Sample records for monitoring technology control

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, KMC CONTROLS, INC. SLE-1001 SIGHT GLASS MONITOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the KMC SLE-1001 Sight Glass Monitor manufactured by KMC Controls, Inc. The sight glass monitor (SGM) fits over the sight glass that may be installed in a refrigeration system for the pur...

  2. Monitoring and control requirement definition study for Dispersed Storage and Generation (DSG). Volume 2, appendix A: Selected DSG technologies and their general control requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A consistent approach was sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. It appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.

  3. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  4. Integrated controls and health monitoring for chemical transfer propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Binder, Michael P.

    1990-01-01

    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.

  5. SMALL DRINKING WATER SYSTEMS HANDBOOK A GUIDE TO "PACKAGED" FILTRATION AND DISINFECTION TECHNOLOGIES WITH REMOTE MONITORING AND CONTROL TOOLS

    EPA Science Inventory

    The intent of this handbook is to highlight information appropriate to small systems with an emphasis on filtration and disinfection technologies and how they can be "packaged" with remote monitoring and control technologies to provide a healthy and affordable solution for small ...

  6. Incorporating engine health monitoring capability into the SSME Block II controller

    NASA Astrophysics Data System (ADS)

    Clarke, James W.; Copa, Roderick J.

    An account is given of the architecture of the SSME's Block II controller's architecture, its incorporation of smart input electronics (SIE), and the potential benefits of this technology in SSME health-monitoring capabilities. SIE allows the Block II controller to conduct its control functions while simultaneously furnishing the computational capabilities and sensor input interface for any newly defined health-monitoring functions. It is expected that the SIE technology may be directly transferred to any follow-on engine design.

  7. Technology evaluation of control/monitoring systems for MIUS application. [utility services management

    NASA Technical Reports Server (NTRS)

    Pringle, L. M., Jr.

    1974-01-01

    Potential ways of providing control and monitoring for the Modular Integrated Utility System (MIUS) program are elaborated. Control and monitoring hardware and operational systems are described. The requirements for the MIUS program and the development requirements are discussed.

  8. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  9. Performance of Off-the-Shelf Technologies for Spacecraft Cabin Atmospheric Major Constituent Monitoring

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    2004-01-01

    Monitoring the atmospheric composition of a crewed spacecraft cabin is central to successfully expanding the breadth and depth of first-hand human knowledge and understanding of space. Highly reliable technologies must be identified and developed to monitor atmospheric composition. This will enable crewed space missions that last weeks, months, and eventually years. Atmospheric composition monitoring is a primary component of any environmental control and life support system. Instrumentation employed to monitor atmospheric composition must be inexpensive, simple, and lightweight and provide robust performance. Such a system will ensure an environment that promotes human safety and health, and that the environment can be maintained with a high degree of confidence. Key to this confidence is the capability for any technology to operate autonomously, with little intervention from the crew or mission control personnel. A study has been conducted using technologies that, with further development, may reach these goals.

  10. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  11. Ambient Monitoring Technology Information Center (AMTIC)

    EPA Pesticide Factsheets

    This site contains information on ambient air quality monitoring programs, monitoring methods, quality assurance and control procedures, and federal regulations related to ambient air quality monitoring.

  12. A study of mass data storage technology for rocket engine data

    NASA Technical Reports Server (NTRS)

    Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.

    1990-01-01

    The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.

  13. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  14. Interoperability for Space Mission Monitor and Control: Applying Technologies from Manufacturing Automation and Process Control Industries

    NASA Technical Reports Server (NTRS)

    Jones, Michael K.

    1998-01-01

    Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.

  15. Monitoring and control of atmosphere in a closed environment

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Perry, J.

    1991-01-01

    Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.

  16. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  17. Diabetes Technologies and Their Role in Diabetes Management

    ERIC Educational Resources Information Center

    Kollipara, Sobha; Silverstein, Janet H.; Marschilok, Katie

    2009-01-01

    The 1993 Diabetes Complications and Control Trial (DCCT) showed that controlling blood glucose prevents and delays the progression of long term complications of diabetes. New diabetes technologies can make control of diabetes possible and safer. This paper reviews these technologies used to monitor blood glucose, administer insulin and evaluate…

  18. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].

    PubMed

    Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li

    2017-10-01

    To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.

  19. Construct mine environment monitoring system based on wireless mesh network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  20. Students, Teachers, and Schools as Sources of Variability, Integrity, and Sustainability in Implementing Progress Monitoring

    ERIC Educational Resources Information Center

    Bolt, Daniel M.; Ysseldyke, Jim; Patterson, Michael J.

    2010-01-01

    A three-level variance decomposition analysis was used to examine the sources of variability in implementation of a technology-enhanced progress monitoring system within each year of a 2-year study using a randomized-controlled design. We show that results of technology-enhanced progress monitoring are not necessarily a measure of student…

  1. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    PubMed

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  2. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  3. Using Bayesian Networks and Decision Theory to Model Physical Security

    DTIC Science & Technology

    2003-02-01

    Home automation technologies allow a person to monitor and control various activities within a home or office setting. Cameras, sensors and other...components used along with the simple rules in the home automation software provide an environment where the lights, security and other appliances can be...monitored and controlled. These home automation technologies, however, lack the power to reason under uncertain conditions and thus the system can

  4. Modular Autonomous Systems Technology Framework: A Distributed Solution for System Monitoring and Control

    NASA Technical Reports Server (NTRS)

    Badger, Julia M.; Claunch, Charles; Mathis, Frank

    2017-01-01

    The Modular Autonomous Systems Technology (MAST) framework is a tool for building distributed, hierarchical autonomous systems. Originally intended for the autonomous monitoring and control of spacecraft, this framework concept provides support for variable autonomy, assume-guarantee contracts, and efficient communication between subsystems and a centralized systems manager. MAST was developed at NASA's Johnson Space Center (JSC) and has been applied to an integrated spacecraft example scenario.

  5. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  6. Automatic process control in anaerobic digestion technology: A critical review.

    PubMed

    Nguyen, Duc; Gadhamshetty, Venkataramana; Nitayavardhana, Saoharit; Khanal, Samir Kumar

    2015-10-01

    Anaerobic digestion (AD) is a mature technology that relies upon a synergistic effort of a diverse group of microbial communities for metabolizing diverse organic substrates. However, AD is highly sensitive to process disturbances, and thus it is advantageous to use online monitoring and process control techniques to efficiently operate AD process. A range of electrochemical, chromatographic and spectroscopic devices can be deployed for on-line monitoring and control of the AD process. While complexity of the control strategy ranges from a feedback control to advanced control systems, there are some debates on implementation of advanced instrumentations or advanced control strategies. Centralized AD plants could be the answer for the applications of progressive automatic control field. This article provides a critical overview of the available automatic control technologies that can be implemented in AD processes at different scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Smart homes and home health monitoring technologies for older adults: A systematic review.

    PubMed

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Link monitor and control operator assistant: A prototype demonstrating semiautomated monitor and control

    NASA Technical Reports Server (NTRS)

    Lee, L. F.; Cooper, L. P.

    1993-01-01

    This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.

  9. Two Persons with Multiple Disabilities Use Camera-Based Microswitch Technology to Control Stimulation with Small Mouth and Eyelid Responses

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Lang, Russell

    2012-01-01

    Background: A camera-based microswitch technology was recently developed to monitor small facial responses of persons with multiple disabilities and allow those responses to control environmental stimulation. This study assessed such a technology with 2 new participants using slight variations of previous responses. Method: The technology involved…

  10. Wireless Sensor Networks: Monitoring and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  11. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.

    PubMed

    Awotwe Otoo, David; Agarabi, Cyrus; Khan, Mansoor A

    2014-07-01

    The aim of the present study was to apply an integrated process analytical technology (PAT) approach to control and monitor the effect of the degree of supercooling on critical process and product parameters of a lyophilization cycle. Two concentrations of a mAb formulation were used as models for lyophilization. ControLyo™ technology was applied to control the onset of ice nucleation, whereas tunable diode laser absorption spectroscopy (TDLAS) was utilized as a noninvasive tool for the inline monitoring of the water vapor concentration and vapor flow velocity in the spool during primary drying. The instantaneous measurements were then used to determine the effect of the degree of supercooling on critical process and product parameters. Controlled nucleation resulted in uniform nucleation at lower degrees of supercooling for both formulations, higher sublimation rates, lower mass transfer resistance, lower product temperatures at the sublimation interface, and shorter primary drying times compared with the conventional shelf-ramped freezing. Controlled nucleation also resulted in lyophilized cakes with more elegant and porous structure with no visible collapse or shrinkage, lower specific surface area, and shorter reconstitution times compared with the uncontrolled nucleation. Uncontrolled nucleation however resulted in lyophilized cakes with relatively lower residual moisture contents compared with controlled nucleation. TDLAS proved to be an efficient tool to determine the endpoint of primary drying. There was good agreement between data obtained from TDLAS-based measurements and SMART™ technology. ControLyo™ technology and TDLAS showed great potential as PAT tools to achieve enhanced process monitoring and control during lyophilization cycles. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Integrated control and health management. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Holzmann, Wilfried A.; Hayden, Warren R.

    1988-01-01

    To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.

  13. [Near infrared spectroscopy based process trajectory technology and its application in monitoring and controlling of traditional Chinese medicine manufacturing process].

    PubMed

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.

  14. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  15. Psychology, technology, and diabetes management.

    PubMed

    Gonder-Frederick, Linda A; Shepard, Jaclyn A; Grabman, Jesse H; Ritterband, Lee M

    2016-10-01

    Use of technology in diabetes management is rapidly advancing and has the potential to help individuals with diabetes achieve optimal glycemic control. Over the past 40 years, several devices have been developed and refined, including the blood glucose meter, insulin pump, and continuous glucose monitor. When used in tandem, the insulin pump and continuous glucose monitor have prompted the Artificial Pancreas initiative, aimed at developing control system for fully automating glucose monitoring and insulin delivery. In addition to devices, modern technology, such as the Internet and mobile phone applications, have been used to promote patient education, support, and intervention to address the behavioral and emotional challenges of diabetes management. These state-of-the-art technologies not only have the potential to improve clinical outcomes, but there are possible psychological benefits, such as improved quality of life, as well. However, practical and psychosocial limitations related to advanced technology exist and, in the context of several technology-related theoretical frameworks, can influence patient adoption and continued use. It is essential for future diabetes technology research to address these barriers given that the clinical benefits appear to largely depend on patient engagement and consistence of technology use. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. 40 CFR 63.1112 - Extension of compliance, and performance test, monitoring, recordkeeping and reporting waivers...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...

  17. 40 CFR 63.1112 - Extension of compliance, and performance test, monitoring, recordkeeping and reporting waivers...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...

  18. 40 CFR 63.1112 - Extension of compliance, and performance test, monitoring, recordkeeping and reporting waivers...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...

  19. 40 CFR 63.1112 - Extension of compliance, and performance test, monitoring, recordkeeping and reporting waivers...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...

  20. 40 CFR 63.1112 - Extension of compliance, and performance test, monitoring, recordkeeping and reporting waivers...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology... operator of an existing source has installed best available control technology (BACT) (as defined in section 169(3) of the Act) or technology required to meet a lowest achievable emission rate (LAER) (as...

  1. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    PubMed Central

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-01-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999

  2. Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems.

    PubMed

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-10-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.

  3. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus

    EPA Science Inventory

    During the 20th century, air pollution control technologies grew at an amazingly rapid rate. Air quality in much of the industrialized world greatly improved as the efficiencies of these technologies improved. This continued improvement in pollution control has more recently been...

  4. Recent advances in PV systems technology development in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, M.; Grottke, M.; Weiss, I.

    1995-11-01

    The objectives of the photovoltaics (PV) systems technology development were to study several aspects of plant design, monitoring, control, operation, and management of different types of photovoltaic plants. Unsolved problems were to be identified and analysed, and guidelines to improve the monitoring system were to be developed. Principal studies are summarized.

  5. Advanced communications technology satellite high burst rate link evaluation terminal experiment control and monitor software user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    1992-01-01

    The Experiment Control and Monitor (EC&M) software was developed at NASA Lewis Research Center to support the Advanced Communications Technology Satellite (ACTS) High Burst Rate Link Evaluation Terminal (HBR-LET). The HBR-LET is an experimenter's terminal to communicate with the ACTS for various investigations by government agencies, universities, and industry. The EC&M software is one segment of the Control and Performance Monitoring (C&PM) software system of the HBR-LET. The EC&M software allows users to initialize, control, and monitor the instrumentation within the HBR-LET using a predefined sequence of commands. Besides instrument control, the C&PM software system is also responsible for computer communication between the HBR-LET and the ACTS NASA Ground Station and for uplink power control of the HBR-LET to demonstrate power augmentation during rain fade events. The EC&M Software User's Guide, Version 1.0 (NASA-CR-189160) outlines the commands required to install and operate the EC&M software. Input and output file descriptions, operator commands, and error recovery procedures are discussed in the document.

  6. Shoe-Insole Technology for Injury Prevention in Walking

    PubMed Central

    Nagano, Hanatsu

    2018-01-01

    Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i) ankle joint support for falls prevention; (ii) shock absorption by utilising lower-resilience materials at the heel; (iii) improving reaction speed by stimulating cutaneous receptors; and (iv) preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS) could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics. PMID:29738486

  7. A vehicle health monitoring system for the Space Shuttle Reaction Control System during reentry. M.S. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Rosello, Anthony David

    1995-01-01

    A general two tier framework for vehicle health monitoring of Guidance Navigation and Control (GN&C) system actuators, effectors, and propulsion devices is presented. In this context, a top level monitor that estimates jet thrust is designed for the Space Shuttle Reaction Control System (RCS) during the reentry phase of flight. Issues of importance for the use of estimation technologies in vehicle health monitoring are investigated and quantified for the Shuttle RCS demonstration application. These issues include rate of convergence, robustness to unmodeled dynamics, sensor quality, sensor data rates, and information recording objectives. Closed loop simulations indicate that a Kalman filter design is sensitive to modeling error and robust estimators may reduce this sensitivity. Jet plume interaction with the aerodynamic flowfield is shown to be a significant effect adversely impacting the ability to accurately estimate thrust.

  8. The Role of Monitoring in Controlling Water Pollution

    NASA Technical Reports Server (NTRS)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  9. Application of Aquaculture Monitoring System Based on CC2530

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Liu, X. Q.

    In order to improve the intelligent level of aquaculture technology, this paper puts forward a remote wireless monitoring system based on ZigBee technology, GPRS technology and Android mobile phone platform. The system is composed of wireless sensor network (WSN), GPRS module, PC server, and Android client. The WSN was set up by CC2530 chips based on ZigBee protocol, to realize the collection of water quality parameters such as the water level, temperature, PH and dissolved oxygen. The GPRS module realizes remote communication between WSN and PC server. Android client communicates with server to monitor the level of water quality. The PID (proportion, integration, differentiation) control is adopted in the control part, the control commands from the android mobile phone is sent to the server, the server again send it to the lower machine to control the water level regulating valve and increasing oxygen pump. After practical testing to the system in Liyang, Jiangsu province, China, temperature measurement accuracy reaches 0.5°C, PH measurement accuracy reaches 0.3, water level control precision can be controlled within ± 3cm, dissolved oxygen control precision can be controlled within ±0.3 mg/L, all the indexes can meet the requirements, this system is very suitable for aquaculture.

  10. Study on application of dynamic monitoring of land use based on mobile GIS technology

    NASA Astrophysics Data System (ADS)

    Tian, Jingyi; Chu, Jian; Guo, Jianxing; Wang, Lixin

    2006-10-01

    The land use dynamic monitoring is an important mean to maintain the real-time update of the land use data. Mobile GIS technology integrates GIS, GPS and Internet. It can update the historic al data in real time with site-collected data and realize the data update in large scale with high precision. The Monitoring methods on the land use change data with the mobile GIS technology were discussed. Mobile terminal of mobile GIS has self-developed for this study with GPS-25 OEM and notebook computer. The RTD (real-time difference) operation mode is selected. Mobile GIS system of dynamic monitoring of land use have developed with Visual C++ as operation platform, MapObjects control as graphic platform and MSCmm control as communication platform, which realizes organic integration of GPS, GPRS and GIS. This system has such following basic functions as data processing, graphic display, graphic editing, attribute query and navigation. Qinhuangdao city was selected as the experiential area. Shown by the study result, the mobile GIS integration system of dynamic monitoring of land use developed by this study has practical application value.

  11. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    PubMed Central

    Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.

    2008-01-01

    Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control. PMID:27879874

  12. Impact of newer self-monitoring technology and brief phone-based intervention on weight loss: A randomized pilot study.

    PubMed

    Ross, Kathryn M; Wing, Rena R

    2016-08-01

    Despite the proliferation of newer self-monitoring technology (e.g., activity monitors and smartphone apps), their impact on weight loss outside of structured in-person behavioral intervention is unknown. A randomized, controlled pilot study was conducted to examine efficacy of self-monitoring technology, with and without phone-based intervention, on 6-month weight loss in adults with overweight and obesity. Eighty participants were randomized to receive standard self-monitoring tools (ST, n = 26), technology-based self-monitoring tools (TECH, n = 27), or technology-based tools combined with phone-based intervention (TECH + PHONE, n = 27). All participants attended one introductory weight loss session and completed assessments at baseline, 3 months, and 6 months. Weight loss from baseline to 6 months differed significantly between groups P = 0.042; there was a trend for TECH + PHONE (-6.4 ± 1.2 kg) to lose more weight than ST (-1.3 ± 1.2 kg); weight loss in TECH (-4.1 ± 1.4 kg) was between ST and TECH + PHONE. Fewer ST (15%) achieved ≥5% weight losses compared with TECH and TECH + PHONE (44%), P = 0.039. Adherence to self-monitoring caloric intake was higher in TECH + PHONE than TECH or ST, Ps < 0.05. These results suggest use of newer self-monitoring technology plus brief phone-based intervention improves adherence and weight loss compared with traditional self-monitoring tools. Further research should determine cost-effectiveness of adding phone-based intervention when providing self-monitoring technology. © 2016 The Obesity Society.

  13. Impact of newer self-monitoring technology and brief phone-based intervention on weight loss: a randomized pilot study

    PubMed Central

    Ross, Kathryn M.; Wing, Rena R.

    2016-01-01

    Objective Despite the proliferation of newer self-monitoring technology (e.g., activity monitors and smartphone apps), their impact on weight loss outside of structured in-person behavioral intervention is unknown. Methods A randomized, controlled pilot study was conducted to examine efficacy of self-monitoring technology, with and without phone-based intervention, on 6-month weight loss in adults with overweight and obesity. Eighty participants were randomized to receive standard self-monitoring tools (ST, n=26), technology-based self-monitoring tools (TECH, n=27), or technology-based tools combined with phone-based intervention (TECH+PHONE, n=27). All participants attended one introductory weight loss session and completed assessments at baseline, 3 months, and 6 months. Results Weight loss from baseline to 6 months differed significantly between groups p=.042; there was a trend for TECH+PHONE (−6.4±1.2kg) to lose more weight than ST (−1.3±1.2kg); weight loss in TECH (−4.1±1.4kg) was between ST and TECH+PHONE. Fewer ST (15%) achieved ≥5% weight losses compared to TECH and TECH+PHONE (44%), p=.039. Adherence to self-monitoring caloric intake was higher in TECH+PHONE than TECH or ST, ps<.05. Conclusion These results suggest use of newer self-monitoring technology plus brief phone-based intervention improves adherence and weight loss compared to traditional self-monitoring tools. Further research should determine cost-effectiveness of adding phone-based intervention when providing self-monitoring technology. PMID:27367614

  14. E-health blood pressure control program.

    PubMed

    Ahern, David K; Stinson, Lynda J; Uebelacker, Lisa A; Wroblewski, Joseph P; McMurray, Jerome H; Eaton, Charles B

    2012-01-01

    Both technological and human factors design requirements for integration of home blood pressure monitoring (HBPM) into a patient centered medical home (PCMH) model primary care practice are described. Patients with uncontrolled hypertension were given home blood pressure (BP) monitors, and after a three-month run-in period introduced to either a high-tech only (HBPM connectivity to personal health record and tailored Web portal access) or a high-tech/"high-touch" (high-tech solution plus patient navigator [PN]) solution. Features of the Web portal included: BP graphing function, traffic-light feedback system of BP goal attainment, economic incentives for self-monitoring, and dual patient-facing and care-team-facing dashboard functions. The e-health BP control system with PN support was well received by patients, providers, and the healthcare team. Current e-health technology and limited technological literacy of many patients suggest that a PN or some other personnel resource may be required for the adoption of patient-facing technology in primary care.

  15. Employing spatial information technologies to monitor biological control of saltcedar in West Texas

    USDA-ARS?s Scientific Manuscript database

    The saltcedar leaf beetle (Diorhadha spp.) has shown promise as a biocontrol agent for saltcedar (Tamarix spp.) invasions in the United States. In Texas, natural resource managers need assistance in monitoring biological control of invasive saltcedars. This study describes application of a medium fo...

  16. Client-Server Connection Status Monitoring Using Ajax Push Technology

    NASA Technical Reports Server (NTRS)

    Lamongie, Julien R.

    2008-01-01

    This paper describes how simple client-server connection status monitoring can be implemented using Ajax (Asynchronous JavaScript and XML), JSF (Java Server Faces) and ICEfaces technologies. This functionality is required for NASA LCS (Launch Control System) displays used in the firing room for the Constellation project. Two separate implementations based on two distinct approaches are detailed and analyzed.

  17. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    DOE PAGES

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less

  18. Nuclear propulsion control and health monitoring

    NASA Technical Reports Server (NTRS)

    Walter, P. B.; Edwards, R. M.

    1993-01-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  19. Nuclear propulsion control and health monitoring

    NASA Astrophysics Data System (ADS)

    Walter, P. B.; Edwards, R. M.

    1993-11-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  20. An inexpensive open-source ultrasonic sensing system for monitoring fluid levels

    USDA-ARS?s Scientific Manuscript database

    Fluid levels are measured in a variety of agricultural applications, and are often measured manually, which can be time-consuming and labor-intensive. Rapid advances in electronic technologies have made a variety of inexpensive sensing, monitoring, and control capabilities available. A monitoring ...

  1. Export Control Guide: Loose Parts Monitoring Systems for Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenberg, Donald W.

    2012-12-01

    This report describes a typical LPMS, emphasizing its application to the RCS of a modern NPP. The report also examines the versatility of AE monitoring technology by describing several nuclear applications other than loose parts monitoring, as well as some non-nuclear applications. In addition, LPMS implementation requirements are outlined, and LPMS suppliers are identified. Finally, U.S. export controls applicable to LPMSs are discussed.

  2. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  3. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  4. Pheromone-based pest management in china: past, present and future prospects

    USDA-ARS?s Scientific Manuscript database

    Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologi...

  5. Workshop on Transitioning Structural Health Monitoring Technology to Military Platforms

    DTIC Science & Technology

    2012-08-28

    sensors that can be multiplexed such as extrinsic Fabry -Perot interferometers (EFPI), but they are rarely used for structural monitoring. We have not...bureau, and outbreak monitoring by the US Centers for Disease Control (CDC).  One approach to data management is replacing conventional processing

  6. US EPA's UV Disinfection Technologies Demonstration Study - States Briefing

    EPA Science Inventory

    EPA report and anticipated Journal articles will provide recommendations & guidance based on lessons learned for subsequent UV technology testing and monitoring/control applications of virus inactivation in drinking water.

  7. Wearable sensors for human health monitoring

    NASA Astrophysics Data System (ADS)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  8. Design of monitoring system for mail-sorting based on the Profibus S7 series PLC

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Jia, S. H.; Wang, Y. H.; Liu, H.; Tang, G. C.

    2017-01-01

    With the rapid development of the postal express, the workload of mail sorting is increasing, but the automatic technology of mail sorting is not mature enough. In view of this, the system uses Siemens S7-300 PLC as the main station controller, PLC of Siemens S7-200/400 is from the station controller, through the man-machine interface configuration software MCGS, PROFIBUS-DP communication, RFID technology and mechanical sorting hand achieve mail classification sorting monitoring. Among them, distinguish mail-sorting by scanning RFID posted in the mail electronic bar code (fixed code), the system uses the corresponding controller on the acquisition of information processing, the processed information transmit to the sorting manipulator by PROFIBUS-DP. The system can realize accurate and efficient mail sorting, which will promote the development of mail sorting technology.

  9. [Application progress on near infrared spectroscopy in quality control and process monitoring of traditional Chinese medicine].

    PubMed

    Li, Wenlong; Qu, Haibin

    2017-01-25

    The industry of traditional Chinese medicine (TCM) encounters problems like quality fluctuation of raw materials and unstandardized production process. Near infrared (NIR) spectroscopy technology is widely used in quality control of TCM because of its abundant information, fast and nondestructive characters. The main applications include quantitative analysis of Chinese medicinal materials, intermediates and Chinese patent medicines; the authenticity of TCM, species, origins and manufacturers; monitoring and control of the extraction, alcohol precipitation, column chromatography and blending process. This article reviews the progress on the application of NIR spectroscopy technology in TCM field. In view of the problems existing in the application, the article proposes that the standardization of NIR analysis method should be developed according to specific characteristics of TCM, which will promote the application of NIR technology in the TCM industry.

