Health State Utilities Associated with Glucose Monitoring Devices.
Matza, Louis S; Stewart, Katie D; Davies, Evan W; Hellmund, Richard; Polonsky, William H; Kerr, David
2017-03-01
Glucose monitoring is important for patients with diabetes treated with insulin. Conventional glucose monitoring requires a blood sample, typically obtained by pricking the finger. A new sensor-based system called "flash glucose monitoring" monitors glucose levels with a sensor worn on the arm, without requiring blood samples. To estimate the utility difference between these two glucose monitoring approaches for use in cost-utility models. In time trade-off interviews, general population participants in the United Kingdom (London and Edinburgh) valued health states that were drafted and refined on the basis of literature, clinician input, and a pilot study. The health states had identical descriptions of diabetes and insulin treatment, differing only in glucose monitoring approach. A total of 209 participants completed the interviews (51.7% women; mean age = 42.1 years). Mean utilities were 0.851 ± 0.140 for conventional monitoring and 0.882 ± 0.121 for flash monitoring (significant difference between the mean utilities; t = 8.3; P < 0.0001). Of the 209 participants, 78 (37.3%) had a higher utility for flash monitoring, 2 (1.0%) had a higher utility for conventional monitoring, and 129 (61.7%) had the same utility for both health states. The flash glucose monitoring system was associated with a significantly greater utility than the conventional monitoring system. This difference may be useful in cost-utility models comparing the value of glucose monitoring devices for patients with diabetes. This study adds to the literature on treatment process utilities, suggesting that time trade-off methods may be used to quantify preferences among medical devices. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Prasetyo, Hoedi; Sugiarto, Yohanes; Nur Rosyidi, Cucuk
2018-03-01
Conveyor is a very useful equipment to replace manpower in transporting the goods. It highly influences the productivity, production capacity utilization and eventually the production cost. This paper proposes a system to monitor the utilization of conveyor at a low cost through a case study at powder coating process line in a sheet metal fabrication. Preliminary observation was conducted to identify the problems. The monitoring system was then built and executed. The system consists of two sub systems. First is sub system for collecting and transmitting the required data and the second is sub system for displaying the data. The system utilizes sensors, wireless data transfer and windows-based application. The test results showed that the whole system works properly. By this system, the productivity and status of the conveyor can be monitored in real time. This research enriches the development of conveyor monitoring system especially for implementation in small and medium enterprises.
NASA Technical Reports Server (NTRS)
Pringle, L. M., Jr.
1974-01-01
Potential ways of providing control and monitoring for the Modular Integrated Utility System (MIUS) program are elaborated. Control and monitoring hardware and operational systems are described. The requirements for the MIUS program and the development requirements are discussed.
Assessment of Nitrification in Distribution Systems of Waters with Elevated Ammonia Levels
The objective of this work is to monitor ammonia, nitrite, and nitrate in drinking water from the distribution systems of four drinking water utilities in Illinois. A monthly drinking water distribution system water quality monitoring protocol for each water utility in Illinois h...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subekti, M.; Center for Development of Reactor Safety Technology, National Nuclear Energy Agency of Indonesia, Puspiptek Complex BO.80, Serpong-Tangerang, 15340; Ohno, T.
2006-07-01
The neuro-expert has been utilized in previous monitoring-system research of Pressure Water Reactor (PWR). The research improved the monitoring system by utilizing neuro-expert, conventional noise analysis and modified neural networks for capability extension. The parallel method applications required distributed architecture of computer-network for performing real-time tasks. The research aimed to improve the previous monitoring system, which could detect sensor degradation, and to perform the monitoring demonstration in High Temperature Engineering Tested Reactor (HTTR). The developing monitoring system based on some methods that have been tested using the data from online PWR simulator, as well as RSG-GAS (30 MW research reactormore » in Indonesia), will be applied in HTTR for more complex monitoring. (authors)« less
Power system monitoring and source control of the Space Station Freedom DC power system testbed
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Baez, Anastacio N.
1992-01-01
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.
Power system monitoring and source control of the Space Station Freedom dc-power system testbed
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Baez, Anastacio N.
1992-01-01
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.
Riley, William T; Keberlein, Pamela; Sorenson, Gigi; Mohler, Sailor; Tye, Blake; Ramirez, A Susana; Carroll, Mark
2015-03-01
Remote monitoring for heart failure (HF) has had mixed and heterogeneous effects across studies, necessitating further evaluation of remote monitoring systems within specific healthcare systems and their patient populations. "Care Beyond Walls and Wires," a wireless remote monitoring program to facilitate patient and care team co-management of HF patients, served by a rural regional medical center, provided the opportunity to evaluate the effects of this program on healthcare utilization. Fifty HF patients admitted to Flagstaff Medical Center (Flagstaff, AZ) participated in the project. Many of these patients lived in underserved and rural communities, including Native American reservations. Enrolled patients received mobile, broadband-enabled remote monitoring devices. A matched cohort was identified for comparison. HF patients enrolled in this program showed substantial and statistically significant reductions in healthcare utilization during the 6 months following enrollment, and these reductions were significantly greater compared with those who declined to participate but not when compared with a matched cohort. The findings from this project indicate that a remote HF monitoring program can be successfully implemented in a rural, underserved area. Reductions in healthcare utilization were observed among program participants, but reductions were also observed among a matched cohort, illustrating the need for rigorous assessment of the effects of HF remote monitoring programs in healthcare systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, H.E.; Hall, J.R. II; Schrock, C.B.
1995-12-31
With the disintegration of the Soviet Union and the opening of the Iron Curtain, a downsizing of the Defense Establishment in the West is occurring, causing industry to look for opportunities where technology used for military applications can be applied to meet former East Block countries. Among these requirements has been the urgent desire of the people in former East Block countries for access to Western media which had been denied them, and has led to numerous opportunities for the implementation of Cable Television (CATV) systems. In addition, there are also requirements for utility metering for electricity, gas, water, heat,more » etc. which had previously been provided to the population by the Government at little or no cost. EWT of Augsburg, Germany, previously a subcontractor to ASEC on military security system projects, who has a subsidiary, TSS, which is a prominent CATV systems house, requested ASEC to provide a system which can provide utility meter reading and other control and monitoring services utilizing CATV. Working with CableBus Systems Corporation, a CATV data communications supplier and various utility meter manufacturers, ASEC, as the System Integrator, has developed a utilities monitoring system. This system. in cooperation with EWT, is being marketed and sold in Europe as EURO DATA BUS. This paper describes EURO DATA BUS and its applications, as well as the actual system designs for two pilot applications. One system is oriented at Utility Meter Reading and Demand side Management primarily, but will also be used to demonstrate other system capabilities such as security and fire alarm monitoring, etc. The design is therefore quite straightforward and {open_quotes}standard{close_quotes}. The second system has more of an industrial orientation and involves the monitoring and load control for a Municipal Electric Utility. While well within the capabilities of the system to accomplish, a more customized design was required to meet these requirements.« less
NASA Astrophysics Data System (ADS)
Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.
2016-04-01
Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.
Autonomous System for Monitoring the Integrity of Composite Fan Housings
NASA Technical Reports Server (NTRS)
Qing, Xinlin P.; Aquino, Christopher; Kumar, Amrita
2010-01-01
A low-cost and reliable system assesses the integrity of composite fan-containment structures. The system utilizes a network of miniature sensors integrated with the structure to scan the entire structural area for any impact events and resulting structural damage, and to monitor degradation due to usage. This system can be used to monitor all types of composite structures on aircraft and spacecraft, as well as automatically monitor in real time the location and extent of damage in the containment structures. This diagnostic information is passed to prognostic modeling that is being developed to utilize the information and provide input on the residual strength of the structure, and maintain a history of structural degradation during usage. The structural health-monitoring system would consist of three major components: (1) sensors and a sensor network, which is permanently bonded onto the structure being monitored; (2) integrated hardware; and (3) software to monitor in-situ the health condition of in-service structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishbaugher, M. J.
1985-05-01
The decreasing cost of microcomputers along with improvements in power metering circuitry have changed the way in which electrical energy use is monitored. Although utilities still rely on kilowatt-hour (kWh) meters for billing purposes, a microcomputer-based monitoring system is used when greater temporal and end-use resolution is desired. Because these types of monitoring systems will be used increasingly in large-scale conservation and end-use studies, it is important that their performance be analyzed to determine their accuracy. A co-instrumentation test was devised in which two such microcomputer-based monitoring systems made simultaneous measurements of electrical end-uses in two commercial buildings. The analysismore » of the co-instrumentation data aids in the evaluation of microcomputer-based monitoring systems used for end-use measurements. Separate and independent data loggers were used to measure the same loads simultaneously. In addition to these two systems, a utility billing meter measured the total energy use in each building during the co-instrumentation test. The utility's meters provided a relatively accurate standard by which the performance of both loggers could be judged. The comparison between the SCL and PNL microcomputer-based loggers has shown that power measurement techniques directly affect system performance. The co-instrumentation test has shown that there are certain standards that a monitoring system must meet if it is to perform well. First, it is essential to calibrate a microcomputer-based logger against a known standard load before the system is installed. Second, a microcomputer-based system must have some way of accounting for power factors. Recent advances in power metering circuitry have made it relatively easy to apply these power factors automatically in real time.« less
Automated Status Notification System
NASA Technical Reports Server (NTRS)
2005-01-01
NASA Lewis Research Center's Automated Status Notification System (ASNS) was born out of need. To prevent "hacker attacks," Lewis' telephone system needed to monitor communications activities 24 hr a day, 7 days a week. With decreasing staff resources, this continuous monitoring had to be automated. By utilizing existing communications hardware, a UNIX workstation, and NAWK (a pattern scanning and processing language), we implemented a continuous monitoring system.
The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications
NASA Technical Reports Server (NTRS)
White, Kristopher D.; Case, Jonathan L.
2013-01-01
Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring and Impact Group and the Tennessee Drought Task Force, which are comprised of federal, state, and local agencies and other water resources professionals.
Healthcare Utilization Monitoring System in Korea
Shin, Hyun Chul; Lee, Youn Tae; Jo, Emmanuel C.
2015-01-01
Objectives It is important to monitor the healthcare utilization of patients at the national level to make evidence-based policy decisions and manage the nation's healthcare sector. The Health Insurance Review & Assessment Service (HIRA) has run a Healthcare Utilization Monitoring System (HUMS) since 2008. The objective of this paper is to introduce HIRA's HUMS. Methods This study described the HUMS's system structure, capacity, functionalities, and output formats run by HIRA in the Republic of Korea. Regarding output formats, this study extracted diabetes related health insurance claims through the HUMS from August 1, 2014 to May 31, 2015. Results The HUMS has kept records of health insurance claim data for 4 years. It has a 14-terabyte hardware capacity and employs several easy-to-use programs for maintenance of the system, such as MSTR, SAS, etc. Regarding functionalities, users should input diseases codes, target periods, facility types, and types of attributes, such as the number of healthcare utilizations or healthcare costs. It also has a functionality to predict healthcare utilization and costs. When this study extracted diabetes related data, it was found that the trend of healthcare costs for the treatment of diabetes and the number of patients with diabetes were increasing. Conclusions HIRA's HUMS works well to monitor healthcare utilization of patients at the national level. The HUMS has a high-capacity hardware infrastructure and several operational programs that allows easy access to summaries as well as details to identify contributing factors for abnormality, but it has a limitation in that there is often a time lag between the provision of healthcare to patients and the filing of health claims. PMID:26279955
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
Utilizing a Homecare Platform for Remote Monitoring of Patients with Idiopathic Pulmonary Fibrosis.
Panagopoulos, Christos; Malli, Foteini; Menychtas, Andreas; Smyrli, Efstathia-Petrina; Georgountzou, Aikaterini; Daniil, Zoe; Gourgoulianis, Konstantinos I; Tsanakas, Panayiotis; Maglogiannis, Ilias
2017-01-01
Homecare and home telemonitoring are a focal point of emerging healthcare schemes, with proven benefits for both patients, caregivers and providers, including reduction of healthcare costs and improved patients' quality of life, especially in the case of chronic disease management. Studies have evaluated solutions for remote monitoring of chronic patients based on technologies that allow daily symptom and vital signs monitoring, tailored to the needs of specific diseases. In this work, we present an affordable home telemonitoring system for patients with idiopathic pulmonary fibrosis (IPF), based on an application for mobile devices and Bluetooth-enabled sensors for pulse oximetry and blood pressure measurements. Besides monitoring of vital signs, the system incorporates communication via videoconferencing and emergency response, with support from a helpdesk service. A pilot study was conducted, in order to verify the proposed solution's feasibility. The results support the utilization of the system for effective monitoring of patients with IPF.
NASA Technical Reports Server (NTRS)
1980-01-01
Twenty-four functional requirements were prepared under six categories and serve to indicate how to integrate dispersed storage generation (DSG) systems with the distribution and other portions of the electric utility system. Results indicate that there are no fundamental technical obstacles to prevent the connection of dispersed storage and generation to the distribution system. However, a communication system of some sophistication is required to integrate the distribution system and the dispersed generation sources for effective control. The large-size span of generators from 10 KW to 30 MW means that a variety of remote monitoring and control may be required. Increased effort is required to develop demonstration equipment to perform the DSG monitoring and control functions and to acquire experience with this equipment in the utility distribution environment.
Secure Utilization of Beacons and UAVs in Emergency Response Systems for Building Fire Hazard
Seo, Seung-Hyun; Choi, Jung-In; Song, Jinseok
2017-01-01
An intelligent emergency system for hazard monitoring and building evacuation is a very important application area in Internet of Things (IoT) technology. Through the use of smart sensors, such a system can provide more vital and reliable information to first-responders and also reduce the incidents of false alarms. Several smart monitoring and warning systems do already exist, though they exhibit key weaknesses such as a limited monitoring coverage and security, which have not yet been sufficiently addressed. In this paper, we propose a monitoring and emergency response method for buildings by utilizing beacons and Unmanned Aerial Vehicles (UAVs) on an IoT security platform. In order to demonstrate the practicability of our method, we also implement a proof of concept prototype, which we call the UAV-EMOR (UAV-assisted Emergency Monitoring and Response) system. Our UAV-EMOR system provides the following novel features: (1) secure communications between UAVs, smart sensors, the control server and a smartphone app for security managers; (2) enhanced coordination between smart sensors and indoor/outdoor UAVs to expand real-time monitoring coverage; and (3) beacon-aided rescue and building evacuation. PMID:28946659
Secure Utilization of Beacons and UAVs in Emergency Response Systems for Building Fire Hazard.
Seo, Seung-Hyun; Choi, Jung-In; Song, Jinseok
2017-09-25
An intelligent emergency system for hazard monitoring and building evacuation is a very important application area in Internet of Things (IoT) technology. Through the use of smart sensors, such a system can provide more vital and reliable information to first-responders and also reduce the incidents of false alarms. Several smart monitoring and warning systems do already exist, though they exhibit key weaknesses such as a limited monitoring coverage and security, which have not yet been sufficiently addressed. In this paper, we propose a monitoring and emergency response method for buildings by utilizing beacons and Unmanned Aerial Vehicles (UAVs) on an IoT security platform. In order to demonstrate the practicability of our method, we also implement a proof of concept prototype, which we call the UAV-EMOR (UAV-assisted Emergency Monitoring and Response) system. Our UAV-EMOR system provides the following novel features: (1) secure communications between UAVs, smart sensors, the control server and a smartphone app for security managers; (2) enhanced coordination between smart sensors and indoor/outdoor UAVs to expand real-time monitoring coverage; and (3) beacon-aided rescue and building evacuation.
Gamma ray spectroscopy monitoring method and apparatus
Stagg, William R; Policke, Timothy A
2017-05-16
The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.
Monitoring the battery status for photovoltaic systems
NASA Astrophysics Data System (ADS)
Kim, Myungsoo; Hwang, Euijin
Photovoltaic power systems in Korea have been installed in remote islands where it is difficult to connect the utilities. Lead/acid batteries are used as an energy storage device for the stand-alone photovoltaic system. Hence, monitoring the battery status of photovoltaic systems is quite important to extend the total system service life. To monitor the state-of-charge of batteries, we adopted a current interrupt technique to measure the internal resistance of the battery. The internal resistance increases at the end of charge/discharge steps and also with cycles. The specific gravity of the electrolyte was measured in relation to the state-of-charge. A home-made optical hydrometer was utilized for automatic monitoring of the specific gravity. It is shown that the specific gravity and stratification increase with cycle number. One of the photovoltaic systems in a remote island, Ho-do, which has 90 kW peak power was checked for actual operational conditions such as solar generation, load, and battery status.
Multi-range force sensors utilizing shape memory alloys
Varma, Venugopal K.
2003-04-15
The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.
ERIC Educational Resources Information Center
Sanborn, Mark
2011-01-01
Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…
ADAMS executive and operating system
NASA Technical Reports Server (NTRS)
Pittman, W. D.
1981-01-01
The ADAMS Executive and Operating System, a multitasking environment under which a variety of data reduction, display and utility programs are executed, a system which provides a high level of isolation between programs allowing them to be developed and modified independently, is described. The Airborne Data Analysis/Monitor System (ADAMS) was developed to provide a real time data monitoring and analysis capability onboard Boeing commercial airplanes during flight testing. It inputs sensor data from an airplane performance data by applying transforms to the collected sensor data, and presents this data to test personnel via various display media. Current utilization and future development are addressed.
NASA Technical Reports Server (NTRS)
1980-01-01
Visits to four utilities concerned with the use of DSG power sources on their distribution networks yielded useful impressions of present and future approaches to the integration of DSGs into electrical distribution network. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.
Dynamic data filtering system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-04-29
A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.
EPA requires drinking water utilities to monitor source water to determine the need for treatment to remove the precursors (natural organic matter {NOM}) of disinfection by-products (DBPs). Currently, drinking water utilities use total organic carbon (TOC), dissolved organic car...
ONLINE WATER MONITORING UTILIZING AN AUTOMATED MICROARRAY BIOSENSOR INSTRUMENT - PHASE I
Constellation Technology Corporation (Constellation) proposes the use of an integrated recovery and detection system for online water supply monitoring. The integrated system is designed to efficiently capture and recover pathogens such as bacteria, viruses, parasites, an...
Dual-Modulation, Dual-Wavelength, Optical Polarimetry System for Glucose Monitoring
2016-08-26
dual-wavelength, optical polarimetry system for glucose monitoring 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) 5d...JBO.21.8.087001] 14. ABSTRACT A dual modulation optical polarimetry system utilizing both laser intensity and polarization modulation was designed...varying birefringence, which is one of the major limitations to the realization of polarimetry for glucose monitoring in the eye. The high-speed less
Effective utilization of data from the Highway Performance Monitoring System.
DOT National Transportation Integrated Search
1984-01-01
The objective of this research was to investigate the potential uses of the annual submittal and output data that result from the Highway Performance Monitoring System (HPMS), to determine what the data needs and uses of the Virginia Department of Hi...
Expert Systems for United States Navy Shore Facilities Utility Operations.
1988-03-01
of expertise when assessing the applicability of an expert system. Each of the tasks as similarly ranked to reflect subjective judgement on the...United States Navy Shore Facilities Utility Operations ABSTRACT A technology assessment of expert systems as they might be used in Navy utility...of these applications include design, fault diagnoses, training, data base management, and real-time monitoring. An assessment is given of each
Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morey, W.W.
1988-12-01
This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morey, W.W.
1988-12-01
This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduce maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine. 11 refs.« less
DOT National Transportation Integrated Search
2016-12-01
An independent evaluation of a non-video-based onboard monitoring system (OBMS) was conducted. The objective was to determine if the OBMS system performed reliably, improved driving safety and performance, and improved fuel efficiency in a commercial...
DOT National Transportation Integrated Search
2016-11-01
An independent evaluation of a non-video-based onboard monitoring system (OBMS) was conducted. The objective was to determine if the OBMS system performed reliably, improved driving safety and performance, and improved fuel efficiency in a commercial...
Emily A. Carter; Timothy P. McDonald; John L. Torbert
1999-01-01
A study was initiated in the Winter of 1998 to examine the utility of employing Global Positioning Systems (GPS) to monitor harvest traffic throughout a loblolly pine plantation and utilize traffic intensity information to assess impacts of select soil physical properties. Traffic maps prepared from GPS positional data indicated the highest concentration of traffic...
Utility interconnection experience with an operating central station MW-sized photovoltaic plant
NASA Astrophysics Data System (ADS)
Patapoff, N. W., Jr.; Mattijetz, D. R.
1985-08-01
Utility experience to date with photovoltaic systems has been with small dispersed systems designed primarily as demonstration projects. The 1 MW photovoltaic plant at Lugo Substation in Hesperia, California, has been designed and is operated as a central station power plant. The performance of the system has been monitored since first coming on line in November 1982. The potential impact of this and similar systems upon the operation of the utility is discussed.
Toda, Kei; Hato, Yuki; Ohira, Shin-ichi; Namihira, Takao
2007-11-05
In this paper, novel microsystems for gas analysis and gas generation are described. The same microchannel devices covered with a gas permeable membrane were used for both the gas collection and the gas generation. For the first time, a dual liquid flow system was utilized in a micro-gas analysis system. Even though micropumps are utilized in the dual line microsystem, a good baseline was obtained in the NO2 measurement with Griess-Saltzman chemistry. The system was developed for on-site measurements in medical treatment; the treatment is of respiratory disease syndrome by NO inhalation and the monitoring is of the product NO and the harmful byproduct NO2. The system was also applied to mobile atmospheric monitoring. Chemical NO generation using the microchannel device was investigated for safe NO inhalation as an alternative to a NO generator based on pulsed arc discharge.
Code of Federal Regulations, 2011 CFR
2011-07-01
... there any special provision regarding my individual filter turbidity monitoring? 141.564 Section 141.564... People Individual Filter Turbidity Requirements § 141.564 My system practices lime softening—is there any special provision regarding my individual filter turbidity monitoring? If your system utilizes lime...
Code of Federal Regulations, 2014 CFR
2014-07-01
... there any special provision regarding my individual filter turbidity monitoring? 141.564 Section 141.564... People Individual Filter Turbidity Requirements § 141.564 My system practices lime softening—is there any special provision regarding my individual filter turbidity monitoring? If your system utilizes lime...
Code of Federal Regulations, 2010 CFR
2010-07-01
... there any special provision regarding my individual filter turbidity monitoring? 141.564 Section 141.564... People Individual Filter Turbidity Requirements § 141.564 My system practices lime softening—is there any special provision regarding my individual filter turbidity monitoring? If your system utilizes lime...
Code of Federal Regulations, 2013 CFR
2013-07-01
... there any special provision regarding my individual filter turbidity monitoring? 141.564 Section 141.564... People Individual Filter Turbidity Requirements § 141.564 My system practices lime softening—is there any special provision regarding my individual filter turbidity monitoring? If your system utilizes lime...
Code of Federal Regulations, 2012 CFR
2012-07-01
... there any special provision regarding my individual filter turbidity monitoring? 141.564 Section 141.564... People Individual Filter Turbidity Requirements § 141.564 My system practices lime softening—is there any special provision regarding my individual filter turbidity monitoring? If your system utilizes lime...
Local health care system utilizing the LPG (liquid propane gas) network.
Umemoto, T; Hoshi, H; Tsuda, M; Horio, S; Itou, N; Neriki, T
1998-07-01
JAC's LPG monitoring network system is mainly provided in mountain villages. However, by using this system, it will be possible to start a Digital Network Program for the Elderly while maintaining superior economic feasibility and public benefit using existing information infrastructures. This project also has the capabilities for the creation of a fire/disaster monitoring system, as well as a health care system by using conventional LPG monitoring systems. Telemedicine is an option for the future, as well, by connecting medical equipment and a tele-conferencing system.
Meyer, Michael L; Huey, Greg M
2006-05-01
This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, W.A.
Energy engineering and management combines engineering problem-solving and financial management techniques to reduce utility costs. At present, substantial amounts of time and money are being spent in order to attempt to quantify energy consumption and costs and define opportunities for savings. Unfortunately, accurate verification of results is often overlooked. Advances in technology during the last few years have made the installation of a permanent, PC-based monitoring system possible for any facility, often for no more than the cost of a detailed study. By investing initially in a monitoring system rather than audits or studies, the actual consumption and cost datamore » will be available on a continuing basis and can be used to produce immediate operational savings, more accurately analyze opportunities requiring capital investments, and to verify actual savings resulting from changes. A permanent monitoring system, installed as the first step in a utility cost reduction effort, to identify where and how energy is used in a facility on a dynamic and real-time basis, can provide the most valuable and cost-effective tool available to an energy manager. The resulting data allows energy consumption patterns and utility costs to be understood and managed in the same manner as all other costs within a facility.« less
Parihar, Vijay; Yadav, Y R; Kher, Yatin; Ratre, Shailendra; Sethi, Ashish; Sharma, Dhananjaya
2016-01-01
Steep learning curve is found initially in pure endoscopic procedures. Video telescopic operating monitor (VITOM) is an advance in rigid-lens telescope systems provides an alternative method for learning basics of neuroendoscopy with the help of the familiar principle of microneurosurgery. The aim was to evaluate the clinical utility of VITOM as a learning tool for neuroendoscopy. Video telescopic operating monitor was used 39 cranial and spinal procedures and its utility as a tool for minimally invasive neurosurgery and neuroendoscopy for initial learning curve was studied. Video telescopic operating monitor was used in 25 cranial and 14 spinal procedures. Image quality is comparable to endoscope and microscope. Surgeons comfort improved with VITOM. Frequent repositioning of scope holder and lack of stereopsis is initial limiting factor was compensated for with repeated procedures. Video telescopic operating monitor is found useful to reduce initial learning curve of neuroendoscopy.
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones.
Ge, Linfei; Zhang, Jin; Wei, Jing
2018-01-01
Respiration monitoring is helpful in disease prevention and diagnosis. Traditional respiration monitoring requires users to wear devices on their bodies, which is inconvenient for them. In this paper, we aim to design a noncontact respiration rate detection system utilizing off-the-shelf smartphones. We utilize the single-frequency ultrasound as the media to detect the respiration activity. By analyzing the ultrasound signals received by the built-in microphone sensor in a smartphone, our system can derive the respiration rate of the user. The advantage of our method is that the transmitted signal is easy to generate and the signal analysis is simple, which has lower power consumption and thus is suitable for long-term monitoring in daily life. The experimental result shows that our system can achieve accurate respiration rate estimation under various scenarios.
A wireless portable system with microsensors for monitoring respiratory diseases.
Cao, Zhe; Zhu, Rong; Que, Rui-Yi
2012-11-01
A wireless portable monitoring system for respiratory diseases using microsensors is proposed. The monitoring system consists of two sensor nodes integrating with Bluetooth transmitters that measure user's respiratory airflow, blood oxygen saturation, and body posture. The utility of micro-hot-film flow sensor makes the monitor can acquire comprehensive respiration parameters which are useful for diagnoses of obstructive sleep apnea, chronic obstructive pulmonary disease, and asthma. The system can serve as both sleep recorder and spirometer. Additionally, a mobile phone or a PC connected to the Internet serving as a monitoring and transfer terminal makes telemedicine achievable. Several experiments were conducted to verify the feasibility and effectiveness of the proposed system for monitoring and diagnosing OSA, COPD, and asthma.
A Pilot System for Environmental Monitoring Through Domestic Animals
NASA Technical Reports Server (NTRS)
Schwabe, Calvin W.; Sawyer, John; Martin, Wayne
1971-01-01
A pilot system for environmental monitoring is in its early phases of development in Northern California. It is based upon the existing nation wide Federal-State Market Cattle Testing (14CT) program for brucellosis in cattle. This latter program depends upon the collection of blood program at the time of identified cattle. As the cattle Population of California is broadly distributed throughout the state, we intend to utilize these blood samples to biologically monitor the distribution and intensity of selected environmental pollutants. In a 2-year preliminary trial, the feasibility of retrieving, utilizing for a purpose similar to this, and tracing back to their geographic areas of origin of MCT samples have been demonstrated.
Engine health monitoring: An advanced system
NASA Technical Reports Server (NTRS)
Dyson, R. J. E.
1981-01-01
The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.
Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.
Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J
2016-05-26
There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.
Design and implementation of a 3-lead ECG wireless remote monitoring system
NASA Astrophysics Data System (ADS)
Zhang, Shi; Jia, Xiaonan; Shang, Shuai
2006-11-01
Cardiovascular disease is one of the main diseases that menaces human health. It is necessary to monitor the patient's real-time electrocardiograph (ECG) for a long time to realize diagnosis and salvage. Remote ECG monitoring system is the solution. This paper introduces the design and implement of a 3-lead ECG wireless remote monitoring system. It collects, stores and transmits user's ECG which can be received by hospital and diagnosed by doctors. The development of the whole system contains three parts, the hardware and embedded software implementation of MONITOR, software of the MONITORING CENTER, and the routing software of NETWORK CENTER. According to the clinic experimentation, this system has high reliability and utility. There will be great social and economic benefit if this system is put into use.
1980-01-01
one year with the savings realized in reduced wear on arresting gear. 2.2 Evaluation of the Potential Utility of the SCAN System for Monitoring Runway...without loss of accuracy due to build-up of rubber and other contaminants on the sensor surface? 2. Can water depth be measured representatively on a...Hargett, E.R., 1974: Skid- Resistance Evaluation of Seven Antihydroplaning Surfaces, Air Force Weapons Laboratory, Kirtland AP. NM4 87117, 39 pp
Preliminary flight prototype silver ion monitoring system
NASA Technical Reports Server (NTRS)
Brady, J.
1974-01-01
The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.
System study of the utilization of space for carbon dioxide research
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Vranka, R.
1985-01-01
The objectives included: compiling and selecting the Scientific Data Requirements (SDRs) pertinent to the CO2 Research Program that have the potential to be more successfully achieved by utilizing space-based sensor systems; assessment of potential space technology in monitoring those parameters which may be important first indicators of climate change due to increasing atmospheric CO2, including the behavior of the West Antarctic ice sheet; and determine the potential of space technology for monitoring those parameters to improve understanding of the coupling between CO2 and cloud cover.
Utilization of artificial intelligence techniques for the Space Station power system
NASA Technical Reports Server (NTRS)
Evatt, Thomas C.; Gholdston, Edward W.
1988-01-01
Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.
40 CFR Table 8 to Subpart Uuuuu of... - Reporting Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility... period. If there were no periods during which the CMSs, including continuous emissions monitoring system, and operating parameter monitoring systems, were out-of-control as specified in § 63.8(c)(7), a...
40 CFR Table 8 to Subpart Uuuuu of... - Reporting Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility... period. If there were no periods during which the CMSs, including continuous emissions monitoring system, and operating parameter monitoring systems, were out-of-control as specified in § 63.8(c)(7), a...
Fiber grating systems used to measure strain in cylindrical structures
NASA Astrophysics Data System (ADS)
Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.; Crowe, C. Robert; Vandiver, Terry L.; Evans, Robert N.
1997-07-01
Fiber optic grating systems are described that have been used to measure strain in cylindrical structures. The applications of these systems to a composite utility pole and to a composite missile body are described. Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity; light weight for ease of deployment; the ability to be recycled, reducing hazardous waste associated with chemically treated wooden poles; and compatibility with embedded fiber optic sensors, allowing structural loads to be monitored. Tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22-ft composite pole are reported. Monitoring strain in composite missile bodies has the potential to improve the quality of manufactured parts, support performance testing, and enhance safety during long periods of storage. Strain measurements made with fiber optic grating and electrical strain gauges are described.
Remote monitoring of implantable cardiac devices: current state and future directions.
Ganeshan, Raj; Enriquez, Alan D; Freeman, James V
2018-01-01
Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.
In-service health monitoring of composite structures
NASA Technical Reports Server (NTRS)
Pinto, Gino A.; Ventres, C. S.; Ginty, Carol A.; Chamis, Christos C.
1990-01-01
The aerospace industry is witnessing a vast utilization of composites in critical structural applications and anticipates even more use of them in future aircraft. Therefore, a definite need exists for a composite health monitoring expert system to meet today's current needs and tomorrow's future demands. The primary goal for this conceptual health monitoring system is functional reliably for in-service operation in the environments of various composite structures. The underlying philosophy of this system is to utilize proven vibration techniques to assess the structural integrity of a fibrous composite. Statistical methods are used to determine if the variances in the measured data are acceptable for making a reliable decision on the health status of the composite. The flexible system allows for algorithms describing any composite fatigue or damage behavior characteristic to be provided as an input to the system. Alert thresholds and variances can also be provided as an input to this system and may be updated to allow for future changes/refinements in the composite's structural integrity behavior.
Environmental performance, profitability, asset utilization, debt monitoring and firm value
NASA Astrophysics Data System (ADS)
Bukit, R. Br; Haryanto, B.; Ginting, P.
2018-02-01
The growing issue on firm value shows that firm value is not only determined by the firm ability to increase financial profit, but also by the company's concern in maintaining the environmental condition. The industrial development produces waste that pollutes the environment that has potential to serious impact on the next life. In addition to provide financial benefits, companies are increasingly facing pressure to be socially responsible for the survival of the company. However, past findings demonstrate that the effect of environmental performance, profitability, and asset utilization to the firm’s value are still unclear. This study aims to test whether environmental performance, firm profitability and asset utilization can effectively enhance firm value in two different conditions: intensive debt monitoring and less intensive debt monitoring. Sample of companies is taken from the list of Indonesia Stock Exchange during the period of 2013 to 2015. Using multiple regression analysis, discloses that: in intensive monitoring, managers tend to have high firm value when company has high environmental performance and or high profitability and high asset utilization. Monitoring system needs to be intensified especially for companies with the above characteristics.
Development of Decision Support System for Remote Monitoring of PIP Corn
The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...
Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones
Wei, Jing
2018-01-01
Respiration monitoring is helpful in disease prevention and diagnosis. Traditional respiration monitoring requires users to wear devices on their bodies, which is inconvenient for them. In this paper, we aim to design a noncontact respiration rate detection system utilizing off-the-shelf smartphones. We utilize the single-frequency ultrasound as the media to detect the respiration activity. By analyzing the ultrasound signals received by the built-in microphone sensor in a smartphone, our system can derive the respiration rate of the user. The advantage of our method is that the transmitted signal is easy to generate and the signal analysis is simple, which has lower power consumption and thus is suitable for long-term monitoring in daily life. The experimental result shows that our system can achieve accurate respiration rate estimation under various scenarios. PMID:29853985
Central-Monitor Software Module
NASA Technical Reports Server (NTRS)
Bachelder, Aaron; Foster, Conrad
2005-01-01
One of the software modules of the emergency-vehicle traffic-light-preemption system of the two preceding articles performs numerous functions for the central monitoring subsystem. This module monitors the states of all units (vehicle transponders and intersection controllers): It provides real-time access to the phases of traffic and pedestrian lights, and maps the positions and states of all emergency vehicles. Most of this module is used for installation and configuration of units as they are added to the system. The module logs all activity in the system, thereby providing information that can be analyzed to minimize response times and optimize response strategies. The module can be used from any location within communication range of the system; with proper configuration, it can also be used via the Internet. It can be integrated into call-response centers, where it can be used for alerting emergency vehicles and managing their responses to specific incidents. A variety of utility subprograms provide access to any or all units for purposes of monitoring, testing, and modification. Included are "sniffer" utility subprograms that monitor incoming and outgoing data for accuracy and timeliness, and that quickly and autonomously shut off malfunctioning vehicle or intersection units.
Advanced Networks in Motion Mobile Sensorweb
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David H.
2011-01-01
Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.
Reusable rocket engine turbopump health monitoring system, part 3
NASA Technical Reports Server (NTRS)
Perry, John G.
1989-01-01
Degradation mechanisms and sensor identification/selection resulted in a list of degradation modes and a list of sensors that are utilized in the diagnosis of these degradation modes. The sensor list is divided into primary and secondary indicators of the corresponding degradation modes. The signal conditioning requirements are discussed, describing the methods of producing the Space Shuttle Main Engine (SSME) post-hot-fire test data to be utilized by the Health Monitoring System. Development of the diagnostic logic and algorithms is also presented. The knowledge engineering approach, as utilized, includes the knowledge acquisition effort, characterization of the expert's problem solving strategy, conceptually defining the form of the applicable knowledge base, and rule base, and identifying an appropriate inferencing mechanism for the problem domain. The resulting logic flow graphs detail the diagnosis/prognosis procedure as followed by the experts. The nature and content of required support data and databases is also presented. The distinction between deep and shallow types of knowledge is identified. Computer coding of the Health Monitoring System is shown to follow the logical inferencing of the logic flow graphs/algorithms.
Space-Air Co-Observation in Watershed Management: the Establishment of System
NASA Astrophysics Data System (ADS)
Zhong, L.; Yu, J.; Tang, X.; Pan, S.
2018-05-01
To realize real-time, detailed, and standardized watershed monitoring and management, a dynamic monitoring system is proposed, at all levels (space, air, and ground), by comprehensively utilizing advanced satellite and low-altitude unmanned aerial vehicle (UAV) technologies The system can be used to monitor and manage all kinds of sensitive water targets. This study takes water administration enforcement as an example for proving it feasibility by selecting typical study areas. This study shows that the proposed system is a promising information acquisition means, contributing to the development of watershed management.
First, we briefly describe the development of the major, biophysically-focused river assessment and monitoring approaches over the last 50 years. We then assess the utility of biophysical parameters for assessing rivers as social-ecological systems. We then develop a framework de...
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
NASA Astrophysics Data System (ADS)
Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah
2018-03-01
The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.
Brown Connolly, Nancy E
2014-12-01
This foundational study applies the process of receiver operating characteristic (ROC) analysis to evaluate utility and predictive value of a disease management (DM) model that uses RM devices for chronic obstructive pulmonary disease (COPD). The literature identifies a need for a more rigorous method to validate and quantify evidence-based value for remote monitoring (RM) systems being used to monitor persons with a chronic disease. ROC analysis is an engineering approach widely applied in medical testing, but that has not been evaluated for its utility in RM. Classifiers (saturated peripheral oxygen [SPO2], blood pressure [BP], and pulse), optimum threshold, and predictive accuracy are evaluated based on patient outcomes. Parametric and nonparametric methods were used. Event-based patient outcomes included inpatient hospitalization, accident and emergency, and home health visits. Statistical analysis tools included Microsoft (Redmond, WA) Excel(®) and MedCalc(®) (MedCalc Software, Ostend, Belgium) version 12 © 1993-2013 to generate ROC curves and statistics. Persons with COPD were monitored a minimum of 183 days, with at least one inpatient hospitalization within 12 months prior to monitoring. Retrospective, de-identified patient data from a United Kingdom National Health System COPD program were used. Datasets included biometric readings, alerts, and resource utilization. SPO2 was identified as a predictive classifier, with an optimal average threshold setting of 85-86%. BP and pulse were failed classifiers, and areas of design were identified that may improve utility and predictive capacity. Cost avoidance methodology was developed. RESULTS can be applied to health services planning decisions. Methods can be applied to system design and evaluation based on patient outcomes. This study validated the use of ROC in RM program evaluation.
