with incoming sensor data from a monitored-system formed into vectors. Nominal performance is concluded when a monitored-system vector is determined to lie within a nominal operating region cluster or lies sufficiently close to a such a cluster as determined by a threshold value and a distance metric. Some embodiments of IMS include cluster indexing and retrieval methods that increase the execution speed of IMS.

  5. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    NASA Astrophysics Data System (ADS)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  6. Software for occupational health and safety risk analysis based on a fuzzy model.

    PubMed

    Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan

    2012-01-01

    Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.

  7. Specification and simulation of behavior of the Continuous Infusion Insulin Pump system.

    PubMed

    Babamir, Seyed Morteza; Dehkordi, Mehdi Borhani

    2014-01-01

    Continuous Infusion Insulin Pump (CIIP) system is responsible for monitoring diabetic blood sugar. In this paper, we aim to specify and simulate the CIIP software behavior. To this end, we first: (1) presented a model consisting of the CIIP system behavior in response to its environment (diabetic) behavior and (2) we formally defined the safety requirements of the system environment (diabetic) in the Z formal modeling language. Such requirements should be satisfied by the CIIP software. Finally, we programmed the model and requirements.

  8. DMS augmented monitoring and diganosis application (DMS AMDA) prototype

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Boyd, Mark A.; Iverson, David L.; Donnell, Brian; Lauritsen, Janet; Doubek, Sharon; Gibson, Jim; Monahan, Christine; Rosenthal, Donald A.

    1993-01-01

    The Data Management System Augmented Monitoring and Diagnosis Application (DMS AMDA) is currently under development at NASA Ames Research Center (ARC). It will provide automated monitoring and diagnosis capabilities for the Space Station Freedom (SSF) Data Management System (DMS) in the Control Center Complex (CCC) at NASA Johnson Space Center. Several advanced automation applications are under development for use in the CCC for other SSF subsystems. The DMS AMDA, however, is the first application to utilize digraph failure analysis techniques and the Extended Realtime FEAT (ERF) application as the core of its diagnostic system design, since the other projects were begun before the digraph tools were available. Model-based diagnosis and expert systems techniques will provide additional capabilities and augment ERF where appropriate. Utilization of system knowledge captured in the design phase of a system in digraphs should result in both a cost savings and a technical advantage during implementation of the diagnostic software. This paper addresses both the programmatic and technical considerations of this approach, and describes the software design and initial prototyping effort.

  9. Hypoxia, Monitoring, and Mitigation System

    DTIC Science & Technology

    2015-08-01

    Oxygen Saturation Measured via Pulse - Oximeter SRS Software Requirements Specification SW Software TI Texas Instruments uPROC Micro-Processor USAARL...Financial) Table of Figures Figure 1: Pulse OX custom module...Tasks 3, 4 and 5 have not been exercised. Sensor definition testing continued on the custom pulse -ox design. Additional refinement on the pulse

  10. 50 CFR 300.45 - Vessel Monitoring System.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... installers may be obtained from the Regional Administrator or the Administrator. (d) Hardware and software specifications. The VMS unit installed and carried on board a vessel to comply with the requirements of this section must consist of hardware and software that is approved by the Administrator and approved by NMFS...

  11. 50 CFR 300.45 - Vessel Monitoring System.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... installers may be obtained from the Regional Administrator or the Administrator. (d) Hardware and software specifications. The VMS unit installed and carried on board a vessel to comply with the requirements of this section must consist of hardware and software that is approved by the Administrator and approved by NMFS...

  12. 50 CFR 300.45 - Vessel Monitoring System.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... installers may be obtained from the Regional Administrator or the Administrator. (d) Hardware and software specifications. The VMS unit installed and carried on board a vessel to comply with the requirements of this section must consist of hardware and software that is approved by the Administrator and approved by NMFS...

  13. A Hydrogen Leak Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1995-01-01

    Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.

  14. Development of autonomous gamma dose logger for environmental monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.

    2012-03-15

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less

  15. Development of autonomous gamma dose logger for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.

    2012-03-01

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.

  16. A fault-tolerant intelligent robotic control system

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam Sing

    1993-01-01

    This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.

  17. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, Senthilkumar

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle,more » to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation unit in near future to carry out the gated radiotherapy treatment.« less

  18. 42 CFR 456.716 - DUR Board.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... using an electronic claims management (ECM) system, apply software approved by the Board. (iii) If prospective DUR is not conducted through an ECM system, as part of general compliance monitoring, ensure that...

  19. 42 CFR 456.716 - DUR Board.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... using an electronic claims management (ECM) system, apply software approved by the Board. (iii) If prospective DUR is not conducted through an ECM system, as part of general compliance monitoring, ensure that...

  20. Metrinome: Continuous Monitoring and Security Validation of Distributed Systems

    DTIC Science & Technology

    2014-03-01

    Integration into the SDLC ( Software Development Life Cycle), Retrieved Nov 06 2013, https://www.owasp.org/ images/f/f6/Integration_into_the_SDLC.ppt [2...assessment as part of the software development life cycle, current approaches suffer from a number of shortcomings that limit their application in...with assessing security and correct functionality. Second, integrated and end-to-end testing and experimentation is often postponed until software

  1. Automatic documentation system extension to multi-manufacturers' computers and to measure, improve, and predict software reliability

    NASA Technical Reports Server (NTRS)

    Simmons, D. B.

    1975-01-01

    The DOMONIC system has been modified to run on the Univac 1108 and the CDC 6600 as well as the IBM 370 computer system. The DOMONIC monitor system has been implemented to gather data which can be used to optimize the DOMONIC system and to predict the reliability of software developed using DOMONIC. The areas of quality metrics, error characterization, program complexity, program testing, validation and verification are analyzed. A software reliability model for estimating program completion levels and one on which to base system acceptance have been developed. The DAVE system which performs flow analysis and error detection has been converted from the University of Colorado CDC 6400/6600 computer to the IBM 360/370 computer system for use with the DOMONIC system.

  2. Strategies for Teaching Internet Ethics.

    ERIC Educational Resources Information Center

    Rader, Martha H.

    2002-01-01

    Ten strategies for teaching Internet ethics are as follows: establish acceptable use policy; communicate ethical codes; model behaviors and values; encourage discussion of ethical issues; reinforce ethical conduct; monitor student behavior; secure systems and software; discourage surfing without supervision; monitor e-mail and websites; and…

  3. Design and Development of Patient Monitoring System

    NASA Astrophysics Data System (ADS)

    Hazwanie Azizulkarim, Azra; Jamil, Muhammad Mahadi Abdul; Ambar, Radzi

    2017-08-01

    Patient monitoring system allows continuous monitoring of patient vital signs, support decision making among medical personnel and help enhance patient care. This system can consist of devices that measure, display and record human’s vital signs, including body temperature, heart rate, blood pressure and other health-related criteria. This paper proposes a system to monitor the patient’s conditions by monitoring the body temperature and pulse rate. The system consists of a pulse rate monitoring software and a wearable device that can measure a subject’s temperature and pulse rate only by using a fingertip. The device is able to record the measurement data and interface to PC via Arduino microcontroller. The recorded data can be viewed as a historical file or can be archived for further analysis. This work also describes the preliminary experimental results of the selected sensors to show the usefulness of the sensors for the proposed patient monitoring system.

  4. Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin

    2017-04-01

    Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.

  5. Implementation of a Portable Personal EKG Signal Monitoring System

    NASA Astrophysics Data System (ADS)

    Tan, Tan-Hsu; Chang, Ching-Su; Chen, Yung-Fu; Lee, Cheng

    This research develops a portable personal EKG signal monitoring system to help patients monitor their EKG signals instantly to avoid the occurrence of tragedies. This system is built with two main units: signal pro-cessing unit and monitoring and evaluation unit. The first unit consists of EKG signal sensor, signal amplifier, digitalization circuit, and related control circuits. The second unit is a software tool developed on an embedded Linux platform (called CSA). Experimental result indicates that the proposed system has the practical potential for users in health monitoring. It is demonstrated to be more convenient and with greater portability than the conventional PC-based EKG signal monitoring systems. Furthermore, all the application units embedded in the system are built with open source codes, no licensed fee is required for operating systems and authorized applications. Thus, the building cost is much lower than the traditional systems.

  6. Equatorial Precession in the Control Software of the Ka-Band Object Observation and Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Jakeman, Hali L.

    2013-01-01

    The Ka-Band Object Observation and Monitoring, or KaBOOM, project is designed mainly to track and characterize near Earth objects. However, a smaller goal of the project would be to monitor pulsars and study their radio frequency signals for use as a clock in interstellar travel. The use of pulsars and their timing accuracy has been studied for decades, but never in the Ka-band of the radio frequency spectrum. In order to begin the use of KaBOOM for this research, the control systems need to be analyzed to ensure its capability. Flaws in the control documentation leave it unclear as to whether the control software processes coordinates from the J200 epoch. This experiment will examine the control software of the Intertronic 12m antennas used for the KaBOOM project and detail its capabilities in its "equatorial mode." The antennas will be pointed at 4 chosen points in the sky on several days while probing the virtual azimuth and elevation (horizon coordinate) registers. The input right ascension and declination coordinates will then be converted separately from the control software to horizontal coordinates and compared, thus determining the ability of the control software to process equatorial coordinates.

  7. Database Performance Monitoring for the Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.

    The Database Performance Monitoring (DPM) software (copyright in processes) is being developed at Sandia National Laboratories to perform quality control analysis on time series data. The software loads time indexed databases (currently csv format), performs a series of quality control tests defined by the user, and creates reports which include summary statistics, tables, and graphics. DPM can be setup to run on an automated schedule defined by the user. For example, the software can be run once per day to analyze data collected on the previous day. HTML formatted reports can be sent via email or hosted on a website.more » To compare performance of several databases, summary statistics and graphics can be gathered in a dashboard view which links to detailed reporting information for each database. The software can be customized for specific applications.« less

  8. Prediction of contaminant fate and transport in potable water systems using H2OFate

    NASA Astrophysics Data System (ADS)

    Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark

    2009-05-01

    BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.

  9. Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  10. Real-time monitoring and control of the plasma hearth process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, M.A.; Carney, K.P.; Peters, G.G.

    1996-05-01

    A distributed monitoring and control system is proposed for a plasma hearth, which will be used to decompose hazardous organic materials, encapsulate actinide waste in an obsidian-like slag, and reduce storage volume of actinide waste. The plasma hearth will be installed at ANL-West with the assistance of SAIC. Real-time monitoring of the off-gas system is accomplished using a Sun Workstation and embedded PCs. LabWindows/CVI software serves as the graphical user interface.

  11. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  12. Exploiting Virtual Synchrony in Distributed Systems

    DTIC Science & Technology

    1987-02-01

    for distributed systems yield the best performance relative to the level of synchronization guaranteed by the primitive . A pro- grammer could then... synchronization facility. Semaphores Replicated binary and general semaphores . Monitors Monitor lock, condition variables and signals. Deadlock detection...We describe applications of a new software abstraction called the virtually synchronous process group. Such a group consists of a set of processes

  13. Automatic Response to Intrusion

    DTIC Science & Technology

    2002-10-01

    Computing Corporation Sidewinder Firewall [18] SRI EMERALD Basic Security Module (BSM) and EMERALD File Transfer Protocol (FTP) Monitors...the same event TCP Wrappers [24] Internet Security Systems RealSecure [31] SRI EMERALD IDIP monitor NAI Labs Generic Software Wrappers Prototype...included EMERALD , NetRadar, NAI Labs UNIX wrappers, ARGuE, MPOG, NetRadar, CyberCop Server, Gauntlet, RealSecure, and the Cyber Command System

  14. A multiparametric automatic method to monitor long-term reproducibility in digital mammography: results from a regional screening programme.

    PubMed

    Gennaro, G; Ballaminut, A; Contento, G

    2017-09-01

    This study aims to illustrate a multiparametric automatic method for monitoring long-term reproducibility of digital mammography systems, and its application on a large scale. Twenty-five digital mammography systems employed within a regional screening programme were controlled weekly using the same type of phantom, whose images were analysed by an automatic software tool. To assess system reproducibility levels, 15 image quality indices (IQIs) were extracted and compared with the corresponding indices previously determined by a baseline procedure. The coefficients of variation (COVs) of the IQIs were used to assess the overall variability. A total of 2553 phantom images were collected from the 25 digital mammography systems from March 2013 to December 2014. Most of the systems showed excellent image quality reproducibility over the surveillance interval, with mean variability below 5%. Variability of each IQI was 5%, with the exception of one index associated with the smallest phantom objects (0.25 mm), which was below 10%. The method applied for reproducibility tests-multi-detail phantoms, cloud automatic software tool to measure multiple image quality indices and statistical process control-was proven to be effective and applicable on a large scale and to any type of digital mammography system. • Reproducibility of mammography image quality should be monitored by appropriate quality controls. • Use of automatic software tools allows image quality evaluation by multiple indices. • System reproducibility can be assessed comparing current index value with baseline data. • Overall system reproducibility of modern digital mammography systems is excellent. • The method proposed and applied is cost-effective and easily scalable.

  15. Intelligent Monitoring of Rocket Test Systems

    NASA Technical Reports Server (NTRS)

    Duran, Esteban; Rocha, Stephanie; Figueroa, Fernando

    2016-01-01

    Stephanie Rocha is an undergraduate student pursuing a degree in Mechanical Engineering. Esteban Duran is pursuing a degree in Computer Science. Our mentor is Fernando Figueroa. Our project involved developing Intelligent Health Monitoring at the High Pressure Gas Facility (HPGF) utilizing the software GensymG2.

  16. Comprehensive evaluation of compaction of asphalt pavements and development of compaction monitoring system.

    DOT National Transportation Integrated Search

    2012-04-01

    This study aimed to conduct a comprehensive evaluation of compaction of asphalt pavements and : develop software for monitoring field compaction in real time. In the first phase of this study, the researchers : built several test sections that were c...

  17. GSOSTATS Database: USAF Synchronous Satellite Catalog Data Conversion Software. User's Guide and Software Maintenance Manual, Version 2.1

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.; Babic, Slavoljub

    1994-01-01

    The United States Air Force (USAF) provides NASA Lewis Research Center with monthly reports containing the Synchronous Satellite Catalog and the associated Two Line Mean Element Sets. The USAF Synchronous Satellite Catalog supplies satellite orbital parameters collected by an automated monitoring system and provided to Lewis Research Center as text files on magnetic tape. Software was developed to facilitate automated formatting, data normalization, cross-referencing, and error correction of Synchronous Satellite Catalog files before loading into the NASA Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS). This document contains the User's Guide and Software Maintenance Manual with information necessary for installation, initialization, start-up, operation, error recovery, and termination of the software application. It also contains implementation details, modification aids, and software source code adaptations for use in future revisions.

  18. Virtual environment and computer-aided technologies used for system prototyping and requirements development

    NASA Technical Reports Server (NTRS)

    Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk

    1993-01-01

    The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.

  19. Software Reliability Issues Concerning Large and Safety Critical Software Systems

    NASA Technical Reports Server (NTRS)

    Kamel, Khaled; Brown, Barbara

    1996-01-01

    This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.

  20. Development of an irrigation scheduling software based on model predicted crop water stress

    USDA-ARS?s Scientific Manuscript database

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  1. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.

    PubMed

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-06-14

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.

  2. Monitoring and detection platform to prevent anomalous situations in home care.

    PubMed

    Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F; Corchado, Juan M

    2014-06-05

    Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost.

  3. Programs for Testing an SSME-Monitoring System

    NASA Technical Reports Server (NTRS)

    Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary; hide

    2007-01-01

    A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.

  4. Commonality and Variability Analysis for Xenon Family of Separation Virtual Machine Monitors (CVAX)

    DTIC Science & Technology

    2017-07-18

    technical approach is a systematic application of Software Product Line Engineering (SPLE). A systematic application requires describing the family and... engineering Software family September 2016 – October 2016 OSD/OUSD/ATL/ASD(R&E)/RDOffice of Information Systems & Cyber Security RD / ASD(R&E) / AT&L...by the evolving open-source Xen hypervisor. The technical approach is a systematic application of Software Product Line Engineering (SPLE). A

  5. MonALISA, an agent-based monitoring and control system for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.

    2017-10-01

    MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.

  6. Data recording and trend display during anaesthesia using 'MacLab'.

    PubMed

    Kennedy, R R

    1991-08-01

    A single screen display of variables monitored during anaesthesia may be ergonomically superior to the 'stack' of monitors seen in many anaesthetising locations. A system based on a MacLab (Analogue Digital Instruments) analogue-to-digital convertor used in conjunction with a Macintosh computer was evaluated. The system was configured to provide trend displays of up to eight variables on a single screen. It was found to be a useful adjunct to monitoring during anaesthesia. Advantages of this system are low cost, flexibility, and the quality of the software and support provided. Limitations of this and other similar systems are discussed.

  7. Integrated photovoltaic (PV) monitoring system

    NASA Astrophysics Data System (ADS)

    Mahinder Singh, Balbir Singh; Husain, NurSyahidah; Mohamed, Norani Muti

    2012-09-01

    The main aim of this research work is to design an accurate and reliable monitoring system to be integrated with solar electricity generating system. The performance monitoring system is required to ensure that the PVEGS is operating at an optimum level. The PV monitoring system is able to measure all the important parameters that determine an optimum performance. The measured values are recorded continuously, as the data acquisition system is connected to a computer, and data is stored at fixed intervals. The data can be locally used and can also be transmitted via internet. The data that appears directly on the local monitoring system is displayed via graphical user interface that was created by using Visual basic and Apache software was used for data transmission The accuracy and reliability of the developed monitoring system was tested against the data that captured simultaneously by using a standard power quality analyzer device. The high correlation which is 97% values indicates the level of accuracy of the monitoring system. The aim of leveraging on a system for continuous monitoring system is achieved, both locally, and can be viewed simultaneously at a remote system.

  8. Monitoring Wildlife Interactions with Their Environment: An Interdisciplinary Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles-Smith, Lauren E.; Domnguez, Ignacio X.; Fornaro, Robert J.

    In a rapidly changing world, wildlife ecologists strive to correctly model and predict complex relationships between animals and their environment, which facilitates management decisions impacting public policy to conserve and protect delicate ecosystems. Recent advances in monitoring systems span scientific domains, including animal and weather monitoring devices and landscape classification mapping techniques. The current challenge is how to combine and use detailed output from various sources to address questions spanning multiple disciplines. WolfScout wildlife and weather tracking system is a software tool capable of filling this niche. WolfScout automates integration of the latest technological advances in wildlife GPS collars, weathermore » stations, drought conditions, and severe weather reports, and animal demographic information. The WolfScout database stores a variety of classified landscape maps including natural and manmade features. Additionally, WolfScout’s spatial database management system allows users to calculate distances between animals’ location and landscape characteristics, which are linked to the best approximation of environmental conditions at the animal’s location during the interaction. Through a secure website, data are exported in formats compatible with multiple software programs including R and ArcGIS. The WolfScout design promotes interoperability in data, between researchers, and software applications while standardizing analyses of animal interactions with their environment.« less

  9. Developing Signal-Pattern-Recognition Programs

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Hammen, David

    2006-01-01

    Pattern Interpretation and Recognition Application Toolkit Environment (PIRATE) is a block-oriented software system that aids the development of application programs that analyze signals in real time in order to recognize signal patterns that are indicative of conditions or events of interest. PIRATE was originally intended for use in writing application programs to recognize patterns in space-shuttle telemetry signals received at Johnson Space Center's Mission Control Center: application programs were sought to (1) monitor electric currents on shuttle ac power busses to recognize activations of specific power-consuming devices, (2) monitor various pressures and infer the states of affected systems by applying a Kalman filter to the pressure signals, (3) determine fuel-leak rates from sensor data, (4) detect faults in gyroscopes through analysis of system measurements in the frequency domain, and (5) determine drift rates in inertial measurement units by regressing measurements against time. PIRATE can also be used to develop signal-pattern-recognition software for different purposes -- for example, to monitor and control manufacturing processes.

  10. Instrumentation Automation for Concrete Structures: Report 2, Automation Hardware and Retrofitting Techniques, and Report 3, Available Data Collection and Reduction Software

    DTIC Science & Technology

    1987-06-01

    commercial products. · OP -- Typical cutout at a plumbiinc location where an automated monitoring system has bv :• installed. The sensor used with the...This report provides a description of commercially available sensors , instruments, and ADP equipment that may be selected to fully automate...automated. The automated plumbline monitoring system includes up to twelve sensors , repeaters, a system controller, and a printer. The system may

  11. Launch Processing System. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  12. Software for embedded processors: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Bogaerts, J. A. C.

    1990-08-01

    Data Acquistion systems in HEP experiments use a wide spectrum of computers to cope with two major problems: high event rates and a large data volume. They do this by using special fast trigger processors at the source to reduce the event rate by several orders of magnitude. The next stage of a data acquisition system consists of a network of fast but conventional microprocessors which are embedded in high speed bus systems where data is still further reduced, filtered and merged. In the final stage complete events are farmed out to a another collection of processors, which reconstruct the events and perhaps achieve a further event rejection by a small factor, prior to recording onto magnetic tape. Detectors are monitored by analyzing a fraction of the data. This may be done for individual detectors at an early state of the data acquisition or it may be delayed till the complete events are available. A network of workstations is used for monitoring, displays and run control. Software for trigger processors must have a simple structure. Rejection algorithms are carefully optimized, and overheads introduced by system software cannot be tolerated. The embedded microprocessors have to co-operate, and need to be synchronized with the preceding and following stages. Real time kernels are typically used to solve synchronization and communication problems. Applications are usually coded in C, which is reasonably efficient and allows direct control over low level hardware functions. Event reconstruction software is very similar or even identical to offline software, predominantly written in FORTRAN. With the advent of powerful RISC processors, and with manufacturers tending to adopt open bus architectures, there is a move towards commercial processors and hence the introduction of the UNIX operating system. Building and controlling such a heterogeneous data acquisition system puts a heavy strain on the software. Communications is now as important as CPU capacity and I/O bandwidth, the traditional key parameters of a HEP data acquisition system. Software engineering and real time system simulation tools are becoming indispensible for the design of future data acquisition systems.

  13. Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    King, Robert; CMS Muon Group Team

    2017-01-01

    The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.

  14. A software control system for the ACTS high-burst-rate link evaluation terminal

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Daugherty, Elaine S.

    1991-01-01

    Control and performance monitoring of NASA's High Burst Rate Link Evaluation Terminal (HBR-LET) is accomplished by using several software control modules. Different software modules are responsible for controlling remote radio frequency (RF) instrumentation, supporting communication between a host and a remote computer, controlling the output power of the Link Evaluation Terminal and data display. Remote commanding of microwave RF instrumentation and the LET digital ground terminal allows computer control of various experiments, including bit error rate measurements. Computer communication allows system operators to transmit and receive from the Advanced Communications Technology Satellite (ACTS). Finally, the output power control software dynamically controls the uplink output power of the terminal to compensate for signal loss due to rain fade. Included is a discussion of each software module and its applications.

  15. Automated Transfer Vehicle (ATV) Critical Safety Software Overview

    NASA Astrophysics Data System (ADS)

    Berthelier, D.

    2002-01-01

    The European Automated Transfer Vehicle is an unmanned transportation system designed to dock to International Space Station (ISS) and to contribute to the logistic servicing of the ISS. Concisely, ATV control is realized by a nominal flight control function (using computers, softwares, sensors, actuators). In order to cover the extreme situations where this nominal chain can not ensure safe trajectory with respect to ISS, a segregated proximity flight safety function is activated, where unsafe free drift trajectories can be encountered. This function relies notably on a segregated computer, the Monitoring and Safing Unit (MSU) ; in case of major ATV malfunction detection, ATV is then controlled by MSU software. Therefore, this software is critical because a MSU software failure could result in catastrophic consequences. This paper provides an overview both of this software functions and of the software development and validation method which is specific considering its criticality. First part of the paper describes briefly the proximity flight safety chain. Second part deals with the software functions. Indeed, MSU software is in charge of monitoring nominal computers and ATV corridors, using its own navigation algorithms, and, if an abnormal situation is detected, it is in charge of the ATV control during the Collision Avoidance Manoeuvre (CAM) consisting in an attitude controlled braking boost, followed by a Post-CAM manoeuvre : a Sun-pointed ATV attitude control during up to 24 hours on a safe trajectory. Monitoring, navigation and control algorithms principles are presented. Third part of this paper describes the development and validation process : algorithms functional studies , ADA coding and unit validations ; algorithms ADA code integration and validation on a specific non real-time MATLAB/SIMULINK simulator ; global software functional engineering phase, architectural design, unit testing, integration and validation on target computer.