  10. West Europe Report, Science and Technology

    DTIC Science & Technology

    1986-01-16

    Nicolas Rousseaux; ZERO UN INFORMATION HEBDO, 30 Sep 85) 93 TECHNOLOGY TRANSFER Briefs Renault Equipment to USSR 96 c - 16 January 1986 AEROSPACE...personnel and has a capacity of 200 persons. From the launch center, where monitoring and command systems are installed, the start up of the remote...supplying of propellants and fluids and hookup of monitoring and control systems -preparation for launch: countdown and launch -possible erection and

  11. DEFENSE TECHNOLOGY FOR ENVIRONMENTAL PROTECTION. VOLUME II. BIBLIOGRAPHY

    EPA Science Inventory

    The report condenses an effort design to identify and transfer significant technology concerned with air pollution monitoring and control from the Department of Defense (DOD) to the EPA. Included are technology profiles of each DOD laboratory involved in particular work of intere...

  12. MICROPROCESSOR CONTROL OF ROTOGRAVURE AIRFLOWS

    EPA Science Inventory

    The report discusses the technical and economic viability of using micro-processor-based control technology to collect volatile organic compound (VOC) emissions from a paper coating operation. The microprocessor-based control system monitors and controls both the airflow rate and...

  13. Effective technologies for noninvasive remote monitoring in heart failure.

    PubMed

    Conway, Aaron; Inglis, Sally C; Clark, Robyn A

    2014-06-01

    Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of noninvasive remote monitoring for heart failure management is unknown. This study examined the effect of specific technology used for noninvasive remote monitoring of people with heart failure on all-cause mortality and heart failure-related hospitalizations. A subanalysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used, and separate meta-analyses were performed. Four different types of noninvasive remote monitoring technologies were identified, including structured telephone calls, videophone, interactive voice response devices, and telemonitoring. Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (relative risk [RR]=0.87; 95% confidence interval [CI], 0.75-1.01; p=0.06; and RR=0.62; 95% CI, 0.50-0.77; p<0.0001, respectively) and heart failure-related hospitalizations (RR=0.77; 95% CI, 0.68-0.87; p<0.001; and RR=0.75; 95% CI, 0.63-0.91; p=0.003, respectively). More research data are required for videophone and interactive voice response technologies. This subanalysis identified that only two of the four specific technologies used for noninvasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomized controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure.

  14. THE FEDERAL TECHNOLOGY TRANSFER ACT - ENVIRONMENTAL MONITORING TECHNOLOGIES OPPORTUNITIES

    EPA Science Inventory

    To enhance and maintain a clean environment while imporiving the nation's productivity, the U.S. EPA is joining with private industry and academia to seek new, cost-effective technologies to prevent and control environmental pollution. Both the U.S. government and the private sec...

  15. TESTING, PERFORMANCE VALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL OF FIELD-PORTABLE INSTRUMENTATION

    EPA Science Inventory

    New technologies for field-portable monitoring instruments often have a long lead time in development and authorization. Some obstacles to the acceptance of these pilot technologies include concern about liabilities, reluctance to take risks on new technologies, and uncertainty a...

  16. Oak Ridge Reservation annual site environmental report for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koncinski, W.S.

    1996-09-01

    This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.

  17. Crew-Centered Operations: What HAL 9000 Should Have Been

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.

    2005-01-01

    To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.

  18. 25 CFR 542.16 - What are the minimum internal control standards for information technology?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... information technology? 542.16 Section 542.16 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE... standards for information technology? Link to an amendment published at 73 FR 60498, Oct. 10, 2008. This... adequately segregated and monitored to prevent error in general information technology procedures to go...

  19. 25 CFR 542.16 - What are the minimum internal control standards for information technology?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... information technology? 542.16 Section 542.16 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE... standards for information technology? Link to an amendment published at 73 FR 60498, Oct. 10, 2008. This... adequately segregated and monitored to prevent error in general information technology procedures to go...

  20. USMC UGS technology advancements

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Barr, Michael E.; Hirz, Philip M.; Kipp, Jason; Fishburn, Thomas A.; Waller, Ezra S.; Marks, Brian A.

    2008-04-01

    Technology advancements for the USMC UGS system are described. Integration of the ARL Blue Radio/CSR into the System Controller and Radio Repeater permit the TRSS system to operate seamlessly within the Family of UGS concept. In addition to the Blue Radio/CSR, the TRSS system provides VHF and SATCOM radio links. The TRSS system is compatible with a wide range of imagers, including those with both analog and digital interfaces. The TRSS System Controller permits simultaneous monitoring of 2 camera inputs. To complement enhanced compatibility and improved processing, the mechanical housing of the TRSS System Controller has been updated. The SDR-II, a system monitoring device, also incorporates four Blue Radio/CSRs along with other communication capabilities, making it an ideal choice for a monitoring station within the Family of UGS. Field testing of L-3 Nova's UGS system at YPG has shown flawless performance, capturing all 126 targets.

  1. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    PubMed

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.

    1983-01-01

    Utilization of NASA technology and its application to medicine is discussed. The introduction of new or improved commercially available medical products and incorporation of aerospace technology is outlined. A biopolar donor-recipient model of medical technology transfer is presented to provide a basis for the methodology. The methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the ocular screening device, a system for quick detection of vision problems in preschool children, and Porta-Fib III, a hospital monitoring unit. Two institutional transfers were completed: implant materials testing, the application of NASA fracture control technology to improve reliability of metallic prostheses, and incinerator monitoring, a quadrupole mass spectrometer to monitor combustion products of municipal incinerators. Mobility aids for the blind and ultrasound diagnosis of burn depth are also studied.

  3. Technology readiness assessment of advanced space engine integrated controls and health monitoring

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1991-01-01

    An evaluation is given for an integrated control and health monitoring system (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent throttleable. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30 to 45 million dollars over six years.

  4. Understanding the potential role of mobile phone-based monitoring on asthma self-management: qualitative study.

    PubMed

    Pinnock, H; Slack, R; Pagliari, C; Price, D; Sheikh, A

    2007-05-01

    National and international healthcare policy increasingly seeks technological solutions to the challenge of providing care for people with long-term conditions. Novel technologies, however, have the potential to change the dynamics of disease monitoring and self-management. We aimed to explore the opinions and concerns of people with asthma and primary care clinicians on the potential role of mobile phone monitoring technology (transmitting symptoms and peak flows, with immediate feedback of control and reminder of appropriate actions) in supporting asthma self-management. This qualitative study recruited 48 participants (34 adults and teenagers with asthma, 14 asthma nurses and doctors) from primary care in Lothian (Central Scotland) and Kent (South East England). Thirty-nine participated in six focus groups, which included a demonstration of the technology; nine gave in-depth interviews before and after a 4-week trial of the technology. Participants considered that mobile phone-based monitoring systems can facilitate guided self-management although, paradoxically, may engender dependence on professional/technological support. In the early phases, as patients are learning to accept, understand and control their asthma, this support was seen as providing much-needed confidence. During the maintenance phase, when self-management predominates, patient and professionals were concerned that increased dependence may be unhelpful, although they appreciated that maintaining an on-going record could facilitate consultations. Mobile phone-based monitoring systems have the potential to support guided self-management by aiding transition from clinician-supported early phases to effective self-management during the maintenance phase. Continuing development, adoption and formal evaluation of these systems should take account of the insights provided by our data.

  5. Single Stage Rocket Technology's real time data system

    NASA Technical Reports Server (NTRS)

    Voglewede, Steven D.

    1994-01-01

    The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.

  6. Liquid-propellant rocket engines health-monitoring—a survey

    NASA Astrophysics Data System (ADS)

    Wu, Jianjun

    2005-02-01

    This paper is intended to give a summary on the health-monitoring technology, which is one of the key technologies both for improving and enhancing the reliability and safety of current rocket engines and for developing new-generation high reliable reusable rocket engines. The implication of health-monitoring and the fundamental principle obeyed by the fault detection and diagnostics are elucidated. The main aspects of health-monitoring such as system frameworks, failure modes analysis, algorithms of fault detection and diagnosis, control means and advanced sensor techniques are illustrated in some detail. At last, the evolution trend of health-monitoring techniques of liquid-propellant rocket engines is set out.

  7. FY90 R&D Project Descriptions ESL (Engineering & Services Laboratory) Environics Division

    DTIC Science & Technology

    1989-07-01

    and Development Support for Subsurface Monitoring Technology 15 19007048 Pumping and Purging Contaminants 16 19007049 Methods for Selecting In Situ...Decontamination 40 3788VW17 Treatment of Chlorinated Organics with Aboveground Bioreactors 41 3788VW18 Improved Methods for Monitoring Fuel Biodegradation 42 2...Fluoride (HF) Dispersion Model 63 21036093 Solvent Capacity Field Test Method 64 21037097 Volatile Organic Compound (VOC) Control Technology 65 21037102

  8. NASA technology applications team. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Discussed here are the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1990 through 30 September 1991. Topics researched include automated data acquisition and analysis of highway pavement cracking, thermal insulation for refrigerators, the containment of paint removed from steel structures, improved technologies for Kuwait oil well control, sprayed zinc coatings for corrosion control of reinforcing steel in bridges, and the monitoring and life support of medically fragile children in the educational setting.

  9. ENVIRONMENTAL SYSTEMS MANAGEMENT / POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    Goal 8.4 Improve Environmental Systems Management (Formally Pollution Prevention and New Technology) Background The U.S. Environmental Protection Agency (EPA) has developed and evaluated tools and technologies to monitor, prevent, control, and clean-up pollution through...

  10. 40 CFR 125.94 - How will requirements reflecting best technology available for minimizing adverse environmental...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in your facility's watershed in place of or as a supplement to installing design and control... construction, operational, maintenance, monitoring, and adaptive management requirements of a Technology..., and adaptive management requirements of your Technology Installation and Operation Plan during the...

  11. 40 CFR 125.94 - How will requirements reflecting best technology available for minimizing adverse environmental...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in your facility's watershed in place of or as a supplement to installing design and control... construction, operational, maintenance, monitoring, and adaptive management requirements of a Technology..., and adaptive management requirements of your Technology Installation and Operation Plan during the...

  12. 40 CFR 125.94 - How will requirements reflecting best technology available for minimizing adverse environmental...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in your facility's watershed in place of or as a supplement to installing design and control... construction, operational, maintenance, monitoring, and adaptive management requirements of a Technology..., and adaptive management requirements of your Technology Installation and Operation Plan during the...

  13. 40 CFR 125.94 - How will requirements reflecting best technology available for minimizing adverse environmental...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in your facility's watershed in place of or as a supplement to installing design and control... construction, operational, maintenance, monitoring, and adaptive management requirements of a Technology..., and adaptive management requirements of your Technology Installation and Operation Plan during the...

  14. Continuous Glucose Monitoring: Impact on Hypoglycemia.

    PubMed

    van Beers, Cornelis A J; DeVries, J Hans

    2016-11-01

    The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia. © 2016 Diabetes Technology Society.

  15. Lessons learned in control center technologies and non-technologies

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.

    1991-01-01

    Information is given in viewgraph form on the Solar Mesosphere Explorer (SME) Control Center and the Oculometer and Automated Space Interface System (OASIS). Topics covered include SME mission operations functions; technical and non-technical features of the SME control center; general tasks and objects within the Space Station Freedom (SSF) ground system nodes; OASIS-Real Time for the control and monitoring of of space systems and subsystems; and OASIS planning, scheduling, and PC architecture.

  16. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  17. Key beliefs influencing young drivers' engagement with social interactive technology on their smartphones: A qualitative study.

    PubMed

    Gauld, Cassandra S; Lewis, Ioni M; White, Katherine M; Watson, Barry

    2016-01-01

    The main aim of this study was to identify young drivers' underlying beliefs (i.e., behavioral, normative, and control) regarding initiating, monitoring/reading, and responding to social interactive technology (i.e., functions on a Smartphone that allow the user to communicate with other people). This qualitative study was a beliefs elicitation study in accordance with the theory of planned behavior and sought to elicit young drivers' behavioral (i.e., advantages, disadvantages), normative (i.e., who approves, who disapproves), and control beliefs (i.e., barriers, facilitators) that underpin social interactive technology use while driving. Young drivers (N = 26) aged 17 to 25 years took part in an interview or focus group discussion. Though differences emerged between the 3 behaviors of initiating, monitoring/reading, and responding for each of the behavioral, normative, and control belief categories, the strongest distinction was within the behavioral beliefs category (e.g., communicating with the person that they were on the way to meet was an advantage of initiating; being able to determine whether to respond was an advantage of monitoring/reading; and communicating with important people was an advantage of responding). Normative beliefs were similar for initiating and responding behaviors (e.g., friends and peers more likely to approve than other groups) and differences emerged for monitoring/reading (e.g., parents were more likely to approve of this behavior than initiating and responding). For control beliefs, there were differences between the beliefs regarding facilitators of these behaviors (e.g., familiar roads and conditions facilitated initiating; having audible notifications of an incoming communication facilitated monitoring/reading; and receiving a communication of immediate importance facilitated responding); however, the control beliefs that presented barriers were consistent across the 3 behaviors (e.g., difficult traffic/road conditions). The current study provides an important addition to the extant literature and supports emerging research that suggests that initiating, monitoring/reading, and responding may indeed be distinct behaviors with different underlying motivations.

  18. Real-time bio-sensors for enhanced C2ISR operator performance

    NASA Astrophysics Data System (ADS)

    Miller, James C.

    2005-05-01

    The objectives of two Air Force Small Business research topics were to develop a real-time, unobtrusive, biological sensing and monitoring technology for evaluating cognitive readiness in command and control environments (i.e., console operators). We sought an individualized status monitoring system for command and control operators and teams. The system was to consist of a collection of bio-sensing technologies and processing and feedback algorithms that could eventually guide the effective incorporation of fatigue-adaptive workload interventions into weapon systems to mitigate episodes of cognitive overload and lapses in operator attention that often result in missed signals and catastrophic failures. Contractors set about determining what electro-physiological and other indicators of compromised operator states are most amenable for unobtrusive monitoring of psychophysiological and warfighter performance data. They proposed multi-sensor platforms of bio-sensing technologies for development. The sensors will be continuously-wearable or off-body and will not require complicated or uncomfortable preparation. A general overview of the proposed approaches and of progress toward the objective is presented.

  19. Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment

    NASA Astrophysics Data System (ADS)

    Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.

    2011-09-01

    This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.

  20. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under control - not more than 0.027. In case when only pump and compressor units are under control, the failure skipping risk is not more than 0.022, when the probability of error in operator's action is not more than 0.011. The work output shows that on the basis of the researches results an assessment of operators' reliability can be made in terms of almost any kind of production, but considering only technological capabilities, since operators' psychological and general training considerable vary in different production industries. Using latest technologies of engineering psychology and design of data support systems, situation assessment systems, decision-making and responding system, as well as achievement in condition monitoring in various production industries one can evaluate hazardous condition skipping risk probability considering static, dynamic errors and human factor.

  1. The impact of a multidisciplinary information technology-supported program on blood pressure control in primary care.

    PubMed

    Rinfret, Stéphane; Lussier, Marie-Thérèse; Peirce, Anthony; Duhamel, Fabie; Cossette, Sylvie; Lalonde, Lyne; Tremblay, Chantal; Guertin, Marie-Claude; LeLorier, Jacques; Turgeon, Jacques; Hamet, Pavel

    2009-05-01

    Hypertension is a leading mortality risk factor yet inadequately controlled in most affected subjects. Effective programs to address this problem are lacking. We hypothesized that an information technology-supported management program could help improve blood pressure (BP) control. This randomized controlled trial included 223 primary care hypertensive subjects with mean 24-hour BP >130/80 and daytime BP >135/85 mm Hg measured with ambulatory monitoring (ABPM). Intervention subjects received a BP monitor and access to an information technology-supported adherence and BP monitoring system providing nurses, pharmacists, and physicians with monthly reports. Control subjects received usual care. The mean (+/-SD) follow-up was 348 (+/-78) and 349 (+/-84) days in the intervention and control group, respectively. The primary end point of the change in the mean 24-hour ambulatory BP was consistently greater in intervention subjects for both systolic (-11.9 versus -7.1 mm Hg; P<0.001) and diastolic BP (-6.6 versus -4.5 mm Hg; P=0.007). The proportion of subjects that achieved Canadian Guideline target BP (46.0% versus 28.6%) was also greater in the intervention group (P=0.006). We observed similar BP declines for ABPM and self-recorded home BP suggesting the latter could be an alternative for confirming BP control. The intervention was associated with more physician-driven antihypertensive dose adjustments or changes in agents (P=0.03), more antihypertensive classes at study end (P=0.007), and a trend toward improved adherence measured by prescription refills (P=0.07). This multidisciplinary information technology-supported program that provided feedback to patients and healthcare providers significantly improved blood pressure levels in a primary care setting.

  2. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project.

    PubMed

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-04-07

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery.

  3. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project

    PubMed Central

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery. PMID:29642468

  4. SKA CSP controls: technological challenges

    NASA Astrophysics Data System (ADS)

    Baffa, C.; Giani, E.; Vrcic, S.; Vela Nuñez, M.

    2016-07-01

    The Square Kilometer Array (SKA) project is an international effort to build the world's largest radio telescope, with eventually over a square kilometer of collecting area. For SKA Phase 1, Australia will host the low-frequency instrument with more than 500 stations, each containing around 250 individual antennas, whilst South Africa will host an array of close to 200 dishes. The scale of the SKA represents a huge leap forward in both engineering and research and development towards building and delivering a unique instrument, with the detailed design and preparation now well under way. As one of the largest scientific endeavors in history, the SKA will brings together close to 100 organizations from 20 countries. Every aspect of the design and development of such a large and complex instrument requires state-of-the-art technology and innovative approach. This poster (or paper) addresses some aspects of the SKA monitor and control system, and in particular describes the development and test results of the CSP Local Monitoring and Control prototype. At the SKA workshop held in April 2015, the SKA monitor and control community has chosen TANGO Control System as a framework, for the implementation of the SKA monitor and control. This decision will have a large impact on Monitor an Control development of SKA. As work is on the way to incorporate TANGO Control System in SKA is in progress, we started to development a prototype for the SKA Central Signal Processor to mitigate the associated risks. In particular we now have developed a uniform class schema proposal for the sub-Element systems of the SKA-CSP.

  5. Clinical and cost effectiveness of mobile phone supported self monitoring of asthma: multicentre randomised controlled trial.

    PubMed

    Ryan, Dermot; Price, David; Musgrave, Stan D; Malhotra, Shweta; Lee, Amanda J; Ayansina, Dolapo; Sheikh, Aziz; Tarassenko, Lionel; Pagliari, Claudia; Pinnock, Hilary

    2012-03-23

    To determine whether mobile phone based monitoring improves asthma control compared with standard paper based monitoring strategies. Multicentre randomised controlled trial with cost effectiveness analysis. UK primary care. 288 adolescents and adults with poorly controlled asthma (asthma control questionnaire (ACQ) score ≥ 1.5) from 32 practices. Participants were centrally randomised to twice daily recording and mobile phone based transmission of symptoms, drug use, and peak flow with immediate feedback prompting action according to an agreed plan or paper based monitoring. Changes in scores on asthma control questionnaire and self efficacy (knowledge, attitude, and self efficacy asthma questionnaire (KASE-AQ)) at six months after randomisation. Assessment of outcomes was blinded. Analysis was on an intention to treat basis. There was no significant difference in the change in asthma control or self efficacy between the two groups (ACQ: mean change 0.75 in mobile group v 0.73 in paper group, mean difference in change -0.02 (95% confidence interval -0.23 to 0.19); KASE-AQ score: mean change -4.4 v -2.4, mean difference 2.0 (-0.3 to 4.2)). The numbers of patients who had acute exacerbations, steroid courses, and unscheduled consultations were similar in both groups, with similar healthcare costs. Overall, the mobile phone service was more expensive because of the expenses of telemonitoring. Mobile technology does not improve asthma control or increase self efficacy compared with paper based monitoring when both groups received clinical care to guidelines standards. The mobile technology was not cost effective. Clinical Trials NCT00512837.

  6. Space shuttle main engine controller

    NASA Technical Reports Server (NTRS)

    Mattox, R. M.; White, J. B.

    1981-01-01

    A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

  7. EPA'S ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has evaluated technologies to determine their effectiveness in monitoring, preventing, controlling, and cleaning up pollution. Since the early 1990s, however, numerous government and private groups have determined that the lack of a...

  8. EPA'S ENVIRONMENTAL TECHNOLOGY PROGRAM (ETV) FACTSHEET

    EPA Science Inventory

    Throughout its history, the U.S. Environmental Protection Agency has evaluated technologies to determine their effectiveness in monitoring, preventing, controlling and cleaning up pollution. Since the early 1990s, however, numerous government and private groups have determined t...

  9. Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan

    2017-11-01

    Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.

  10. SUPERFUND INNOVATIVE TECHNOLOGIES EVALUATION ...

    EPA Pesticide Factsheets

    This task seeks to identify high priority needs of the Regions and Program Offices for innovative field sampling, characterization, monitoring, and measurement technologies. When an appropriate solution to a specific problem is identified, a field demonstration is conducted to document the performance and cost of the proposed technologies. The use of field analysis almost always provides a savings in time and cost over the usual sample and ship to a conventional laboratory for analysis approach to site characterization and monitoring. With improvements in technology and appropriate quality assurance/quality control, field analysis has been shown to provide high quality data, useful for most environmental monitoring or characterization projects. An emphasis of the program is to seek out innovative solutions to existing problems and to provide the cost and performance data a user would require to make an informed decision regarding the adequacy of a technology to address a specific environmental problem. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.

  11. Keeping Up with the Diabetes Technology: 2016 Endocrine Society Guidelines of Insulin Pump Therapy and Continuous Glucose Monitor Management of Diabetes.

    PubMed

    Galderisi, Alfonso; Schlissel, Elise; Cengiz, Eda

    2017-09-23

    Decades after the invention of insulin pump, diabetes management has encountered a technology revolution with the introduction of continuous glucose monitoring, sensor-augmented insulin pump therapy and closed-loop/artificial pancreas systems. In this review, we discuss the significance of the 2016 Endocrine Society Guidelines for insulin pump therapy and continuous glucose monitoring and summarize findings from relevant diabetes technology studies that were conducted after the publication of the 2016 Endocrine Society Guidelines. The 2016 Endocrine Society Guidelines have been a great resource for clinicians managing diabetes in this new era of diabetes technology. There is good body of evidence indicating that using diabetes technology systems safely tightens glycemic control while managing both type 1 and type 2 diabetes. The first-generation diabetes technology systems will evolve as we gain more experience and collaboratively work to improve them with an ultimate goal of keeping people with diabetes complication and burden-free until the cure for diabetes becomes a reality.

  12. The Deep Impact Network Experiment Operations Center Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan

    2009-01-01

    The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.

  13. The Monitoring of Technology Transfer to the USSR.

    DTIC Science & Technology

    1982-08-01

    nizational options for improving the present system for monitor- ing technology transfer. (Cont. on reverse side) DO ,FN 1473 EDITION OF INOV SS...imposition of military control in Poland , a further curtailment of the exchange activi- ties followed. In particular, three agreements (in existence in 1981...its own, P. Poland is also in a separate Country Group W. North Korea, Vietnam, Cambodia, and Cuba are in Country Group Z. Department of Commerce

  14. Noninvasive Continuous Monitoring of Tear Glucose Using Glucose-Sensing Contact Lenses.

    PubMed

    Ascaso, Francisco J; Huerva, Valentín

    2016-04-01

    : The incidence of diabetes mellitus is dramatically increasing in the developed countries. Tight control of blood glucose concentration is crucial to diabetic patients to prevent microvascular complications. Self-monitoring of blood glucose is widely used for controlling blood glucose levels and usually performed by an invasive test using a portable glucometer. Many technologies have been developed over the past decades with the purpose of obtaining a continuous physiological glycemic monitoring. A contact lens is the ideal vehicle for continuous tear glucose monitoring of glucose concentration in tear film. There are several research groups that are working in the development of contact lenses with embedded biosensors for continuously and noninvasively monitoring tear glucose levels. Although numerous aspects must be improved, contact lens technology is one step closer to helping diabetic subjects better manage their condition, and these contact lenses will be able to measure the level of glucose in the wearer's tears and communicate the information to a mobile phone or computer. This article reviews studies on ocular glucose and its monitoring methods as well as the attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors.

  15. New technologies in the treatment of type 1 diabetes.

    PubMed

    Schmidt, Signe

    2013-11-01

    Type 1 diabetes is a chronic condition characterized by insufficient production of insulin, a hormone needed for proper control of blood glucose levels. People with type 1 diabetes must monitor their blood glucose throughout the day using a glucose meter or a continuous glucose monitor, calculate how much insulin is needed to maintain normal blood glucose levels, and administer the insulin dose by pen injection or insulin pump infusion into the subcutaneous tissue. In recent years, several new technologies for the treatment of type 1 diabetes have been developed. This PhD thesis covers two studies of the effects of commercially available technologies--sensor-augmented pump therapy and automated insulin bolus calculators--when used in clinical practice. Both studies demonstrated that these technologies have the potential to improve diabetes care. In addition, two in-clinic studies related to emerging technologies--closed-loop glucose control and virtual simulation environments--are included in the thesis. The results of these experiments provided proof of concept and will serve as a basis for further research in these fields.

  16. Using Mach threads to control DSN operational sequences

    NASA Technical Reports Server (NTRS)

    Urista, Juan

    1993-01-01

    The Link Monitor and Control Operator Assistant prototype (LMCOA) is a state-of-the-art, semiautomated monitor and control system based on an object-oriented design. The purpose of the LMCOA prototyping effort is to both investigate new technology (such as artificial intelligence) to support automation and to evaluate advances in information systems toward developing systems that take advantage of the technology. The emergence of object-oriented design methodology has enabled a major change in how software is designed and developed. This paper describes how the object-oriented approach was used to design and implement the LMCOA and the results of operational testing. The LMCOA is implemented on a NeXT workstation using the Mach operating system and the Objective-C programming language.