Modeling of human movement monitoring using Bluetooth Low Energy technology.
Mokhtari, G; Zhang, Q; Karunanithi, M
2015-01-01
Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.
Gross-Schulman, Sandra; Sklaroff, Laura Myerchin; Hertz, Crystal Coyazo; Guterman, Jeffrey J
2017-12-01
Heart Failure (HF) is the most expensive preventable condition, regardless of patient ethnicity, race, socioeconomic status, sex, and insurance status. Remote telemonitoring with timely outpatient care can significantly reduce avoidable HF hospitalizations. Human outreach, the traditional method used for remote monitoring, is effective but costly. Automated systems can potentially provide positive clinical, fiscal, and satisfaction outcomes in chronic disease monitoring. The authors implemented a telephonic HF automated remote monitoring system that utilizes deterministic decision tree logic to identify patients who are at risk of clinical decompensation. This safety study evaluated the degree of clinical concordance between the automated system and traditional human monitoring. This study focused on a broad underserved population and demonstrated a safe, reliable, and inexpensive method of monitoring patients with HF.
Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant
Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.
2016-01-01
There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365
Quigley, Martin M; Mate, Timothy P; Sylvester, John E
2009-01-01
To evaluate the accuracy, utility, and cost effectiveness of a new electromagnetic patient positioning and continuous, real-time monitoring system, which uses permanently implanted resonant transponders in the target (Calypso 4D Localization System and Beacon transponders, Seattle, WA) to continuously monitor tumor location and movement during external beam radiation therapy of the prostate. This clinical trial studied 43 patients at 5 sites. All patients were implanted with 3 transponders each. In 41 patients, the system was used for initial alignment at each therapy session. Thirty-five patients had continuous monitoring during their radiation treatment. Over 1,000 alignment comparisons were made to a commercially available kV X-ray positioning system (BrainLAB ExacTrac, Munich, Germany). Using decision analysis and Markov processes, the outcomes of patients were simulated over a 5-year period and measured in terms of costs from a payer's perspective and quality-adjusted life years (QALYs). All patients had satisfactory transponder implantations for monitoring purposes. In over 75% of the treatment sessions, the correction to conventional positioning (laser and tattoos) directed by an electromagnetic patient positioning and monitoring system was greater than 5 mm. Ninety-seven percent (34/35) of the patients who underwent continuous monitoring had target motion that exceeded preset limits at some point during the course of their radiation therapy. Exceeding preset thresholds resulted in user intervention at least once during the therapy in 80% of the patients (28/35). Compared with localization using ultrasound, electronic portal imaging devices (EPID), or computed tomography (CT), localization with the electromagnetic patient positioning and monitoring system yielded superior gains in QALYs at comparable costs. Most patients positioned with conventional tattoos and lasers for prostate radiation therapy were found by use of the electromagnetic patient positioning and monitoring system to have alignment errors exceeding 5 mm. Almost all patients undergoing external beam radiation of the prostate have been shown to have target organ movement exceeding 3 mm during radiation therapy delivery. The ability of the electromagnetic technology to monitor tumor target location during the same time as radiation therapy is being delivered allows clinicians to provide real time adaptive radiation therapy for prostate cancer. This permits clinicians to intervene when the prostate moves outside the radiation isocenter, which should decrease adverse events and improve patient outcomes. Additionally, a cost-utility analysis has demonstrated that the electromagnetic patient positioning and monitoring system offers patient outcome benefits at a cost that falls well within the payer's customary willingness to pay (WTP) threshold of $50,000 per QALY.
Automated power distribution system hardware. [for space station power supplies
NASA Technical Reports Server (NTRS)
Anderson, Paul M.; Martin, James A.; Thomason, Cindy
1989-01-01
An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.
Toward in situ monitoring of water contamination by nitroenergetic compounds.
Johnson, Brandy J; Leska, Iwona A; Medina, Alejandro; Dyson, Norris F; Nasir, Mansoor; Melde, Brian J; Taft, Jenna R; Charles, Paul T
2012-11-06
We have previously described the application of novel porous organosilicate materials to the preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbents and the advantages of these types of materials over commercially available solid phase extraction sorbents have been demonstrated. Here, the development of systems for application of those sorbents to in situ monitoring is described. Considerations such as column pressure, particulate filtration, and component durability are discussed. The diameter of selected column housings, the sorbent bed depth, and the frits utilized significantly impact the utility of the sorbent columns in the prototype system. The impact of and necessity for improvements in the morphological characteristics of the sorbents as they relate to reduction in column pressure are detailed. The results of experiments utilizing a prototype system are presented. Data demonstrating feasibility for use of the sorbents in preconcentration prior to ion mobility spectrometry is also presented.
Skeie, Marit S; Klock, Kristin S
2014-04-30
Recording reliable oral health data is a challenge. The aims were a) to outline different Scandinavian systems of oral health monitoring, b) to evaluate the quality and utility of the collected data in the light of modern concepts of disease management and to suggest improvements. The information for in this study was related to (a) children and adolescents, (b) oral health data and (c) routines for monitoring such data. This meant information available in the official web sites of the "KOSTRA-data" (Municipality-State-Report) in Norway, the Swedish National Board of Health and Welfare ("Socialstyrelsen") and Oral Health Register (the SCOR system, National Board of Health) in Denmark. A potential for increasing the reliability and validity of the data existed. Routines for monitoring other oral diseases than caries were limited. Compared with the other Scandinavian countries, the data collection system in Denmark appeared more functional and had adopted more modern concepts of disease management than other systems. In the light of modern concepts of caries management, data collected elsewhere had limited utility. The Scandinavian systems of health reporting had much in common, but some essential differences existed. If the quality of epidemiological data were enhanced, it would be possible to use the data for planning oral health care. Routines and procedures should be improved and updated in accordance with the modern ideas about caries prevention and therapy. For appropriate oral health planning in an organised dental service, reporting of enamel caries is essential.
Bloss, Cinnamon S; Wineinger, Nathan E; Peters, Melissa; Boeldt, Debra L; Ariniello, Lauren; Kim, Ju Young; Sheard, Judith; Komatireddy, Ravi; Barrett, Paddy; Topol, Eric J
2016-01-01
Background. Mobile health and digital medicine technologies are becoming increasingly used by individuals with common, chronic diseases to monitor their health. Numerous devices, sensors, and apps are available to patients and consumers-some of which have been shown to lead to improved health management and health outcomes. However, no randomized controlled trials have been conducted which examine health care costs, and most have failed to provide study participants with a truly comprehensive monitoring system. Methods. We conducted a prospective randomized controlled trial of adults who had submitted a 2012 health insurance claim associated with hypertension, diabetes, and/or cardiac arrhythmia. The intervention involved receipt of one or more mobile devices that corresponded to their condition(s) (hypertension: Withings Blood Pressure Monitor; diabetes: Sanofi iBGStar Blood Glucose Meter; arrhythmia: AliveCor Mobile ECG) and an iPhone with linked tracking applications for a period of 6 months; the control group received a standard disease management program. Moreover, intervention study participants received access to an online health management system which provided participants detailed device tracking information over the course of the study. This was a monitoring system designed by leveraging collaborations with device manufacturers, a connected health leader, health care provider, and employee wellness program-making it both unique and inclusive. We hypothesized that health resource utilization with respect to health insurance claims may be influenced by the monitoring intervention. We also examined health-self management. Results & Conclusions. There was little evidence of differences in health care costs or utilization as a result of the intervention. Furthermore, we found evidence that the control and intervention groups were equivalent with respect to most health care utilization outcomes. This result suggests there are not large short-term increases or decreases in health care costs or utilization associated with monitoring chronic health conditions using mobile health or digital medicine technologies. Among secondary outcomes there was some evidence of improvement in health self-management which was characterized by a decrease in the propensity to view health status as due to chance factors in the intervention group.
Peters, Melissa; Boeldt, Debra L.; Ariniello, Lauren; Kim, Ju Young; Sheard, Judith; Komatireddy, Ravi; Barrett, Paddy
2016-01-01
Background. Mobile health and digital medicine technologies are becoming increasingly used by individuals with common, chronic diseases to monitor their health. Numerous devices, sensors, and apps are available to patients and consumers–some of which have been shown to lead to improved health management and health outcomes. However, no randomized controlled trials have been conducted which examine health care costs, and most have failed to provide study participants with a truly comprehensive monitoring system. Methods. We conducted a prospective randomized controlled trial of adults who had submitted a 2012 health insurance claim associated with hypertension, diabetes, and/or cardiac arrhythmia. The intervention involved receipt of one or more mobile devices that corresponded to their condition(s) (hypertension: Withings Blood Pressure Monitor; diabetes: Sanofi iBGStar Blood Glucose Meter; arrhythmia: AliveCor Mobile ECG) and an iPhone with linked tracking applications for a period of 6 months; the control group received a standard disease management program. Moreover, intervention study participants received access to an online health management system which provided participants detailed device tracking information over the course of the study. This was a monitoring system designed by leveraging collaborations with device manufacturers, a connected health leader, health care provider, and employee wellness program–making it both unique and inclusive. We hypothesized that health resource utilization with respect to health insurance claims may be influenced by the monitoring intervention. We also examined health-self management. Results & Conclusions. There was little evidence of differences in health care costs or utilization as a result of the intervention. Furthermore, we found evidence that the control and intervention groups were equivalent with respect to most health care utilization outcomes. This result suggests there are not large short-term increases or decreases in health care costs or utilization associated with monitoring chronic health conditions using mobile health or digital medicine technologies. Among secondary outcomes there was some evidence of improvement in health self-management which was characterized by a decrease in the propensity to view health status as due to chance factors in the intervention group. PMID:26788432
Satellite images for land cover monitoring - Navigating through the maze
Künzer, Claudia; Fosnight, Gene
2001-01-01
The focus of this publication is satellite systems for land cover monitoring. On the reverse is a table that compares a selection of these systems, whose data are globally available in a form suitable for land cover analysis. We hope the information presented will help you assess the utility of remotely sensed image to meet your needs.
DMS augmented monitoring and diganosis application (DMS AMDA) prototype
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Boyd, Mark A.; Iverson, David L.; Donnell, Brian; Lauritsen, Janet; Doubek, Sharon; Gibson, Jim; Monahan, Christine; Rosenthal, Donald A.
1993-01-01
The Data Management System Augmented Monitoring and Diagnosis Application (DMS AMDA) is currently under development at NASA Ames Research Center (ARC). It will provide automated monitoring and diagnosis capabilities for the Space Station Freedom (SSF) Data Management System (DMS) in the Control Center Complex (CCC) at NASA Johnson Space Center. Several advanced automation applications are under development for use in the CCC for other SSF subsystems. The DMS AMDA, however, is the first application to utilize digraph failure analysis techniques and the Extended Realtime FEAT (ERF) application as the core of its diagnostic system design, since the other projects were begun before the digraph tools were available. Model-based diagnosis and expert systems techniques will provide additional capabilities and augment ERF where appropriate. Utilization of system knowledge captured in the design phase of a system in digraphs should result in both a cost savings and a technical advantage during implementation of the diagnostic software. This paper addresses both the programmatic and technical considerations of this approach, and describes the software design and initial prototyping effort.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
A Study about the 3S-based Great Ruins Monitoring and Early-warning System
NASA Astrophysics Data System (ADS)
Xuefeng, W.; Zhongyuan, H.; Gongli, L.; Li, Z.
2015-08-01
Large-scale urbanization construction and new countryside construction, frequent natural disasters, and natural corrosion pose severe threat to the great ruins. It is not uncommon that the cultural relics are damaged and great ruins are occupied. Now the ruins monitoring mainly adopt general monitoring data processing system which can not effectively exert management, display, excavation analysis and data sharing of the relics monitoring data. Meanwhile those general software systems require layout of large number of devices or apparatuses, but they are applied to small-scope relics monitoring only. Therefore, this paper proposes a method to make use of the stereoscopic cartographic satellite technology to improve and supplement the great ruins monitoring index system and combine GIS and GPS to establish a highly automatic, real-time and intelligent great ruins monitoring and early-warning system in order to realize collection, processing, updating, spatial visualization, analysis, distribution and sharing of the monitoring data, and provide scientific and effective data for the relics protection, scientific planning, reasonable development and sustainable utilization.
Technology Transfer Opportunities: Automated Ground-Water Monitoring
Smith, Kirk P.; Granato, Gregory E.
1997-01-01
Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.
Data report for the Northeast Residential Experiment Station, Apr. 1982
NASA Astrophysics Data System (ADS)
Russell, M. C.; Raghuraman, P.; Mahoney, P. C.
1982-06-01
Physical performance data obtained from photovoltaic energy systems under test at the Northeast Residential Experiment Station (NE RES) in Concord, Massachusetts, are tabulated for the month of April 1982. Five prototype residential photovoltaic systems are under test at the NE RES, each consisting of a roof mounted array sized to meet at least 50% of the annual electrical demand of an energy conserving house, and an enclosed structure to house the remainder of the photovoltaic system equipment, test instrumentation, and work space. Each system is grid connected. In addition, one full sized PV residence, the Carlisle House, is also being monitored in Carlisle, Massachusetts. The features of the systems and of the houses, are briefly summarized, and the monthly performance of the monitored houses, PV systems, and meteorological data is tabulated. Also tabulated is hourly information for an average day of the month including data on the monitored houses and prototype systems data. Data include energy consumption, array and inverter outputs, energy supplied to and by the utility, solar array panel temperatures, and total tilt insolation. Also included are tables that present the hypothetical energy exchange between the system and the utility if each prototype system supplied energy to each monitored house. These data are also graphed, as well as the duration of time for which the load had a specific value.
Concept of an advanced hyperspectral remote sensing system for pipeline monitoring
NASA Astrophysics Data System (ADS)
Keskin, Göksu; Teutsch, Caroline D.; Lenz, Andreas; Middelmann, Wolfgang
2015-10-01
Areas occupied by oil pipelines and storage facilities are prone to severe contamination due to leaks caused by natural forces, poor maintenance or third parties. These threats have to be detected as quickly as possible in order to prevent serious environmental damage. Periodical and emergency monitoring activities need to be carried out for successful disaster management and pollution minimization. Airborne remote sensing stands out as an appropriate choice to operate either in an emergency or periodically. Hydrocarbon Index (HI) and Hydrocarbon Detection Index (HDI) utilize the unique absorption features of hydrocarbon based materials at SWIR spectral region. These band ratio based methods require no a priori knowledge of the reference spectrum and can be calculated in real time. This work introduces a flexible airborne pipeline monitoring system based on the online quasi-operational hyperspectral remote sensing system developed at Fraunhofer IOSB, utilizing HI and HDI for oil leak detection on the data acquired by an SWIR imaging sensor. Robustness of HI and HDI compared to state of the art detection algorithms is evaluated in an experimental setup using a synthetic dataset, which was prepared in a systematic way to simulate linear mixtures of selected background and oil spectra consisting of gradually decreasing percentages of oil content. Real airborne measurements in Ettlingen, Germany are used to gather background data while the crude oil spectrum was measured with a field spectrometer. The results indicate that the system can be utilized for online and offline monitoring activities.
NASA Astrophysics Data System (ADS)
Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo
2009-03-01
This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-01-01
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-04-29
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.
A knowledge-based patient assessment system: conceptual and technical design.
Reilly, C. A.; Zielstorff, R. D.; Fox, R. L.; O'Connell, E. M.; Carroll, D. L.; Conley, K. A.; Fitzgerald, P.; Eng, T. K.; Martin, A.; Zidik, C. M.; Segal, M.
2000-01-01
This paper describes the design of an inpatient patient assessment application that captures nursing assessment data using a wireless laptop computer. The primary aim of this system is to capture structured information for facilitating decision support and quality monitoring. The system also aims to improve efficiency of recording patient assessments, reduce costs, and improve discharge planning and early identification of patient learning needs. Object-oriented methods were used to elicit functional requirements and to model the proposed system. A tools-based development approach is being used to facilitate rapid development and easy modification of assessment items and rules for decision support. Criteria for evaluation include perceived utility by clinician users, validity of decision support rules, time spent recording assessments, and perceived utility of aggregate reports for quality monitoring. PMID:11079970
A knowledge-based patient assessment system: conceptual and technical design.
Reilly, C A; Zielstorff, R D; Fox, R L; O'Connell, E M; Carroll, D L; Conley, K A; Fitzgerald, P; Eng, T K; Martin, A; Zidik, C M; Segal, M
2000-01-01
This paper describes the design of an inpatient patient assessment application that captures nursing assessment data using a wireless laptop computer. The primary aim of this system is to capture structured information for facilitating decision support and quality monitoring. The system also aims to improve efficiency of recording patient assessments, reduce costs, and improve discharge planning and early identification of patient learning needs. Object-oriented methods were used to elicit functional requirements and to model the proposed system. A tools-based development approach is being used to facilitate rapid development and easy modification of assessment items and rules for decision support. Criteria for evaluation include perceived utility by clinician users, validity of decision support rules, time spent recording assessments, and perceived utility of aggregate reports for quality monitoring.
Rajan, J Pandia; Rajan, S Edward
2018-01-01
Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.
Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.
Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H
2011-01-01
We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value.
Assessing the value of information for long-term structural health monitoring
NASA Astrophysics Data System (ADS)
Pozzi, Matteo; Der Kiureghian, Armen
2011-04-01
In the field of Structural Health Monitoring, tests and sensing systems are intended as tools providing diagnoses, which allow the operator of the facility to develop an efficient maintenance plan or to require extraordinary measures on a structure. The effectiveness of these systems depends directly on their capability to guide towards the most optimal decision for the prevailing circumstances, avoiding mistakes and wastes of resources. Though this is well known, most studies only address the accuracy of the information gained from sensors without discussing economic criteria. Other studies evaluate these criteria separately, with only marginal or heuristic connection with the outcomes of the monitoring system. The concept of "Value of Information" (VoI) provides a rational basis to rank measuring systems according to a utility-based metric, which fully includes the decision-making process affected by the monitoring campaign. This framework allows, for example, an explicit assessment of the economical justifiability of adopting a sensor depending on its precision. In this paper we outline the framework for assessing the VoI, as applicable to the ranking of competitive measuring systems. We present the basic concepts involved, highlight issues related to monitoring of civil structures, address the problem of non-linearity of the cost-to-utility mapping, and introduce an approximate Monte Carlo approach suitable for the implementation of time-consuming predictive models.
Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System
NASA Technical Reports Server (NTRS)
Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)
2000-01-01
The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.
Zanaboni, Paolo; Landolina, Maurizio; Marzegalli, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Guenzati, Giuseppe; Curnis, Antonio; Valsecchi, Sergio; Borghetti, Francesca; Borghi, Gabriella; Masella, Cristina
2013-05-30
Heart failure patients with implantable defibrillators place a significant burden on health care systems. Remote monitoring allows assessment of device function and heart failure parameters, and may represent a safe, effective, and cost-saving method compared to conventional in-office follow-up. We hypothesized that remote device monitoring represents a cost-effective approach. This paper summarizes the economic evaluation of the Evolution of Management Strategies of Heart Failure Patients With Implantable Defibrillators (EVOLVO) study, a multicenter clinical trial aimed at measuring the benefits of remote monitoring for heart failure patients with implantable defibrillators. Two hundred patients implanted with a wireless transmission-enabled implantable defibrillator were randomized to receive either remote monitoring or the conventional method of in-person evaluations. Patients were followed for 16 months with a protocol of scheduled in-office and remote follow-ups. The economic evaluation of the intervention was conducted from the perspectives of the health care system and the patient. A cost-utility analysis was performed to measure whether the intervention was cost-effective in terms of cost per quality-adjusted life year (QALY) gained. Overall, remote monitoring did not show significant annual cost savings for the health care system (€1962.78 versus €2130.01; P=.80). There was a significant reduction of the annual cost for the patients in the remote arm in comparison to the standard arm (€291.36 versus €381.34; P=.01). Cost-utility analysis was performed for 180 patients for whom QALYs were available. The patients in the remote arm gained 0.065 QALYs more than those in the standard arm over 16 months, with a cost savings of €888.10 per patient. Results from the cost-utility analysis of the EVOLVO study show that remote monitoring is a cost-effective and dominant solution. Remote management of heart failure patients with implantable defibrillators appears to be cost-effective compared to the conventional method of in-person evaluations. ClinicalTrials.gov NCT00873899; http://clinicaltrials.gov/show/NCT00873899 (Archived by WebCite at http://www.webcitation.org/6H0BOA29f).
Simultaneous monitoring technique for ASE and MPI noises in distributed Raman Amplified Systems.
Choi, H Y; Jun, S B; Shin, S K; Chung, Y C
2007-07-09
We develop a new technique for simultaneously monitoring the amplified spontaneous emission (ASE) and multi-path interference (MPI) noises in distributed Raman amplified (DRA) systems. This technique utilizes the facts that the degree-of polarization (DOP) of the MPI noise is 1/9, while the ASE noise is unpolarized. The results show that the proposed technique can accurately monitor both of these noises regardless of the bit rates, modulation formats, and optical signal-to-noise ratio (OSNR) levels of the signals.
Fiber grating system used to measure strain in a 22-ft composite utility pole
NASA Astrophysics Data System (ADS)
Udd, Eric; Corona, Kelli; Slattery, Kerry T.; Dorr, Donald J.
1996-05-01
Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity, light weight for ease of deployment, the ability to be recycled reducing hazardous waste associated with chemically treated wooden poles, and compatibility with embedded fiber optic sensors allowing structural loads to be monitored. This paper reports tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22 foot composite pole.
Health Monitoring System Technology Assessments: Cost Benefits Analysis
NASA Technical Reports Server (NTRS)
Kent, Renee M.; Murphy, Dennis A.
2000-01-01
The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.
2014-01-01
Background Recording reliable oral health data is a challenge. The aims were a) to outline different Scandinavian systems of oral health monitoring, b) to evaluate the quality and utility of the collected data in the light of modern concepts of disease management and to suggest improvements. Material and methods The information for in this study was related to (a) children and adolescents, (b) oral health data and (c) routines for monitoring such data. This meant information available in the official web sites of the “KOSTRA-data” (Municipality-State-Report) in Norway, the Swedish National Board of Health and Welfare (“Socialstyrelsen”) and Oral Health Register (the SCOR system, National Board of Health) in Denmark. Results A potential for increasing the reliability and validity of the data existed. Routines for monitoring other oral diseases than caries were limited. Compared with the other Scandinavian countries, the data collection system in Denmark appeared more functional and had adopted more modern concepts of disease management than other systems. In the light of modern concepts of caries management, data collected elsewhere had limited utility. Conclusions The Scandinavian systems of health reporting had much in common, but some essential differences existed. If the quality of epidemiological data were enhanced, it would be possible to use the data for planning oral health care. Routines and procedures should be improved and updated in accordance with the modern ideas about caries prevention and therapy. For appropriate oral health planning in an organised dental service, reporting of enamel caries is essential. PMID:24885243
A new venous infusion path monitoring system utilizing electrostatic induced potential.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W Morton
2008-01-01
A new venous infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear and digital integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. A 330 kHz AC voltage, which is induced on the patient's body by electrostatic coupling from a 330 kHz pulse oscillator, can be recorded by main and reference electrodes wrapped around the infusion polyvinyl chloride tube. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).
Intelligent Monitoring of Rocket Test Systems
NASA Technical Reports Server (NTRS)
Duran, Esteban; Rocha, Stephanie; Figueroa, Fernando
2016-01-01
Stephanie Rocha is an undergraduate student pursuing a degree in Mechanical Engineering. Esteban Duran is pursuing a degree in Computer Science. Our mentor is Fernando Figueroa. Our project involved developing Intelligent Health Monitoring at the High Pressure Gas Facility (HPGF) utilizing the software GensymG2.
PLANNING STUDY TO MODEL AND MONITOR COAL PILE RUNOFF. PHASE I
The report describes a planning study for predicting and monitoring the hydrologic and chemical characteristics of effluent streams resulting from precipitation impacting on open storage of coal. It includes: a survey of utilities on storage habits and treatment systems for coal ...
NASA Technical Reports Server (NTRS)
Vaisnys, A.
1980-01-01
It is technically feasible to design a satellite communication system to serve the United States electric utility industry's needs relative to load management, real-time operations management, remote meter reading and to determine the costs of various elements of the system. The functions associated with distribution automation and control and communication system requirements are defined. Factors related to formulating viable communication concepts, the relationship of various design factors to utility operating practices, and the results of the cost analysis are discussed The system concept and several ways in which the concept could be integrated into the utility industry are described.
Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael
2012-01-01
The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999
Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael
2012-10-01
The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.
The measurement procedure in the SEMONT monitoring system.
Djuric, Nikola; Kljajic, Dragan; Kasas-Lazetic, Karolina; Bajovic, Vera
2014-03-01
The measurement procedure of the open area in situ electric field strength is presented, acquiring the real field data for testing of the Serbian electromagnetic field monitoring network (SEMONT) and its Internet portal. The SEMONT monitoring system introduces an advanced approach of wireless sensor network utilization for the continuous supervision of overall and cumulative level of electromagnetic field over the observed area. The aim of the SEMONT system is to become a useful tool for the national and municipal agencies for the environmental protection, regarding the electromagnetic pollution monitoring and the exposure assessment of the general population. Considering the public concern on the potentially harmful effects of the long-term exposure to electromagnetic radiation, as well as the public transparency principle that is incorporated into the Serbian law on non-ionizing radiation protection, the SEMONT monitoring system is designed for the long-term continuous monitoring, presenting real-time measurement results, and corresponding exposure assessment over the public Internet network.
Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review
Nunes, Lazaro Alessandro Soares; Mussavira, Sayeeda
2015-01-01
This systematic review presents the latest trends in salivary research and its applications in health and disease. Among the large number of analytes present in saliva, many are affected by diverse physiological and pathological conditions. Further, the non-invasive, easy and cost-effective collection methods prompt an interest in evaluating its diagnostic or prognostic utility. Accumulating data over the past two decades indicates towards the possible utility of saliva to monitor overall health, diagnose and treat various oral or systemic disorders and drug monitoring. Advances in saliva based systems biology has also contributed towards identification of several biomarkers, development of diverse salivary diagnostic kits and other sensitive analytical techniques. However, its utilization should be carefully evaluated in relation to standardization of pre-analytical and analytical variables, such as collection and storage methods, analyte circadian variation, sample recovery, prevention of sample contamination and analytical procedures. In spite of all these challenges, there is an escalating evolution of knowledge with the use of this biological matrix. PMID:26110030
Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhao, T. H.; Yin, Z.; Song, Y. Z.
2012-11-01
The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.
Patient-centered technological assessment and monitoring of depression for low-income patients.
Wu, Shinyi; Vidyanti, Irene; Liu, Pai; Hawkins, Caitlin; Ramirez, Magaly; Guterman, Jeffrey; Gross-Schulman, Sandra; Sklaroff, Laura Myerchin; Ell, Kathleen
2014-01-01
Depression is a significant challenge for ambulatory care because it worsens health status and outcomes, increases health care utilizations and costs, and elevates suicide risk. An automatic telephonic assessment (ATA) system that links with tasks and alerts to providers may improve quality of depression care and increase provider productivity. We used ATA system in a trial to assess and monitor depressive symptoms of 444 safety-net primary care patients with diabetes. We assessed system properties, evaluated preliminary clinical outcomes, and estimated cost savings. The ATA system is feasible, reliable, valid, safe, and likely cost-effective for depression screening and monitoring for low-income primary care population.
Tsui, Fu-Chiang; Espino, Jeremy U; Weng, Yan; Choudary, Arvinder; Su, Hoah-Der; Wagner, Michael M
2005-01-01
The National Retail Data Monitor (NRDM) has monitored over-the-counter (OTC) medication sales in the United States since December 2002. The NRDM collects data from over 18,600 retail stores and processes over 0.6 million sales records per day. This paper describes key architectural features that we have found necessary for a data utility component in a national biosurveillance system. These elements include event-driven architecture to provide analyses of data in near real time, multiple levels of caching to improve query response time, high availability through the use of clustered servers, scalable data storage through the use of storage area networks and a web-service function for interoperation with affiliated systems. The methods and architectural principles are relevant to the design of any production data utility for public health surveillance-systems that collect data from multiple sources in near real time for use by analytic programs and user interfaces that have substantial requirements for time-series data aggregated in multiple dimensions.
NASA Astrophysics Data System (ADS)
Stylianidis, E.; Valaria, E.; Smagas, K.; Pagani, A.; Henriques, J.; Garca, A.; Jimeno, E.; Carrillo, I.; Patias, P.; Georgiadis, C.; Kounoudes, A.; Michail, K.
2016-06-01
There is a continuous and increasing demand for solutions, both software and hardware-based, that are able to productively handle underground utilities geospatial data. Innovative approaches that are based on the use of the European GNSS, Galileo and EGNOS, sensor technologies and LBS, are able to monitor, document and manage utility infrastructures' data with an intuitive 3D augmented visualisation and navigation/positioning technology. A software and hardware-based system called LARA, currently under develop- ment through a H2020 co-funded project, aims at meeting that demand. The concept of LARA is to integrate the different innovative components of existing technologies in order to design and develop an integrated navigation/positioning and information system which coordinates GNSS, AR, 3D GIS and geodatabases on a mobile platform for monitoring, documenting and managing utility infrastruc- tures on-site. The LARA system will guide utility field workers to locate the working area by helping them see beneath the ground, rendering the complexity of the 3D models of the underground grid such as water, gas and electricity. The capacity and benefits of LARA are scheduled to be tested in two case studies located in Greece and the United Kingdom with various underground utilities. The paper aspires to present the first results from this initiative. The project leading to this application has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 641460.
NASA Astrophysics Data System (ADS)
Forcier, Bob
2003-09-01
This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.
Phasor Measurement Unit and Its Application in Modern Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang
2010-06-01
The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topicsmore » touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.« less
Computer systems for automatic earthquake detection
Stewart, S.W.
1974-01-01
U.S Geological Survey seismologists in Menlo park, California, are utilizing the speed, reliability, and efficiency of minicomputers to monitor seismograph stations and to automatically detect earthquakes. An earthquake detection computer system, believed to be the only one of its kind in operation, automatically reports about 90 percent of all local earthquakes recorded by a network of over 100 central California seismograph stations. The system also monitors the stations for signs of malfunction or abnormal operation. Before the automatic system was put in operation, all of the earthquakes recorded had to be detected by manually searching the records, a time-consuming process. With the automatic detection system, the stations are efficiently monitored continuously.
Description and field test of an in situ coliform monitoring system
NASA Technical Reports Server (NTRS)
Grana, D. C.; Wilkins, J. R.
1979-01-01
A prototype in situ system for monitoring the levels of fecal coliforms in shallow water bodies was developed and evaluated. This system was based on the known relationship between the concentration of the coliform bacteria and the amount of hydrogen they produce during growth in a complex organic media. The prototype system consists of a sampler platform, which sits on the bottom; a surface buoy, which transmits sampler-generated data; and a shore station, which receives, displays the data, and controls the sampler. The concept of remote monitoring of fecal coliform concentrations by utilizing a system based on the electrochemical method was verified during the evaluation of the prototype.
Study on an agricultural environment monitoring server system using Wireless Sensor Networks.
Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun
2010-01-01
This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monsabert, S. de; Lemmer, H.; Dinwiddie, D.
1995-10-01
In the past, most buildings, structures, and ship visits were not metered, and flat estimates were calculated based on various estimating techniques. The decomposition process was further complicated by the fact that many of the meters monitor consumption values only and do not provide demand or time of use data. This method of billing provides no incentives to the PWC customers to implement energy conservation programs, including load shedding, Energy Monitoring and Control Systems (EMCS), building shell improvements, low flow toilets and shower heads, efficient lighting systems, or other energy savings alternatives. Similarly, the method had no means of adjustmentmore » for seasonal or climatic variations outside of the norm. As an alternative to flat estimates, the Customized Utility Billing Integrated Control (CUBIC) system and the Graphical Data Input System (GDIS) were developed to better manage the data to the major claimant area users based on utilities usage factors, building size, weather data, and hours of operation. GDIS is a graphical database that assists PWC engineers in the development and maintenance of single-line utility diagrams of the facilities and meters. It functions as a drawing associate system and is written in AutoLISP for AutoCAD version 12. GDIS interprets the drawings and provides the facility-to-meter and meter-to-meter hierarchy data that are used by the CUBIC to allocate the billings. This paper reviews the design, development and implementation aspects of CUBIC/GDIS and discusses the benefits of this improved utilities management system.« less
Using SFOC to fly the Magellan Venus mapping mission
NASA Technical Reports Server (NTRS)
Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.
1993-01-01
Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.
Opportunistic Computing with Lobster: Lessons Learned from Scaling up to 25k Non-Dedicated Cores
NASA Astrophysics Data System (ADS)
Wolf, Matthias; Woodard, Anna; Li, Wenzhao; Hurtado Anampa, Kenyi; Yannakopoulos, Anna; Tovar, Benjamin; Donnelly, Patrick; Brenner, Paul; Lannon, Kevin; Hildreth, Mike; Thain, Douglas
2017-10-01
We previously described Lobster, a workflow management tool for exploiting volatile opportunistic computing resources for computation in HEP. We will discuss the various challenges that have been encountered while scaling up the simultaneous CPU core utilization and the software improvements required to overcome these challenges. Categories: Workflows can now be divided into categories based on their required system resources. This allows the batch queueing system to optimize assignment of tasks to nodes with the appropriate capabilities. Within each category, limits can be specified for the number of running jobs to regulate the utilization of communication bandwidth. System resource specifications for a task category can now be modified while a project is running, avoiding the need to restart the project if resource requirements differ from the initial estimates. Lobster now implements time limits on each task category to voluntarily terminate tasks. This allows partially completed work to be recovered. Workflow dependency specification: One workflow often requires data from other workflows as input. Rather than waiting for earlier workflows to be completed before beginning later ones, Lobster now allows dependent tasks to begin as soon as sufficient input data has accumulated. Resource monitoring: Lobster utilizes a new capability in Work Queue to monitor the system resources each task requires in order to identify bottlenecks and optimally assign tasks. The capability of the Lobster opportunistic workflow management system for HEP computation has been significantly increased. We have demonstrated efficient utilization of 25 000 non-dedicated cores and achieved a data input rate of 30 Gb/s and an output rate of 500GB/h. This has required new capabilities in task categorization, workflow dependency specification, and resource monitoring.
Towards Actionable Waterborne and Vector-borne Disease Forecasts
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.
2015-12-01
Numerous studies have shown that remote sensing (RS) and Earth System Models (ESM) can make important contributions to the analysis, monitoring and prediction of waterborne and vector-borne illnesses. Unsurprisingly, however, the great majority of these studies have been proof-of-concept investigations, and vanishingly few have been translated into operational and utilized disease early warning systems. To some extent this is simply an example of the general challenge of translating research findings into decision-relevant operations. Disease early warning, however, entails specific challenges that distinguish it from many other fields of environmental monitoring and prediction. Some of these challenges stem from predictability and data constraints, while others relate to the difficulty of communicating predictions and the particularly high price of false alarms. This presentation will review progress on the translation of analysis to decision making, identify avenues for enhancing forecast utility, and propose priorities for future RS and ESM investments in disease monitoring and prediction.
Overload protection system for power inverter
NASA Technical Reports Server (NTRS)
Nagano, S. (Inventor)
1977-01-01
An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.
An MFC-Based Online Monitoring and Alert System for Activated Sludge Process
Xu, Gui-Hua; Wang, Yun-Kun; Sheng, Guo-Ping; Mu, Yang; Yu, Han-Qing
2014-01-01
In this study, based on a simple, compact and submersible microbial fuel cell (MFC), a novel online monitoring and alert system with self-diagnosis function was established for the activated sludge (AS) process. Such a submersible MFC utilized organic substrates and oxygen in the AS reactor as the electron donor and acceptor respectively, and could provide an evaluation on the status of the AS reactor and thus give a reliable early warning of potential risks. In order to evaluate the reliability and sensitivity of this online monitoring and alert system, a series of tests were conducted to examine the response of this system to various shocks imposed on the AS reactor. The results indicate that this online monitoring and alert system was highly sensitive to the performance variations of the AS reactor. The stability, sensitivity and repeatability of this online system provide feasibility of being incorporated into current control systems of wastewater treatment plants to real-time monitor, diagnose, alert and control the AS process. PMID:25345502
GPS/GIS technology in range cattle management
USDA-ARS?s Scientific Manuscript database
Animal dominated landscapes are dynamic and not fully understood. Electronics were first employed in the mid-1970’s to monitor free-ranging cattle behavior and its impact on forage utilization. By the mid-90’s satellite positioning systems were being used to monitor wildlife and had all but remove...
Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle
USDA-ARS?s Scientific Manuscript database
Methods to estimate intake in grazing livestock include using markers, visual observation, mechanical sensors that respond to jaw movement and acoustic recording. In most of the acoustic monitoring studies, the microphone is inverted on the forehead of the grazing livestock and the skull is utilize...
Use of electronic monitoring in clinical nursing research.
Ailinger, Rita L; Black, Patricia L; Lima-Garcia, Natalie
2008-05-01
In the past decade, the introduction of electronic monitoring systems for monitoring medication adherence has contributed to the dialog about what works and what does not work in monitoring adherence. The purpose of this article is to describe the use of the Medication Event Monitoring System (MEMS) in a study of patients receiving isoniazid for latent tuberculosis infection. Three case examples from the study illustrate the data that are obtained from the electronic device compared to self-reports and point to the disparities that may occur in electronic monitoring. The strengths and limitations of using the MEMS and ethical issues in utilizing this technology are discussed. Nurses need to be aware of these challenges when using electronic measuring devices to monitor medication adherence in clinical nursing practice and research.
NASA Technical Reports Server (NTRS)
Steffen, Dale A. (Inventor); Sturm, Ronald E. (Inventor); Rinard, George A. (Inventor)
1981-01-01
A system is disclosed for monitoring vital physiological signs. Each of the system components utilizes a single hybrid circuit with each component having high accuracy without the necessity of repeated calibration. The system also has low power requirements, provides a digital display, and is of sufficiently small size to be incorporated into a hand-carried case for portable use. Components of the system may also provide independent outputs making the component useful, of itself, for monitoring one or more vital signs. The overall system preferably includes an ECG amplifier and cardiotachometer signal conditioner unit, an impedance pneumograph and respiration rate signal conditioner unit, a heart/breath rate processor unit, a temperature monitoring unit, a selector switch, a clock unit, and an LCD driver unit and associated LCDs, with the system being capable of being expanded as needed or desired, such as, for example, by addition of a systolic/diastolic blood pressure unit.
Consulting report on the NASA technology utilization network system
NASA Technical Reports Server (NTRS)
Hlava, Marjorie M. K.