  16. Description of real-time Ada software implementation of a power system monitor for the Space Station Freedom PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Ludwig, Kimberly; Mackin, Michael; Wright, Theodore

    1991-01-01

    The Ada language software development to perform the electrical system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed is described. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electrical power system to be used in the Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 382/20e computers connected through an 802.4 local area network. One of these computers is designated as the control node with the other four acting as subsidiary controllers. The subsidiary controllers are connected to the power control components with a Mil-Std-1553 network. An operator interface is supplied by adding a sixth computer. The power system monitor algorithm is comprised of several functions including: periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data is collected from the switchgear sensors every 100 milliseconds, then passed through a 2 Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The reporting mechanism notifies an operator of any abnormalities in the system. Once per second, the system monitor provides data to the control node for further processing, such as state estimation. The system monitor required a hardware time interrupt to activate the data acquisition function. The execution time of the code was optimized using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities. A summary of the advantages and side effects of this technique are discussed.

  17. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    NASA Astrophysics Data System (ADS)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  18. Combining real-time monitoring and knowledge-based analysis in MARVEL

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Quan, A. G.; Angelino, R.; Veregge, J. R.

    1993-01-01

    Real-time artificial intelligence is gaining increasing attention for applications in which conventional software methods are unable to meet technology needs. One such application area is the monitoring and analysis of complex systems. MARVEL, a distributed monitoring and analysis tool with multiple expert systems, was developed and successfully applied to the automation of interplanetary spacecraft operations at NASA's Jet Propulsion Laboratory. MARVEL implementation and verification approaches, the MARVEL architecture, and the specific benefits that were realized by using MARVEL in operations are described.

  19. A portable fetal heart monitor and its adaption to the detection of certain prenatal abnormalities

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A.

    1994-01-01

    There were three primary objectives for this task: (1) The investigation of the feasibility of making the fetal heart rate monitor portable, using a laptop computer; (2) Improvements in the signal processing for the monitor; and (3) Implementation of a real-time hardware software system. These tasks have been completed as discussed in the following section.

  20. The PartoPen: Using Digital Pen Technology to Improve Maternal Labor Monitoring in the Developing World

    ERIC Educational Resources Information Center

    Underwood, Heather Marie

    2013-01-01

    This dissertation presents the PartoPen, a new approach to addressing maternal labor monitoring challenges in developing countries. The PartoPen is a hardware and software system that uses digital pen technology to enhance, rather than replace, the paper-based labor monitoring tool known as the partograph. In the developing world, correct use of…

  1. Method and apparatus for single-stepping coherence events in a multiprocessor system under software control

    DOEpatents

    Blumrich, Matthias A.; Salapura, Valentina

    2010-11-02

    An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.

  2. WMAP C&DH Software

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan; Leath, Tim; Ferrer, Art; Miller, Todd; Walters, Mark; Savadkin, Bruce; Wu, Ji-Wei; Slegel, Steve; Stagmer, Emory

    2007-01-01

    The command-and-data-handling (C&DH) software of the Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft functions as the sole interface between (1) the spacecraft and its instrument subsystem and (2) ground operations equipment. This software includes a command-decoding and -distribution system, a telemetry/data-handling system, and a data-storage-and-playback system. This software performs onboard processing of attitude sensor data and generates commands for attitude-control actuators in a closed-loop fashion. It also processes stored commands and monitors health and safety functions for the spacecraft and its instrument subsystems. The basic functionality of this software is the same of that of the older C&DH software of the Rossi X-Ray Timing Explorer (RXTE) spacecraft, the main difference being the addition of the attitude-control functionality. Previously, the C&DH and attitude-control computations were performed by different processors because a single RXTE processor did not have enough processing power. The WMAP spacecraft includes a more-powerful processor capable of performing both computations.

  3. Hybrid Modeling Improves Health and Performance Monitoring

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  4. An Assessment of Integrated Health Management (IHM) Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lybeck; M. Tawfik; L. Bond

    In order to meet the ever increasing demand for energy, the United States nuclear industry is turning to life extension of existing nuclear power plants (NPPs). Economically ensuring the safe, secure, and reliable operation of aging nuclear power plants presents many challenges. The 2009 Light Water Reactor Sustainability Workshop identified online monitoring of active and structural components as essential to the better understanding and management of the challenges posed by aging nuclear power plants. Additionally, there is increasing adoption of condition-based maintenance (CBM) for active components in NPPs. These techniques provide a foundation upon which a variety of advanced onlinemore » surveillance, diagnostic, and prognostic techniques can be deployed to continuously monitor and assess the health of NPP systems and components. The next step in the development of advanced online monitoring is to move beyond CBM to estimating the remaining useful life of active components using prognostic tools. Deployment of prognostic health management (PHM) on the scale of a NPP requires the use of an integrated health management (IHM) framework - a software product (or suite of products) used to manage the necessary elements needed for a complete implementation of online monitoring and prognostics. This paper provides a thoughtful look at the desirable functions and features of IHM architectures. A full PHM system involves several modules, including data acquisition, system modeling, fault detection, fault diagnostics, system prognostics, and advisory generation (operations and maintenance planning). The standards applicable to PHM applications are indentified and summarized. A list of evaluation criteria for PHM software products, developed to ensure scalability of the toolset to an environment with the complexity of a NPP, is presented. Fourteen commercially available PHM software products are identified and classified into four groups: research tools, PHM system development tools, deployable architectures, and peripheral tools.« less

  5. On the matter of the reliability of the chemical monitoring system based on the modern control and monitoring devices

    NASA Astrophysics Data System (ADS)

    Andriushin, A. V.; Dolbikova, N. S.; Kiet, S. V.; Merzlikina, E. I.; Nikitina, I. S.

    2017-11-01

    The reliability of the main equipment of any power station depends on the correct water chemistry. In order to provide it, it is necessary to monitor the heat carrier quality, which, in its turn, is provided by the chemical monitoring system. Thus, the monitoring system reliability plays an important part in providing reliability of the main equipment. The monitoring system reliability is determined by the reliability and structure of its hardware and software consisting of sensors, controllers, HMI and so on [1,2]. Workers of a power plant dealing with the measuring equipment must be informed promptly about any breakdowns in the monitoring system, in this case they are able to remove the fault quickly. A computer consultant system for personnel maintaining the sensors and other chemical monitoring equipment can help to notice faults quickly and identify their possible causes. Some technical solutions for such a system are considered in the present paper. The experimental results were obtained on the laboratory and experimental workbench representing a physical model of a part of the chemical monitoring system.

  6. A reliable low cost integrated wireless sensor network for water quality monitoring and level control system in UAE

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Khaleeq, Hyder; Abou-Elnour, Ahmad

    2016-04-01

    In the present work, wireless sensor network and real-time controlling and monitoring system are integrated for efficient water quality monitoring for environmental and domestic applications. The proposed system has three main components (i) the sensor circuits, (ii) the wireless communication system, and (iii) the monitoring and controlling unit. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee and myRIO wireless modules have been used to implement the wireless system. The water quality parameters are accurately measured by the present computer based monitoring system and the measurement results are instantaneously transmitted and published with minimum infrastructure costs and maximum flexibility in term of distance or location. The mobility and durability of the proposed system are further enhanced by fully powering via a photovoltaic system. The reliability and effectiveness of the system are evaluated under realistic operating conditions.

  7. EPICS as a MARTe Configuration Environment

    NASA Astrophysics Data System (ADS)

    Valcarcel, Daniel F.; Barbalace, Antonio; Neto, André; Duarte, André S.; Alves, Diogo; Carvalho, Bernardo B.; Carvalho, Pedro J.; Sousa, Jorge; Fernandes, Horácio; Goncalves, Bruno; Sartori, Filippo; Manduchi, Gabriele

    2011-08-01

    The Multithreaded Application Real-Time executor (MARTe) software provides an environment for the hard real-time execution of codes while leveraging a standardized algorithm development process. The Experimental Physics and Industrial Control System (EPICS) software allows the deployment and remote monitoring of networked control systems. Channel Access (CA) is the protocol that enables the communication between EPICS distributed components. It allows to set and monitor process variables across the network belonging to different systems. The COntrol and Data Acquisition and Communication (CODAC) system for the ITER Tokamak will be EPICS based and will be used to monitor and live configure the plant controllers. The reconfiguration capability in a hard real-time system requires strict latencies from the request to the actuation and it is a key element in the design of the distributed control algorithm. Presently, MARTe and its objects are configured using a well-defined structured language. After each configuration, all objects are destroyed and the system rebuilt, following the strong hard real-time rule that a real-time system in online mode must behave in a strictly deterministic fashion. This paper presents the design and considerations to use MARTe as a plant controller and enable it to be EPICS monitorable and configurable without disturbing the execution at any time, in particular during a plasma discharge. The solutions designed for this will be presented and discussed.

  8. A New Control System Software for SANS BATAN Spectrometer in Serpong, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharoto; Putra, Edy Giri Rachman

    2010-06-22

    The original main control system of the 36 meter small-angle neutron scattering (SANS) BATAN Spectrometer (SMARTer) has been replaced with the new ones due to the malfunction of the main computer. For that reason, a new control system software for handling all the control systems was also developed in order to put the spectrometer back in operation. The developed software is able to control the system such as rotation movement of six pinholes system, vertical movement of four neutron guide system with the total length of 16.5 m, two-directional movement of a neutron beam stopper, forward-backward movement of a 2Dmore » position sensitive detector (2D-PSD) along 16.7 m, etc. A Visual Basic language program running on Windows operating system was employed to develop the software and it can be operated by other remote computers in the local area network. All device positions and command menu are displayed graphically in the main monitor or window and each device control can be executed by clicking the control button. Those advantages are necessary required for developing a new user-friendly control system software. Finally, the new software has been tested for handling a complete SANS experiment and it works properly.« less

  9. A New Control System Software for SANS BATAN Spectrometer in Serpong, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharoto,; Putra, Edy Giri Rachman

    2010-06-22

    The original main control system of the 36 meter small‐angle neutron scattering (SANS) BATAN Spectrometer (SMARTer) has been replaced with the new ones due to the malfunction of the main computer. For that reason, a new control system software for handling all the control systems was also developed in order to put the spectrometer back in operation. The developed software is able to control the system such as rotation movement of six pinholes system, vertical movement of four neutron guide system with the total length of 16.5 m, two‐directional movement of a neutron beam stopper, forward‐backward movement of a 2Dmore » position sensitive detector (2D‐PSD) along 16.7 m, etc. A Visual Basic language program running on Windows operating system was employed to develop the software and it can be operated by other remote computers in the local area network. All device positions and command menu are displayed graphically in the main monitor or window and each device control can be executed by clicking the control button. Those advantages are necessary required for developing a new user‐friendly control system software. Finally, the new software has been tested for handling a complete SANS experiment and it works properly.« less

  10. [A personal computer-based system for online monitoring of neurologic intensive care patients].

    PubMed

    Stoll, M; Hamann, G; Jost, V; Schimrigk, K

    1992-03-01

    In the management of neurological intensive care patients with an intracranial space-consuming process the measurement and recording of intracranial pressure together with arterial blood pressure is of special interest. These parameters can be used to monitor the treatment of brain edema and hypertension. Intracranial pressure measurement is also important in the diagnosis of the various subtypes of hydrocephalus. Not only the absolute figures, but also the recognition of specific pressure-patterns is of particular clinical and scientific interest. This new, easily installed and inexpensive system comprises a PC and a conventional monitor, which are connected by an AD-conversion card. Our software, specially developed for this system demonstrates, stores and prints the online-course and the trend of the measurements. In addition it is also possible to view the online-course of conspicuous parts of the trend curve retrospectively and to use these values for statistical analyses. Object-orientated software development techniques were used for flexible graphic output on the screen, printer or to a file. Though developed for this specific purpose, this system is also suitable for recording continuous, longer-term measurements in general.

  11. Remote photoplethysmography system for unsupervised monitoring regional anesthesia effectiveness

    NASA Astrophysics Data System (ADS)

    Rubins, U.; Miscuks, A.; Marcinkevics, Z.; Lange, M.

    2017-12-01

    Determining the level of regional anesthesia (RA) is vitally important to both an anesthesiologist and surgeon, also knowing the RA level can protect the patient and reduce the time of surgery. Normally to detect the level of RA, usually a simple subjective (sensitivity test) and complicated quantitative methods (thermography, neuromyography, etc.) are used, but there is not yet a standardized method for objective RA detection and evaluation. In this study, the advanced remote photoplethysmography imaging (rPPG) system for unsupervised monitoring of human palm RA is demonstrated. The rPPG system comprises compact video camera with green optical filter, surgical lamp as a light source and a computer with custom-developed software. The algorithm implemented in Matlab software recognizes the palm and two dermatomes (Medial and Ulnar innervation), calculates the perfusion map and perfusion changes in real-time to detect effect of RA. Seven patients (aged 18-80 years) undergoing hand surgery received peripheral nerve brachial plexus blocks during the measurements. Clinical experiments showed that our rPPG system is able to perform unsupervised monitoring of RA.

  12. Automated CFD Parameter Studies on Distributed Parallel Computers

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Aftosmis, Michael; Pandya, Shishir; Tejnil, Edward; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The objective of the current work is to build a prototype software system which will automated the process of running CFD jobs on Information Power Grid (IPG) resources. This system should remove the need for user monitoring and intervention of every single CFD job. It should enable the use of many different computers to populate a massive run matrix in the shortest time possible. Such a software system has been developed, and is known as the AeroDB script system. The approach taken for the development of AeroDB was to build several discrete modules. These include a database, a job-launcher module, a run-manager module to monitor each individual job, and a web-based user portal for monitoring of the progress of the parameter study. The details of the design of AeroDB are presented in the following section. The following section provides the results of a parameter study which was performed using AeroDB for the analysis of a reusable launch vehicle (RLV). The paper concludes with a section on the lessons learned in this effort, and ideas for future work in this area.

  13. Monitoring the nitrification and identifying the endpoint of ammonium oxidation by using a novel system of titrimetry.

    PubMed

    Zhang, Xin; Zhang, Daijun; Lu, Peili; Bai, Cui; Xiao, Pengying

    2011-01-01

    Based on the structure of the hybrid respirometer previously developed in our group, a novel implementation for titrimetry was developed, in which two pH electrodes were installed at the inlet and outlet of the measuring cell. The software capable of digital filtering and titration time delay correction was developed in LabVIEW. The hardware and software of the titrimeter and the respirometer were integrated to construct a novel system of respirometry-titrimetry. The system was applied to monitor a batch nitrification process. The obtained profiles of oxygen uptake rate (OUR) and hydrogen ion production rate (HPR) are consistent with each other and agree with the principle of the biological nitrification reaction. According to the OUR and HPR measurements, the oxidized ammonium concentrations were estimated accurately. Furthermore, the endpoint of ammonium oxidation was identified with much higher sensitivity by the HPR measurement. The system could be potentially used for on-line monitoring of biochemical reactions occurring in any kind of bioreactors because its measuring cell is completely independent of the bioreactor.

  14. Architectures and Evaluation for Adjustable Control Autonomy for Space-Based Life Support Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra K.

    2001-01-01

    In the past five years, a number of automation applications for control of crew life support systems have been developed and evaluated in the Adjustable Autonomy Testbed at NASA's Johnson Space Center. This paper surveys progress on an adjustable autonomous control architecture for situations where software and human operators work together to manage anomalies and other system problems. When problems occur, the level of control autonomy can be adjusted, so that operators and software agents can work together on diagnosis and recovery. In 1997 adjustable autonomy software was developed to manage gas transfer and storage in a closed life support test. Four crewmembers lived and worked in a chamber for 91 days, with both air and water recycling. CO2 was converted to O2 by gas processing systems and wheat crops. With the automation software, significantly fewer hours were spent monitoring operations. System-level validation testing of the software by interactive hybrid simulation revealed problems both in software requirements and implementation. Since that time, we have been developing multi-agent approaches for automation software and human operators, to cooperatively control systems and manage problems. Each new capability has been tested and demonstrated in realistic dynamic anomaly scenarios, using the hybrid simulation tool.

  15. Research a Novel Integrated and Dynamic Multi-object Trade-Off Mechanism in Software Project

    NASA Astrophysics Data System (ADS)

    Jiang, Weijin; Xu, Yuhui

    Aiming at practical requirements of present software project management and control, the paper presented to construct integrated multi-object trade-off model based on software project process management, so as to actualize integrated and dynamic trade-oil of the multi-object system of project. Based on analyzing basic principle of dynamic controlling and integrated multi-object trade-off system process, the paper integrated method of cybernetics and network technology, through monitoring on some critical reference points according to the control objects, emphatically discussed the integrated and dynamic multi- object trade-off model and corresponding rules and mechanism in order to realize integration of process management and trade-off of multi-object system.

  16. A Data-Driven Solution for Performance Improvement

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Marketed as the "Software of the Future," Optimal Engineering Systems P.I. EXPERT(TM) technology offers statistical process control and optimization techniques that are critical to businesses looking to restructure or accelerate operations in order to gain a competitive edge. Kennedy Space Center granted Optimal Engineering Systems the funding and aid necessary to develop a prototype of the process monitoring and improvement software. Completion of this prototype demonstrated that it was possible to integrate traditional statistical quality assurance tools with robust optimization techniques in a user- friendly format that is visually compelling. Using an expert system knowledge base, the software allows the user to determine objectives, capture constraints and out-of-control processes, predict results, and compute optimal process settings.

  17. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    NASA Astrophysics Data System (ADS)

    Varela Rodriguez, F.

    2011-12-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  18. Building software tools to help contextualize and interpret monitoring data

    USDA-ARS?s Scientific Manuscript database

    Even modest monitoring efforts at landscape scales produce large volumes of data.These are most useful if they can be interpreted relative to land potential or other similar sites. However, for many ecological systems reference conditions may not be defined or are poorly described, which hinders und...

  19. Impact of Shutting Down En Route Primary Radars within CONUS Interior

    DTIC Science & Technology

    1993-06-01

    Remote Control Interface Unit ( RCIU ) RMS software for the primary radar will be deleted. Any dependency of the secondary radar on the primary radar data...Generators RCIU Remote Control and Interface Unit RMM Remote Monitoring and Maintenance RMMS Remote Maintenance Monitoring System RMS Remote Maintenance

  20. Grey Incidence analyze of Environment Monitoring Data and Research on the Disease Prevention Measures of Longmen Grottoes

    NASA Astrophysics Data System (ADS)

    LeiLei, Zheng; XueZhi, Fu; Fei, Chu

    2018-05-01

    Longmen Grottoes was afflicted with many diseases for a long period such as weathering, seepage water and organism growth. Those adverse factors were threatening to preserve cultural relic. Longmen Grottoes conservation and restoration project being put into effect by UNESCO in 2002. The Longmen Grottoes area environmental monitoring system was built in order to comprehensively master the distribution law of environmental factors over the Longmen Grottoes. The monitoring items contains temperature, humidity, wind direction, wind speed, precipitation, light intensity,water content in soil, the rock surface temperature and so on. At the same time, monitoring three experiment caves, monitoring the inside temperature, humidity, seepage water and the wall face temperature etc. So as to analyze the relationship between cave environment and regional environment. We statistical and arrange the data using Excel software, Kgraph software and DPS software. Through the grey incidence analyze, the incidence matrix and the correlation degree of the environmental factors was obtained[1]. The main environment factors for the formation of the disease had been researched. Based on the existing environmental monitor data, the relevance of seepage water and fracture displacement with other environmental factors had been studied, and the relational order was obtained. Corresponding preventive measures were put forward by the formation mechanism analyze of the disease.

  1. Object-Oriented Technology-Based Software Library for Operations of Water Reclamation Centers

    NASA Astrophysics Data System (ADS)

    Otani, Tetsuo; Shimada, Takehiro; Yoshida, Norio; Abe, Wataru

    SCADA systems in water reclamation centers have been constructed based on hardware and software that each manufacturer produced according to their design. Even though this approach used to be effective to realize real-time and reliable execution, it is an obstacle to cost reduction about system construction and maintenance. A promising solution to address the problem is to set specifications that can be used commonly. In terms of software, information model approach has been adopted in SCADA systems in other field, such as telecommunications and power systems. An information model is a piece of software specification that describes a physical or logical object to be monitored. In this paper, we propose information models for operations of water reclamation centers, which have not ever existed. In addition, we show the feasibility of the information model in terms of common use and processing performance.

  2. A portable battery-powered flow injection monitor for the in situ analysis of nitrate in natural waters

    PubMed Central

    Blundell, N. J.; Hopkins, A.; Worsfold, P. J.; Casey, H.

    1993-01-01

    The design and performance of a portable, automated flow injection (FI)-based photometric monitor are described. The system is controlled by an in-house microcomputer system that enables the monitor (including a solid state detector) to operate from a 12 V battery supply. The monitor uses the cadmium reduction/diazotization method to analyse for nitrate with a linear range of 0 to 12 mg l-1 and a limit of detection of 0.05 mg l-1 (NO3-N). The hardware and software design, monitor performance and results obtained during unattended operation are presented. PMID:18924971

  3. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Kang, Y. W.; Byun, Y. I.

    2007-12-01

    We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512), KAF-1602E (15367times;1024), KAF-3200E (2184×1472) made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  4. Engineering studies of vectorcardiographs in blood pressure measuring systems

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The following projects involving cardiovascular instrumentation were conducted: (1) the development and fabrication of a three-dimensional display measurement system for vectorcardiograms, (2) the development and fabrication of a cardiovascular monitoring system to noninvasively monitor beat-by-beat the blood pressure and heart rate using aortic pulse wave velocity, (3) the development of software for an interactive system to analyze systolic time interval data, and (4) the development of microprocessor-based physiologic instrumentation, focussing initially on EKG rhythm analysis. Brief descriptions of these projects were given.

  5. Remote Control and Monitoring of VLBI Experiments by Smartphones

    NASA Astrophysics Data System (ADS)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  6. Real-Time GNSS Positioning with JPL's new GIPSYx Software

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2016-12-01

    The JPL Global Differential GPS (GDGPS) System is now producing real-time orbit and clock solutions for GPS, GLONASS, BeiDou, and Galileo. The operations are based on JPL's next generation geodetic analysis and data processing software, GIPSYx (also known at RTGx). We will examine the impact of the nascent GNSS constellations on real-time kinematic positioning for earthquake monitoring, and assess the marginal benefits from each constellation. We will discus the options for signal selection, inter-signal bias modeling, and estimation strategies in the context of real-time point positioning. We will provide a brief overview of the key features and attributes of GIPSYx. Finally we will describe the current natural hazard monitoring services from the GDGPS System.

  7. Development of the ConnDOT horizontal curve classification software.

    DOT National Transportation Integrated Search

    2014-06-01

    The Highway Performance Monitoring System (HPMS) is a national, highway information system that requires states : to collect and submit data on the extent, condition, performance, use, and operating characteristics of the nation's : highways. HPMS re...

  8. Continuous Cough Monitoring Using Ambient Sound Recording During Convalescence from a COPD Exacerbation.

    PubMed

    Crooks, Michael G; den Brinker, Albertus; Hayman, Yvette; Williamson, James D; Innes, Andrew; Wright, Caroline E; Hill, Peter; Morice, Alyn H

    2017-06-01

    Cough is common in chronic obstructive pulmonary disease (COPD) and is associated with frequent exacerbations and increased mortality. Cough increases during acute exacerbations (AE-COPD), representing a possible metric of clinical deterioration. Conventional cough monitors accurately report cough counts over short time periods. We describe a novel monitoring system which we used to record cough continuously for up to 45 days during AE-COPD convalescence. This is a longitudinal, observational study of cough monitoring in AE-COPD patients discharged from a single teaching hospital. Ambient sound was recorded from two sites in the domestic environment and analysed using novel cough classifier software. For comparison, the validated hybrid HACC/LCM cough monitoring system was used on days 1, 5, 20 and 45. Patients were asked to record symptoms daily using diaries. Cough monitoring data were available for 16 subjects with a total of 568 monitored days. Daily cough count fell significantly from mean ± SEM 272.7 ± 54.5 on day 1 to 110.9 ± 26.3 on day 9 (p < 0.01) before plateauing. The absolute cough count detected by the continuous monitoring system was significantly lower than detected by the hybrid HACC/LCM system but normalised counts strongly correlated (r = 0.88, p < 0.01) demonstrating an ability to detect trends. Objective cough count and subjective cough scores modestly correlated (r = 0.46). Cough frequency declines significantly following AE-COPD and the reducing trend can be detected using continuous ambient sound recording and novel cough classifier software. Objective measurement of cough frequency has the potential to enhance our ability to monitor the clinical state in patients with COPD.