  17. ED08-0016-20

    NASA Image and Video Library

    2008-01-17

    NASA engineer Larry Hudson and Ikhana ground crew member James Smith work on a ground validation test with new fiber optic sensors that led to validation flights on the Ikhana aircraft. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.

  18. The Influence of Wireless Self-Monitoring Program on the Relationship Between Patient Activation and Health Behaviors, Medication Adherence, and Blood Pressure Levels in Hypertensive Patients: A Substudy of a Randomized Controlled Trial.

    PubMed

    Kim, Ju Young; Wineinger, Nathan E; Steinhubl, Steven R

    2016-06-22

    Active engagement in the management of hypertension is important in improving self-management behaviors and clinical outcomes. Mobile phone technology using wireless monitoring tools are now widely available to help individuals monitor their blood pressure, but little is known about the conditions under which such technology can effect positive behavior changes or clinical outcomes. To study the influence of wireless self-monitoring program and patient activation measures on health behaviors, medication adherence, and blood pressure levels as well as control of blood pressure in hypertensive patients. We examined a subset of 95 hypertensive participants from a 6-month randomized controlled trial designed to determine the utility of a wireless self-monitoring program (n=52 monitoring program, n=43 control), which consisted of a blood pressure monitoring device connected with a mobile phone, reminders for self-monitoring, a Web-based disease management program, and a mobile app for monitoring and education, compared with the control group receiving a standard disease management program. Study participants provided measures of patient activation, health behaviors including smoking, drinking, and exercise, medication adherence, and blood pressure levels. We assessed the influence of wireless self-monitoring as a moderator of the relationship between patient activation and health behaviors, medication adherence, and control of blood pressure. Improvements in patient activation were associated with improvements in cigarette smoking (beta=-0.46, P<.001) and blood pressure control (beta=0.04, P=.02). This relationship was further strengthened in reducing cigarettes (beta=-0.60, P<.001), alcohol drinking (beta=-0.26, P=.01), and systolic (beta=-0.27, P=.02) and diastolic blood pressure (beta=-0.34, P=.007) at 6 months among individuals participating in the wireless self-monitoring program. No differences were observed with respect to medication adherence. Participation in a wireless self-monitoring program provides individuals motivated to improve their health management with an added benefit above and beyond that of motivation alone. Hypertensive individuals eager to change health behaviors are excellent candidates for mobile health self-monitoring.. ClinicalTrials.gov NCT01975428, https://clinicaltrials.gov/ct2/show/NCT01975428 (Archived by WebCite at http://www.webcitation.org/6iSO5OgOG).

  19. [A skin cell segregating control system based on PC].

    PubMed

    Liu, Wen-zhong; Zhou, Ming; Zhang, Hong-bing

    2005-11-01

    A skin cell segregating control system based on PC (personal computer) is presented in this paper. Its front controller is a single-chip microcomputer which enables the manipulation for 6 patients simultaneously, and thus provides a great convenience for clinical treatments for vitiligo. With the use of serial port communication technology, it's possible to monitor and control the front controller in a PC terminal. And the application of computer image acquisition technology realizes the synchronous acquisition of pathologic shin cell images pre/after the operation and a case history. Clinical tests prove its conformity with national standards and the pre-set technological requirements.

  20. CONTACT: An Air Force technical report on military satellite control technology

    NASA Astrophysics Data System (ADS)

    Weakley, Christopher K.

    1993-07-01

    This technical report focuses on Military Satellite Control Technologies and their application to the Air Force Satellite Control Network (AFSCN). This report is a compilation of articles that provide an overview of the AFSCN and the Advanced Technology Program, and discusses relevant technical issues and developments applicable to the AFSCN. Among the topics covered are articles on Future Technology Projections; Future AFSCN Topologies; Modeling of the AFSCN; Wide Area Communications Technology Evolution; Automating AFSCN Resource Scheduling; Health & Status Monitoring at Remote Tracking Stations; Software Metrics and Tools for Measuring AFSCN Software Performance; Human-Computer Interface Working Group; Trusted Systems Workshop; and the University Technical Interaction Program. In addition, Key Technology Area points of contact are listed in the report.

  1. CONTAINMENT TECHNOLOGY AND MONITORING

    EPA Science Inventory

    Subsurface vertical barriers have been used to control ground-water seepage in the construction industry for many years. Recently, much attention has been focused on the use of containment technologies as supplemental and stand-alone remedial options for hazardous waste sites to...

  2. Intravital endoscopic technology for real-time monitoring of inflammation caused in experimental periodontitis.

    PubMed

    Movila, Alexandru; Kajiya, Mikihito; Wisitrasameewong, Wichaya; Stashenko, Philip; Vardar-Sengul, Saynur; Hernandez, Maria; Thomas Temple, H; Kawai, Toshihisa

    2018-06-01

    We report a novel method for in situ imaging of microvascular permeability in inflamed gingival tissue, using state-of-the-art Cellvizio™ intravital endoscopic technology and a mouse model of ligature-induced periodontitis. The silk ligature was first placed at the upper left second molar. Seven days later, the ligature was removed, and the animals were intravenously injected with Evans blue. Evans blue dye, which selectively binds to blood albumin, was used to monitor the level of inflammation by monitoring vascular permeability in control non-diseased and ligature-induced experimental periodontitis tissue. More specifically, leakage of Evans blue-bound albumin from the micro-capillary to connective tissue indicates the state of inflammation occurring in the specific site. Evans blue leakage from blood vessels was imaged in situ by directly attaching the endoscope (mini Z tip) of the Cellvizio™ system to the gingival tissue without any surgical incision. Evans blue emission intensity was significantly elevated in gingiva of periodontitis lesions, but not control non-ligature placed gingiva, indicating that this technology can be used as a potential minimally invasive diagnostic tool to monitor the level of inflammation at the periodontal disease site. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Objective fall risk detection in stroke survivors using wearable sensor technology: a feasibility study.

    PubMed

    Taylor-Piliae, Ruth E; Mohler, M Jane; Najafi, Bijan; Coull, Bruce M

    2016-12-01

    Stroke survivors often have persistent neural deficits related to motor function and sensation, which increase their risk of falling, most of which occurs at home or in community settings. The use of wearable technology to monitor fall risk and gait in stroke survivors may prove useful in enhancing recovery and/or preventing injuries. Determine the feasibility of using wearable technology (PAMSys™) to objectively monitor fall risk and gait in home and community settings in stroke survivors. In this feasibility study, we used the PAMSys to identify fall risk indicators (postural transitions: duration in seconds, and number of unsuccessful attempts), and gait (steps, speed, duration) for 48 hours during usual daily activities in stroke survivors (n = 10) compared to age-matched controls (n = 10). A questionnaire assessed device acceptability. Stroke survivors mean age was 70 ± 8 years old, were mainly Caucasian (60%) women (70%), and not significantly different than the age-matched controls (all P-values >0.20). Stroke survivors (100%) reported that the device was comfortable to wear, didn't interfere with everyday activities, and were willing to wear it for another 48 hours. None reported any difficulty with the device while sleeping, removing/putting back on for showering or changing clothes. When compared to controls, stroke survivors had significantly worse fall risk indicators and walked less (P < 0.05). Stroke survivors reported high acceptability of 48 hours of continuous PAMSys monitoring. The use of in-home wearable technology may prove useful in monitoring fall risk and gait in stroke survivors, potentially enhancing recovery.

  4. [Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].

    PubMed

    Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang

    2017-07-27

    To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.

  5. Ergonomics technology

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1977-01-01

    Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.

  6. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  7. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process.

    PubMed

    Nagy, Brigitta; Farkas, Attila; Gyürkés, Martin; Komaromy-Hiller, Szofia; Démuth, Balázs; Szabó, Bence; Nusser, Dávid; Borbás, Enikő; Marosi, György; Nagy, Zsombor Kristóf

    2017-09-15

    The integration of Process Analytical Technology (PAT) initiative into the continuous production of pharmaceuticals is indispensable for reliable production. The present paper reports the implementation of in-line Raman spectroscopy in a continuous blending and tableting process of a three-component model pharmaceutical system, containing caffeine as model active pharmaceutical ingredient (API), glucose as model excipient and magnesium stearate as lubricant. The real-time analysis of API content, blend homogeneity, and tablet content uniformity was performed using a Partial Least Squares (PLS) quantitative method. The in-line Raman spectroscopic monitoring showed that the continuous blender was capable of producing blends with high homogeneity, and technological malfunctions can be detected by the proposed PAT method. The Raman spectroscopy-based feedback control of the API feeder was also established, creating a 'Process Analytically Controlled Technology' (PACT), which guarantees the required API content in the produced blend. This is, to the best of the authors' knowledge, the first ever application of Raman-spectroscopy in continuous blending and the first Raman-based feedback control in the formulation technology of solid pharmaceuticals. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Advanced Communications Technology Satellite high burst rate link evaluation terminal experiment control and monitor software maintenance manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    1992-01-01

    The Experiment Control and Monitor (EC&M) software was developed at NASA Lewis Research Center to support the Advanced Communications Technology Satellite (ACTS) High Burst Rate Link Evaluation Terminal (HBR-LET). The HBR-LET is an experimenter's terminal to communicate with the ACTS for various investigations by government agencies, universities, and industry. The EC&M software is one segment of the Control and Performance Monitoring (C&PM) software system of the HBR-LET. The EC&M software allows users to initialize, control, and monitor the instrumentation within the HBR-LET using a predefined sequence of commands. Besides instrument control, the C&PM software system is also responsible for computer communication between the HBR-LET and the ACTS NASA Ground Station and for uplink power control of the HBR-LET to demonstrate power augmentation during rain fade events. The EC&M Software User's Guide, Version 1.0 (NASA-CR-189160) outlines the commands required to install and operate the EC&M software. Input and output file descriptions, operator commands, and error recovery procedures are discussed in the document. The EC&M Software Maintenance Manual, Version 1.0 (NASA-CR-189161) is a programmer's guide that describes current implementation of the EC&M software from a technical perspective. An overview of the EC&M software, computer algorithms, format representation, and computer hardware configuration are included in the manual.

  9. Monitoring invasive plants using hand-held GIS technology

    Treesearch

    Theresa M. Mau-Crimmins; Barron J. Orr

    2005-01-01

    Successful control of invasive species requires a clear picture of the spatial extent of infestations. The latest mapping technology involves coupling global position systems and handheld computers running geographic information systems software in the field. A series of workshops applying this technology to mapping weeds was developed and presented to Weed Management...

  10. Integrated controls and health monitoring fiberoptic shaft monitor

    NASA Technical Reports Server (NTRS)

    Coleman, P.; Darejeh, H.; Collins, J. J.

    1989-01-01

    Recent work was performed on development optical technology to provide real time monitoring of shaft speed, shaft axial displacement, and shaft orbit of the OTVE hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mills by two fiber optic deflectometers. The final results of this condition monitoring development effort are presented.

  11. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    NASA Astrophysics Data System (ADS)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  12. Reduced Healthcare Use and Apparent Savings with Passive Home Monitoring Technology: A Pilot Study.

    PubMed

    Finch, Michael; Griffin, Kristen; Pacala, James T

    2017-06-01

    To conduct a cost analysis of ambient assisted living technology, which is promising for improving the ability of individuals and care providers to monitor daily activities and gain better awareness through proactive management of health and safety. Three-arm cohort study. Homes of enrollees of a state-based healthcare plan for older adults. Enrollees dually eligible for Medicare and Medicaid (N = 268). Health and safety passive remote patient monitoring (PRPM) systems were installed in enrollees' homes (the intervention group) with monitoring and proactive intervention of a case manager when deviation from baseline subject behavior was detected. Claims data were collected over 12 months to assess healthcare use and costs in the intervention group and to compare use and costs with those of two control groups: a concurrent group of enrollees who declined the technology and a historical cohort matched on age to the participation group. Although the small sample size precluded cost differences that were statistically significant, the participant group used substantially less custodial care, emergency department (ED) services, inpatient stays, and ED costs than the two control groups. In this pilot study, the PRPM system was associated with apparent healthcare cost savings. Although more cost analyses are warranted, ambient assisted living technologies are a potentially valuable investment for older adult care. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  13. Monitoring and control technologies for bioregenerative life support systems/CELSS

    NASA Technical Reports Server (NTRS)

    Knott, William M.; Sager, John C.

    1991-01-01

    The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.

  14. [Aedes aegypti control strategies: a review].

    PubMed

    Zara, Ana Laura de Sene Amâncio; Santos, Sandra Maria Dos; Fernandes-Oliveira, Ellen Synthia; Carvalho, Roberta Gomes; Coelho, Giovanini Evelim

    2016-01-01

    to describe the main strategies to control Aedes aegypti, with emphasis on promising technological innovations for use in Brazil. this study is a non-systematic review of the literature. several technologies have been developed as alternatives in the control of Ae. aegypti, using different mechanisms of action, such as selective monitoring of the infestation, social interventions, dispersing insecticides, new biological control agents and molecular techniques for population control of mosquitoes, also considering the combination between them. Evolving technologies require evaluation of the effectiveness, feasibility and costs of implementation strategies as complementary to the actions already recommended by the National Program for Dengue Control. the integration of different compatible and effective vector control strategies, considering the available technologies and regional characteristics, appears to be a viable method to try to reduce the infestation of mosquitoes and the incidence of arbovirus transmitted by them.

  15. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deploymentmore » of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but the individual technologies used to create the system deployed during this exercise required further development.« less

  16. 76 FR 69214 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Consumer and Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... portable fuel containers, consumer products, architectural and industrial (AIM) coatings, adhesives and... the control technology, testing, monitoring, administrative, recordkeeping, and reporting requirements... and products subject to the standards subject to the provisions of Chapter 45, specify monitoring...

  17. Problems of collaborative work of the automated process control system (APCS) and the its information security and solutions.

    NASA Astrophysics Data System (ADS)

    Arakelyan, E. K.; Andryushin, A. V.; Mezin, S. V.; Kosoy, A. A.; Kalinina, Ya V.; Khokhlov, I. S.

    2017-11-01

    The principle of interaction of the specified systems of technological protections by the Automated process control system (APCS) and information safety in case of incorrect execution of the algorithm of technological protection is offered. - checking the correctness of the operation of technological protection in each specific situation using the functional relationship between the monitored parameters. The methodology for assessing the economic feasibility of developing and implementing an information security system.

  18. ED07-0287-08

    NASA Image and Video Library

    2007-12-17

    Although the new fiber optic sensors on the Ikhana, which are located on fibers that are the diameter of a human hair, are not visible, the sealant used to cover them can be seen in this view from above the left wing. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.

  19. ED08-0109-08

    NASA Image and Video Library

    2008-05-01

    Ikhana fiber optic wing shape sensor team: clockwise from left, Anthony "Nino" Piazza, Allen Parker, William Ko and Lance Richards. The sensors, located along a fiber the thickness of a human hair, aren't visible in the center of the Ikhana aircraft's left wing. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.

  20. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compilation of summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control of research currently in progress throughout NASA is presented. Subject, technical monitors, responsible NASA organization, and RTOP number indexes are included.

  1. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A compilation of the summary portions of each of the Research and Technology Objective Plans (RTOP) used for management review and control of research currently in progress throughout NASA is presented. Indexes include: subject, technical monitor, responsible NASA organization, and RTOP number.

  2. Research and Technology Objectives and Plans (RTOP), summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compilation of summary portions of each of the Research and Technology Operating Plans (RTOPS) used for management review and control of research currently in progress throughout NASA is presented. Subject, technical monitor, responsible NASA organization, and RTOP number indexes are included.

  3. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A compilation of the summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control research currently in progress throughout NASA is presented. Indexes include: subject, technical monitor, responsible NASA organization, and RTOP number.

  4. Health Monitoring and Evaluation of Long-Span Bridges Based on Sensing and Data Analysis: A Survey

    PubMed Central

    Zhou, Jianting; Li, Xiaogang; Xia, Runchuan; Yang, Jun; Zhang, Hong

    2017-01-01

    Aimed at the health monitoring and evaluation of bridges based on sensing technology, the monitoring contents of different structural types of long-span bridges were defined. Then, the definition, classification, selection principle, and installation requirements of the sensors were summarized. The concept was proposed that new adaptable long-life sensors could be developed by new theories and new effects. The principle and methods to select controlled sections and optimize the layout design of measuring points were illustrated. The functional requirements were elaborated on about the acquisition, transmission, processing, and management of sensing information. Some advanced concepts about the method of bridge safety evaluation were demonstrated and technology bottlenecks in the current safety evaluation were also put forward. Ultimately, combined with engineering practices, an application was carried out. The results showed that new, intelligent, and reliable sensor technology would be one of the main future development directions in the long-span bridge health monitoring and evaluation field. Also, it was imperative to optimize the design of the health monitoring system and realize its standardization. Moreover, it is a heavy responsibility to explore new thoughts and new concepts regarding practical bridge safety and evaluation technology. PMID:28300785

  5. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The othermore » four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.« less

  6. [Prospects in getting accordance between chemical analytic control means and medical technical requirements to safety system concerning chemical weapons destruction].

    PubMed

    Rembovskiĭ, V R; Mogilenkova, L A; Savel'eva, E I

    2005-01-01

    The major unit monitoring chemical weapons destruction objects is a system of chemical analyticcontrol over the technologic process procedures and possibility of environment and workplace pollution withtoxicchemicals and their destruction products. At the same time, physical and chemical control means meet sanitary and hygienic requirements incompletely. To provide efficient control, internationally recognized approaches should be adapted to features of Russian system monitoring pollution of chemical weapons destruction objects with toxic chemicals.

  7. From pilot's associate to satellite controller's associate

    NASA Technical Reports Server (NTRS)

    Neyland, David L.; Lizza, Carl; Merkel, Philip A.

    1992-01-01

    Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.

  8. HydroGrid: Technologies for Global Water Quality and Sustainability

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.

    2017-12-01

    Humans have been transforming planet Earth for millennia. We have recently come to understand that the collective impact of our decisions and actions has brought about severe water quality problems, which are likely to worsen in the light of rapid population growth to the projected nine billion by 2050. To sustainably manage our global water resources and possibly reverse these effects requires efforts in real-time monitoring of water contamination, analysis of monitoring data, and control of the state of water contamination. We develop technologies to address all three areas: monitoring, analysis and control. These efforts are carried out in the conceptual framework of the HydroGrid, an interconnected water system, which is (1) firmly rooted in the fundamental understanding of processes that govern microbial dynamics on multiple scales; and (2) used to develop watershed-specific management strategies. In the area of monitoring we are developing mobile autonomous sensors to detect surface water contamination, an effort supported by extensive materials research to provide multifunctional materials. We analyze environmental data within a stochastic modeling paradigm that bridges microscopic particle interactions to macroscopic manifestation of microbial population behavior in time and space in entire watersheds. These models are supported with laboratory and field experiments. Finally, we combine control and graph theories to derive controllability metrics of natural watersheds.

  9. Remotely Accessed Vehicle Traffic Management System

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  10. Trace Gas Monitoring

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space technology is contributing to air pollution control primarily through improved detectors and analysis methods. Miniaturized mass spectrometer is under development to monitor vinyl chloride and other hydrocarbon contaminants in an airborne laboratory. Miniaturized mass spectrometer can be used to protect personnel in naval and medical operations as well as aboard aircraft.

  11. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    PubMed

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  12. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines

    PubMed Central

    Zhou, Lu-jie; Cao, Qing-gui; Yu, Kai; Wang, Lin-lin; Wang, Hai-bin

    2018-01-01

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines. PMID:29701715

  13. Controlling and monitoring the space-station plasma interaction: A baseline for performing plasma experiments and using advanced technology

    NASA Technical Reports Server (NTRS)

    Whipple, Elden C.; Olsen, Richard C.

    1986-01-01

    The size, complexity, and motion of space station through the Earth's environmental plasma means that there will be a large, complicated interaction region, involving a sheath, wake, charging of surfaces, induced electric fields, secondary emission, outgassing with ionization, etc. This interaction will necessarily be a factor in carrying out and interpreting plasma experiments and in the use of certain technologies. Attention should be given ahead of time to: (1) monitoring this interaction so that it is well described; (2) implifying the interaction by appropriate design and construction of the spacecraft and by appropriate planning of technology use; and (3) controlling the interaction by both active and passive means. Plasma emitters for modifying and controlling the spacecraft charge should be placed in several locations. Portable electrostatic shields could be deployed around noisy sections of the spacecraft in order to carry out sensitive experiments. A particle umbrella could be raised to deflect the ram ions and neutrals in order to provide a controlled environment. These interactions are briefly discussed.

  14. Process analytical technologies (PAT) in freeze-drying of parenteral products.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael

    2009-01-01

    Quality by Design (QbD), aims at assuring quality by proper design and control, utilizing appropriate Process Analytical Technologies (PAT) to monitor critical process parameters during processing to ensure that the product meets the desired quality attributes. This review provides a comprehensive list of process monitoring devices that can be used to monitor critical process parameters and will focus on a critical review of the viability of the PAT schemes proposed. R&D needs in PAT for freeze-drying have also been addressed with particular emphasis on batch techniques that can be used on all the dryers independent of the dryer scale.

  15. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    PubMed

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  16. Increasing trend of wearables and multimodal interface for human activity monitoring: A review.

    PubMed

    Kumari, Preeti; Mathew, Lini; Syal, Poonam

    2017-04-15

    Activity recognition technology is one of the most important technologies for life-logging and for the care of elderly persons. Elderly people prefer to live in their own houses, within their own locality. If, they are capable to do so, several benefits can follow in terms of society and economy. However, living alone may have high risks. Wearable sensors have been developed to overcome these risks and these sensors are supposed to be ready for medical uses. It can help in monitoring the wellness of elderly persons living alone by unobtrusively monitoring their daily activities. The study aims to review the increasing trends of wearable devices and need of multimodal recognition for continuous or discontinuous monitoring of human activity, biological signals such as Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG) and parameters along with other symptoms. This can provide necessary assistance in times of ominous need, which is crucial for the advancement of disease-diagnosis and treatment. Shared control architecture with multimodal interface can be used for application in more complex environment where more number of commands is to be used to control with better results in terms of controlling. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Satellite, environmental, and medical information applied to epidemiological monitoring

    NASA Technical Reports Server (NTRS)

    Roberts, Donald R.; Legters, Llewellyn J.

    1991-01-01

    Improved communications and space-science technologies, such as remote sensing, offer hope of new, more holistic approaches to combating many arthropod-borne disease problems. The promise offered by these technologies has surfaced at a time when global and national efforts at disease control are in decline. Indeed, these programs seem to be losing ground against the arthropod-borne diseases just as rapidly as we seem to be moving forward in technological development. Given these circumstances, we can only hope that remote sensing and geographic information system (GIS) technologies can be pressed into service to help target the temporal and spatial application of control measures and to help in developing new control strategies.

  18. Improving and monitoring air quality.

    PubMed

    DuPont, André

    2018-05-01

    Since the authorization of the Clean Air Act Amendments of 1990, the air quality in the USA has significantly improved because of strong public support. The lessons learned over the last 25 years are being shared with the policy analysts, technical professionals, and scientist who endeavor to improve air quality in their communities. This paper will review how the USA has achieved the "high" standard of air quality that was envisioned in the early 1990s. This document will describe SO 2 gas emission reduction technology and highlight operation of emission monitoring technology. This paper describes the basic process operation of an air pollution control scrubber. A technical review of measures required to operate and maintain a large-scale pollution control system will be described. Also, the author explains how quality assurance procedures in performance of continuous emission monitoring plays a significant role in reducing air pollution.

  19. A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    PubMed Central

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system. PMID:22163543

  20. Environment

    NASA Technical Reports Server (NTRS)

    Myles, R. L.

    1975-01-01

    Applications of remote sensing technology to wildlife preservation, pest control, strip mining, water quality monitoring, and wetlands mapping were discussed. Economic, political and social factors were also considered.

  1. What impact do anxiety, depression, perceived control and technology capability have on whether patients with chronic heart failure take-up or continue to use home tele-monitoring services? Study design of ADaPT-HF.

    PubMed

    Crundall-Goode, Amanda; Goode, Kevin M; Clark, Andrew L

    2017-04-01

    Home tele-monitoring (HTM) is used to monitor the clinical signs and symptoms of patients with chronic heart failure (CHF) in order to reduce unplanned hospital admissions. However, not all patients who are referred will agree to use HTM, and some patients choose to withdraw early from its use. ADaPT-HF will investigate whether depression, anxiety, low perceived control, reduced technology capability, level of education, age or the severity or complexity of a patient's illness can predict refusal of, or early withdrawal from, HTM in patients with CHF. The study will recruit 288 patients who have been recently admitted to hospital with heart failure who have been referred for HTM. At the time of referral, patients will complete depression (nine-item Patient Health Questionnaire), anxiety (seven-item Generalised Anxiety Disorder questionnaire), perceived control (eight-item revised Controlled Attitudes Scale) and technology capability (ten-item Technology Readiness Index 2.0) screening questionnaires. In addition, data on demographics, diagnosis, clinical examination, socio-economic status, history of comorbidities, medication, biochemistry and haematology will be recorded. The primary outcome will be a composite of refusal of or early withdrawal from HTM. The principle analysis will be made using logistic regression. By establishing which factors influence a patient's decision to refuse or withdraw early from HTM, it may be possible to redesign HTM referral processes. It may be that patients with CHF who also have depression, anxiety, low control and poor technology skills should not be referred until they receive appropriate support or that they should be managed differently when they do receive HTM. The results of ADAPT-HF may provide a way of making more efficient and cost-effective use of HTM services.