1992-01-01
The purposes of this consulting effort are: (1) to evaluate the existing management and production procedures and workflow as they each relate to the successful development, utilization, and implementation of the NASA Technology Utilization Network System (TUNS) database; (2) to identify, as requested by the NASA Project Monitor, the strengths, weaknesses, areas of bottlenecking, and previously unaddressed problem areas affecting TUNS; (3) to recommend changes or modifications of existing procedures as necessary in order to effect corrections for the overall benefit of NASA TUNS database production, implementation, and utilization; and (4) to recommend the addition of alternative procedures, routines, and activities that will consolidate and facilitate the production, implementation, and utilization of the NASA TUNS database.
A new infusion pathway monitoring system utilizing electrostatic induced potential.
Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Alien W; Caldwell, W Morton
2006-01-01
We have developed a new infusion pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer. The system is available for hospital and home use and it constantly monitors the intactness of the pathway. The sensor is an electro-conductive polymer electrode wrapped around the infusion polyvinyl chloride infusion tube. This records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltage and alerts the nursing station, via the nurse call system or PHS (personal handy phone System).
Fabric-based integrated energy devices for wearable activity monitors.
Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong
2014-09-01
A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.; Aizzuddin, A. M.
2017-10-01
Fibre Bragg Grating (FBG) sensors have been widely utilized in the structural health monitoring (SHM) of structures. However, one of the main challenges of FBGs is the existence of inconsistency in output voltage during wavelength intensity demodulation utilizing photodetector (PD) to convert the light signal into digital voltage readings. Thus, the designation of this experimental work is to develop a robust FBG real-time monitoring system with the benefit of MATLAB graphical user interface (GUI) and voltage normalization algorithm to scale down the voltage inconsistency. Low-cost edge filter interrogation system has been practiced in the experimentation and splitter optical component is make use to reduce the intensity of the high power light source that leads to the formation of noise due to unwanted reflected wavelengths. The results revealed that with the advancement of the proposed monitoring system, the sensitivity of the FBG has been increased from 2.4 mV/N to 3.8 mV/N across the range of 50 N. The redundancy in output voltage variation data points has been reduced from 26 data/minute to 17 data/minute. The accuracy of the FBG in detecting the load induced falls in the acceptable range of total average error which is 1.38 %.
VAXCMS - VAX CONTINUOUS MONITORING SYSTEM, VERSION 2.2
NASA Technical Reports Server (NTRS)
Farkas, L.
1994-01-01
The VAX Continuous Monitoring System (VAXCMS) was developed at NASA Headquarters to aid system managers in monitoring the performance of VAX systems through the generation of graphic images which summarize trends in performance metrics over time. Since its initial development, VAXCMS has been extensively modified at the NASA Lewis Research Center. Data is produced by utilizing the VMS MONITOR utility to collect the performance data, and then feeding the data through custom-developed linkages to the Computer Associates' TELL-A-GRAF computer graphics software to generate the chart images for analysis by the system manager. The VMS ACCOUNTING utility is also utilized to gather interactive process information. The charts that are generated by VAXCMS are: 1) CPU modes for each node over the most recent four month period 2) CPU modes for the cluster as a whole using a weighted average of all the nodes in the cluster based on processing power 3) Percent of primary memory in use for each node over the most recent four month period 4) Interactive processes for all nodes over the most recent four month period 5) Daily, weekly, and monthly, performance summaries for CPU modes, percent of primary memory in use, and page fault rates for each node 6) Daily disk I/O performance data plotting Average Disk I/O Response Time based on I/O Operation Rate and Queue Length. VAXCMS is written in DCL and VAX FORTRAN for use with DEC VAX series computers running VMS 5.1 or later. This program requires the TELL-A-GRAF graphics package in order to generate plots of system data. A FORTRAN compiler is required. The standard distribution medium for VAXCMS is a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. An electronic copy of the documentation in ASCII format is included on the distribution medium. Portions of this code are copyrighted by Mr. David Lavery and are distributed with his permission. These portions of the code may not be redistributed commercially.
Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor
NASA Astrophysics Data System (ADS)
Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.
2016-10-01
Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.
OVERSEER: An Expert System Monitor for the Psychiatric Hospital
Bronzino, Joseph D.; Morelli, Ralph A.; Goethe, John W.
1988-01-01
In order to improve patient care, comply with regulatory guidelines and decrease potential liability, psychiatric hospitals and clinics have been searching for computer systems to monitor the management and treatment of patients. This paper describes OVERSEER: a knowledge based system that monitors the treatment of psychiatric patients in real time. Based on procedures and protocols developed in the psychiatric setting, OVERSEER monitors the clinical database and issues alerts when standard clinical practices are not followed or when laboratory results or other clinical indicators are abnormal. Written in PROLOG, OVERSEER is designed to interface directly with the hospital's database, and, thereby utilizes all available pharmacy and laboratory data. Moreover, unlike the interactive expert systems developed for the psychiatric clinic, OVERSEER does not require extensive data entry by the clinician. Consequently, the chief benefit of OVERSEER's monitoring approach is the unobtrusive manner in which it evaluates treatment and patient responses and provides information regarding patient management.
Patient-Centered Technological Assessment and Monitoring of Depression for Low-Income Patients
Wu, Shinyi; Vidyanti, Irene; Liu, Pai; Hawkins, Caitlin; Ramirez, Magaly; Guterman, Jeffrey; Gross-Schulman, Sandra; Sklaroff, Laura Myerchin; Ell, Kathleen
2014-01-01
Depression is a significant challenge for ambulatory care because it worsens health status and outcomes, increases health care utilizations and costs, and elevates suicide risk. An automatic telephonic assessment (ATA) system that links with tasks and alerts to providers may improve quality of depression care and increase provider productivity. We used ATA system in a trial to assess and monitor depressive symptoms of 444 safety-net primary care patients with diabetes. We assessed system properties, evaluated preliminary clinical outcomes, and estimated cost savings. The ATA system is feasible, reliable, valid, safe, and likely cost-effective for depression screening and monitoring for low-income primary care population. PMID:24525531
NASA Technical Reports Server (NTRS)
Beckham, W. S., Jr.; Keune, F. A.
1974-01-01
The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.
NASA Astrophysics Data System (ADS)
Calderone, G. M.
2006-12-01
A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.
Landolina, Maurizio; Marzegalli, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Guenzati, Giuseppe; Curnis, Antonio; Valsecchi, Sergio; Borghetti, Francesca; Borghi, Gabriella; Masella, Cristina
2013-01-01
Background Heart failure patients with implantable defibrillators place a significant burden on health care systems. Remote monitoring allows assessment of device function and heart failure parameters, and may represent a safe, effective, and cost-saving method compared to conventional in-office follow-up. Objective We hypothesized that remote device monitoring represents a cost-effective approach. This paper summarizes the economic evaluation of the Evolution of Management Strategies of Heart Failure Patients With Implantable Defibrillators (EVOLVO) study, a multicenter clinical trial aimed at measuring the benefits of remote monitoring for heart failure patients with implantable defibrillators. Methods Two hundred patients implanted with a wireless transmission–enabled implantable defibrillator were randomized to receive either remote monitoring or the conventional method of in-person evaluations. Patients were followed for 16 months with a protocol of scheduled in-office and remote follow-ups. The economic evaluation of the intervention was conducted from the perspectives of the health care system and the patient. A cost-utility analysis was performed to measure whether the intervention was cost-effective in terms of cost per quality-adjusted life year (QALY) gained. Results Overall, remote monitoring did not show significant annual cost savings for the health care system (€1962.78 versus €2130.01; P=.80). There was a significant reduction of the annual cost for the patients in the remote arm in comparison to the standard arm (€291.36 versus €381.34; P=.01). Cost-utility analysis was performed for 180 patients for whom QALYs were available. The patients in the remote arm gained 0.065 QALYs more than those in the standard arm over 16 months, with a cost savings of €888.10 per patient. Results from the cost-utility analysis of the EVOLVO study show that remote monitoring is a cost-effective and dominant solution. Conclusions Remote management of heart failure patients with implantable defibrillators appears to be cost-effective compared to the conventional method of in-person evaluations. Trial Registration ClinicalTrials.gov NCT00873899; http://clinicaltrials.gov/show/NCT00873899 (Archived by WebCite at http://www.webcitation.org/6H0BOA29f). PMID:23722666
High sensitivity real-time NVR monitor
NASA Technical Reports Server (NTRS)
Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)
1997-01-01
A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.
NASA Technical Reports Server (NTRS)
1993-01-01
Diagnostic Ultrasound Corporation's Bladder Scan Monitor continuously records and monitors bladder fullness and alerts the wearer or caretaker when voiding is required. The sensor is held against the lower abdomen by a belt and connected to the monitor by a cable. The sensor obtains bladder volume data from sound waves reflecting off the bladder wall. The device was developed by Langley Research Center, the Ames Research Center and the NASA Technology Applications Team. It utilizes Langley's advanced ultrasound technology. It is licensed to the ARC for medical applications, and sublicensed to Diagnostics Ultrasound. Central monitoring systems are planned for the future.
Formation Flying for Satellites and UAVs
NASA Technical Reports Server (NTRS)
Merrill, Garrick; Becker, Chris
2015-01-01
A formation monitoring and control system was developed utilizing mesh networking and decentralized control. Highlights of this system include low latency, seamless addition and removal of vehicles, network relay functionality, and the ability to run on a variety of hardware.
Energy Power Research Institute Shows Benefits of Grid-Connected Devices at
product availability. With real-time status monitoring of the connected devices, a utility system could be devices, this approach can provide grid operators or other load management systems with real-time measure
Long‐Term Monitoring of a Geosynthetic Reinforced Soil Integrated Bridge System (GRS‐IBS)
DOT National Transportation Integrated Search
2017-11-01
The geosynthetic reinforced soil integrated bridge system (GRS-IBS) is an innovative alternative to conventional bridge technology that utilizes closely spaced layers of geosynthetic reinforcement and compacted granular fill material to provide direc...
McGrath, Susan P; Pyke, Joshua; Taenzer, Andreas H
2017-06-01
Technology advances make it possible to consider continuous acoustic respiratory rate monitoring as an integral component of physiologic surveillance systems. This study explores technical and logistical aspects of augmenting pulse oximetry-based patient surveillance systems with continuous respiratory rate monitoring and offers some insight into the impact on patient deterioration detection that may result. Acoustic respiratory rate sensors were introduced to a general care pulse oximetry-based surveillance system with respiratory rate alarms deactivated. Simulation was used after 4324 patient days to determine appropriate alarm thresholds for respiratory rate, which were then activated. Data were collected for an additional 4382 patient days. Physiologic parameters, alarm data, sensor utilization and patient/staff feedback were collected throughout the study and analyzed. No notable technical or workflow issues were observed. Sensor utilization was 57 %, with patient refusal leading reasons for nonuse (22.7 %). With respiratory rate alarm thresholds set to 6 and 40 breaths/min., the majority of nurse pager clinical notifications were triggered by low oxygen saturation values (43 %), followed by low respiratory rate values (21 %) and low pulse rate values (13 %). Mean respiratory rate collected was 16.6 ± 3.8 breaths/min. The vast majority (82 %) of low oxygen saturation states coincided with normal respiration rates of 12-20 breaths/min. Continuous respiratory rate monitoring can be successfully added to a pulse oximetry-based surveillance system without significant technical, logistical or workflow issues and is moderately well-tolerated by patients. Respiratory rate sensor alarms did not significantly impact overall system alarm burden. Respiratory rate and oxygen saturation distributions suggest adding continuous respiratory rate monitoring to a pulse oximetry-based surveillance system may not significantly improve patient deterioration detection.
The NASA Carbon Monitoring System
NASA Astrophysics Data System (ADS)
Hurtt, G. C.
2015-12-01
Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder engagement, 6) partnerships with other U.S. agencies and international partners, and 7) modeling and data assimilation.
An orange fluorescent protein tagging system for real-time pollen tracking.
Rice, J Hollis; Millwood, Reginald J; Mundell, Richard E; Chambers, Orlando D; Abercrombie, Laura L; Davies, H Maelor; Stewart, C Neal
2013-09-27
Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum × Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification. We report the generation of a pollen tagging system utilizing an orange fluorescent protein to monitor pollen flow and as a visual assessment of transgene zygosity of the parent plant. This system was created to generate a tagged Nicotiana hybrid that could be used for the incidence of gene flow. Nicotiana tabacum 'TN 90' and Nicotiana glauca were successfully transformed via Agrobacterium tumefaciens to express the orange fluorescent protein gene, tdTomato-ER, in pollen and a green fluorescent protein gene, mgfp5-er, was expressed in vegetative structures of the plant. Hybrids were created that utilized the fluorescent proteins as a research tool for monitoring pollen movement and gene flow. Manual greenhouse crosses were used to assess hybrid sexual compatibility with N. tabacum, resulting in seed formation from hybrid pollination in 2% of crosses, which yielded non-viable seed. Pollen transfer to the hybrid formed seed in 19% of crosses and 10 out of 12 viable progeny showed GFP expression. The orange fluorescent protein is visible when expressed in the pollen of N. glauca, N. tabacum, and the Nicotiana hybrid, although hybrid pollen did not appear as bright as the parent lines. The hybrid plants, which show limited ability to outcross, could provide bioconfinement with the benefit of detectable pollen using this system. Fluorescent protein-tagging could be a valuable tool for breeding and in vivo ecological monitoring.
Configurable technology development for reusable control and monitor ground systems
NASA Technical Reports Server (NTRS)
Uhrlaub, David R.
1994-01-01
The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.
Link Performance Analysis and monitoring - A unified approach to divergent requirements
NASA Astrophysics Data System (ADS)
Thom, G. A.
Link Performance Analysis and real-time monitoring are generally covered by a wide range of equipment. Bit Error Rate testers provide digital link performance measurements but are not useful during real-time data flows. Real-time performance monitors utilize the fixed overhead content but vary widely from format to format. Link quality information is also present from signal reconstruction equipment in the form of receiver AGC, bit synchronizer AGC, and bit synchronizer soft decision level outputs, but no general approach to utilizing this information exists. This paper presents an approach to link tests, real-time data quality monitoring, and results presentation that utilizes a set of general purpose modules in a flexible architectural environment. The system operates over a wide range of bit rates (up to 150 Mbs) and employs several measurement techniques, including P/N code errors or fixed PCM format errors, derived real-time BER from frame sync errors, and Data Quality Analysis derived by counting significant sync status changes. The architecture performs with a minimum of elements in place to permit a phased update of the user's unit in accordance with his needs.
NASA Astrophysics Data System (ADS)
Ganguli, Anurag; Saha, Bhaskar; Raghavan, Ajay; Kiesel, Peter; Arakaki, Kyle; Schuh, Andreas; Schwartz, Julian; Hegyi, Alex; Sommer, Lars Wilko; Lochbaum, Alexander; Sahu, Saroj; Alamgir, Mohamed
2017-02-01
A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic (FO) sensors. High-performance large-format pouch cells with embedded FO sensors were fabricated. This second part of the paper focuses on the internal signals obtained from these FO sensors. The details of the method to isolate intercalation strain and temperature signals are discussed. Data collected under various xEV operational conditions are presented. An algorithm employing dynamic time warping and Kalman filtering was used to estimate state-of-charge with high accuracy from these internal FO signals. Their utility for high-accuracy, predictive state-of-health estimation is also explored.
Concurrent planning and execution for a walking robot
NASA Astrophysics Data System (ADS)
Simmons, Reid
1990-07-01
The Planetary Rover project is developing the Ambler, a novel legged robot, and an autonomous software system for walking the Ambler over rough terrain. As part of the project, we have developed a system that integrates perception, planning, and real-time control to navigate a single leg of the robot through complex obstacle courses. The system is integrated using the Task Control Architecture (TCA), a general-purpose set of utilities for building and controlling distributed mobile robot systems. The walking system, as originally implemented, utilized a sequential sense-plan-act control cycle. This report describes efforts to improve the performance of the system by concurrently planning and executing steps. Concurrency was achieved by modifying the existing sequential system to utilize TCA features such as resource management, monitors, temporal constraints, and hierarchical task trees. Performance was increased in excess of 30 percent with only a relatively modest effort to convert and test the system. The results lend support to the utility of using TCA to develop complex mobile robot systems.
NASA Astrophysics Data System (ADS)
Sujan, Achintya; Yang, Hongyun; Dimick, Paul; Tatarchuk, Bruce J.
2016-05-01
An in-situ fiber optic based technique for direct measurement of capacity utilization of ZnO adsorbent beds by monitoring bed color changes during desulfurization for fuel cell systems is presented. Adsorbents composed of bulk metal oxides (ZnO) and supported metal oxides (ZnO/SiO2 and Cusbnd ZnO/SiO2) for H2S removal at 22 °C are examined. Adsorbent bed utilization at breakthrough is determined by the optical sensor as the maximum derivative of area under UV-vis spectrum from 250 to 800 nm observed as a function of service time. Since the response time of the sensor due to bed color change is close to bed breakthrough time, a series of probes along the bed predicts utilization of the portion of bed prior to H2S breakthrough. The efficacy of the optical sensor is evaluated as a function of inlet H2S concentration, H2S flow rate and desulfurization in presence of CO, CO2 and moisture in feed. A 6 mm optical probe is employed to measure utilization of a 3/16 inch ZnO extrudate bed for H2S removal. It is envisioned that with the application of the optical sensor, desulfurization can be carried out at high adsorbent utilization and low operational costs during on-board miniaturized fuel processing for logistic fuel cell power systems.
NASA Astrophysics Data System (ADS)
Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao
2015-11-01
For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.
Experience with an integrated control and monitoring system at the El Segundo generating station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papilla, R.P.; McKinley, J.H.; Blanco, M.A.
1992-01-01
This paper describes the EPRI/Southern California Edison (SCE) El Segundo Integrated Control and Monitoring System (ICMS) project and relates key project experiences. The ICMS project is a cost-shared effort between EPRI and SCE designed to address the issues involved with integrating power plant diagnostic and condition monitoring with control. A digital distributed control system retrofit for SCE's El Segundo Units 3 and 4 provided the case study. although many utilities have retrofitted power plant units with distributed control systems (DCS's) and have applied diagnostics and monitoring programs to improve operations and performance, the approach taken in this project, that is,more » integrating the monitoring function with the control function, is profoundly new and unique. Over the life of the El Segundo ICMS, SCE expects to realize savings form life optimization, increased operating flexibility, improved heat rate, reduced NO{sub x} emissions, and lower maintenance costs. These savings are expected to be significant over the life of the system.« less
Ground-source heat pump case studies and utility programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.J.; Boyd, T.L.; Rogers, R.L.
1995-04-01
Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The casemore » studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.« less
A data protection scheme for a remote vital signs monitoring healthcare service.
Gritzalis, D; Lambrinoudakis, C
2000-01-01
Personal and medical data processed by Healthcare Information Systems must be protected against unauthorized access, modification and withholding. Security measures should be selected to provide the required level of protection in a cost-efficient manner. This is only feasible if specific characteristics of the information system are examined on a basis of a risk analysis methodology. This paper presents the results of a risk analysis, based on the CRAMM methodology, for a healthcare organization offering a patient home-monitoring service through the transmission of vital signs, focusing on the identified security needs and the proposed countermeasures. The architectural and functional models of this service were utilized for identifying and valuating the system assets, the associated threats and vulnerabilities, as well as for assessing the impact on the patients and on the service provider, should the security of any of these assets is affected. A set of adequate organizational, administrative and technical countermeasures is described for the remote vital signs monitoring service, thus providing the healthcare organization with a data protection framework that can be utilized for the development of its own security plan.
Tsui, Fu-Chiang; Espino, Jeremy U.; Weng, Yan; Choudary, Arvinder; Su, Hoah-Der; Wagner, Michael M.
2005-01-01
The National Retail Data Monitor (NRDM) has monitored over-the-counter (OTC) medication sales in the United States since December 2002. The NRDM collects data from over 18,600 retail stores and processes over 0.6 million sales records per day. This paper describes key architectural features that we have found necessary for a data utility component in a national biosurveillance system. These elements include event-driven architecture to provide analyses of data in near real time, multiple levels of caching to improve query response time, high availability through the use of clustered servers, scalable data storage through the use of storage area networks and a web-service function for interoperation with affiliated systems. The methods and architectural principles are relevant to the design of any production data utility for public health surveillance—systems that collect data from multiple sources in near real time for use by analytic programs and user interfaces that have substantial requirements for time-series data aggregated in multiple dimensions. PMID:16779138
Li, Jia; Zhou, Quan; Xu, Zhenming
2014-12-01
Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.
2018-03-01
Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.
NASA Technical Reports Server (NTRS)
Patrick, M. Clinton; Cooper, Anita E.; Powers, W. T.
2004-01-01
Researchers are working on many konts to make possible high speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flow fields/plumes; the Optical Plume Anomaly Detection (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDIFIS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Additionally, efforts are being advanced to hardware encode components of the EDIFIS in order to address real-time operational requirements for health monitoring and management. This paper addresses the OPAD with its tool suite, and discusses what is considered a natural progression: a concept for migrating OPAD towards detection of high energy particles, including neutrons and gamma rays. The integration of these tools and capabilities will provide NASA with a systematic approach to monitor space vehicle internal and external environment.
An ethernet/IP security review with intrusion detection applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughter, S. A.; Williams, R. D.
2006-07-01
Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IPmore » networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)« less
NASA Astrophysics Data System (ADS)
Kushina, Mark E.; Heberle, Geoff; Hope, Michael; Hall, David; Bethel, Michael; Calmes, Lonnie K.
2003-06-01
The ALMDS (Airborne Laser Mine Detection System) has been developed utilizing a solid-state laser operating at 532nm for naval mine detection. The laser system is integrated into a pod that mounts externally on a helicopter. This laser, along with other receiver systems, enables detailed underwater bathymetry. CEO designs and manufactures the laser portion of this system. Arete Associates integrates the laser system into the complete LIDAR package that utilizes sophisticated streak tube detection technology. Northrop Grumman is responsible for final pod integration. The laser sub-system is comprised of two separate parts: the LTU (Laser Transmitter Unit) and the LEU (Laser Electronics Unit). The LTU and LEU are undergoing MIL-STD-810 testing for vibration, shock, temperature storage and operation extremes, as well as MIL-STD-704E electrical power testing and MIL-STD-461E EMI testing. The Nd:YAG MOPA laser operates at 350 Hz pulse repetition frequency at 45 Watts average 532nm power and is controlled at the system level from within the helicopter. Power monitor circuits allow real time laser health monitoring, which enables input parameter adjustments for consistent laser behavior.
Design of power cable grounding wire anti-theft monitoring system
NASA Astrophysics Data System (ADS)
An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang
2018-01-01
In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.
Interoperability and security in wireless body area network infrastructures.
Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil
2005-01-01
Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.
Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano
NASA Astrophysics Data System (ADS)
Evita, Maria; Djamal, Mitra; Zimanowski, Bernd; Schilling, Klaus
2017-01-01
Volcano monitoring requires the system which has high-fidelity operation and real-time acquisition. MONICA (Mobile Monitoring System for Indonesian Volcano), a system based on Wireless Sensor Network, mobile robot and satellite technology has been proposed to fulfill this requirement for volcano monitoring system in Indonesia. This system consists of fixed-mode for normal condition and mobile mode for emergency situation. The first and second modes have been simulated in slow motion earthquake cases of Merapi Volcano, Indonesia. In this research, we have investigated the application of our bandwidth management for high-fidelity operation and real time acquisition in mobile mode of a strong motion earthquake from this volcano. The simulation result showed that our system still could manage the bandwidth even when there were 2 died fixed node after had stroked by the lightning. This result (64% to 83% throughput in average) was still better than the bandwidth utilized by the existing equipment (0% throughput because of the broken seismometer).
Vibration monitoring via nano-composite piezoelectric foam bushings
NASA Astrophysics Data System (ADS)
Bird, Evan T.; Merrell, A. Jake; Anderson, Brady K.; Newton, Cory N.; Rosquist, Parker G.; Fullwood, David T.; Bowden, Anton E.; Seeley, Matthew K.
2016-11-01
Most mechanical systems produce vibrations as an inherent side effect of operation. Though some vibrations are acceptable in operation, others can cause damage or signal a machine’s imminent failure. These vibrations would optimally be monitored in real-time, without human supervision to prevent failure and excessive wear in machinery. This paper explores a new alternative to currently-used machine-monitoring equipment, namely a piezoelectric foam sensor system. These sensors are made of a silicone-based foam embedded with nano- and micro-scale conductive particles. Upon impact, they emit an electric response that is directly correlated with impact energy, with no electrical power input. In the present work, we investigated their utility as self-sensing bushings on machinery. These sensors were found to accurately detect both the amplitude and frequency of typical machine vibrations. The bushings could potentially save time and money over other vibration sensing mechanisms, while simultaneously providing a potential control input that could be utilized for correcting vibrational imbalance.
Mobile messaging services-based personal electrocardiogram monitoring system.
Tahat, Ashraf A
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.
Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System
Tahat, Ashraf A.
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services. PMID:19707531
Rapid underway profiling of water quality in Queensland estuaries.
Hodge, Jonathan; Longstaff, Ben; Steven, Andy; Thornton, Phillip; Ellis, Peter; McKelvie, Ian
2005-01-01
We present an overview of a portable underway water quality monitoring system (RUM-Rapid Underway Monitoring), developed by integrating several off-the-shelf water quality instruments to provide rapid, comprehensive, and spatially referenced 'snapshots' of water quality conditions. We demonstrate the utility of the system from studies in the Northern Great Barrier Reef (Daintree River) and the Moreton Bay region. The Brisbane dataset highlights RUM's utility in characterising plumes as well as its ability to identify the smaller scale structure of large areas. RUM is shown to be particularly useful when measuring indicators with large small-scale variability such as turbidity and chlorophyll-a. Additionally, the Daintree dataset shows the ability to integrate other technologies, resulting in a more comprehensive analysis, whilst sampling offshore highlights some of the analytical issues required for sampling low concentration data. RUM is a low cost, highly flexible solution that can be modified for use in any water type, on most vessels and is only limited by the available monitoring technologies.
Environmental auditing: Capabilities and management utility of recreation impact monitoring programs
Marion, J.L.
1995-01-01
A recreation impact monitoring system was developed and applied in 1984?1986 and in 1991 to all backcountry river-accessed campsites within Delaware Water Gap National Recreation Area, Pennsylvania and New Jersey. Results suggest that actions implemented by park managers in response to problems identified by the initial survey were highly effective in reducing resource degradation caused by camping. In particular, the elimination of some designated campsites and installation of anchored firegrates reduced the total area of disturbance by 50%. Firegrate installation provided a focal point that increased the concentration of camping activities, allowing peripheral areas to recover. As suggested by predictive models, additional resource degradation caused by increased camping intensities is more than offset by improvements in the condition of areas where use is eliminated. The capabilities and management utility of recreation impact monitoring programs, illustrated by the Delaware Water Gap monitoring program, are also presented and discussed.
Kario, Kazuomi; Tomitani, Naoko; Kanegae, Hiroshi; Yasui, Nobuhiko; Nishizawa, Masafumi; Fujiwara, Takeshi; Shigezumi, Takeya; Nagai, Ryozo; Harada, Hiroshi
We have developed a multisensor home and ambulatory blood pressure (BP) monitoring system for monitoring 24-h central and brachial BP variability concurrent with physical activity (PA), temperature, and atmospheric pressure. The new BP monitoring system utilizes our recently developed biological and environmental signal monitoring Information Communication Technology/Internet of Things system, which can simultaneously monitor the environment (temperature, illumination, etc.) of different rooms in a house (entryway, bedroom, living room, bathing room, and toilet), and a wrist-type high-sensitivity actigraph for identifying the location of patients. By collecting both data on BP and environmental parameters, the system can assess the brachial and central hemodynamic BP reactivity profiles of patients, such as actisensitivity (BP change with PA), thermosensitivity (with temperature), and atmospheric sensitivity (with atmospheric pressure). We used this new system to monitor ambulatory BP variability in outpatients with one or more cardiovascular disease (CVD) risk factors both in summer and winter. Actisensitivity (the slope of the regression line of ambulatory BP against the log-physical activity) was higher in winter than summer. By multi-level analysis using the parameters monitored by this system, we estimated the ambulatory BPs under different conditions. The individual time-series big data collected by this system will contribute to anticipation medicine for CVD. Copyright © 2017 Elsevier Inc. All rights reserved.
Yu, Yang; Niederleithinger, Ernst; Li, Jianchun; Wiggenhauser, Herbert
2017-01-01
This paper presents a novel non-destructive testing and health monitoring system using a network of tactile transducers and accelerometers for the condition assessment and damage classification of foundation piles and utility poles. While in traditional pile integrity testing an impact hammer with broadband frequency excitation is typically used, the proposed testing system utilizes an innovative excitation system based on a network of tactile transducers to induce controlled narrow-band frequency stress waves. Thereby, the simultaneous excitation of multiple stress wave types and modes is avoided (or at least reduced), and targeted wave forms can be generated. The new testing system enables the testing and monitoring of foundation piles and utility poles where the top is inaccessible, making the new testing system suitable, for example, for the condition assessment of pile structures with obstructed heads and of poles with live wires. For system validation, the new system was experimentally tested on nine timber and concrete poles that were inflicted with several types of damage. The tactile transducers were excited with continuous sine wave signals of 1 kHz frequency. Support vector machines were employed together with advanced signal processing algorithms to distinguish recorded stress wave signals from pole structures with different types of damage. The results show that using fast Fourier transform signals, combined with principal component analysis as the input feature vector for support vector machine (SVM) classifiers with different kernel functions, can achieve damage classification with accuracies of 92.5% ± 7.5%. PMID:29258274
Monitoring apparatus and method for battery power supply
Martin, Harry L.; Goodson, Raymond E.
1983-01-01
A monitoring apparatus and method are disclosed for monitoring and/or indicating energy that a battery power source has then remaining and/or can deliver for utilization purposes as, for example, to an electric vehicle. A battery mathematical model forms the basis for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters. The predicted capacity is used to provide a state-of-charge indication. Self-calibration over the life of the battery power supply is enacted through use of a feedback voltage based upon the difference between predicted and measured voltages to correct the battery mathematical model. Through use of a microprocessor with central information storage of temperature, current and voltage, system behavior is monitored, and system flexibility is enhanced.
NASA Astrophysics Data System (ADS)
Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.
2016-01-01
With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.
Web-based monitoring and management system for integrated enterprise-wide imaging networks
NASA Astrophysics Data System (ADS)
Ma, Keith; Slik, David; Lam, Alvin; Ng, Won
2003-05-01
Mass proliferation of IP networks and the maturity of standards has enabled the creation of sophisticated image distribution networks that operate over Intranets, Extranets, Communities of Interest (CoI) and even the public Internet. Unified monitoring, provisioning and management of such systems at the application and protocol levels represent a challenge. This paper presents a web based monitoring and management tool that employs established telecom standards for the creation of an open system that enables proactive management, provisioning and monitoring of image management systems at the enterprise level and across multi-site geographically distributed deployments. Utilizing established standards including ITU-T M.3100, and web technologies such as XML/XSLT, JSP/JSTL, and J2SE, the system allows for seamless device and protocol adaptation between multiple disparate devices. The goal has been to develop a unified interface that provides network topology views, multi-level customizable alerts, real-time fault detection as well as real-time and historical reporting of all monitored resources, including network connectivity, system load, DICOM transactions and storage capacities.
Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.
Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier
2018-06-06
As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.
Innovative solutions in monitoring systems in flood protection
NASA Astrophysics Data System (ADS)
Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra
2018-02-01
The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.
Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI
2012-05-29
A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
Remote Diagnosis of the International Space Station Utilizing Telemetry Data
NASA Technical Reports Server (NTRS)
Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.
Effective HTCondor-based monitoring system for CMS
NASA Astrophysics Data System (ADS)
Balcas, J.; Bockelman, B. P.; Da Silva, J. M.; Hernandez, J.; Khan, F. A.; Letts, J.; Mascheroni, M.; Mason, D. A.; Perez-Calero Yzquierdo, A.; Vlimant, J.-R.; pre="for the"> CMS Consortium, 2017-10-01 The CMS experiment at the LHC relies on HTCondor and glideinWMS as its primary batch and pilot-based Grid provisioning systems, respectively. Given the scale of the global queue in CMS, the operators found it increasingly difficult to monitor the pool to find problems and fix them. The operators had to rely on several different web pages, with several different levels of information, and sift tirelessly through log files in order to monitor the pool completely. Therefore, coming up with a suitable monitoring system was one of the crucial items before the beginning of the LHC Run 2 in order to ensure early detection of issues and to give a good overview of the whole pool. Our new monitoring page utilizes the HTCondor ClassAd information to provide a complete picture of the whole submission infrastructure in CMS. The monitoring page includes useful information from HTCondor schedulers, central managers, the glideinWMS frontend, and factories. It also incorporates information about users and tasks making it easy for operators to provide support and debug issues.
On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.
Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T
2017-08-01
Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry
Mowry, Curtis Dale; Thornberg, Steven Michael
1999-01-01
A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Lorman, E.; Meyer, T.
2005-05-01
This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.
Rosenbaum, Benjamin P; Silkin, Nikolay; Miller, Randolph A
2014-01-01
Real-time alerting systems typically warn providers about abnormal laboratory results or medication interactions. For more complex tasks, institutions create site-wide 'data warehouses' to support quality audits and longitudinal research. Sophisticated systems like i2b2 or Stanford's STRIDE utilize data warehouses to identify cohorts for research and quality monitoring. However, substantial resources are required to install and maintain such systems. For more modest goals, an organization desiring merely to identify patients with 'isolation' orders, or to determine patients' eligibility for clinical trials, may adopt a simpler, limited approach based on processing the output of one clinical system, and not a data warehouse. We describe a limited, order-entry-based, real-time 'pick off' tool, utilizing public domain software (PHP, MySQL). Through a web interface the tool assists users in constructing complex order-related queries and auto-generates corresponding database queries that can be executed at recurring intervals. We describe successful application of the tool for research and quality monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-01-12
The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers willmore » now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.« less
NASA Technical Reports Server (NTRS)
Vaisnys, A.
1980-01-01
It is technically feasible to design a satellite communication system to serve the United States electric utility industry's needs relative to load management, real-time operations management, remote meter reading, and to determine the costs of various elements of the system. A definition of distribution control and monitoring functions is given. Associated communications traffic is quantified. A baseline conceptual design in terms of operating capability and equipment is described, important factors to be considered in designing a system are examined, and preliminary cost data are provided. Factors associated with implementation are discussed and conclusions and recommendations are listed.
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
New Thermal Infrared Hyperspectral Imagers
2009-10-01
involve imaging systems based on both MCT and microbolometer detector . All the systems base on push-broom imaging spectrograph with transmission grating...application requirements. The studies involve imaging systems based on both MCT and microbolometer detector . All the systems base on push-broom...remote sensing imager utilizes MCT detector combined with BMC-technique (background monitoring on-chip), background suppression and temperature
Ito, N; Saito, A; Kayashima, S; Kimura, J; Kuriyama, T; Nagata, N; Arai, T; Kikuchi, M
1995-01-01
A transcutaneous blood glucose monitoring system consists of an ion-sensitive field-effect transistor (ISFET) glucose sensor unit and a suction effusion fluid (SEF) collecting unit. The SEF is directly collected by a weak suction (400 mmHg absolute pressure) through the skin from which the corneum layer of the epidermis has been previously removed. An ISFET glucose sensor unit is able to measure glucose concentrations in a microliter order sampling volume. The system was applied to three diabetic patients during a 75 g oral glucose tolerance test for monitoring blood glucose levels. During the experiments, glucose changes in the SEF followed actual blood glucose levels with 10 min delays. Results suggest the feasibility of utilizing quasi-continuous, transcutaneous blood glucose monitoring for individual patients with various diabetic histories or diabetic complications.
QoS-aware health monitoring system using cloud-based WBANs.
Almashaqbeh, Ghada; Hayajneh, Thaier; Vasilakos, Athanasios V; Mohd, Bassam J
2014-10-01
Wireless Body Area Networks (WBANs) are amongst the best options for remote health monitoring. However, as standalone systems WBANs have many limitations due to the large amount of processed data, mobility of monitored users, and the network coverage area. Integrating WBANs with cloud computing provides effective solutions to these problems and promotes the performance of WBANs based systems. Accordingly, in this paper we propose a cloud-based real-time remote health monitoring system for tracking the health status of non-hospitalized patients while practicing their daily activities. Compared with existing cloud-based WBAN frameworks, we divide the cloud into local one, that includes the monitored users and local medical staff, and a global one that includes the outer world. The performance of the proposed framework is optimized by reducing congestion, interference, and data delivery delay while supporting users' mobility. Several novel techniques and algorithms are proposed to accomplish our objective. First, the concept of data classification and aggregation is utilized to avoid clogging the network with unnecessary data traffic. Second, a dynamic channel assignment policy is developed to distribute the WBANs associated with the users on the available frequency channels to manage interference. Third, a delay-aware routing metric is proposed to be used by the local cloud in its multi-hop communication to speed up the reporting process of the health-related data. Fourth, the delay-aware metric is further utilized by the association protocols used by the WBANs to connect with the local cloud. Finally, the system with all the proposed techniques and algorithms is evaluated using extensive ns-2 simulations. The simulation results show superior performance of the proposed architecture in optimizing the end-to-end delay, handling the increased interference levels, maximizing the network capacity, and tracking user's mobility.
Kishimoto, M; Yoshida, T; Hayasaka, T; Mori, D; Imai, Y; Matsuki, N; Ishikawa, T; Yamaguchi, T
2009-01-01
An effective way for preventing injuries and diseases among the elderly is to monitor their daily lives. In this regard, we propose the use of a "Hyper Hospital Network", which is an information support system for elderly people and patients. In the current study, we developed a wearable system for monitoring electromyography (EMG) and acceleration using the Hyper Hospital Network plan. The current system is an upgraded version of our previous system for gait analysis (Yoshida et al. [13], Telemedicine and e-Health 13 703-714), and lets us monitor decreases in exercise and the presence of a hemiplegic gait more accurately. To clarify the capabilities and reliability of the system, we performed three experimental evaluations: one to verify the performance of the wearable system, a second to detect a hemiplegic gait, and a third to monitor EMG and accelerations simultaneously. Our system successfully detected a lack of exercise by monitoring the iEMG in healthy volunteers. Moreover, by using EMG and acceleration signals simultaneously, the reliability of the Hampering Index (HI) for detecting hemiplegia walking was improved significantly. The present study provides useful knowledge for the development of a wearable computer designed to monitor the physical conditions of older persons and patients.