  9. System and Method for Monitoring Distributed Asset Data

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2015-01-01

    A computer-based monitoring system and monitoring method implemented in computer software for detecting, estimating, and reporting the condition states, their changes, and anomalies for many assets. The assets are of same type, are operated over a period of time, and outfitted with data collection systems. The proposed monitoring method accounts for variability of working conditions for each asset by using regression model that characterizes asset performance. The assets are of the same type but not identical. The proposed monitoring method accounts for asset-to-asset variability; it also accounts for drifts and trends in the asset condition and data. The proposed monitoring system can perform distributed processing of massive amounts of historical data without discarding any useful information where moving all the asset data into one central computing system might be infeasible. The overall processing is includes distributed preprocessing data records from each asset to produce compressed data.

  10. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings

    PubMed Central

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-01-01

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes. PMID:27314357

  11. Software Intensive Systems Cost and Schedule Estimation

    DTIC Science & Technology

    2013-06-13

    Radio communication systems RTE Electronic navigation systems RTE Space vehicle electronic tracking systems RTE Sonar systems RTE...MONITORING AGENCY NAME(S) AND ADDRESS(ES) DASD (SE), DoD, AIRFORCE 10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR/MONITOR’S REPORT NUMBER(S) 12... 11   3.2.2  SEER‐SEM

  12. An application of the Multi-Purpose System Simulation /MPSS/ model to the Monitor and Control Display System /MACDS/ at the National Aeronautics and Space Administration /NASA/ Goddard Space Flight Center /GSFC/

    NASA Technical Reports Server (NTRS)

    Mill, F. W.; Krebs, G. N.; Strauss, E. S.

    1976-01-01

    The Multi-Purpose System Simulator (MPSS) model was used to investigate the current and projected performance of the Monitor and Control Display System (MACDS) at the Goddard Space Flight Center in processing and displaying launch data adequately. MACDS consists of two interconnected mini-computers with associated terminal input and display output equipment and a disk-stored data base. Three configurations of MACDS were evaluated via MPSS and their performances ascertained. First, the current version of MACDS was found inadequate to handle projected launch data loads because of unacceptable data backlogging. Second, the current MACDS hardware with enhanced software was capable of handling two times the anticipated data loads. Third, an up-graded hardware ensemble combined with the enhanced software was capable of handling four times the anticipated data loads.

  13. A High-Speed, Real-Time Visualization and State Estimation Platform for Monitoring and Control of Electric Distribution Systems: Implementation and Field Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta

    Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtainedmore » via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.« less

  14. SenseMyHeart: A cloud service and API for wearable heart monitors.

    PubMed

    Pinto Silva, P M; Silva Cunha, J P

    2015-01-01

    In the era of ubiquitous computing, the growing adoption of wearable systems and body sensor networks is trailing the path for new research and software for cardiovascular intensity, energy expenditure and stress and fatigue detection through cardiovascular monitoring. Several systems have received clinical-certification and provide huge amounts of reliable heart-related data in a continuous basis. PhysioNet provides equally reliable open-source software tools for ECG processing and analysis that can be combined with these devices. However, this software remains difficult to use in a mobile environment and for researchers unfamiliar with Linux-based systems. In the present paper we present an approach that aims at tackling these limitations by developing a cloud service that provides an API for a PhysioNet-based pipeline for ECG processing and Heart Rate Variability measurement. We describe the proposed solution, along with its advantages and tradeoffs. We also present some client tools (windows and Android) and several projects where the developed cloud service has been used successfully as a standard for Heart Rate and Heart Rate Variability studies in different scenarios.

  15. Development of system decision support tools for behavioral trends monitoring of machinery maintenance in a competitive environment

    NASA Astrophysics Data System (ADS)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani

    2017-06-01

    The article is centred on software system development for manufacturing company that produces polyethylene bags using mostly conventional machines in a competitive world where each business enterprise desires to stand tall. This is meant to assist in gaining market shares, taking maintenance and production decisions by the dynamism and flexibilities embedded in the package as customers' demand varies under the duress of meeting the set goals. The production and machine condition monitoring software (PMCMS) is programmed in C# and designed in such a way to support hardware integration, real-time machine conditions monitoring, which is based on condition maintenance approach, maintenance decision suggestions and suitable production strategies as the demand for products keeps changing in a highly competitive environment. PMCMS works with an embedded device which feeds it with data from the various machines being monitored at the workstation, and the data are read at the base station through transmission via a wireless transceiver and stored in a database. A case study was used in the implementation of the developed system, and the results show that it can monitor the machine's health condition effectively by displaying machines' health status, gives repair suggestions to probable faults, decides strategy for both production methods and maintenance, and, thus, can enhance maintenance performance obviously.

  16. Evaluation of the BD BACTEC FX blood volume monitoring system as a continuous quality improvement measure.

    PubMed

    Coorevits, L; Van den Abeele, A-M

    2015-07-01

    The yield of blood cultures is proportional to the volume of blood cultured. We evaluated an automatic blood volume monitoring system, recently developed by Becton Dickinson within its BACTEC EpiCenter module, that calculates mean volumes of negative aerobic bottles and generates boxplots and histograms. First, we evaluated the filling degree of 339 aerobic glass blood cultures by calculating the weight-based volume for each bottle. A substantial amount of the bottles (48.3%) were inadequately filled. Evaluation of the accuracy of the monitoring system showed a mean bias of -1.4 mL (-15.4%). Additional evaluation, using the amended software on 287 aerobic blood culture bottles, resulted in an acceptable mean deviation of -0.3 mL (-3.3%). The new software version was also tested on 200 of the recently introduced plastic bottles, which will replace the glass bottles in the near future, showing a mean deviation of +2.8 mL (+26.7%). In conclusion, the mean calculated volumes can be used for the training of a single phlebotomist. However, filling problems appear to be masked when using them for phlebotomist groups or on wards. Here, visual interpretation of boxplots and histograms can serve as a useful tool to observe the spread of the filling degrees and to develop a continuous improvement program. Re-adjustment of the software has proven to be necessary for use with plastic bottles. Due to our findings, BD has developed further adjustments to the software for validated use with plastic bottles, which will be released soon.

  17. MoniQA: a general approach to monitor quality assurance

    NASA Astrophysics Data System (ADS)

    Jacobs, J.; Deprez, T.; Marchal, G.; Bosmans, H.

    2006-03-01

    MoniQA ("Monitor Quality Assurance") is a new, non-commercial, independent quality assurance software application developed in our medical physics team. It is a complete Java TM - based modular environment for the evaluation of radiological viewing devices and it thus fits in the global quality assurance network of our (film less) radiology department. The purpose of the software tool is to guide the medical physicist through an acceptance protocol and the radiologist through a constancy check protocol by presentation of the necessary test patterns and by automated data collection. Data are then sent to a central management system for further analysis. At the moment more than 55 patterns have been implemented, which can be grouped in schemes to implement protocols (i.e. AAPMtg18, DIN and EUREF). Some test patterns are dynamically created and 'drawn' on the viewing device with random parameters as is the case in a recently proposed new pattern for constancy testing. The software is installed on 35 diagnostic stations (70 monitors) in a film less radiology department. Learning time was very limited. A constancy check -with the new pattern that assesses luminance decrease, resolution problems and geometric distortion- takes only 2 minutes and 28 seconds per monitor. The modular approach of the software allows the evaluation of new or emerging test patterns. We will report on the software and its usability: practicality of the constancy check tests in our hospital and on the results from acceptance tests of viewing stations for digital mammography.

  18. A Study about the 3S-based Great Ruins Monitoring and Early-warning System

    NASA Astrophysics Data System (ADS)

    Xuefeng, W.; Zhongyuan, H.; Gongli, L.; Li, Z.

    2015-08-01

    Large-scale urbanization construction and new countryside construction, frequent natural disasters, and natural corrosion pose severe threat to the great ruins. It is not uncommon that the cultural relics are damaged and great ruins are occupied. Now the ruins monitoring mainly adopt general monitoring data processing system which can not effectively exert management, display, excavation analysis and data sharing of the relics monitoring data. Meanwhile those general software systems require layout of large number of devices or apparatuses, but they are applied to small-scope relics monitoring only. Therefore, this paper proposes a method to make use of the stereoscopic cartographic satellite technology to improve and supplement the great ruins monitoring index system and combine GIS and GPS to establish a highly automatic, real-time and intelligent great ruins monitoring and early-warning system in order to realize collection, processing, updating, spatial visualization, analysis, distribution and sharing of the monitoring data, and provide scientific and effective data for the relics protection, scientific planning, reasonable development and sustainable utilization.

  19. Development of a Real-Time Environmental Monitoring System, Life Cycle Assessment Systems, and Pollution Prevention Programs

    NASA Technical Reports Server (NTRS)

    Kocher, Walter M.

    2003-01-01

    Pollution prevention (P2) opportunities and Greening the Government (GtG) activities, including the development of the Real-Time Environmental Monitoring System (RTEMS), are currently under development at the NASA Glenn Research Center. The RTEMS project entails the ongoing development of a monitoring system which includes sensors, instruments, computer hardware and software, plus a data telemetry system.Professor Kocher has been directing the RTEMS project for more than 3 years, and the implementation of the prototype system at GRC will be a major portion of his summer effort. This prototype will provide mulitmedia environmental monitoring and control capabilities, although water quality and air emissions will be the immediate issues addressed this summer. Applications beyond those currently identified for environmental purposes will also be explored.

  20. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  1. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  2. Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care

    PubMed Central

    Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F.; Corchado, Juan M.

    2014-01-01

    Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost. PMID:24905853

  3. Real-time classification of signals from three-component seismic sensors using neural nets

    NASA Astrophysics Data System (ADS)

    Bowman, B. C.; Dowla, F.

    1992-05-01

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  4. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  5. Microprocessor-based multichannel flutter monitor using dynamic strain gage signals

    NASA Technical Reports Server (NTRS)

    Smalley, R. R.

    1976-01-01

    Two microprocessor-based multichannel monitors for monitoring strain gage signals during aerodynamic instability (flutter) testing in production type turbojet engines were described. One system monitors strain gage signals in the time domain and gives an output indication whenever the signal amplitude of any gage exceeds a pre-set alarm or abort level for that particular gage. The second system monitors the strain gage signals in the frequency domain and therefore is able to use both the amplitude and frequency information. Thus, an alarm signal is given whenever the spectral content of the strain gage signal exceeds, at any point, its corresponding amplitude vs. frequency limit profiles. Each system design is described with details on design trade-offs, hardware, software, and operating experience.

  6. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  7. On the relevance of using open wireless sensor networks in environment monitoring.

    PubMed

    Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  8. Remote Software Application and Display Development

    NASA Technical Reports Server (NTRS)

    Sanders, Brandon T.

    2014-01-01

    The era of the shuttle program has come to an end, but only to give rise to newer and more exciting projects. Now is the time of the Orion spacecraft, a work of art designed to exceed all previous endeavors of man. NASA is exiting the time of exploration and is entering a new period, a period of pioneering. With this new mission, many of NASAs organizations must undergo a great deal of change and development to support the Orion missions. The Spaceport Command and Control System (SCCS) is the new system that will provide NASA the ability to launch rockets into orbit and thus control Orion and other spacecraft as the goal of populating Mars becomes ever increasingly tangible. Since the previous control system, Launch Processing System (LPS), was primarily designed to launch the shuttles, SCCS was needed as Kennedy Space Center (KSC) reorganized to a multiuser spaceport for commercial flights, providing a more versatile control over rockets. Within SCCS, is the Launch Control System (LCS), which is the remote software behind the command and monitoring of flight and ground system hardware. This internship at KSC has involved two main components in LCS, including Remote Software Application and Display development. The display environment provides a graphical user interface for an operator to view and see if any cautions are raised, while the remote applications are the backbone that communicate with hardware, and then relay the data back to the displays. These elements go hand in hand as they provide monitoring and control over hardware and software alike from the safety of the Launch Control Center. The remote software applications are written in Application Control Language (ACL), which must undergo unit testing to ensure data integrity. This paper describes both the implementation and writing of unit tests in ACL code for remote software applications, as well as the building of remote displays to be used in the Launch Control Center (LCC).

  9. Test, Control and Monitor System maintenance plan

    NASA Technical Reports Server (NTRS)

    Buehler, David P.; Lougheed, M. J.

    1993-01-01

    The maintenance requirements for Test, Control, and Monitor System (TCMS) and the method for satisfying these requirements prior to First Need Date (FND) of the last TCMS set are described. The method for satisfying maintenance requirements following FND of the last TCMS set will be addressed by a revision to this plan. This maintenance plan serves as the basic planning document for maintenance of this equipment by the NASA Payloads Directorate (CM) and the Payload Ground Operations Contractor (PGOC) at KSC. The terms TCMS Operations and Maintenance (O&M), Payloads Logistics, TCMS Sustaining Engineering, Payload Communications, and Integrated Network Services refer to the appropriate NASA and PGOC organization. For the duration of their contract, the Core Electronic Contractor (CEC) will provide a Set Support Team (SST). One of the primary purposes of this team is to help NASA and PGOC operate and maintain TCMS. It is assumed that SST is an integral part of TCMS O&M. The purpose of this plan is to describe the maintenance concept for TCMS hardware and system software in order to facilitate activation, transition planning, and continuing operation. When software maintenance is mentioned in this plan, it refers to maintenance of TCMS system software.

  10. Optimum-AIV: A planning and scheduling system for spacecraft AIV

    NASA Technical Reports Server (NTRS)

    Arentoft, M. M.; Fuchs, Jens J.; Parrod, Y.; Gasquet, Andre; Stader, J.; Stokes, I.; Vadon, H.

    1991-01-01

    A project undertaken for the European Space Agency (ESA) is presented. The project is developing a knowledge based software system for planning and scheduling of activities for spacecraft assembly, integration, and verification (AIV). The system extends into the monitoring of plan execution and the plan repair phase. The objectives are to develop an operational kernel of a planning, scheduling, and plan repair tool, called OPTIMUM-AIV, and to provide facilities which will allow individual projects to customize the kernel to suit its specific needs. The kernel shall consist of a set of software functionalities for assistance in initial specification of the AIV plan, in verification and generation of valid plans and schedules for the AIV activities, and in interactive monitoring and execution problem recovery for the detailed AIV plans. Embedded in OPTIMUM-AIV are external interfaces which allow integration with alternative scheduling systems and project databases. The current status of the OPTIMUM-AIV project, as of Jan. 1991, is that a further analysis of the AIV domain has taken place through interviews with satellite AIV experts, a software requirement document (SRD) for the full operational tool was approved, and an architectural design document (ADD) for the kernel excluding external interfaces is ready for review.

  11. Sequence and batch language programs and alarm related C Programs for the 242-A MCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, J.F.

    1996-04-15

    A Distributive Process Control system was purchased by Project B-534, 242-A Evaporator/Crystallizer Upgrades. This control system, called the Monitor and Control system (MCS), was installed in the 242-A evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict themore » overall process. To do this, WTSE developed a second alarm scheme.« less

  12. Nekton Interaction Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-03-15

    The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less

  13. AN AUTOMATED MONITORING SYSTEM FOR FISH PHYSIOLOGY AND TOXICOLOGY

    EPA Science Inventory

    This report describes a data acquisition and control (DAC) system that was constructed to manage selected physiological measurements and sample control for aquatic physiology and toxicology. Automated DAC was accomplished with a microcomputer running menu-driven software develope...

  14. ENVIRONMENTAL QUALITY INFORMATION SYSTEM - EQULS® - ITER

    EPA Science Inventory

    This project consisted of an evaluation of the Environmental Quality Information System (EQuIS) software designed by Earthsoft, Inc. as an environmental data management and analysis platform for monitoring and remediation projects. In consultation with the EQuIS vendor, six pri...

  15. Implementation of remote monitoring and managing switches

    NASA Astrophysics Data System (ADS)

    Leng, Junmin; Fu, Guo

    2010-12-01

    In order to strengthen the safety performance of the network and provide the big convenience and efficiency for the operator and the manager, the system of remote monitoring and managing switches has been designed and achieved using the advanced network technology and present network resources. The fast speed Internet Protocol Cameras (FS IP Camera) is selected, which has 32-bit RSIC embedded processor and can support a number of protocols. An Optimal image compress algorithm Motion-JPEG is adopted so that high resolution images can be transmitted by narrow network bandwidth. The architecture of the whole monitoring and managing system is designed and implemented according to the current infrastructure of the network and switches. The control and administrative software is projected. The dynamical webpage Java Server Pages (JSP) development platform is utilized in the system. SQL (Structured Query Language) Server database is applied to save and access images information, network messages and users' data. The reliability and security of the system is further strengthened by the access control. The software in the system is made to be cross-platform so that multiple operating systems (UNIX, Linux and Windows operating systems) are supported. The application of the system can greatly reduce manpower cost, and can quickly find and solve problems.

  16. Software Health Management: A Short Review of Challenges and Existing Techniques

    NASA Technical Reports Server (NTRS)

    Pipatsrisawat, Knot; Darwiche, Adnan; Mengshoel, Ole J.; Schumann, Johann

    2009-01-01

    Modern spacecraft (as well as most other complex mechanisms like aircraft, automobiles, and chemical plants) rely more and more on software, to a point where software failures have caused severe accidents and loss of missions. Software failures during a manned mission can cause loss of life, so there are severe requirements to make the software as safe and reliable as possible. Typically, verification and validation (V&V) has the task of making sure that all software errors are found before the software is deployed and that it always conforms to the requirements. Experience, however, shows that this gold standard of error-free software cannot be reached in practice. Even if the software alone is free of glitches, its interoperation with the hardware (e.g., with sensors or actuators) can cause problems. Unexpected operational conditions or changes in the environment may ultimately cause a software system to fail. Is there a way to surmount this problem? In most modern aircraft and many automobiles, hardware such as central electrical, mechanical, and hydraulic components are monitored by IVHM (Integrated Vehicle Health Management) systems. These systems can recognize, isolate, and identify faults and failures, both those that already occurred as well as imminent ones. With the help of diagnostics and prognostics, appropriate mitigation strategies can be selected (replacement or repair, switch to redundant systems, etc.). In this short paper, we discuss some challenges and promising techniques for software health management (SWHM). In particular, we identify unique challenges for preventing software failure in systems which involve both software and hardware components. We then present our classifications of techniques related to SWHM. These classifications are performed based on dimensions of interest to both developers and users of the techniques, and hopefully provide a map for dealing with software faults and failures.

  17. The Budget Guide to Seismic Network Management

    NASA Astrophysics Data System (ADS)

    Hagerty, M. T.; Ebel, J. E.

    2007-05-01

    Regardless of their size, there are certain tasks that all seismic networks must perform, including data collection and processing, earthquake location, information dissemination, and quality control. Small seismic networks are unlikely to possess the resources -- manpower and money -- required to do much in-house development. Fortunately, there are a lot of free or inexpensive software solutions available that are able to perform many of the required tasks. Often the available solutions are all-in-one turnkey packages designed and developed for much larger seismic networks, and the cost of adapting them to a smaller network must be weighed against the ease with which other, non-seismic software can be adapted to the same task. We describe here the software and hardware choices we have made for the New England Seismic Network (NESN), a sparse regional seismic network responsible for monitoring and reporting all seismicity within the New England region in the northeastern U.S. We have chosen to use a cost-effective approach to monitoring using free, off-the-shelf solutions where available (e.g., Earthworm, HYP2000) and modifying freeware solutions when it is easier than trying to adapt a large, complicated package. We have selected for use software that is: free, likely to receive continued support from the seismic or, preferably, larger internet community, and modular. Modularity is key to our design because it ensures that if one component of our processing system becomes obsolete, we can insert a suitable replacement with few modifications to the other modules. Our automated event detection, identification and location system is based on a wavelet transform analysis of station data that arrive continuously via TCP/IP transmission over the internet. Our system for interactive analyst review of seismic events and remote system monitoring utilizes a combination of Earthworm modules, Perl cgi-bin scripts, Java, and native Unix commands and can now be carried out via internet browser from anywhere in the world. With our current communication and processing system we are able to achieve a monitoring threshold of about M2.0 for most New England, in spite of high cultural noise and sparse station distribution, and maintain an extremely high rate of data recovery, for minimal cost.

  18. Proceedings of the European Seminar on Industrial Software Engineering (2nd) Held in Freiburg (Germany, F.R.) on 9-10 May 1985,

    DTIC Science & Technology

    1985-05-10

    synchronisation , 8% cache bus monitoring ). 6. Conclusions Since the 1950’s, fault tolerance has been used to improve the reliability of hardware systems ...description. The operation may use other operations supplied with the system , here e.g. HIRE EMPLOYEE, ENTER MGR SAL etc . HIRE MRNAGR (X:PERSOW) nsot ACTOR (X...hardware design and in the operating systems software and they have developed a number of products which are of a commercial standard and of wide

  19. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  20. TH-E-209-03: Development of An In-House CT Dose Monitoring and Management System Based On Open-Source Software Resources -- Pearls and Pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  1. A computerized system to measure and predict air quality for emission control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, G.; Ciccone, A.; Frattolillo, P.

    1997-12-31

    A Supplementary Emission Control (SEC) system has been developed on behalf of the Association Industrielle de l`Est de Montreal (AIEM). The objective of the SEC is to avoid exceedences of the Montreal Urban Community (MUC) 24 hour ambient Air Quality Standard (AQS) for sulphur dioxide in the industrial East Montreal area. The SEC system is comprised of: 3 continuous SO{sub 2} monitoring stations with data loggers and remote communications; a meteorological tower with data logger and modem for acquiring local meteorology; communications with Environment Canada to download meteorological forecast data; a polling PC for data retrieval; and Windows NT basedmore » software running on the AIEM computer server. The SEC software utilizes relational databases to store and maintain measured SO{sub 2} concentration data, emission data, as well as observed and forecast meteorological data. The SEC system automatically executes a numerical dispersion model to forecast SO{sub 2} concentrations up to six hours in the future. Based on measured SO{sub 2} concentrations at the monitoring stations and the six hour forecast concentrations, the system determines if local sources should reduce their emission levels to avoid potential exceedences of the AQS. The SEC system also includes a Graphical User Interface (GUI) for user access to the system. The SEC system and software are described, and the accuracy of the system at forecasting SO{sub 2} concentrations is examined.« less

  2. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  3. GPS Software Packages Deliver Positioning Solutions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  4. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreas, Afshin M.; Wilcox, Stephen M.

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  5. Research and design of smart grid monitoring control via terminal based on iOS system

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji

    2017-06-01

    Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.

  6. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  7. Digital Image Analysis System for Monitoring Crack Growth at Elevated Temperature

    DTIC Science & Technology

    1988-05-01

    The objective of the research work reported here was to develop a new concept, based on Digital Image Analysis , for monitoring the crack-tip position...a 512 x 512 pixel frame. c) Digital Image Analysis software developed to locate and digitize the position of the crack-tip, on the observed image

  8. Addressing Software Security

    NASA Technical Reports Server (NTRS)

    Bailey, Brandon

    2015-01-01

    Historically security within organizations was thought of as an IT function (web sites/servers, email, workstation patching, etc.) Threat landscape has evolved (Script Kiddies, Hackers, Advanced Persistent Threat (APT), Nation States, etc.) Attack surface has expanded -Networks interconnected!! Some security posture factors Network Layer (Routers, Firewalls, etc.) Computer Network Defense (IPS/IDS, Sensors, Continuous Monitoring, etc.) Industrial Control Systems (ICS) Software Security (COTS, FOSS, Custom, etc.)