  2. Fiberoptic sensors for rocket engine applications

    NASA Technical Reports Server (NTRS)

    Ballard, R. O.

    1992-01-01

    A research effort was completed to summarize and evaluate the current level of technology in fiberoptic sensors for possible applications in integrated control and health monitoring (ICHM) systems in liquid propellant engines. The environment within a rocket engine is particuarly severe with very high temperatures and pressures present combined with extremely rapid fluid and gas flows, and high-velocity and high-intensity acoustc waves. Application of fiberoptic technology to rocket engine health monitoring is a logical evolutionary step in ICHM development and presents a significant challenge. In this extremely harsh environment, the additional flexibility of fiberoptic techniques to augment conventional sensor technologies offer abundant future potential.

  3. Ship electric propulsion simulator based on networking technology

    NASA Astrophysics Data System (ADS)

    Zheng, Huayao; Huang, Xuewu; Chen, Jutao; Lu, Binquan

    2006-11-01

    According the new ship building tense, a novel electric propulsion simulator (EPS) had been developed in Marine Simulation Center of SMU. The architecture, software function and FCS network technology of EPS and integrated power system (IPS) were described. In allusion to the POD propeller in ship, a special physical model was built. The POD power was supplied from the simulative 6.6 kV Medium Voltage Main Switchboard, its control could be realized in local or remote mode. Through LAN, the simulated feature information of EPS will pass to the physical POD model, which would reflect the real thruster working status in different sea conditions. The software includes vessel-propeller math module, thruster control system, distribution and emergency integrated management, double closed loop control system, vessel static water resistance and dynamic software; instructor main control software. The monitor and control system is realized by real time data collection system and CAN bus technology. During the construction, most devices such as monitor panels and intelligent meters, are developed in lab which were based on embedded microcomputer system with CAN interface to link the network. They had also successfully used in practice and would be suitable for the future demands of digitalization ship.

  4. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  5. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  6. Improving Blood Pressure Control Using Smart Technology.

    PubMed

    Ciemins, Elizabeth L; Arora, Anupama; Coombs, Nicholas C; Holloway, Barbara; Mullette, Elizabeth J; Garland, Robin; Walsh Bishop-Green, Shannon; Penso, Jerry; Coon, Patricia J

    2018-03-01

    The authors sought to determine if wireless oscillometric home blood pressure monitoring (HBPM) that integrates with smartphone technology improves blood pressure (BP) control among patients with new or existing uncontrolled hypertension (HTN). A prospective observational cohort study monitored BP control before and after an educational intervention and introduction to HBPM. Patients in the intervention group were instructed to track their BP using a smartphone device three to seven times per week. Cases were matched to controls at a 1:3 allocation ratio on several clinical characteristics over the same period and received usual care. The proportion of patients with controlled BP was compared between groups at pre- and postintervention, ∼9 months later. Results and Materials: The total study population included 484 patients with mean age 60 years (range 23-102 years), 47.7% female, and 84.6% Caucasian. Mean preintervention BP was 137.8 mm Hg systolic and 81.4 mm Hg diastolic. Mean BP control rates improved for patients who received HBPM from 42% to 67% compared with matched control patients who improved from 59% to 67% (p < 0.01). HBPM with smartphone technology has the potential to improve HTN management among patients with uncontrolled or newly diagnosed HTN. Technology needs to be easy to use and operate and would work best when integrated into local electronic health record systems. In systems without this capability, medical assistants or other personnel may be trained to facilitate the process. Nurse navigator involvement was instrumental in bridging communication between the patients and provider.

  7. Problems and research issues associated with the hybrid control of force and displacement

    NASA Technical Reports Server (NTRS)

    Paul, R. P.

    1987-01-01

    The hybrid control of force and position is basic to the science of robotics but is only poorly understood. Before much progress can be made in robotics, this problem needs to be solved in a robust manner. However, the use of hybrid control implies the existence of a model of the environment, not an exact model (as the function of hybrid control is to accommodate these errors), but a model appropriate for planning and reasoning. The monitored forces in position control are interpreted in terms of a model of the task as are the monitored displacements in force control. The reaction forces of the task of writing are far different from those of hammering. The programming of actions in such a modeled world becomes more complicated and systems of task level programming need to be developed. Sensor based robotics, of which force sensing is the most basic, implies an entirely new level of technology. Indeed, robot force sensors, no matter how compliant they may be, must be protected from accidental collisions. This implies other sensors to monitor task execution and again the use of a world model. This new level of technology is the task level, in which task actions are specified, not the actions of individual sensors and manipulators.

  8. Sensing, Navigation and Reasoning Technologies for the DARPA Urban Challenge

    DTIC Science & Technology

    2007-12-31

    from the Applanix hardware and processed the data to account for state jumps. It then broadcast the world and local frame coordinate for the vehicle...contiguous series of control tactics, as requested by the Control. 22 Team Caltech Sensing and Mapping Subsystem Health Monitor Applanix (GPS and IMU...California Institute of Technology, Big Dog Ventures, Northrop Grumman Corporation, Mohr Davidow Ventures and Applanix Inc. The authors would also

  9. Cooperative Monitoring Center Occasional Paper/16: The Potential of Technology for the Control of Small Weapons: Applications in Developing Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ALTMANN, JURGEN

    2000-07-01

    For improving the control of small arms, technology provides many possibilities. Present and future technical means are described in several areas. With the help of sensors deployed on the ground or on board aircraft, larger areas can be monitored. Using tags, seals, and locks, important objects and installations can be safeguarded better. With modern data processing and communication systems, more information can be available, and it can be more speedily processed. Together with navigation and transport equipment, action can be taken faster and at greater range. Particular considerations are presented for cargo control at roads, seaports, and airports, for monitoringmore » designated lines, and for the control of legal arms. By starting at a modest level, costs can be kept low, which would aid developing countries. From the menu of technologies available, systems need to be designed for the intended application and with an understanding of the local conditions. It is recommended that states start with short-term steps, such as acquiring more and better radio transceivers, vehicles, small aircraft, and personal computers. For the medium term, states should begin with experiments and field testing of technologies such as tags, sensors, and digital communication equipment.« less

  10. The Microcontroller: A Paradigm for a Robot Building Block

    ERIC Educational Resources Information Center

    Hammons, John; Deal, Walter F., III

    2013-01-01

    Microcontrollers are used extensively in transportation and communications technologies, in automobiles to monitor and control engine speed and performance so as to maximize fuel economy and efficiency, and by manufacturing industries to produce "smart" technology. The flexibility, imagination, and spirit that make these tiny devices so…

  11. Considerations for the implementation and operation of stormwater control measure (SCM) performance monitoring systems

    EPA Science Inventory

    Green infrastructure (GI) studies are needed to make informed decisions about whether or not to select GI technologies over traditional urban drainage control methods and to assist in the timing of effective maintenance. Two permeable pavement infiltration stormwater control meas...

  12. Applications of Spatial Technology in Schistosomiasis Control Programme in The People's Republic of China.

    PubMed

    Wang, X-Y; He, J; Yang, K; Liang, S

    2016-01-01

    Schistosomiasis, as the important parasitic disease, has caused serious threats to human health globally. The People's Republic of China has acquired significant achievements based on large-scale interventions and innovational technology. The spatial technology was introduced in 1980s and widely used in the study and control of schistosomiasis in The People's Republic of China. This chapter reviews the progress and application of spatial technology in schistosomiasis control by analysing the spatiotemporal pattern of and the impact of ecological changes on schistosomiasis transmission, which have provided the information to design and select the control strategy, and assisted the establishment of the monitoring and early warning system in The People's Republic of China, especially in the marshland and mountainous regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Operational efficiency subpanel advanced mission control

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  14. Environmental control technology (ECT) for geothermal processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, G.

    1982-01-01

    The objectives of the environmental control technology (ECT) program are to develop research priorities, research new and alternative technologies and to improve economics and performance of ECT systems. The Interagency Geothermal Coordinating Council, Environmental Control Panel developed priorities and obtained industry input during 1980. H/sub 2/S controls, injection monitoring, solid waste characterization and control and subsidence were reviewed as high priority while noise controls were considered low priority. Since geothermal technology is still developing there is a need to continue researching new and alternative ECT. Often ECT systems must be designed for site specific applications and need modification for usemore » of other sites. Most of the US geothermal experience is found at the Geysers, California where H/sub 2/S abatement is required. Various systems have been tested with mixed results. The bottom line is that the economics and performance of H/sub 2/S abatement systems are less than desirable.« less

  15. Implementation of a robotic flexible assembly system

    NASA Technical Reports Server (NTRS)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  16. Humanoid Flight Metabolic Simulator Project

    NASA Technical Reports Server (NTRS)

    Ross, Stuart

    2015-01-01

    NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.

  17. MonALISA, an agent-based monitoring and control system for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.

    2017-10-01

    MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.

  18. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    NASA Astrophysics Data System (ADS)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  19. NASA's Plans for Developing Life Support and Environmental Monitoring and Control Systems

    NASA Technical Reports Server (NTRS)

    Lawson, B. Michael; Jan, Darrell

    2006-01-01

    Life Support and Monitoring have recently been reworked in response to the Vision for Space Exploration. The Exploration Life Support (ELS) Project has replaced the former Advanced Life Support Element of the Human Systems Research and Technology Office. Major differences between the two efforts include: the separation of thermal systems into a new stand alone thermal project, deferral of all work in the plant biological systems, relocation of food systems to another organization, an addition of a new project called habitation systems, and overall reduction in the number of technology options due to lower funding. The Advanced Environmental Monitoring and Control (AEMC) Element is retaining its name but changing its focus. The work planned in the ELS and AEMC projects is organized around the three major phases of the Exploration Program. The first phase is the Crew Exploration Vehicle (CEV). The ELS and AEMC projects will develop hardware for this short duration orbital and trans-lunar vehicle. The second phase is sortie landings on the moon. Life support hardware for lunar surface access vehicles including upgrades of the CEV equipment and technologies which could not be pursued in the first phase due to limited time and budget will be developed. Monitoring needs will address lunar dust issues, not applicable to orbital needs. The ELS and AEMC equipment is of short duration, but has different environmental considerations. The third phase will be a longer duration lunar outpost. This will consist of a new set of hardware developments better suited for long duration life support and associated monitoring needs on the lunar surface. The presentation will show the planned activities and technologies that are expected to be developed by the ELS and AEMC projects for these program phases.

  20. Indicator organisms in meat and poultry slaughter operations: their potential use in process control and the role of emerging technologies.

    PubMed

    Saini, Parmesh K; Marks, Harry M; Dreyfuss, Moshe S; Evans, Peter; Cook, L Victor; Dessai, Uday

    2011-08-01

    Measuring commonly occurring, nonpathogenic organisms on poultry products may be used for designing statistical process control systems that could result in reductions of pathogen levels. The extent of pathogen level reduction that could be obtained from actions resulting from monitoring these measurements over time depends upon the degree of understanding cause-effect relationships between processing variables, selected output variables, and pathogens. For such measurements to be effective for controlling or improving processing to some capability level within the statistical process control context, sufficiently frequent measurements would be needed to help identify processing deficiencies. Ultimately the correct balance of sampling and resources is determined by those characteristics of deficient processing that are important to identify. We recommend strategies that emphasize flexibility, depending upon sampling objectives. Coupling the measurement of levels of indicator organisms with practical emerging technologies and suitable on-site platforms that decrease the time between sample collections and interpreting results would enhance monitoring process control.

  1. Active subjects of passive monitoring: responses to a passive monitoring system in low-income independent living

    PubMed Central

    BERRIDGE, CLARA

    2016-01-01

    Passive monitoring technology is beginning to be reimbursed by third-party payers in the United States of America. Given the low voluntary uptake of these technologies on the market, it is important to understand the concerns and perspectives of users, former users and non-users. In this paper, the range of ways older adults relate to passive monitoring in low-income independent-living residences is presented. This includes experiences of adoption, non-adoption, discontinuation and creative ‘misuse’. The analysis of interviews reveals three key insights. First, assumptions built into the technology about how older adults live present a problem for many users who experience unwanted disruptions and threats to their behavioural autonomy. Second, resident response is varied and challenges the dominant image of residents as passive subjects of a passive monitoring system. Third, the priorities of older adults (e.g. safety, autonomy, privacy, control, contact) are more diverse and multi-faceted than those of the housing organisation staff and family members (e.g. safety, efficiency) who drive the passive monitoring intervention. The tension between needs, desires and the daily lives of older adults and the technological solutions offered to them is made visible by their active responses, including resistance to them. This exposes the active and meaningful qualities of older adults’ decisions and practices. PMID:28239211

  2. Benefit assessment of NASA space technology goals

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The socio-economic benefits to be derived from system applications of space technology goals developed by NASA were assessed. Specific studies include: electronic mail; personal telephone communications; weather and climate monitoring, prediction, and control; crop production forecasting and water availability; planetary engineering of the planet Venus; and planetary exploration.

  3. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A compilation of the summary portions of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA is presented along with citations and abstracts of the RTOPs. Indexes include: subject; technical monitor; responsible NASA organization; and RTOP number.

  4. Automated Water Chemistry Control at University of Virginia Pools.

    ERIC Educational Resources Information Center

    Krone, Dan

    1997-01-01

    Describes the technologically advanced aquatic and fitness center at the University of Virginia. Discusses the imprecise water chemistry control at the former facility and its intensive monitoring requirements. Details the new chemistry control standards initiated in the new center, which ensure constant chlorine and pH levels. (RJM)

  5. Microsensor Technologies for Plant Growth System Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo

    2004-01-01

    This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.

  6. A Structural Health Monitoring Workshop Roadmap for Transitioning Critical Technology from Research to Practice

    DTIC Science & Technology

    2012-01-24

    Kersey et. al., 1997). There are other types of fiber optic sensors that can be multiplexed such as extrinsic Fabry -Perot interferometers (EFPI), but...census bureau, and outbreak monitoring by the US Centers for Disease Control (CDC). • One approach to data management is replacing conventional

  7. Appendix for the Final Technical Report - DE FE0009284

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duguid, Andrew

    2017-05-29

    Carbon capture utilization storage (CCUS) is a potential technology to store anthropogenic emissions for CO 2. Utilization often refers to CO 2-enhanced oil recovery (CO 2-EOR). An important factor in the success of CO 2 storage in saline formations or CO 2-EOR reservoirs is ensuring that the storage occurs safely and is long-term. Assessment of well integrity has become more important for CCS and CO 2-EOR as it has become apparent that wells represent the most likely migration pathway for CO 2 to leave a CCS storage unit or a CO 2-EOR reservoir. Although wells represent a migration pathway theymore » are also the best vehicle for employing technology monitoring CO 2 injection and storage. This contradiction of being a potential migration path and key monitoring technology leads to a need to understand how monitoring wells may be similar or different in comparison to other types of wells with respect to migration risk. The maturation and completion US Department of Energy sponsored research projects presents an opportunity to assess the integrity of monitoring wells that have been exposed to injected CO 2. This paper discusses an integrity assessment of two monitoring wells in an operating CO 2-EOR flood in Mississippi, USA. The CFU31F-2 and CFU31F-3 monitoring wells were constructed to test monitoring technologies in and above a commercial CO 2-EOR project. The materials selected and the design of the well were optimized for monitoring. Carbonation in CFU31-F2 was seen as high as 7900 ft, above what was considered top of cement based on the logs. Time-lapse comparison of cement bond amplitude data and acoustic impedance maps show a deterioration of signal that implies a deterioration of cement bond or cement along much of the cemented annulus in the long-string section. Analysis of sidewall cores using XRD and LA-ICP-MS validated the log interpretation by confirming the degradation of cement (carbonation) along the casing-cement interface. The ultrasonic image maps also clearly identify the control lines and monitoring technology attached to the outside of the of the long-string casing on each well studied. The control lines appear as microdebonded or fluid filled vertical features implying that they could act as leakage pathways. The sidewall core through the control line at 10380 ft confirms that CO 2 is migrating along the control line with heavily carbonated cement at the control line interface. LA-ICP-MS and XRD on formation interface of the sidewall cores collected in both wells indicates that CO 2 is also moving of the cement-formation interface. LA-ICP-MS and XRD indicate that the amount carbonation in the center of the cores was less than the carbonation at the interfaces. Indicating that CO 2 is reaching the center of the cores by diffusing in from the interfaces and not migrating up from the reservoir though the porous matrix of the cement. This agrees with Duguid et al. [5] and Carey et al. [1] who have found that the interfaces in the well are more conductive than the porous network of the cement. Both the materials used to construct the well and the decision to attach monitoring technology to the outside of the well may have contributed to the migration of CO 2 along the interfaces. Careful consideration should be given to material selection to ensure that it does not degrade when in contact with the fluids in the reservoir and overlying strata. The addition of the control line on the outside of the casing complicated the cement placement and likely caused no cement to bond to the casing adjacent to the control line leading out of the reservoir. Further study of other wells with external lines should be conducted to see of the results of the construction of CFU31-F2 and -F3 is normal or an exception.« less

  8. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  9. Technology Assessments of High Performance Envelope with Optimized Lighting, Solar Control, and Daylighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Thanachareonkit, Anothai; Touzani, Samir

    The objective of this monitored field study was to identify near-term innovative façade technologies for solar control and daylighting with a goal of 20-40% energy use savings below Title 24 2013 in the 30-ft deep perimeter zone near vertical windows within cost and comfort constraints. The targeted market was new or existing commercial office buildings or buildings with similar patterns of use.

  10. Overview of the NASA automation and robotics research program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Larsen, Ron

    1985-01-01

    NASA studies over the last eight years have identified five opportunities for the application of automation and robotics technology: (1) satellite servicing; (2) system monitoring, control, sequencing and diagnosis; (3) space manufacturing; (4) space structure assembly; and (5) planetary rovers. The development of these opportunities entails two technology R&D thrusts: telerobotics and system autonomy; both encompass such concerns as operator interface, task planning and reasoning, control execution, sensing, and systems integration.

  11. Stormy Waters: Technology, Sea Control and Regional Warfare

    DTIC Science & Technology

    1994-06-01

    AD-A283 945 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA "DTIC TI ELECTETHESIS • S Sop()z 994 v G STOwM NATERS "T"CDOLOGY, SEA CNTROL AND REGIONAL... S . FUNDING NUMBERS Stormy Waters: Technology, Sea Control and Regional Warfare 6. AUTHOR( S ) David A. Schnell 7. PERFORMING ORGANIZATION NAME( S ) AND...ADDRESSRES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING/MONITORING AGENCY NAME( S ) AND

  12. USGS Integration of New Science and Technology, Appendix A

    USGS Publications Warehouse

    Brey, Marybeth; Knights, Brent C.; Cupp, Aaron R.; Amberg, Jon J.; Chapman, Duane C.; Calfee, Robin D.; Duncker, James J.

    2017-01-01

    This product summarizes the USGS plans for integration of new science and technology into Asian Carp control efforts for 2017. This includes the 1) implementation and evaluation of new tactics and behavioral information for monitoring, surveillance, control and containment; 2) understanding behavior and reproduction of Asian carp in established and emerging populations to inform deterrent deployment, rapid response, and removal efforts; and 3) development and evaluation of databases, decision support tools and performance measures.

  13. Field testing of new-technology ambient air ozone monitors.

    PubMed

    Ollison, Will M; Crow, Walt; Spicer, Chester W

    2013-07-01

    Multibillion-dollar strategies control ambient air ozone (O3) levels in the United States, so it is essential that the measurements made to assess compliance with regulations be accurate. The predominant method employed to monitor O3 is ultraviolet (UV) photometry. Instruments employ a selective manganese dioxide or heated silver wool "scrubber" to remove O3 to provide a zero reference signal. Unfortunately, such scrubbers remove atmospheric constituents that absorb 254-nm light, causing measurement interference. Water vapor also interferes with the measurement under some circumstances. We report results of a 3-month field test of two new instruments designed to minimize interferences (2B Technologies model 211; Teledyne-API model 265E) that were operated in parallel with a conventional Thermo Scientific model 49C O3 monitor. The field test was hosted by the Houston Regional Monitoring Corporation (HRM). The model 211 photometer scrubs O3 with excess nitric oxide (NO) generated in situ by photolysis of added nitrous oxide (N2O) to provide a reference signal, eliminating the need for a conventional O3 scrubber. The model 265E analyzer directly measures O3-NO chemiluminescence from added excess NO to quantify O3 in the sample stream. Extensive quality control (QC) and collocated monitoring data are assessed to evaluate potential improvements to the accuracy of O3 compliance monitoring. Two new-technology ozone monitors were compared with a conventional monitor under field conditions. Over 3 months the conventional monitor reported more exceedances of the current standard than the new instruments, which could potentially result in an area being misjudged as "nonattainment." Instrument drift can affect O3 data accuracy, and the same degree of drift has a proportionally greater compliance effect as standard stringency is increased. Enhanced data quality assurance and data adjustment may be necessary to achieve the improved accuracy required to judge compliance with tighter standards.

  14. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  15. Application of Unmanned Aerial System-based Photogrammetry to Monitor Landforms Evolution of Mudstone Badlands

    NASA Astrophysics Data System (ADS)

    Chen, Yichin

    2017-04-01

    Mudstone badlands are the area characteristized by its rapid erosion and steep, fractured, and barren landforms. Monitoring the topography changes in badland help improve our knowledge of the hillslope and river processing on landforms and develop susceptibility model for surface erosion hazards. Recently, advances in unmanned aerial system (UAS) and close-range photogrammetry technology have opened up the possibility of effectively measuring topography changes with high spatiotemporal resolutions. In this study, we used the UAS and close-range photogrammetry technology to monitor the topography changes in a rapidly eroded badland, south-western Taiwan. A small mudstone hillslope with area of 0.2 ha approximately and with slope gradient of 37 degrees was selected as the study site. A widely used and commercial quadcopter equipped non-metric camera was used to take images with ground sampling distance (GSD) 5 mm approximately. The Pix4DMapper, a commercial close-range photogrammetry software, was used to perform stereo matching, extract point clouds, generate digital surface models (DSMs) and orthoimage. To control model accuracy, a set of ground control points was surveyed by using eGPS. The monitoring was carried out after every significant rainfall event that may induced observable erosion in the badland site. The results show that DSMs have the GSDs of 4.0 5.4 mm and vertical accuracy of 61 116 mm. The accuracy largely depends on the quality of ground control points. The spatial averaged erosion rate during six months of monitoring was 328 mm, which is higher in the gully sides than in the ridges. The erosion rate is positively correlated with the slope gradient and drainage contributing area that implies the important role of surface gully erosion in mudstone badland erosion. This study shows that UAS and close-range photogrammetry technology can be used to monitor the topography change in badland areas effectively and can provide high spatiotemporal resolutions of DSMs for developing distributed surface erosion models.

  16. The Use of Drones in Spain: Towards a Platform for Controlling UAVs in Urban Environments.

    PubMed

    Chamoso, Pablo; González-Briones, Alfonso; Rivas, Alberto; Bueno De Mata, Federico; Corchado, Juan Manuel

    2018-05-03

    Rapid advances in technology make it necessary to prepare our society in every aspect. Some of the most significant technological developments of the last decade are the UAVs (Unnamed Aerial Vehicles) or drones. UAVs provide a wide range of new possibilities and have become a tool that we now use on a daily basis. However, if their use is not controlled, it could entail several risks, which make it necessary to legislate and monitor UAV flights to ensure, inter alia, the security and privacy of all citizens. As a result of this problem, several laws have been passed which seek to regulate their use; however, no proposals have been made with regards to the control of airspace from a technological point of view. This is exactly what we propose in this article: a platform with different modes designed to control UAVs and monitor their status. The features of the proposed platform provide multiple advantages that make the use of UAVs more secure, such as prohibiting UAVs’ access to restricted areas or avoiding collisions between vehicles. The platform has been successfully tested in Salamanca, Spain.

  17. The Use of Drones in Spain: Towards a Platform for Controlling UAVs in Urban Environments

    PubMed Central

    Bueno De Mata, Federico

    2018-01-01

    Rapid advances in technology make it necessary to prepare our society in every aspect. Some of the most significant technological developments of the last decade are the UAVs (Unnamed Aerial Vehicles) or drones. UAVs provide a wide range of new possibilities and have become a tool that we now use on a daily basis. However, if their use is not controlled, it could entail several risks, which make it necessary to legislate and monitor UAV flights to ensure, inter alia, the security and privacy of all citizens. As a result of this problem, several laws have been passed which seek to regulate their use; however, no proposals have been made with regards to the control of airspace from a technological point of view. This is exactly what we propose in this article: a platform with different modes designed to control UAVs and monitor their status. The features of the proposed platform provide multiple advantages that make the use of UAVs more secure, such as prohibiting UAVs’ access to restricted areas or avoiding collisions between vehicles. The platform has been successfully tested in Salamanca, Spain. PMID:29751554

  18. Establishing a Multi-spatial Wireless Sensor Network to Monitor Nitrate Concentrations in Soil Moisture

    NASA Astrophysics Data System (ADS)

    Haux, E.; Busek, N.; Park, Y.; Estrin, D.; Harmon, T. C.