Jung, Natália Miranda; Bairros, Fernanda de Souza; Neutzling, Marilda Borges
2014-05-01
This article seeks to describe the utilization and coverage percentage of the Nutritional and Food Surveillance System (SISVAN-Web) in the Regional Health Offices of Rio Grande do Sul in 2010 and to assess its correlation with socio-economic, demographic and health system organization variables at the time. It is an ecological study that used secondary data from the SISVAN-Web, the Department of Primary Health Care, the IT Department of the Unified Health System and the Brazilian Institute of Geography and Statistics. The evaluation of utilization and coverage data was restricted to nutritional status. The percentage of utilization of SISVAN-Web refers to the number of cities that fed the system. Total coverage was defined as the percentage of individuals in all stages of the life cycle monitored by SISVAN-Web. It was found that 324 cities fed the application, corresponding to a utilization percentage of 65.3%. Greater system coverage was observed in all Regional Health Coordination (RHC) Units for ages 0 to 5 years and 5-10 years. There was a significant association between the percentage of utilization of SISVAN-Web and Family Health Strategy coverage in each RHC Unit. The results of this study indicated low percentages of utilization and coverage of SISVAN-Web in Rio Grande do Sul.
NASA Technical Reports Server (NTRS)
1980-01-01
Cost benefit considerations are extremely important in obtaining the acceptance of dispersed storage and generation (DSG) by the electric utilities. These considerations involved somewhat different economic analyses depending on whether the generation is utility, customer, or combined ownership. It is necessary to get acceptance of more easily understood methods for evaluating the economics of DSG because much of the benefits of DSG may accrue in the generation and transmission portions of the utility system while the costs tend to be centered in the distribution portion of that system. The influence of factors, such as reliability, capital costs, and other economic measures were also investigated.
A quantum leap into the IED age
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, R.C.
1996-11-01
The integration of pattern recognition, artificial intelligence and advanced communication technologies in utility substation IED`s (Intelligent Electronic Devices) has opened the door to practical and cost effective automation of power distribution systems. A major driver for the application of these new technologies has been the research directed toward the detection of high-impedance faults. The commercial products which embody these complex detection functions have already expanded to include most of the protection, control, and monitoring required at a utility substation. These new Super-IED`s enable major utility initiatives, such as power quality management, improved public safety, operation and maintenance productivity, and powermore » system automation.« less
Equity during an economic crisis: financing of the Argentine health system.
Cavagnero, Eleonora; Bilger, Marcel
2010-07-01
This article analyses the redistributive effect caused by health financing and the distribution of healthcare utilization in Argentina before and during the severe 2001/2002 economic crisis. Both dramatically changed during this period: the redistributive effect became much more positive and utilization shifted from pro-poor to pro-rich. This clearly demonstrates that when utilization is contingent on financing, changes can occur rapidly; and that an integrated approach is required when monitoring equity. From a policy perspective, the Argentine health system appears vulnerable to economic downturns mainly due to high reliance on out-of-pocket payments and the strong link between health insurance and employment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ravindra; Reilly, James T.; Wang, Jianhui
Deregulation of the electric utility industry, environmental concerns associated with traditional fossil fuel-based power plants, volatility of electric energy costs, Federal and State regulatory support of “green” energy, and rapid technological developments all support the growth of Distributed Energy Resources (DERs) in electric utility systems and ensure an important role for DERs in the smart grid and other aspects of modern utilities. DERs include distributed generation (DG) systems, such as renewables; controllable loads (also known as demand response); and energy storage systems. This report describes the role of aggregators of DERs in providing optimal services to distribution networks, through DERmore » monitoring and control systems—collectively referred to as a Distributed Energy Resource Management System (DERMS)—and microgrids in various configurations.« less
Comprehensive monitoring for heterogeneous geographically distributed storage
Ratnikova, Natalia; Karavakis, E.; Lammel, S.; ...
2015-12-23
Storage capacity at CMS Tier-1 and Tier-2 sites reached over 100 Petabytes in 2014, and will be substantially increased during Run 2 data taking. The allocation of storage for the individual users analysis data, which is not accounted as a centrally managed storage space, will be increased to up to 40%. For comprehensive tracking and monitoring of the storage utilization across all participating sites, CMS developed a space monitoring system, which provides a central view of the geographically dispersed heterogeneous storage systems. The first prototype was deployed at pilot sites in summer 2014, and has been substantially reworked since then.more » In this study, we discuss the functionality and our experience of system deployment and operation on the full CMS scale.« less
Strategies for monitoring the bacteriological quality of water supply in distribution systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geldreich, E.E.; Goodrich, J.A.; Clark, R.M.
1989-01-01
Monitoring strategies for characterizing the bacteriological quality of water in the distribution system require a complete understanding of a variety of interrelated aspects that include treated water quality, water-supply retention in storage and infrastructure deterioration in the distribution system. A study of field data from several water-supply utilities was used to highlight some innovative interpretations of compliance monitoring data. Major perceptions include: The use of a 5% coliform frequency of occurrence limit highlights compliance significance in those situations where there are clusters of positive samples containing less than 4 coliforms per 100 mL. Unfortunately, this presence/absence concept does not providemore » any indication of the magnitude of a contamination event.« less
ASSESSING AND PREVENTING THE SPREAD OF CONTAMINANTS IN A DRINKING WATER DISTRIBUTION SYSTEM
Remote monitoring data, field studies, and the modeling software ? EPANET, can be used by drinking water utilities and consulting engineers to predict flow dynamics and information on the spatial distribution and concentration of contaminants in a drinking water system. A field ...
NASA Astrophysics Data System (ADS)
Ibrahim, Maslina Mohd; Yussup, Nolida; Haris, Mohd Fauzi; Soh @ Shaari, Syirrazie Che; Azman, Azraf; Razalim, Faizal Azrin B. Abdul; Yapp, Raymond; Hasim, Harzawardi; Aslan, Mohd Dzul Aiman
2017-01-01
One of the applications for radiation detector is area monitoring which is crucial for safety especially at a place where radiation source is involved. An environmental radiation monitoring system is a professional system that combines flexibility and ease of use for data collection and monitoring. Nowadays, with the growth of technology, devices and equipment can be connected to the network and Internet to enable online data acquisition. This technology enables data from the area monitoring devices to be transmitted to any place and location directly and faster. In Nuclear Malaysia, area radiation monitor devices are located at several selective locations such as laboratories and radiation facility. This system utilizes an Ethernet as a communication media for data acquisition of the area radiation levels from radiation detectors and stores the data at a server for recording and analysis. This paper discusses on the design and development of website that enable all user in Nuclear Malaysia to access and monitor the radiation level for each radiation detectors at real time online. The web design also included a query feature for history data from various locations online. The communication between the server's software and web server is discussed in detail in this paper.
Development of a real time activity monitoring Android application utilizing SmartStep.
Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward
2016-08-01
Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.
NASA Technical Reports Server (NTRS)
Nagano, S.
1979-01-01
Overload protection circuit utilizes one circuit for suspending inverter action when load abnormality is detected and second circuit to monitor clearance of abnormality. Device wastes no power during normal operating conditions and responds instantaneously when abnormality is cleared.
The event notification and alarm system for the Open Science Grid operations center
NASA Astrophysics Data System (ADS)
Hayashi, S.; Teige and, S.; Quick, R.
2012-12-01
The Open Science Grid Operations (OSG) Team operates a distributed set of services and tools that enable the utilization of the OSG by several HEP projects. Without these services users of the OSG would not be able to run jobs, locate resources, obtain information about the status of systems or generally use the OSG. For this reason these services must be highly available. This paper describes the automated monitoring and notification systems used to diagnose and report problems. Described here are the means used by OSG Operations to monitor systems such as physical facilities, network operations, server health, service availability and software error events. Once detected, an error condition generates a message sent to, for example, Email, SMS, Twitter, an Instant Message Server, etc. The mechanism being developed to integrate these monitoring systems into a prioritized and configurable alarming system is emphasized.
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
Zander, Thorsten O; Kothe, Christian
2011-04-01
Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.
Cost-Effectiveness of Remote Cardiac Monitoring With the CardioMEMS Heart Failure System.
Schmier, Jordana K; Ong, Kevin L; Fonarow, Gregg C
2017-07-01
Heart failure (HF) is a leading cause of cardiovascular mortality in the United States and presents a substantial economic burden. A recently approved implantable wireless pulmonary artery pressure remote monitor, the CardioMEMS HF System, has been shown to be effective in reducing hospitalizations among New York Heart Association (NYHA) class III HF patients. The objective of this study was to estimate the cost-effectiveness of this remote monitoring technology compared to standard of care treatment for HF. A Markov cohort model relying on the CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) clinical trial for mortality and hospitalization data, published sources for cost data, and a mix of CHAMPION data and published sources for utility data, was developed. The model compares outcomes over 5 years for implanted vs standard of care patients, allowing patients to accrue costs and utilities while they remain alive. Sensitivity analyses explored uncertainty in input parameters. The CardioMEMS HF System was found to be cost-effective, with an incremental cost-effectiveness ratio of $44,832 per quality-adjusted life year (QALY). Sensitivity analysis found the model was sensitive to the device cost and to whether mortality benefits were sustained, although there were no scenarios in which the cost/QALY exceeded $100,000. Compared with standard of care, the CardioMEMS HF System was cost-effective when leveraging trial data to populate the model. © 2017 Wiley Periodicals, Inc.
Monitoring Physiological Variables with Membrane Probes
NASA Technical Reports Server (NTRS)
Janle, Elsa M.
1997-01-01
This project has demonstrated the possibility of using membrane probes in rodents to monitor physiological variables for extended periods of time. The utility of these probes in physiological studies of microgravity has been demonstrated. The feasibility of developing on-line sensors has also been demonstrated and allows for the possibility of developing real-time automated monitoring systems which can be used in ground-base physiological research as well as in research and medical monitoring in space. In addition to space applications these techniques can be extended to medical monitoring in critical care situations on earth as well as facilitating research in many human and animal diseases.
NASA Technical Reports Server (NTRS)
Byrne, F. (Inventor)
1981-01-01
A high speed common data buffer system is described for providing an interface and communications medium between a plurality of computers utilized in a distributed computer complex forming part of a checkout, command and control system for space vehicles and associated ground support equipment. The system includes the capability for temporarily storing data to be transferred between computers, for transferring a plurality of interrupts between computers, for monitoring and recording these transfers, and for correcting errors incurred in these transfers. Validity checks are made on each transfer and appropriate error notification is given to the computer associated with that transfer.
Lessons learned from hybrid wind/PV village power system installations in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergey, M.
1995-09-01
In the last three years eight decentralized village power systems utilizing small wind turbines as the primary energy source have been installed in rural Mexico. Hybrid wind/PV systems have been installed in five States and by three vendors. Seven out of the eight systems, which range i size from 9.3--71.2kW in combined wind and PV capacity, utilize one or more 10 kW wind turbines. All of these installations have battery banks and use static inverters to provide AC power for distribution to homes, businesses, and community facilities. On all but one of the systems a diesel generator is used tomore » provide back-up power. This paper attempts to summarize the range of costs and economics, performance, and operational experiences for all eight installations. Several of the systems are monitored for performance, including one that is extensively monitored under a cooperative program between the Instituto de Investigaciones Electricas and Sandia National Laboratory. Lessons learned from these systems provide insights that may allow future village power systems of this architecture to be installed at lower costs, to be operated more effectively and efficiently, and to be better able to satisfy customer requirements.« less
Supporting Effective Collaboration: Using a Rearview Mirror to Look Forward
ERIC Educational Resources Information Center
McManus, Margaret M.; Aiken, Robert M.
2016-01-01
Our original research, to design and develop an Intelligent Collaborative Learning System (ICLS), yielded the creation of a Group Leader Tutor software system which utilizes a Collaborative Skills Network to monitor students working collaboratively in a networked environment. The Collaborative Skills Network was a conceptualization of…
An automated system for global atmospheric sampling using B-747 airliners
NASA Technical Reports Server (NTRS)
Lew, K. Q.; Gustafsson, U. R. C.; Johnson, R. E.
1981-01-01
The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described.
Markerless video analysis for movement quantification in pediatric epilepsy monitoring.
Lu, Haiping; Eng, How-Lung; Mandal, Bappaditya; Chan, Derrick W S; Ng, Yen-Ling
2011-01-01
This paper proposes a markerless video analytic system for quantifying body part movements in pediatric epilepsy monitoring. The system utilizes colored pajamas worn by a patient in bed to extract body part movement trajectories, from which various features can be obtained for seizure detection and analysis. Hence, it is non-intrusive and it requires no sensor/marker to be attached to the patient's body. It takes raw video sequences as input and a simple user-initialization indicates the body parts to be examined. In background/foreground modeling, Gaussian mixture models are employed in conjunction with HSV-based modeling. Body part detection follows a coarse-to-fine paradigm with graph-cut-based segmentation. Finally, body part parameters are estimated with domain knowledge guidance. Experimental studies are reported on sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.
Utilizing Non-Contact Stress Measurement System (NSMS) as a Health Monitor
NASA Technical Reports Server (NTRS)
Hayes, Terry; Hayes, Bryan; Bynum, Ken
2011-01-01
Continuously monitor all 156 blades throughout the entire operating envelope without adversely affecting tunnel conditions or compromise compressor shell integrity, Calculate dynamic response and identify the frequency/mode to determine individual blade deflection amplitudes, natural frequencies, phase, and damping (Q), Log static deflection to build a database of deflection values at certain compressor conditions to use as basis for real-time online Blade Stack monitor, Monitor for stall, surge, flutter, and blade damage, Operate with limited user input, low maintenance cost, safe illumination of probes, easy probe replacement, and require little or no access to compressor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yussup, F., E-mail: nolida@nm.gov.my; Ibrahim, M. M., E-mail: maslina-i@nm.gov.my; Soh, S. C.
With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves devicemore » configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.« less
Three methods to monitor utilization of healthcare services by the poor
Bhuiya, Abbas; Hanifi, SMA; Urni, Farhana; Mahmood, Shehrin Shaila
2009-01-01
Background Achieving equity by way of improving the condition of the economically poor or otherwise disadvantaged is among the core goals of contemporary development paradigm. This places importance on monitoring outcome indicators among the poor. National surveys allow disaggregation of outcomes by socioeconomic status at national level and do not have statistical adequacy to provide estimates for lower level administrative units. This limits the utility of these data for programme managers to know how well particular services are reaching the poor at the lowest level. Managers are thus left without a tool for monitoring results for the poor at lower levels. This paper demonstrates that with some extra efforts community and facility based data at the lower level can be used to monitor utilization of healthcare services by the poor. Methods Data used in this paper came from two sources- Chakaria Health and Demographic Surveillance System (HDSS) of ICDDR,B and from a special study conducted during 2006 among patients attending the public and private health facilities in Chakaria, Bangladesh. The outcome variables included use of skilled attendants for delivery and use of facilities. Rate-ratio, rate-difference, concentration index, benefit incidence ratio, sequential sampling, and Lot Quality Assurance Sampling were used to assess how pro-poor is the use of skilled attendants for delivery and healthcare facilities. Findings Poor are using skilled attendants for delivery far less than the better offs. Government health service facilities are used more than the private facilities by the poor. Benefit incidence analysis and sequential sampling techniques could assess the situation realistically which can be used for monitoring utilization of services by poor. The visual display of the findings makes both these methods attractive. LQAS, on the other hand, requires small fixed sample and always enables decision making. Conclusion With some extra efforts monitoring of the utilization of healthcare services by the poor at the facilities can be done reliably. If monitored, the findings can guide the programme and facility managers to act in a timely fashion to improve the effectiveness of the programme in reaching the poor. PMID:19650938
NASA Technical Reports Server (NTRS)
Easley, Wesley C.
1991-01-01
Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has recently increased. Each application utilizes a number of nonidentical computer and peripheral configurations and requires task specific software development. To aid these development tasks, an IBM PC-based RS-232 bus monitoring system was produced. It can simultaneously monitor two communication ports of a PC or clone, including the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs in a separate window for each port's input with binary display being selectable. A number of other features including binary log files, screen capture to files, and a full range of communication parameters are provided.
NASA Astrophysics Data System (ADS)
Nadimpalli, Venkata K.; Nagy, Peter B.
2018-04-01
Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.
Design of laser monitoring and sound localization system
NASA Astrophysics Data System (ADS)
Liu, Yu-long; Xu, Xi-ping; Dai, Yu-ming; Qiao, Yang
2013-08-01
In this paper, a novel design of laser monitoring and sound localization system is proposed. It utilizes laser to monitor and locate the position of the indoor conversation. In China most of the laser monitors no matter used in labor in an instrument uses photodiode or phototransistor as a detector at present. At the laser receivers of those facilities, light beams are adjusted to ensure that only part of the window in photodiodes or phototransistors received the beams. The reflection would deviate from its original path because of the vibration of the detected window, which would cause the changing of imaging spots in photodiode or phototransistor. However, such method is limited not only because it could bring in much stray light in receivers but also merely single output of photocurrent could be obtained. Therefore a new method based on quadrant detector is proposed. It utilizes the relation of the optical integral among quadrants to locate the position of imaging spots. This method could eliminate background disturbance and acquired two-dimensional spots vibrating data pacifically. The principle of this whole system could be described as follows. Collimated laser beams are reflected from vibrate-window caused by the vibration of sound source. Therefore reflected beams are modulated by vibration source. Such optical signals are collected by quadrant detectors and then are processed by photoelectric converters and corresponding circuits. Speech signals are eventually reconstructed. In addition, sound source localization is implemented by the means of detecting three different reflected light sources simultaneously. Indoor mathematical models based on the principle of Time Difference Of Arrival (TDOA) are established to calculate the twodimensional coordinate of sound source. Experiments showed that this system is able to monitor the indoor sound source beyond 15 meters with a high quality of speech reconstruction and to locate the sound source position accurately.
NASA Technical Reports Server (NTRS)
1982-01-01
Shuttle's propellant measurement system is produced by Simmonds Precision. Company has extensive experience in fuel management systems and other equipment for military and commercial aircraft. A separate corporate entity, Industrial Controls Division was formed due to a number of non-aerospace spinoffs. One example is a "custody transfer" system for measuring and monitoring liquefied natural gas (LNG). LNG is transported aboard large tankers at minus 260 degrees Fahrenheit. Value of a single shipload may reach $15 million. Precision's LNG measurement and monitoring system aids accurate financial accounting and enhances crew safety. Custody transfer systems have been provided for 10 LNG tankers, built by Owing Shipbuilding. Simmonds also provided measurement systems for several liquefied petroleum gas (LPG) production and storage installations. Another spinoff developed by Simmonds Precision is an advanced ignition system for industrial boilers that offers savings of millions of gallons of fuel, and a computer based monitoring and control system for improving safety and reliability in electrical utility applications. Simmonds produces a line of safety systems for nuclear and non-nuclear electrical power plants.
Distribution system model calibration with big data from AMI and PV inverters
Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; ...
2016-03-03
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less
Distribution system model calibration with big data from AMI and PV inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less
NASA Technical Reports Server (NTRS)
Soileau, Kerry M.; Baicy, John W.
2008-01-01
Rig Diagnostic Tools is a suite of applications designed to allow an operator to monitor the status and health of complex networked systems using a unique interface between Java applications and UNIX scripts. The suite consists of Java applications, C scripts, Vx- Works applications, UNIX utilities, C programs, and configuration files. The UNIX scripts retrieve data from the system and write them to a certain set of files. The Java side monitors these files and presents the data in user-friendly formats for operators to use in making troubleshooting decisions. This design allows for rapid prototyping and expansion of higher-level displays without affecting the basic data-gathering applications. The suite is designed to be extensible, with the ability to add new system components in building block fashion without affecting existing system applications. This allows for monitoring of complex systems for which unplanned shutdown time comes at a prohibitive cost.
Development of a CCTV system for welder training and monitoring of Space Shuttle Main Engine welds
NASA Technical Reports Server (NTRS)
Gordon, S. S.; Flanigan, L. A.; Dyer, G. E.
1987-01-01
A Weld Operator's Remote Monitoring System (WORMS) for remote viewing of manual and automatic GTA welds has been developed for use in Space Shuttle Main Engine (SSME) manufacturing. This system utilizes fiberoptics to transmit images from a receiving lens to a small closed-circuit television (CCTV) camera. The camera converts the image to an electronic signal, which is sent to a videotape recorder (VTR) and a monitor. The overall intent of this system is to provide a clearer, more detailed view of welds than is available by direct observation. This system has six primary areas of application: (1) welder training; (2) viewing of joint penetration; (3) viewing visually inaccessible welds; (4) quality control and quality assurance; (5) remote joint tracking and adjustment of variables in machine welds; and (6) welding research and development. This paper describes WORMS and how it applies to each application listed.
WSN-Based Space Charge Density Measurement System
Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong
2017-01-01
It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density. PMID:28052105
WSN-Based Space Charge Density Measurement System.
Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong
2017-01-01
It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.
NASA Technical Reports Server (NTRS)
Celino, V. A.
1977-01-01
An appendix providing the technical data required for computerized control and/or monitoring of selected MIST subsystems is presented. Specific computerized functions to be performed are as follows: (1) Control of the MIST heating load simulator and monitoring of the diesel engine generators' cooling system; (2) Control of the MIST heating load simulator and MIST heating subsystem including the heating load simulator; and (3) Control of the MIST air conditioning load simulator subsystem and the MIST air conditioning subsystem, including cold thermal storage and condenser water flows.
Vagal tone as an index of mental state
NASA Technical Reports Server (NTRS)
Porges, Stephen W.
1988-01-01
The utility of monitoring oscillations in the heart rate pattern as a window to the brain is discussed as an index of general central nervous system status. Quantification of the amplitude of respiratory sinus arrhythmia provides an accurate index of cardiac vagal tone. A number of studies have demonstrated the validity of this measure; the relationship between flight performance and vagal tone has also been studied. In general, the vagal tone index appears to monitor global states of the central nervous system and may be useful in screening the general state of pilots.
Therapeutic drug monitoring of flucytosine in serum using a SERS-active membrane system
NASA Astrophysics Data System (ADS)
Berger, Adam G.; White, Ian M.
2017-02-01
A need exists for near real-time therapeutic drug monitoring (TDM), in particular for antibiotics and antifungals in patient samples at the point-of-care. To truly fit the point-of-care need, techniques must be rapid and easy to use. Here we report a membrane system utilizing inkjet-fabricated surface enhanced Raman spectroscopy (SERS) sensors that allows sensitive and specific analysis despite the elimination of sophisticated chromatography equipment, expensive analytical instruments, and other systems relegated to the central lab. We utilize inkjet-fabricated paper SERS sensors as substrates for 5FC detection; the use of paper-based SERS substrates leverages the natural wicking ability and filtering properties of microporous membranes. We investigate the use of microporous membranes in the vertical flow assay to allow separation of the flucytosine from whole blood. The passive vertical flow assay serves as a valuable method for physical separation of target analytes from complex biological matrices. This work further establishes a platform for easy, sensitive, and specific TDM of 5FC from whole blood.
Low-cost wireless voltage & current grid monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Jacqueline
This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less
Grayscale standard display function on LCD color monitors
NASA Astrophysics Data System (ADS)
De Monte, Denis; Casale, Carlo; Albani, Luigi; Bonfiglio, Silvio
2007-03-01
Currently, as a rule, digital medical systems use monochromatic Liquid Crystal Display (LCD) monitors to ensure an accurate reproduction of the Grayscale Standard Display Function (GSDF) as specified in the Digital Imaging and Communications in Medicine (DICOM) Standard. As a drawback, special panels need to be utilized in digital medical systems, while it would be preferable to use regular color panels, which are manufactured on a wide scale and are thus available at by far lower prices. The method proposed introduces a temporal color dithering technique to accurately reproduce the GSDF on color monitors without losing monitor resolution. By exploiting the characteristics of the Human Visual System (HVS) the technique ensures that a satisfactory grayscale reproduction is achieved minimizing perceivable flickering and undesired color artifacts. The algorithm has been implemented in the monitor using a low-cost Field Programmable Gate Array (FPGA). Quantitative evaluations of luminance response on a 3 Mega-pixel color monitor have shown that the compliance with the GSDF can be achieved with the accuracy level required by medical applications. At the same time the measured color deviation is below the threshold perceivable by the human eye.
Design of an automatic production monitoring system on job shop manufacturing
NASA Astrophysics Data System (ADS)
Prasetyo, Hoedi; Sugiarto, Yohanes; Rosyidi, Cucuk Nur
2018-02-01
Every production process requires monitoring system, so the desired efficiency and productivity can be monitored at any time. This system is also needed in the job shop type of manufacturing which is mainly influenced by the manufacturing lead time. Processing time is one of the factors that affect the manufacturing lead time. In a conventional company, the recording of processing time is done manually by the operator on a sheet of paper. This method is prone to errors. This paper aims to overcome this problem by creating a system which is able to record and monitor the processing time automatically. The solution is realized by utilizing electric current sensor, barcode, RFID, wireless network and windows-based application. An automatic monitoring device is attached to the production machine. It is equipped with a touch screen-LCD so that the operator can use it easily. Operator identity is recorded through RFID which is embedded in his ID card. The workpiece data are collected from the database by scanning the barcode listed on its monitoring sheet. A sensor is mounted on the machine to measure the actual machining time. The system's outputs are actual processing time and machine's capacity information. This system is connected wirelessly to a workshop planning application belongs to the firm. Test results indicated that all functions of the system can run properly. This system successfully enables supervisors, PPIC or higher level management staffs to monitor the processing time quickly with a better accuracy.
Anomaly Detection for Next-Generation Space Launch Ground Operations
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Iverson, David L.; Hall, David R.; Taylor, William M.; Patterson-Hine, Ann; Brown, Barbara; Ferrell, Bob A.; Waterman, Robert D.
2010-01-01
NASA is developing new capabilities that will enable future human exploration missions while reducing mission risk and cost. The Fault Detection, Isolation, and Recovery (FDIR) project aims to demonstrate the utility of integrated vehicle health management (IVHM) tools in the domain of ground support equipment (GSE) to be used for the next generation launch vehicles. In addition to demonstrating the utility of IVHM tools for GSE, FDIR aims to mature promising tools for use on future missions and document the level of effort - and hence cost - required to implement an application with each selected tool. One of the FDIR capabilities is anomaly detection, i.e., detecting off-nominal behavior. The tool we selected for this task uses a data-driven approach. Unlike rule-based and model-based systems that require manual extraction of system knowledge, data-driven systems take a radically different approach to reasoning. At the basic level, they start with data that represent nominal functioning of the system and automatically learn expected system behavior. The behavior is encoded in a knowledge base that represents "in-family" system operations. During real-time system monitoring or during post-flight analysis, incoming data is compared to that nominal system operating behavior knowledge base; a distance representing deviation from nominal is computed, providing a measure of how far "out of family" current behavior is. We describe the selected tool for FDIR anomaly detection - Inductive Monitoring System (IMS), how it fits into the FDIR architecture, the operations concept for the GSE anomaly monitoring, and some preliminary results of applying IMS to a Space Shuttle GSE anomaly.
Aquifer Thermal Energy Storage in the US
NASA Astrophysics Data System (ADS)
Kannberg, L. D.
1985-06-01
DOE has funded investigation of Aquifer Thermal Energy Storage (ATES) since 1975. The scope of the ATES investigation has encompassed numerical modeling, field testing, economic analyses, and evaluation of institutional issues. ATES has received the bulk of the attention because of its widespread potential in the US. US efforts are now concentrated on a high temperature (up to 150C) ATES field test on the St. Paul campus of the University of Minnesota. Four short-term test cycles and the first of two long-term test cycles have been completed at this site. Utilization of chill ATES to meet summer air conditioning demands has been monitored at two operating sites in Tuscaloosa, Alabama. The systems utilize a cooling tower to directly chill groundwater pumped from a water table aquifer for storage in the same aquifer. The first of the two systems has exhibited relatively poor performance. More comprehensive monitoring has recently been undertaken at another site.
Protein crystal growth in microgravity
NASA Technical Reports Server (NTRS)
Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.
1989-01-01
Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.
Design issues for grid-connected photovoltaic systems
NASA Astrophysics Data System (ADS)
Ropp, Michael Eugene
1998-08-01
Photovoltaics (PV) is the direct conversion of sunlight to electrical energy. In areas without centralized utility grids, the benefits of PV easily overshadow the present shortcomings of the technology. However, in locations with centralized utility systems, significant technical challenges remain before utility-interactive PV (UIPV) systems can be integrated into the mix of electricity sources. One challenge is that the needed computer design tools for optimal design of PV systems with curved PV arrays are not available, and even those that are available do not facilitate monitoring of the system once it is built. Another arises from the issue of islanding. Islanding occurs when a UIPV system continues to energize a section of a utility system after that section has been isolated from the utility voltage source. Islanding, which is potentially dangerous to both personnel and equipment, is difficult to prevent completely. The work contained within this thesis targets both of these technical challenges. In Task 1, a method for modeling a PV system with a curved PV array using only existing computer software is developed. This methodology also facilitates comparison of measured and modeled data for use in system monitoring. The procedure is applied to the Georgia Tech Aquatic Center (GTAC) FV system. In the work contained under Task 2, islanding prevention is considered. The existing state-of-the- art is thoroughly reviewed. In Subtask 2.1, an analysis is performed which suggests that standard protective relays are in fact insufficient to guarantee protection against islanding. In Subtask 2.2. several existing islanding prevention methods are compared in a novel way. The superiority of this new comparison over those used previously is demonstrated. A new islanding prevention method is the subject under Subtask 2.3. It is shown that it does not compare favorably with other existing techniques. However, in Subtask 2.4, a novel method for dramatically improving this new islanding prevention method is described. It is shown, both by computer modeling and experiment, that this new method is one of the most effective available today. Finally, under Subtask 2.5, the effects of certain types of loads; on the effectiveness of islanding prevention methods are discussed.
G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management.
NASA Astrophysics Data System (ADS)
Birkett, C. M.; Ricko, M.; Beckley, B. D.; Yang, X.; Tetrault, R. L.
2017-12-01
G-REALM is a NASA/USDA funded operational program offering water-level products for lakes and reservoirs and these are currently derived from the NASA/CNES Topex/Jason series of satellite radar altimeters. The main stakeholder is the USDA/Foreign Agricultural Service (FAS) though many other end-users utilize the products for a variety of interdisciplinary science and operational programs. The FAS utilize the products within their CropExplorer Decision Support System (DSS) to help assess irrigation potential, and to monitor both short-term (agricultural) and longer-term (hydrological) drought conditions. There is increasing demand for a more global monitoring service that in particular, captures the variations in the smallest (1 to 100km2) reservoirs and water holdings in arid and semi-arid regions. Here, water resources are critical to both agriculture and regional security. A recent G-REALM 10-day resolution product upgrade and expansion has allowed for more accurate lake level products to be released and for a greater number of water bodies to be monitored. The next program phase focuses on the exploration of the enhanced radar altimeter data sets from the Cryosat-2 and Sentinel-3 missions with their improved spatial resolution, and the expansion of the system to the monitoring of 1,000 water bodies across the globe. In addition, a new element, the monitoring of surface water levels in wetland zones, is also being introduced. This aims to satisfy research and stakeholder requirements with respect to programs examining the links between inland fisheries catch potential and declining water levels, and to those monitoring the delicate balance between water resources, agriculture, and fisheries management in arid basins.
Final Engineering Report - Phase I HYCOS (Hydraulic Check Out System)
1976-07-30
34 Shock Strut Pressure/Level Concept 37 35 Pressure vs Temperature Variation 40 36 Temperature Compensated Pressure Switch (Concept) 41 37...Temperature Compensated Pressure Switch (NEO-DYNE) ... 42 38 Deslccant Saturation Monitor 43 39 HIAC Model PC-120 Contamination Monitor 44 40...variables. If a thermal compensated pressure switch is utilized which has the same operating slope as the ideal gaa, then a low charge can be
NASA Astrophysics Data System (ADS)
Arumugam, S.; Mazrooei, A.; Ward, R.
2017-12-01
Changing climate arising from structured oscillations such as ENSO and rising temperature poses challenging issues in meeting the increasing water demand (due to population growth) for public supply and agriculture over the Southeast US. This together with infrastructural (e.g., most reservoirs being within-year systems) and operational (e.g., static rule curves) constraints requires an integrated approach that seamlessly monitors and forecasts water and soil moisture conditions to support adaptive decision making in water and agricultural sectors. In this talk, we discuss the utility of an integrated drought management portal that both monitors and forecasts streamflow and soil moisture over the southeast US. The forecasts are continuously developed and updated by forcing monthly-to-seasonal climate forecasts with a land surface model for various target basins. The portal also houses a reservoir allocation model that allows water managers to explore different release policies in meeting the system constraints and target storages conditioned on the forecasts. The talk will also demonstrate how past events (e.g., 2007-2008 drought) could be proactively monitored and managed to improve decision making in water and agricultural sectors over the Southeast US. Challenges in utilizing the portal information from institutional and operational perspectives will also be presented.
Coast Guard's Response to Spilled Oil
ERIC Educational Resources Information Center
Ard, R. W., Jr.
1976-01-01
The Coast Guard utilizes a number of monitoring detectors, sensors, and techniques to find, recover and identify oil spills. Discussed in this article are in-situ and airborne sensors, systems developed to provide clean-up capability such as air deployable anti-pollution transfer system (ADAPTS), and techniques which will determine the source of a…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
.... Monitoring Impact of FY 2012 Policy Changes and Certain SNF Practices A. RUG Distributions B. Group Therapy... Common Procedure Coding System HR-III Hybrid Resource Utilization Groups, Version 3 IHS IGI (Information... OCN OMB Control Number OMB Office of Management and Budget OMRA Other Medicare-Required Assessment PPS...
NASA Technical Reports Server (NTRS)
Patrick, Marshall Clint; Cooper, Anita E.; Powers, W. T.
2004-01-01
Researchers are working on many fronts to make possible high-speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flowfields/plumes. The Optical Plume Anomaly Detector (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDiFiS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Capabilities for real-time processing are being advanced on several fronts, including an effort to hardware encode components of the EDiFiS for health monitoring and management. This paper addresses the OPAD with its tool suites, and discusses what is considered a natural progression: a concept for taking OPAD to the next logical level of high energy physics, incorporating fermion and boson particle analyses in measurement of neutron flux.
Intraoperative cranial nerve monitoring.
Harper, C Michel
2004-03-01
The purpose of intraoperative monitoring is to preserve function and prevent injury to the nervous system at a time when clinical examination is not possible. Cranial nerves are delicate structures and are susceptible to damage by mechanical trauma or ischemia during intracranial and extracranial surgery. A number of reliable electrodiagnostic techniques, including nerve conduction studies, electromyography, and the recording of evoked potentials have been adapted to the study of cranial nerve function during surgery. A growing body of evidence supports the utility of intraoperative monitoring of cranial nerve nerves during selected surgical procedures.
Mitchell, Lauren L; Peterson, Colleen M; Rud, Shaina R; Jutkowitz, Eric; Sarkinen, Andrielle; Trost, Sierra; Porta, Carolyn M; Finlay, Jessica M; Gaugler, Joseph E
2018-03-01
Technologies have emerged that aim to help older persons with Alzheimer's disease and related dementias (ADRDs) remain at home while also supporting their caregiving family members. However, the usefulness of these innovations, particularly in home-based care contexts, remains underexplored. The current study evaluated the acceptability and utility of an in-home remote activity monitoring (RAM) system for 30 family caregivers of persons with ADRD via quantitative survey data collected over a 6-month period and qualitative survey and interview data collected for up to 18 months. A parallel convergent mixed methods design was employed. The integrated qualitative and quantitative data suggested that RAM technology offered ongoing monitoring and provided caregivers with a sense of security. Considerable customization was needed so that RAM was most appropriate for persons with ADRD. The findings have important clinical implications when considering how RAM can supplement, or potentially substitute for, ADRD family care.
Detection, Identification, Location, and Remote Sensing Using SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton, Richard J.; Kennedy, Timothy F.; Williams, Robert M.; Fink, Patrick W.; Ngo, Phong H.
2009-01-01
The Electromagnetic Systems Branch (EV4) of the Avionic Systems Division at NASA Johnson Space Center in Houston, TX is studying the utility of surface acoustic wave (SAW) radiofrequency identification (RFID) tags for multiple wireless applications including detection, identification, tracking, and remote sensing of objects on the lunar surface, monitoring of environmental test facilities, structural shape and health monitoring, and nondestructive test and evaluation of assets. For all of these applications, it is anticipated that the system utilized to interrogate the SAW RFID tags may need to operate at fairly long range and in the presence of considerable multipath and multiple-access interference. Towards that end, EV4 is developing a prototype SAW RFID wireless interrogation system for use in such environments called the Passive Adaptive RFID Sensor Equipment (PARSED) system. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In this paper, we will consider the application of the PARSEQ system to the problem of simultaneous detection, identification, localization, and temperature estimation for multiple objects. We will summarize the overall design of the PARSEQ system and present a detailed description of the design and performance of the signal detection and estimation algorithms incorporated in the system. The system is currently configured only to measure temperature (jointly with range and tag ID), but future versions will be revised to measure parameters other than temperature as SAW tags capable of interfacing with external sensors become available. It is anticipated that the estimation of arbitrary parameters measured using SAW-based sensors will be based on techniques very similar to the joint range and temperature estimation techniques described in this paper.
Strain System for the Motion Base Shuttle Mission Simulator
NASA Technical Reports Server (NTRS)
Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.
2010-01-01
The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.
Environmental applications utilizing digital aerial imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monday, H.M.
1995-06-01
This paper discusses the use of satellite imagery, aerial photography, and computerized airborne imagery as applied to environmental mapping, analysis, and monitoring. A project conducted by the City of Irving, Texas involves compliance with national pollutant discharge elimination system (NPDES) requirements stipulated by the Environmental Protection Agency. The purpose of the project was the development and maintenance of a stormwater drainage utility. Digital imagery was collected for a portion of the city to map the City`s porous and impervious surfaces which will then be overlaid with property boundaries in the City`s existing Geographic information System (GIS). This information will allowmore » the City to determine an equitable tax for each land parcel according to the amount of water each parcel is contributing to the stormwater system. Another project involves environmental compliance for warm water discharges created by utility companies. Environmental consultants are using digital airborne imagery to analyze thermal plume affects as well as monitoring power generation facilities. A third project involves wetland restoration. Due to freeway and other forms of construction, plus a major reduction of fresh water supplies, the Southern California coastal wetlands are being seriously threatened. These wetlands, rich spawning grounds for plant and animal life, are home to thousands of waterfowl and shore birds who use this habitat for nesting and feeding grounds. Under the leadership of Southern California Edison (SCE) and CALTRANS (California Department of Transportation), several wetland areas such as the San Dieguito Lagoon (Del Mar, California), the Sweetwater Marsh (San Diego, California), and the Tijuana Estuary (San Diego, California) are being restored and closely monitored using digital airborne imagery.« less
NASA Technical Reports Server (NTRS)
Douard, Stephane
1994-01-01
Known as a Graphic Server, the system presented was designed for the control ground segment of the Telecom 2 satellites. It is a tool used to dynamically display telemetry data within graphic pages, also known as views. The views are created off-line through various utilities and then, on the operator's request, displayed and animated in real time as data is received. The system was designed as an independent component, and is installed in different Telecom 2 operational control centers. It enables operators to monitor changes in the platform and satellite payloads in real time. It has been in operation since December 1991.