  9. An Investigation of Techniques for Detecting Data Anomalies in Earned Value Management Data

    DTIC Science & Technology

    2011-12-01

    Management Studio Harte Hanks Trillium Software Trillium Software System IBM Info Sphere Foundation Tools Informatica Data Explorer Informatica ...Analyst Informatica Developer Informatica Administrator Pitney Bowes Business Insight Spectrum SAP BusinessObjects Data Quality Management DataFlux...menting quality monitoring efforts and tracking data quality improvements Informatica http://www.informatica.com/products_services/Pages/index.aspx

  10. Monitoring and Controlling an Underwater Robotic Arm

    NASA Technical Reports Server (NTRS)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  11. Autonomous System for Monitoring the Integrity of Composite Fan Housings

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin P.; Aquino, Christopher; Kumar, Amrita

    2010-01-01

    A low-cost and reliable system assesses the integrity of composite fan-containment structures. The system utilizes a network of miniature sensors integrated with the structure to scan the entire structural area for any impact events and resulting structural damage, and to monitor degradation due to usage. This system can be used to monitor all types of composite structures on aircraft and spacecraft, as well as automatically monitor in real time the location and extent of damage in the containment structures. This diagnostic information is passed to prognostic modeling that is being developed to utilize the information and provide input on the residual strength of the structure, and maintain a history of structural degradation during usage. The structural health-monitoring system would consist of three major components: (1) sensors and a sensor network, which is permanently bonded onto the structure being monitored; (2) integrated hardware; and (3) software to monitor in-situ the health condition of in-service structures.

  12. Software control program for 25 kW breadboard testing. [spacecraft power supplies; high voltage batteries

    NASA Technical Reports Server (NTRS)

    Pajak, J. A.

    1981-01-01

    A data acquisition software program developed to operate in conjunction with the automated control system of the 25 kW PM Electric Power System Breadboard Test facility is described. The proram provides limited interactive control of the breadboard test while acquiring data and monitoring parameters, allowing unattended continuous operation. The breadboard test facility has two positions for operating separate configurations. The main variable in each test setup is the high voltage Ni-Cd battery.

  13. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  14. Monitoring SLAC High Performance UNIX Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia.more » Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.« less

  15. The TSO Logic and G2 Software Product

    NASA Technical Reports Server (NTRS)

    Davis, Derrick D.

    2014-01-01

    This internship assignment for spring 2014 was at John F. Kennedy Space Center (KSC), in NASAs Engineering and Technology (NE) group in support of the Control and Data Systems Division (NE-C) within the Systems Hardware Engineering Branch. (NEC-4) The primary focus was in system integration and benchmarking utilizing two separate computer software products. The first half of this 2014 internship is spent in assisting NE-C4s Electronics and Embedded Systems Engineer, Kelvin Ruiz and fellow intern Scott Ditto with the evaluation of a newly piece of software, called G2. Its developed by the Gensym Corporation and introduced to the group as a tool used in monitoring launch environments. All fellow interns and employees of the G2 group have been working together in order to better understand the significance of the G2 application and how KSC can benefit from its capabilities. The second stage of this Spring project is to assist with an ongoing integration of a benchmarking tool, developed by a group of engineers from a Canadian based organization known as TSO Logic. Guided by NE-C4s Computer Engineer, Allen Villorin, NASA 2014 interns put forth great effort in helping to integrate TSOs software into the Spaceport Processing Systems Development Laboratory (SPSDL) for further testing and evaluating. The TSO Logic group claims that their software is designed for, monitoring and reducing energy consumption at in-house server farms and large data centers, allows data centers to control the power state of servers, without impacting availability or performance and without changes to infrastructure and the focus of the assignment is to test this theory. TSOs Aaron Rallo Founder and CEO, and Chris Tivel CTO, both came to KSC to assist with the installation of their software in the SPSDL laboratory. TSOs software is installed onto 24 individual workstations running three different operating systems. The workstations were divided into three groups of 8 with each group having its own operating system. The first group is comprised of Ubuntus Debian -based Linux the second group is windows 7 Professional and the third group ran Red Hat Linux. The highlight of this portion of the assignment is to compose documentation expressing the overall impression of the software and its capabilities.

  16. Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology

    PubMed Central

    Zhao, Xuefeng; Liu, Hao; Yu, Yan; Xu, Xiaodong; Hu, Weitong; Li, Mingchu; Ou, Jingping

    2015-01-01

    Bridge displacement is the most basic evaluation index of the health status of a bridge structure. The existing measurement methods for bridge displacement basically fail to realize long-term and real-time dynamic monitoring of bridge structures, because of the low degree of automation and the insufficient precision, causing bottlenecks and restriction. To solve this problem, we proposed a bridge displacement monitoring system based on laser projection-sensing technology. First, the laser spot recognition method was studied. Second, the software for the displacement monitoring system was developed. Finally, a series of experiments using this system were conducted, and the results show that such a system has high measurement accuracy and speed. We aim to develop a low-cost, high-accuracy and long-term monitoring method for bridge displacement based on these preliminary efforts. PMID:25871716

  17. A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring.

    PubMed

    Wu, Jian; Cui, Xingmei; Xu, Yunpeng

    2016-01-28

    In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag's antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt's information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system.

  18. A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring

    PubMed Central

    Wu, Jian; Cui, Xingmei; Xu, Yunpeng

    2016-01-01

    In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag’s antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt’s information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system. PMID:26828498

  19. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  20. Automating slope monitoring in mines with terrestrial lidar scanners

    NASA Astrophysics Data System (ADS)

    Conforti, Dario

    2014-05-01

    Static terrestrial laser scanners (TLS) have been an important component of slope monitoring for some time, and many solutions for monitoring the progress of a slide have been devised over the years. However, all of these solutions have required users to operate the lidar equipment in the field, creating a high cost in time and resources, especially if the surveys must be performed very frequently. This paper presents a new solution for monitoring slides, developed using a TLS and an automated data acquisition, processing and analysis system. In this solution, a TLS is permanently mounted within sight of the target surface and connected to a control computer. The control software on the computer automatically triggers surveys according to a user-defined schedule, parses data into point clouds, and compares data against a baseline. The software can base the comparison against either the original survey of the site or the most recent survey, depending on whether the operator needs to measure the total or recent movement of the slide. If the displacement exceeds a user-defined safety threshold, the control computer transmits alerts via SMS text messaging and/or email, including graphs and tables describing the nature and size of the displacement. The solution can also be configured to trigger the external visual/audio alarm systems. If the survey areas contain high-traffic areas such as roads, the operator can mark them for exclusion in the comparison to prevent false alarms. To improve usability and safety, the control computer can connect to a local intranet and allow remote access through the software's web portal. This enables operators to perform most tasks with the TLS from their office, including reviewing displacement reports, downloading survey data, and adjusting the scan schedule. This solution has proved invaluable in automatically detecting and alerting users to potential danger within the monitored areas while lowering the cost and work required for monitoring. An explanation of the entire system and a post-acquisition data demonstration will be presented.

  1. Monitoring Space Weather Hazards caused by geomagnetic disturbances with Space Hazard Monitor (SHM) systems

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Gannon, J. L.; Peek, T. A.; Lin, D.

    2017-12-01

    One space weather hazard is the Geomagnetically Induced Currents (GICs) in the electric power transmission systems, which is naturally induced geoelectric field during the geomagnetic disturbances (GMDs). GICs are a potentially catastrophic threat to bulk power systems. For instance, the Blackout in Quebec in March 1989 was caused by GMDs during a significant magnetic storm. To monitor the GMDs, the autonomous Space Hazard Monitor (SHM) system is developed recently. The system includes magnetic field measurement from magnetometers and geomagnetic field measurement from electrodes. In this presentation, we introduce the six sites of SHMs which have been deployed in the US continental regions. The data from the magnetometers are processed with the Multiple Observatory Geomagnetic Data Analysis Software (MOGDAS). And the statistical results are presented here. It reveals not only the impacts of space weather over US continental region but also the potential of improving instrumentation development to provide better space weather monitor.

  2. Working Group 1: Software System Design and Implementation for Environmental Modeling

    EPA Science Inventory

    ISCMEM Working Group One Presentation, presentation with the purpose of fostering the exchange of information about environmental modeling tools, modeling frameworks, and environmental monitoring databases.

  3. A Discussion of Issues in Integrity Constraint Monitoring

    NASA Technical Reports Server (NTRS)

    Fernandez, Francisco G.; Gates, Ann Q.; Cooke, Daniel E.

    1998-01-01

    In the development of large-scale software systems, analysts, designers, and programmers identify properties of data objects in the system. The ability to check those assertions during runtime is desirable as a means of verifying the integrity of the program. Typically, programmers ensure the satisfaction of such properties through the use of some form of manually embedded assertion check. The disadvantage to this approach is that these assertions become entangled within the program code. The goal of the research is to develop an integrity constraint monitoring mechanism whereby a repository of software system properties (called integrity constraints) are automatically inserted into the program by the mechanism to check for incorrect program behaviors. Such a mechanism would overcome many of the deficiencies of manually embedded assertion checks. This paper gives an overview of the preliminary work performed toward this goal. The manual instrumentation of constraint checking on a series of test programs is discussed, This review then is used as the basis for a discussion of issues to be considered in developing an automated integrity constraint monitor.

  4. Unobtrusive Monitoring of Spaceflight Team Functioning

    NASA Technical Reports Server (NTRS)

    Maidel, Veronica; Stanton, Jeffrey M.

    2010-01-01

    This document contains a literature review suggesting that research on industrial performance monitoring has limited value in assessing, understanding, and predicting team functioning in the context of space flight missions. The review indicates that a more relevant area of research explores the effectiveness of teams and how team effectiveness may be predicted through the elicitation of individual and team mental models. Note that the mental models referred to in this literature typically reflect a shared operational understanding of a mission setting such as the cockpit controls and navigational indicators on a flight deck. In principle, however, mental models also exist pertaining to the status of interpersonal relations on a team, collective beliefs about leadership, success in coordination, and other aspects of team behavior and cognition. Pursuing this idea, the second part of this document provides an overview of available off-the-shelf products that might assist in extraction of mental models and elicitation of emotions based on an analysis of communicative texts among mission personnel. The search for text analysis software or tools revealed no available tools to enable extraction of mental models automatically, relying only on collected communication text. Nonetheless, using existing software to analyze how a team is functioning may be relevant for selection or training, when human experts are immediately available to analyze and act on the findings. Alternatively, if output can be sent to the ground periodically and analyzed by experts on the ground, then these software packages might be employed during missions as well. A demonstration of two text analysis software applications is presented. Another possibility explored in this document is the option of collecting biometric and proxemic measures such as keystroke dynamics and interpersonal distance in order to expose various individual or dyadic states that may be indicators or predictors of certain elements of team functioning. This document summarizes interviews conducted with personnel currently involved in observing or monitoring astronauts or who are in charge of technology that allows communication and monitoring. The objective of these interviews was to elicit their perspectives on monitoring team performance during long-duration missions and the feasibility of potential automatic non-obtrusive monitoring systems. Finally, in the last section, the report describes several priority areas for research that can help transform team mental models, biometrics, and/or proxemics into workable systems for unobtrusive monitoring of space flight team effectiveness. Conclusions from this work suggest that unobtrusive monitoring of space flight personnel is likely to be a valuable future tool for assessing team functioning, but that several research gaps must be filled before prototype systems can be developed for this purpose.

  5. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  6. Integrated Software Health Management for Aircraft GN and C

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mengshoel, Ole

    2011-01-01

    Modern aircraft rely heavily on dependable operation of many safety-critical software components. Despite careful design, verification and validation (V&V), on-board software can fail with disastrous consequences if it encounters problematic software/hardware interaction or must operate in an unexpected environment. We are using a Bayesian approach to monitor the software and its behavior during operation and provide up-to-date information about the health of the software and its components. The powerful reasoning mechanism provided by our model-based Bayesian approach makes reliable diagnosis of the root causes possible and minimizes the number of false alarms. Compilation of the Bayesian model into compact arithmetic circuits makes SWHM feasible even on platforms with limited CPU power. We show initial results of SWHM on a small simulator of an embedded aircraft software system, where software and sensor faults can be injected.

  7. An Advanced NSSS Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4

    NASA Astrophysics Data System (ADS)

    Oh, Yang Gyun; Galin, Scott R.; Lee, Sang Jeong

    2010-12-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling.

  8. NEXT GENERATION ANALYSIS SOFTWARE FOR COMPONENT EVALUATION - Results of Rotational Seismometer Evaluation

    NASA Astrophysics Data System (ADS)

    Hart, D. M.; Merchant, B. J.; Abbott, R. E.

    2012-12-01

    The Component Evaluation project at Sandia National Laboratories supports the Ground-based Nuclear Explosion Monitoring program by performing testing and evaluation of the components that are used in seismic and infrasound monitoring systems. In order to perform this work, Component Evaluation maintains a testing facility called the FACT (Facility for Acceptance, Calibration, and Testing) site, a variety of test bed equipment, and a suite of software tools for analyzing test data. Recently, Component Evaluation has successfully integrated several improvements to its software analysis tools and test bed equipment that have substantially improved our ability to test and evaluate components. The software tool that is used to analyze test data is called TALENT: Test and AnaLysis EvaluatioN Tool. TALENT is designed to be a single, standard interface to all test configuration, metadata, parameters, waveforms, and results that are generated in the course of testing monitoring systems. It provides traceability by capturing everything about a test in a relational database that is required to reproduce the results of that test. TALENT provides a simple, yet powerful, user interface to quickly acquire, process, and analyze waveform test data. The software tool has also been expanded recently to handle sensors whose output is proportional to rotation angle, or rotation rate. As an example of this new processing capability, we show results from testing the new ATA ARS-16 rotational seismometer. The test data was collected at the USGS ASL. Four datasets were processed: 1) 1 Hz with increasing amplitude, 2) 4 Hz with increasing amplitude, 3) 16 Hz with increasing amplitude and 4) twenty-six discrete frequencies between 0.353 Hz to 64 Hz. The results are compared to manufacture-supplied data sheets.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, G.J.; Seaver, C.L.; Kowalkowski, J.B.

    As controls needs at the Advanced Photon Source matured from an installation phase to an operational phase, the need to monitor the existing conventional facilities control system with the EPICS-based accelerator control system was realized. This existing conventional facilities control network is based on a proprietary system from Johnson Controls called Metasys. Initially read-only monitoring of the Metasys parameters will be provided; however, the ability for possible future expansion to full control is available. This paper describes a method of using commercially available hardware and existing EPICS software as a bridge between the Metasys and EPICS control systems.

  10. Automated system for the on-line monitoring of powder blending processes using near-infrared spectroscopy. Part I. System development and control.

    PubMed

    Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K

    1996-03-01

    An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.

  11. Software For Monitoring A Computer Network

    NASA Technical Reports Server (NTRS)

    Lee, Young H.

    1992-01-01

    SNMAT is rule-based expert-system computer program designed to assist personnel in monitoring status of computer network and identifying defective computers, workstations, and other components of network. Also assists in training network operators. Network for SNMAT located at Space Flight Operations Center (SFOC) at NASA's Jet Propulsion Laboratory. Intended to serve as data-reduction system providing windows, menus, and graphs, enabling users to focus on relevant information. SNMAT expected to be adaptable to other computer networks; for example in management of repair, maintenance, and security, or in administration of planning systems, billing systems, or archives.

  12. Defense Acquisitions: DOD Efforts to Adopt Open Systems for Its Unmanned Aircraft Systems Have Progressed Slowly

    DTIC Science & Technology

    2013-07-01

    applications introduced by third-party developers to connect to the Android operating system through an open software interface. This allows customers...Definition Multimedia Interface have been developed to address the need for standards for high-definition televisions and computer monitors. Perhaps

  13. David Price--Pioneer of digital ICP monitoring, neurosurgeon and teacher.

    PubMed

    Czosnyka, Marek; Kirollos, Ramez; van Hille, Philip

    2015-06-01

    In early 1970s first personal desk-top computers started to be available in hospitals. Mr Price was one of the pioneers introducing his own software to identify Marmarou's model of CSF space during infusion studies to diagnose patients suffering from hydrocephalus. His closed-loop control system for infusion of mannitol to manage patients at risk of intracranial hypertension was designed in 1977. The system worked successfully for 10 years in Pinderfields Hospital in Wakefield, UK. In the middle 1980's he initiated international cooperation with Children's Health Centre in Poland in long-term computer-assisted monitoring and analysis of ICP. Software designed in a course of this cooperation paved the way for contemporary package of ICM+ (Intensive Care Monitor, University of Cambridge, UK). Our scientific portfolio from these years (1985-1995) contains hundreds of head injured patients with waveform ICP analysis, introduction of compensatory reserve index RAP, few highly cited papers. Now, we understand ICP much better thanks to David's personal passion and extremely friendly support.

  14. [Using modern information technology in the practice of the sanitary-epidemiological surveiliance during the XXII Olympic Winter Games and XI Paralympic Winter Games in Sochi].

    PubMed

    Popova, A Yu; Kuzkin, B P; Demina, Yu V; Dubyansky, V M; Kulichenko, A N; Maletskaya, O V; Shayakhmetov, O Kh; Semenko, O V; Nazarenko, Yu V; Agapitov, D S; Mezentsev, V M; Kharchenko, T V; Efremenko, D V; Oroby, V G; Klindukhov, V P; Grechanaya, T V; Nikolaevich, P N; Tesheva, S Ch; Rafeenko, G K

    2015-01-01

    To improve the sanitary and epidemiological surveillance at the Olympic Games has developed a system of GIS for monitoring objects and situations in the region of Sochi. The system is based on software package ArcGIS, version 10.2 server, with Web-java.lang. Object, Web-server Apach, and software developed in language java. During th execution of the tasks are solved: the stratification of the region of the Olympic Games for the private and aggregate epidemiological risk OCI various eti- ologies, ranking epidemiologically important facilities for the sanitary and hygienic conditions, monitoring of infectious diseases (in real time according to the preliminary diagnosis). GIS monitoring has shown its effectiveness: Information received from various sources, but focused on one portal. Information was available in real time all the specialists involved in ensuring epidemiological well-being and use at work during the Olympic Games in Sochi.

  15. Mobile messaging services-based personal electrocardiogram monitoring system.

    PubMed

    Tahat, Ashraf A

    2009-01-01

    A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.

  16. Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System

    PubMed Central

    Tahat, Ashraf A.

    2009-01-01

    A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services. PMID:19707531

  17. Ambient multi-perceptive system with electronic mail for a residential health monitoring system.

    PubMed

    Noury, N; Villemazet, C; Fleury, A; Barralon, P; Rumeau, P; Vuillerme, N; Baghai, R

    2006-01-01

    Based on several years of experiments, we propose a model of information systems for residential healthcare, and technical guide to select available hard and software technologies. An implementation is described, based on Emails. The system is under experimentation within the framework of the French national project AILISA.

  18. artdaq: DAQ software development made simple

    NASA Astrophysics Data System (ADS)

    Biery, Kurt; Flumerfelt, Eric; Freeman, John; Ketchum, Wesley; Lukhanin, Gennadiy; Rechenmacher, Ron

    2017-10-01

    For a few years now, the artdaq data acquisition software toolkit has provided numerous experiments with ready-to-use components which allow for rapid development and deployment of DAQ systems. Developed within the Fermilab Scientific Computing Division, artdaq provides data transfer, event building, run control, and event analysis functionality. This latter feature includes built-in support for the art event analysis framework, allowing experiments to run art modules for real-time filtering, compression, disk writing and online monitoring. As art, also developed at Fermilab, is also used for offline analysis, a major advantage of artdaq is that it allows developers to easily switch between developing online and offline software. artdaq continues to be improved. Support for an alternate mode of running whereby data from some subdetector components are only streamed if requested has been added; this option will reduce unnecessary DAQ throughput. Real-time reporting of DAQ metrics has been implemented, along with the flexibility to choose the format through which experiments receive the reports; these formats include the Ganglia, Graphite and syslog software packages, along with flat ASCII files. Additionally, work has been performed investigating more flexible modes of online monitoring, including the capability to run multiple online monitoring processes on different hosts, each running its own set of art modules. Finally, a web-based GUI interface through which users can configure details of their DAQ system has been implemented, increasing the ease of use of the system. Already successfully deployed on the LArlAT, DarkSide-50, DUNE 35ton and Mu2e experiments, artdaq will be employed for SBND and is a strong candidate for use on ICARUS and protoDUNE. With each experiment comes new ideas for how artdaq can be made more flexible and powerful. The above improvements will be described, along with potential ideas for the future.

  19. Software for the EVLA

    NASA Astrophysics Data System (ADS)

    Butler, Bryan J.; van Moorsel, Gustaaf; Tody, Doug

    2004-09-01

    The Expanded Very Large Array (EVLA) project is the next generation instrument for high resolution long-millimeter to short-meter wavelength radio astronomy. It is currently funded by NSF, with completion scheduled for 2012. The EVLA will upgrade the VLA with new feeds, receivers, data transmission hardware, correlator, and a new software system to enable the instrument to achieve its full potential. This software includes both that required for controlling and monitoring the instrument and that involved with the scientific dataflow. We concentrate here on a portion of the dataflow software, including: proposal preparation, submission, and handling; observation preparation, scheduling, and remote monitoring; data archiving; and data post-processing, including both automated (pipeline) and manual processing. The primary goals of the software are: to maximize the scientific return of the EVLA; provide ease of use, for both novices and experts; exploit commonality amongst all NRAO telescopes where possible. This last point is both a bane and a blessing: we are not at liberty to do whatever we want in the software, but on the other hand we may borrow from other projects (notably ALMA and GBT) where appropriate. The software design methodology includes detailed initial use-cases and requirements from the scientists, intimate interaction between the scientists and the programmers during design and implementation, and a thorough testing and acceptance plan.

  20. Wireless Sensor Networks for Developmental and Flight Instrumentation

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments. Test results from our prototype WSN running the Mobitrum software system are summarized and the implications to the scalability and reliability for DFI applications are discussed. Our demonstration system, incorporating sensors for life support system and structural health monitoring is described along with test results obtained by running the demonstration prototype in relevant environments such as the Wireless Habitat Testbed at Johnson Space Center in Houston. An operations concept for improved sensor process flow from design to flight test is outlined specific to the areas of Environmental Control and Life Support System performance characterization and structural health monitoring of human-rated spacecraft. This operations concept will be used to highlight the areas where WSN technology, particularly plug-and-play software based on IEEE 1451, can improve the current process, resulting in significant reductions in the technical effort, overall cost and schedule for providing DFI capability for future spacecraft. RELEASED -

  1. Design of a cardiac monitor in terms of parameters of QRS complex.

    PubMed

    Chen, Zhen-cheng; Ni, Li-li; Su, Ke-ping; Wang, Hong-yan; Jiang, Da-zong

    2002-08-01

    Objective. To design a portable cardiac monitor system based on the available ordinary ECG machine and works on the basis of QRS parameters. Method. The 80196 single chip microcomputer was used as the central microprocessor and real time electrocardiac signal was collected and analyzed [correction of analysized] in the system. Result. Apart from the performance of an ordinary monitor, this machine possesses also the following functions: arrhythmia analysis, HRV analysis, alarm, freeze, and record of automatic papering. Convenient in carrying, the system is powered by AC or DC sources. Stability, low power and low cost are emphasized in the hardware design; and modularization method is applied in software design. Conclusion. Popular in usage and low cost made the portable monitor system suitable for use under simple conditions.

  2. LCG/AA build infrastructure

    NASA Astrophysics Data System (ADS)

    Hodgkins, Alex Liam; Diez, Victor; Hegner, Benedikt

    2012-12-01

    The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  3. Implementation of Task-Tracking Software for Clinical IT Management.

    PubMed

    Purohit, Anne-Maria; Brutscheck, Clemens; Prokosch, Hans-Ulrich; Ganslandt, Thomas; Schneider, Martin

    2017-01-01

    Often in clinical IT departments, many different methods and IT systems are used for task-tracking and project organization. Based on managers' personal preferences and knowledge about project management methods, tools differ from team to team and even from employee to employee. This causes communication problems, especially when tasks need to be done in cooperation with different teams. Monitoring tasks and resources becomes impossible: there are no defined deliverables, which prevents reliable deadlines. Because of these problems, we implemented task-tracking software which is now in use across all seven teams at the University Hospital Erlangen. Over a period of seven months, a working group defined types of tasks (project, routine task, etc.), workflows, and views to monitor the tasks of the 7 divisions, 20 teams and 340 different IT services. The software has been in use since December 2016.