    2004-12-01

    The use of reclaimed wastewater for irrigation in agriculture can be a significant source of nutrients, in particular nitrogen species, but its use raises concern for groundwater, riparian, and water quality. A 'smart' technology would have the ability to measure wastewater nutrients as they enter the irrigation system, monitor their transport in situ and optimally control inputs with little human intervention, all in real-time. Soil heterogeneity and economic issues require, however, a balance between cost and the spatial and temporal scales of the monitoring effort. Therefore, a wireless and embedded sensor network, deployed in the soil vertically across the horizon, is capable of collecting, processing, and transmitting sensor data. The network consists of several networked nodes or 'pylons', each outfitted with an array of sensors measuring humidity, temperature, precipitation, soil moisture, and aqueous nitrate concentrations. Individual sensor arrays are controlled by a MICA2 mote (Crossbow Technology Inc., San Jose, CA) programmed with TinyOS (University of California, Berkeley, CA) and a Stargate (Crossbow Technology Inc., San Jose, CA) base-station capable of GPRS for data transmission. Results are reported for the construction and testing of a prototypical pylon at the benchtop and in the field.

  19. Expansion of Microbial Monitoring Capabilities on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Oubre, Cherie; Castro, Victoria; Flint, Stephanie; Melendez, Orlando; Ott, C. Mark; Roman, Monsi

    2017-01-01

    Microbial monitoring is one of the tools that the National Aeronautics and Space Administration (NASA) uses on the International Space Station (ISS) to help maintain crew health and safety. In combination with regular housekeeping and disinfection when needed, microbial monitoring provides important information to the crew about the quality of the environment. Rotation of astronauts, equipment, and cargo on the ISS can affect the microbial load in the air, surfaces, and water. The current ISS microbial monitoring methods are focused on culture-based enumeration during flight and require a significant amount of crew time as well as long incubation periods of up to 5 days there by proliferating potential pathogens. In addition, the samples require return to Earth for complete identification of the microorganisms cultivated. Although the current approach assess the quality of the ISS environment, molecular technology offers faster turn-around of information particularly beneficial in an off-nominal situation. In 2011, subject matter experts from industry and academia recommended implementation of molecular-based technologies such as quantitative real-time polymerase chain reaction (qPCR) for evaluation to replace current, culture-based technologies. The RAZOR EX (BioFire Defense, Inc, Salt Lake City, UT) a ruggedized, compact, COTS (commercial off the shelf) qPCR instrument was tested, evaluated and selected in the 2 X 2015 JSC rapid flight hardware demonstration initiative as part of the Water Monitoring Suite. RAZOR EX was launched to ISS on SpaceX-9 in July 2016 to evaluate the precision and accuracy of the hardware by testing various concentrations of DNA in microgravity compared to ground controls. Flight testing was completed between September 2016 and March 2017. Data presented will detail the hardware performance of flight testing results compared to ground controls. Future goals include additional operational ground-based testing and assay development to determine if this technology can meet spaceflight microbial monitoring requirements.

  20. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus.

    PubMed

    Olczuk, David; Priefer, Ronny

    Self-monitoring of glucose for individuals afflicted with diabetes mellitus has allowed patients to take control of their disease and thus directly affect the outcomes related to it. It has been almost a century since the first test to monitor one's sugar was developed; that being a urine test. The most well-known and prominent medical device for monitor blood glucose for individuals with diabetes are the finger-prick devices. This itself is an approximately 50year old technology. More recently has been the introduction of continuous glucose monitors (CGMs) which entered the market place in the last year of the 20th century. As this technology has been further refined and improved, limitations associated with it have decreased. The scope of this review is to present a brief history of CGMs, both with the development of these medical devices and the challenges/limitations that they have shown. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  1. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE PAGES

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  2. [Remote sensing monitoring and screening for urban black and odorous water body: A review.

    PubMed

    Shen, Qian; Zhu, Li; Cao, Hong Ye

    2017-10-01

    Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.

  3. A Systematic and Integrated Review of Mobile-Based Technology to Promote Active Lifestyles in People With Type 2 Diabetes.

    PubMed

    McMillan, Kathryn Anne; Kirk, Alison; Hewitt, Allan; MacRury, Sandra

    2017-03-01

    The aim was to review studies examining the effectiveness, acceptability, and feasibility of mobile-based technology for promoting active lifestyles in people with type 2 diabetes (T2D). Benefits of leading an active lifestyle following a diagnosis of T2D, including improved glycemic control, have been reported. Studies examining the specific use of mobile-based technologies to promote an active lifestyle in T2D have not previously been reviewed. Research studies examining effectiveness, feasibility or acceptability of mobile-based technology for active lifestyle promotion for T2D management were included (n = 9). The databases searched included PubMed, Medline, ScienceDirect, and ACM Digital Library (January 2005 to October 2015). Studies were categorized as (1) informing, (2) monitoring, (3) provoking, or (4) sustaining behavior change. Technologies used included smartphone or tablet apps, diabetes personal digital assistant, continuous glucose monitor and accelerometer, pedometer, and a website delivered by a smartphone. No articles examined the effectiveness of mobile-based technology in monitoring health behaviors and behavior change. Four of the studies found mobile-based technology to be motivational and supportive for behavior change. The visual reinforcement was identified as motivational. The feasibility and acceptability of using mobile-based technology to provide sustained lifestyle change and the effectiveness of mobile-based technology in monitoring health behaviors and behavior change have not been investigated. No studies examined all 3 of the outcomes or focused decreasing the participants' sedentary behavior. Limited research has examined the feasibility, acceptability, and effectiveness of mobile-based technology to promote active lifestyles and subsequently good diabetes management in people with T2D.

  4. BioMEMS for multiparameter clinical monitoring

    NASA Astrophysics Data System (ADS)

    Moser, Isabella

    2003-01-01

    For diabetes patients glucose monitoring means an important improvement of their life quality and additionally it is a $3-billion-a-year business. Continuous glucose monitoring provides gapless glucose level control, an early warning of hypoglycemia, and is intended to control insulin pumps. An upgrading to multi-parameter monitoring would not only benefit patients with severe metabolism defects but also the metabolism of diabetes patient could be better controlled by monitoring an additional parameter like lactate. Multi-parameter monitoring devices are not commercially available, one of the complications in the integration of different biosensors using the same detecting molecule for all analytes is chemical cross talk between adjacent amperometric biosensors. Recently some integrated biosensors were published but either they were not mass producible or they were realized in an expensive silicon based technology. In addition to it most of them were not tested under monitoring conditions but their integration principles will be discussed. As an example a low cost multi- parameter microsystem and some applications of it in clinical diagnosis will be presented. Also an overlook of non-invasive methods and (minimal) invasive methods will be given with a focus on microdialysis.

  5. Working Toward a Better Environment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 1974

    1974-01-01

    Career opportunities in the field of environmental protection fall into four broad categories: equipment operation, monitoring of pollution control activities, environmental technology and education, and environmental service and research. (Author)

  6. 45 CFR 286.55 - What types of costs are subject to the administrative cost limit on Tribal Family Assistance...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL TANF PROVISIONS Tribal TANF Funding... subject to the limit determined under § 286.50. (b) Information technology and computerization for..., administering, monitoring, and controlling a sample are not inherent parts of information technology and...

  7. 45 CFR 286.55 - What types of costs are subject to the administrative cost limit on Tribal Family Assistance...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL TANF PROVISIONS Tribal TANF Funding... subject to the limit determined under § 286.50. (b) Information technology and computerization for..., administering, monitoring, and controlling a sample are not inherent parts of information technology and...

  8. 45 CFR 286.55 - What types of costs are subject to the administrative cost limit on Tribal Family Assistance...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL TANF PROVISIONS Tribal TANF Funding... subject to the limit determined under § 286.50. (b) Information technology and computerization for..., administering, monitoring, and controlling a sample are not inherent parts of information technology and...

  9. 45 CFR 286.55 - What types of costs are subject to the administrative cost limit on Tribal Family Assistance...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL TANF PROVISIONS Tribal TANF Funding... subject to the limit determined under § 286.50. (b) Information technology and computerization for..., administering, monitoring, and controlling a sample are not inherent parts of information technology and...

  10. 45 CFR 286.55 - What types of costs are subject to the administrative cost limit on Tribal Family Assistance...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL TANF PROVISIONS Tribal TANF Funding... subject to the limit determined under § 286.50. (b) Information technology and computerization for..., administering, monitoring, and controlling a sample are not inherent parts of information technology and...

  11. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    NASA Technical Reports Server (NTRS)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  12. Automated monitor and control for deep space network subsystems

    NASA Technical Reports Server (NTRS)

    Smyth, P.

    1989-01-01

    The problem of automating monitor and control loops for Deep Space Network (DSN) subsystems is considered and an overview of currently available automation techniques is given. The use of standard numerical models, knowledge-based systems, and neural networks is considered. It is argued that none of these techniques alone possess sufficient generality to deal with the demands imposed by the DSN environment. However, it is shown that schemes that integrate the better aspects of each approach and are referenced to a formal system model show considerable promise, although such an integrated technology is not yet available for implementation. Frequent reference is made to the receiver subsystem since this work was largely motivated by experience in developing an automated monitor and control loop for the advanced receiver.

  13. Study of the ubiquitous hog farm system using wireless sensor networks for environmental monitoring and facilities control.

    PubMed

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation.

  14. Study of the Ubiquitous Hog Farm System Using Wireless Sensor Networks for Environmental Monitoring and Facilities Control

    PubMed Central

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation. PMID:22163497

  15. How gamma radiation processing systems are benefiting from the latest advances in information technology

    NASA Astrophysics Data System (ADS)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  16. [From insulin pump and continuous glucose monitoring to the artificial pancreas].

    PubMed

    Apablaza, Pamela; Soto, Néstor; Codner, Ethel

    2017-05-01

    Technology for diabetes care has undergone major development during recent decades. These technological advances include continuous subcutaneous insulin infusion (CSII), also known as insulin pumps, and real-time continuous glucose monitoring system (RT-CGMS). The integration of CSII and RT-CGMS into a single device has led to sensor-augmented pump therapy and more recently, a technology that has automated delivery of basal insulin therapy, known as hybrid system. These new technologies have led to benefits in attaining better metabolic control and decreasing the incidence of severe hypoglycemia, especially in patients with type 1 diabetes. This review describes the types of technologies currently available or under investigation for these purposes, their benefits and disadvantages, recommendations and the appropriate patient selection for their use. The clinical use of the hybrid system and artificial pancreas seem to be possible in the near future.

  17. ARC Software and Models

    Science.gov Websites

    produce software code and methodologies that are transferred to TARDEC and industry partners. These constraints", ASME Dynamic Systems and Control Conference, 2013, DOI:10.1115/DSCC2013-3935 Software Monitoring",IEEE Transactions on Control Systems Technology, DOI:10.1109/TCST.2012.2217143 Fast

  18. Smart telemedicine support for continuous glucose monitoring: the embryo of a future global agent for diabetes care.

    PubMed

    Rigla, Mercedes

    2011-01-01

    Although current systems for continuous glucose monitoring (CGM) are the result of progressive technological improvement, and although a beneficial effect on glucose control has been demonstrated, few patients are using them. Something similar has happened to telemedicine (TM); in spite of the long-term experience, which began in the early 1980s, no TM system has been widely adopted, and presential visits are still almost the only way diabetologists and patients communicate. The hypothesis developed in this article is that neither CGM nor TM will ever be routinely implemented separately, and their consideration as essential elements for standard diabetes care will one day come from their integration as parts of a telemedical monitoring platform. This platform, which should include artificial intelligence for giving decision support to patients and physicians, will represent the core of a more complex global agent for diabetes care, which will provide control algorithms and risk analysis among other essential functions. © 2010 Diabetes Technology Society.

  19. Cooperative Monitoring Center Occasional Paper/4: Missile Control in South Asia and the Role of Cooperative Monitoring Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamal, N.; Sawhney, P.

    1998-10-01

    The succession of nuclear tests by India and Pakistan in May 1998 has changed the nature of their missile rivalry, which is only one of numerous manifestations of their relationship as hardened adversaries, deeply sensitive to each other's existing and evolving defense capabilities. The political context surrounding this costly rivalry remains unmediated by arms control measures or by any nascent prospect of detente. As a parallel development, sensible voices in both countries will continue to talk of building mutual confidence through openness to avert accidents, misjudgments, and misinterpretations. To facilitate a future peace process, this paper offers possible suggestions formore » stabilization that could be applied to India's and Pakistan's missile situation. Appendices include descriptions of existing missile agreements that have contributed to better relations for other countries as well as a list of the cooperative monitoring technologies available to provide information useful in implementing subcontinent missile regimes.« less

  20. Sensors Applications, Volume 4, Sensors for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao

    2003-07-01

    An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.

  1. A new method research of monitoring low concentration NO and SO2 mixed gas

    NASA Astrophysics Data System (ADS)

    Bo, Peng; Gao, Chao; Guo, Yongcai; Chen, Fang

    2018-01-01

    In order to reduce the pollution of the environment, China has implemented a new ultra-low emission control regulations for polluting gas, requiring new coal-fired power plant emissions SO2 less than 30ppm, NO less than 75ppm, NO2 less than 50ppm, Monitoring low concentration of NO and SO2 mixed gases , DOAS technology facing new challenges, SO2 absorb significantly weaken at the original absorption peak, what more the SNR is very low, it is difficult to extract the characteristic signal, and thus cannot obtain its concentration. So it cannot separate the signal of NO from the mixed gas at the wavelength of 200 230nm through the law of spectral superposition, it cannot calculate the concentration of NO. The classical DOAS technology cannot meet the needs of monitoring. In this paper, we found another absorption spectrum segment of SO2, the SNR is 10 times higher than before, Will not be affected by NO, can calculate the concentration of SO2 accurately, A new method of segmentation and demagnetization separation technology of spectral signals is proposed, which achieves the monitoring the low concentration mixed gas accurately. This function cannot be achieved by the classical DOAS. Detection limit of this method is 0.1ppm per meter which is higher than before, The relative error below 5% when the concentration between 0 5ppm, the concentration of NO between 6 75ppm and SO2 between 6 30ppm the relative error below 1.5%, it has made a great breakthrough In the low concentration of NO and SO2 monitoring. It has great scientific significance and reference value for the development of coal-fired power plant emission control, atmospheric environmental monitoring and high-precision on-line instrumentation.

  2. Walk-through survey report: Control technology for integrated circuit fabrication, Xerox Corporation, El Segundo, California

    NASA Astrophysics Data System (ADS)

    Mihlan, G. J.; Ungers, L. J.; Smith, R. K.; Mitchell, R. I.; Jones, J. H.

    1983-05-01

    A preliminary control technology assessment survey was conducted at the facility which manufactures N-channel metal oxide semiconductor (NMOS) integrated circuits. The facility has industrial hygiene review procedures for evaluating all new and existing process equipment. Employees are trained in safety, use of personal protective equipment, and emergency response. Workers potentially exposed to arsenic are monitored for urinary arsenic levels. The facility should be considered a candidate for detailed study based on the diversity of process operations encountered and the use of state-of-the-art technology and process equipment.

  3. ClusterControl: a web interface for distributing and monitoring bioinformatics applications on a Linux cluster.

    PubMed

    Stocker, Gernot; Rieder, Dietmar; Trajanoski, Zlatko

    2004-03-22

    ClusterControl is a web interface to simplify distributing and monitoring bioinformatics applications on Linux cluster systems. We have developed a modular concept that enables integration of command line oriented program into the application framework of ClusterControl. The systems facilitate integration of different applications accessed through one interface and executed on a distributed cluster system. The package is based on freely available technologies like Apache as web server, PHP as server-side scripting language and OpenPBS as queuing system and is available free of charge for academic and non-profit institutions. http://genome.tugraz.at/Software/ClusterControl

  4. Reaching Out.

    ERIC Educational Resources Information Center

    Porter, Randall C.

    1999-01-01

    Discusses technology and equipment requirements for developing an effective distance-learning classroom. Areas covered include cabling, the control booth, microphones, acoustics, lighting, heating and air conditioning, cameras, video monitors, staffing, and power requirements. (GR)

  5. Research and Technology Operating Plan. Summary: Fiscal year 1976 research and technology program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A compilation of the summary portions of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA was presented. The document is arranged in five sections. The first one contains citations and abstracts of the RTOP. This is followed by four indexes: subject, technical monitor, responsible NASA organization, and RTOP number.

  6. Research and technology, 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Highlights of major accomplishments and applications made during the past year illustrate the broad range of research and technology activities at the Langley Research Center. Advances are reported in the following areas: systems engineering and operation; aeronautics; electronics; space applications; aircraft and spacecraft structures; composite structures; laminar flow control; subsonic transport aircraft; and supersonic fighter concepts. Technology utilization efforts described cover a hyperthermia monitor, a lightweight composite wheelchair; and a vehicle ride quality meter.

  7. Research on the technologies of cracking-resistance of mass concrete in subway station

    NASA Astrophysics Data System (ADS)

    Sheng, Yanmin; Li, Shujin; Jiang, Guoquan; Shi, Xiaoqing; Yang, Zhu; Zhu, Zhihang

    2018-03-01

    This paper takes the theory of multi-field coupling and the model of hydration-temperature-humidity-constraint to assess the effect of cracking-resistance on structural concrete and optimize the controlling index of crack resistance. The effect is caused by structure, material and construction, etc. The preparation technology of high cracking-resistance concrete is formed through the researching on the temperature rising and deformation over the controlling influence of new anti-cracking materials and technologies. A series of technologies on anti-cracking and waterproof in underground structural concrete of urban rail transit are formed based on the above study. The technologies include design, construction, materials and monitoring. Those technologies are used in actual engineering to improve the quality of urban rail transit and this brings significant economic and social benefits.

  8. Automated Power Systems Management (APSM)

    NASA Technical Reports Server (NTRS)

    Bridgeforth, A. O.

    1981-01-01

    A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.

  9. General Purpose Data-Driven Monitoring for Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.

    2009-01-01

    As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault and anomaly detection algorithms and diagnosis tools with executive and adaptive planning functions contained in the flight software on-board the Air Force Research Laboratory TacSat-3 satellite. The TVSM software package will be uploaded after launch to monitor spacecraft subsystems such as power and guidance, navigation, and control (GN&C). It will analyze data in real-time to demonstrate detection of faults and unusual conditions, diagnose problems, and react to threats to spacecraft health and mission goals. The experiment will demonstrate the feasibility and effectiveness of integrated system health management (ISHM) technologies with both ground and on-board experiments.

  10. Patterns of Success: Online Self-Monitoring in a Web-Based Behavioral Weight Control Program

    PubMed Central

    Krukowski, Rebecca A.; Harvey-Berino, Jean; Bursac, Zoran; Ashikaga, Taka; West, Delia Smith

    2016-01-01

    Objectives Online weight control technologies could reduce barriers to treatment, including increased ease and convenience of self-monitoring. Self-monitoring consistently predicts outcomes in behavioral weight loss programs; however, little is known about patterns of self-monitoring associated with success. Methods The current study examines 161 participants (93% female; 31% African-American; mean BMI=35.7±5.7) randomized to a 6-month online behavioral weight control program which offered weekly group “chat” sessions and online self-monitoring. Self-monitoring log-ins were continuously monitored electronically during treatment and examined in association with weight change and demographics. Weekend and weekday log-ins were examined separately and length of periods of continuous self-monitoring were examined. Results We found that 91% of participants logged in to the self-monitoring webpage at least once. Over 6 months, these participants monitored on an average of 28% of weekdays and 17% of weekend days, with most log-ins earlier in the program. Women were less likely to log-in, and there were trends for greater self-monitoring by older participants. Race, education and marital status were not significant predictors of self-monitoring. Both weekday and weekend log-ins were significant independent predictors of weight loss. Patterns of consistent self-monitoring emerged early for participants who went on to achieve greater than a five percent weight loss. Conclusions Patterns of online self-monitoring were strongly associated with weight loss outcomes. These results suggest a specific focus on consistent self-monitoring early in a behavioral weight control program might be beneficial for achieving clinically significant weight losses. PMID:22545978

  11. On the use of multi-agent systems for the monitoring of industrial systems

    NASA Astrophysics Data System (ADS)

    Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil

    2016-03-01

    The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.

  12. Tracking Emissions Using New Fenceline Monitoring Technology

    EPA Pesticide Factsheets

    New cost-effective approaches to measuring air pollutants at the fenceline or in communities near industrial facilities can help identify and control air pollution that may drift across property lines.

  13. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy.

    PubMed

    Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2018-02-15

    The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Markham; Joseph Cosgrove; David Marran

    1999-05-31

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustionmore » flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.« less

  15. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.

    PubMed

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  16. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    PubMed Central

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977

  17. Cooperative monitoring and its role in regional security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biringer, K.; Olsen, J.; Lincoln, R.

    1997-03-01

    Cooperative monitoring systems can play an important part in promoting the implementation of regional cooperative security agreements. These agreements advance the national security interests of the United States in a post Cold War environment. Regional issues as widely varying as nuclear nonproliferation, trade and environmental pollution can be the source of tensions which may escalate to armed conflict which could have global implications. The Office of National Security Policy Analysis at the US Department of Energy (DOE) has an interest in seeking ways to promote regional cooperation that can reduce the threats posed by regional conflict. DOE technologies and technicalmore » expertise can contribute to developing solutions to a wide variety of these international problems. Much of this DOE expertise has been developed in support of the US nuclear weapons and arms control missions. It is now being made available to other agencies and foreign governments in their search for regional security and cooperation. This report presents two examples of interest to DOE in which monitoring technologies could be employed to promote cooperation through experimentation. The two scenarios include nuclear transparency in Northeast Asia and environmental restoration in the Black Sea. Both offer the potential for the use of technology to promote regional cooperation. The issues associated with both of these monitoring applications are presented along with examples of appropriate monitoring technologies, potential experiments and potential DOE contributions to the scenarios.« less

  18. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project.

    PubMed

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.

  19. Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    PubMed Central

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489

  20. Network architecture for global biomedical monitoring service.

    PubMed

    Lopez-Casado, Carmen; Tejero-Calado, Juan; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Garcia, Eugenia

    2005-01-01

    Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.

  1. Advanced Networks in Motion Mobile Sensorweb

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David H.

    2011-01-01

    Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.

  2. Applications of advanced data analysis and expert system technologies in the ATLAS Trigger-DAQ Controls framework

    NASA Astrophysics Data System (ADS)

    Avolio, G.; Corso Radu, A.; Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.

    2012-12-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment is a very complex distributed computing system, composed of more than 20000 applications running on more than 2000 computers. The TDAQ Controls system has to guarantee the smooth and synchronous operations of all the TDAQ components and has to provide the means to minimize the downtime of the system caused by runtime failures. During data taking runs, streams of information messages sent or published by running applications are the main sources of knowledge about correctness of running operations. The huge flow of operational monitoring data produced is constantly monitored by experts in order to detect problems or misbehaviours. Given the scale of the system and the rates of data to be analyzed, the automation of the system functionality in the areas of operational monitoring, system verification, error detection and recovery is a strong requirement. To accomplish its objective, the Controls system includes some high-level components which are based on advanced software technologies, namely the rule-based Expert System and the Complex Event Processing engines. The chosen techniques allow to formalize, store and reuse the knowledge of experts and thus to assist the shifters in the ATLAS control room during the data-taking activities.

  3. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    NASA Technical Reports Server (NTRS)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  4. Machine learning and new vital signs monitoring in civilian en route care: A systematic review of the literature and future implications for the military.

    PubMed

    Liu, Nehemiah T; Salinas, Jose

    2016-11-01

    Although air transport medical services are today an integral part of trauma systems in most developed countries, to date, there are no reviews on recent innovations in civilian en route care. The purpose of this systematic review was to identify potential machine learning and new vital signs monitoring technologies in civilian en route care that could help close civilian and military capability gaps in monitoring and the early detection and treatment of various trauma injuries. MEDLINE, the Cochrane Database of Systematic Reviews, and citation review of relevant primary and review articles were searched for studies involving civilian en route care, air medical transport, and technologies from January 2005 to November 2015. Data were abstracted on study design, population, year, sponsors, innovation category, details of technologies, and outcomes. Thirteen observational studies involving civilian medical transport met inclusion criteria. Studies either focused on machine learning and software algorithms (n = 5), new vital signs monitoring (n = 6), or both (n = 2). Innovations involved continuous digital acquisition of physiologic data and parameter extraction. Importantly, all studies (n = 13) demonstrated improved outcomes where applicable and potential use during civilian and military en route care. However, almost all studies required further validation in prospective and/or randomized controlled trials. Potential machine learning technologies and monitoring of novel vital signs such as heart rate variability and complexity in civilian en route care could help enhance en route care for our nation's war fighters. In a complex global environment, they could potentially fill capability gaps such as monitoring and the early detection and treatment of various trauma injuries. However, the impact of these innovations and technologies will require further validation before widespread acceptance and prehospital use. Systematic review, level V.

  5. Review of innovations in digital health technology to promote weight control.

    PubMed

    Thomas, J Graham; Bond, Dale S

    2014-01-01

    Advances in technology have contributed to the obesity epidemic and worsened health by reducing opportunities for physical activity and by the proliferation of inexpensive calorie-dense foods. However, much of the same technology can be used to counter these troublesome trends by fostering the development and maintenance of healthy eating and physical activity habits. In contrast to intensive face-to-face treatments, technology-based interventions also have the potential to reach large numbers of individuals at low cost. The purpose of this review is to discuss studies in which digital technology has been used for behavioral weight control, report on advances in consumer technology that are widely adopted but insufficiently tested, and explore potential future directions for both. Web-based, mobile (eg, smartphone), virtual reality, and gaming technologies are the focus of discussion. The best evidence exists to support the use of digital technology for self-monitoring of weight-related behaviors and outcomes. However, studies are underway that will provide additional, important information regarding how best to apply digital technology for behavioral weight control.