Adopting Industry Standards for Control Systems Within Advanced Life Support
NASA Technical Reports Server (NTRS)
Young, James Scott; Boulanger, Richard
2002-01-01
This paper gives a description of OPC (Object Linking and Embedding for Process Control) standards for process control and outlines the experiences at JSC with using these standards to interface with I/O hardware from three independent vendors. The I/O hardware was integrated with a commercially available SCADA/HMI software package to make up the control and monitoring system for the Environmental Systems Test Stand (ESTS). OPC standards were utilized for communicating with I/O hardware and the software was used for implementing monitoring, PC-based distributed control, and redundant data storage over an Ethernet physical layer using an embedded din-rail mounted PC.
Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins
Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa
2017-01-01
In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.
Monitoring system including an electronic sensor platform and an interrogation transceiver
Kinzel, Robert L.; Sheets, Larry R.
2003-09-23
A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.
NASA Astrophysics Data System (ADS)
Suyehiro, K.; Sugioka, H.; Watanabe, T.
2008-12-01
The hydroacoustic monitoring by the International Monitoring System for CTBT (Comprehensive Nuclear- Test-Ban Treaty) verification system utilizes hydrophone stations (6) and seismic stations (5 and called T- phase stations) for worldwide detection. Some conspicuous signals of natural origin include those from earthquakes, volcanic eruptions, or whale calls. Among artificial sources are non-nuclear explosions and airgun shots. It is important for the IMS system to detect and locate hydroacoustic events with sufficient accuracy and correctly characterize the signals and identify the source. As there are a number of seafloor cable networks operated offshore Japanese islands basically facing the Pacific Ocean for monitoring regional seismicity, the data from these stations (pressure and seismic sensors) may be utilized to increase the capability of IMS. We use these data to compare some selected event parameters with those by IMS. In particular, there have been several unconventional acoustic signals in the western Pacific,which were also captured by IMS hydrophones across the Pacific in the time period of 2007-present. These anomalous examples and also dynamite shots used for seismic crustal structure studies and other natural sources will be presented in order to help improve the IMS verification capabilities for detection, location and characterization of anomalous signals.
NASA Astrophysics Data System (ADS)
Addiss, R. R., Jr.; Lawson, P. A.
1980-06-01
The design and performance of a photovoltaic power system is discussed. The 194 kW system consists of the photovoltaic array, the inverter/control subsystem, the building and utility interface, and the monitoring subsystem. The photovoltaic array consists of 56 separate subarrays of 112 photovoltaic modules each, deployed in rows on the southerly facing slope north of the school building. The wiring scheme permits individual modules to be disconnected without a radical change in subarray output current. Power is transmitted at 4160 V from the inverters and a step up transformer to the main 4160 V utility feed line in the school. Separate metering measures power bought and sold. At the optimum tilt angle of 40 deg, the array provides 232 MWH of AC energy annually, or 17 percent of the school load. The immediate impact is an $8000 saving in the annual utility bill. Levelized busbar energy costs are reduced from $2/kWH to $1/kWH when site specific parameters are used in the analysis instead of the JPL specified nominal values. A fault detection and isolation scheme which can find a single modulus failure is incorporated into the monitoring subsystem.
Smart Sensors Assess Structural Health
NASA Technical Reports Server (NTRS)
2010-01-01
NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.
Usage monitoring of electrical devices in a smart home.
Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A
2011-01-01
Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.
Utilities bullish on meter-reading technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, W.L.
1995-01-15
By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less
Flat Surface Damage Detection System (FSDDS)
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina
2013-01-01
The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.
Monitoring osseointegration and developing intelligent systems (Conference Presentation)
NASA Astrophysics Data System (ADS)
Salvino, Liming W.
2017-05-01
Effective monitoring of structural and biological systems is an extremely important research area that enables technology development for future intelligent devices, platforms, and systems. This presentation provides an overview of research efforts funded by the Office of Naval Research (ONR) to establish structural health monitoring (SHM) methodologies in the human domain. Basic science efforts are needed to utilize SHM sensing, data analysis, modeling, and algorithms to obtain the relevant physiological and biological information for human-specific health and performance conditions. This overview of current research efforts is based on the Monitoring Osseointegrated Prosthesis (MOIP) program. MOIP develops implantable and intelligent prosthetics that are directly anchored to the bone of residual limbs. Through real-time monitoring, sensing, and responding to osseointegration of bones and implants as well as interface conditions and environment, our research program aims to obtain individualized actionable information for implant failure identification, load estimation, infection mitigation and treatment, as well as healing assessment. Looking ahead to achieve ultimate goals of SHM, we seek to expand our research areas to cover monitoring human, biological and engineered systems, as well as human-machine interfaces. Examples of such include 1) brainwave monitoring and neurological control, 2) detecting and evaluating brain injuries, 3) monitoring and maximizing human-technological object teaming, and 4) closed-loop setups in which actions can be triggered automatically based on sensors, actuators, and data signatures. Finally, some ongoing and future collaborations across different disciplines for the development of knowledge automation and intelligent systems will be discussed.
Jovanov, E; Milenkovic, A; Otto, C; De Groen, P; Johnson, B; Warren, S; Taibi, G
2005-01-01
Recent technological advances in sensors, low-power integrated circuits, and wireless communications have enabled the design of low-cost, miniature, lightweight, intelligent physiological sensor platforms that can be seamlessly integrated into a body area network for health monitoring. Wireless body area networks (WBANs) promise unobtrusive ambulatory health monitoring for extended periods of time and near real-time updates of patients' medical records through the Internet. A number of innovative systems for health monitoring have recently been proposed. However, they typically rely on custom communication protocols and hardware designs, lacking generality and flexibility. The lack of standard platforms, system software support, and standards makes these systems expensive. Bulky sensors, high price, and frequent battery changes are all likely to limit user compliance. To address some of these challenges, we prototyped a WBAN utilizing a common off-the-shelf wireless sensor platform with a ZigBee-compliant radio interface and an ultra low-power microcontroller. The standard platform interfaces to custom sensor boards that are equipped with accelerometers for motion monitoring and a bioamplifier for electrocardiogram or electromyogram monitoring. Software modules for on-board processing, communication, and network synchronization have been developed using the TinyOS operating system. Although the initial WBAN prototype targets ambulatory monitoring of user activity, the developed sensors can easily be adapted to monitor other physiological parameters. In this paper, we discuss initial results, implementation challenges, and the need for standardization in this dynamic and promising research field.
Monitoring the health of power transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtley, J.L. Jr.; Hagman, W.H.; Lesieutre, B.C.
This article reviews MIT`s model-based system which offers adaptive, intelligent surveillance of transformers, and summons attention to anomalous operation through paging devices. Failures of large power transformers are problematic for four reasons. Generally, large transformers are situated so that failures present operational problems to the system. In addition, large power transformers are encased in tanks of flammable and environmentally hazardous fluid. Failures are often accompanied by fire and/or spillage of this fluid. This presents hazards to people, other equipment and property, and the local environment. Finally, large power transformers are costly devices. There is a clear incentive for utilities tomore » keep track of the health of their power transformers. Massachusetts Institute of Technology (MIT) has developed an adaptive, intelligent, monitoring system for large power transformers. Four large transformers on the Boston Edison system are under continuous surveillance by this system, which can summon attention to anomalous operation through paging devices. The monitoring system offers two advantages over more traditional (not adaptive) methods of tracking transformer operation.« less
Jeon, Joonryong
2017-01-01
In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size. PMID:28704945
Heo, Gwanghee; Jeon, Joonryong
2017-07-12
In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.
A Transparent Translation from Legacy System Model into Common Information Model: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Simpson, Jeffrey; Zhang, Yingchen
Advance in smart grid is forcing utilities towards better monitoring, control and analysis of distribution systems, and requires extensive cyber-based intelligent systems and applications to realize various functionalities. The ability of systems, or components within systems, to interact and exchange services or information with each other is the key to the success of smart grid technologies, and it requires efficient information exchanging and data sharing infrastructure. The Common Information Model (CIM) is a standard that allows different applications to exchange information about an electrical system, and it has become a widely accepted solution for information exchange among different platforms andmore » applications. However, most existing legacy systems are not developed using CIM, but using their own languages. Integrating such legacy systems is a challenge for utilities, and the appropriate utilization of the integrated legacy systems is even more intricate. Thus, this paper has developed an approach and open-source tool in order to translate legacy system models into CIM format. The developed tool is tested for a commercial distribution management system and simulation results have proved its effectiveness.« less
In-Pile Instrumentation Multi- Parameter System Utilizing Photonic Fibers and Nanovision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgett, Eric
2015-10-13
An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In additionmore » to pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles.« less
Space Station requirements for in-flight exercise countermeasures
NASA Technical Reports Server (NTRS)
Hayes, Judith C.; Harris, Bernard A.
1990-01-01
In an effort to retard the deleterious effects of space adaptation, NASA has defined requirements for an Exercise Countermeasure Facility (ECF) within the Space Station Crew Health Care System (CHeCS). The application of exercise as a countermeasure to spaceflight-induced deconditioning has been utilized in the past by both the United States and the Soviet space programs. The ECF will provide exercise hardware, physiological monitoring capabilities, and an interactive motivational display system. ECF operations and data will be coupled through the Space Station Freedom Data Management System for monitoring of inflight training and testing from ground control, thus allowing for real-time evaluation of crewmember performance and modification of exercise prescriptions. Finally, the objective of the ECF is to monitor and control the exercise of crewmembers for the maintenance of an operational level of fitness to ensure mission success.
Linear motor drive system for continuous-path closed-loop position control of an object
Barkman, William E.
1980-01-01
A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.
Micro benchtop optics by bulk silicon micromachining
Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.
2000-01-01
Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.
Efforts Toward an Early Warning Crop Monitor for Countries at Risk
NASA Astrophysics Data System (ADS)
Budde, M. E.; Verdin, J. P.; Barker, B.; Humber, M. L.; Becker-Reshef, I.; Justice, C. O.; Magadzire, T.; Galu, G.; Rodriguez, M.; Jayanthi, H.
2015-12-01
Assessing crop growing conditions is a crucial aspect of monitoring food security in the developing world. One of the core components of the Group on Earth Observations - Global Agricultural Monitoring (GEOGLAM) targets monitoring Countries at Risk (component 3). The Famine Early Warning Systems Network (FEWS NET) has a long history of utilizing remote sensing and crop modeling to address food security threats in the form of drought, floods, pest infestation, and climate change in some of the world's most at risk countries. FEWS NET scientists at the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center and the University of Maryland Department of Geography have undertaken efforts to address component 3, by promoting the development of a collaborative Early Warning Crop Monitor (EWCM) that would specifically address Countries at Risk. A number of organizations utilize combinations of satellite earth observations, field campaigns, network partner inputs, and crop modeling techniques to monitor crop conditions throughout the world. Agencies such as the Food and Agriculture Organization of the United Nations (FAO), United Nations World Food Programme (WFP), and the European Commission's Joint Research Centre (JRC) provide agricultural monitoring information and reporting across a broad number of areas at risk and in many cases, organizations routinely report on the same countries. The latter offers an opportunity for collaboration on crop growing conditions among agencies. The reduction of uncertainty and achievement of consensus will help strengthen confidence in decisions to commit resources for mitigation of acute food insecurity and support for resilience and development programs. In addition, the development of a collaborative global EWCM will provide each of the partner agencies with the ability to quickly gather crop condition information for areas where they may not typically work or have access to local networks. Using a framework developed by GEOGLAM for monitoring crop conditions in support of the Agricultural Market Information System, we developed an EWCM system for countries at risk. We present the current status of that implementation and highlight achievements to date along with future plans to support the needs of the global agricultural monitoring community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schott, J.
1996-12-31
Entergy Corporation is a Phase II utility with a fossil generation base composed primarily natural gas and low sulfur coal. This paper presents an analysis of a large Phase II utility`s continuous emissions monitoring data reported to EPA under Title IV Acid Rain. Electric utilities currently report hourly emissions of NOx, SO{sub 2}, CO{sub 2}, fuel use, and generation through electronic data reports to EPA. This paper describes strengths and weaknesses of the data reported to EPA as determined through an analysis of 1995 data. Emissions reported by this company tinder acid rain for SO{sub 2} and NOx are verymore » different from emissions reported to state agencies for annual emission inventory purposes in past years and will represent a significant break with historic trends. A comparison of emissions has been made of 1995 emissions reported under Electronic Data Reports to the emissions that would have been reported using emission factors and fuel data in past years. In addition, the paper examines the impacts of 40 CFR Part 75 Acid Rain requirements such as missing data substitution and monitor bias adjustments. Measurement system errors including stack flow measurement and false NOx Lb/MMBtu readings at very low loads are discussed. This paper describes the implications for public policy, compliance, emissions inventories, and business decisions of Part 75 acid rain monitoring and reporting requirements.« less
Automated Car Park Management System
NASA Astrophysics Data System (ADS)
Fabros, J. P.; Tabañag, D.; Espra, A.; Gerasta, O. J.
2015-06-01
This study aims to develop a prototype for an Automated Car Park Management System that will increase the quality of service of parking lots through the integration of a smart system that assists motorist in finding vacant parking lot. The research was based on implementing an operating system and a monitoring system for parking system without the use of manpower. This will include Parking Guidance and Information System concept which will efficiently assist motorists and ensures the safety of the vehicles and the valuables inside the vehicle. For monitoring, Optical Character Recognition was employed to monitor and put into list all the cars entering the parking area. All parking events in this system are visible via MATLAB GUI which contain time-in, time-out, time consumed information and also the lot number where the car parks. To put into reality, this system has a payment method, and it comes via a coin slot operation to control the exit gate. The Automated Car Park Management System was successfully built by utilizing microcontrollers specifically one PIC18f4550 and two PIC16F84s and one PIC16F628A.
Operations management: a tool to increase profitability.
Mulvehill, M J
2001-03-01
Operations management enables the efficient utilization of the production systems in a business. This paper will address several key elements in the business competency of operations management. Specifically, this discussion will review the components of a material requirement planning system and a "just-in-time" system for inventory control and time management to enable the dentist to monitor a portion of the practice's overhead costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Craig; Larmouth, Robert
The project was conceived and executed with the overarching objective to provide cost effective tools to cooperative utilities that enabled them to quickly detect, characterize and take remediative action against cyber attacks.
Innovative concrete bridging systems for pedestrian bridges : implementation and monitoring.
DOT National Transportation Integrated Search
2013-08-01
Two precast, prestressed pedestrian bridges were designed for rapid construction in Rolla, MO, utilizing high-strength concrete (HSC) : and high-strength self-consolidating concrete (HS-SCC) with a target 28 day compressive strength of 68.9 MPa (10,0...
Try P.R.A.I.S.E. - Positive Reinforcement And Individualized Systematic Economics.
ERIC Educational Resources Information Center
Wollam, Scott
Described is a multi-faceted money system which utilizes positive and negative reinforcement while at the same time incorporating peer pressure and reinforcement for behavior modification. The system uses such items as money, checks, deposit slips, and bank books. Children have jobs such as pencil sellers, banker, or door monitor, and receive pay…
Effects of a constructed wetland and pond system upon shallow groundwater quality
Ying Ouyang
2013-01-01
Constructed wetland (CW) and constructed pond (CP) are commonly utilized for removal of excess nutrients and certain pollutants from stormwater. This study characterized shallow groundwater quality for pre- and post-CW and CP system conditions using data from monitoring wells. Results showed that the average concentrations of groundwater phosphorus (P) decreased from...
NASA Technical Reports Server (NTRS)
1992-01-01
An ingestible mini-thermometer capable of measuring and relaying internal body temperatures is marketed by Human Technologies, Inc. The CorTemp system, developed by Goddard Space Flight Center and Applied Physics Lab, incorporates space technologies, among them telemetry and microminiaturized circuit, sensor and battery technologies. The capsule is ingested and continually monitors temperature with a vibrating quartz crystal sensor, which telemeters signals to a recorder, where data is displayed and stored. The system is very accurate, and because it does not require wires, allows patients to be monitored in everyday situations. The industrial variant (CSC-100) has wide utility in commercial applications.
Deep learning on temporal-spectral data for anomaly detection
NASA Astrophysics Data System (ADS)
Ma, King; Leung, Henry; Jalilian, Ehsan; Huang, Daniel
2017-05-01
Detecting anomalies is important for continuous monitoring of sensor systems. One significant challenge is to use sensor data and autonomously detect changes that cause different conditions to occur. Using deep learning methods, we are able to monitor and detect changes as a result of some disturbance in the system. We utilize deep neural networks for sequence analysis of time series. We use a multi-step method for anomaly detection. We train the network to learn spectral and temporal features from the acoustic time series. We test our method using fiber-optic acoustic data from a pipeline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevins, N; Vanderhoek, M; Lang, S
2014-06-15
Purpose: Medical display monitor calibration and quality control present challenges to medical physicists. The purpose of this work is to demonstrate and share experiences with an open source package that allows for both initial monitor setup and routine performance evaluation. Methods: A software package, pacsDisplay, has been developed over the last decade to aid in the calibration of all monitors within the radiology group in our health system. The software is used to calibrate monitors to follow the DICOM Grayscale Standard Display Function (GSDF) via lookup tables installed on the workstation. Additional functionality facilitates periodic evaluations of both primary andmore » secondary medical monitors to ensure satisfactory performance. This software is installed on all radiology workstations, and can also be run as a stand-alone tool from a USB disk. Recently, a database has been developed to store and centralize the monitor performance data and to provide long-term trends for compliance with internal standards and various accrediting organizations. Results: Implementation and utilization of pacsDisplay has resulted in improved monitor performance across the health system. Monitor testing is now performed at regular intervals and the software is being used across multiple imaging modalities. Monitor performance characteristics such as maximum and minimum luminance, ambient luminance and illuminance, color tracking, and GSDF conformity are loaded into a centralized database for system performance comparisons. Compliance reports for organizations such as MQSA, ACR, and TJC are generated automatically and stored in the same database. Conclusion: An open source software solution has simplified and improved the standardization of displays within our health system. This work serves as an example method for calibrating and testing monitors within an enterprise health system.« less
Tailor-made resealable micro(bio)reactors providing easy integration of in situ sensors
NASA Astrophysics Data System (ADS)
Viefhues, Martina; Sun, Shiwen; Valikhani, Donya; Nidetzky, Bernd; Vrouwe, Elwin X.; Mayr, Torsten; Bolivar, Juan M.
2017-06-01
Flow microreactors utilizing immobilized enzymes are of great interest in biocatalysis development. Most of the common devices are permanently closed, single-use systems, which allow limited physical and chemical surface modifications and evaluation methods. In this paper we will present resealable flowcells that overcome these limitations and moreover allow a quick and easy integration of sensor systems, because of the use of modular building blocks. The devices were utilized to study the enzyme activity of glucose oxidase immobilized on chemically modified glass surfaces under flow conditions, employing integrated optical oxygen sensors for on-line monitoring.
Engine monitoring display study
NASA Technical Reports Server (NTRS)
Hornsby, Mary E.
1992-01-01
The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.
Smart wearable body sensors for patient self-assessment and monitoring.
Appelboom, Geoff; Camacho, Elvis; Abraham, Mickey E; Bruce, Samuel S; Dumont, Emmanuel Lp; Zacharia, Brad E; D'Amico, Randy; Slomian, Justin; Reginster, Jean Yves; Bruyère, Olivier; Connolly, E Sander
2014-01-01
Innovations in mobile and electronic healthcare are revolutionizing the involvement of both doctors and patients in the modern healthcare system by extending the capabilities of physiological monitoring devices. Despite significant progress within the monitoring device industry, the widespread integration of this technology into medical practice remains limited. The purpose of this review is to summarize the developments and clinical utility of smart wearable body sensors. We reviewed the literature for connected device, sensor, trackers, telemonitoring, wireless technology and real time home tracking devices and their application for clinicians. Smart wearable sensors are effective and reliable for preventative methods in many different facets of medicine such as, cardiopulmonary, vascular, endocrine, neurological function and rehabilitation medicine. These sensors have also been shown to be accurate and useful for perioperative monitoring and rehabilitation medicine. Although these devices have been shown to be accurate and have clinical utility, they continue to be underutilized in the healthcare industry. Incorporating smart wearable sensors into routine care of patients could augment physician-patient relationships, increase the autonomy and involvement of patients in regards to their healthcare and will provide for novel remote monitoring techniques which will revolutionize healthcare management and spending.
NASA Astrophysics Data System (ADS)
Hudson, Tyler Blake
An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS-FBG throughout the cure cycle. Also, the residual strain can be readily determined at the end of the cure. This system demonstrated a real-time, in-situ, cure monitoring system using embedded multiplexed FBG/PS-FBG sensors to record both guided wave-based signals and strain. The distinct advantages of a fiber optic-based system include multiplexing, small size, embedding, utilization in harsh environments, electrically passive operation, and electromagnetic interference (EMI) immunity. The embedded multiplexed FBG/PS-FBG fiber optic sensor can monitor the entire life-cycle of the composite structure from curing, post-cure/assembly, and in-service for creating "smart structures".
Development of a portable Linux-based ECG measurement and monitoring system.
Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng
2011-08-01
This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.
1983-01-01
A computer simulation system has been developed for the Space Shuttle's advanced Centaur liquid fuel booster rocket, in order to conduct systems safety verification and flight operations training. This simulation utility is designed to analyze functional system behavior by integrating control avionics with mechanical and fluid elements, and is able to emulate any system operation, from simple relay logic to complex VLSI components, with wire-by-wire detail. A novel graphics data entry system offers a pseudo-wire wrap data base that can be easily updated. Visual subsystem operations can be selected and displayed in color on a six-monitor graphics processor. System timing and fault verification analyses are conducted by injecting component fault modes and min/max timing delays, and then observing system operation through a red line monitor.
A strategic approach for Water Safety Plans implementation in Portugal.
Vieira, Jose M P
2011-03-01
Effective risk assessment and risk management approaches in public drinking water systems can benefit from a systematic process for hazards identification and effective management control based on the Water Safety Plan (WSP) concept. Good results from WSP development and implementation in a small number of Portuguese water utilities have shown that a more ambitious nationwide strategic approach to disseminate this methodology is needed. However, the establishment of strategic frameworks for systematic and organic scaling-up of WSP implementation at a national level requires major constraints to be overcome: lack of legislation and policies and the need for appropriate monitoring tools. This study presents a framework to inform future policy making by understanding the key constraints and needs related to institutional, organizational and research issues for WSP development and implementation in Portugal. This methodological contribution for WSP implementation can be replicated at a global scale. National health authorities and the Regulator may promote changes in legislation and policies. Independent global monitoring and benchmarking are adequate tools for measuring the progress over time and for comparing the performance of water utilities. Water utilities self-assessment must include performance improvement, operational monitoring and verification. Research and education and resources dissemination ensure knowledge acquisition and transfer.
Mobile system for on-road measurements of air pollutants.
Katulski, Ryszard J; Namieśnik, Jacek; Sadowski, Jarosław; Stefański, Jacek; Szymańska, Krystyna; Wardencki, Waldemar
2010-04-01
The paper presents a prototype of a mobile monitoring system for measuring the levels of the main traffic air pollutants (C(6)H(6), NO(2), NO(x), CO, and CO(2),) in cities. The novelty of the proposed system lies in the fact that it can be utilized to monitor emissions from urban traffic along roads and areas where traditional monitoring stations cannot be placed. In the proposed system, the monitoring device can be mounted on any moving vehicle (such as a car, bus, or truck) rather than be attached to a dedicated van, as most systems of this kind found in literature are. Analyzers used in this system are small portable structures that contain an electronic instrument to measure, record, and transmit relevant data on concentrations of the pollutants to a website. The model outcome for carbon monoxide obtained in functional tests in real conditions is also presented here. Data on temporal changes of carbon monoxide concentration are compared against meteorological parameters and speed of the vehicle. Spatial interpolation techniques are applied to obtain a nonplanar visualization of carbon monoxide and benzene concentrations in the main arteries of a city.
Mobile system for on-road measurements of air pollutants
NASA Astrophysics Data System (ADS)
Katulski, Ryszard J.; Namieśnik, Jacek; Sadowski, Jarosław; Stefański, Jacek; Szymańska, Krystyna; Wardencki, Waldemar
2010-04-01
The paper presents a prototype of a mobile monitoring system for measuring the levels of the main traffic air pollutants (C6H6, NO2, NOx, CO, and CO2,) in cities. The novelty of the proposed system lies in the fact that it can be utilized to monitor emissions from urban traffic along roads and areas where traditional monitoring stations cannot be placed. In the proposed system, the monitoring device can be mounted on any moving vehicle (such as a car, bus, or truck) rather than be attached to a dedicated van, as most systems of this kind found in literature are. Analyzers used in this system are small portable structures that contain an electronic instrument to measure, record, and transmit relevant data on concentrations of the pollutants to a website. The model outcome for carbon monoxide obtained in functional tests in real conditions is also presented here. Data on temporal changes of carbon monoxide concentration are compared against meteorological parameters and speed of the vehicle. Spatial interpolation techniques are applied to obtain a nonplanar visualization of carbon monoxide and benzene concentrations in the main arteries of a city.
Advanced Communication and Control Solutions of Distributed Energy Resources (DER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron
2007-01-10
This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security wasmore » accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRI’s Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DER’s integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operator’s use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offers can be made electronically without human intervention. A suite of software was developed by DR SOC enabling DER usage in real time and day-ahead: Generation information file exchange with PI and the utility power flow A utility day-ahead information file Energy Offer Web Service Market Result Web Service Real-Time Meter Data Web Service Real-Time Notification Web Service Registered over 20 DER with MISO in Demand Response Market and demonstrated electronic sale to MISO.« less
The Global Geostationary Wildfire ABBA: Current Implementation and Future Plans
NASA Astrophysics Data System (ADS)
Prins, E.; Schmidt, C. C.; Hoffman, J.; Brunner, J.; Hyer, E. J.; Reid, J. S.
2012-12-01
The Wild Fire Automated Biomass Burning Algorithm (WF_ABBA), developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), has a long legacy of operational near real-time wildfire detection and characterization in the Western Hemisphere. The first phase of the global geostationary WF_ABBA was made operational at NOAA NESDIS in 2009 and currently includes diurnal active fire monitoring from GOES-East, GOES-South America, GOES-West, Meteosat-9 and MTSAT-1R/-2. This allows for near global active fire monitoring with coverage of Europe, Africa, Southeast Asia and the Western Pacific utilizing distinct geostationary sensors and a consistent algorithm. Version 6.5.006 of the WF_ABBA was specifically designed to address the capabilities and limitations of diverse geostationary sensors and requests from the global fire monitoring and user community. This presentation will provide an overview of version 6.5.006 of the global WF_ABBA fire product including the new fire and opaque cloud mask and associated metadata. We will demonstrate the WF_ABBA showing examples from around the globe with a focus on the capabilities and plans for integrating new geostationary platforms with coverage of Eastern Europe and Asia (INSAT-3D, Korean COMS, Russian GOMS Elektro-L MSU-GS). We are also preparing for future fire monitoring in the Western Hemisphere, Europe, and Africa utilizing the next generation GOES-R Imager and Meteosat Third Generation Flexible Combined Imager (MTG - FCI). The goal is to create a globally consistent long-term fire product utilizing the capabilities of each of these unique operational systems and a common fire detection algorithm. On an international level, development of a global geostationary fire monitoring system is supported by the IGOS GOFC/GOLD Fire Implementation Team. This work also generally supports Committee on Earth Observation Satellites (CEOS) activities and the Group on Earth Observations (GEO).
Tools to manage the enterprise-wide picture archiving and communications system environment.
Lannum, L M; Gumpf, S; Piraino, D
2001-06-01
The presentation will focus on the implementation and utilization of a central picture archiving and communications system (PACS) network-monitoring tool that allows for enterprise-wide operations management and support of the image distribution network. The MagicWatch (Siemens, Iselin, NJ) PACS/radiology information system (RIS) monitoring station from Siemens has allowed our organization to create a service support structure that has given us proactive control of our environment and has allowed us to meet the service level performance expectations of the users. The Radiology Help Desk has used the MagicWatch PACS monitoring station as an applications support tool that has allowed the group to monitor network activity and individual systems performance at each node. Fast and timely recognition of the effects of single events within the PACS/RIS environment has allowed the group to proactively recognize possible performance issues and resolve problems. The PACS/operations group performs network management control, image storage management, and software distribution management from a single, central point in the enterprise. The MagicWatch station allows for the complete automation of software distribution, installation, and configuration process across all the nodes in the system. The tool has allowed for the standardization of the workstations and provides a central configuration control for the establishment and maintenance of the system standards. This report will describe the PACS management and operation prior to the implementation of the MagicWatch PACS monitoring station and will highlight the operational benefits of a centralized network and system-monitoring tool.
NASA Astrophysics Data System (ADS)
Pulok, Md Kamrul Hasan
Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.
NASA Astrophysics Data System (ADS)
Sait, Abdulrahman S.
This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Hritz, Richard J.; Barrett, Carolyn A.
1997-01-01
The main engines of the Space Shuttle use hydrogen and oxygen as the fuel and oxidant. The explosive and fire hazards associated with these two components pose a serious danger to personnel and equipment. Therefore prior to use the main engines undergo extensive leak tests. Instead of using hazardous gases there tests utilize helium as the tracer element. This results in a need to monitor helium in the ppm level continuously for hours. The major challenge in developing such a low level gas monitor is the sample delivery system. This paper discuss a system developed to meet the requirements while also being mobile. Also shown is the calibration technique, stability, and accuracy results for the system.
Apparatus for monitoring crystal growth
Sachs, Emanual M.
1981-01-01
A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.
Method of monitoring crystal growth
Sachs, Emanual M.
1982-01-01
A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.
Optical cell monitoring system for underwater targets
NASA Astrophysics Data System (ADS)
Moon, SangJun; Manzur, Fahim; Manzur, Tariq; Demirci, Utkan
2008-10-01
We demonstrate a cell based detection system that could be used for monitoring an underwater target volume and environment using a microfluidic chip and charge-coupled-device (CCD). This technique allows us to capture specific cells and enumerate these cells on a large area on a microchip. The microfluidic chip and a lens-less imaging platform were then merged to monitor cell populations and morphologies as a system that may find use in distributed sensor networks. The chip, featuring surface chemistry and automatic cell imaging, was fabricated from a cover glass slide, double sided adhesive film and a transparent Polymethlymetacrylate (PMMA) slab. The optically clear chip allows detecting cells with a CCD sensor. These chips were fabricated with a laser cutter without the use of photolithography. We utilized CD4+ cells that are captured on the floor of a microfluidic chip due to the ability to address specific target cells using antibody-antigen binding. Captured CD4+ cells were imaged with a fluorescence microscope to verify the chip specificity and efficiency. We achieved 70.2 +/- 6.5% capturing efficiency and 88.8 +/- 5.4% specificity for CD4+ T lymphocytes (n = 9 devices). Bright field images of the captured cells in the 24 mm × 4 mm × 50 μm microfluidic chip were obtained with the CCD sensor in one second. We achieved an inexpensive system that rapidly captures cells and images them using a lens-less CCD system. This microfluidic device can be modified for use in single cell detection utilizing a cheap light-emitting diode (LED) chip instead of a wide range CCD system.
EPA’s Research to Support On-Site Non-potable Water Systems
As the reuse of alternative water sources continues to gain popularity, public utilities and other stakeholders are seeking guidance on pathogen treatment requirements and monitoring approaches for nonpotable use of onsite collected water (e.g. combined wastewater, graywater, sto...
NEAR-SURFACE AIR PARCEL TRAJECTORIES - ST. LOUIS, 1975
The utility of air parcel trajectories is described for the diagnosis of mesometeorological and urban air pollution problems. A technique is described that uses the St. Louis Regional Air Monitoring System (RAMS) to provide wind measurements for the local urban scale. A computeri...
A System for Cost and Reimbursement Control in Hospitals
Fetter, Robert B.; Thompson, John D.; Mills, Ronald E.
1976-01-01
This paper approaches the design of a regional or statewide hospital rate-setting system as the underpinning of a larger system which permits a regulatory agency to satisfy the requirements of various public laws now on the books or in process. It aims to generate valid interinstitutional monitoring on the three parameters of cost, utilization, and quality review. Such an approach requires the extension of the usual departmental cost and budgeting system to include consideration of the mix of patients treated and the utilization of various resources, including patient days, in the treatment of these patients. A sampling framework for the application of process-based quality studies and the generation of selected performance measurements is also included. PMID:941461
Army Networks: Opportunities Exist to Better Utilize Results from Network Integration Evaluations
2013-08-01
monitor operations; a touch screen-based mission command planning tool; and an antenna mast . The Army will field only one of these systems in capability...Office JTRS Joint Tactical Radio System NIE Network Integration Evaluation OSD Office of the Secretary of Defense SUE System under Evaluation...command systems . A robust transport layer capable of delivering voice, data, imagery, and video to the tactical edge (i.e., the forward battle lines
Kalali, Amir; West, Mark; Walling, David; Hilt, Dana; Engelhardt, Nina; Alphs, Larry; Loebel, Antony; Vanover, Kim; Atkinson, Sarah; Opler, Mark; Sachs, Gary; Nations, Kari; Brady, Chris
2016-01-01
This paper summarizes the results of the CNS Summit Data Quality Monitoring Workgroup analysis of current data quality monitoring techniques used in central nervous system (CNS) clinical trials. Based on audience polls conducted at the CNS Summit 2014, the panel determined that current techniques used to monitor data and quality in clinical trials are broad, uncontrolled, and lack independent verification. The majority of those polled endorse the value of monitoring data. Case examples of current data quality methodology are presented and discussed. Perspectives of pharmaceutical companies and trial sites regarding data quality monitoring are presented. Potential future developments in CNS data quality monitoring are described. Increased utilization of biomarkers as objective outcomes and for patient selection is considered to be the most impactful development in data quality monitoring over the next 10 years. Additional future outcome measures and patient selection approaches are discussed. PMID:27413584
NASA Astrophysics Data System (ADS)
Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa
2015-12-01
Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.
Causal simulation and sensor planning in predictive monitoring
NASA Technical Reports Server (NTRS)
Doyle, Richard J.
1989-01-01
Two issues are addressed which arise in the task of detecting anomalous behavior in complex systems with numerous sensor channels: how to adjust alarm thresholds dynamically, within the changing operating context of the system, and how to utilize sensors selectively, so that nominal operation can be verified reliably without processing a prohibitive amount of sensor data. The approach involves simulation of a causal model of the system, which provides information on expected sensor values, and on dependencies between predicted events, useful in assessing the relative importance of events so that sensor resources can be allocated effectively. The potential applicability of this work to the execution monitoring of robot task plans is briefly discussed.
Implant for in-vivo parameter monitoring, processing and transmitting
Ericson, Milton N [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Smith, Stephen F [London, TN; Hylton, James O [Clinton, TN
2009-11-24
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.
2003-01-01
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Method for Continuous Monitoring of Electrospray Ion Formation
NASA Astrophysics Data System (ADS)
Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard
2017-10-01
A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.
Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.
2012-01-01
Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.
A Framework for Monitoring Progress Using Summary Measures of Health.
Madans, Jennifer H; Weeks, Julie D
2016-10-01
Initiatives designed to monitor health typically incorporate numerous specific measures of health and the health system to assess improvements, or lack thereof, for policy and program purposes. The addition of summary measures provides overarching information which is essential for determining whether the goals of such initiatives are met. Summary measures are identified that relate to the individual indicators but that also reflect movement in the various parts of the system. A hierarchical framework that is conceptually consistent and which utilizes a succinct number of summary measures incorporating indicators of functioning and participation is proposed. While a large set of individual indicators can be useful for monitoring progress, these individual indicators do not provide an overall evaluation of health, defined broadly, at the population level. A hierarchical framework consisting of summary measures is important for monitoring the success of health improvement initiatives. © The Author(s) 2016.
A Monitoring System for the LHCb Data Flow
NASA Astrophysics Data System (ADS)
Barbosa, João; Gaspar, Clara; Jost, Beat; Frank, Markus; Cardoso, Luis G.
2017-06-01
The LHCb experiment uses the LHC accelerator for the collisions that produce the physics data necessary for analysis. The data produced by the detector by measuring the results of the collisions at a rate of 40 MHz are read out by a complex data acquisition (DAQ) system, which is summarily described in this paper. Distributed systems of such dimensions rely on monitoring and control systems that account for the numerous faults that can happen throughout the whole operation. With this in mind, a new system was created to extend the monitoring of the readout system, in this case by providing an overview of what is happening in each stage of the DAQ process, starting in the hardware trigger performed right after the detector measurements and ending in the local storage of the experiment. This system, a complement to the current run control (experimental control system), intends to shorten reaction times when a problem occurs by providing the operators with detailed information of where a certain fault is occurring. The architecture of the tool and its utilization by the experiment operators are described in this paper.
A secure mobile crowdsensing (MCS) location tracker for elderly in smart city
NASA Astrophysics Data System (ADS)
Shien, Lau Khai; Singh, Manmeet Mahinderjit
2017-10-01
According to the UN's (United Nations) projection, Malaysia will achieve ageing population status by 2030. The challenge of the growing ageing population is health and social care services. As the population lives longer, the costs of institutional care rises and elderly who not able live independently in their own homes without caregivers. Moreover, it restricted their activity area, safety and freedom in their daily life. Hence, a tracking system is worthy for their caregivers to track their real-time location with efficient. Currently tracking and monitoring systems are unable to satisfy the needs of the community. Hence, Indoor-Outdoor Elderly Secure and Tracking care system (IOET) proposed to track and monitor elderly. This Mobile Crowdsensing type of system is using indoor and outdoor positioning system to locate elder which utilizes the RFID, NFC, biometric system and GPS aim to secure the safety of elderly within indoors and outdoors environment. A mobile application and web-based application to be designed for this system. This system able to real-time tracking by combining GPS and NFC for outdoor coverage where ideally in smart city. In indoor coverage, the system utilizes active RFID tracking elderly movement. The system will prompt caregiver wherever elderly movement or request by using the notification service which provided the real-time notify. Caregiver also can review the place that visited by elderly and trace back elderly movement.
NASA Technical Reports Server (NTRS)
Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James
2012-01-01
Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer decision support for optimal maintenance.
NASA Astrophysics Data System (ADS)
Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed
2017-02-01
A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.