  4. Lessons Learned in the Livingstone 2 on Earth Observing One Flight Experiment

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Shulman, Seth

    2005-01-01

    The Livingstone 2 (L2) model-based diagnosis software is a reusable diagnostic tool for monitoring complex systems. In 2004, L2 was integrated with the JPL Autonomous Sciencecraft Experiment (ASE) and deployed on-board Goddard's Earth Observing One (EO-1) remote sensing satellite, to monitor and diagnose the EO-1 space science instruments and imaging sequence. This paper reports on lessons learned from this flight experiment. The goals for this experiment, including validation of minimum success criteria and of a series of diagnostic scenarios, have all been successfully net. Long-term operations in space are on-going, as a test of the maturity of the system, with L2 performance remaining flawless. L2 has demonstrated the ability to track the state of the system during nominal operations, detect simulated abnormalities in operations and isolate failures to their root cause fault. Specific advances demonstrated include diagnosis of ambiguity groups rather than a single fault candidate; hypothesis revision given new sensor evidence about the state of the system; and the capability to check for faults in a dynamic system without having to wait until the system is quiescent. The major benefits of this advanced health management technology are to increase mission duration and reliability through intelligent fault protection, and robust autonomous operations with reduced dependency on supervisory operations from Earth. The work-load for operators will be reduced by telemetry of processed state-of-health information rather than raw data. The long-term vision is that of making diagnosis available to the onboard planner or executive, allowing autonomy software to re-plan in order to work around known component failures. For a system that is expected to evolve substantially over its lifetime, as for the International Space Station, the model-based approach has definite advantages over rule-based expert systems and limit-checking fault protection systems, as these do not scale well. The model-based approach facilitates reuse of the L2 diagnostic software; only the model of the system to be diagnosed and telemetry monitoring software has to be rebuilt for a new system or expanded for a growing system. The hierarchical L2 model supports modularity and expendability, and as such is suitable solution for integrated system health management as envisioned for systems-of-systems.

  5. Self-learning health monitoring algorithm in composite structures

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; Iannone, Michele; Califano, America; D'Amore, Alberto

    2018-02-01

    The paper describes a system that it is able of monitoring the health state of a composite structure in real time. The hardware of the system consists of a wire of strain sensors connected to a control unit. The software of the system elaborates the strain data and in real time is able to detect the presence of an eventual damage of the structures monitored with the strain sensors. The algorithm requires as input only the strains of the monitored structured measured on real time, i.e. those strains coming from the deformations of the composite structure due to the working loads. The health monitoring system does not require any additional device to interrogate the structure as often used in the literature, instead it is based on a self-learning procedure. The strain data acquired when the structure is healthy are used to set up the correlations between the strain in different positions of structure by means of neural network. Once the correlations between the strains in different position have been set up, these correlations act as a fingerprint of the healthy structure. In case of damage the correlation between the strains in the position of the structure near the damage will change due to the change of the stiffness of the structure caused by the damage. The developed software is able to recognize the change of the transfer function between the strains and consequently is able to detect the damage.

  6. A proven approach for more effective software development and maintenance

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Hall, Dana; Sinclair, Craig

    1994-01-01

    Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the mission operations and ground data systems software domains throughout Code 500.

  7. Real Time System for Practical Acoustic Monitoring of Global Ocean Temperature. Volume 3

    DTIC Science & Technology

    1994-06-30

    signal processing software to the SSAR. This software performs Doppler correction , circulating sums, matched filtering and pulse compression, estimation...Doppler correction , circulating sums, matched filtering and pulse compression, estimation of multipath arrival angle, and peak- picking. At the... geometrica , sound speed, and focuing region sAles to the acoustic wavelengths Our work on this problem is based on an oceanographic application. To

  8. JRTF: A Flexible Software Framework for Real-Time Control in Magnetic Confinement Nuclear Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Zheng, G. Z.; Zheng, W.; Chen, Z.; Yuan, T.; Yang, C.

    2016-04-01

    The magnetic confinement nuclear fusion experiments require various real-time control applications like plasma control. ITER has designed the Fast Plant System Controller (FPSC) for this job. ITER provided hardware and software standards and guidelines for building a FPSC. In order to develop various real-time FPSC applications efficiently, a flexible real-time software framework called J-TEXT real-time framework (JRTF) is developed by J-TEXT tokamak team. JRTF allowed developers to implement different functions as independent and reusable modules called Application Blocks (AB). The AB developers only need to focus on implementing the control tasks or the algorithms. The timing, scheduling, data sharing and eventing are handled by the JRTF pipelines. JRTF provides great flexibility on developing ABs. Unit test against ABs can be developed easily and ABs can even be used in non-JRTF applications. JRTF also provides interfaces allowing JRTF applications to be configured and monitored at runtime. JRTF is compatible with ITER standard FPSC hardware and ITER (Control, Data Access and Communication) CODAC Core software. It can be configured and monitored using (Experimental Physics and Industrial Control System) EPICS. Moreover the JRTF can be ported to different platforms and be integrated with supervisory control software other than EPICS. The paper presents the design and implementation of JRTF as well as brief test results.

  9. Polarimeter based on video matrix

    NASA Astrophysics Data System (ADS)

    Pavlov, Andrey; Kontantinov, Oleg; Shmirko, Konstantin; Zubko, Evgenij

    2017-11-01

    In this paper we present a new measurement tool - polarimeter, based on video matrix. Polarimetric measure- ments are usefull, for example, when monitoring water areas pollutions and atmosphere constituents. New device is small enough to mount on unmanned aircraft vehicles (quadrocopters) and stationary platforms. Device and corresponding software turns it into real-time monitoring system, that helps to solve some research problems.

  10. System and Method for Dynamic Aeroelastic Control

    NASA Technical Reports Server (NTRS)

    Suh, Peter M. (Inventor)

    2015-01-01

    The present invention proposes a hardware and software architecture for dynamic modal structural monitoring that uses a robust modal filter to monitor a potentially very large-scale array of sensors in real time, and tolerant of asymmetric sensor noise and sensor failures, to achieve aircraft performance optimization such as minimizing aircraft flutter, drag and maximizing fuel efficiency.

  11. Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.

    2014-10-01

    The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.

  12. Using the ATL HDI 1000 to collect demodulated RF data for monitoring HIFU lesion formation

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Kaczkowski, Peter J.; Daigle, Ron E.; Huang, Lingyun; Paun, Marla; Beach, Kirk W.; Crum, Lawrence A.

    2003-05-01

    The ability to accurately track and monitor the progress of lesion formation during HIFU (High Intensity Focused Ultrasound) therapy is important for the success of HIFU-based treatment protocols. To aid in the development of algorithms for accurately targeting and monitoring formation of HIFU induced lesions, we have developed a software system to perform RF data acquisition during HIFU therapy using a commercially available clinical ultrasound scanner (ATL HDI 1000, Philips Medical Systems, Bothell, WA). The HDI 1000 scanner functions on a software dominant architecture, permitting straightforward external control of its operation and relatively easy access to quadrature demodulated RF data. A PC running a custom developed program sends control signals to the HIFU module via GPIB and to the HDI 1000 via Telnet, alternately interleaving HIFU exposures and RF frame acquisitions. The system was tested during experiments in which HIFU lesions were created in excised animal tissue. No crosstalk between the HIFU beam and the ultrasound imager was detected, thus demonstrating synchronization. Newly developed acquisition modes allow greater user control in setting the image geometry and scanline density, and enables high frame rate acquisition. This system facilitates rapid development of signal-processing based HIFU therapy monitoring algorithms and their implementation in image-guided thermal therapy systems. In addition, the HDI 1000 system can be easily customized for use with other emerging imaging modalities that require access to the RF data such as elastographic methods and new Doppler-based imaging and tissue characterization techniques.

  13. SEDS1 mission software verification using a signal simulator

    NASA Technical Reports Server (NTRS)

    Pierson, William E.

    1992-01-01

    The first flight of the Small Expendable Deployer System (SEDS1) is schedule to fly as the secondary payload of a Delta 2 in March, 1993. The objective of the SEDS1 mission is to collect data to validate the concept of tethered satellite systems and to verify computer simulations used to predict their behavior. SEDS1 will deploy a 50 lb. instrumented satellite as an end mass using a 20 km tether. Langley Research Center is providing the end mass instrumentation, while the Marshall Space Flight Center is designing and building the deployer. The objective of the experiment is to test the SEDS design concept by demonstrating that the system will satisfactorily deploy the full 20 km tether without stopping prematurely, come to a smooth stop on the application of a brake, and cut the tether at the proper time after it swings to the local vertical. Also, SEDS1 will collect data which will be used to test the accuracy of tether dynamics models used to stimulate this type of deployment. The experiment will last about 1.5 hours and complete approximately 1.5 orbits. Radar tracking of the Delta II and end mass is planned. In addition, the SEDS1 on-board computer will continuously record, store, and transmit mission data over the Delta II S-band telemetry system. The Data System will count tether windings as the tether unwinds, log the times of each turn and other mission events, monitor tether tension, and record the temperature of system components. A summary of the measurements taken during the SEDS1 are shown. The Data System will also control the tether brake and cutter mechanisms. Preliminary versions of two major sections of the flight software, the data telemetry modules and the data collection modules, were developed and tested under the 1990 NASA/ASEE Summer Faculty Fellowship Program. To facilitate the debugging of these software modules, a prototype SEDS Data System was programmed to simulate turn count signals. During the 1991 summer program, the concept of simulating signals produced by the SEDS electronics systems and circuits was expanded and more precisely defined. During the 1992 summer program, the SEDS signal simulator was programmed to test the requirements of the SEDS Mission software, and this simulator will be used in the formal verification of the SEDS Mission Software. The formal test procedures specification was written which incorporates the use of the signal simulator to test the SEDS Mission Software and which incorporates procedures for testing the other major component of the SEDS software, the Monitor Software.

  14. A practical tool for monitoring the performance of measuring systems in a laboratory network: report of an ACB Working Group.

    PubMed

    Ayling, Pete; Hill, Robert; Jassam, Nuthar; Kallner, Anders; Khatami, Zahra

    2017-11-01

    Background A logical consequence of the introduction of robotics and high-capacity analysers has seen a consolidation to larger units. This requires new structures and quality systems to ensure that laboratories deliver consistent and comparable results. Methods A spreadsheet program was designed to accommodate results from up to 12 different instruments/laboratories and present IQC data, i.e. Levey-Jennings and Youden plots and comprehensive numerical tables of the performance of each item. Input of data was made possible by a 'data loader' by which IQC data from the individual instruments could be transferred to the spreadsheet program on line. Results A set of real data from laboratories is used to populate the data loader and the networking software program. Examples are present from the analysis of variance components, the Levey-Jennings and Youden plots. Conclusions This report presents a software package that allows the simultaneous management and detailed monitoring of the performance of up to 12 different instruments/laboratories in a fully interactive mode. The system allows a quality manager of networked laboratories to have a continuous updated overview of the performance. This software package has been made available at the ACB website.

  15. Secure telemonitoring system for delivering telerehabilitation therapy to enhance children's communication function to home.

    PubMed

    Parmanto, Bambang; Saptono, Andi; Murthi, Raymond; Safos, Charlotte; Lathan, Corinna E

    2008-11-01

    A secure telemonitoring system was developed to transform CosmoBot system, a stand-alone speech-language therapy software, into a telerehabilitation system. The CosmoBot system is a motivating, computer-based play character designed to enhance children's communication skills and stimulate verbal interaction during the remediation of speech and language disorders. The CosmoBot system consists of the Mission Control human interface device and Cosmo's Play and Learn software featuring a robot character named Cosmo that targets educational goals for children aged 3-5 years. The secure telemonitoring infrastructure links a distant speech-language therapist and child/parents at home or school settings. The result is a telerehabilitation system that allows a speech-language therapist to monitor children's activities at home while providing feedback and therapy materials remotely. We have developed the means for telerehabilitation of communication skills that can be implemented in children's home settings. The architecture allows the therapist to remotely monitor the children after completion of the therapy session and to provide feedback for the following session.

  16. X-29A flight control system performance during flight test

    NASA Technical Reports Server (NTRS)

    Chin, J.; Chacon, V.; Gera, J.

    1987-01-01

    An account is given of flight control system performance results for the X-29A forward-swept wing 'Advanced Technology Demonstrator' fighter aircraft, with attention to its software and hardware components' achievement of the requisite levels of system stability and desirable aircraft handling qualities. The Automatic Camber Control Logic is found to be well integrated with the stability loop of the aircraft. A number of flight test support software programs developed by NASA facilitated monitoring of the X-29A's stability in real time, and allowed the test team to clear the envelope with confidence.

  17. End effector monitoring system: An illustrated case of operational prototyping

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Land, Sherry A.; Thronesbery, Carroll

    1994-01-01

    Operational prototyping is introduced to help developers apply software innovations to real-world problems, to help users articulate requirements, and to help develop more usable software. Operational prototyping has been applied to an expert system development project. The expert system supports fault detection and management during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges among operational prototyping team members are illustrated in a specific prototyping session. We discuss the requirements for operational prototyping technology, types of projects for which operational prototyping is best suited and when it should be applied to those projects.

  18. Ontological Model of Business Process Management Systems

    NASA Astrophysics Data System (ADS)

    Manoilov, G.; Deliiska, B.

    2008-10-01

    The activities which constitute business process management (BPM) can be grouped into five categories: design, modeling, execution, monitoring and optimization. Dedicated software packets for business process management system (BPMS) are available on the market. But the efficiency of its exploitation depends on used ontological model in the development time and run time of the system. In the article an ontological model of BPMS in area of software industry is investigated. The model building is preceded by conceptualization of the domain and taxonomy of BPMS development. On the base of the taxonomy an simple online thesaurus is created.

  19. Advanced active health monitoring system of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  20. Instrumentation, performance visualization, and debugging tools for multiprocessors

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.

    1991-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.

  1. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    NASA Astrophysics Data System (ADS)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  2. Traffic management simulation development : summary.

    DOT National Transportation Integrated Search

    2011-01-01

    Increasingly, Florida traffic is monitored electronically by components of the Intelligent Traffic System (ITS), which send data to regional traffic management centers and assist management of traffic flows and incident response using software called...

  3. An overview of the National Earthquake Information Center acquisition software system, Edge/Continuous Waveform Buffer

    USGS Publications Warehouse

    Patton, John M.; Ketchum, David C.; Guy, Michelle R.

    2015-11-02

    This document provides an overview of the capabilities, design, and use cases of the data acquisition and archiving subsystem at the U.S. Geological Survey National Earthquake Information Center. The Edge and Continuous Waveform Buffer software supports the National Earthquake Information Center’s worldwide earthquake monitoring mission in direct station data acquisition, data import, short- and long-term data archiving, data distribution, query services, and playback, among other capabilities. The software design and architecture can be configured to support acquisition and (or) archiving use cases. The software continues to be developed in order to expand the acquisition, storage, and distribution capabilities.

  4. Some Solved Problems with the SLAC PEP-II B-Factory Beam-Position Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Ronald G.

    2000-05-05

    The Beam-Position Monitor (BPM) system for the SLAC PEP-II B-Factory has been in operation for over two years. Although the BPM system has met all of its specifications, several problems with the system have been identified and solved. The problems include errors and limitations in both the hardware and software. Solutions of such problems have led to improved performance and reliability. In this paper the authors report on this experience. The process of identifying problems is not at an end and they expect continued improvement of the BPM system.

  5. Coordinated Fault Tolerance for High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  6. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  7. Runway Safety Monitor Algorithm for Runway Incursion Detection and Alerting

    NASA Technical Reports Server (NTRS)

    Green, David F., Jr.; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The Runway Safety Monitor (RSM) is an algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety Program's Synthetic Vision System element. The RSM algorithm provides pilots with enhanced situational awareness and warnings of runway incursions in sufficient time to take evasive action and avoid accidents during landings, takeoffs, or taxiing on the runway. The RSM currently runs as a component of the NASA Integrated Display System, an experimental avionics software system for terminal area and surface operations. However, the RSM algorithm can be implemented as a separate program to run on any aircraft with traffic data link capability. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Dallas-Ft Worth International Airport (DFW) during September and October of 2000, and the RSM performance results and lessons learned from those flight tests.

  8. A Recommender System in the Cyber Defense Domain

    DTIC Science & Technology

    2014-03-27

    monitoring software is a java based program sending updates to the database on the sensor machine. The host monitoring program gathers information about...3.2.2 Database. A MySQL database located on the sensor machine acts as the storage for the sensors on the network. Snort, Nmap, vulnerability scores, and...machine with the IDS and the recommender is labeled “sensor”. The recommender system code is written in java and compiled using java version 1.6.024

  9. Black Box Testing: Experiments with Runway Incursion Advisory Alerting System

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2005-01-01

    This report summarizes our research findings on the Black box testing of Runway Incursion Advisory Alerting System (RIAAS) and Runway Safety Monitor (RSM) system. Developing automated testing software for such systems has been a problem because of the extensive information that has to be processed. Customized software solutions have been proposed. However, they are time consuming to develop. Here, we present a less expensive, and a more general test platform that is capable of performing complete black box testing. The technique is based on the classification of the anomalies that arise during Monte Carlo simulations. In addition, we also discuss a generalized testing tool (prototype) that we have developed.

  10. Aircraft signal definition for flight safety system monitoring system

    NASA Technical Reports Server (NTRS)

    Gibbs, Michael (Inventor); Omen, Debi Van (Inventor)

    2003-01-01

    A system and method compares combinations of vehicle variable values against known combinations of potentially dangerous vehicle input signal values. Alarms and error messages are selectively generated based on such comparisons. An aircraft signal definition is provided to enable definition and monitoring of sets of aircraft input signals to customize such signals for different aircraft. The input signals are compared against known combinations of potentially dangerous values by operational software and hardware of a monitoring function. The aircraft signal definition is created using a text editor or custom application. A compiler receives the aircraft signal definition to generate a binary file that comprises the definition of all the input signals used by the monitoring function. The binary file also contains logic that specifies how the inputs are to be interpreted. The file is then loaded into the monitor function, where it is validated and used to continuously monitor the condition of the aircraft.

  11. Performance monitor system functional simulator, environmental data, orbiter 101(HFT)

    NASA Technical Reports Server (NTRS)

    Parker, F. W.

    1974-01-01

    Information concerning the environment component of the space shuttle performance monitor system simulator (PMSS) and those subsystems operational on the shuttle orbiter 101 used for horizontal flight test (HFT) is provided, along with detailed data for the shuttle performance monitor system (PMS) whose software requirements evolve from three basic PMS functions: (1) fault detection and annunciation; (2) subsystem measurement management; and (3) subsystem configuration management. Information relative to the design and operation of Orbiter systems for HFT is also presented, and the functional paths are identified to the lowest level at which the crew can control the system functions. Measurement requirements are given which are necessary to adequately monitor the health status of the system. PMS process requirements, relative to the measurements which are necessary for fault detection and annunciation of a failed functional path, consist of measurement characteristics, tolerance limits, precondition tests, and correlation measurements.

  12. Synchronization software for automation in anesthesia.

    PubMed

    Bressan, Nadja; Castro, Ana; Brás, Susana; Oliveira, Hélder P; Ribeiro, Lénio; Ferreira, David A; Antunes, Luís; Amorim, Pedro; Nunes, Catarina S

    2007-01-01

    This work presents the development of a software for data acquisition and control (ASYS) on a clinical setup. Similar to the industrial Supervisory Control And Data Acquisition (SCADA) the software assembles a Target Controlled Infusion (TCI) monitoring and supervisory control data in real time from devices in a surgical room. The software is not a full controller since the TCI systems comprehend permanent interaction from the anesthesiologist. Based on pharmacokinetic models, the effect-site and plasma concentrations can be related with the drug dose infused and vice versa. The software determines the infusion rates of the drug which are given as commands to the infusion pumps. This software provides the anesthesiologist with a trustworthy tool for managing a safe and balanced anesthesia. Since it also incorporates the acquisition and display of patients brain signals.

  13. Developing an Approach for Analyzing and Verifying System Communication

    NASA Technical Reports Server (NTRS)

    Stratton, William C.; Lindvall, Mikael; Ackermann, Chris; Sibol, Deane E.; Godfrey, Sally

    2009-01-01

    This slide presentation reviews a project for developing an approach for analyzing and verifying the inter system communications. The motivation for the study was that software systems in the aerospace domain are inherently complex, and operate under tight constraints for resources, so that systems of systems must communicate with each other to fulfill the tasks. The systems of systems requires reliable communications. The technical approach was to develop a system, DynSAVE, that detects communication problems among the systems. The project enhanced the proven Software Architecture Visualization and Evaluation (SAVE) tool to create Dynamic SAVE (DynSAVE). The approach monitors and records low level network traffic, converting low level traffic into meaningful messages, and displays the messages in a way the issues can be detected.

  14. Software systems for operation, control, and monitoring of the EBEX instrument

    NASA Astrophysics Data System (ADS)

    Milligan, Michael; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grainger, Will; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Hyland, Peter; Jaffe, Andrew; Johnson, Bradley; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Miller, Amber; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Tran, Huan; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-07-01

    We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3 GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.

  15. Flight software development for the isothermal dendritic growth experiment

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Winsa, Edward A.; Glicksman, Martin E.

    1989-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.

  16. Flight software development for the isothermal dendritic growth experiment

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Winsa, Edward A.; Glicksman, M. E.

    1990-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and unlink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.

  17. Teaching WP and DP with CP/M-Based Microcomputers.

    ERIC Educational Resources Information Center

    Bartholome, Lloyd W.

    1982-01-01

    The use of CP/M (Control Program Monitor)-based microcomputers in teaching word processing and data processing is explored. The system's advantages, variations, dictionary software, and future are all discussed. (CT)

  18. An Efficient Wireless Sensor Network for Industrial Monitoring and Control.

    PubMed

    Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-10

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  19. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    PubMed Central

    Aponte-Luis, Juan; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-01

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management. PMID:29320466

  20. Space Environment Forecasting with Neutron Monitors: Establishing a novel service for the ESA SSA Program

    NASA Astrophysics Data System (ADS)

    Papaioannou, Athanasios; Mavromichalaki, Helen; Souvatzoglou, George; Paschalis, Pavlos; Sarlanis, Christos; Dimitroulakos, John; Gerontidou, Maria

    2013-04-01

    High-energy particles released at the Sun during a solar flare or a very energetic coronal mass ejection, result to a significant intensity increase at neutron monitor measurements known as Ground Level Enhancements (GLEs). Due to their space weather impact (i.e. risks and failures at communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations) it is crucial to establish a real-time operational system that would be in place to issue reliable and timely GLE Alerts. Currently, the Cosmic Ray group of the National and Kapodistrian University of Athens is working towards the establishment of a Neutron Monitor Service that will be made available via the Space Weather Portal operated by the European Space Agency (ESA), under the Space Situational Awareness (SSA) Program. To this end, a web interface providing data from multiple Neutron Monitor stations as well as an upgraded GLE Alert will be provided. Both services are now under testing and validation and they will probably enter to an operational phase next year. The core of this Neutron Monitor Service is the GLE Alert software, and therefore, the main goal of this research effort is to upgrade the existing GLE Alert software, to minimize the probability of a false alarm and to enhance the usability of the corresponding results. The ESA Neutron Monitor Service is building upon the infrastructure made available with the implementation of the High-Resolution Neutron Monitor Database (NMDB). In this work the structure of the Neutron Monitor Service for ESA SSA Program and the impact of the novel GLE Alert Service that will be made available to future users via ESA SSA web portal will be presented and further discussed.