  6. Factors affecting mobile diabetes monitoring adoption among physicians: questionnaire study and path model.

    PubMed

    Okazaki, Shintaro; Castañeda, José Alberto; Sanz, Silvia; Henseler, Jörg

    2012-12-21

    Patients with type 1 and type 2 diabetes often find it difficult to control their blood glucose level on a daily basis because of distance or physical incapacity. With the increase in Internet-enabled smartphone use, this problem can be resolved by adopting a mobile diabetes monitoring system. Most existing studies have focused on patients' usability perceptions, whereas little attention has been paid to physicians' intentions to adopt this technology. The aim of the study was to evaluate the perceptions and user acceptance of mobile diabetes monitoring among Japanese physicians. A questionnaire survey of physicians was conducted in Japan. The structured questionnaire was prepared in a context of a mobile diabetes monitoring system that controls blood glucose, weight, physical activity, diet, insulin and medication, and blood pressure. Following a thorough description of mobile diabetes monitoring with a graphical image, questions were asked relating to system quality, information quality, service quality, health improvement, ubiquitous control, privacy and security concerns, perceived value, subjective norms, and intention to use mobile diabetes monitoring. The data were analyzed by partial least squares (PLS) path modeling. In total, 471 physicians participated from 47 prefectures across Japan, of whom 134 were specialized in internal and gastrointestinal medicine. Nine hypotheses were tested with both the total sample and the specialist subsample; results were similar for both samples in terms of statistical significance and the strength of path coefficients. We found that system quality, information quality, and service quality significantly affect overall quality. Overall quality determines the extent to which physicians perceive the value of mobile health monitoring. However, in contrast to our initial predictions, overall quality does not have a significant direct effect on the intention to use mobile diabetes monitoring. With regard to net benefits, both ubiquitous control and health improvement are significant predictors. Net benefits in turn significantly motivate physicians to use mobile health monitoring, and has a strong influence on perceived value. Perceived value and subjective norms are predictors of intention to use. In our sample, concerns over privacy and security risk have no significant effects on intention to use mobile diabetes monitoring. Among the 3 control variables, only age significantly affected intention to use mobile diabetes monitoring, whereas experience and gender were not significant predictors of intention. Physicians consider perceived value and net benefits as the most important motivators to use mobile diabetes monitoring. Overall quality assessment does affect their intention to use this technology, but only indirectly through perceived value. Net benefits seem to be a strong driver in both a direct and indirect manner, implying that physicians may perceive health improvement with ubiquitous control as a true utility by enhancing cost-effective monitoring, and simultaneously recognize it as a way to create value for their clinical practices.

  7. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.

    PubMed

    Cicchino, Jessica B; McCartt, Anne T

    2015-01-01

    Crash avoidance technologies have the potential to prevent or mitigate many crashes, but their effectiveness depends on drivers' acceptance and proper use. Owners of 2011 Dodge Charger, Dodge Durango, and Jeep Grand Cherokee vehicles were interviewed about their experiences with their vehicles' technologies. Interviews were conducted in April 2013 with 215 owners of Dodge and Jeep vehicles with adaptive cruise control and forward collision warning and 215 owners with blind spot monitoring and rear cross-path detection. Most owners said that they always keep each collision avoidance technology turned on, and more than 90% of owners with each system would want the technology again on their next vehicle. The majority believed that the systems had helped prevent a collision; this ranged from 54% of drivers with forward collision warning to more than three-quarters with blind spot monitoring and rear cross-path detection. Some owners reported behavioral changes with the systems, but over-reliance on them is not prevalent. Reported use of the systems varied by the age and gender of the driver and duration of vehicle ownership to a greater degree than in previous surveys of luxury Volvo and Infiniti vehicles with collision avoidance technologies. Notably, drivers aged 40 and younger were most likely to report that forward collision warning had alerted them multiple times and that it had prevented a collision and that they follow the vehicle ahead less closely with adaptive cruise control. Reports of waiting for the alert from forward collision warning before braking were infrequent but increased with duration of ownership. However, these reports could reflect confusion of the system with adaptive cruise control, which alerts drivers when braking is necessary to maintain a preset speed or following distance but a crash is not imminent. Consistent with previous surveys of luxury vehicle owners with collision avoidance technologies, acceptance and use remains high among owners of more mainstream vehicles. Varying experiences with the technologies by driver age and gender suggest that safety benefits are not uniform for all drivers, and differential benefits may become increasingly apparent as collision avoidance technologies become available to a more heterogeneous population of drivers. The potential for over-reliance on the technologies should continue to be monitored, especially as drivers gain more experience with them.

  8. 40 CFR 63.10009 - May I use emissions averaging to comply with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... performance test must not be less than the design efficiency of the emissions control technology employed 180... properties, belonging to a single major industrial grouping, which are under common control of the same person (or persons under common control); and (ii) You use CEMS (or sorbent trap monitoring systems for...

  9. 40 CFR 63.10009 - May I use emissions averaging to comply with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... performance test must not be less than the design efficiency of the emissions control technology employed 180... properties, belonging to a single major industrial grouping, which are under common control of the same person (or persons under common control); and (ii) You use CEMS (or sorbent trap monitoring systems for...

  10. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A compilation of the summary portion of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA is presented along with citations and abstracts of the RTOPs. Four indexes are included: (1) subject; (2) technical monitor; (3) responsible NASA organization; and (4) RTOP number.

  11. The microwave radiometer spacecraft: A design study

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor)

    1981-01-01

    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.

  12. Development of an integrated sub-picometric SWIFTS-based wavelength meter

    NASA Astrophysics Data System (ADS)

    Duchemin, Céline; Thomas, Fabrice; Martin, Bruno; Morino, Eric; Puget, Renaud; Oliveres, Robin; Bonneville, Christophe; Gonthiez, Thierry; Valognes, Nicolas

    2017-02-01

    SWIFTSTM technology has been known for over five years to offer compact and high-resolution laser spectrum analyzers. The increase of wavelength monitoring demand with even better accuracy and resolution has pushed the development of a wavelength meter based on SWIFTSTM technology, named LW-10. As a reminder, SWIFTSTM principle consists in a waveguide in which a stationary wave is created, sampled and read out by a linear image sensor array. Due to its inherent properties (non-uniform subsampling) and aliasing signal (as presented in Shannon-Nyquist criterion), the system offers short spectral window bandwidths thus needs an a priori on the working wavelength and thermal monitoring. Although SWIFTSTM-based devices are barely sensitive to atmospheric pressure, temperature control is a key factor to master both high accuracy and wavelength meter resolution. Temperature control went from passive (temperature probing only) to active control (Peltier thermoelectric cooler) with milli-degree accuracy. The software part consists in dropping the Fourier-like transform, for a least-squares method directly on the interference pattern. Moreover, the consideration of the system's chromatic behavior provides a "signature" for automated wavelength detection and discrimination. This SWIFTSTM-based new device - LW-10 - shows outstanding results in terms of absolute accuracy, wavelength meter resolution as well as calibration robustness within a compact device, compared to other existing technologies. On the 630 - 1100 nm range, the final device configuration allows pulsed or CW lasers monitoring with 20 MHz resolution and 200 MHz absolute accuracy. Non-exhaustive applications include tunable laser control and frequency locking experiments

  13. On design of sensor nodes in the rice planthopper monitoring system based on the internet of things

    NASA Astrophysics Data System (ADS)

    Wang, Ke Qiang; Cai, Ken

    2011-02-01

    Accurate records and prediction of the number of the rice planthopper's outbreaks and the environmental information of farmland are effective measures to control pests' damages. On the other hand, a new round of technological revolution from the Internet to the Internet of things is taking place in the field of information. The application of the Internet of things in rice planthopper and environmental online monitoring is an effective measure to solve problems existing in the present wired sensor monitoring technology. Having described the general framework of wireless sensor nodes in the Internet of things in this paper, the software and hardware design schemes of wireless sensor nodes are proposed, combining the needs of rice planthopper and environmental monitoring. In these schemes, each module's design and key components' selection are both aiming to the characteristics of the Internet of things, so it has a strong practical value.

  14. Motor Control Training for the Shoulder with Smart Garments.

    PubMed

    Wang, Qi; De Baets, Liesbet; Timmermans, Annick; Chen, Wei; Giacolini, Luca; Matheve, Thomas; Markopoulos, Panos

    2017-07-22

    Wearable technologies for posture monitoring and posture correction are emerging as a way to support and enhance physical therapy treatment, e.g., for motor control training in neurological disorders or for treating musculoskeletal disorders, such as shoulder, neck, or lower back pain. Among the various technological options for posture monitoring, wearable systems offer potential advantages regarding mobility, use in different contexts and sustained tracking in daily life. We describe the design of a smart garment named Zishi to monitor compensatory movements and evaluate its applicability for shoulder motor control training in a clinical setting. Five physiotherapists and eight patients with musculoskeletal shoulder pain participated in the study. The attitudes of patients and therapists towards the system were measured using standardized survey instruments. The results indicate that patients and their therapists consider Zishi a credible aid for rehabilitation and patients expect it will help towards their recovery. The system was perceived as highly usable and patients were motivated to train with the system. Future research efforts on the improvement of the customization of feedback location and modality, and on the evaluation of Zishi as support for motor learning in shoulder patients, should be made.

  15. Use of acoustic technology to monitor the time course of Rhynchophorus ferrugineus larval mortality in date palms after treatments with Beauveria bassiana

    USDA-ARS?s Scientific Manuscript database

    Spectral and temporal patterns of insect sound impulses were monitored daily for 23-d periods in 8, 10, or 5 small date palm trees containing larvae dipped in 0 (control), 104 (low), or 108 (high) conidia/ml doses of entomopathogenic fungus, Beauveria bassiana (Bb 203), respectively. Each tree conta...

  16. Interindividual and intraindividual variations in postprandial glycemia peak time complicate precise recommendations for self-monitoring of glucose in persons with type 1 diabetes mellitus.

    PubMed

    Johansen, Mette Dencker; Gjerløv, Irene; Christiansen, Jens Sandahl; Hejlesen, Ole K

    2012-03-01

    In glycemic control, postprandial glycemia may be important to monitor and optimize as it reveals glycemic control quality, and postprandial hyperglycemia partly predicts late diabetic complications. Self-monitoring of blood glucose (SMBG) may be an appropriate technology to use, but recommendations on measurement time are crucial. We retrospectively analyzed interindividual and intraindividual variations in postprandial glycemic peak time. Continuous glucose monitoring (CGM) and carbohydrate intake were collected in 22 patients with type 1 diabetes mellitus. Meals were identified from carbohydrate intake data. For each meal, peak time was identified as time from meal to CGM zenith within 40-150 min after meal start. Interindividual (one-way Anova) and intraindividual (intraclass correlation coefficient) variation was calculated. Nineteen patients were included with sufficient meal data quality. Mean peak time was 87 ± 29 min. Mean peak time differed significantly between patients (p = 0.02). Intraclass correlation coefficient was 0.29. Significant interindividual and intraindividual variations exist in postprandial glycemia peak time, thus hindering simple and general advice regarding postprandial SMBG for detection of maximum values. © 2012 Diabetes Technology Society.

  17. International Consensus on Use of Continuous Glucose Monitoring.

    PubMed

    Danne, Thomas; Nimri, Revital; Battelino, Tadej; Bergenstal, Richard M; Close, Kelly L; DeVries, J Hans; Garg, Satish; Heinemann, Lutz; Hirsch, Irl; Amiel, Stephanie A; Beck, Roy; Bosi, Emanuele; Buckingham, Bruce; Cobelli, Claudio; Dassau, Eyal; Doyle, Francis J; Heller, Simon; Hovorka, Roman; Jia, Weiping; Jones, Tim; Kordonouri, Olga; Kovatchev, Boris; Kowalski, Aaron; Laffel, Lori; Maahs, David; Murphy, Helen R; Nørgaard, Kirsten; Parkin, Christopher G; Renard, Eric; Saboo, Banshi; Scharf, Mauro; Tamborlane, William V; Weinzimer, Stuart A; Phillip, Moshe

    2017-12-01

    Measurement of glycated hemoglobin (HbA 1c ) has been the traditional method for assessing glycemic control. However, it does not reflect intra- and interday glycemic excursions that may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which have been linked to both microvascular and macrovascular complications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or intermittently viewed (iCGM), addresses many of the limitations inherent in HbA 1c testing and self-monitoring of blood glucose. Although both provide the means to move beyond the HbA 1c measurement as the sole marker of glycemic control, standardized metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching people with diabetes to the most appropriate glucose monitoring methodologies, as well as standardized advice about how best to use the new information they provide, have yet to be established. In February 2017, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address these issues. This article summarizes the ATTD consensus recommendations and represents the current understanding of how CGM results can affect outcomes. © 2017 by the American Diabetes Association.

  18. Bait formulations of attractants and phagostimulants for targeted, area-wide fruit fly control

    USDA-ARS?s Scientific Manuscript database

    Tephritid fruit flies attack hundreds of species of fruits and vegetables and are responsible for trade restrictions wherever they occur. Traps and “bait and kill stations” are important means of monitoring and control and Bob Heath made important contributions to these technologies....

  19. Instantaneous Project Controls: Current Status, State of the Art, Benefits, and Strategies

    ERIC Educational Resources Information Center

    Abbaszadegan, Amin

    2016-01-01

    Despite advancements in construction and construction-related technology, capital project performance deviations, typically overruns, remain endemic within the capital projects industry. Currently, management is generally unaware of the current status of their projects, and thus monitoring and control of projects are not achieved effectively. In…

  20. Customizing graphical user interface technology for spacecraft control centers

    NASA Technical Reports Server (NTRS)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  1. Smart-Home Architecture Based on Bluetooth mesh Technology

    NASA Astrophysics Data System (ADS)

    Wan, Qing; Liu, Jianghua

    2018-03-01

    This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.

  2. Electromechanical actuation for cryogenic valve control

    NASA Technical Reports Server (NTRS)

    Lister, M. J.; Reichmuth, D. M.

    1993-01-01

    The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.

  3. An expert system/ion trap mass spectrometry approach for life support systems monitoring

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael

    1992-01-01

    Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.

  4. Current trends in molecular sensing

    NASA Astrophysics Data System (ADS)

    Wlodarski, Wojtek

    1992-08-01

    The biosphere contains a myriad of substances which can influence or stimulate various aspects of the health and behavior of living organisms. Not surprisingly, in the last decade or so researchers have appreciated the potential of developing a range of molecular sensor technologies, designed to estimate and monitor biological and chemical substances with a view to eventually controlling the biological processes themselves. This development has been accelerated recently by the realization that molecular sensors offer considerable commercial potential. At the same time, it was quickly appreciated that such sensors could revolutionize several areas, including health care, pollution and contamination monitoring, agriculture, on-line monitoring and control of industrial chemical processing, and strategic and tactical monitoring of chemical warfare. This brief review considers the changing scene in molecular sensor research by reference to a few key examples.

  5. An Internet of Things Approach to Electrical Power Monitoring and Outage Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Daniel B

    The so-called Internet of Things concept has captured much attention recently as ordinary devices are connected to the Internet for monitoring and control purposes. One enabling technology is the proliferation of low-cost, single board computers with built-in network interfaces. Some of these are capable of hosting full-fledged operating systems that provide rich programming environments. Taken together, these features enable inexpensive solutions for even traditional tasks such as the one presented here for electrical power monitoring and outage reporting.

  6. Innovative Technologies for Efficient Pharmacotherapeutic Management in Space

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Daniels, Vernie

    2014-01-01

    Current and future Space exploration missions and extended human presence in space aboard the ISS will expose crew to risks that differ both quantitatively and qualitatively from those encountered before by space travelers and will impose an unknown risk of safety and crew health. The technology development challenges for optimizing therapeutics in space must include the development of pharmaceuticals with extended stability, optimal efficacy and bioavailability with minimal toxicity and side effects. Innovative technology development goals may include sustained/chronic delivery preventive health care products and vaccines, low-cost high-efficiency noninvasive, non-oral dosage forms with radio-protective formulation matrices and dispensing technologies coupled with self-reliant tracking technologies for quality assurance and quality control assessment. These revolutionary advances in pharmaceutical technology will assure human presence in space and healthy living on Earth. Additionally, the Joint Commission on Accreditation of Healthcare Organizations advocates the use of health information technologies to effectively execute all aspects of medication management (prescribing, dispensing, and administration). The advent of personalized medicine and highly streamlined treatment regimens stimulated interest in new technologies for medication management. Intelligent monitoring devices enhance medication accountability compliance, enable effective drug use, and offer appropriate storage and security conditions for dangerous drug and controlled substance medications in remote sites where traditional pharmacies are unavailable. These features are ideal for Exploration Medical Capabilities. This presentation will highlight current novel commercial off-the-shelf (COTS) intelligent medication management devices for the unique dispensing, therapeutic drug monitoring, medication tracking, and drug delivery demands of exploration space medical operations.

  7. Refinery evaluation of optical imaging to locate fugitive emissions.

    PubMed

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  8. 40 CFR 451.21 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...

  9. 40 CFR 451.21 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...

  10. 40 CFR 451.21 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...

  11. Real-Time Payload Control and Monitoring on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1998-01-01

    World Wide Web (W3) technologies such as the Hypertext Transfer Protocol (HTTP) and the Java object-oriented programming environment offer a powerful, yet relatively inexpensive, framework for distributed application software development. This paper describes the design of a real-time payload control and monitoring system that was developed with W3 technologies at NASA Ames Research Center. Based on Java Development Toolkit (JDK) 1.1, the system uses an event-driven "publish and subscribe" approach to inter-process communication and graphical user-interface construction. A C Language Integrated Production System (CLIPS) compatible inference engine provides the back-end intelligent data processing capability, while Oracle Relational Database Management System (RDBMS) provides the data management function. Preliminary evaluation shows acceptable performance for some classes of payloads, with Java's portability and multimedia support identified as the most significant benefit.

  12. Design of temperature monitoring system based on CAN bus

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2017-10-01

    The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.

  13. Advanced I&C for Fault-Tolerant Supervisory Control of Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Daniel G.

    In this research, we have developed a supervisory control approach to enable automated control of SMRs. By design the supervisory control system has an hierarchical, interconnected, adaptive control architecture. A considerable advantage to this architecture is that it allows subsystems to communicate at different/finer granularity, facilitates monitoring of process at the modular and plant levels, and enables supervisory control. We have investigated the deployment of automation, monitoring, and data collection technologies to enable operation of multiple SMRs. Each unit's controller collects and transfers information from local loops and optimize that unit’s parameters. Information is passed from the each SMR unitmore » controller to the supervisory controller, which supervises the actions of SMR units and manage plant processes. The information processed at the supervisory level will provide operators the necessary information needed for reactor, unit, and plant operation. In conjunction with the supervisory effort, we have investigated techniques for fault-tolerant networks, over which information is transmitted between local loops and the supervisory controller to maintain a safe level of operational normalcy in the presence of anomalies. The fault-tolerance of the supervisory control architecture, the network that supports it, and the impact of fault-tolerance on multi-unit SMR plant control has been a second focus of this research. To this end, we have investigated the deployment of advanced automation, monitoring, and data collection and communications technologies to enable operation of multiple SMRs. We have created a fault-tolerant multi-unit SMR supervisory controller that collects and transfers information from local loops, supervise their actions, and adaptively optimize the controller parameters. The goal of this research has been to develop the methodologies and procedures for fault-tolerant supervisory control of small modular reactors. To achieve this goal, we have identified the following objectives. These objective are an ordered approach to the research: I) Development of a supervisory digital I&C system II) Fault-tolerance of the supervisory control architecture III) Automated decision making and online monitoring.« less

  14. CDP - Adaptive Supervisory Control and Data Acquisition (SCADA) Technology for Infrastructure Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marco Carvalho; Richard Ford

    2012-05-14

    Supervisory Control and Data Acquisition (SCADA) Systems are a type of Industrial Control System characterized by the centralized (or hierarchical) monitoring and control of geographically dispersed assets. SCADA systems combine acquisition and network components to provide data gathering, transmission, and visualization for centralized monitoring and control. However these integrated capabilities, especially when built over legacy systems and protocols, generally result in vulnerabilities that can be exploited by attackers, with potentially disastrous consequences. Our research project proposal was to investigate new approaches for secure and survivable SCADA systems. In particular, we were interested in the resilience and adaptability of large-scale mission-criticalmore » monitoring and control infrastructures. Our research proposal was divided in two main tasks. The first task was centered on the design and investigation of algorithms for survivable SCADA systems and a prototype framework demonstration. The second task was centered on the characterization and demonstration of the proposed approach in illustrative scenarios (simulated or emulated).« less

  15. Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.

  16. Lightweight UDP Pervasive Protocol in Smart Home Environment Based on Labview

    NASA Astrophysics Data System (ADS)

    Kurniawan, Wijaya; Hannats Hanafi Ichsan, Mochammad; Rizqika Akbar, Sabriansyah; Arwani, Issa

    2017-04-01

    TCP (Transmission Control Protocol) technology in a reliable environment was not a problem, but not in an environment where the entire Smart Home network connected locally. Currently employing pervasive protocols using TCP technology, when data transmission is sent, it would be slower because they have to perform handshaking process in advance and could not broadcast the data. On smart home environment, it does not need large size and complex data transmission between monitoring site and monitoring center required in Smart home strain monitoring system. UDP (User Datagram Protocol) technology is quick and simple on data transmission process. UDP can broadcast messages because the UDP did not require handshaking and with more efficient memory usage. LabVIEW is a programming language software for processing and visualization of data in the field of data acquisition. This paper proposes to examine Pervasive UDP protocol implementations in smart home environment based on LabVIEW. UDP coded in LabVIEW and experiments were performed on a PC and can work properly.

  17. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  18. Managing for Successful Control of Naturally Occurring Asbestos During Large Scale Grading

    NASA Astrophysics Data System (ADS)

    Saur, R.; Harnish, D.; Cavanaugh, J.; Kendall, K.; Virdee, A.; Ludlam, D.

    2012-12-01

    Pacific Gas and Electric Company recently completed environmental remediation and civil grading of a 35-acre site in San Francisco Bay Area, and the project became recognized with local agencies as having excellent controls systems for naturally-occurring asbestos (NOA). The project began in 2010 and was completed in 2012, and involved excavating and grading over 100,000 tons of soil containing NOA. The work was subject to requirements by state, local and regional agencies, including an asbestos dust mitigation plan for the Bay Area Air Quality Management District. Effective control of NOA is attributed to management approaches combined with effective monitoring and state-of-the-art controls. Management Planning. The contract for construction specified NOA compliance management and controls, including having a NOA-control "czar" ultimately responsible for effective mitigation. An important element was daily pre-planning for excavation/grading that involved both the NOA mitigation experts and construction staff. Personnel Planning and Training. All construction personnel were trained before work regarding NOA hazards and mitigations. Daily tailboards with all construction personnel included discussions of the NOA controls integral to the daily work. Supervision. A NOA mitigation compliance leader was assigned to each excavation operation, responsible for continuously monitoring wind direction and work to ensure mitigation met requirements, and that disturbed areas were hydrosealed or covered. Adaptive Management - Daily and weekly debriefs occurred with those responsible for NOA controls to evaluate effectiveness, and identify improvements needed. If a monitoring result exceeded the project trigger level, work shut down and a root-cause analysis was performed to determine appropriate corrective actions. Deviations of results from background were researched as to cause, and any adjustments identified. Nearby non-project activities were monitored, as they occasionally caused trigger level exceedences in perimeter monitors, including from off-site vehicles, nearby construction, and mechanical vegetation management (e.g. weed whacking). Regulatory and Owner Oversight. Monitoring results were reported daily to agencies, agencies made frequent inspections, and owner's independent compliance representatives observed the NOA mitigation and provided real-time feedback to the construction team. NOA Controls. NOA emissions were controlled site-wide and for each work activity. Site systems included misting, water trucks on roads, temporary covers and soil sealants. Work activity controls for excavation/grading included both source and perimeter controls. Water application technologies specially designed for NOA fiber mitigation, and not just dust mitigation, were effective without adding excessive water to work areas. These activities collectively created a management structure that facilitated successful implementation of NOA control technologies.

  19. Is Technology-Mediated Parental Monitoring Related to Adolescent Substance Use?

    PubMed

    Rudi, Jessie; Dworkin, Jodi

    2018-01-03

    Prevention researchers have identified parental monitoring leading to parental knowledge to be a protective factor against adolescent substance use. In today's digital society, parental monitoring can occur using technology-mediated communication methods, such as text messaging, email, and social networking sites. The current study aimed to identify patterns, or clusters, of in-person and technology-mediated monitoring behaviors, and examine differences between the patterns (clusters) in adolescent substance use. Cross-sectional survey data were collected from 289 parents of adolescents using Facebook and Amazon Mechanical Turk (MTurk). Cluster analyses were computed to identify patterns of in-person and technology-mediated monitoring behaviors, and chi-square analyses were computed to examine differences in substance use between the identified clusters. Three monitoring clusters were identified: a moderate in-person and moderate technology-mediated monitoring cluster (moderate-moderate), a high in-person and high technology-mediated monitoring cluster (high-high), and a high in-person and low technology-mediated monitoring cluster (high-low). Higher frequency of technology-mediated parental monitoring was not associated with lower levels of substance use. Results show that higher levels of technology-mediated parental monitoring may not be associated with adolescent substance use.