NASA Technical Reports Server (NTRS)
Doggett, William; Vazquez, Sixto
2000-01-01
A visualization system is being developed out of the need to monitor, interpret, and make decisions based on the information from several thousand sensors during experimental testing to facilitate development and validation of structural health monitoring algorithms. As an added benefit the system will enable complete real-time sensor assessment of complex test specimens. Complex structural specimens are routinely tested that have hundreds or thousands of sensors. During a test, it is impossible for a single researcher to effectively monitor all the sensors and subsequently interesting phenomena occur that are not recognized until post-test analysis. The ability to detect and alert the researcher to these unexpected phenomena as the test progresses will significantly enhance the understanding and utilization of complex test articles. Utilization is increased by the ability to halt a test when the health monitoring algorithm response is not satisfactory or when an unexpected phenomenon occurs, enabling focused investigation potentially through the installation of additional sensors. Often if the test continues, structural changes make it impossible to reproduce the conditions that exhibited the phenomena. The prohibitive time and costs associated with fabrication, sensoring, and subsequent testing of additional test articles generally makes it impossible to further investigate the phenomena. A scalable architecture is described to address the complex computational demands of structural health monitoring algorithm development and laboratory experimental test monitoring. The researcher monitors the test using a photographic quality 3D graphical model with actual sensor locations identified. In addition, researchers can quickly activate plots displaying time or load versus selected sensor response along with the expected values and predefined limits. The architecture has several key features. First, distributed dissimilar computers may be seamlessly integrated into the information flow. Second, virtual sensors may be defined that are complex functions of existing sensors or other virtual sensors. Virtual sensors represent a calculated value not directly measured by particular physical instrument. They can be used, for example, to represent the maximum difference in a range of sensors or the calculated buckling load based on the current strains. Third, the architecture enables autonomous response to preconceived events, where by the system can be configured to suspend or abort a test if a failure is detected in the load introduction system. Fourth, the architecture is designed to allow cooperative monitoring and control of the test progression from multiple stations both remote and local to the test system. To illustrate the architecture, a preliminary implementation is described monitoring the Stitched Composite Wing recently tested at LaRC.
Small Autonomous Aircraft Servo Health Monitoring
NASA Technical Reports Server (NTRS)
Quintero, Steven
2008-01-01
Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.
Anton, Stephen D.; LeBlanc, Eric; Allen, H. Raymond; Karabetian, Christy; Sacks, Frank; Bray, George; Williamson, Donald A.
2012-01-01
The use of self-monitoring as a tool to facilitate behavioral modification is common in many lifestyle-based weight loss interventions. Electronic tracking programs, including computer-based systems and smart phone applications, have been developed to allow individuals to self-monitor their behavior digitally. These programs offer an advantage over traditional self-report modalities in that they can provide users with direct feedback about dietary and/or physical activity adherence levels and thereby assist them in real-time decision making. This article describes the use of an Internet-based computerized tracking system (CTS) that was developed specifically for the POUNDS LOST study, a 2-year randomized controlled trial designed to test the efficacy of four macronutrient diets for weight and fat reduction in healthy, overweight men and women (body mass index range = 25.0–39.9 kg/m2). The CTS served many functions in this study, including data collection, dietary and exercise assessment and feedback, messaging system, and report generation. Across all groups, participants with high usage of the CTS during the initial 8 weeks lost greater amounts of weight than participants with low usage (8.7% versus 5.5% of initial body weight, respectively; p < .001) at week 32. Rates of CTS utilization were highest during the first year of this 2-year intervention, and utilization of the CTS declined steadily over time. The unique features of the CTS combined with technological developments, such as smart phone applications, offer significant potential to improve the user’s self-monitoring experience and adherence to health promotion programs designed specifically for individuals with obesity and type 2 diabetes. PMID:23063049
Reusable rocket engine turbopump condition monitoring
NASA Technical Reports Server (NTRS)
Hampson, M. E.; Barkhoudarian, S.
1985-01-01
Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.
Optimization of Supercomputer Use on EADS II System
NASA Technical Reports Server (NTRS)
Ahmed, Ardsher
1998-01-01
The main objective of this research was to optimize supercomputer use to achieve better throughput and utilization of supercomputers and to help facilitate the movement of non-supercomputing (inappropriate for supercomputer) codes to mid-range systems for better use of Government resources at Marshall Space Flight Center (MSFC). This work involved the survey of architectures available on EADS II and monitoring customer (user) applications running on a CRAY T90 system.
Solar domestic water heating performance test program - Interim report
NASA Astrophysics Data System (ADS)
Auris, R. H.
Performance results from utility-installed or monitored flat plate collector systems on 13 residences are reported. The systems comprised either drain-down, i.e., emptying the water-working fluid into a reservoir in response to thermistor sensing of sufficiently low temperatures, or water/glycol mixture as freeze protection measures. Installation errors committeed by commercial solar contractors employed by the utility customers are outlined, indicating the uncertainty involved in obtaining a quality installation. Most system failures occurred with the drain-down systems, which also featured the highest system efficiencies. Redundancy in the control systems is suggested to offer significant improvements in system efficiency. The systems provided an average of 40% of the annual hot water needs, and the development of low cost materials, better system designs, low cost financing, and increased tax credits are concluded to be methods of making the systems cost effective.
A Spike Cocktail Approach to Improve Microbial Performance Monitoring for Water Reuse.
Zimmerman, Brian D; Korajkic, Asja; Brinkman, Nichole E; Grimm, Ann C; Ashbolt, Nicholas J; Garland, Jay L
Water reuse, via either centralized treatment of traditional wastewater or decentralized treatment and on-site reuse, is becoming an increasingly important element of sustainable water management. Despite advances in waterborne pathogen detection methods, low and highly variable pathogen levels limit their utility for routine evaluation of health risks in water reuse systems. Therefore, there is a need to improve our understanding of the linkage between pathogens and more readily measured process indicators during treatment. This paper describes an approach for constructing spiking experiments to relate the behavior of viral, bacterial, and protozoan pathogens with relevant process indicators. General issues are reviewed, and the spiking protocol is applied as a case study example to improve microbial performance monitoring and health risk evaluation in a water reuse system. This approach provides a foundation for the development of novel approaches to improve real or near-real time performance monitoring of water recycling systems.
A mobile phone based remote patient monitoring system for chronic disease management.
Trudel, Mathieu; Cafazzo, Joseph A; Hamill, Melinda; Igharas, Walter; Tallevi, Kevin; Picton, Peter; Lam, Jack; Rossos, Peter G; Easty, Anthony C; Logan, Alexander
2007-01-01
Rising concern over the poor state of chronic disease management led to the user-informed design and development of a home tele-monitoring system. Focus groups with patients and primary care providers guided the research team towards a design that would accommodate the workflow and concerns of the healthcare providers and the low use and comfort with technology found among the patient population. The system was trialed in a before-and-after pilot study of 34 patients with diabetes and hypertension. Findings demonstrate a significant improvement in systolic and diastolic blood pressure. An RCT beginning in 2007 is being conducted to confirm these findings. It is hypothesized that this user-centred approach, utilizing focus groups, iterative design and human factors methods of evaluation, will lead to the next-generation of home tele-monitoring applications that are more intuitive, less cumbersome, and ultimately bring about greater patient compliance and better physician management.
An ID Network System to Prepare for Global Environmental/Health Concerns
NASA Astrophysics Data System (ADS)
Asano, Shoichiro; Yoneda, Susumu
Climate change and/or pandemics are global life threatening concerns. For verifying and utilizing monitored data for solving to the Climate Change concerns, a network system based on device ID would be proposed. In this paper, we review the recent standardization initiatives in ITU-T, and propose an ID network that can be used to verify the solutions.
The knowledge-based framework for a nuclear power plant operator advisor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.W.; Hajek, B.K.
1989-01-01
An important facet in the design, development, and evaluation of aids for complex systems is the identification of the tasks performed by the operator. Operator aids utilizing artificial intelligence, or more specifically knowledge-based systems, require identification of these tasks in the context of a knowledge-based framework. In this context, the operator responses to the plant behavior are to monitor and comprehend the state of the plant, identify normal and abnormal plant conditions, diagnose abnormal plant conditions, predict plant response to specific control actions, and select the best available control action, implement a feasible control action, monitor system response to themore » control action, and correct for any inappropriate responses. These tasks have been identified to formulate a knowledge-based framework for an operator advisor under development at Ohio State University that utilizes the generic task methodology proposed by Chandrasekaran. The paper lays the foundation to identify the responses as a knowledge-based set of tasks in accordance with the expected human operator responses during an event. Initial evaluation of the expert system indicates the potential for an operator aid that will improve the operator's ability to respond to both anticipated and unanticipated events.« less
The Mu2e Solenoid Cold Mass Position Monitor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
The Mu2e Solenoid Cold Mass Position Monitor System
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...
2018-01-23
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
Signal processing methodologies for an acoustic fetal heart rate monitor
NASA Technical Reports Server (NTRS)
Pretlow, Robert A., III; Stoughton, John W.
1992-01-01
Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.
A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.
Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping
2014-03-05
Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.
A Model-based Health Monitoring and Diagnostic System for the UH-60 Helicopter. Appendix D
NASA Technical Reports Server (NTRS)
Patterson-Hine, Ann; Hindson, William; Sanderfer, Dwight; Deb, Somnath; Domagala, Chuck
2001-01-01
Model-based reasoning techniques hold much promise in providing comprehensive monitoring and diagnostics capabilities for complex systems. We are exploring the use of one of these techniques, which utilizes multi-signal modeling and the TEAMS-RT real-time diagnostic engine, on the UH-60 Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) flight research aircraft. We focus on the engine and transmission systems, and acquire sensor data across the 1553 bus as well as by direct analog-to-digital conversion from sensors to the QHuMS (Qualtech health and usage monitoring system) computer. The QHuMS computer uses commercially available components and is rack-mounted in the RASCAL facility. A multi-signal model of the transmission and engine subsystems enables studies of system testability and analysis of the degree of fault isolation available with various instrumentation suites. The model and examples of these analyses will be described and the data architectures enumerated. Flight tests of this system will validate the data architecture and provide real-time flight profiles to be further analyzed in the laboratory.
REMOTE MONITORING AND DATA VERIFICATION WHEN USING A PACKAGE PLANT
A remote telemetry system (RTS) has been fabricated, laboratory tested, and integrated into the field operation of 10,000 gal/day ultra filtration package plant (UFPP). The UFPP utilizes bag filtration, disinfection by chlorination, and an ultra filtration membrane to produce fin...
Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.
Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L
2017-09-28
Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.
Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions
Ramachandran, Rahul; Menezes, Pradeep L.
2017-01-01
Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint. PMID:28956819
NASA Astrophysics Data System (ADS)
Flanigan, Katherine A.; Johnson, Nephi R.; Hou, Rui; Ettouney, Mohammed; Lynch, Jerome P.
2017-04-01
The ability to quantitatively assess the condition of railroad bridges facilitates objective evaluation of their robustness in the face of hazard events. Of particular importance is the need to assess the condition of railroad bridges in networks that are exposed to multiple hazards. Data collected from structural health monitoring (SHM) can be used to better maintain a structure by prompting preventative (rather than reactive) maintenance strategies and supplying quantitative information to aid in recovery. To that end, a wireless monitoring system is validated and installed on the Harahan Bridge which is a hundred-year-old long-span railroad truss bridge that crosses the Mississippi River near Memphis, TN. This bridge is exposed to multiple hazards including scour, vehicle/barge impact, seismic activity, and aging. The instrumented sensing system targets non-redundant structural components and areas of the truss and floor system that bridge managers are most concerned about based on previous inspections and structural analysis. This paper details the monitoring system and the analytical method for the assessment of bridge condition based on automated data-driven analyses. Two primary objectives of monitoring the system performance are discussed: 1) monitoring fatigue accumulation in critical tensile truss elements; and 2) monitoring the reliability index values associated with sub-system limit states of these members. Moreover, since the reliability index is a scalar indicator of the safety of components, quantifiable condition assessment can be used as an objective metric so that bridge owners can make informed damage mitigation strategies and optimize resource management on single bridge or network levels.
Recommending blood glucose monitors, a pharmacy perspective.
Carter, Alan
2007-03-01
Selection of what blood glucose monitoring system to utilize has become an issue for physicians, diabetes educators, pharmacists, and patients. The field of competing makes and models of blood glucose monitoring systems has become crowded, with manufacturers touting improvements in accuracy, ease of use/alternate site options, stored results capacity, software evaluation tools, and/or price point. Personal interviews of 12 pharmacists from community and academic practice settings about monitor preference, as well as results from a national survey of pharmacist recommendations, were compared to actual wholesale sales data to estimate the impact of such recommendations on final monitor selection by the patient. Accu-Chek monitors were recommended 34.65% of the time and represented 28.58% of sales, with a success rate of 82.48% of being the monitor selected. OneTouch monitors had 27.72% of recommendations but represented 31.43% of sales, indicating possible patient brand loyalty or formulary preference for that product. FreeStyle(R) monitors came in third for pharmacist recommendations and were selected by the patient 61.68% of the time when recommended. The category of "other monitor" choices was selected 60.89% of the time by patients given those suggestions. Included in the "other monitor" category was the new disposable monitor marketed as the Sidekick. Based on sales data provided, the Sidekick made up 2.87% of "other monitor" category sales, representing 68% of the "other monitor" segment. While patients frequently follow pharmacist monitoring system suggestions, the ultimate deciding factor is most often the final out-of-pocket cost to the patient. As a result, cost of supplies often becomes the most important determining factor in final monitor selection at the patient level. If the patient cannot afford to perform the recommended daily testing intervals, all other determining factors and suggestions become moot.
NASA Astrophysics Data System (ADS)
Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.
2013-01-01
With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.
Integrated monitoring of wind plant systems
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong
2008-03-01
Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.
An Epidemiological Network Model for Disease Outbreak Detection
Reis, Ben Y; Kohane, Isaac S; Mandl, Kenneth D
2007-01-01
Background Advanced disease-surveillance systems have been deployed worldwide to provide early detection of infectious disease outbreaks and bioterrorist attacks. New methods that improve the overall detection capabilities of these systems can have a broad practical impact. Furthermore, most current generation surveillance systems are vulnerable to dramatic and unpredictable shifts in the health-care data that they monitor. These shifts can occur during major public events, such as the Olympics, as a result of population surges and public closures. Shifts can also occur during epidemics and pandemics as a result of quarantines, the worried-well flooding emergency departments or, conversely, the public staying away from hospitals for fear of nosocomial infection. Most surveillance systems are not robust to such shifts in health-care utilization, either because they do not adjust baselines and alert-thresholds to new utilization levels, or because the utilization shifts themselves may trigger an alarm. As a result, public-health crises and major public events threaten to undermine health-surveillance systems at the very times they are needed most. Methods and Findings To address this challenge, we introduce a class of epidemiological network models that monitor the relationships among different health-care data streams instead of monitoring the data streams themselves. By extracting the extra information present in the relationships between the data streams, these models have the potential to improve the detection capabilities of a system. Furthermore, the models' relational nature has the potential to increase a system's robustness to unpredictable baseline shifts. We implemented these models and evaluated their effectiveness using historical emergency department data from five hospitals in a single metropolitan area, recorded over a period of 4.5 y by the Automated Epidemiological Geotemporal Integrated Surveillance real-time public health–surveillance system, developed by the Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology on behalf of the Massachusetts Department of Public Health. We performed experiments with semi-synthetic outbreaks of different magnitudes and simulated baseline shifts of different types and magnitudes. The results show that the network models provide better detection of localized outbreaks, and greater robustness to unpredictable shifts than a reference time-series modeling approach. Conclusions The integrated network models of epidemiological data streams and their interrelationships have the potential to improve current surveillance efforts, providing better localized outbreak detection under normal circumstances, as well as more robust performance in the face of shifts in health-care utilization during epidemics and major public events. PMID:17593895
Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D
2017-01-01
In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.
Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.
2017-01-01
In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400
Blankush, Joseph M; Freeman, Robbie; McIlvaine, Joy; Tran, Trung; Nassani, Stephen; Leitman, I Michael
2017-10-01
Modified Early Warning Scores (MEWS) provide real-time vital sign (VS) trending and reduce ICU admissions in post-operative patients. These early warning calculations classically incorporate oxygen saturation, heart rate, respiratory rate, systolic blood pressure, and temperature but have not previously included end-tidal CO2 (EtCO 2 ), more recently identified as an independent predictor of critical illness. These systems may be subject to failure when physiologic data is incorrectly measured, leading to false alarms and increased workload. This study investigates whether the implementation of automated devices that utilize ongoing vital signs monitoring and MEWS calculations, inclusive of a score for end-tidal CO 2 (EtCO 2 ), can be feasibly implemented on the general care hospital floor and effectively identify derangements in a post-operative patient's condition while limiting the amount of false alarms that would serve to increase provider workload. From July to November 2014, post-operative patients meeting the inclusion criteria (BMI > 30 kg/m 2 , history of obstructive sleep apnea, or the use of patient-controlled analgesia (PCA) or epidural narcotics) were monitored using automated devices that record minute-by-minute VS included in classic MEWS calculations as well as EtCO 2 . Automated messages via pagers were sent to providers for instances when the device measured elevated MEWS, abnormal EtCO 2 , and oxygen desaturations below 85 %. Data, including alarm and message details from the first 133 patients, were recorded and analyzed. Overall, 3.3 alarms and pages sounded per hour of monitoring. Device-only alarms sounded 2.7 times per hour-21 % were technical alarms. The remaining device-only alarms for concerning VS sounded 2.0/h, 70 % for falsely recorded VS. Pages for abnormal EtCO 2 sounded 0.4/h (82 % false recordings) while pages for low blood oxygen saturation sounded 0.1/h (55 % false alarms). 143 times (0.1 pages/h) the devices calculated a MEWS warranting a page (rise in MEWS by 2 or 5 or greater)-62 % were false scores inclusive of falsely recorded VS. An abnormal EtCO 2 value resulted in or added to an elevated MEWS score in 29 % of notifications, but 50 % of these included a falsely abnormal EtCO 2 value. To date, no adverse events have occurred. There were no statistically significant demographic, post-operative condition, or pre-existing comorbidity differences between patients who had a majority of true alarms from those who had mostly false-positive alarms. Although not statistically significant, the group of patients in whom automated MEWS suggested greater utility included those with a history of hypertension (p = 0.072) and renal disease (p = 0.084). EtCO 2 monitoring was more likely to be useful in patients with a history of type 2 diabetes, coronary artery disease, and obstructive sleep apnea (p < 0.05). These patients were also more likely to have been on a PCA post-operatively (p < 0.05). Overall, non-invasive physiologic monitoring incorporating an automated MEWS system, modified to include end-tidal CO2 can be feasibly implemented in a hospital ward. Further study is needed to evaluate its clinical utility, including an end-tidal CO 2 score, is feasibly implemented and can be useful in monitoring select post-operative patients for derangements in physiologic metrics. Like any other monitoring system, false alarms may occur at high rates. While further study is needed to determine the additive utility of EtCO 2 in MEWS calculations, this study suggests utility of EtCO 2 in select post-operative patients.
A Tool for Automatic Verification of Real-Time Expert Systems
NASA Technical Reports Server (NTRS)
Traylor, B.; Schwuttke, U.; Quan, A.
1994-01-01
The creation of an automated, user-driven tool for expert system development, validation, and verification is curretly onoging at NASA's Jet Propulsion Laboratory. In the new age of faster, better, cheaper missions, there is an increased willingness to utilize embedded expert systems for encapsulating and preserving mission expertise in systems which combine conventional algorithmic processing and artifical intelligence. The once-questioned role of automation in spacecraft monitoring is now becoming one of increasing importance.
Development of autonomous gamma dose logger for environmental monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.
2012-03-15
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less
Development of autonomous gamma dose logger for environmental monitoring
NASA Astrophysics Data System (ADS)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.
2012-03-01
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.
Therapeutic Drug Monitoring of the Newer Anti-Epilepsy Medications
Krasowski, Matthew D.
2010-01-01
In the past twenty years, 14 new antiepileptic drugs have been approved for use in the United States and/or Europe. These drugs are eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. In general, the clinical utility of therapeutic drug monitoring has not been established in clinical trials for these new anticonvulsants, and clear guidelines for drug monitoring have yet to be defined. The antiepileptic drugs with the strongest justifications for drug monitoring are lamotrigine, oxcarbazepine, stiripentol, and zonisamide. Stiripentol and tiagabine are strongly protein bound and are candidates for free drug monitoring. Therapeutic drug monitoring has lower utility for gabapentin, pregabalin, and vigabatrin. Measurement of salivary drug concentrations has potential utility for therapeutic drug monitoring of lamotrigine, levetiracetam, and topiramate. Therapeutic drug monitoring of the new antiepileptic drugs will be discussed in managing patients with epilepsy. PMID:20640233
Deterministic Wave Predictions from the WaMoS II
2014-10-23
Monitoring System WaMoS II as input to a wave pre- diction system . The utility of wave prediction is primarily ves- sel motion prediction. Specific...successful prediction. The envisioned prediction system may provide graphical output in the form of a decision support system (Fig. 1). Predictions are...quality and accuracy of WaMoS as input to a deterministic wave prediction system . In the context of this paper, the Time Now Forecast H e a v e Hindcast
Apparatus and methods for a human de-amplifier system
Kress, Reid L.; Jansen, John F.
2000-01-01
A human de-amplifier system for interfacing a human operator and a physical object through a physical plant, wherein the physical object has dimensions in the range of 1 micrometer to 1 mm. The human de-amplifier system uses an inner-feedback loop to increases the equivalent damping of the operating system to stabilize the system when it contacts with the environment and reduces the impact of the environment variation by utilizing a high feedback gain, determined by a root locus sketch. Because the stability of the human de-amplifier system of the present invention is greatly enhanced over that of the prior art, the de-amplifier system is able to manipulate the physical object has dimensions in the range of 1 micrometer to 1 mm with high stability and accuracy. The system also has a monitoring device to monitor the motion of the physical object under manipulation.
LACIE - A look to the future. [Large Area Crop Inventory Experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Hall, F. G.
1977-01-01
The Large Area Crop Inventory Experiment (LACIE) is a 'proof of concept' project designed to demonstrate the applicability of remote sensing technology to the global monitoring of wheat. This paper discusses the need for more timely and reliable monitoring of food and fiber supplies, reviews the monitoring systems currently utilized by the USDA and United Nations Food and Agriculture Organization in the United States and in foreign countries, and elucidates the fundamentals involved in assessing the impact of variable weather and economic conditions on wheat acreage, yield, and production. The experiment's approach to production monitoring is described briefly, and its status is reviewed as of the conclusion of 2 years of successful operation. Examples of acreage and yield monitoring in the Soviet Union are used to illustrate the experiment's approach.
Predictive monitoring research: Summary of the PREMON system
NASA Technical Reports Server (NTRS)
Doyle, Richard J.; Sellers, Suzanne M.; Atkinson, David J.
1987-01-01
Traditional approaches to monitoring are proving inadequate in the face of two important issues: the dynamic adjustment of expectations about sensor values when the behavior of the device is too complex to enumerate beforehand, and the selective but effective interpretation of sensor readings when the number of sensors becomes overwhelming. This system addresses these issues by building an explicit model of a device and applying common-sense theories of physics to model causality in the device. The resulting causal simulation of the device supports planning decisions about how to efficiently yet reliably utilize a limited number of sensors to verify correct operation of the device.
Earth resources data analysis program, phase 3
NASA Technical Reports Server (NTRS)
1975-01-01
Tasks were performed in two areas: (1) systems analysis and (2) algorithmic development. The major effort in the systems analysis task was the development of a recommended approach to the monitoring of resource utilization data for the Large Area Crop Inventory Experiment (LACIE). Other efforts included participation in various studies concerning the LACIE Project Plan, the utility of the GE Image 100, and the specifications for a special purpose processor to be used in the LACIE. In the second task, the major effort was the development of improved algorithms for estimating proportions of unclassified remotely sensed data. Also, work was performed on optimal feature extraction and optimal feature extraction for proportion estimation.
Analogue step-by-step DC component eliminator for 24-hour PPG signal monitoring.
Pilt, Kristjan; Meigas, Kalju; Lass, Jaanus; Rosmann, Mart; Kaik, Jüri
2007-01-01
For applications where PPG signal AC component needs to be measured without disturbances in its shape and recorded digitally with high digitalization accuracy, the step-by-step DC component eliminator is developed. This paper describes step-by-step DC component eliminator, which is utilized with analogue comparator and operational amplifier. It allows to record PPG signal without disturbances in its shape in 24-hours PPG signal monitoring system. The experiments with PPG signal have been carried out.
In situ measurement of particulate number density and size distribution from an aircraft
NASA Technical Reports Server (NTRS)
Briehl, D.
1974-01-01
Commercial particulate measuring instruments were flown aboard the NASA Convair 990. A condensation nuclei monitor was utilized to measure particles larger than approximately 0.003 micrometers in diameter. A specially designed pressurization system was used with this counter so that the sample could be fed into the monitor at cabin altitude pressure. A near-forward light scattering counter was used to measure the number and size distribution particles in the size range from 0.5 to 5 micrometers and greater in diameter.
Saito, Kaoru; Nakamura, Kazuhiko; Ueta, Mutsuyuki; Kurosawa, Reiko; Fujiwara, Akio; Kobayashi, Hill Hiroki; Nakayama, Masaya; Toko, Ayako; Nagahama, Kazuyo
2015-11-01
We have developed a system that streams and archives live sound from remote areas across Japan via an unmanned automatic camera. The system was used to carry out pilot bird censuses in woodland; this allowed us to examine the use of live sound transmission and the role of social media as a mediator in remote scientific monitoring. The system has been streaming sounds 8 h per day for more than five years. We demonstrated that: (1) the transmission of live sound from a remote woodland could be used effectively to monitor birds in a remote location; (2) the simultaneous involvement of several participants via Internet Relay Chat to listen to live sound transmissions could enhance the accuracy of census data collection; and (3) interactions through Twitter allowed members of the public to engage or help with the remote monitoring of birds and experience inaccessible nature through the use of novel technologies.
Remote online monitoring and measuring system for civil engineering structures
NASA Astrophysics Data System (ADS)
Kujawińska, Malgorzata; Sitnik, Robert; Dymny, Grzegorz; Karaszewski, Maciej; Michoński, Kuba; Krzesłowski, Jakub; Mularczyk, Krzysztof; Bolewicki, Paweł
2009-06-01
In this paper a distributed intelligent system for civil engineering structures on-line measurement, remote monitoring, and data archiving is presented. The system consists of a set of optical, full-field displacement sensors connected to a controlling server. The server conducts measurements according to a list of scheduled tasks and stores the primary data or initial results in a remote centralized database. Simultaneously the server performs checks, ordered by the operator, which may in turn result with an alert or a specific action. The structure of whole system is analyzed along with the discussion on possible fields of application and the ways to provide a relevant security during data transport. Finally, a working implementation consisting of a fringe projection, geometrical moiré, digital image correlation and grating interferometry sensors and Oracle XE database is presented. The results from database utilized for on-line monitoring of a threshold value of strain for an exemplary area of interest at the engineering structure are presented and discussed.
Non-intrusive head movement analysis of videotaped seizures of epileptic origin.
Mandal, Bappaditya; Eng, How-Lung; Lu, Haiping; Chan, Derrick W S; Ng, Yen-Ling
2012-01-01
In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.
2017-06-22
setup” versus “use” issue. What rights does Honeywell need to run the software? We/Honeywell may not know. Discuss with Jabe? We may need to just try...Summary: It appears the direction we are going will be to install new me- ters in buildings, connect them to the Smart Servers, run the data through...damper blade type (check the appropriate item) Flat late Airfoil Calculate the nominal damper face velocity Face velocity = Flow rate ÷ Area
Advanced integrated enhanced vision systems
NASA Astrophysics Data System (ADS)
Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha
2003-09-01
In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.
Laboratory Testing of Demand-Response Enabled Household Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparn, B.; Jin, X.; Earle, L.
2013-10-01
With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond tomore » demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.« less
Laboratory Testing of Demand-Response Enabled Household Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparn, B.; Jin, X.; Earle, L.
2013-10-01
With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond tomore » demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses. The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.« less
FATE OF DISINFECTION BY-PRODUCT PRECURSORS DURING RIVERBANK FILTRATION AT THREE MIDWEST UTILITIES
A 3-year project is underway to evaluate riverbank filtration systems along three major US rivers. A principal aspects of the study involved monitoring a suite or organic, inorganic, and microbiological water quality parameters, with emphasis on disinfection byproduct formation p...
NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory
NASA Technical Reports Server (NTRS)
Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock
2011-01-01
At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.
Visually enhanced CCTV digital surveillance utilizing Intranet and Internet.
Ozaki, Nobuyuki
2002-07-01
This paper describes a solution for integrated plant supervision utilizing closed circuit television (CCTV) digital surveillance. Three basic requirements are first addressed as the platform of the system, with discussion on the suitable video compression. The system configuration is described in blocks. The system provides surveillance functionality: real-time monitoring, and process analysis functionality: a troubleshooting tool. This paper describes the formulation of practical performance design for determining various encoder parameters. It also introduces image processing techniques for enhancing the original CCTV digital image to lessen the burden on operators. Some screenshots are listed for the surveillance functionality. For the process analysis, an image searching filter supported by image processing techniques is explained with screenshots. Multimedia surveillance, which is the merger with process data surveillance, or the SCADA system, is also explained.
Life sciences Spacelab Mission Development test 3 (SMD 3) data management report
NASA Technical Reports Server (NTRS)
Moseley, E. C.
1977-01-01
Development of a permanent data system for SMD tests was studied that would simulate all elements of the shuttle onboard, telemetry, and ground data systems that are involved with spacelab operations. The onboard data system (ODS) and the ground data system (GDS) were utilized. The air-to-ground link was simulated by a hardwired computer-to-computer interface. A patch board system was used on board to select experiment inputs, and the downlink configuration from the ODS was changed by a crew keyboard entry to support each experiment. The ODS provided a CRT display of experiment parameters to enable the crew to monitor experiment performance. An onboard analog system, with recording capability, was installed to handle high rate data and to provide a backup to the digital system. The GDS accomplished engineering unit conversion and limit sensing, and provided realtime parameter display on CRT's in the science monitoring area and the test control area.
Hybrid monitoring scheme for end-to-end performance enhancement of multicast-based real-time media
NASA Astrophysics Data System (ADS)
Park, Ju-Won; Kim, JongWon
2004-10-01
As real-time media applications based on IP multicast networks spread widely, end-to-end QoS (quality of service) provisioning for these applications have become very important. To guarantee the end-to-end QoS of multi-party media applications, it is essential to monitor the time-varying status of both network metrics (i.e., delay, jitter and loss) and system metrics (i.e., CPU and memory utilization). In this paper, targeting the multicast-enabled AG (Access Grid) a next-generation group collaboration tool based on multi-party media services, the applicability of hybrid monitoring scheme that combines active and passive monitoring is investigated. The active monitoring measures network-layer metrics (i.e., network condition) with probe packets while the passive monitoring checks both application-layer metrics (i.e., user traffic condition by analyzing RTCP packets) and system metrics. By comparing these hybrid results, we attempt to pinpoint the causes of performance degradation and explore corresponding reactions to improve the end-to-end performance. The experimental results show that the proposed hybrid monitoring can provide useful information to coordinate the performance improvement of multi-party real-time media applications.
Mobile health-monitoring system through visible light communication.
Tan, Yee-Yong; Chung, Wan-Young
2014-01-01
Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao
In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a systemcentric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologiesmore » within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.« less
System study of the carbon dioxide observational platform system (CO-OPS): Project overview
NASA Technical Reports Server (NTRS)
Stephens, J. Briscoe; Thompson, Wilbur E.
1987-01-01
The resulting options from a system study for a near-space, geo-stationary, observational monitoring platform system for use in the Department of Energy's (DOE) National Carbon Dioxide Observational Platform System (CO-OPS) on the greenhouse effect are discussed. CO-OPS is being designed to operate continuously for periods of up to 3 months in quasi-fixed position over most global regional targets of interest and could make horizon observations over a land-sea area of circular diameter up to about 600 to 800 statute miles. This affords the scientific and engineering community a low-cost means of operating their payloads for monitoring the regional parameters they deem relevant to their investigations of the carbon dioxide greenhouse effect at one-tenth the cost of most currently utilized comparable remote sensing techniques.
Monitoring photodynamic therapy with photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Shao, Peng; Chapman, David W.; Moore, Ronald B.; Zemp, Roger J.
2015-10-01
We present our work on examining the feasibility of monitoring photodynamic therapy (PDT)-induced vasculature change with acoustic-resolution photoacoustic microscopy (PAM). Verteporfin, an FDA-approved photosensitizer for clinical PDT, was utilized. With a 60-μm-resolution PAM system, we demonstrated the capability of PAM to monitor PDT-induced vasculature variations in a chick chorioallantoic membrane model with topical application and in a rat ear with intravenous injection of the photosensitizer. We also showed oxygen saturation change in target blood vessels due to PDT. Success of the present approach may potentially lead to the application of PAM imaging in evaluating PDT efficacy, guiding treatment, and predicting responders from nonresponders.
Versteeg, D.J.; Alder, A. C.; Cunningham, V. L.; Kolpin, D.W.; Murray-Smith, R.; Ternes, T.
2005-01-01
Human pharmaceuticals are receiving increased attention as environmental contaminants. This is due to their biological activity and the number of monitoring programs focusing on analysis of these compounds in various environmental media and compartments. Risk assessments are needed to understand the implications of reported concentrations; a fundamental part of the risk assessment is an assessment of environmental exposures. The purpose of this chapter is to provide guidance on the use of predictive tools (e.g., models) and monitoring data in exposure assessments for pharmaceuticals in the environment. Methods to predict environmental concentrations from equations based on first principles are presented. These equations form the basis of existing GIS (geographic information systems)-based systems for understanding the spatial distribution of pharmaceuticals in the environment. The pharmaceutical assessment and transport (PhATE), georeferenced regional exposure assessment tool for European rivers (GREAT-ER), and geographical information system (GIS)-ROUT models are reviewed and recommendations are provided concerning the design and execution of monitoring studies. Model predictions and monitoring data are compared to evaluate the relative utility of each approach in environmental exposure assessments. In summary, both models and monitoring data can be used to define representative exposure concentrations of pharmaceuticals in the environment in support of environmental risk assessments.
New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System
Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok
2016-01-01
This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased. PMID:27240375
New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System.
Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok
2016-05-27
This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased.
Sugimoto-Matsuda, Jeanelle J; Hishinuma, Earl S; Momohara, Christie-Brianna K; Rehuher, Davis; Soli, Fa'apisa M; Bautista, Randy Paul M; Chang, Janice Y
2012-10-01
Youth violence (YV) is a complex public health issue that spans geographic, ethnic, and socioeconomic lines. The Asian/Pacific Islander Youth Violence Prevention Center conducts qualitative and quantitative research on YV in Hawai'i. A critical element in YV prevention involves measuring YV and its risk-protective factors to determine the scope of the problem and to monitor changes across time. Under the Asian/Pacific Islander Youth Violence Prevention Center's (APIYVPC's) surveillance umbrella, a variety of methodologies are utilized. The major forms of active surveillance are a School-Wide Survey for youth, and a Safe Community Household Survey for adults. A variety of secondary data sources are accessed, such as the Centers for Disease Control and Prevention (Youth Risk Behavior Surveillance System), the Hawai'i State Department of the Attorney General, the Hawai'i State Department of Education, and the Hawai'i State Department of Health. State data are especially important for the Center, because most of these sources disaggregate ethnicity data for Asian Americans/Pacific Islanders. This paper details the surveillance methodologies utilized by the APIYVPC to monitor YV in one specific community and in Hawai'i, in comparison to the rest of the State and nation. Empirical results demonstrate the utility of each methodology and how they complement one another. Individually, each data source lends valuable information to the field of YV prevention; however, collectively, the APIYVPC's surveillance methods help to paint a more complete picture regarding violence rates and the relationship between YV and its risk-protective factors, particularly for minority communities.
Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring
NASA Astrophysics Data System (ADS)
Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin
2017-04-01
Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.
Many epidemiologic studies concerning by-products of water disinfection use utility monitoring data to estimate exposure. Use of such data requires linkage of residence location to a specific water utility and associated monitoring data during a given exposure period. The inabil...
1989-02-17
surface pain, cold sensitivity or hyperhidrosis . Equipment The subject’s temperatures were monitored by utilizing an AGEMA TIC-8000 Infrared System...injury; the patient’s reports of cold intolerance, weight bearing surface pain and hyperhidrosis six years post injury support this conclusion. It
Hydraulic Diagnostic Monitoring System.
1981-03-02
devices were utilized. In one pneumatic circuit, a temperature-compensated pressure switch performed as predicted over a broad tempera- ture range. In...installation ...... ................. 41 9 NADC 81073-60 ILLUSTRATIONS (Cont) Fig. No. Page 28 Temperature-compensated pressure switch .... ................. .42...29 Plot of pressure vs temperature for nitrogen .... ................ .. 43 30 Temperature-compensated pressure switch : diagrammatic circuit
2010-03-01
allows the programmer to use the English language in an expressive manor while still maintaining the logical structure of a programming language ( Pressman ...and Choudhury Tanzeem. 2000. Face Recognition for Smart Environments, IEEE Computer, pp. 50–55. Pressman , Roger. 2010. Software Engineering A
Estimation of daily mean air temperature from satellite derived radiometric data
NASA Technical Reports Server (NTRS)
Phinney, D.
1976-01-01
The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.
EVALUATION OF MEMBRANE TYPE FOR USE IN DIFFUSION SAMPLERS TO MONITOR GROUND WATER QUALITY
The Discrete Multi-Level Sampler (DMLS®) system has proven to be a useful tool for obtaining discrete interval contaminant concentrations at hazardous waste sites. The DMLS® utilizes dialysis cells, which consist of a polypropylene vial, covered on both ends by a permeable membr...
Combating adverse selection in secondary PC markets.
Hickey, Stewart W; Fitzpatrick, Colin
2008-04-15
Adverse selection is a significant contributor to market failure in secondary personal computer (PC) markets. Signaling can act as a potential solution to adverse selection and facilitate superior remarketing of second-hand PCs. Signaling is a means whereby usage information can be utilized to enhance consumer perception of both value and utility of used PCs and, therefore, promote lifetime extension for these systems. This can help mitigate a large portion of the environmental impact associated with PC system manufacture. In this paper, the computer buying and selling behavior of consumers is characterized via a survey of 270 Irish residential users. Results confirm the existence of adverse selection in the Irish market with 76% of potential buyers being unwilling to purchase and 45% of potential vendors being unwilling to sell a used PC. The so-called "closet affect" is also apparent with 78% of users storing their PC after use has ceased. Results also indicate that consumers place a higher emphasis on specifications when considering a second-hand purchase. This contradicts their application needs which are predominantly Internet and word-processing/spreadsheet/presentation applications, 88% and 60% respectively. Finally, a market solution utilizing self monitoring and reporting technology (SMART) sensors for the purpose of real time usage monitoring is proposed, that can change consumer attitudes with regard to second-hand computer equipment.
General specifications for the development of a PC-based simulator of the NASA RECON system
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros
1984-01-01
The general specifications for the design and implementation of an IBM PC/XT-based simulator of the NASA RECON system, including record designs, file structure designs, command language analysis, program design issues, error recovery considerations, and usage monitoring facilities are discussed. Once implemented, such a simulator will be utilized to evaluate the effectiveness of simulated information system access in addition to actual system usage as part of the total educational programs being developed within the NASA contract.