  1. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Propulsion Fuel Pumps and Fuel Systems Liquid Rockets and Combustion Gas Generators Micropropulsion Gears Monopropellants High-Cycle Fatigue and Its... Systems Electric Propulsion Engine Health Monitoring Systems High-Energy-Density Matter Exhaust Nozzles Injectors and Spray Measurements Fans Laser...of software models to drive development of component-based systems and lightweight domain-specific specification and verification technology. Highly

  2. ENSEMBLE and AMET: Two Systems and Approaches to a Harmonized, Simplified and Efficient Facility for Air Quality Models Development and Evaluation

    EPA Science Inventory

    The complexity of air quality modeling systems, air quality monitoring data make ad-hoc systems for model evaluation important aids to the modeling community. Among those are the ENSEMBLE system developed by the EC-Joint Research Center, and the AMET software developed by the US-...

  3. Introduction to Digital Logic Systems for Energy Monitoring and Control Systems.

    DTIC Science & Technology

    1985-05-01

    computer were first set down by Charles Babbage in 1830. An additional criteria was proposed by Von Neumann in 1947. These criteria state: (1) An input means...criteria requirements as set down by Babbage and Von Neumann. The computer equipment ("hardware") and internal operating system ("software

  4. Enterprise Resource Planning Systems: Assessment of Risk Factors by California Community College Leaders

    ERIC Educational Resources Information Center

    Valente, Mario Manuel

    2011-01-01

    Most California Community Colleges have chosen to purchase and implement a Management Information Systems software solution also known as an Enterprise Resource Planning (ERP) system in order to monitor, control, and automate their administrative tasks. ERP implementations are complex, expensive, high profile, and therefore high risk. To reduce…

  5. Collaboration Between NASA Centers of Excellence on Autonomous System Software Development

    NASA Technical Reports Server (NTRS)

    Goodrich, Charles H.; Larson, William E.; Delgado, H. (Technical Monitor)

    2001-01-01

    Software for space systems flight operations has its roots in the early days of the space program when computer systems were incapable of supporting highly complex and flexible control logic. Control systems relied on fast data acquisition and supervisory control from a roomful of systems engineers on the ground. Even though computer hardware and software has become many orders of magnitude more capable, space systems have largely adhered to this original paradigm In an effort to break this mold, Kennedy Space Center (KSC) has invested in the development of model-based diagnosis and control applications for ten years having broad experience in both ground and spacecraft systems and software. KSC has now partnered with Ames Research Center (ARC), NASA's Center of Excellence in Information Technology, to create a new paradigm for the control of dynamic space systems. ARC has developed model-based diagnosis and intelligent planning software that enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. ARC demonstrated the utility of onboard diagnosis and planning with an experiment aboard Deep Space I in 1999. This paper highlights the software control system collaboration between KSC and ARC. KSC has developed a Mars In-situ Resource Utilization testbed based on the Reverse Water Gas Shift (RWGS) reaction. This plant, built in KSC's Applied Chemistry Laboratory, is capable of producing the large amount of Oxygen that would be needed to support a Human Mars Mission. KSC and ARC are cooperating to develop an autonomous, fault-tolerant control system for RWGS to meet the need for autonomy on deep space missions. The paper will also describe how the new system software paradigm will be applied to Vehicle Health Monitoring, tested on the new X vehicles and integrated into future launch processing systems.

  6. Digital Autonomous Terminal Access Communication (DATAC) system

    NASA Technical Reports Server (NTRS)

    Novacki, Stanley M., III

    1987-01-01

    In order to accommodate the increasing number of computerized subsystems aboard today's more fuel efficient aircraft, the Boeing Co. has developed the DATAC (Digital Autonomous Terminal Access Control) bus to minimize the need for point-to-point wiring to interconnect these various systems, thereby reducing total aircraft weight and maintaining an economical flight configuration. The DATAC bus is essentially a local area network providing interconnections for any of the flight management and control systems aboard the aircraft. The task of developing a Bus Monitor Unit was broken down into four subtasks: (1) providing a hardware interface between the DATAC bus and the Z8000-based microcomputer system to be used as the bus monitor; (2) establishing a communication link between the Z8000 system and a CP/M-based computer system; (3) generation of data reduction and display software to output data to the console device; and (4) development of a DATAC Terminal Simulator to facilitate testing of the hardware and software which transfer data between the DATAC's bus and the operator's console in a near real time environment. These tasks are briefly discussed.

  7. Integrated wireless sensor network and real time smart controlling and monitoring system for efficient energy management in standalone photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama

    2014-04-01

    In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.

  8. Computer software configuration description, 241-AY and 241-AZ tank farm MICON automation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkelman, W.D.

    This document describes the configuration process, choices and conventions used during the configuration activities, and issues involved in making changes to the configuration. Includes the master listings of the Tag definitions, which should be revised to authorize any changes. Revision 2 incorporates minor changes to ensure the document setpoints accurately reflect limits (including exhaust stack flow of 800 scfm) established in OSD-T-151-00019. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes.

  9. How Emerging Technologies are Changing the Rules of Spacecraft Ground Support

    NASA Technical Reports Server (NTRS)

    Boland, Dillard; Steger, Warren; Weidow, David; Yakstis, Lou

    1996-01-01

    As part of its effort to develop the flight dynamics distributed system (FDDS), NASA established a program for the continual monitoring of the developments in computer and software technologies, and for assessing the significance of constructing and operating spacecraft ground data systems. In relation to this, technology trends in the computing industry are reviewed, exploring their significance for the spacecraft ground support industry. The technologies considered are: hardware; object computing; Internet; automation, and software development. The ways in which these technologies have affected the industry are considered.

  10. Real-time Data Streams from ``e-RemoteCtrl'' to Central VLBI Network Status Monitoring Services Like IVS Live

    NASA Astrophysics Data System (ADS)

    Neidhardt, Alexander; Collioud, Arnaud

    2014-12-01

    A central VLBI network status monitoring can be realized by using online status information about current VLBI sessions, real-time, and status data directly from each radio telescope. Such monitoring helps to organize sessions or to get immediate feedback from the active telescopes. Therefore the remote control software for VLBI radio telescopes ``e-RemoteCtrl'' (http://www.econtrol-software.de), which enables remote access as extension to the NASA Field System, realizes real-time data streams to dedicated data centers. The software has direct access to the status information about the current observation (e.g., schedule, scan, source) and the telescope (e.g., current state, temperature, pressure) in real-time. This information are directly sent to ``IVS Live''. ``IVS Live'' (http://ivslive.obs.u-bordeaux1.fr/) is a Web tool that can be used to follow the observing sessions, organized by the International VLBI Service for Geodesy and Astrometry (IVS), navigate through past or upcoming sessions, or search and display specific information about sessions, sources (like VLBI images), and stations, by using an Internet browser.

  11. SU-F-P-04: Implementation of Dose Monitoring Software: Successes and Pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Och, J

    2016-06-15

    Purpose: to successfully install a dose monitoring software (DMS) application to assist in CT protocol and dose management. Methods: Upon selecting the DMS, we began our implementation of the application. A working group composed of Medical Physics, Radiology Administration, Information Technology, and CT technologists was formed. On-site training in the application was supplied by the vendor. The decision was made to apply the process for all the CT protocols on all platforms at all facilities. Protocols were painstakingly mapped to the correct masters, and the system went ‘live’. Results: We are routinely using DMS as a tool in our Clinicalmore » Performance CT QA program. It is useful in determining the effectiveness of revisions to existing protocols, and establishing performance baselines for new units. However, the implementation was not without difficulty. We identified several pitfalls and obstacles which frustrated progress. Including: Training deficiencies, Nomenclature problems, Communication, DICOM variability. Conclusion: Dose monitoring software can be a potent tool for QA. However, implementation of the program can be problematic and requires planning, organization and commitment.« less

  12. Proceedings of the IDA Workshop on Formal Specification and Verification of Ada (Trade Name) (3rd) Held in Research Triangle Park, North Carolina on 14-16 May 1986

    DTIC Science & Technology

    1986-08-01

    sensitivity to software or hardware failures (bit transformation, register perversion, interface failures, etc .) which could cause the system to operate in a...of systems . She pointed to the need for 40 safety concerns in a continually growing number of computer applications (e.g., monitor and/or control of...informal, definition. Finally, the definition is based on the SMoLCS (Structured Monitored Linear Concurrent Systems ) methodology, an approach to the

  13. Intelligent and Adaptive Interface (IAI) for Cognitive Cockpit (CC)

    DTIC Science & Technology

    2004-03-31

    goals3 and plans and generating system plans would be incorporated as task knowledge. The Dialogue Model, which is currently undeveloped in LOCATE...pieces of software. Modularity can also serve to improve the organisational effectiveness of software, whereby a suitable division of labour among...a sophisticated tool in support of future combat aircraft acquisition. While CA can monitor similar activities in countries like the UK and USA we

  14. HyspIRI Intelligent Payload Module(IPM) and Benchmarking Algorithms for Upload

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel

    2010-01-01

    Features: Hardware: a) Xilinx Virtex-5 (GSFC Space Cube 2); b) 2 x 400MHz PPC; c) 100MHz Bus; d) 2 x 512MB SDRAM; e) Dual Gigabit Ethernet. Support Linux kernel 2.6.31 (gcc version 4.2.2). Support software running in stand alone mode for better performance. Can stream raw data up to 800 Mbps. Ready for operations. Software Application Examples: Band-stripping Algiotrhmsl:cloud, sulfur, flood, thermal, SWIL, NDVI, NDWI, SIWI, oil spills, algae blooms, etc. Corrections: geometric, radiometric, atmospheric. Core Flight System/dynamic software bus. CCSDS File Delivery Protocol. Delay Tolerant Network. CASPER /onboard planning. Fault monitoring/recovery software. S/C command and telemetry software. Data compression. Sensor Web for Autonomous Mission Operations.

  15. Making Sense of Remotely Sensed Ultra-Spectral Infrared Data

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's Jet Propulsion Laboratory (JPL), Pasadena, California, Earth Observing System (EOS) programs, the Deep Space Network (DSN), and various Department of Defense (DOD) technology demonstration programs, combined their technical expertise to develop SEASCRAPE, a software program that obtains data when thermal infrared radiation passes through the Earth's atmosphere and reaches a sensor. Licensed by the California Institute of Technology (Caltech), SEASCRAPE automatically inverts complex infrared data and makes it possible to obtain estimates of the state of the atmosphere along the ray path. Former JPL staff members created a small entrepreneurial firm, Remote Sensing Analysis Systems, Inc., of Altadena, California, to commercialize the product. The founders believed that a commercial version of the software was needed for future U.S. government missions and the commercial monitoring of pollution. With the inversion capability of this software and remote sensing instrumentation, it is possible to monitor pollution sources from safe and secure distances on a noninterfering, noncooperative basis. The software, now know as SEASCRAPE_Plus, allows the user to determine the presence of pollution products, their location and their abundance along the ray path. The technology has been cleared by the Department of Commerce for export, and is currently used by numerous research and engineering organizations around the world.

  16. ASSESSING AND PREVENTING THE SPREAD OF CONTAMINANTS IN A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Remote monitoring data, field studies, and the modeling software ? EPANET, can be used by drinking water utilities and consulting engineers to predict flow dynamics and information on the spatial distribution and concentration of contaminants in a drinking water system. A field ...

  17. Development and improvement of the operating diagnostics systems of NPO CKTI works for turbine of thermal and nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kovalev, I. A.; Rakovskii, V. G.; Isakov, N. Yu.; Sandovskii, A. V.

    2016-03-01

    The work results on the development and improvement of the techniques, algorithms, and software-hardware of continuous operating diagnostics systems of rotating units and parts of turbine equipment state are presented. In particular, to ensure the full remote service of monitored turbine equipment using web technologies, the web version of the software of the automated systems of vibration-based diagnostics (ASVD VIDAS) was developed. The experience in the automated analysis of data obtained by ASVD VIDAS form the basis of the new algorithm of early detection of such dangerous defects as rotor deflection, crack in the rotor, and strong misalignment of supports. The program-technical complex of monitoring and measuring the deflection of medium pressure rotor (PTC) realizing this algorithm will alert the electric power plant staff during a deflection and indicate its value. This will give the opportunity to take timely measures to prevent the further extension of the defect. Repeatedly, recorded cases of full or partial destruction of shrouded shelves of rotor blades of the last stages of low-pressure cylinders of steam turbines defined the need to develop a version of the automated system of blade diagnostics (ASBD SKALA) for shrouded stages. The processing, analysis, presentation, and backup of data characterizing the mechanical state of blade device are carried out with a newly developed controller of the diagnostics system. As a result of the implementation of the works, the diagnosed parameters determining the operation security of rotating elements of equipment was expanded and the new tasks on monitoring the state of units and parts of turbines were solved. All algorithmic solutions and hardware-software implementations mentioned in the article were tested on the test benches and applied at some power plants.

  18. Low Cost Real Time Autonomous Remote Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. R.; Maldonado, P. M.; Pierson, J. J.; Harris, L.

    2016-02-01

    Environmental scientists have a need for gathering multiple parameters during specific time periods to answer their research questions. Most available monitoring systems are very expensive and closed systems, which limits the potential to scale up research projects. We developed a low cost, autonomous, real-time monitoring platform that is both open hardware/software and easy to build, deploy, manage and maintain. The hardware is built with off-the-shelf components and a credit card sized computer called Raspberry Pi, running an open source operating (Raspbian). The system runs off a set of batteries and a solar panel, which makes it ideal for remote locations. The software is divided into three parts: 1) a framework for abstracting the sensors (initializing, pooling and communications) designed in python and using a fully object-oriented design, making it easy for new sensor to be added with minimal code changes, 2) a web front end for managing the entire system, 3) a data store (database) framework for local and remote data retrieval and reporting services. Connectivity to the system can be accomplished through a Wi-Fi or cellular Internet connection. Scientists are being forced to do more with less, in response our platform will provide them with a flexible system that can improve the process of data gathering with an accessible, modular, low-cost, and efficient monitoring system. Currently, we have the required permits from the Department of Natural Resources in Puerto Rico to deploy the platform at the Laguna Grande Bioluminescence Lagoon in Fajardo, PR. This station will include probes for pH, DO, Conductivity and water temperature.

  19. FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.

    1985-01-01

    Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.

  20. A portable, inexpensive, wireless vital signs monitoring system.

    PubMed

    Kaputa, David; Price, David; Enderle, John D

    2010-01-01

    The University of Connecticut, Department of Biomedical Engineering has developed a device to be used by patients to collect physiological data outside of a medical facility. This device facilitates modes of data collection that would be expensive, inconvenient, or impossible to obtain by traditional means within the medical facility. Data can be collected on specific days, at specific times, during specific activities, or while traveling. The device uses biosensors to obtain information such as pulse oximetry (SpO2), heart rate, electrocardiogram (ECG), non-invasive blood pressure (NIBP), and weight which are sent via Bluetooth to an interactive monitoring device. The data can then be downloaded to an electronic storage device or transmitted to a company server, physician's office, or hospital. The data collection software is usable on any computer device with Bluetooth capability, thereby removing the need for special hardware for the monitoring device and reducing the total cost of the system. The modular biosensors can be added or removed as needed without changing the monitoring device software. The user is prompted by easy-to-follow instructions written in non-technical language. Additional features, such as screens with large buttons and large text, allow for use by those with limited vision or limited motor skills.

  1. Software to Control and Monitor Gas Streams

    NASA Technical Reports Server (NTRS)

    Arkin, C.; Curley, Charles; Gore, Eric; Floyd, David; Lucas, Damion

    2012-01-01

    This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority- colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing and one volcanic gas analysis system. Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable. At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab- VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters.

  2. Transient upset models in computer systems

    NASA Technical Reports Server (NTRS)

    Mason, G. M.

    1983-01-01

    Essential factors for the design of transient upset monitors for computers are discussed. The upset is a system level event that is software dependent. It can occur in the program flow, the opcode set, the opcode address domain, the read address domain, and the write address domain. Most upsets are in the program flow. It is shown that simple, external monitors functioning transparently relative to the system operations can be built if a detailed accounting is made of the characteristics of the faults that can happen. Sample applications are provided for different states of the Z-80 and 8085 based system.

  3. The FAO/NASA/NLR Artemis system - An integrated concept for environmental monitoring by satellite in support of food/feed security and desert locust surveillance

    NASA Technical Reports Server (NTRS)

    Hielkema, J. U.; Howard, J. A.; Tucker, C. J.; Van Ingen Schenau, H. A.

    1987-01-01

    The African real time environmental monitoring using imaging satellites (Artemis) system, which should monitor precipitation and vegetation conditions on a continental scale, is presented. The hardware and software characteristics of the system are illustrated and the Artemis databases are outlined. Plans for the system include the use of hourly digital Meteosat data and daily NOAA/AVHRR data to study environmental conditions. Planned mapping activities include monthly rainfall anomaly maps, normalized difference vegetation index maps for ten day and monthly periods with a spatial resolution of 7.6 km, ten day crop/rangeland moisture availability maps, and desert locust potential breeding activity factor maps for a plague prevention program.

  4. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.

    PubMed

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  5. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    PubMed Central

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977

  6. Smartphone based monitoring system for long-term sleep assessment.

    PubMed

    Domingues, Alexandre

    2015-01-01

    The diagnosis of sleep disorders, highly prevalent in Western countries, typically involves sophisticated procedures and equipment that are highly intrusive to the patient. The high processing capabilities and storage capacity of current portable devices, together with a big range of available sensors, many of them with wireless capabilities, create new opportunities and change the paradigms in sleep studies. In this work, a smartphone based sleep monitoring system is presented along with the details of the hardware, software and algorithm implementation. The aim of this system is to provide a way for subjects, with no pre-diagnosed sleep disorders, to monitor their sleep habits, and on the initial screening of abnormal sleep patterns.

  7. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those requirements. This allows the projects leeway to meet these requirements in many forms that best suit a particular project's needs and safety risk. In other words, it tells the project what to do, not how to do it. This update also incorporated advances in the state of the practice of software safety from academia and private industry. It addresses some of the more common issues now facing software developers in the NASA environment such as the use of Commercial-Off-the-Shelf Software (COTS), Modified OTS (MOTS), Government OTS (GOTS), and reused software. A team from across NASA developed the update and it has had both NASA-wide internal reviews by software engineering, quality, safety, and project management. It has also had expert external review. This presentation and paper will discuss the new NASA Software Safety Standard, its organization, and key features. It will start with a brief discussion of some NASA mission failures and incidents that had software as one of their root causes. It will then give a brief overview of the NASA Software Safety Process. This will include an overview of the key personnel responsibilities and functions that must be performed for safety-critical software.

  8. Landslide monitoring using terrestrial laser scanner and robotic total station in Rancabali, West Java (Indonesia)

    NASA Astrophysics Data System (ADS)

    Gumilar, Irwan; Fattah, Alif; Abidin, Hasanuddin Z.; Sadarviana, Vera; Putri, Nabila S. E.; Kristianto

    2017-07-01

    West Java is one of the provinces in Indonesia which is prone to landslide. Over the past few years, landslides in this area have resulted in a large number of victims. One of the areas in West Java with the highest risk of landslide occurrence is Rancabali Ciwidey. In general, the morphology around the landslide location is steep hills, with the slope > 30° and the altitude between 1550 - 1865 m above sea level. Several indications of ground movements can be seen in the form of slumps and cracks on the village roads and tea plantation, as well as slanting trees and electricity poles. The ground movement monitoring in this area is necessary for disaster mitigation. Several methods that can be used to monitor the landslide are using Terrestrial Laser Scanner (TLS) and robotic total station. This research aims is monitoring the landslide using these methods. The methodology used in this research is by obtaining the scanning data using TLS C-10 and Robotic total station MS05 measurements to obtain the coordinates of monitoring point clouds and prism. The TLS software that we used are Cyclone 8.1 and Maptek I-Site. For robotic total station, the software that we used is MSP software. These method hopefully can be used for early warning system of landslide in Rancabali area.

  9. Application of World Wide Web (W3) Technologies in Payload Operations

    NASA Technical Reports Server (NTRS)

    Sun, Charles; Windrem, May; Picinich, Lou

    1996-01-01

    World Wide Web (W3) technologies are considered in relation to their application to space missions. It is considered that such technologies, including the hypertext transfer protocol and the Java object-oriented language, offer a powerful and relatively inexpensive framework for distributed application software development. The suitability of these technologies for payload monitoring systems development is discussed, and the experience gained from the development of an insect habitat monitoring system based on W3 technologies is reported.

  10. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lybeck; B. Pham; M. Tawfik

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure,more » and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and maintenance support. Each product is briefly described in Appendix A. Selection of the most appropriate software package for a particular application will depend on the chosen component, system, or structure. Ongoing research will determine the most appropriate choices for a successful demonstration of PHM systems in aging NPPs.« less

  11. Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument

    NASA Astrophysics Data System (ADS)

    DuPlain, Ron; Ransom, Scott; Demorest, Paul; Brandt, Patrick; Ford, John; Shelton, Amy L.

    2008-08-01

    The National Radio Astronomy Observatory (NRAO) is launching the Green Bank Ultimate Pulsar Processing Instrument (GUPPI), a prototype flexible digital signal processor designed for pulsar observations with the Robert C. Byrd Green Bank Telescope (GBT). GUPPI uses field programmable gate array (FPGA) hardware and design tools developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. The NRAO has been concurrently developing GUPPI software and hardware using minimal software resources. The software handles instrument monitor and control, data acquisition, and hardware interfacing. GUPPI is currently an expert-only spectrometer, but supports future integration with the full GBT production system. The NRAO was able to take advantage of the unique flexibility of the CASPER FPGA hardware platform, develop hardware and software in parallel, and build a suite of software tools for monitoring, controlling, and acquiring data with a new instrument over a short timeline of just a few months. The NRAO interacts regularly with CASPER and its users, and GUPPI stands as an example of what reconfigurable computing and open-source development can do for radio astronomy. GUPPI is modular for portability, and the NRAO provides the results of development as an open-source resource.

  12. A program downloader and other utility software for the DATAC bus monitor unit

    NASA Technical Reports Server (NTRS)

    Novacki, Stanley M., III

    1987-01-01

    A set or programs designed to facilitate software testing on the DATAC Bus Monitor is described. By providing a means to simplify program loading, firmware generation, and subsequent testing of programs, the overhead involved in software evaluation is reduced and that time is used more productively in performance, analysis and improvement of current software.

  13. Process for Administering Distributed Academic Competitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feibush, Eliot

    2010-02-04

    Currently, academic-type competitions are scored using a combination of timer clocks, entries on paper, and individual computers to consolidate individual entries. Such a system is unwieldy, time-consuming, and depends on the individual computer skills that might be present amount the competition administrators. The new Academic Competition Software combines digital clocks, along with a scoring system that permits different point values for different types of questions. Bonus or ‚œtoss-up‚ questions can be monitored during the competition, using a subtimer system. All data is consolidated on the fly and the system can be operated by a single person. Results from different sitesmore » (rooms) can be added in as well. As such, the software is extremely flexible. It is anticipated that this new software will be useful for‚Science or Science Olympiad type competitions held in many high schools and colleges, as well as for preparation and training for such competitions.« less

  14. Supporting Effective Collaboration: Using a Rearview Mirror to Look Forward

    ERIC Educational Resources Information Center

    McManus, Margaret M.; Aiken, Robert M.

    2016-01-01

    Our original research, to design and develop an Intelligent Collaborative Learning System (ICLS), yielded the creation of a Group Leader Tutor software system which utilizes a Collaborative Skills Network to monitor students working collaboratively in a networked environment. The Collaborative Skills Network was a conceptualization of…

  15. Unobtrusive Monitoring of Spaceflight Team Functioning. Literature Review and Operational Assessment for NASA Behavioral Health and Performance Element

    NASA Technical Reports Server (NTRS)

    Maidel, Veronica; Stanton, Jeffrey M.