  20. Miniature PCR based portable bioaerosol monitor development.

    PubMed

    Agranovski, I E; Usachev, E V; Agranovski, E; Usacheva, O V

    2017-01-01

    A portable bioaerosol monitor is greatly demanded technology in many areas including air quality control, occupational exposure assessment and health risk evaluation, environmental studies and, especially, in defence and bio-terrorism applications. Our recent groundwork allowed us to formulate the concept of a portable bioaerosol monitor, which needs to be light, user friendly, reliable and capable of detecting airborne pathogens within 1-1·5 h on the spot. Conceptually, the event of a bioaerosol concentration burst is determined by triggers to commence the representative air sampling with sequential real-time polymerase chain reaction (PCR) confirmation of the targeted micro-organism present in the air. To minimize reagent consumption and idle running of the technology, an event of a bioaerosol burst is confirmed by three parameters: aerosol particle size, concentration and composition. Only particle sizes above 200 nm attract interest in the bioaerosol. Only an elevated aerosol concentration above the threshold (background aerosol concentration) is a signal to commence the analytical procedure. The combination of our previously developed personal bioaerosol sampler, aerosol particle counter based trigger and portable real-time PCR device formed the basis of the bioaerosol monitoring technology. The portable real-time PCR device was advanced to provide internally controlled detection, significantly reducing false-positive alarms. The technique is capable of detecting selected airborne micro-organisms on the spot within 30-80 min, depending on the genome organization of the particular strain. Due to recent outbreaks of infectious airborne diseases and the continuing threat of intentionally released bioaerosol attacks, investigations into the possibility of the early and reliable detection of pathogenic micro-organisms in the air is becoming increasingly important. The proposed technology consisting of a bioaerosol sampler, technology trigger and PCR device is capable of detecting selected airborne micro-organisms on the spot within a short time period. Journal of Applied Microbiology © 2016 The Society for Applied Microbiology.

  1. Atmosphere Resource Recovery and Environmental Monitoring Trace Contaminant Control Through FY 2012

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Pruitt, M. W.; Wheeler, R. M.; Monje, O.

    2013-01-01

    Trace contaminant control has been a concern of spacecraft designers and operators from early in the progression of manned spaceflight. Significant technological advancement has occurred since the first designs were implemented in the 1960s, culminating in the trace contaminant control system currently in use aboard the International Space Station as part of the atmosphere revitalization system.

  2. AlGaN Ultraviolet Detectors for Dual-Band UV Detection

    NASA Technical Reports Server (NTRS)

    Miko, Laddawan; Franz, David; Stahle, Carl M.; Yan, Feng; Guan, Bing

    2010-01-01

    This innovation comprises technology that has the ability to measure at least two ultraviolet (UV) bands using one detector without relying on any external optical filters. This allows users to build a miniature UVA and UVB monitor, as well as to develop compact, multicolor imaging technologies for flame temperature sensing, air-quality control, and terrestrial/counter-camouflage/biosensing applications.

  3. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    NASA Astrophysics Data System (ADS)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  4. Numerical Implementation of Indicators and Statistical Control Tools in Monitoring and Evaluating CACEI-ISO Indicators of Study Program in Industrial Process by Systematization

    ERIC Educational Resources Information Center

    Ayala, Gabriela Cota; Real, Francia Angélica Karlos; Ivan, Ramirez Alvarado Edqar

    2016-01-01

    The research was conducted to determine if the study program of the career of industrial processes Technological University of Chihuahua, 1 year after that it was certified by CACEI, continues achieving the established indicators and ISO 9001: 2008, implementing quality tools, monitoring of essential indicators are determined, flow charts are…

  5. JPRS Report, Science & Technology, Europe & Latin America

    DTIC Science & Technology

    1988-04-14

    can be applied everywhere that monitoring of gaseous atmospheres is required, for example in air pollution control, monitor- ing of furnace plants ...invest a further DM50 million in develop- ing the materials and construction of a pilot plant . 2.6 Spray Process To Produce Sheet Metal Today, semi...opportunities for building small production plants that can operate economically. Initial results from this project, in which two industrial

  6. Ultimate computing. Biomolecular consciousness and nano Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameroff, S.R.

    1987-01-01

    The book advances the premise that the cytoskeleton is the cell's nervous system, the biological controller/computer. If indeed cytoskeletal dynamics in the nanoscale (billionth meter, billionth second) are the texture of intracellular information processing, emerging ''NanoTechnologies'' (scanning tunneling microscopy, Feynman machines, von Neumann replicators, etc.) should enable direct monitoring, decoding and interfacing between biological and technological information devices. This in turn could result in important biomedical applications and perhaps a merger of mind and machine: Ultimate Computing.

  7. Research and Technology Operating Plan Summary: Fiscal Year 1973 Research and Technology Program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts are presented of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA. This RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and universities. The summary is arranged in five sections consisting of citations and abstracts of the RTOPs and subject, technical monitor, responsible NASA organization, and RTOP number indexes.

  8. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    PubMed

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  9. Heart Rate Monitors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Under a NASA grant, Dr. Robert M. Davis and Dr. William M. Portnoy came up with a new type of electrocardiographic electrode that would enable long term use on astronauts. Their invention was an insulated capacitive electrode constructed of a thin dielectric film. NASA subsequently licensed the electrode technology to Richard Charnitski, inventor of the VersaClimber, who founded Heart Rate, Inc., to further develop and manufacture personal heart monitors and to produce exercise machines using the technology for the physical fitness, medical and home markets. Same technology is on both the Home and Institutional Model VersaClimbers. On the Home Model an infrared heart beat transmitter is worn under exercise clothing. Transmitted heart rate is used to control the work intensity on the VersaClimber using the heart rate as the speedometer of the exercise. This offers advantages to a full range of users from the cardiac rehab patient to the high level physical conditioning of elite athletes. The company manufactures and markets five models of the 1*2*3 HEART RATE monitors that are used wherever people exercise to accurately monitor their heart rate. Company is developing a talking heart rate monitor that works with portable headset radios. A version of the heart beat transmitter will be available to the manufacturers of other aerobic exercise machines.

  10. An Innovative Unmanned System for Advanced Environmental Monitoring: Design and Development

    NASA Astrophysics Data System (ADS)

    Marsella, Ennio; Giordano, Laura; Evangelista, Lorenza; Iengo, Antonio; di Filippo, Alessandro; Coppola, Aniello

    2015-04-01

    The paper summarizes the design and development of a new technology and tools for real-time coordination and control of unmanned vehicles for advanced environmental monitoring. A new Unmanned System has been developed at Institute for Coastal Marine Environmental - National Research Council (Italy), in the framework of two National Operational Programs (PON): Technological Platform for Geophysical and Environmental Marine Survey-PITAM and Integrated Systems and Technologies for Geophysical and Environmental Monitoring in coastal-marine areas-STIGEAC. In particular, the system includes one Unmanned Aerial Vehicle (UAV) and two Unmanned Marine Vehicles (UMV). Major innovations concern the implementation of a new architecture to control each drone and/or to allow the cooperation between heterogeneous vehicles, the integration of distributed sensing techniques and real-time image processing capabilities. Part of the research in these projects involves, therefore, an architecture, where the ground operator can communicate with the Unmanned Vehicles at various levels of abstraction using pointing devices and video viewing. In detail, a Ground Control Station (GCS) has been design and developed to allow the government in security of the drones within a distance up to twenty kilometers for air explorations and within ten nautical miles for marine activities. The Ground Control Station has the following features: 1. hardware / software system for the definition of the mission profiles; 3. autonomous and semi-autonomous control system by remote control (joystick or other) for the UAV and UMVs; 4. integrated control system with comprehensive visualization capabilities, monitoring and archiving of real-time data acquired from scientific payload; 5. open structure to future additions of systems, sensors and / or additional vehicles. In detail, the UAV architecture is a dual-rotor, with an endurance ranging from 55 to 200 minutes, depending on payload weight (maximum 26 kg) and wind conditions, and a capability to survey an area of up to 5x5 square kilometers. The UAV payload consists of three different types of sensors: a laser scanner, a thermal-camera and an integrated camera reflex with gimbal. The laser scanner has 10 mm survey-grade accuracy and a field of view up to 330°. The thermal-camera has a resolution 640x480 pixels and a thermal sensitivity <20 mK (at 30 °C), while the reflex is a 22.3 Megapixel full-frame sensor. In addition to the common applications, such as generating mapping, charting, and geodesy products, the system allows performing real-time survey and monitoring of different natural risk under dangerous condition. The system is, also, address to environmental risk monitoring and prevention, industrial activity and emergency interventions related to environmental crises (i.e. oil spills).

  11. The research of new type stratified water injection process intelligent measurement technology

    NASA Astrophysics Data System (ADS)

    Zhao, Xin

    2017-10-01

    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  12. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  13. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  14. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You must... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  15. Energy Efficiency Technology Demonstration Project for Florida Educational Facilities: Occupancy Sensors.

    ERIC Educational Resources Information Center

    Floyd, David B.; Parker, Danny S.; McIlvaine, Janet E. R.; Sherwin, John R.

    A Florida study replaced conventional light switches with passive infrared or ultrasonic sensing systems to control classroom lighting in an elementary school to determine the performance of such controls in saving energy. A before-and-after monitoring protocol was used for 33 classrooms and 7 offices in which electrical demand data were…

  16. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  17. In vivo swine myocardial tissue characterization and monitoring during open chest surgery by time-resolved diffuse near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Spinelli, Lorenzo; Contini, Davide; Farina, Andrea; Torricelli, Alessandro; Pifferi, Antonio; Cubeddu, Rinaldo; Ascari, Luca; Potì, Luca; Trivella, Maria Giovanna; L'Abbate, Antonio; Puzzuoli, Stefano

    2011-03-01

    Cardiovascular diseases are the main cause of death in industrialized countries. Worldwide, a large number of patients suffering from cardiac diseases are treated by surgery. Despite the advances achieved in the last decades with myocardial protection, surgical failure can still occur. This is due at least in part to the imperfect control of the metabolic status of the heart in the various phases of surgical intervention. At present, this is indirectly controlled by the electrocardiogram and the echographic monitoring of cardiac mechanics as direct measurements are lacking. Diffuse optical technologies have recently emerged as promising tools for the characterization of biological tissues like breast, muscles and bone, and for the monitoring of important metabolic parameters such as blood oxygenation, volume and flow. As a matter of fact, their utility has been demonstrated in a variety of applications for functional imaging of the brain, optical mammography and monitoring of muscle metabolism. However, due to technological and practical difficulties, their potential for cardiac monitoring has not yet been exploited. In this work we show the feasibility of the in-vivo determination of absorption and scattering spectra of the cardiac muscle in the 600-1100 nm range, and of monitoring myocardial tissue hemodynamics by time domain near-infrared spectroscopy at 690 nm and 830 nm. Both measurements have been performed on the exposed beating heart during open chest surgery in pigs, an experimental model closely mimicking the clinical cardio-surgical setting.

  18. Monitoring airborne molecular contamination: a quantitative and qualitative comparison of real-time and grab-sampling techniques

    NASA Astrophysics Data System (ADS)

    Shupp, Aaron M.; Rodier, Dan; Rowley, Steven

    2007-03-01

    Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.

  19. Use of a Business Approach to Improve Disease Surveillance Data Management Systems and Information Technology Process in Florida's Bureau of STD Prevention and Control.

    PubMed

    Shiver, Stacy A; Schmitt, Karla; Cooksey, Adrian

    2009-01-01

    The business of sexually transmitted disease (STD) prevention and control demands technology that is capable of supporting a wide array of program activities-from the processing of laboratory test results to the complex and confidential process involved in contact investigation. The need for a tool that enables public health officials to successfully manage the complex operations encountered in an STD prevention and control program, and the need to operate in an increasingly poor resource environment, led the Florida Bureau of STD to develop the Patient Reporting Investigation Surveillance Manager. Its unique approach, technical architecture, and sociotechnical philosophy have made this business application successful in real-time monitoring of disease burden for local communities, identification of emerging outbreaks, monitoring and assurance of appropriate treatments, improving access to laboratory data, and improving the quality of data for epidemiologic analysis. Additionally, the effort attempted to create and release a product that promoted the Centers for Disease Control and Prevention's ideas for integration of programs and processes.

  20. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of Olin Chemicals Group, Charleston, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, M.S.

    1983-08-01

    A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at Olin Chemicals Group (SIC-2800, SIC-2812, SIC-2819), Charleston, Tennessee in May 1982. Hazardous wastes generated at the facility included brine sludge, thick mercury (7439954) (Hg) butter, and calcium-hypochlorite (7778543). An estimated 8500 tons of waste were disposed of annually. The Hg waste underwent a retorting process that recycled the Hg. The final detoxified waste was land filled. Brine sludge and calcium-hypochlorite were also land filled. No controls beyond those normally used at such sites were found at the landfills. Periodic monitoring of Hg vapor concentrationsmore » was conducted by the company. Medical monitoring of urine for Hg exposure was conducted. Specific limits were set for urinary Hg concentrations. When these limits were exceeded the workers were removed from exposure. Personal protective equipment consisted of hard hats, safety glasses, and spirators specially designed for Hg exposure. The author concludes that the hazardous waste disposal and treatment operations at the facility are well controlled.« less

  1. Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.

    PubMed

    Park, Juyoung; Kang, Kyungtae

    2014-09-01

    Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology.

  2. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  3. A Review of the Literature on Remote Monitoring Technology in Incentive-Based Interventions for Health-Related Behavior Change.

    PubMed

    Kurti, Allison N; Davis, Danielle R; Redner, Ryan; Jarvis, Brantley P; Zvorsky, Ivori; Keith, Diana R; Bolivar, Hypatia A; White, Thomas J; Rippberger, Peter; Markesich, Catherine; Atwood, Gary; Higgins, Stephen T

    2016-06-01

    Use of technology (e.g., Internet, cell phones) to allow remote implementation of incentives interventions for health-related behavior change is growing. To our knowledge, there has yet to be a systematic review of this literature reported. The present report provides a systematic review of the controlled studies where technology was used to remotely implement financial incentive interventions targeting substance use and other health behaviors published between 2004 and 2015. For inclusion in the review, studies had to use technology to remotely accomplish one of the following two aims alone or in combination: (a) monitor the target behavior, or (b) deliver incentives for achieving the target goal. Studies also had to examine financial incentives (e.g., cash, vouchers) for health-related behavior change, be published in peer-reviewed journals, and include a research design that allowed evaluation of the efficacy of the incentive intervention relative to another condition (e.g., non-contingent incentives, treatment as usual). Of the 39 reports that met inclusion criteria, 18 targeted substance use, 10 targeted medication adherence or home-based health monitoring, and 11 targeted diet, exercise, or weight loss. All 39 (100%) studies used technology to facilitate remote monitoring of the target behavior, and 26 (66.7%) studies also incorporated technology in the remote delivery of incentives. Statistically significant intervention effects were reported in 71% of studies reviewed. Overall, the results offer substantial support for the efficacy of remotely implemented incentive interventions for health-related behavior change, which have the potential to increase the cost-effectiveness and reach of this treatment approach.

  4. Manufacturing Methods and Technology Program Automatic In-Process Microcircuit Evaluation.

    DTIC Science & Technology

    1980-10-01

    methods of controlling the AIME system are with the computer and associated inter- face (CPU control), and with controls located on the front panels...Sync and Blanking signals When the AIME system is being operated by the front panel controls , the computer does not influence the system operation. SU...the color video monitor display. The operator controls these parameters by 1) depressing the appropriate key on the keyboard, 2) observing on the

  5. Biosurveillance Technology: Providing Situational Awareness through Increased Information Sharing

    DTIC Science & Technology

    2011-09-01

    Sri Lanka, there are “separate vertical programmes [sic] to control and monitor malaria , filariasis, leprosy, respiratory diseases, human rabies...Biohazard Detection System CAP Common Alerting Protocol CDC Centers for Disease Control and Prevention CDC HAN Centers for Disease Control and Prevention...LCDHD Preparedness Program running, I always had complete and total faith that you had everything under control and you would excel at every task. To

  6. Small Autonomous Aircraft Servo Health Monitoring

    NASA Technical Reports Server (NTRS)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  7. Features and application of wearable biosensors in medical care

    PubMed Central

    Ajami, Sima; Teimouri, Fotooheh

    2015-01-01

    One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database). In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases. PMID:26958058

  8. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  9. [Technological innovations in radiation oncology require specific quality controls].

    PubMed

    Lenaerts, E; Mathot, M

    2014-01-01

    During the last decade, the field of radiotherapy has benefited from major technological innovations and continuously improving treatment efficacy, comfort and safety of patients. This mainly concerns the imaging techniques that allow 4D CT scan recording the respiratory phases, on-board imaging on linear accelerators that ensure perfect positioning of the patient for treatment and irradiation techniques that reduce very significantly the duration of treatment sessions without compromising quality of the treatment plan, including IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc therapy). In this context of rapid technological change, it is the responsibility of medical physicists to regularly and precisely monitor the perfect functioning of new techniques to ensure patient safety. This requires the use of specific quality control equipment best suited to these new techniques. We will briefly describe the measurement system Delta4 used to control individualized treatment plan for each patient treated with VMAT technology.

  10. Asthma Management in the Era of Smart-Medicine: Devices, Gadgets, Apps and Telemedicine.

    PubMed

    Katwa, Umakanth; Rivera, Estefania

    2018-03-10

    Asthma is the most common chronic pediatric condition. Effective asthma management requires a proactive and inclusive approach that controls the patient's symptoms and prevents recurrence of exacerbations. Clinicians should encourage patients to become involved in their management since self-management approaches have proven to be an effective means for chronic illness treatment. Novel forms of self-monitoring and management are technological interventions. In the last decade, novel technology has been developed and used to improve asthma control since it is a powerful agent that addresses a variety of challenges in chronic disease management such as education, communication and adherence. A myriad of technology-based strategies are available although many of these are not evidence based and further studies are needed to evaluate their efficacy in specific asthma-control endpoints. Herein, authors present a review of current and future technology-based options for asthma management and a comparison between them.

  11. Monitoring of Overhead Transmission Lines: A Review from the Perspective of Contactless Technologies

    NASA Astrophysics Data System (ADS)

    Khawaja, Arsalan Habib; Huang, Qi; Khan, Zeashan Hameed

    2017-12-01

    This paper describes a comprehensive review of non-contact technologies for overhead power transmission lines. Due to ever increasing emphasis on reducing accidents and speeding up diagnosis for automatically controlled grids, real time remote sensing and actuation is the new horizon for smart grid implementation. The technology overview with emphasis on the practical implementation of advanced non-contact technologies is discussed in this paper while considering optimization of the high voltage transmission lines parameters. In case of fault, the voltage and the current exceed limits of operation and hence real time reporting for control and diagnosis is a critical requirement. This paper aims to form a strong foundation for control and diagnosis of future power distribution systems so that a practitioner or researcher can make choices for a workable solution in smart grid implementation based on non-contact sensing.

  12. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallstrom, Jason O.; Ni, Zheng Richard

    This STTR Phase I project assessed the feasibility of a new CO 2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO 2 concentrations, as well as themore » electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO 2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO 2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO 2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States.« less

  13. Patient Monitoring

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In photo above, the electrocardiogram of a hospitalized patient is being transmitted by telemetry. Widely employed in space operations, telemetry is a process wherein instrument data is converted to electrical signals and sent to a receiver where the signals are reconverted to usable information. In this instance, heart readings are picked up by the electrode attached to the patient's body and delivered by wire to the small box shown, which is a telemetry transmitter. The signals are relayed wirelessly to the console in the background, which converts them to EKG data. The data is displayed visually and recorded on a printout; at the same time, it is transmitted to a central control station (upper photo) where a nurse can monitor the condition of several patients simultaneously. The Patient Monitoring System was developed by SCI Systems, Inc., Huntsville, Alabama, in conjunction with Abbott Medical Electronics, Houston, Texas. In developing the system, SCI drew upon its extensive experience as a NASA contractor. The company applied telemetry technology developed for the Saturn launch vehicle and the Apollo spacecraft; instrumentation technology developed for heart, blood pressure and sleep monitoring of astronauts aboard NASA's Skylab long duration space station; and communications technology developed for the Space Shuttle.

  14. Acceptance and Use of Mobile Technology for Health Self-Monitoring in Lung Transplant Recipients during the First Year Post-Transplantation.

    PubMed

    Jiang, Yun; Sereika, Susan M; Dabbs, Annette DeVito; Handler, Steven M; Schlenk, Elizabeth A

    2016-01-01

    To describe lung transplant recipients (LTRs') acceptance and use of mobile technology for health self-monitoring during the first year post-transplantation, and explore correlates of the use of technology in the 0 to 2, >2 to ≤6, >6 to ≤12, and 0 to 12 months. Secondary analysis of data from 96 LTR assigned to use Pocket PATH(®), a smartphone application, for daily health self-monitoring in a randomized controlled trial. Use of Pocket PATH was categorized as low, moderate, and high use. Proportional odds models for ordinal logistic regression were employed to explore correlates of use of technology. LTR reported high acceptance of Pocket PATH at baseline. However, acceptance was not associated with actual use over the 12 months (p=0.45~0.96). Actual use decreased across time intervals (p<0.001). Increased self-care agency was associated with the increased odds of higher use in women (p=0.03) and those less satisfied with technology training (p=0.02) in the first 2 months. Higher use from >2 to ≤6 months was associated with greater satisfaction with technology training (OR=3.37, p=0.01) and shorter length of hospital stay (OR=0.98, p=0.02). Higher use from >6 to ≤12 months was associated with older age (OR=1.05, p=0.02), lower psychological distress (OR=0.43, p=0.02), and better physical functioning (OR=1.09, p=0.01). Higher use over 12 months was also associated with older age (OR=1.05, p=0.007), better physical functioning (OR=1.13, p=0.001), and greater satisfaction with technology training (OR=3.05, p=0.02). Correlates were different for short- and long-term use of mobile technology for health self-monitoring in the first year post-transplantation. It is important to follow up with LTR with longer hospital stay, poor physical functioning, and psychological distress, providing ongoing education to improve their long-term use of technology for health self-monitoring.

  15. Acceptance and Use of Mobile Technology for Health Self-Monitoring in Lung Transplant Recipients during the First Year Post-Transplantation

    PubMed Central

    Sereika, Susan M.; Dabbs, Annette DeVito; Handler, Steven M.; Schlenk, Elizabeth A.

    2016-01-01

    Summary Objectives To describe lung transplant recipients (LTRs’) acceptance and use of mobile technology for health self-monitoring during the first year post-transplantation, and explore correlates of the use of technology in the 0 to 2, >2 to ≤6, >6 to ≤12, and 0 to 12 months. Methods Secondary analysis of data from 96 LTR assigned to use Pocket PATH®, a smartphone application, for daily health self-monitoring in a randomized controlled trial. Use of Pocket PATH was categorized as low, moderate, and high use. Proportional odds models for ordinal logistic regression were employed to explore correlates of use of technology. Results LTR reported high acceptance of Pocket PATH at baseline. However, acceptance was not associated with actual use over the 12 months (p=0.45~0.96). Actual use decreased across time intervals (p<0.001). Increased self-care agency was associated with the increased odds of higher use in women (p=0.03) and those less satisfied with technology training (p=0.02) in the first 2 months. Higher use from >2 to ≤6 months was associated with greater satisfaction with technology training (OR=3.37, p=0.01) and shorter length of hospital stay (OR=0.98, p=0.02). Higher use from >6 to ≤12 months was associated with older age (OR=1.05, p=0.02), lower psychological distress (OR=0.43, p=0.02), and better physical functioning (OR=1.09, p=0.01). Higher use over 12 months was also associated with older age (OR=1.05, p=0.007), better physical functioning (OR=1.13, p=0.001), and greater satisfaction with technology training (OR=3.05, p=0.02). Conclusions Correlates were different for short- and long-term use of mobile technology for health self-monitoring in the first year post-transplantation. It is important to follow up with LTR with longer hospital stay, poor physical functioning, and psychological distress, providing ongoing education to improve their long-term use of technology for health self-monitoring. PMID:27437052

  16. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  17. Supervision strategies for improved reliability of bus routes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    The synthesis will be of interest to transit agency managers and supervisors, as well as to operating and planning personnel who are concerned with the reliability and scheduling of buses. Information is provided on service monitoring, service supervision and control, and supervision strategies. Reliability of transit service is critical to bus transit ridership. The extent of service supervision has an important bearing on reliability. The report describes the various procedures that are used by transit agencies to monitor and maintain bus service reliability. Most transit systems conduct checks of the number of riders at maximum load points and monitor schedulemore » adherence at these locations. Other supervisory actions include service restoration techniques, and strategies such as schedule control, headway control, load control, extraboard management, and personnel selection and training. More sophisticated technologies, such as automatic passenger counting (APC) systems and automatic vehicle location and control (AVLC), have been employed by some transit agencies and are described in the synthesis.« less

  18. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  19. Factors Affecting Mobile Diabetes Monitoring Adoption Among Physicians: Questionnaire Study and Path Model

    PubMed Central

    Castañeda, José Alberto; Sanz, Silvia; Henseler, Jörg

    2012-01-01

    Background Patients with type 1 and type 2 diabetes often find it difficult to control their blood glucose level on a daily basis because of distance or physical incapacity. With the increase in Internet-enabled smartphone use, this problem can be resolved by adopting a mobile diabetes monitoring system. Most existing studies have focused on patients’ usability perceptions, whereas little attention has been paid to physicians’ intentions to adopt this technology. Objective The aim of the study was to evaluate the perceptions and user acceptance of mobile diabetes monitoring among Japanese physicians. Methods A questionnaire survey of physicians was conducted in Japan. The structured questionnaire was prepared in a context of a mobile diabetes monitoring system that controls blood glucose, weight, physical activity, diet, insulin and medication, and blood pressure. Following a thorough description of mobile diabetes monitoring with a graphical image, questions were asked relating to system quality, information quality, service quality, health improvement, ubiquitous control, privacy and security concerns, perceived value, subjective norms, and intention to use mobile diabetes monitoring. The data were analyzed by partial least squares (PLS) path modeling. Results In total, 471 physicians participated from 47 prefectures across Japan, of whom 134 were specialized in internal and gastrointestinal medicine. Nine hypotheses were tested with both the total sample and the specialist subsample; results were similar for both samples in terms of statistical significance and the strength of path coefficients. We found that system quality, information quality, and service quality significantly affect overall quality. Overall quality determines the extent to which physicians perceive the value of mobile health monitoring. However, in contrast to our initial predictions, overall quality does not have a significant direct effect on the intention to use mobile diabetes monitoring. With regard to net benefits, both ubiquitous control and health improvement are significant predictors. Net benefits in turn significantly motivate physicians to use mobile health monitoring, and has a strong influence on perceived value. Perceived value and subjective norms are predictors of intention to use. In our sample, concerns over privacy and security risk have no significant effects on intention to use mobile diabetes monitoring. Among the 3 control variables, only age significantly affected intention to use mobile diabetes monitoring, whereas experience and gender were not significant predictors of intention. Conclusions Physicians consider perceived value and net benefits as the most important motivators to use mobile diabetes monitoring. Overall quality assessment does affect their intention to use this technology, but only indirectly through perceived value. Net benefits seem to be a strong driver in both a direct and indirect manner, implying that physicians may perceive health improvement with ubiquitous control as a true utility by enhancing cost-effective monitoring, and simultaneously recognize it as a way to create value for their clinical practices. PMID:23257115

  20. Engagement Strategies for Self-Monitoring Symptoms of Bipolar Disorder With Mobile and Wearable Technology: Protocol for a Randomized Controlled Trial.