NASA Technical Reports Server (NTRS)
1988-01-01
ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.
The presentation provides a short view point in response to the question "In what ways can low-cost portable monitors best be utilized for health research and patient care in locations that do not have an existing stationary monitoring network?" The response notes the ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touati, Said; Chennai, Salim; Souli, Aissa
The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how wellmore » a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)« less
Possible designs of medication monitors. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moulding, T.S.
A medication monitor is a device which utilizes radioactive material and photographic film to determine when patients remove medication from a dispenser. The material presents multiple, largely mechanical, ideas for making this type of dispenser so it can be used for a wide range of medication regimens. The description includes using the idea of a digital clock and memory chips for the time recording system. It also includes details on (1) choice of radioactive source and method of sealing source, (2) methods of locking or sealing medication monitors, (3) detailed instructions for using existing devices, (4) a simplified film developmentmore » system, (5) a mechanical and electronic means for creating a dispenser to reduce the chance of suicidal overdosage, and (6) an electronic means to allow a patient to compensate for medication forgotten without taking an excessive dose of medication.« less
Damage detection in bridges through fiber optic structural health monitoring
NASA Astrophysics Data System (ADS)
Doornink, J. D.; Phares, B. M.; Wipf, T. J.; Wood, D. L.
2006-10-01
A fiber optic structural health monitoring (SHM) system was developed and deployed by the Iowa State University (ISU) Bridge Engineering Center (BEC) to detect gradual or sudden damage in fracture-critical bridges (FCBs). The SHM system is trained with measured performance data, which are collected by fiber optic strain sensors to identify typical bridge behavior when subjected to ambient traffic loads. Structural responses deviating from the trained behavior are considered to be signs of structural damage or degradation and are identified through analytical procedures similar to control chart analyses used in statistical process control (SPC). The demonstration FCB SHM system was installed on the US Highway 30 bridge near Ames, IA, and utilizes 40 fiber bragg grating (FBG) sensors to continuously monitor the bridge response when subjected to ambient traffic loads. After the data is collected and processed, weekly evaluation reports are developed that summarize the continuous monitoring results. Through use of the evaluation reports, the bridge owner is able to identify and estimate the location and severity of the damage. The information presented herein includes an overview of the SHM components, results from laboratory and field validation testing on the system components, and samples of the reduced and analyzed data.
Ladapo, Joseph A; Turakhia, Mintu P; Ryan, Michael P; Mollenkopf, Sarah A; Reynolds, Matthew R
2016-05-01
Several randomized trials and decision analysis models have found that remote monitoring may reduce health care utilization and expenditures in patients with cardiac implantable electronic devices (CIEDs), compared with in-office monitoring. However, little is known about the generalizability of these findings to unselected populations in clinical practice. To compare health care utilization and expenditures associated with remote monitoring and in-office monitoring in patients with CIEDs, we used Truven Health MarketScan Commercial Claims and Medicare Supplemental Databases. We selected patients newly implanted with an implantable cardioverter defibrillators (ICD), cardiac resynchronization therapy defibrillator (CRT-D), or permanent pacemaker (PPM), in 2009, who had continuous health plan enrollment 2 years after implantation. Generalized linear models and propensity score matching were used to adjust for confounders and estimate differences in health care utilization and expenditures in patients with remote or in-office monitoring. We identified 1,127; 427; and 1,295 pairs of patients with a similar propensity for receiving an ICD, CRT-D, or PPM, respectively. Remotely monitored patients with ICDs experienced fewer emergency department visits resulting in discharge (p = 0.050). Remote monitoring was associated with lower health care expenditures in office visits among patients with PPMs (p = 0.025) and CRT-Ds (p = 0.006) and lower total inpatient and outpatient expenditures in patients with ICDs (p <0.0001). In conclusion, remote monitoring of patients with CIEDs may be associated with reductions in health care utilization and expenditures compared with exclusive in-office care. Copyright © 2016 Elsevier Inc. All rights reserved.
High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering
NASA Technical Reports Server (NTRS)
Maly, K.
1998-01-01
Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated with the monitoring architecture to reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring process. We are developing an event filtering architecture to efficiently process the large volume of event traffic generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to monitor collaborative distance learning application for obtaining debugging and feedback information. Our architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering mechanisms In supporting monitoring LSD systems and (2) devising an integrated scalable high- performance architecture of event filtering that spans several kev application domains, presenting techniques to improve the functionality, performance and scalability. This paper describes the primary characteristics and challenges of developing high-performance event filtering for monitoring LSD systems. We survey existing event filtering mechanisms and explain key characteristics for each technique. In addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will improve key aspects of event filtering.
Ono, Maki; Varma, Niraj
2017-05-01
Strong evidence exists for the utility of remote monitoring in cardiac implantable electronic devices for early detection of arrhythmias and evaluation of system performance. The application of remote monitoring for the management of chronic disease such as heart failure has been an active area of research. Areas covered: This review aims to cover the latest evidence of remote monitoring of implantable cardiac defibrillators in terms of heart failure prognosis. This article also updates the current technology relating to the method and discusses key factors to be addressed in order to better use the approach. PubMed and internet searches were conducted to acquire most recent data and technology information. Expert commentary: Multiparameter monitoring with automatic transmission is useful for heart failure management. Improved adherence to remote monitoring and an optimal algorithm for transmitted alerts and their management are warranted in the management of heart failure.
A new Self-Adaptive disPatching System for local clusters
NASA Astrophysics Data System (ADS)
Kan, Bowen; Shi, Jingyan; Lei, Xiaofeng
2015-12-01
The scheduler is one of the most important components of a high performance cluster. This paper introduces a self-adaptive dispatching system (SAPS) based on Torque[1] and Maui[2]. It promotes cluster resource utilization and improves the overall speed of tasks. It provides some extra functions for administrators and users. First of all, in order to allow the scheduling of GPUs, a GPU scheduling module based on Torque and Maui has been developed. Second, SAPS analyses the relationship between the number of queueing jobs and the idle job slots, and then tunes the priority of users’ jobs dynamically. This means more jobs run and fewer job slots are idle. Third, integrating with the monitoring function, SAPS excludes nodes in error states as detected by the monitor, and returns them to the cluster after the nodes have recovered. In addition, SAPS provides a series of function modules including a batch monitoring management module, a comprehensive scheduling accounting module and a real-time alarm module. The aim of SAPS is to enhance the reliability and stability of Torque and Maui. Currently, SAPS has been running stably on a local cluster at IHEP (Institute of High Energy Physics, Chinese Academy of Sciences), with more than 12,000 cpu cores and 50,000 jobs running each day. Monitoring has shown that resource utilization has been improved by more than 26%, and the management work for both administrator and users has been reduced greatly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summermore » space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water heating savings by 5-9%. Given the project schedule for 2014 completion, no heating season impacts were able to be monitored. May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water heating savings by 5-9%. Given the project schedule for 2014 completion, no heating season impacts were able to be monitored.« less
NASA Astrophysics Data System (ADS)
Kumar, Girish; Jain, Vipul; Gandhi, O. P.
2018-03-01
Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availability analysis of mechanical systems that follow condition-based maintenance (CBM) and evaluation of optimal condition monitoring interval. The developed SMP model is solved using two-stage analytical approach for steady-state availability analysis of the system. Also, CBM interval is decided for maximizing system availability using Genetic Algorithm approach. The main contribution of the paper is in the form of a predictive tool for system availability that will help in deciding the optimum CBM policy. The proposed methodology is demonstrated for a centrifugal pump.
Perroca, Marcia Galan; Ek, Anna-Christina
2007-07-01
Although patient classification tools have been used in Sweden since the 1980s, few studies have examined how they are utilized and monitored. This paper investigates the patient classification systems implemented in hospitals in the country as well as the level of satisfaction of nurses with the implemented instrument. A postal survey method was used in which a total of 128 questionnaires were sent to nurse managers. Twenty-three hospitals were identified with patient classification systems currently in operation. The Zebra and Beakta systems are the most commonly used instruments. Nurse managers appear to be satisfied with the patient classification systems in use on their wards as a whole except for their inability to measure the quality of care provided, the time spent to use the instruments and the fact that the administration do not estimate nursing staff requirements using the system.
Implementation science and the pregnancy risk assessment monitoring system.
Grigorescu, Violanda I; D'Angelo, Denise V; Harrison, Leslie L; Taraporewalla, Aspy J; Shulman, Holly; Smith, Ruben A
2014-12-01
This paper describes the restructuring of the Pregnancy Risk Assessment Monitoring System (PRAMS), a surveillance system of the Centers for Disease Control and Prevention (CDC)'s Division of Reproductive Health conducted for 25 years in collaboration with state and city health departments. With the ultimate goal to better inform health care providers, public health programs, and policy, changes were made to various aspects of PRAMS to enhance its capacity on assessing and monitoring public health interventions and clinical practices in addition to risk behaviors, disease prevalence, comorbidities, and service utilization. Specifically, the three key PRAMS changes identified as necessary and described in this paper are questionnaire revision, launching the web-based centralized PRAMS Integrated Data Collection System, and enhancing the access to PRAMS data through the web query system known as Centers for Disease Control and Prevention's PRAMS Online Data for Epidemiologic Research/PRAMStat. The seven action steps of Knowledge To Action cycle, an illustration of the implementation science process, that reflect the milestones necessary in bridging the knowledge-to-action gap were used as framework for each of these key changes.
Real-Time Event Detection for Monitoring Natural and Source ...
The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitoring source water quality prior to treatment. This work highlights the use of the CANARY event detection software in detecting suspected illicit events in an actively monitored watershed in South Carolina. CANARY is an open source event detection software that was developed by USEPA and Sandia National Laboratories. The software works with any type of sensor, utilizes multiple detection algorithms and approaches, and can incorporate operational information as needed. Monitoring has been underway for several years to detect events related to intentional or unintentional dumping of materials into the monitored watershed. This work evaluates the feasibility of using CANARY to enhance the detection of events in this watershed. This presentation will describe the real-time monitoring approach used in this watershed, the selection of CANARY configuration parameters that optimize detection for this watershed and monitoring application, and the performance of CANARY during the time frame analyzed. Further, this work will highlight how rainfall events impacted analysis, and the innovative application of CANARY taken in order to effectively detect the suspected illicit events. This presentation d
NASA Technical Reports Server (NTRS)
1976-01-01
The papers deal with the detection of hazardous environmental pollutants, the development of emission control plans, and the design of compliance monitoring systems. Topics include remote sensing techniques in environmental pollution monitoring, monitoring of atmospheric particulate matter, air pollution due to sulfur dioxide and other inorganic compounds, marine pollution, atmospheric aerosols, industrial pollution, and legal aspects of pollution monitoring. Other papers examine the toxic effects of heavy metals and halogenated hydrocarbons, pollution associated with waste-disposal processes, pesticide residues in soil and groundwater, evaluations of groundwater quality, and monitoring of nuclear wastes. The interaction of climate and pollution is also discussed along with global pollutant transport, environmental modeling, ambient environmental air quality, aircraft and ground-vehicle emissions, and pollution associated with energy extraction and utilization processes. Individual items are announced in this issue.
NASA Astrophysics Data System (ADS)
McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.
2002-05-01
Over the past twenty years the international scientific research and environmental monitoring communities have recognized the vital role environmental satellites can play in detecting and monitoring active fires both regionally and around the globe for hazards applications and to better understand the extent and impact of biomass burning on the global environment. Both groups have stressed the importance of utilizing operational satellites to produce routine fire products and to ensure long-term stable records of fire activity for applications such as land-use/land cover change analyses and global climate change research. The current NOAA GOES system provides the unique opportunity to detect fires throughout the Western Hemisphere every half-hour from a series of nearly identical satellites for a period of 15+ years. This presentation will provide an overview of the GOES biomass burning monitoring program at UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) with an emphasis on recent applications of the new GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA). For the past 8 years, CIMSS has utilized the GOES-8 imager to monitor biomass burning trends in South America. Since September 2000, CIMSS has been producing half-hourly fire products in real-time for most of the Western Hemisphere. The WF_ABBA half-hourly fire product is providing new insights into diurnal, spatial, seasonal and interannual fire dynamics in North, Central, and South America. In North America these products are utilized to detect and monitor wildfires in northerly and remote locations. In South America the diurnal GOES fire product is being used as an indicator of land-use and land-cover change and carbon dynamics along the borders between Brazil, Peru, and Bolivia. The Navy is assimilating the Wildfire ABBA fire product into the Navy Aerosol Analysis and Prediction System (NAAPS) to analyze and predict aerosol loading and transport as part of the NASA-ESE Fire Locating And Mapping of Burning Emissions (FLAMBE) project. Furthermore, the dissemination and use of geostationary imagery and derived fire products in the Western Hemisphere provide a glimpse of future global geostationary fire monitoring capabilities. Global geostationary active fire monitoring will be possible with the launch of the European METEOSAT (METEOrological SATellite) Second Generation (MSG) and the replacement Japanese Multi-functional Transport Satellite (MTSAT-1R) over the next two years. This global network of geostationary satellites will complement the U.S. and international suite of environmental polar-orbiting satellites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranowski, S.T.; Culp, L.R.; Jonas, T.S.
1995-12-31
The Clean Air Act Amendments of 1990 require all Phase 1 and 2 utilities to install Continuous Emissions Monitoring Systems (CEMS), which can consist of instrumentation including analyzers and a Data Acquisition and Handling System (DAHS). To meet these requirements, Basin Electric Power Cooperative contracted with Black and Veatch to design and develop a DAHS which would meet all 40 CFR Part 75 requirements. Basin Electric provided the specifications for the DAHS and the graphical user interface, and B and V designed, developed, and installed a DAHS at 3 units at Laramie River Station, 2 units at Antelope Valley Station,more » and 2 units at Leland Olds Station. B and V utilized the existing equipment, adding to it a unique DAHS design. B and V designed and implemented the DAHS which operates in the OS/2 environment to interface with multiple programmable logic controllers. This unique software was written in modular form so that multiple programs run in unison, monitoring each other for errors to ensure continuous operation. The reporting structure is flexible to allow for a variety of formats, including those specifically required by the state to meet CAAA guidelines. Today, these seven units are in operation and comply with the CAAA. This paper describes the issues faced during specification, general design, compliance, and implementation of the DAHS at BEPC, including the lessons learned. The continuous emissions monitoring (CEM) system for each unit at BEPC consisted of a set of dilution probe analyzers for measuring SO{sub 2}, NO{sub x}, and CO{sub 2}.« less
The design of an intelligent human-computer interface for the test, control and monitor system
NASA Technical Reports Server (NTRS)
Shoaff, William D.
1988-01-01
The graphical intelligence and assistance capabilities of a human-computer interface for the Test, Control, and Monitor System at Kennedy Space Center are explored. The report focuses on how a particular commercial off-the-shelf graphical software package, Data Views, can be used to produce tools that build widgets such as menus, text panels, graphs, icons, windows, and ultimately complete interfaces for monitoring data from an application; controlling an application by providing input data to it; and testing an application by both monitoring and controlling it. A complete set of tools for building interfaces is described in a manual for the TCMS toolkit. Simple tools create primitive widgets such as lines, rectangles and text strings. Intermediate level tools create pictographs from primitive widgets, and connect processes to either text strings or pictographs. Other tools create input objects; Data Views supports output objects directly, thus output objects are not considered. Finally, a set of utilities for executing, monitoring use, editing, and displaying the content of interfaces is included in the toolkit.
Basler, J.A.
1983-01-01
Requirements for testing hydrologic test wells at the proposed Waste Isolation Pilot Plant near Carlsbad, New Mexico, necessitated the use of inflatable formation packers and pressure transducers. Observations during drilling and initial development indicated small formation yields which would require considerable test times by conventional open-casing methods. A pressure-monitoring system was assembled for performance evaluation utilizing commercially available components. Formation pressures were monitored with a down-hole strain-gage transducer. An inflatable packer equipped with a 1/4-inch-diameter steel tube extending through the inflation element permitted sensing formation pressures in isolated test zones. Surface components of the monitoring system provided AC transducer excitation, signal conditioning for recording directly in engineering units, and both analog and digital recording. Continuous surface monitoring of formation pressures provided a means of determining test status and projecting completion times during any phase of testing. Maximum portability was afforded by battery operation with all surface components mounted in a small self-contained trailer. (USGS)
NASA Technical Reports Server (NTRS)
Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.
2002-01-01
Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.
NASA Technical Reports Server (NTRS)
Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo
2016-01-01
A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.
NASA Astrophysics Data System (ADS)
Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent
2003-10-01
In view of the growing complexity of computational tasks and their design, we propose that certain interactive systems may be better designed by utilizing computational strategies based on the study of the human brain. Compared with current engineering paradigms, brain theory offers the promise of improved self-organization and adaptation to the current environment, freeing the programmer from having to address those issues in a procedural manner when designing and implementing large-scale complex systems. To advance this hypothesis, we discus a multi-agent surveillance system where 12 agent CPUs each with its own camera, compete and cooperate to monitor a large room. To cope with the overload of image data streaming from 12 cameras, we take inspiration from the primate"s visual system, which allows the animal to operate a real-time selection of the few most conspicuous locations in visual input. This is accomplished by having each camera agent utilize the bottom-up, saliency-based visual attention algorithm of Itti and Koch (Vision Research 2000;40(10-12):1489-1506) to scan the scene for objects of interest. Real time operation is achieved using a distributed version that runs on a 16-CPU Beowulf cluster composed of the agent computers. The algorithm guides cameras to track and monitor salient objects based on maps of color, orientation, intensity, and motion. To spread camera view points or create cooperation in monitoring highly salient targets, camera agents bias each other by increasing or decreasing the weight of different feature vectors in other cameras, using mechanisms similar to excitation and suppression that have been documented in electrophysiology, psychophysics and imaging studies of low-level visual processing. In addition, if cameras need to compete for computing resources, allocation of computational time is weighed based upon the history of each camera. A camera agent that has a history of seeing more salient targets is more likely to obtain computational resources. The system demonstrates the viability of biologically inspired systems in a real time tracking. In future work we plan on implementing additional biological mechanisms for cooperative management of both the sensor and processing resources in this system that include top down biasing for target specificity as well as novelty and the activity of the tracked object in relation to sensitive features of the environment.
Development of a cuffless blood pressure measurement system.
Shyu, Liang-Yu; Kao, Yao-Lin; Tsai, Wen-Ya; Hu, Weichih
2012-01-01
This study constructs a novel blood pressure measurement device without the air cuff to overcome the problem of discomfort and portability. The proposed device measures the blood pressure through a mechanism that is made of silicon rubber and pressure transducer. The system uses a microcontroller to control the measurement procedure and to perform the necessary computation. To verify the feasibility of the constructed device, ten young volunteers were recruited. Ten blood pressure readings were obtained using the new system and were compared with ten blood pressure readings from bedside monitor (Spacelabs Medical, model 90367). The results indicated that, when all the readings were included, the mean pressure, systolic pressure and diastolic pressure from the new system were all higher than those from bedside monitor. The correlation coefficients between these two were 0.15, 0.18 and 0.29, for mean, systolic and diastolic pressures, respectively. After excluding irregular apparatus utilization, the correlation coefficient increased to 0.71, 0.60 and 0.41 for diastolic pressure, mean pressure and systolic pressure, respectively. We can conclude from these results that the accuracy can be improved effectively by defining the user regulation more precisely. The above mentioned irregular apparatus utilization factors can be identified and eliminated by the microprocessor to provide a reliable blood pressure measurement in practical applications in the future.
A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique
Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping
2014-01-01
Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc. PMID:24603635
NASA Astrophysics Data System (ADS)
Stanley, Dennis Nichols
With the growing incidence of cancer worldwide, the need for effective cancer treatment is paramount. Currently, radiation therapy exists as one of the few effective, non-invasive methods of reducing tumor size and has the capability for the elimination of localized tumors. Radiation therapy utilizes non-invasive external radiation to treat localized cancers but to be effective, physicians must be able to visualize and monitor the internal anatomy and target displacements. Image-Guided Radiation Therapy frequently utilizes planar and volumetric imaging during a course of radiation therapy to improve the precision and accuracy of the delivered treatment to the internal anatomy. Clinically, visualization of the internal anatomy allows physicians to refine the treatment to include as little healthy tissue as possible. This not only increases the effectiveness of treatment by damaging only the tumor but also increases the quality of life for the patient by decreasing the amount of healthy tissue damaged. Image-Guided Radiation Therapy is commonly used to treat tumors in areas of the body that are prone to movement, such as the lungs, liver, and prostate, as well as tumors located close to critical organs and tissues such as the tumors in the brain and spinal cord. Image-Guided Radiation Therapy can utilize both ionizing modalities, like x-ray based planar radiography and cone-beam CT, and nonionizing modalities like MRI, ultrasound and video-based optical scanning systems. Currently ionizing modalities are most commonly utilized for their ability to visualize and monitor internal anatomy but cause an increase to the total dose to the patient. Nonionizing imaging modalities allow frequent/continuous imaging without the increase in dose; however, they are just beginning to be clinically implemented in radiation oncology. With the growing prevalence and variety of Image-Guided Radiation Therapy imaging modalities the ability to evaluate the overall image quality, monitor the stability of the imaging systems and characterize each system are important to ensuring the consistency and effectiveness of the overall treatment. Image-Guided Radiation Therapy quality assurance allows a method of quantifying the accuracy and stability of the imaging systems. Understanding how the ionizing imaging systems operate and change over time allows for a more effective overall treatment and will be the focus of the first step of this project. In each of the first three aims, different ionizing imaging modalities will be evaluated for their temporal stability and a record of the determined tolerance level will be reported. The Second step of this project will be a characterization of the accuracy and performance of the new C-Rad CatalystHD a video-based, surface-imaging guided patient localization system. The catalyst will be analyzed for it accuracy of setup and patient positing, intra- and inter- fraction motion detection as well as its respiratory gating capabilities. The final step of this project will be to use the well-established accuracy of the XVI volumetric imaging system as a benchmark to assess the accuracy of the C-Rad CatalystHD system for use in pretreatment patient position verification for cranial stereotactic procedures. The treatment of brain lesions generally requires a very high degree of precision due to relatively small target sizes, close proximity to eloquent areas of the brain, and large, ablative doses being delivered. Stringent accuracy in imaging is needed to verify and monitor the correct spatial delivery of radiation throughout treatment. In order to investigate if the CatalystHD system is a capable imaging system for such deliveries, the system will need to be assessed and benchmarked against the XVI in a phantom geometry. By doing so, the currently unproven utility of the CatalystHD system for cranial stereotactic delivery may be established. (Abstract shortened by ProQuest.).
Voice control of the space shuttle video system
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Dotson, R. S.; Brown, J. W.; Lewis, J. L.
1981-01-01
A pilot voice control system developed at the Jet Propulsion Laboratory (JPL) to test and evaluate the feasibility of controlling the shuttle TV cameras and monitors by voice commands utilizes a commercially available discrete word speech recognizer which can be trained to the individual utterances of each operator. Successful ground tests were conducted using a simulated full-scale space shuttle manipulator. The test configuration involved the berthing, maneuvering and deploying a simulated science payload in the shuttle bay. The handling task typically required 15 to 20 minutes and 60 to 80 commands to 4 TV cameras and 2 TV monitors. The best test runs show 96 to 100 percent voice recognition accuracy.
A portable infrasound generator.
Park, Joseph; Robertson, James
2009-04-01
The rotary subwoofer is a novel low frequency transducer capable of efficiently generating infrasound from a compact source. A field-deployable version of this device may find application as a calibration source for infrasound arrays of the International Monitoring System (IMS) [(2001). The Global Verification Regime and the International Monitoring System (CTBTO Preparatory Commission Vienna International Centre, Vienna, Austria)]. A prototype tested at the IMS infrasound array I59US demonstrated the ability to insonify all elements of the array from a standoff distance of 3.8 km. Signal-to-noise ratios of continuous wave signals ranged from 5 to 15 dB, indicating the utility of this source to transmit controllable infrasound signals over distances of 5 km.
NASA Astrophysics Data System (ADS)
Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian
2016-05-01
A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.
Pahl, Christina; Ebelt, Henning; Sayahkarajy, Mostafa; Supriyanto, Eko; Soesanto, Amiliana
2017-08-15
This paper proposes a robotic Transesophageal Echocardiography (TOE) system concept for Catheterization Laboratories. Cardiovascular disease causes one third of all global mortality. TOE is utilized to assess cardiovascular structures and monitor cardiac function during diagnostic procedures and catheter-based structural interventions. However, the operation of TOE underlies various conditions that may cause a negative impact on performance, the health of the cardiac sonographer and patient safety. These factors have been conflated and evince the potential of robot-assisted TOE. Hence, a careful integration of clinical experience and Systems Engineering methods was used to develop a concept and physical model for TOE manipulation. The motion of different actuators of the fabricated motorized system has been tested. It is concluded that the developed medical system, counteracting conflated disadvantages, represents a progressive approach for cardiac healthcare.
Reliability-based optimization of an active vibration controller using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Saraygord Afshari, Sajad; Pourtakdoust, Seid H.
2017-04-01
Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.
Solar bus regulator and battery charger for IMP's H, I, and J
NASA Technical Reports Server (NTRS)
Paulkovich, J.
1972-01-01
Interplanetary Monitoring Probe (IMP) spacecrafts H, I, and J utilize a direct energy transfer (DET) type of power system operating from a solar array source. A shunt type of regulator prevents the bus voltage from exceeding a preset voltage level. The power system utilizes a single differential amplifier with dual outputs to control the battery charge/shunt regulator and the discharge regulator. A two-voltage level, current limited, series charger and a current sensor control battery state of charge of the silver-cadmium battery pack. Premature termination of the battery charge is prevented by a power available gate that also initiates charge current to the battery upon availability of excess power.
NASA Astrophysics Data System (ADS)
Jones, Jerry; Rhoades, Valerie; Arner, Radford; Clem, Timothy; Cuneo, Adam
2007-04-01
NDE measurements, monitoring, and control of smart and adaptive composite structures requires that the central knowledge system have an awareness of the entire structure. Achieving this goal necessitates the implementation of an integrated network of significant numbers of sensors. Additionally, in order to temporally coordinate the data from specially distributed sensors, the data must be time relevant. Early adoption precludes development of sensor technology specifically for this application, instead it will depend on the ability to utilize legacy systems. Partially supported by the U.S. Department of Commerce, National Institute of Standards and Technology, Advanced Technology Development Program (NIST-ATP), a scalable integrated system has been developed to implement monitoring of structural integrity and the control of adaptive/intelligent structures. The project, called SHIELD (Structural Health Identification and Electronic Life Determination), was jointly undertaken by: Caterpillar, N.A. Tech., Motorola, and Microstrain. SHIELD is capable of operation with composite structures, metallic structures, or hybrid structures. SHIELD consists of a real-time processing core on a Motorola MPC5200 using a C language based real-time operating system (RTOS). The RTOS kernel was customized to include a virtual backplane which makes the system completely scalable. This architecture provides for multiple processes to be operating simultaneously. They may be embedded as multiple threads on the core hardware or as separate independent processors connected to the core using a software driver called a NAT-Network Integrator (NATNI). NATNI's can be created for any communications application. In it's current embodiment, NATNI's have been created for CAN bus, TCP/IP (Ethernet) - both wired and 802.11 b and g, and serial communications using RS485 and RS232. Since SHIELD uses standard C language, it is easy to port any monitoring or control algorithm, thus providing for legacy technology which may use other hardware processors and various communications means. For example, two demonstrations of SHIELD have been completed, in January and May 2005 respectively. One demonstration used algorithms in C running in multiple threads in the SHIELD core and utilizing two different sensor networks, one CAN bus and one wireless. The second had algorithms operating in C on the SHIELD core and other algorithms running on multiple Texas Instruments DSP processors using a NATNI that communicated via wired TCP/IP. A key feature of SHIELD is the implementation of a wireless ZIGBEE (802.15.4) network for implementing large numbers of small, low cost, low power sensors communication via a meshstar wireless network. While SHIELD was designed to integrate with a wide variety of existing communications protocols, a ZIGBEE network capability was implemented specifically for SHIELD. This will facilitate the monitoring of medium to very large structures including marine applications, utility scale multi-megawatt wind energy systems, and aircraft/spacecraft. The SHIELD wireless network will facilitate large numbers of sensors (up to 32000), accommodate sensors embedded into the composite material, can communicate to both sensors and actuators, and prevents obsolescence by providing for re-programming of the nodes via remote RF communications. The wireless network provides for ultra-low energy use, spatial location, and accurate timestamping, utilizing the beaconing feature of ZIGBEE.
Gas Main Sensor and Communications Network System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen Schempf
Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetoothmore » PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.« less
System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROMERO, S.G.
2000-01-10
Describes the hardware and software for the AZ-101 Mixer Pump Data Acquisition System. The purpose of the tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste (NCAW), and eventual disposal as glass via the Hanford Waste Vitrification Plant.
TFTR CAMAC systems and components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, W.A.; Bergin, W.; Sichta, P.
1987-08-01
Princeton's tokamak fusion test reactor (TFTR) utilizes Computer Automated Measurement and Control (CAMAC) to provide instrumentation for real and quasi real time control, monitoring, and data acquisition systems. This paper describes and discusses the complement of CAMAC hardware systems and components that comprise the interface for tokamak control and measurement instrumentation, and communication with the central instrumentation control and data acquisition (CICADA) system. It also discusses CAMAC reliability and calibration, types of modules used, a summary of data acquisition and control points, and various diagnostic maintenance tools used to support and troubleshoot typical CAMAC systems on TFTR.
A Multi Agent Based Approach for Prehospital Emergency Management.
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-07-01
To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement.
A Multi Agent Based Approach for Prehospital Emergency Management
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-01-01
Objective: To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Methods: Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Results: Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. Conclusion: In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement. PMID:28795061
Head-Impact-Measurement Devices: A Systematic Review.
O'Connor, Kathryn L; Rowson, Steven; Duma, Stefan M; Broglio, Steven P
2017-03-01
With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. To assess available head-impact devices and their clinical utility. We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians working on the sidelines to monitor athletes. However, head-impact-monitoring systems have limited clinical utility due to error rates, designs, and low specificity in predicting concussive injury.
Seo, Dongmin; Paek, Sung-Ho; Oh, Sangwoo; Seo, Sungkyu; Paek, Se-Hwan
2016-09-24
The incidence of diabetes is continually increasing, and by 2030, it is expected to have increased by 69% and 20% in underdeveloped and developed countries, respectively. Therefore, glucose sensors are likely to remain in high demand in medical device markets. For the current study, we developed a needle-type bio-layer interference (BLI) sensor that can continuously monitor glucose levels. Using dialysis procedures, we were able to obtain hypoglycemic samples from commercial human serum. These dialysis-derived samples, alongside samples of normal human serum were used to evaluate the utility of the sensor for the detection of the clinical interest range of glucose concentrations (70-200 mg/dL), revealing high system performance for a wide glycemic state range (45-500 mg/dL). Reversibility and reproducibility were also tested over a range of time spans. Combined with existing BLI system technology, this sensor holds great promise for use as a wearable online continuous glucose monitoring system for patients in a hospital setting.
All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring.
Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei
2018-04-27
This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.
Symbolic Constraint Maintenance Grid
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.
Geographic information system as country-level development and monitoring tool, Senegal example
Moore, Donald G.; Howard, Stephen M.; ,
1990-01-01
Geographic information systems (GIS) allow an investigator the capability to merge and analyze numerous types of country-level resource data. Hypothetical resource analysis applications in Senegal were conducted to illustrate the utility of a GIS for development planning and resource monitoring. Map and attribute data for soils, vegetation, population, infrastructure, and administrative units were merged to form a database within a GIS. Several models were implemented using a GIS to: analyze development potential for sustainable dryland agriculture; prioritize where agricultural development should occur based upon a regional food budget; and monitor dynamic events with remote sensing. The steps for implementing a GIS analysis are described and illustrated, and the use of a GIS for conducting an economic analysis is outlined. Using a GIS for analysis and display of results opens new methods of communication between resource scientists and decision makers. Analyses yielding country-wide map output and detailed statistical data for each level of administration provide the advantage of a single system that can serve a variety of users.
Dugas, Martin; Eckholt, Markus; Bunzemeier, Holger
2008-01-01
Background Monitoring of hospital information system (HIS) usage can provide insights into best practices within a hospital and help to assess time trends. In terms of effort and cost of benchmarking, figures derived automatically from the routine HIS system are preferable to manual methods like surveys, in particular for repeated analysis. Methods Due to relevance for quality management and efficient resource utilization we focused on time-to-completion of discharge letters (assessed by CT-plots) and usage of patient scheduling. We analyzed these parameters monthly during one year at a major university hospital in Germany. Results We found several distinct patterns of discharge letter documentation indicating a large heterogeneity of HIS usage between different specialties (completeness 51 – 99%, delays 0 – 90 days). Overall usage of scheduling increased during the observation period by 62%, but again showed a considerable variation between departments. Conclusion Regular monitoring of HIS key figures can contribute to a continuous HIS improvement process. PMID:18423046
The Mesa Arizona Pupil Tracking System
NASA Technical Reports Server (NTRS)
Wright, D. L.
1973-01-01
A computer-based Pupil Tracking/Teacher Monitoring System was designed for Mesa Public Schools, Mesa, Arizona. The established objectives of the system were to: (1) facilitate the economical collection and storage of student performance data necessary to objectively evaluate the relative effectiveness of teachers, instructional methods, materials, and applied concepts; and (2) identify, on a daily basis, those students requiring special attention in specific subject areas. The system encompasses computer hardware/software and integrated curricula progression/administration devices. It provides daily evaluation and monitoring of performance as students progress at class or individualized rates. In the process, it notifies the student and collects information necessary to validate or invalidate subject presentation devices, methods, materials, and measurement devices in terms of direct benefit to the students. The system utilizes a small-scale computer (e.g., IBM 1130) to assure low-cost replicability, and may be used for many subjects of instruction.
Field evaluation and assessment of thermal energy storage for residential space heating
NASA Astrophysics Data System (ADS)
Hersh, H. N.
1982-02-01
A data base was developed based on two heating seasons and 45 test and 30 control homes in Maine and Vermont. Based on first analysis of monitored temperatures and electrical energy used for space heating, fuel bills and reports of users and utilities, the technical performance of TES ceramic and hydronic systems is deemed to be technically satisfactory and there is a high degree of customer acceptance and positive attitudes towards TES. Analysis of house data shows a high degree of variability in electric heat energy demand for a given degree-day. An analysis is underway to investigate relative differences in the efficiency of electricity utilization of storage and direct heating devices. The much higher price of storge systems relative to direct systems is an impediment to market penetration. A changing picture of rate structures may encourage direct systems at the expense of storage systems.
NASA Astrophysics Data System (ADS)
Hadwen, T.; Heim, R. R.; Howard, A.
2011-12-01
Drought is a difficult phenomenon to define; the way in which it is monitored, measured, assessed and even the very definition of drought vary from location to location based on the regional climate and the potential impacts. Drought is not an absolute condition but an evolving state brought on by relatively dry weather, growing more severe over time. There are many factors that define a drought and many more that define its impacts. Many definitions and indices are based solely on meteorological characteristics. Although this approach has merit, it is often necessary to go further to define those meteorological conditions in a way that is relevant to the land and water use in a region. A Drought Indices and Definitions Study was initiated in 2010 as part of a GEO Bilateral effort to examine drought across the U.S. and Canada. The Study's deliverables will include a survey of the drought indices used to monitor drought, and a bibliography of research addressing the nature of drought, across the diverse climates of the continent. With an increasing pressure to utilize drought monitoring as a primary indicator of need for disaster assistance, the reliability of drought indices must be validated and utilized in appropriate in various regions. In 2009, following over five years of participation in the North American Drought Monitor (NA-DM), the National Agroclimate Information Service of Agriculture and Agri-Food Canada initiated a project to develop a Canadian Drought Monitor (Can-DM), based on primary principles used in the NA-DM and the US Drought Monitor (US-DM). The process of developing an operational monitoring tool and using drought indices in a vast and environmentally diverse country has been challenging. in Canada, many of the commonly used indices are not appropriate in certain regions or data densities do not allow for proper use. This paper will discuss the experiences that the Can-DM team has had dealing with these challenges, how these experiences provide recommendations for a global drought early warning system, and implications of the Drought Indices and Definitions Study for improving both the Can-DM and a global drought early warning system.
Ultrasensitive surveillance of sensors and processes
Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.
2001-01-01
A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.
Ultrasensitive surveillance of sensors and processes
Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.
1999-01-01
A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.
Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.
2011-01-01
Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.
Microfluidic process monitor for industrial solvent extraction system
Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood
2016-01-12
The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.
USDA-ARS?s Scientific Manuscript database
Many irrigation scheduling methods utilized in commercial production settings rely on soil water sensors that are normally purchased as off-the-shelf technology or through contracted services that install and monitor readings throughout the season. These systems often assume a direct relationship be...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...
In 2010, Kansas City, MO (KCMO) signed a consent degree with EPA on combined sewer overflows. The City decided to use adaptive management in order to extensively utilize green infrastructure (GI) in lieu of, and in addition to, structural controls. KCMO installed 130 GI storm co...
Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey
Zoha, Ahmed; Gluhak, Alexander; Imran, Muhammad Ali; Rajasegarar, Sutharshan
2012-01-01
Appliance Load Monitoring (ALM) is essential for energy management solutions, allowing them to obtain appliance-specific energy consumption statistics that can further be used to devise load scheduling strategies for optimal energy utilization. Fine-grained energy monitoring can be achieved by deploying smart power outlets on every device of interest; however it incurs extra hardware cost and installation complexity. Non-Intrusive Load Monitoring (NILM) is an attractive method for energy disaggregation, as it can discern devices from the aggregated data acquired from a single point of measurement. This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing. We review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions. PMID:23223081
Cook, Brendan; Gazzano, Jerrome; Gunay, Zeynep; Hiller, Lucas; Mahajan, Sakshi; Taskan, Aynur; Vilogorac, Samra
2012-04-23
The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed "smart grid" contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household's electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments.
An investigation into non-invasive physical activity recognition using smartphones.
Kelly, Daniel; Caulfield, Brian
2012-01-01
Technology utilized to automatically monitor Activities of Daily Living (ADL) could be a key component in identifying deviations from normal functional profiles and providing feedback on interventions aimed at improving health. However, if activity recognition systems are to be implemented in real world scenarios such as health and wellness monitoring, the activity sensing modality must unobtrusively fit the human environment rather than forcing humans to adhere to sensor specific conditions. Modern smart phones represent a ubiquitous computing device which has already undergone mainstream adoption. In this paper, we investigate the feasibility of using a modern smartphone, with limited placement constraints, as the sensing modality for an activity recognition system. A dataset of 4 subjects performing 7 activities, using varying sensor placement conditions, is utilized to investigate this. Initial experiments show that a decision tree classifier performs activity classification with precision and recall scores of 0.75 and 0.73 respectively. More importantly, as part of this initial experiment, 3 main problems, and subsequently 3 solutions, relating to unconstrained sensor placement were identified. Using our proposed solutions, classification precision and recall scores were improved by +13% and +14.6% respectively.