    2010-01-01

    This document contains a literature review suggesting that research on industrial performance monitoring has limited value in assessing, understanding, and predicting team functioning in the context of space flight missions. The review indicates that a more relevant area of research explores the effectiveness of teams and how team effectiveness may be predicted through the elicitation of individual and team mental models. Note that the mental models referred to in this literature typically reflect a shared operational understanding of a mission setting such as the cockpit controls and navigational indicators on a flight deck. In principle, however, mental models also exist pertaining to the status of interpersonal relations on a team, collective beliefs about leadership, success in coordination, and other aspects of team behavior and cognition. Pursuing this idea, the second part of this document provides an overview of available off-the-shelf products that might assist in extraction of mental models and elicitation of emotions based on an analysis of communicative texts among mission personnel. The search for text analysis software or tools revealed no available tools to enable extraction of mental models automatically, relying only on collected communication text. Nonetheless, using existing software to analyze how a team is functioning may be relevant for selection or training, when human experts are immediately available to analyze and act on the findings. Alternatively, if output can be sent to the ground periodically and analyzed by experts on the ground, then these software packages might be employed during missions as well. A demonstration of two text analysis software applications is presented. Another possibility explored in this document is the option of collecting biometric and proxemic measures such as keystroke dynamics and interpersonal distance in order to expose various individual or dyadic states that may be indicators or predictors of certain elements of team functioning. This document summarizes interviews conducted with personnel currently involved in observing or monitoring astronauts or who are in charge of technology that allows communication and monitoring. The objective of these interviews was to elicit their perspectives on monitoring team performance during long-duration missions and the feasibility of potential automatic non-obtrusive monitoring systems. Finally, in the last section, the report describes several priority areas for research that can help transform team mental models, biometrics, and/or proxemics into workable systems for unobtrusive monitoring of space flight team effectiveness. Conclusions from this work suggest that unobtrusive monitoring of space flight personnel is likely to be a valuable future tool for assessing team functioning, but that several research gaps must be filled before prototype systems can be developed for this purpose.

  16. ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  17. ICAROUS: Integrated Configurable Architecture for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  18. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  19. Software Architecture to Support the Evolution of the ISRU RESOLVE Engineering Breadboard Unit 2 (EBU2)

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Nurge, Mark; Perusich, Stephen

    2011-01-01

    The In-Situ Resource Utilization (ISRU) Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) software provides operation of the physical plant from a remote location with a high-level interface that can access and control the data from external software applications of other subsystems. This software allows autonomous control over the entire system with manual computer control of individual system/process components. It gives non-programmer operators the capability to easily modify the high-level autonomous sequencing while the software is in operation, as well as the ability to modify the low-level, file-based sequences prior to the system operation. Local automated control in a distributed system is also enabled where component control is maintained during the loss of network connectivity with the remote workstation. This innovation also minimizes network traffic. The software architecture commands and controls the latest generation of RESOLVE processes used to obtain, process, and quantify lunar regolith. The system is grouped into six sub-processes: Drill, Crush, Reactor, Lunar Water Resource Demonstration (LWRD), Regolith Volatiles Characterization (RVC) (see example), and Regolith Oxygen Extraction (ROE). Some processes are independent, some are dependent on other processes, and some are independent but run concurrently with other processes. The first goal is to analyze the volatiles emanating from lunar regolith, such as water, carbon monoxide, carbon dioxide, ammonia, hydrogen, and others. This is done by heating the soil and analyzing and capturing the volatilized product. The second goal is to produce water by reducing the soil at high temperatures with hydrogen. This is done by raising the reactor temperature in the range of 800 to 900 C, causing the reaction to progress by adding hydrogen, and then capturing the water product in a desiccant bed. The software needs to run the entire unit and all sub-processes; however, throughout testing, many variables and parameters need to be changed as more is learned about the system operation. The Master Events Controller (MEC) is run on a standard laptop PC using Windows XP. This PC runs in parallel to another laptop that monitors the GC, and a third PC that monitors the drilling/ crushing operation. These three PCs interface to the process through a CompactRIO, OPC Servers, and modems.

  20. Instrumentation development for space debris optical observation system in Indonesia: Preliminary results

    NASA Astrophysics Data System (ADS)

    Dani, Tiar; Rachman, Abdul; Priyatikanto, Rhorom; Religia, Bahar

    2015-09-01

    An increasing number of space junk in orbit has raised their chances to fall in Indonesian region. So far, three debris of rocket bodies have been found in Bengkulu, Gorontalo and Lampung. LAPAN has successfully developed software for monitoring space debris that passes over Indonesia with an altitude below 200 km. To support the software-based system, the hardware-based system has been developed based on optical instruments. The system has been under development in early 2014 which consist of two systems: the telescopic system and wide field system. The telescopic system uses CCD cameras and a reflecting telescope with relatively high sensitivity. Wide field system uses DSLR cameras, binoculars and a combination of CCD with DSLR Lens. Methods and preliminary results of the systems will be presented.

  1. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  2. FORTRAN Automated Code Evaluation System (faces) system documentation, version 2, mod 0. [error detection codes/user manuals (computer programs)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A system is presented which processes FORTRAN based software systems to surface potential problems before they become execution malfunctions. The system complements the diagnostic capabilities of compilers, loaders, and execution monitors rather than duplicating these functions. Also, it emphasizes frequent sources of FORTRAN problems which require inordinate manual effort to identify. The principle value of the system is extracting small sections of unusual code from the bulk of normal sequences. Code structures likely to cause immediate or future problems are brought to the user's attention. These messages stimulate timely corrective action of solid errors and promote identification of 'tricky' code. Corrective action may require recoding or simply extending software documentation to explain the unusual technique.

  3. Okayama optical polarimetry and spectroscopy system (OOPS) II. Network-transparent control software.

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Kurakami, T.; Shimizu, Y.; Yutani, M.

    Control system of the OOPS (Okayama Optical Polarimetry and Spectroscopy system) is designed to integrate several instruments whose controllers are distributed over a network; the OOPS instrument, a CCD camera and data acquisition unit, the 91 cm telescope, an autoguider, a weather monitor, and an image display tool SAOimage. With the help of message-based communication, the control processes cooperate with related processes to perform an astronomical observation under supervising control by a scheduler process. A logger process collects status data of all the instruments to distribute them to related processes upon request. Software structure of each process is described.

  4. A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1990-01-01

    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.

  5. Remote monitoring of sub ppb levels of vinyl chloride, dichloroethylene and trichloroethylene via modem operated automated GC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linenberg, A.; Lander, N.J.

    1994-12-31

    The need for remote monitoring of certain compounds in a sparsely populated area with limited user assistance led to the development and manufacture of a self contained, portable gas chromatography with the appropriate software. Part per billion levels of vinyl chloride, cis 1,2 dichloroethylene and trichloroethylene were detected in air using a trap for preconcentration of the compounds. The units were continuously calibrated with certified standards from Scott Specialty Gases, which in one case was 1 part per billion of the aforementioned compounds. The entire operation of the units, including monitoring instrument responses, changing operating parameters, data transfer, data reviewmore » and data reporting was done entirely on a remote basis from approximately 600 miles away using a remote computer with a modem and remote operating software. The entire system concept promises the availability of highly sensitive remote monitoring in sparsely populated areas for long periods of time.« less

  6. Towards a Low-Cost Real-Time Photogrammetric Landslide Monitoring System Utilising Mobile and Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.

    2016-06-01

    Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.

  7. myBrain: a novel EEG embedded system for epilepsy monitoring.

    PubMed

    Pinho, Francisco; Cerqueira, João; Correia, José; Sousa, Nuno; Dias, Nuno

    2017-10-01

    The World Health Organisation has pointed that a successful health care delivery, requires effective medical devices as tools for prevention, diagnosis, treatment and rehabilitation. Several studies have concluded that longer monitoring periods and outpatient settings might increase diagnosis accuracy and success rate of treatment selection. The long-term monitoring of epileptic patients through electroencephalography (EEG) has been considered a powerful tool to improve the diagnosis, disease classification, and treatment of patients with such condition. This work presents the development of a wireless and wearable EEG acquisition platform suitable for both long-term and short-term monitoring in inpatient and outpatient settings. The developed platform features 32 passive dry electrodes, analogue-to-digital signal conversion with 24-bit resolution and a variable sampling frequency from 250 Hz to 1000 Hz per channel, embedded in a stand-alone module. A computer-on-module embedded system runs a Linux ® operating system that rules the interface between two software frameworks, which interact to satisfy the real-time constraints of signal acquisition as well as parallel recording, processing and wireless data transmission. A textile structure was developed to accommodate all components. Platform performance was evaluated in terms of hardware, software and signal quality. The electrodes were characterised through electrochemical impedance spectroscopy and the operating system performance running an epileptic discrimination algorithm was evaluated. Signal quality was thoroughly assessed in two different approaches: playback of EEG reference signals and benchmarking with a clinical-grade EEG system in alpha-wave replacement and steady-state visual evoked potential paradigms. The proposed platform seems to efficiently monitor epileptic patients in both inpatient and outpatient settings and paves the way to new ambulatory clinical regimens as well as non-clinical EEG applications.

  8. Range Safety for an Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.; Simpson, James C.

    2010-01-01

    The Range Safety Algorithm software encapsulates the various constructs and algorithms required to accomplish Time Space Position Information (TSPI) data management from multiple tracking sources, autonomous mission mode detection and management, and flight-termination mission rule evaluation. The software evaluates various user-configurable rule sets that govern the qualification of TSPI data sources, provides a prelaunch autonomous hold-launch function, performs the flight-monitoring-and-termination functions, and performs end-of-mission safing

  9. Digital Topographic Support System (DTSS).

    DTIC Science & Technology

    1987-07-29

    effects applications software, a word processing package and a Special Purpose Product Builder ( SPPB ) in terms common to his Job. Through the MI, the...communicating with the TA in terms he understands, the applications software, the SPPB and the GIS form the underlying tools which perform the computations and...displayed on the monitors or plotted on paper or Mylar. The SPPB will guide the TA enabling him to design products which are not included in the applications

  10. Guidelines for Applying Video Simulation Technology to Training Land Design

    DTIC Science & Technology

    1993-02-01

    Training Land Design for Realism." The technical monitor was Dr. Victor Diersing, CEHSC-FN. This study was performed by the Environmental Resources...technology to their land management activities. 5 Objective The objective of this study was to provide a general overview of the use of video simulation...4). A market study of currently available hardware and software provided the basis for descriptions of hardware and software systems, and their

  11. A Leak Monitor for Industry

    NASA Technical Reports Server (NTRS)

    1996-01-01

    GenCorp Aerojet Industrial Products, Lewis Research Center, Marshall Space Flight Center, and Case Western Reserve University developed a gas leak detection system, originally for use with the Space Shuttle propulsion system and reusable launch vehicles. The Model HG200 Automated Gas Leak Detection System has miniaturized sensors that can identify extremely low concentrations of hydrogen without requiring oxygen. A microprocessor-based hardware/software system monitors the sensors and displays the source and magnitude of hydrogen leaks in real time. The system detects trace hydrogen around pipes, connectors, flanges and pressure tanks, and has been used by Ford Motor Company in the production of a natural gas-powered car.

  12. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Dhabaleswar Kumar; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system throughmore » fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of existing publish-subscribe tools. We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of key HPC software subsystems and integrated them with the FTB. Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries, resource managers and job schedulers, and system monitoring tools. Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools, we have examined issues associated with expanded, end-to-end fault response from both system and application viewpoints. From the standpoint of system operations, we have investigated log and root cause analysis, anomaly detection and fault prediction, and generalized notification mechanisms. Our applications work has included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics applications, and external frameworks to support the monitoring and response for general applications. Our final goal was to engage the high-end computing community to increase awareness of tools and issues around coordinated end-to-end fault management.« less

  13. [Design and application of user managing system of cardiac remote monitoring network].

    PubMed

    Chen, Shouqiang; Zhang, Jianmin; Yuan, Feng; Gao, Haiqing

    2007-12-01

    According to inpatient records, data managing demand of cardiac remote monitoring network and computer, this software was designed with relative database ACCESS. Its interface, operational button and menu were designed in VBA language assistantly. Its design included collective design, amity, practicability and compatibility. Its function consisted of registering, inquiring, statisticing and printing, et al. It could be used to manage users effectively and could be helpful to exerting important action of cardiac remote monitoring network in preventing cardiac-vascular emergency ulteriorly.

  14. Expert System Software

    NASA Technical Reports Server (NTRS)

    1989-01-01

    C Language Integrated Production System (CLIPS) is a software shell for developing expert systems is designed to allow research and development of artificial intelligence on conventional computers. Originally developed by Johnson Space Center, it enables highly efficient pattern matching. A collection of conditions and actions to be taken if the conditions are met is built into a rule network. Additional pertinent facts are matched to the rule network. Using the program, E.I. DuPont de Nemours & Co. is monitoring chemical production machines; California Polytechnic State University is investigating artificial intelligence in computer aided design; Mentor Graphics has built a new Circuit Synthesis system, and Brooke and Brooke, a law firm, can determine which facts from a file are most important.

  15. Multisensor system for tunnel inspection

    NASA Astrophysics Data System (ADS)

    Idoux, Maurice

    2005-01-01

    The system is aimed at assisting inspection and monitoring of the degradation of tunnels in order to minimize maintenance and repair time. ATLAS 70 is a complete sensors/software package which enables thorough diagnosis of tunnel wall conditions. The data collected locally are stored on a computer hard disk for subsequent analysis in a remote location via elaborate dedicated software. The sensors and local computer are loaded onto a rail and/or road vehicle of specific design, i.e. with even travelling speed of 2 to 5 km/h. Originally, the system has been developed for the Paris Underground Company and has since been applied to rail and road tunnels, large town sewage systems, clean water underground aqueducts and electric cable tunnels.

  16. Capabilities of software "Vector-M" for a diagnostics of the ionosphere state from auroral emissions images and plasma characteristics from the different orbits as a part of the system of control of space weather

    NASA Astrophysics Data System (ADS)

    Avdyushev, V.; Banshchikova, M.; Chuvashov, I.; Kuzmin, A.

    2017-09-01

    In the paper are presented capabilities of software "Vector-M" for a diagnostics of the ionosphere state from auroral emissions images and plasma characteristics from the different orbits as a part of the system of control of space weather. The software "Vector-M" is developed by the celestial mechanics and astrometry department of Tomsk State University in collaboration with Space Research Institute (Moscow) and Central Aerological Observatory of Russian Federal Service for Hydrometeorology and Environmental Monitoring. The software "Vector-M" is intended for calculation of attendant geophysical and astronomical information for the centre of mass of the spacecraft and the space of observations in the experiment with auroral imager Aurovisor-VIS/MP in the orbit of the perspective Meteor-MP spacecraft.

  17. TMT approach to observatory software development process

    NASA Astrophysics Data System (ADS)

    Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder

    2016-07-01

    The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate effective communications; adopting an agile-based software development process across the observatory to enable frequent software releases to help mitigate subsystem interdependencies; defining concise scope and work packages for each of the OSW subsystems to facilitate effective outsourcing of software deliverables to the ITCC partner, and to enable performance monitoring and risk management. At this stage, the architecture and high-level design of the software system has been established and reviewed. During construction each subsystem will have a final design phase with reviews, followed by implementation and testing. The results of the TMT approach to the Observatory Software development process will only be preliminary at the time of the submittal of this paper, but it is anticipated that the early results will be a favorable indication of progress.

  18. Final report on fiscal year 1992 activities for the environmental monitors line-loss study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenoyer, J.L.

    The work performed on this Environmental Monitors Line-Loss Study has been performed under Contract Numbers MLW-SVV-073750 and MFH-SVV-207554. Work on the task was initiated mid-December 1991, and this report documents and summarizes the work performed through January 18, 1993. The sections included in this report summarize the work performed on the Environmental Monitors Line-Loss Study. The sections included in this report are arranged to reflect individual sub-tasks and include: descriptions of measurement systems and procedures used to obtain cascade impactor samples and laser spectrometer measurements from multiple stacks and locations; information on data acquisition, analyses, assessment, and software; discussion ofmore » the analyses and measurement results from the cascade impactor and laser spectrometer systems and software used; discussion on the development of general test methods and procedures for line-loss determinations; an overall summary and specific conclusions that can be made with regard to efforts performed on this task during FY 1992 and FY 1993. Supporting information for these sections is included in this report as appendices.« less

  19. Methodology update for estimating volume to service flow ratio.

    DOT National Transportation Integrated Search

    2015-12-01

    Volume/service flow ratio (VSF) is calculated by the Highway Performance Monitoring System (HPMS) software as an indicator of peak hour congestion. It is an essential input to the Kentucky Transportation Cabinets (KYTC) key planning applications, ...

  20. Automated Monitoring with a BSP Fault-Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L.; Herzog, James P.

    2003-01-01

    The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals.

  1. A component-based system for agricultural drought monitoring by remote sensing.

    PubMed

    Dong, Heng; Li, Jun; Yuan, Yanbin; You, Lin; Chen, Chao

    2017-01-01

    In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.

  2. A component-based system for agricultural drought monitoring by remote sensing

    PubMed Central

    Yuan, Yanbin; You, Lin; Chen, Chao

    2017-01-01

    In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China’s Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring. PMID:29236700

  3. Developing of an automation for therapy dosimetry systems by using labview software

    NASA Astrophysics Data System (ADS)

    Aydin, Selim; Kam, Erol

    2018-06-01

    Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. Therefore it is very important to provide reliable, accurate and fast calibration services for therapy dosimeters since the radiation dose delivered to a radiotherapy patient is directly related to accuracy and reliability of these devices. In this study, we report the performance of in-house developed computer controlled data acquisition and monitoring software for the commercially available radiation therapy electrometers. LabVIEW® software suite is used to provide reliable, fast and accurate calibration services. The software also collects environmental data such as temperature, pressure and humidity in order to use to use these them in correction factor calculations. By using this software tool, a better control over the calibration process is achieved and the need for human intervention is reduced. This is the first software that can control frequently used dosimeter systems, in radiation thereapy field at hospitals, such as Unidos Webline, Unidos E, Dose-1 and PC Electrometers.

  4. A distributed cloud-based cyberinfrastructure framework for integrated bridge monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Hou, Rui; Lynch, Jerome P.; Sohn, Hoon; Law, Kincho H.

    2017-04-01

    This paper describes a cloud-based cyberinfrastructure framework for the management of the diverse data involved in bridge monitoring. Bridge monitoring involves various hardware systems, software tools and laborious activities that include, for examples, a structural health monitoring (SHM), sensor network, engineering analysis programs and visual inspection. Very often, these monitoring systems, tools and activities are not coordinated, and the collected information are not shared. A well-designed integrated data management framework can support the effective use of the data and, thereby, enhance bridge management and maintenance operations. The cloud-based cyberinfrastructure framework presented herein is designed to manage not only sensor measurement data acquired from the SHM system, but also other relevant information, such as bridge engineering model and traffic videos, in an integrated manner. For the scalability and flexibility, cloud computing services and distributed database systems are employed. The information stored can be accessed through standard web interfaces. For demonstration, the cyberinfrastructure system is implemented for the monitoring of the bridges located along the I-275 Corridor in the state of Michigan.

  5. A monitoring system for vegetable greenhouses based on a wireless sensor network.

    PubMed

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring.

  6. Towards a Clinical Trial Protocol to Evaluate Health Information Systems: Evaluation of a Computerized System for Monitoring Tuberculosis from a Patient Perspective in Brazil.

    PubMed

    Crepaldi, Nathalia Yukie; de Lima, Inacia Bezerra; Vicentine, Fernanda Bergamini; Rodrigues, Lídia Maria Lourençon; Sanches, Tiago Lara Michelin; Ruffino-Netto, Antonio; Alves, Domingos; Rijo, Rui Pedro Charters Lopes

    2018-05-08

    Assessment of health information systems consider different aspects of the system itself. They focus or on the professional who will use the software or on its usability or on the software engineering metrics or on financial and managerial issues. The existent approaches are very resources consuming, disconnected, and not standardized. As the software becomes more critical in the health organizations and in patients, becoming used as a medical device or a medicine, there is an urgency to identify tools and methods that can be applied in the development process. The present work is one of the steps of a broader study to identify standardized protocols to evaluate the health information systems as medicines and medical devices are evaluated by clinical trials. The goal of the present work was to evaluate the effect of the introduction of an information system for monitoring tuberculosis treatment (SISTB) in a Brazilian municipality from the patients' perspective. The Patient Satisfaction Questionnaire and the Hospital Consumer Assessment of Healthcare Providers and Systems were answered by the patients before and after the SISTB introduction, for comparison. Patients from an outpatient clinic, formed the control group, that is, at this site was not implanted the SISTB. Descriptive statistics and mixed effects model were used for data analysis. Eighty-eight interviews were conducted in the study. The questionnaire's results presented better averages after the system introduction but were not considered statistically significant. Therefore, it was not possible to associate system implantation with improved patient satisfaction. The HIS evaluation need be complete, the technical and managerial evaluation, the safety, the impact on the professionals and direct and/or indirect impact on patients are important. Developing the right tools and methods that can evaluate the software in its entirety, from the beginning of the development cycle with a normalized scale, are needed.

  7. Clinical data miner: an electronic case report form system with integrated data preprocessing and machine-learning libraries supporting clinical diagnostic model research.

    PubMed

    Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk

    2014-10-20

    Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries. This integration improves the efficiency of the clinical diagnostic model research workflow. Moreover, by simplifying the generation of learning curves, CDM enables study coordinators to assess more accurately when data collection can be terminated, resulting in better models or lower patient recruitment costs.

  8. A real-time monitoring system for the facial nerve.

    PubMed

    Prell, Julian; Rachinger, Jens; Scheller, Christian; Alfieri, Alex; Strauss, Christian; Rampp, Stefan

    2010-06-01

    Damage to the facial nerve during surgery in the cerebellopontine angle is indicated by A-trains, a specific electromyogram pattern. These A-trains can be quantified by the parameter "traintime," which is reliably correlated with postoperative functional outcome. The system presented was designed to monitor traintime in real-time. A dedicated hardware and software platform for automated continuous analysis of the intraoperative facial nerve electromyogram was specifically designed. The automatic detection of A-trains is performed by a software algorithm for real-time analysis of nonstationary biosignals. The system was evaluated in a series of 30 patients operated on for vestibular schwannoma. A-trains can be detected and measured automatically by the described method for real-time analysis. Traintime is monitored continuously via a graphic display and is shown as an absolute numeric value during the operation. It is an expression of overall, cumulated length of A-trains in a given channel; a high correlation between traintime as measured by real-time analysis and functional outcome immediately after the operation (Spearman correlation coefficient [rho] = 0.664, P < .001) and in long-term outcome (rho = 0.631, P < .001) was observed. Automated real-time analysis of the intraoperative facial nerve electromyogram is the first technique capable of reliable continuous real-time monitoring. It can critically contribute to the estimation of functional outcome during the course of the operative procedure.

  9. Process Management inside ATLAS DAQ

    NASA Astrophysics Data System (ADS)

    Alexandrov, I.; Amorim, A.; Badescu, E.; Burckhart-Chromek, D.; Caprini, M.; Dobson, M.; Duval, P. Y.; Hart, R.; Jones, R.; Kazarov, A.; Kolos, S.; Kotov, V.; Liko, D.; Lucio, L.; Mapelli, L.; Mineev, M.; Moneta, L.; Nassiakou, M.; Pedro, L.; Ribeiro, A.; Roumiantsev, V.; Ryabov, Y.; Schweiger, D.; Soloviev, I.; Wolters, H.

    2002-10-01

    The Process Management component of the online software of the future ATLAS experiment data acquisition system is presented. The purpose of the Process Manager is to perform basic job control of the software components of the data acquisition system. It is capable of starting, stopping and monitoring the status of those components on the data acquisition processors independent of the underlying operating system. Its architecture is designed on the basis of a server client model using CORBA based communication. The server part relies on C++ software agent objects acting as an interface between the local operating system and client applications. Some of the major design challenges of the software agents were to achieve the maximum degree of autonomy possible, to create processes aware of dynamic conditions in their environment and with the ability to determine corresponding actions. Issues such as the performance of the agents in terms of time needed for process creation and destruction, the scalability of the system taking into consideration the final ATLAS configuration and minimizing the use of hardware resources were also of critical importance. Besides the details given on the architecture and the implementation, we also present scalability and performance tests results of the Process Manager system.