Remote physiological monitoring in an austere environment: a future for battlefield care provision?
Smyth, Matthew J; Round, J A; Mellor, A J
2018-05-14
Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Kido, Michael H.; Mundt, Carsten W.; Montgomery, Kevin N.; Asquith, Adam; Goodale, David W.; Kaneshiro, Kenneth Y.
2008-10-01
Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.
Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y
2008-10-01
Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.
Implementation of spatial smart waste management system in malaysia
NASA Astrophysics Data System (ADS)
Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.
2016-06-01
One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.
Cultivation of mammalian cells using a single-use pneumatic bioreactor system.
Obom, Kristina M; Cummings, Patrick J; Ciafardoni, Janelle A; Hashimura, Yasunori; Giroux, Daniel
2014-10-10
Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor's software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.
Caliendo, A M; St George, K; Kao, S Y; Allega, J; Tan, B H; LaFontaine, R; Bui, L; Rinaldo, C R
2000-06-01
The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients.
Caliendo, Angela M.; St. George, Kirsten; Kao, Shaw-Yi; Allega, Jessica; Tan, Ban-Hock; LaFontaine, Robert; Bui, Larry; Rinaldo, Charles R.
2000-01-01
The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients. PMID:10834964
NASA Astrophysics Data System (ADS)
Detsis, Emmanouil; Brodsky, Yuval; Knudtson, Peter; Cuba, Manuel; Fuqua, Heidi; Szalai, Bianca
2012-11-01
Space assets have a unique opportunity to play a more active role in global resource management. There is a clear need to develop resource management tools in a global framework. Illegal, Unregulated and Unreported (IUU) fishing is placing pressure on the health and size of fishing stocks around the world. Earth observation systems can provide fishery management organizations with cost effective monitoring of large swaths of ocean. Project Catch is a fisheries management project based upon the complimentary, but independent Catch-VMS and Catch-GIS systems. Catch-VMS is a Vessel Monitoring System with increased fidelity over existing offerings. Catch-GIS is a Geographical Information System that combines VMS information with existing Earth Observation data and other data sources to identify Illegal, Unregulated and Unreported (IUU) fishing. Project Catch was undertaken by 19 Masters students from the 2010 class of the International Space University. In this paper, the space-based system architecture of Project Catch is presented and analyzed. The rationale for the creation of the system, as well as the engineering trade-off studies in its creation, are discussed. The Catch-VMS proposal was envisaged in order to address two specific problems: (1) the expansion of illegal fishing to high-latitude regions where existing satellite systems coverage is an issue and (2) the lack of coverage in remote oceanic regions due to reliance on coastal-based monitoring. Catch-VMS utilizes ship-borne transponders and hosted-payload receivers on a Global Navigation Satellite System in order to monitor the position and activity of compliant fishing vessels. Coverage is global and continuous with multiple satellites in view providing positional verification through multilateration techniques. The second part of the paper briefly describes the Catch-GIS system and investigates its cost of implementation.
Internet of Things Based Combustible Ice Safety Monitoring System Framework
NASA Astrophysics Data System (ADS)
Sun, Enji
2017-05-01
As the development of human society, more energy is requires to meet the need of human daily lives. New energies play a significant role in solving the problems of serious environmental pollution and resources exhaustion in the present world. Combustible ice is essentially frozen natural gas, which can literally be lit on fire bringing a whole new meaning to fire and ice with less pollutant. This paper analysed the advantages and risks on the uses of combustible ice. By compare to other kinds of alternative energies, the advantages of the uses of combustible ice were concluded. The combustible ice basic physical characters and safety risks were analysed. The developments troubles and key utilizations of combustible ice were predicted in the end. A real-time safety monitoring system framework based on the internet of things (IOT) was built to be applied in the future mining, which provide a brand new way to monitoring the combustible ice mining safety.
Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E; Dichter, Marc A; Lucas, Timothy H; Viventi, Jonathan; Litt, Brian; Rogers, John A
2016-07-01
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.
The Global Invasive Species Information Network: contributing to GEO Task BI-07-01b
NASA Astrophysics Data System (ADS)
Graham, J.; Morisette, J. T.; Simpson, A.
2009-12-01
Invasive alien species (IAS) threaten biodiversity and exert a tremendous cost on society for IAS prevention and eradication. They endanger natural ecosystem functioning and seriously impact biodiversity and agricultural production. The task definition for the GEO task BI-07-01b: Invasive Species Monitoring System is to characterize, monitor, and predict changes in the distribution of invasive species. This includes characterizing the current requirements and capacity for invasive species monitoring and developing strategies for implementing cross-search functionality among existing online invasive species information systems from around the globe. The Task is being coordinated by members of the Global Invasive Species Information Network (GISIN) and their partners. Information on GISIN and a prototype of the network is available at www.gisin.org. This talk will report on the current status of GISIN and review how researchers can either contribute to or utilize data from this network.
Advances in on-line drinking water quality monitoring and early warning systems.
Storey, Michael V; van der Gaag, Bram; Burns, Brendan P
2011-01-01
Significant advances have been made in recent years in technologies to monitor drinking water quality for source water protection, treatment operations, and distribution system management, in the event of accidental (or deliberate) contamination. Reports prepared through the Global Water Research Coalition (GWRC) and United States Environment Protection Agency (USEPA) agree that while many emerging technologies show promise, they are still some years from being deployed on a large scale. Further underpinning their viability is a need to interpret data in real time and implement a management strategy in response. This review presents the findings of an international study into the state of the art in this field. These results are based on visits to leading water utilities, research organisations and technology providers throughout Europe, the United States and Singapore involved in the development and deployment of on-line monitoring technology for the detection of contaminants in water. Copyright © 2010 Elsevier Ltd. All rights reserved.
Data Auditor: Analyzing Data Quality Using Pattern Tableaux
NASA Astrophysics Data System (ADS)
Srivastava, Divesh
Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.
Kongiganak Wind Turbine Replacement and System Upgrade Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boonstra, Patrick
2016-12-13
The Native Village of Kongiganak, Alaska was awarded a grant to upgrade the braking systems on five wind turbines and upgrade the monitoring and data collection unit to insure that enough energy is available to power the utility. The project manager for this award is Intelligent Energy Systems, LLC located in Anchorage, Alaska. In addition to accomplishing these upgrades, it was the intent for a local wind tech crew to be trained in Kongiganak so that routine maintenance and future repairs will be made by local workers.
Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.
2015-01-01
Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.
Market research on garment-based "wearables" and biophysical monitoring and a new monitoring method.
Schultze, Claudia; Burr, Stacey
2004-01-01
Technology advancements are foremost on the minds of scientists and developers who are working to overcome the many hurdles associated with bringing consumers the enhanced benefits associated with next generation wearable health systems. Often the technology work takes a front seat to the basic requirements of traditional consumer apparel. The choices of what consumers elect to place and carry on their body can be practical, logical, emotional and sometimes seemingly random. By providing insights and data to support the claims, developers of wearable health systems of the future will be able improve their chance of consumer adoption and continued use by gaining a clearer picture of the people that will be wearing the systems. Results from 5 different consumer research studies are presented, examining consumer buying patterns, gender differences, regional differences, their receptivity to health benefits delivered via clothing and what they want from technology enhanced clothing. Market research related to biophysical monitoring utilizing smart fabrics or interactive textiles show a critical level of commercial activity. Medical applications focused on the aged, infant and critical patient care are taking the lead. This paper presents a look at the biophysical monitoring market and discusses new materials useful in garment systems and the challenges remaining for their development and integration with textiles. A new method of non-invasive monitoring of periodic activity is discussed.
RAPID: Collaborative Commanding and Monitoring of Lunar Assets
NASA Technical Reports Server (NTRS)
Torres, Recaredo J.; Mittman, David S.; Powell, Mark W.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Abramyan, Lucy; Shams, Khawaja S.; Wallick, Michael; Allan, Mark;
2011-01-01
RAPID (Robot Application Programming Interface Delegate) software utilizes highly robust technology to facilitate commanding and monitoring of lunar assets. RAPID provides the ability for intercenter communication, since these assets are developed in multiple NASA centers. RAPID is targeted at the task of lunar operations; specifically, operations that deal with robotic assets, cranes, and astronaut spacesuits, often developed at different NASA centers. RAPID allows for a uniform way to command and monitor these assets. Commands can be issued to take images, and monitoring is done via telemetry data from the asset. There are two unique features to RAPID: First, it allows any operator from any NASA center to control any NASA lunar asset, regardless of location. Second, by abstracting the native language for specific assets to a common set of messages, an operator may control and monitor any NASA lunar asset by being trained only on the use of RAPID, rather than the specific asset. RAPID is easier to use and more powerful than its predecessor, the Astronaut Interface Device (AID). Utilizing the new robust middleware, DDS (Data Distribution System), developing in RAPID has increased significantly over the old middleware. The API is built upon the Java Eclipse Platform, which combined with DDS, provides platform-independent software architecture, simplifying development of RAPID components. As RAPID continues to evolve and new messages are being designed and implemented, operators for future lunar missions will have a rich environment for commanding and monitoring assets.
Shipborne LiDAR system for coastal change monitoring
NASA Astrophysics Data System (ADS)
Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong
2016-04-01
Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.
Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris
2009-01-01
Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.
Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2016-01-01
The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.
A Portable Cell Maintenance System for Rapid Toxicity Monitoring Final Report CRADA No. TC-02081-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, S.; Zhou, P.
The Phase I STTR research project was targeted at meeting the objectives and requirements stated in STTR solicitation A04-T028 for a Portable Cell Maintenance System for Rapid Toxicity Monitoring. In accordance with the requirements for STTR programs, collaboration was formed between a small business, Kionix, Inc., and The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL). The collaboration included CytoDiscovery, Inc. (CDI) which, in collaboration with Kionix, provided access to membrane chip technology and provided program support and coordination. The objective of the overall program (excerpted from the original solicitation) was: “To develop a small, portable cellmore » maintenance system for the transport, storage, and monitoring of viable vertebrate cells and tissues.” The goal of the Phase I project was to demonstrate the feasibility of achieving the program objectives utilizing a system comprised of a small-size, microfluidic chip-based cell maintenance cartridge (CMC) and a portable cell maintenance system (CMS) capable of housing a minimum of four CMCs. The system was designed to be capable of optimally maintaining multiple vertebrate cell types while supporting a wide variety of cellular assays.« less
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring
Gharavi, Hamid; Hu, Bin
2018-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.
Gharavi, Hamid; Hu, Bin
2017-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.
Active damage interrogation system for structural health monitoring
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Dunne, James P.; Becker, Ronald S.; Baumann, Erwin W.
1997-05-01
An integrated and automated smart structures approach for in situ damage assessment has been implemented and evaluated in a laboratory environment for health monitoring of a realistic aerospace structural component. This approach, called Active Damage Interrogation (ADI), utilizes an array of piezoelectric transducers attached to or embedded within the structure for both actuation and sensing. The ADI system, which is model independent, actively interrogates the structure through broadband excitation of multiple actuators across the desired frequency range. Statistical analysis of the changes in transfer functions between actuator/sensor pairs is used to detect, localize, and assess the severity of damage in the structure. This paper presents the overall concept of the ADI system and provides experimental results of damage assessment studies conducted for a composite structural component of the MD-900 Explorer helicopter rotor system. The potential advantages of this approach include simplicity (no need for a model), sensitivity, and low cost implementation. The results obtained thus far indicate considerably promise for integrated structural health monitoring of aerospace vehicles, leading to the practice of condition-based maintenance and consequent reduction in life cycle costs.
Detection of nitrogen dioxide by CW cavity-enhanced spectroscopy
NASA Astrophysics Data System (ADS)
Jie, Guo; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu
2016-11-01
In the paper, an accurate and sensitive system was used to monitor the ambient atmospheric NO2 concentrations. This system utilizes cavity attenuated phase shift spectroscopy(CAPS), a technology related to cavity ring down spectroscopy(CRDS). Advantages of the CAPS system include such as: (1) cheap and easy to control the light source, (2) high accuracy, and (3) low detection limit. The performance of the CAPS system was evaluated by measuring of the stability and response of the system. The minima ( 0.08 ppb NO2) in the Allan plots show the optimum average time( 100s) for optimum detection performance of the CAPS system. Over a 20-day-long period of the ambient atmospheric NO2 concentrations monitoring, a comparison of the CAPS system with an extremely accurate and precise chemiluminescence-based NOx analyzer showed that the CAPS system was able to reliably and quantitatively measure both large and small fluctuations in the ambient nitrogen dioxide concentration. The experimental results show that the measuring instrument results correlation is 0.95.
Utilizing GCaMP transgenic mice to monitor endogenous Gq/11-coupled receptors
Partridge, John G.
2015-01-01
The family of GCaMPs are engineered proteins that contain Ca2+ binding motifs within a circularly permutated variant of the Aequorea Victoria green fluorescent protein (cp-GFP). The rapidly advancing field of utilizing GCaMP reporter constructs represents a major step forward in our ability to monitor intracellular Ca2+ dynamics. With the use of these genetically encoded Ca2+ sensors, investigators have studied activation of endogenous Gq types of G protein-coupled receptors (GPCRs) and subsequent rises in intracellular calcium. Escalations in intracellular Ca2+ from GPCR activation can be faithfully monitored in space and time as an increase in fluorescent emission from these proteins. Further, transgenic mice are now commercially available that express GCaMPs in a Cre recombinase dependent fashion. These GCaMP reporter mice can be bred to distinct Cre recombinase driver mice to direct expression of this sensor in unique populations of cells. Concerning the central nervous system (CNS), sources of calcium influx, including those arising from Gq activation can be observed in targeted cell types like neurons or astrocytes. This powerful genetic method allows simultaneous monitoring of the activity of dozens of cells upon activation of endogenous Gq-coupled GPCRs. Therefore, in combination with pharmacological tools, this strategy of monitoring GPCR activation is amenable to analysis of orthosteric and allosteric ligands of Gq-coupled receptors in their endogenous environments. PMID:25805995
Portable System for Monitoring the Microclimate in the Footwear-Foot Interface
Sandoval-Palomares, José de Jesús; Yáñez-Mendiola, Javier; Gómez-Espinosa, Alfonso; López-Vela, José Martin
2016-01-01
A new, continuously-monitoring portable device that monitors the diabetic foot has shown to help in reduction of diabetic foot complications. Persons affected by diabetic foot have shown to be particularly sensitive in the plantar surface; this sensitivity coupled with certain ambient conditions may cause dry skin. This dry skin leads to the formation of fissures that may eventually result in a foot ulceration and subsequent hospitalization. This new device monitors the micro-climate temperature and humidity areas between the insole and sole of the footwear. The monitoring system consists of an array of ten sensors that take readings of relative humidity within the range of 100% ± 2% and temperature within the range of −40 °C to 123.8 ± 0.3 °C. Continuous data is collected using embedded C software and the recorded data is processed in Matlab. This allows for the display of data; the implementation of the iterative Gauss-Newton algorithm method was used to display an exponential response curve. Therefore, the aim of our system is to obtain feedback data and provide the critical information to various footwear manufacturers. The footwear manufactures will utilize this critical information to design and manufacture diabetic footwear that reduce the risk of ulcers in diabetic feet. PMID:27399718
Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes
NASA Astrophysics Data System (ADS)
Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.
2016-06-01
This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.
NASA Astrophysics Data System (ADS)
Pamulaparthy, Balakrishna; KS, Swarup; Kommu, Rajagopal
2014-12-01
Distribution automation (DA) applications are limited to feeder level today and have zero visibility outside of the substation feeder and reaching down to the low-voltage distribution network level. This has become a major obstacle in realizing many automated functions and enhancing existing DA capabilities. Advanced metering infrastructure (AMI) systems are being widely deployed by utilities across the world creating system-wide communications access to every monitoring and service point, which collects data from smart meters and sensors in short time intervals, in response to utility needs. DA and AMI systems convergence provides unique opportunities and capabilities for distribution grid modernization with the DA system acting as a controller and AMI system acting as feedback to DA system, for which DA applications have to understand and use the AMI data selectively and effectively. In this paper, we propose a load segmentation method that helps the DA system to accurately understand and use the AMI data for various automation applications with a suitable case study on power restoration.
NASA Astrophysics Data System (ADS)
AlShamsi, Meera R.
2016-10-01
Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as governmental entities and municipalities.
Structural health monitoring system for bridges based on skin-like sensor
NASA Astrophysics Data System (ADS)
Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd
2017-09-01
Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.
Remote monitoring of a Fire Protection System
NASA Astrophysics Data System (ADS)
Bauman, Steven; Vermeulen, Tom; Roberts, Larry; Matsushige, Grant; Gajadhar, Sarah; Taroma, Ralph; Elizares, Casey; Arruda, Tyson; Potter, Sharon; Hoffman, James
2011-03-01
Some years ago CFHT proposed developing a Remote Observing Environment aimed at producing Science Observations at their Observatory Facility on Mauna Kea from their Headquarters facility in Waimea, HI. This Remote Observing Project commonly referred to as OAP (Observatory Automation Project) was completed at the end of January 2011 and has been providing the majority of Science Data since. My poster will discuss the upgrades to the existing fire alarm protection system. With no one at the summit during nightly operations, the observatory facility required automated monitoring of the facility for safety to personnel and equipment in the case of a fire. An addressable analog fire panel was installed which utilizes digital communication protocol (DCP), intelligent communication with other devices, and an RS-232 interface which provides feedback and real-time monitoring of the system. Using the interface capabilities of the panel, it provides notifications when heat detectors, smoke sensors, manual pull stations, or the main observatory computer room fire suppression system has been activated. The notifications are sent out as alerts to staff in the form of test massages and emails and the observing control GUI interface alerts the remote telescope operator with a map showing the location of the fire occurrence and type of device that has been triggered. And all of this was accomplished without the need for an outside vendor to monitor the system and facilitate warnings or notifications regarding the system.
NASA Astrophysics Data System (ADS)
Estrada, Raul
The purpose of this project is to explore applications of magnetostrictive materials for real-time monitoring of railroad suspension components, in particular bearings. Monitoring of such components typically requires the tracking of temperature vibration and load. In addition, real-time, long-term monitoring can be greatly facilitated through the use of wireless, self-powered sensors. Magnetostrictive materials, such as Terfenol-D, have the potential to address both requirements. Currently, piezoelectrics are used for many load and energy harvesting applications; however, they are fragile and are difficult to use for static load measurements. Magnetostrictive metals are tougher, and their property of variable permeability when stressed can be utilized to measure static loads. A prototype load sensor was successfully fabricated and characterized yielding less than 10% error under normal operating conditions. Energy harvesting experiments generated a little over 80 mW of power, which is sufficient to run low-power condition monitoring systems.
Getting a handle on DNFB strategies for boosting performance.
2015-03-01
Keeping tabs on DNFB requires a commitment from multiple departments, including clinical documentation, health information management, utilization management, and patient financial services. Monitoring DNFB performance daily, weekly, and monthly can help an organization quickly resolve short-term problems and also identify and respond to more systemic issues. By leveraging historical and comparison data, including performance information from peer organizations, hospitals and health systems can set more realistic targets and further highlight improvement opportunities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... designatedEAR99, unless reclassified in another ECCN or the 0Y521 classification is reissued Item-specific... listed above; and d. Utilizes bioluminescence as a process. Related Controls. (1) See ECCN 1A004.c for detection systems and ECCN 2B351 for toxic gas monitoring systems and their dedicated detecting components...
2007-02-01
permit, there are no guidelines for storm water quality , therefore Homestead ARB established a program with the State of Florida to test and monitor... storm water quality . Heating and Cooling Systems. Because of the humid Florida climate, engineers are considering an installation-wide Utility... storm water quality , negligible effects on the storm water system would be expected as a result of the Proposed Action. Heating and Cooling
Ultrasound Guidance and Monitoring of Laser-Based Fat Removal
Shah, Jignesh; Thomsen, Sharon; Milner, Thomas E.; Emelianov, Stanislav Y.
2009-01-01
Background and Objectives We report on a study to investigate feasibility of utilizing ultrasound imaging to guide laser removal of subcutaneous fat. Ultrasound imaging can be used to identify the tissue composition and to monitor the temperature increase in response to laser irradiation. Study Design/Materials and Methods Laser heating was performed on ex vivo porcine subcutaneous fat through the overlying skin using a continuous wave laser operating at 1,210 nm optical wavelength. Ultrasound images were recorded using a 10 MHz linear array-based ultrasound imaging system. Results Ultrasound imaging was utilized to differentiate between water-based and lipid-based regions within the porcine tissue and to identify the dermis-fat junction. Temperature maps during the laser exposure in the skin and fatty tissue layers were computed. Conclusions Results of our study demonstrate the potential of using ultrasound imaging to guide laser fat removal. PMID:19065554
Sankar, M; Chandra, T S
2003-01-01
A detailed analysis was made of chemical fractions of common agro-residues before and after pretreatment (alkali and hydrogen peroxide), and the selective utilization of components such as WSS, EBS, TSS, lignin, cellulose and hemicellulose by pure and mixed cultures of cellulolytic and xylanolytic Clostridia was monitored and correlated with the organisms' enzyme activity. For all cultures pretreatment gave higher utilization of hemicellulose and cellulose fractions; hydrogen peroxide pretreatment was more effective than NaOH treatment. Lignin utilization was not very significant even on pretreatment. C.TM1 and C.SA IV utilized hemicellulose and cellulose better than mixed cultures in selected substrates. These results help to determine the substrate composition, pretreatment conditions and enzyme system of the organism needed when designing an inoculum for agricultural waste treatment processes such as composting or biogas generation.
Cybersecurity Intrusion Detection and Monitoring for Field Area Network: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietrowicz, Stanley
This report summarizes the key technical accomplishments, industry impact and performance of the I2-CEDS grant entitled “Cybersecurity Intrusion Detection and Monitoring for Field Area Network”. Led by Applied Communication Sciences (ACS/Vencore Labs) in conjunction with its utility partner Sacramento Municipal Utility District (SMUD), the project accelerated research on a first-of-its-kind cybersecurity monitoring solution for Advanced Meter Infrastructure and Distribution Automation field networks. It advanced the technology to a validated, full-scale solution that detects anomalies, intrusion events and improves utility situational awareness and visibility. The solution was successfully transitioned and commercialized for production use as SecureSmart™ Continuous Monitoring. Discoveries made withmore » SecureSmart™ Continuous Monitoring led to tangible and demonstrable improvements in the security posture of the US national electric infrastructure.« less
NASA Astrophysics Data System (ADS)
Wong, John-Michael; Stojadinovic, Bozidar
2005-05-01
A framework has been defined for storing and retrieving civil infrastructure monitoring data over a network. The framework consists of two primary components: metadata and network communications. The metadata component provides the descriptions and data definitions necessary for cataloging and searching monitoring data. The communications component provides Java classes for remotely accessing the data. Packages of Enterprise JavaBeans and data handling utility classes are written to use the underlying metadata information to build real-time monitoring applications. The utility of the framework was evaluated using wireless accelerometers on a shaking table earthquake simulation test of a reinforced concrete bridge column. The NEESgrid data and metadata repository services were used as a backend storage implementation. A web interface was created to demonstrate the utility of the data model and provides an example health monitoring application.
Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior.
Nguyen, Katrina P; O'Neal, Timothy J; Bolonduro, Olurotimi A; White, Elecia; Kravitz, Alexxai V
2016-07-15
Measuring food intake in rodents is a conceptually simple yet labor-intensive and temporally-imprecise task. Most commonly, food is weighed manually, with an interval of hours or days between measurements. Commercial feeding monitors are excellent, but are costly and require specialized caging and equipment. We have developed the Feeding Experimentation Device (FED): a low-cost, open-source, home cage-compatible feeding system. FED utilizes an Arduino microcontroller and open-source software and hardware. FED dispenses a single food pellet into a food well where it is monitored by an infrared beam. When the mouse removes the pellet, FED logs the timestamp to a secure digital (SD) card and dispenses a new pellet into the well. Post-hoc analyses of pellet retrieval timestamps reveal high-resolution details about feeding behavior. FED is capable of accurately measuring food intake, identifying discrete trends during light and dark-cycle feeding. Additionally, we show the utility of FED for measuring increases in feeding resulting from optogenetic stimulation of agouti-related peptide neurons in the arcuate nucleus of the hypothalamus. With a cost of ∼$350 per device, FED is >10× cheaper than commercially available feeding systems. FED is also self-contained, battery powered, and designed to be placed in standard colony rack cages, allowing for monitoring of true home cage feeding behavior. Moreover, FED is highly adaptable and can be synchronized with emerging techniques in neuroscience, such as optogenetics, as we demonstrate here. FED allows for accurate, precise monitoring of feeding behavior in a home cage setting. Published by Elsevier B.V.
Development and implementation of a human accuracy program in patient foodservice.
Eden, S H; Wood, S M; Ptak, K M
1987-04-01
For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.
Araki, Yoshihiko; Nonaka, Daisuke; Hamamura, Kensuke; Yanagida, Mitsuaki; Ishikawa, Hitoshi; Banzai, Michio; Maruyama, Mayuko; Endo, Shuichiro; Tajima, Atsushi; Lee, Lyang-Ja; Nojima, Michio; Takamori, Kenji; Yoshida, Koyo; Takeda, Satoru; Tanaka, Kenji
2013-10-01
To date, numerous studies have searched for candidate molecules or clinical examination methods as potential biomarkers for monitoring intractable diseases, such as carcinomas. Evidence accumulated over the past decade shows that many proteolytic peptides appear in human humoral fluids, including peripheral blood, in association with an individual's health condition. Although an analysis of the whole peptide (the 'peptidome') using mass spectrometry is thought to be one of the most powerful and promising experimental approaches, it has failed to identify biomarkers in the clinical blood samples, presumably due to the methodological limitations. In general, commonly used techniques for proteomic analysis of blood require the removal of large amounts of serum/plasma proteins prior to mass spectrometry analysis, and this step seems to have resulted in the overlooking of important biomarkers during the analytical process. Here, we provide a brief overview of a new quantitative peptidomic analysis by a one-step direct transfer technology without depletion of major blood proteins. Using this technology, we herein report experimental data on serum peptidomic analysis for patients with pregnancy-induced hypertension as a clinical model. In addition, we refer to the potential utility of this approach for the monitoring of pathophysiological status in female reproductive system disorders in general. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.
NASA Astrophysics Data System (ADS)
Chen, Y.; Ni, Y. Q.; Ye, X. W.; Yang, H. X.; Zhu, S.
2012-04-01
Wind energy utilization as a reliable energy source has become a large industry in the last 20 years. Nowadays, wind turbines can generate megawatts of power and have rotor diameters that are on the order of 100 meters in diameter. One of the key components in a wind turbine is the blade which could be damaged by moisture absorption, fatigue, wind gusts or lighting strikes. The wind turbine blades should be routinely monitored to improve safety, minimize downtime, lower the risk of sudden breakdowns and associated huge maintenance and logistics costs, and provide reliable power generation. In this paper, a real-time wind turbine blade monitoring system using fiber Bragg grating (FBG) sensors with the fiber optic rotary joint (FORJ) is proposed, and applied to monitor the structural responses of a 600 W small scale wind turbine. The feasibility and effectiveness of the FORJ is validated by continuously transmitting the optical signals between the FBG interrogator at the stationary side and the FBG sensors on the rotating part. A comparison study between the measured data from the proposed system and those from an IMote2-based wireless strain measurement system is conducted.
Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration
NASA Technical Reports Server (NTRS)
Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)
2001-01-01
The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.
Autonomic Intelligent Cyber Sensor to Support Industrial Control Network Awareness
Vollmer, Todd; Manic, Milos; Linda, Ondrej
2013-06-01
The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of Autonomic computing and a SOAP based IF-MAP external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, self-managed framework. The contribution of this paper is two-fold: 1) A flexible two level communication layer based on Autonomic computing and Service Oriented Architecture is detailed and 2) Three complementary modules that dynamically reconfiguremore » in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific Operating System and port configurations. Additionally the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.« less
Maximizing the utility of monitoring to the adaptive management of natural resources
Kendall, William L.; Moore, Clinton T.; Gitzen, Robert A.; Cooper, Andrew B.; Millspaugh, Joshua J.; Licht, Daniel S.
2012-01-01
Data collection is an important step in any investigation about the structure or processes related to a natural system. In a purely scientific investigation (experiments, quasi-experiments, observational studies), data collection is part of the scientific method, preceded by the identification of hypotheses and the design of any manipulations of the system to test those hypotheses. Data collection and the manipulations that precede it are ideally designed to maximize the information that is derived from the study. That is, such investigations should be designed for maximum power to evaluate the relative validity of the hypotheses posed. When data collection is intended to inform the management of ecological systems, we call it monitoring. Note that our definition of monitoring encompasses a broader range of data-collection efforts than some alternative definitions – e.g. Chapter 3. The purpose of monitoring as we use the term can vary, from surveillance or “thumb on the pulse” monitoring (see Nichols and Williams 2006), intended to detect changes in a system due to any non-specified source (e.g. the North American Breeding Bird Survey), to very specific and targeted monitoring of the results of specific management actions (e.g. banding and aerial survey efforts related to North American waterfowl harvest management). Although a role of surveillance monitoring is to detect unanticipated changes in a system, the same result is possible from a collection of targeted monitoring programs distributed across the same spatial range (Box 4.1). In the face of limited budgets and many specific management questions, tying monitoring as closely as possible to management needs is warranted (Nichols and Williams 2006). Adaptive resource management (ARM; Walters 1986, Williams 1997, Kendall 2001, Moore and Conroy 2006, McCarthy and Possingham 2007, Conroy et al. 2008a) provides a context and specific purpose for monitoring: to evaluate decisions with respect to achievement of specific management objectives; and to evaluate the relative validity of predictive system models. This latter purpose is analogous to the role of data collection within the scientific method, in a research context.
Learning temporal rules to forecast instability in continuously monitored patients
Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. PMID:27274020
Implementation of remote monitoring and managing switches
NASA Astrophysics Data System (ADS)
Leng, Junmin; Fu, Guo
2010-12-01
In order to strengthen the safety performance of the network and provide the big convenience and efficiency for the operator and the manager, the system of remote monitoring and managing switches has been designed and achieved using the advanced network technology and present network resources. The fast speed Internet Protocol Cameras (FS IP Camera) is selected, which has 32-bit RSIC embedded processor and can support a number of protocols. An Optimal image compress algorithm Motion-JPEG is adopted so that high resolution images can be transmitted by narrow network bandwidth. The architecture of the whole monitoring and managing system is designed and implemented according to the current infrastructure of the network and switches. The control and administrative software is projected. The dynamical webpage Java Server Pages (JSP) development platform is utilized in the system. SQL (Structured Query Language) Server database is applied to save and access images information, network messages and users' data. The reliability and security of the system is further strengthened by the access control. The software in the system is made to be cross-platform so that multiple operating systems (UNIX, Linux and Windows operating systems) are supported. The application of the system can greatly reduce manpower cost, and can quickly find and solve problems.
Virtual instrument: remote control and monitoring of an artificial heart driver
NASA Astrophysics Data System (ADS)
Nguyen, An H.; Farrar, David
1993-07-01
A development of a virtual instrument based on the top-down model approach for an artificial heart driver is presented. Driver parameters and status were being dynamically updated on the virtual system at the remote station. The virtual system allowed the remote operator to interact with the physical heart driver as if he/she were at the local station. Besides use as an effective training tool, the system permits an expert operator to monitor and also control the Thoratec heart driver from a distant location. We believe that the virtual instrument for biomedical devices in general and for the Thoratec heart driver in particular, not only improves system reliability but also opens up a real possibility in reducing medical cost. Utilizing the top-down scheme developed recently for telerobotics, realtime operation in both instrument display and remote communication were possible via a low bandwidth telephone medium.
Biomedical technology transfer: Applications of NASA science and technology
NASA Technical Reports Server (NTRS)
1976-01-01
The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.
DualTrust: A Distributed Trust Model for Swarm-Based Autonomic Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiden, Wendy M.; Dionysiou, Ioanna; Frincke, Deborah A.
2011-02-01
For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, trust management is important for the acceptance of the mobile agent sensors and to protect the system from malicious behavior by insiders and entities that have penetrated network defenses. This paper examines the trust relationships, evidence, and decisions in a representative system and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. We then propose the DualTrust conceptual trust model. By addressing themore » autonomic manager’s bi-directional primary relationships in the ACS architecture, DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the sensor swarm in a scalable manner, and provide global trust awareness for the orchestrating autonomic manager.« less
Intelligent data management for real-time spacecraft monitoring
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce
1992-01-01
Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.
Temporal Informative Analysis in Smart-ICU Monitoring: M-HealthCare Perspective.
Bhatia, Munish; Sood, Sandeep K
2016-08-01
The rapid introduction of Internet of Things (IoT) Technology has boosted the service deliverance aspects of health sector in terms of m-health, and remote patient monitoring. IoT Technology is not only capable of sensing the acute details of sensitive events from wider perspectives, but it also provides a means to deliver services in time sensitive and efficient manner. Henceforth, IoT Technology has been efficiently adopted in different fields of the healthcare domain. In this paper, a framework for IoT based patient monitoring in Intensive Care Unit (ICU) is presented to enhance the deliverance of curative services. Though ICUs remained a center of attraction for high quality care among researchers, still number of studies have depicted the vulnerability to a patient's life during ICU stay. The work presented in this study addresses such concerns in terms of efficient monitoring of various events (and anomalies) with temporal associations, followed by time sensitive alert generation procedure. In order to validate the system, it was deployed in 3 ICU room facilities for 30 days in which nearly 81 patients were monitored during their ICU stay. The results obtained after implementation depicts that IoT equipped ICUs are more efficient in monitoring sensitive events as compared to manual monitoring and traditional Tele-ICU monitoring. Moreover, the adopted methodology for alert generation with information presentation further enhances the utility of the system.
Integrating fisheries approaches and household utility models for improved resource management.
Milner-Gulland, E J
2011-01-25
Natural resource management is littered with cases of overexploitation and ineffectual management, leading to loss of both biodiversity and human welfare. Disciplinary boundaries stifle the search for solutions to these issues. Here, I combine the approach of management strategy evaluation, widely applied in fisheries, with household utility models from the conservation and development literature, to produce an integrated framework for evaluating the effectiveness of competing management strategies for harvested resources against a range of performance metrics. I demonstrate the strengths of this approach with a simple model, and use it to examine the effect of manager ignorance of household decisions on resource management effectiveness, and an allocation tradeoff between monitoring resource stocks to reduce observation uncertainty and monitoring users to improve compliance. I show that this integrated framework enables management assessments to consider household utility as a direct metric for system performance, and that although utility and resource stock conservation metrics are well aligned, harvest yield is a poor proxy for both, because it is a product of household allocation decisions between alternate livelihood options, rather than an end in itself. This approach has potential far beyond single-species harvesting in situations where managers are in full control; I show that the integrated approach enables a range of management intervention options to be evaluated within the same framework.
Noncontact power/interrogation system for smart structures
NASA Astrophysics Data System (ADS)
Spillman, William B., Jr.; Durkee, S.
1994-05-01
The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.
NASA Technical Reports Server (NTRS)
Borg, Stephen E.; Harper, Samuel E.
2001-01-01
This paper documents the design and development of the fiber-optic probes utilized in the flame detection systems used in NASA Langley Research Center's 8-Foot High Temperature Tunnel (8-ft HTT). Two independent flame detection systems are utilized to monitor the presence and stability of the main-burner and pilot-level flames during facility operation. Due to the harsh environment within the combustor, the successful development of a rugged and efficient fiber-optic probe was a critical milestone in the development of these flame detection systems. The final optical probe design for the two flame detection systems resulted from research that was conducted in Langley's 7-in High Temperature Pilot Tunnel (7-in HTT). A detailed description of the manufacturing process behind the optical probes used in the 8-ft HTT is provided in Appendix A of this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crockett, C.S.; Haas, C.N.
1996-11-01
Due to current proposed regulations requiring monitoring for protozoans and demonstration of adequate protozoan removal depending on source water concentrations detected, many utilities are considering or are engaged in protozoan monitoring activities within their watershed so that proper watershed management and treatment modifications can reduce their impact on drinking water safety and quality. However, due to the difficulties associated with the current analytical methods and sample collection many sampling efforts collect data that cannot be interpreted or lack the tools to interpret the information obtained. Therefore, it is necessary to determine how to develop an effective sampling program tailored tomore » a utility`s specific needs to provide interpretable data and develop tools for evaluating such data. The following case study describes the process in which a utility learned how to collect and interpret monitoring data for their specific needs and provides concepts and tools which other utilities can use to aid in their own macro and microwatershed management efforts.« less
Prognostics and health management of photovoltaic systems
Johnson, Jay; Riley, Daniel
2018-04-10
The various technologies presented herein relate to providing prognosis and health management (PHM) of a photovoltaic (PV) system. A PV PHM system can eliminate long-standing issues associated with detecting performance reduction in PV systems. The PV PHM system can utilize an ANN model with meteorological and power input data to facilitate alert generation in the event of a performance reduction without the need for information about the PV PHM system components and design. Comparisons between system data and the PHM model can provide scheduling of maintenance on an as-needed basis. The PHM can also provide an approach for monitoring system/component degradation over the lifetime of the PV system.
RTEMIS: Real-time Tumoroid and Environment Monitoring Using Impedance Spectroscopy and pH Sensing
NASA Astrophysics Data System (ADS)
Alexander, Frank A., Jr.
This research utilizes Electrical Impedance Spectroscopy, a technique classically used for electrochemical analysis and material characterization, as the basis for a non-destructive, label-free assay platform for three dimensional (3D) cellular spheroids. In this work, a linear array of microelectrodes is optimized to rapidly respond to changes located within a 3D multicellular model. In addition, this technique is coupled with an on chip micro-pH sensor for monitoring the environment around the cells. Finally, the responses of both impedance and pH are correlated with physical changes within the cellular model. The impedance analysis system realized through this work provides a foundation for the development of high-throughput drug screening systems that utilize multiple parallel sensing modalities including pH and impedance sensing in order to quickly assess the efficacy of specific drug candidates. The slow development of new drugs is mainly attributed to poor predictability of current chemosensitivity and resistivity assays, as well as genetic differences between the animal models used for tests and humans. In addition, monolayer cultures used in early experimentation are fundamentally different from the complex structure of organs in vivo. This requires the study of smaller 3D models (spheroids) that more efficiently replicate the conditions within the body. The main objective of this research was to develop a microfluidic system on a chip that is capable of deducing viability and morphology of 3D tumor spheroids by monitoring both the impedance of the cellular model and the pH of their local environment. This would provide a fast and reliable method for screening pharmaceutical compounds in a high-throughput system.