  10. Introduction of a Novel Smartphone-Coupled Blood Glucose Monitoring System

    PubMed Central

    Jendrike, Nina; Baumstark, Annette; Chen, Chieh-Hsiao; Rittmeyer, Delia; Haug, Cornelia; Freckmann, Guido

    2017-01-01

    The novel system for self-monitoring of blood glucose (SMBG) PixoTest couples SMBG to a smartphone and does not require a separate glucose meter. The integrated system includes all components necessary for a glucose measurement, and owing to a colorimetric measurement principle, a smartphone camera can capture color changes and a software app calculates the corresponding glucose value. In the presented study, the system was evaluated in terms of system accuracy as described in ISO 15197:2013. It was shown to fulfill system accuracy requirements with 97-99% of results from three different reagent system lots within the accuracy limits and 100% of results within zone A of the consensus error grid. PMID:28459160

  11. Monitoring with Data Automata

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    We present a form of automaton, referred to as data automata, suited for monitoring sequences of data-carrying events, for example emitted by an executing software system. This form of automata allows states to be parameterized with data, forming named records, which are stored in an efficiently indexed data structure, a form of database. This very explicit approach differs from other automaton-based monitoring approaches. Data automata are also characterized by allowing transition conditions to refer to other parameterized states, and by allowing transitions sequences. The presented automaton concept is inspired by rule-based systems, especially the Rete algorithm, which is one of the well-established algorithms for executing rule-based systems. We present an optimized external DSL for data automata, as well as a comparable unoptimized internal DSL (API) in the Scala programming language, in order to compare the two solutions. An evaluation compares these two solutions to several other monitoring systems.

  12. Component-Based Visualization System

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco

    2005-01-01

    A software system has been developed that gives engineers and operations personnel with no "formal" programming expertise, but who are familiar with the Microsoft Windows operating system, the ability to create visualization displays to monitor the health and performance of aircraft/spacecraft. This software system is currently supporting the X38 V201 spacecraft component/system testing and is intended to give users the ability to create, test, deploy, and certify their subsystem displays in a fraction of the time that it would take to do so using previous software and programming methods. Within the visualization system there are three major components: the developer, the deployer, and the widget set. The developer is a blank canvas with widget menu items that give users the ability to easily create displays. The deployer is an application that allows for the deployment of the displays created using the developer application. The deployer has additional functionality that the developer does not have, such as printing of displays, screen captures to files, windowing of displays, and also serves as the interface into the documentation archive and help system. The third major component is the widget set. The widgets are the visual representation of the items that will make up the display (i.e., meters, dials, buttons, numerical indicators, string indicators, and the like). This software was developed using Visual C++ and uses COTS (commercial off-the-shelf) software where possible.

  13. Intelligent model-based diagnostics for vehicle health management

    NASA Astrophysics Data System (ADS)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  14. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  15. Wearable and low-stress ambulatory blood pressure monitoring technology for hypertension diagnosis.

    PubMed

    Altintas, Ersin; Takoh, Kimiyasu; Ohno, Yuji; Abe, Katsumi; Akagawa, Takeshi; Ariyama, Tetsuri; Kubo, Masahiro; Tsuda, Kenichiro; Tochikubo, Osamu

    2015-01-01

    We propose a highly wearable, upper-arm type, oscillometric-based blood pressure monitoring technology with low-stress. The low-stress is realized by new developments in the hardware and software design. In the hardware design, conventional armband; cuff, is almost halved in volume thanks to a flexible plastic core and a liquid bag which enhances the fitness and pressure uniformity over the arm. Reduced air bag volume enables smaller motor pump size and battery leading to a thinner, more compact and more wearable unified device. In the software design, a new prediction algorithm enabled to apply less stress (and less pain) on arm of the patient. Proof-of-concept experiments on volunteers show a high accuracy on both technologies. This paper mainly introduces hardware developments. The system is promising for less-painful and less-stressful 24-hour blood pressure monitoring in hypertension managements and related healthcare solutions.

  16. BIO-Plex Information System Concept

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Boulanger, Richard; Arnold, James O. (Technical Monitor)

    1999-01-01

    This paper describes a suggested design for an integrated information system for the proposed BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) at Johnson Space Center (JSC), including distributed control systems, central control, networks, database servers, personal computers and workstations, applications software, and external communications. The system will have an open commercial computing and networking, architecture. The network will provide automatic real-time transfer of information to database server computers which perform data collection and validation. This information system will support integrated, data sharing applications for everything, from system alarms to management summaries. Most existing complex process control systems have information gaps between the different real time subsystems, between these subsystems and central controller, between the central controller and system level planning and analysis application software, and between the system level applications and management overview reporting. An integrated information system is vitally necessary as the basis for the integration of planning, scheduling, modeling, monitoring, and control, which will allow improved monitoring and control based on timely, accurate and complete data. Data describing the system configuration and the real time processes can be collected, checked and reconciled, analyzed and stored in database servers that can be accessed by all applications. The required technology is available. The only opportunity to design a distributed, nonredundant, integrated system is before it is built. Retrofit is extremely difficult and costly.

  17. Remote Diagnosis of the International Space Station Utilizing Telemetry Data

    NASA Technical Reports Server (NTRS)

    Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)

    2000-01-01

    Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.

  18. Systematic on-site monitoring of compliance dust samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, R.L.; Gandy, J.R.

    1996-12-31

    Maintaining compliance with U.S. respirable coal mine dust standards can be difficult on high-productivity longwall panels. Comprehensive and systematic analysis of compliance dust sample data, coupled with access to the U.S. Bureau of Mines (USBM) DUSTPRO, can yield important information for use in maintaining compliance. The objective of this study was to develop and apply a customized software for the collection, storage, modification, and analysis of respirable dust data while providing for flexible export of data and linking with the USBM`s expert advisory system on dust control. An executable, IBM-compatible software was created and customized for use by the personmore » in charge of collecting, submitting, analyzing, and monitoring respirable dust compliance samples. Both descriptive statistics and multiple regression analysis were incorporated. The software allows ASCH files to be exported and directly links with DUSTPRO. After development and validation of the software, longwall compliance data from two different mines was analyzed to evaluate the value of the software. Data included variables on respirable dust concentration, tons produced, the existence of roof/floor rock (dummy variable), and the sampling cycle (dummy variables). Because of confidentiality, specific data will not be presented, only the equations and ANOVA tables. The final regression models explained 83.8% and 61.1% of the variation in the data for the two panels. Important correlations among variables within sampling cycles showed the value of using dummy variables for sampling cycles. The software proved flexible and fast for its intended use. The insights obtained from use improved the systematic monitoring of respirable dust compliance data, especially for pinpointing the most effective dust control methods during specific sampling cycles.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H.; Chen, K.; Jusko, M.

    The Packaging Certification Program (PCP) of the U.S. Department of Energy (DOE) Environmental Management (EM), Office of Packaging and Transportation (EM-14), has developed a radio frequency identification (RFID) tracking and monitoring system for the management of nuclear materials during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, consists of hardware (Mk-series sensor tags, fixed and handheld readers, form factor for multiple drum types, seal integrity sensors, and enhanced battery management), software (application programming interface, ARG-US software for local and remote/web applications, secure server and database management), and cellular/satellite communication interfaces for vehicle tracking andmore » item monitoring during transport. The ability of the above system to provide accurate, real-time tracking and monitoring of the status of multiple, certified containers of nuclear materials has been successfully demonstrated in a week-long, 1,700-mile DEMO performed in April 2008. While the feedback from the approximately fifty (50) stakeholders who participated in and/or observed the DEMO progression were very positive and encouraging, two major areas of further improvements - system integration and web application enhancement - were identified in the post-DEMO evaluation. The principal purpose of the MiniDemo described in this report was to verify these two specific improvements. The MiniDemo was conducted on August 28, 2009. In terms of system integration, a hybrid communication interface - combining the RFID item-monitoring features and a commercial vehicle tracking system by Qualcomm - was developed and implemented. In the MiniDemo, the new integrated system worked well in reporting tag status and vehicle location accurately and promptly. There was no incompatibility of components. The robust commercial communication gear, as expected, helped improve system reliability. The MiniDemo confirmed that system integration is technically feasible and reliable with the existing RFID and Qualcomm satellite equipment. In terms of web application, improvements in mapping, tracking, data presentation, and post-incident spatial query reporting were implemented in ARG-US, the application software that manages the dataflow among the RFID tags, readers, and servers. These features were tested in the MiniDemo and found to be satisfactory. The resulting web application is both informative and user-friendly. A joint developmental project is being planned between the PCP and the DOE TRANSCOM that uses the Qualcomm gear in vehicles for tracking and communication of radioactive material shipments across the country. Adding an RFID interface to TRANSCOM is a significant enhancement to the DOE infrastructure for tracking and monitoring shipments of radioactive materials.« less

  20. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    NASA Astrophysics Data System (ADS)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  1. B-Plant Canyon Ventilation Control System Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.

  2. Telescience Resource Kit

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Rice, Jim; Gillis, Robert; Sims, Chris; Sellers, Donna; Bailey, Darrell (Technical Monitor)

    2002-01-01

    The Telescience Resource Kit (TReK) is a PC based ground control system. It can be used by a single individual or in a group environment to monitor and control spacecraft systems and payloads. Capabilities include data receipt, data processing, data storage, data management, and data transmission. Commercial-Off-The-Shelf (COTS) hardware and software have been employed to reduce development costs, operations and maintenance costs, and to effectively take advantage of new commercial products as they become available. The TReK system is currently being used to monitor and control payloads aboard the International Space Station. It is located at sites around the world.

  3. Implementation of an automated system for monitoring adherence to hemodialysis treatment: a report of seven years of experience.

    PubMed

    Bellazzi, Riccardo; Sacchi, Lucia; Caffi, Ezio; de Vincenzi, Amedeo; Nai, Maurizio; Manicone, Francesco; Larizza, Cristiana; Bellazzi, Roberto

    2012-05-01

    In this paper we present the clinical deployment and evaluation of a computerized system, EMOSTAT, aimed at improving the quality of hemodialysis sessions. EMOSTAT automatically imports data from the hemodialysis monitoring software tools and analyzes the delivered treatment looking at six clinically relevant parameters. Failures-to-adhere (FtAs) to the planned treatment are detected and reported to the care-givers. EMOSTAT has been used for more than seven years in the management of a dialysis service located in Mede, Italy. A total of 72 patients were monitored and 21251 dialyses were collected. Data analysis is performed on the periods 2002-2005 and 2005-2008, corresponding to two different software releases. The system had been exploited into everyday clinical practice for the entire considered period. The number of FtAs significantly decreased along the first period: the bulk blood flow FtAs decreased after the introduction of the system. Hemodialysis sessions lasted longer in the second period. Co-occurring FtAs, highlighting the presence of complex FtAs patterns, were also detected. EMOSTAT provides an effective way to re-focus the attention of the dialysis department on the treatment plan and on its implementation. The automatic data collection and the design philosophy of EMOSTAT allowed the routine use of the system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Atmospheric transport modelling in support of CTBT verification—overview and basic concepts

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; De Geer, Lars-Erik; Denier, Philippe; Kalinowski, Martin; Toivonen, Harri; D'Amours, Real; Desiato, Franco; Issartel, Jean-Pierre; Langer, Matthias; Seibert, Petra; Frank, Andreas; Sloan, Craig; Yamazawa, Hiromi

    Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global monitoring system comprising different verification technologies is currently being set up. The network will include 80 radionuclide (RN) stations distributed all over the globe that measure treaty-relevant radioactive species. While the seismic subsystem cannot distinguish between chemical and nuclear explosions, RN monitoring would provide the "smoking gun" of a possible treaty violation. Atmospheric transport modelling (ATM) will be an integral part of CTBT verification, since it provides a geo-temporal location capability for the RN technology. In this paper, the basic concept for the future ATM software system to be installed at the International Data Centre is laid out. The system is based on the operational computation of multi-dimensional source-receptor sensitivity fields for all RN samples by means of adjoint tracer transport modelling. While the source-receptor matrix methodology has already been applied in the past, the system that we suggest will be unique and unprecedented, since it is global, real-time and aims at uncovering source scenarios that are compatible with measurements. Furthermore, it has to deal with source dilution ratios that are by orders of magnitude larger than in typical transport model applications. This new verification software will need continuous scientific attention, and may well provide a prototype system for future applications in areas of environmental monitoring, emergency response and verification of other international agreements and treaties.

  5. Distributed On-line Monitoring System Based on Modem and Public Phone Net

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Zhang, Qiushi; Li, Guiru

    In order to solve the monitoring problem of urban sewage disposal, a distributed on-line monitoring system is proposed. By introducing dial-up communication technology based on Modem, the serial communication program can rationally solve the information transmission problem between master station and slave station. The realization of serial communication program is based on the MSComm control of C++ Builder 6.0.The software includes real-time data operation part and history data handling part, which using Microsoft SQL Server 2000 for database, and C++ Builder6.0 for user interface. The monitoring center displays a user interface with alarm information of over-standard data and real-time curve. Practical application shows that the system has successfully accomplished the real-time data acquisition from data gather station, and stored them in the terminal database.

  6. Software Defined Network Monitoring Scheme Using Spectral Graph Theory and Phantom Nodes

    DTIC Science & Technology

    2014-09-01

    networks is the emergence of software - defined networking ( SDN ) [1]. SDN has existed for the...Chapter III for network monitoring. A. SOFTWARE DEFINED NETWORKS SDNs provide a new and innovative method to simplify network hardware by logically...and R. Giladi, “Performance analysis of software - defined networking ( SDN ),” in Proc. of IEEE 21st International Symposium on Modeling, Analysis

  7. Spinoff 2015

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Topics covered include: 3D Endoscope to Boost Safety, Cut Cost of Surgery; Audio App Brings a Better Night's Sleep Liquid Cooling Technology Increases Exercise Efficiency; Algae-Derived Dietary Ingredients Nourish Animals; Space Grant Research Launches Rehabilitation Chair; Vision Trainer Teaches Focusing Techniques at Home; Aircraft Geared Architecture Reduces Fuel Cost and Noise; Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs; Flight Controller Software Protects Lightweight Flexible Aircraft; Cabin Pressure Monitors Notify Pilots to Save Lives; Ionospheric Mapping Software Ensures Accuracy of Pilots' GPS; Water Mapping Technology Rebuilds Lives in Arid Regions; Shock Absorbers Save Structures and Lives during Earthquakes; Software Facilitates Sharing of Water Quality Data Worldwide; Underwater Adhesives Retrofit Pipelines with Advanced Sensors; Laser Imaging Video Camera Sees through Fire, Fog, Smoke; 3D Lasers Increase Efficiency, Safety of Moving Machines; Air Revitalization System Enables Excursions to the Stratosphere; Magnetic Fluids Deliver Better Speaker Sound Quality; Bioreactor Yields Extracts for Skin Cream; Private Astronaut Training Prepares Commercial Crews of Tomorrow; Activity Monitors Help Users Get Optimum Sun Exposure; LEDs Illuminate Bulbs for Better Sleep, Wake Cycles; Charged Particles Kill Pathogens and Round Up Dust; Balance Devices Train Golfers for a Consistent Swing; Landsat Imagery Enables Global Studies of Surface Trends; Ruggedized Spectrometers Are Built for Tough Jobs; Gas Conversion Systems Reclaim Fuel for Industry; Remote Sensing Technologies Mitigate Drought; Satellite Data Inform Forecasts of Crop Growth; Probes Measure Gases for Environmental Research; Cloud Computing Technologies Facilitate Earth Research; Software Cuts Homebuilding Costs, Increases Energy Efficiency; Portable Planetariums Teach Science; Schedule Analysis Software Saves Time for Project Planners; Sound Modeling Simplifies Vehicle Noise Management; Custom 3D Printers Revolutionize Space Supply Chain; Improved Calibration Shows Images' True Colors; Micromachined Parts Advance Medicine, Astrophysics, and More; Metalworking Techniques Unlock a Unique Alloy; Low-Cost Sensors Deliver Nanometer-Accurate Measurements; Electrical Monitoring Devices Save on Time and Cost; Dry Lubricant Smooths the Way for Space Travel, Industry; and Compact Vapor Chamber Cools Critical Components.

  8. Text File Comparator

    NASA Technical Reports Server (NTRS)

    Kotler, R. S.

    1983-01-01

    File Comparator program IFCOMP, is text file comparator for IBM OS/VScompatable systems. IFCOMP accepts as input two text files and produces listing of differences in pseudo-update form. IFCOMP is very useful in monitoring changes made to software at the source code level.

  9. Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus

    NASA Astrophysics Data System (ADS)

    de Rubeis, T.; Nardi, I.; Muttillo, M.

    2017-11-01

    The monitoring phase has gained a fundamental role in the energy efficiency evaluation of a system. Number and typology of the probes depend on the physical quantity to be monitored, and on the size and complexity of the system. Moreover, a measurement equipment should be designed to allow the employment of probes different for number and measured physical quantities. For this reason, a scalable equipment represents a good way for easily carrying out a system monitoring. Proprietary software and high costs characterize instruments of current use, thus limiting the possibilities to realize customized monitoring. In this paper, a temperature measuring instrument, conceived, designed, and realized for real time applications, is presented. The proposed system is based on digital thermometers and on open-source code. A remarkable feature of the instrument is the possibility of acquiring data from a high and variable number of probes (order of hundred), assuring flexibility of the software, since it can be programmed, and low-cost of the hardware components. The contemporary use of multiple temperature probes suggested to apply this instrument for a hot box apparatus, although the software can be set for recording different physical quantities. A hot box compliant with standard EN ISO 8990 should be equipped with several temperature probes to investigate heat exchanges of a specimen wall and thermal field of the chambers. In this work, preliminary tests have been carried out focusing only on the evaluation of the prototypal system’s performance. The tests were realized by comparing different sensors, such as thermocouples and resistance thermometers, traditionally employed in hot box experiments. A preliminary test was realized imposing a dynamic condition with a thermoelectric Peltier cell. Data obtained by digital thermometers DS18B20, compared with the ones of Pt100 probes, show a good correlation. Based on these encouraging results, a further test was carried out in hot box, comparing the data measured by digital thermometers, Pt100 and T-type thermocouples. In this case also, the analyses show a good correlation between either digital thermometers and analog sensors. From these results, it is reasonable to foresee that this measuring instrument could help those willing to realize or refurbish a hot box apparatus, and those who want to undertake temperature monitoring.

  10. Landscape pattern metrics and regional assessment

    Treesearch

    Robert V. O' Neill; Kurt H. Riitters; J.D. Wickham; Bruce K. Jones

    1999-01-01

    The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop interpret quantitative measures of spatial patter-the landscape indices. This article reviews what is known about...

  11. Monitoring invasive plants using hand-held GIS technology

    Treesearch

    Theresa M. Mau-Crimmins; Barron J. Orr

    2005-01-01

    Successful control of invasive species requires a clear picture of the spatial extent of infestations. The latest mapping technology involves coupling global position systems and handheld computers running geographic information systems software in the field. A series of workshops applying this technology to mapping weeds was developed and presented to Weed Management...

  12. DSS 13 microprocessor antenna controller

    NASA Technical Reports Server (NTRS)

    Gosline, R. M.

    1988-01-01

    A microprocessor-based antenna monitor and control system with multiple CPUs are described. The system was developed as part of the unattended station project for DSS 13 and was enhanced for use by the SETI project. The operational features, hardware, and software designs are described, and a discussion is provided of the major problems encountered.

  13. Service Management Database for DSN Equipment

    NASA Technical Reports Server (NTRS)

    Zendejas, Silvino; Bui, Tung; Bui, Bach; Malhotra, Shantanu; Chen, Fannie; Wolgast, Paul; Allen, Christopher; Luong, Ivy; Chang, George; Sadaqathulla, Syed

    2009-01-01

    This data- and event-driven persistent storage system leverages the use of commercial software provided by Oracle for portability, ease of maintenance, scalability, and ease of integration with embedded, client-server, and multi-tiered applications. In this role, the Service Management Database (SMDB) is a key component of the overall end-to-end process involved in the scheduling, preparation, and configuration of the Deep Space Network (DSN) equipment needed to perform the various telecommunication services the DSN provides to its customers worldwide. SMDB makes efficient use of triggers, stored procedures, queuing functions, e-mail capabilities, data management, and Java integration features provided by the Oracle relational database management system. SMDB uses a third normal form schema design that allows for simple data maintenance procedures and thin layers of integration with client applications. The software provides an integrated event logging system with ability to publish events to a JMS messaging system for synchronous and asynchronous delivery to subscribed applications. It provides a structured classification of events and application-level messages stored in database tables that are accessible by monitoring applications for real-time monitoring or for troubleshooting and analysis over historical archives.

  14. Active Wireless System for Structural Health Monitoring Applications.

    PubMed

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  15. The control system of a 2kW@20K helium refrigerator

    NASA Astrophysics Data System (ADS)

    Pan, W.; Wu, J. H.; Li, Qing; Liu, L. Q.; Li, Qiang

    2017-12-01

    The automatic control of a helium refrigerator includes three aspects, that is, one-button start and stop control, safety protection control, and cooling capacity control. The 2kW@20K helium refrigerator’s control system uses the SIEMENS PLC S7-300 and its related programming and configuration software Step7 and the industrial monitoring software WinCC, to realize the dynamic control of its process, the real-time monitoring of its data, the safety interlock control, and the optimal control of its cooling capacity. At first, this paper describes the control architecture of the whole system in detail, including communication configuration and equipment introduction; and then introduces the sequence control strategy of the dynamic processes, including the start and stop control mode of the machine and the safety interlock control strategy of the machine; finally tells the precise control strategy of the machine’s cooling capacity. Eventually, the whole system achieves the target of one-button starting and stopping, automatic fault protection and stable running to the target cooling capacity, and help finished the cold helium pressurization test of aerospace products.

  16. Remotely Monitored Sealing Array Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support activemore » tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less

  17. AMON: a wearable multiparameter medical monitoring and alert system.

    PubMed

    Anliker, Urs; Ward, Jamie A; Lukowicz, Paul; Tröster, Gerhard; Dolveck, François; Baer, Michel; Keita, Fatou; Schenker, Eran B; Catarsi, Fabrizio; Coluccini, Luca; Belardinelli, Andrea; Shklarski, Dror; Alon, Menachem; Hirt, Etienne; Schmid, Rolf; Vuskovic, Milica

    2004-12-01

    This paper describes an advanced care and alert portable telemedical monitor (AMON), a wearable medical monitoring and alert system targeting high-risk cardiac/respiratory patients. The system includes continuous collection and evaluation of multiple vital signs, intelligent multiparameter medical emergency detection, and a cellular connection to a medical center. By integrating the whole system in an unobtrusive, wrist-worn enclosure and applying aggressive low-power design techniques, continuous long-term monitoring can be performed without interfering with the patients' everyday activities and without restricting their mobility. In the first two and a half years of this EU IST sponsored project, the AMON consortium has designed, implemented, and tested the described wrist-worn device, a communication link, and a comprehensive medical center software package. The performance of the system has been validated by a medical study with a set of 33 subjects. The paper describes the main concepts behind the AMON system and presents details of the individual subsystems and solutions as well as the results of the medical validation.

  18. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2012-01-01

    The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.

  19. ClusterControl: a web interface for distributing and monitoring bioinformatics applications on a Linux cluster.

    PubMed

    Stocker, Gernot; Rieder, Dietmar; Trajanoski, Zlatko

    2004-03-22

    ClusterControl is a web interface to simplify distributing and monitoring bioinformatics applications on Linux cluster systems. We have developed a modular concept that enables integration of command line oriented program into the application framework of ClusterControl. The systems facilitate integration of different applications accessed through one interface and executed on a distributed cluster system. The package is based on freely available technologies like Apache as web server, PHP as server-side scripting language and OpenPBS as queuing system and is available free of charge for academic and non-profit institutions. http://genome.tugraz.at/Software/ClusterControl

  20. The Development of a Remote Patient Monitoring System using Java-enabled Mobile Phones.

    PubMed

    Kogure, Y; Matsuoka, H; Kinouchi, Y; Akutagawa, M

    2005-01-01

    A remote patient monitoring system is described. This system is to monitor information of multiple patients in ICU/CCU via 3G mobile phones. Conventionally, various patient information, such as vital signs, is collected and stored on patient information systems. In proposed system, the patient information is recollected by remote information server, and transported to mobile phones. The server is worked as a gateway between hospital intranet and public networks. Provided information from the server consists of graphs and text data. Doctors can browse patient's information on their mobile phones via the server. A custom Java application software is used to browse these data. In this study, the information server and Java application are developed, and communication between the server and mobile phone in model environment is confirmed. To apply this system to practical products of patient information systems is future work.

Top