    PubMed

    Cochran, Amy; Belman-Wells, Livia; McInnis, Melvin

    2018-05-10

    Monitoring signs and symptoms in bipolar disorder (BP) is typically based on regular assessments from patient-clinician interactions. Mobile and wearable technology promises to make monitoring symptoms in BP easier, but little is known about how best to engage individuals with BP in monitoring symptoms. The objective of this study was to provide the rationale and protocol for a randomized controlled trial that investigates engagement strategies for monitoring symptoms of BP, including the strategies of using activity trackers compared with self-reports and reviewing recorded symptoms weekly with an interviewer. A total of 50 individuals with BP will be recruited from the Prechter Longitudinal Study of Bipolar Disorder at the University of Michigan to participate in a 6-week study. Participants will monitor their symptoms through an activity tracker (Fitbit Alta HR) and a mobile phone app designed for this study. In addition to monitoring symptoms, participants have a 50-50 chance of being assigned to an arm that reviews self-reports and activity information weekly. Statistical tests will be performed to test hypotheses that participants adhere to activity tracking significantly more than self-reporting, prefer activity tracking significantly more than self-reporting, and better adhere to both activity tracking and self-reporting when reviewing collected information weekly. Recruitment commenced in November 2017. The first group of participants began the study in January 2018. This study aims to establish strategies to engage individuals with BP in monitoring their symptoms with mobile and wearable technology. Better engagement strategies are expected to aid current efforts in bipolar research and clinical care, from the development of new mobile phone apps to providing the right intervention to the right individual at the right moment. ClinicalTrials.gov NCT03358238; https://clinicaltrials.gov/ct2/show/NCT03358238 (Archived by WebCite at http://www.webcitation.org/6yebuNfz5). RR1-10.2196/9899. ©Amy Cochran, Livia Belman-Wells, Melvin McInnis. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 10.05.2018.

  1. Impact of flash glucose monitoring on hypoglycaemia in adults with type 1 diabetes managed with multiple daily injection therapy: a pre-specified subgroup analysis of the IMPACT randomised controlled trial.

    PubMed

    Oskarsson, Per; Antuna, Ramiro; Geelhoed-Duijvestijn, Petronella; Krӧger, Jens; Weitgasser, Raimund; Bolinder, Jan

    2018-03-01

    Evidence for the effectiveness of interstitial glucose monitoring in individuals with type 1 diabetes using multiple daily injection (MDI) therapy is limited. In this pre-specified subgroup analysis of the Novel Glucose-Sensing Technology and Hypoglycemia in Type 1 Diabetes: a Multicentre, Non-masked, Randomised Controlled Trial' (IMPACT), we assessed the impact of flash glucose technology on hypoglycaemia compared with capillary glucose monitoring. This multicentre, prospective, non-masked, RCT enrolled adults from 23 European diabetes centres. Individuals were eligible to participate if they had well-controlled type 1 diabetes (diagnosed for ≥5 years), HbA 1c ≤ 58 mmol/mol [7.5%], were using MDI therapy and on their current insulin regimen for ≥3 months, reported self-monitoring of blood glucose on a regular basis (equivalent to ≥3 times/day) for ≥2 months and were deemed technically capable of using flash glucose technology. Individuals were excluded if they were diagnosed with hypoglycaemia unawareness, had diabetic ketoacidosis or myocardial infarction in the preceding 6 months, had a known allergy to medical-grade adhesives, used continuous glucose monitoring (CGM) within the previous 4 months or were currently using CGM or sensor-augmented pump therapy, were pregnant or planning pregnancy or were receiving steroid therapy for any disorders. Following 2 weeks of blinded (to participants and investigator) sensor wear by all participants, participants with sensor data for more than 50% of the blinded wear period (or ≥650 individual sensor results) were randomly assigned, in a 1:1 ratio by a central interactive web response system (IWRS) using the biased-coin minimisation method, to flash sensor-based glucose monitoring (intervention group) or self-monitoring of capillary blood glucose (control group). The control group had two further 14 day blinded sensor-wear periods at the 3 and 6 month time points. Participants, investigators and staff were not masked to group allocation. The primary outcome was the change in time in hypoglycaemia (<3.9 mmol/l) between baseline and 6 months in the full analysis set. Between 4 September 2014 and 12 February 2015, 167 participants using MDI were enrolled. After screening and the baseline phase, participants were randomised to intervention (n = 82) and control groups (n = 81). One woman from each group was excluded owing to pregnancy; the full analysis set included 161 randomised participants. At 6 months, mean time in hypoglycaemia was reduced by 46.0%, from 3.44 h/day to 1.86 h/day in the intervention group (baseline adjusted mean change, -1.65 h/day), and from 3.73 h/day to 3.66 h/day in the control group (baseline adjusted mean change, 0.00 h/day), with a between-group difference of -1.65 (95% CI -2.21, -1.09; p < 0.0001). For participants in the intervention group, the mean ± SD daily sensor scanning frequency was 14.7 ± 10.7 (median 12.3) and the mean number of self-monitored blood glucose tests performed per day reduced from 5.5 ± 2.0 (median 5.4) at baseline to 0.5 ± 1.0 (median 0.1). The baseline frequency of self-monitored blood glucose tests by control participants was maintained (from 5.6 ± 1.9 [median 5.2] to 5.5 ± 2.6 [median 5.1] per day). Treatment satisfaction and perception of hypo/hyperglycaemia were improved compared with control. No device-related hypoglycaemia or safety-related issues were reported. Nine serious adverse events were reported for eight participants (four in each group), none related to the device. Eight adverse events for six of the participants in the intervention group were also reported, which were related to sensor insertion/wear; four of these participants withdrew because of the adverse event. Use of flash glucose technology in type 1 diabetes controlled with MDI therapy significantly reduced time in hypoglycaemia without deterioration of HbA 1c , and improved treatment satisfaction. ClinicalTrials.gov NCT02232698 FUNDING: Abbott Diabetes Care, Witney, UK.

  2. 49 CFR 195.573 - What must I do to monitor external corrosion control?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... circumstances in which a close-interval survey or comparable technology is practicable and necessary to... corrosion by electrical survey, or where an electrical survey is impractical, by other means that include...

  3. 49 CFR 195.573 - What must I do to monitor external corrosion control?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circumstances in which a close-interval survey or comparable technology is practicable and necessary to... corrosion by electrical survey, or where an electrical survey is impractical, by other means that include...

  4. 49 CFR 195.573 - What must I do to monitor external corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circumstances in which a close-interval survey or comparable technology is practicable and necessary to... corrosion by electrical survey, or where an electrical survey is impractical, by other means that include...

  5. The principles of ultrasound and its application in freezing related processes of food materials: A review.

    PubMed

    Cheng, Xinfeng; Zhang, Min; Xu, Baoguo; Adhikari, Benu; Sun, Jincai

    2015-11-01

    Ultrasonic processing is a novel and promising technology in food industry. The propagation of ultrasound in a medium generates various physical and chemical effects and these effects have been harnessed to improve the efficiency of various food processing operations. Ultrasound has also been used in food quality control as diagnostic technology. This article provides an overview of recent developments related to the application of ultrasound in low temperature and closely related processes such as freezing, thawing, freeze concentration and freeze drying. The applications of high intensity ultrasound to improve the efficiency of freezing process, to control the size and size distribution of ice crystals and to improve the quality of frozen foods have been discussed in considerable detail. The use of low intensity ultrasound in monitoring the ice content and to monitor the progress of freezing process has also been highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Health information system model for monitoring treatment and surveillance for leprosy patients in indonesia (case study in Pekalongan District, Central Java, Indonesia).

    PubMed

    Rachmani, Enny; Kurniadi, Arif; Hsu, Chien Yeh

    2013-01-01

    After India and Brazil, Indonesia has the third highest incidence/prevalence of leprosy in the world. Every year thousands of new cases and case with grade-2 disability are reported and, while the recovery rate lingers only 80-90 %. Therefore, more than 10 % of leprosy patients drop out of treatment and can be a source of new infections in the community. Our research was aimed at determining apparent difficulties in the leprosy control program as well as how a health information system (HIS) could assist the Indonesian leprosy control program. We used qualitative method with deep interview and observation of document. One of the difficulties which the Indonesian leprosy control program faces is discontinuity of patient's data due to rotating staff as well as the treatment monitoring and queries patients which should be monitored after treatment has ceased. Technology implementation is feasible through short message service (sms) reminders and web base applications. The leprosy control program urgently needs to implement continuous monitoring and recording of patients because of the particular characteristics of this contagious disease.

  7. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  8. Information collection and processing of dam distortion in digital reservoir system

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Zhang, Chengming; Li, Yanling; Wu, Qiulan; Ge, Pingju

    2007-06-01

    The "digital reservoir" is usually understood as describing the whole reservoir with digital information technology to make it serve the human existence and development furthest. Strictly speaking, the "digital reservoir" is referred to describing vast information of the reservoir in different dimension and space-time by RS, GPS, GIS, telemetry, remote-control and virtual reality technology based on computer, multi-media, large-scale memory and wide-band networks technology for the human existence, development and daily work, life and entertainment. The core of "digital reservoir" is to realize the intelligence and visibility of vast information of the reservoir through computers and networks. The dam is main building of reservoir, whose safety concerns reservoir and people's safety. Safety monitoring is important way guaranteeing the dam's safety, which controls the dam's running through collecting the dam's information concerned and developing trend. Safety monitoring of the dam is the process from collection and processing of initial safety information to forming safety concept in the brain. The paper mainly researches information collection and processing of the dam by digital means.

  9. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  10. Using virtual reality and game technology to assist command and control

    NASA Astrophysics Data System (ADS)

    Riead, Lorien H.; Straub, James; Mangino, Joseph

    2017-04-01

    Recent improvements in virtual reality hardware have brought this technology to the point where easily-obtained commercial equipment can conceivably provide an affordable and relatively unexplored alternative to the traditional monitor and keyboard view of the tactical space. In addition, commercially available game engines provide several advantages for tactical applications. Using these technologies, we have created a concept of a low-cost display that allows for real-time immersive planning and strategy, with suggestions for further exploration.

  11. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA research and technology program for FY 1990 is presented. The summary portions is compiled of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and universities. The first section containing citations and abstracts of the RTOPs is followed by four indices: Subject; Technical Monitor; Responsible NASA Organization; and RTOP number.

  12. Surveying and monitoring for vulnerability assessment of an ancient building.

    PubMed

    Fregonese, Luigi; Barbieri, Gaia; Biolzi, Luigi; Bocciarelli, Massimiliano; Frigeri, Aronne; Taffurelli, Laura

    2013-07-31

    This paper examines how surveying and monitoring improve our knowledge about ancient buildings, allow the interpretation of their structural response and help in the search for the best solutions for their conservation. The case study of Palazzo del Capitano in Mantua (Italy) is analyzed. In particular, the attention is focused on the use of a Terrestrial Laser Scanner (TLS) for surveying and monitoring too, considering that the building structural control has been performed in combination with other traditional topographic techniques such as geometric leveling and topographic networks for 3D control based on measurements through total stations. The study of TLS monitoring has been tested only in the last decade and it is an innovative method for the detection of displacements of particular surfaces. Till now the research has focused only on the use of TLS monitoring to control large structures and in particular landscape situations; thus its use for a civil construction and historical buildings is a new field of investigation. Despite the fact technological development and new methodologies seem offer new future potential for the analysis of ancient buildings, currently there are still important limits for the application of the investigated surveying and monitoring techniques.

  13. Surveying and Monitoring for Vulnerability Assessment of an Ancient Building

    PubMed Central

    Fregonese, Luigi; Barbieri, Gaia; Biolzi, Luigi; Bocciarelli, Massimiliano; Frigeri, Aronne; Taffurelli, Laura

    2013-01-01

    This paper examines how surveying and monitoring improve our knowledge about ancient buildings, allow the interpretation of their structural response and help in the search for the best solutions for their conservation. The case study of Palazzo del Capitano in Mantua (Italy) is analyzed. In particular, the attention is focused on the use of a Terrestrial Laser Scanner (TLS) for surveying and monitoring too, considering that the building structural control has been performed in combination with other traditional topographic techniques such as geometric leveling and topographic networks for 3D control based on measurements through total stations. The study of TLS monitoring has been tested only in the last decade and it is an innovative method for the detection of displacements of particular surfaces. Till now the research has focused only on the use of TLS monitoring to control large structures and in particular landscape situations; thus its use for a civil construction and historical buildings is a new field of investigation. Despite the fact technological development and new methodologies seem offer new future potential for the analysis of ancient buildings, currently there are still important limits for the application of the investigated surveying and monitoring techniques. PMID:23912425

  14. Investigation of the cross-ship comparison monitoring method of failure detection in the HIMAT RPRV. [digital control techniques using airborne microprocessors

    NASA Technical Reports Server (NTRS)

    Wolf, J. A.

    1978-01-01

    The Highly maneuverable aircraft technology (HIMAT) remotely piloted research vehicle (RPRV) uses cross-ship comparison monitoring of the actuator RAM positions to detect a failure in the aileron, canard, and elevator control surface servosystems. Some possible sources of nuisance trips for this failure detection technique are analyzed. A FORTRAN model of the simplex servosystems and the failure detection technique were utilized to provide a convenient means of changing parameters and introducing system noise. The sensitivity of the technique to differences between servosystems and operating conditions was determined. The cross-ship comparison monitoring method presently appears to be marginal in its capability to detect an actual failure and to withstand nuisance trips.

  15. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the mid-1980s, Kinetic Systems and Langley Research Center determined that high speed CAMAC (Computer Automated Measurement and Control) data acquisition systems could significantly improve Langley's ARTS (Advanced Real Time Simulation) system. The ARTS system supports flight simulation R&D, and the CAMAC equipment allowed 32 high performance simulators to be controlled by centrally located host computers. This technology broadened Kinetic Systems' capabilities and led to several commercial applications. One of them is General Atomics' fusion research program. Kinetic Systems equipment allows tokamak data to be acquired four to 15 times more rapidly. Ford Motor company uses the same technology to control and monitor transmission testing facilities.

  16. Monitoring and controlling ATLAS data management: The Rucio web user interface

    NASA Astrophysics Data System (ADS)

    Lassnig, M.; Beermann, T.; Vigne, R.; Barisits, M.; Garonne, V.; Serfon, C.

    2015-12-01

    The monitoring and controlling interfaces of the previous data management system DQ2 followed the evolutionary requirements and needs of the ATLAS collaboration. The new data management system, Rucio, has put in place a redesigned web-based interface based upon the lessons learnt from DQ2, and the increased volume of managed information. This interface encompasses both a monitoring and controlling component, and allows easy integration for usergenerated views. The interface follows three design principles. First, the collection and storage of data from internal and external systems is asynchronous to reduce latency. This includes the use of technologies like ActiveMQ or Nagios. Second, analysis of the data into information is done massively parallel due to its volume, using a combined approach with an Oracle database and Hadoop MapReduce. Third, sharing of the information does not distinguish between human or programmatic access, making it easy to access selective parts of the information both in constrained frontends like web-browsers as well as remote services. This contribution will detail the reasons for these principles and the design choices taken. Additionally, the implementation, the interactions with external systems, and an evaluation of the system in production, both from a technological and user perspective, conclude this contribution.

  17. Demonstration of subsidence monitoring system

    NASA Astrophysics Data System (ADS)

    Conroy, P. J.; Gyarmaty, J. H.; Pearson, M. L.

    1981-06-01

    Data on coal mine subsidence were studied as a basis for the development of subsidence control technology. Installation, monitoring, and evaluation of three subsidence monitoring instrument systems were examined: structure performance, performance of supported systems, and performance of caving systems. Objectives of the instrument program were: (1) to select, test, assemble, install, monitor, and maintain all instrumentation required for implementing the three subsidence monitoring systems; and (2) to evaluate performance of each instrument individually and as part of the appropriate monitoring system or systems. The use of an automatic level and a rod extensometer for measuring structure performance, and the automatic level, steel tape extensometer, FPBX, FPBI, USBM borehole deformation gauge, and vibrating wire stressmeters for measuring the performance of caving systems are recommended.

  18. The evolution of computer monitoring of real time data during the Atlas Centaur launch countdown

    NASA Technical Reports Server (NTRS)

    Thomas, W. F.

    1981-01-01

    In the last decade, improvements in computer technology have provided new 'tools' for controlling and monitoring critical missile systems. In this connection, computers have gradually taken a large role in monitoring all flights and ground systems on the Atlas Centaur. The wide body Centaur which will be launched in the Space Shuttle Cargo Bay will use computers to an even greater extent. It is planned to use the wide body Centaur to boost the Galileo spacecraft toward Jupiter in 1985. The critical systems which must be monitored prior to liftoff are examined. Computers have now been programmed to monitor all critical parameters continuously. At this time, there are two separate computer systems used to monitor these parameters.

  19. Stochastic analysis of motor-control stability, polymer based force sensing, and optical stimulation as a preventive measure for falls

    NASA Astrophysics Data System (ADS)

    Landrock, Clinton K.

    Falls are the leading cause of all external injuries. Outcomes of falls include the leading cause of traumatic brain injury and bone fractures, and high direct medical costs in the billions of dollars. This work focused on developing three areas of enabling component technology to be used in postural control monitoring tools targeting the mitigation of falls. The first was an analysis tool based on stochastic fractal analysis to reliably measure levels of motor control. The second focus was on thin film wearable pressure sensors capable of relaying data for the first tool. The third was new thin film advanced optics for improving phototherapy devices targeting postural control disorders. Two populations, athletes and elderly, were studied against control groups. The results of these studies clearly show that monitoring postural stability in at-risk groups can be achieved reliably, and an integrated wearable system can be envisioned for both monitoring and treatment purposes. Keywords: electro-active polymer, ionic polymer-metal composite, postural control, motor control, fall prevention, sports medicine, fractal analysis, physiological signals, wearable sensors, phototherapy, photobiomodulation, nano-optics.

  20. Real-time feedback control of twin-screw wet granulation based on image analysis.

    PubMed

    Madarász, Lajos; Nagy, Zsombor Kristóf; Hoffer, István; Szabó, Barnabás; Csontos, István; Pataki, Hajnalka; Démuth, Balázs; Szabó, Bence; Csorba, Kristóf; Marosi, György

    2018-06-04

    The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  2. Industrial implementation of spatial variability control by real-time SPC

    NASA Astrophysics Data System (ADS)

    Roule, O.; Pasqualini, F.; Borde, M.

    2016-10-01

    Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.

  3. In vivo wireless biodiagnosis system for long-term bioactivity monitoring network

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung

    2004-07-01

    Attempts to develop a Wireless Health Advanced Mobile Bio-diagnostic System (abbreviated as WHAM-BioS) have arisen from the need to monitor the health status of patients under long-term care programs. The proposed WHAM-BioS as presented here was developed by integrating various technologies: nano/MEMS technology, biotechnology, network/communication technology, and information technology. The biochips proposed not only detect certain diseases but will also report any abnormal status readings on the patient to the medical personnel immediately through the network system. Since long-term home care is typically involved, the parameters monitored must be analyzed and traced continuously over a long period of time. To minimize the intrusion to the patients, a wireless sensor embedded within a wireless network is highly recommended. To facilitate the widest possible use of various biochips, a smart sensor node concept was implemented. More specifically, various technologies and components such as built-in micro power generators, energy storage devices, initialization processes, no-waste bio-detection methodologies, embedded controllers, wireless warning signal transmissions, and power/data management were merged and integrated to create this novel technology. The design methodologies and the implementation schemes are detailed. Potential expansions of this newly developed technology to other applications regimes will be presented as well.

  4. Literature review on monitoring technologies and their outcomes in independently living elderly people.

    PubMed

    Peetoom, Kirsten K B; Lexis, Monique A S; Joore, Manuela; Dirksen, Carmen D; De Witte, Luc P

    2015-07-01

    To obtain insight into what kind of monitoring technologies exist to monitor activity in-home, what the characteristics and aims of applying these technologies are, what kind of research has been conducted on their effects and what kind of outcomes are reported. A systematic document search was conducted within the scientific databases Pubmed, Embase, Cochrane, PsycINFO and Cinahl, complemented by Google Scholar. Documents were included in this review if they reported on monitoring technologies that detect activities of daily living (ADL) or significant events, e.g. falls, of elderly people in-home, with the aim of prolonging independent living. Five main types of monitoring technologies were identified: PIR motion sensors, body-worn sensors, pressure sensors, video monitoring and sound recognition. In addition, multicomponent technologies and smart home technologies were identified. Research into the use of monitoring technologies is widespread, but in its infancy, consisting mainly of small-scale studies and including few longitudinal studies. Monitoring technology is a promising field, with applications to the long-term care of elderly persons. However, monitoring technologies have to be brought to the next level, with longitudinal studies that evaluate their (cost-) effectiveness to demonstrate the potential to prolong independent living of elderly persons. [Box: see text].

  5. AUV technology heads for new depths[Autonomous Underwater Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.

    2000-04-01

    High-tech unmanned submarine technologies initially developed by the US Navy are being adapted for a new role to assist the oil and gas industry's shift into deeper waters. To address the problem of costly data acquisition and inaccurate survey data, C and C Technologies of Lafayette, La., has hired Kongsberg Simrad to construct the Hugin 3000 deepwater autonomous underwater vehicle (AUV). As the technology is applied to energy exploration and production advances to meet the deepwater challenges beyond the continental shelf, AUVs will be increasingly employed, it is believed. The paper describes the Hugin project, unexpected situations, the vehicle positionmore » tracking system, vehicle operation and real-time data quality control, real-time data monitoring and control, Hugin field experience, and pipe route surveying.« less

  6. Establishment of Stereo Multi-sensor Network for Giant Landslide Monitoring and its Deploy in Xishan landslide, Sichuan, China.

    NASA Astrophysics Data System (ADS)

    Liu, C.; Lu, P.; WU, H.

    2015-12-01

    Landslide is one of the most destructive natural disasters, which severely affects human lives as well as the safety of personal properties and public infrastructures. Monitoring and predicting landslide movements can keep an adequate safety level for human beings in those situations. This paper indicated a newly developed Stereo Multi-sensor Landslide Monitoring Network (SMSLMN) based on a uniform temporal geo-reference. Actually, early in 2003, SAMOA (Surveillance et Auscultation des Mouvements de Terrain Alpins, French) project was put forwarded as a plan for landslide movements monitoring. However, SAMOA project did not establish a stereo observation network to fully cover the surface and internal part of landslide. SMSLMN integrated various sensors, including space-borne, airborne, in-situ and underground sensors, which can quantitatively monitor the slide-body and obtain portent information of movement in high frequency with high resolution. The whole network has been deployed at the Xishan landslide, Sichuan, P.R.China. According to various characteristic of stereo monitoring sensors, observation capabilities indicators for different sensors were proposed in order to obtain the optimal sensors combination groups and observation strategy. Meanwhile, adaptive networking and reliable data communication methods were developed to apply intelligent observation and sensor data transmission. Some key technologies, such as signal amplification and intelligence extraction technology, data access frequency adaptive adjustment technology, different sensor synchronization control technology were developed to overcome the problems in complex observation environment. The collaboratively observation data have been transferred to the remote data center where is thousands miles away from the giant landslide spot. These data were introduced into the landslide stability analysis model, and some primary conclusion will be achieved at the end of paper.

  7. Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues.

    PubMed

    Alvear, Oscar; Calafate, Carlos T; Cano, Juan-Carlos; Manzoni, Pietro

    2018-02-04

    Evidence shows that Smart Cities are starting to materialise in our lives through the gradual introduction of the Internet of Things (IoT) paradigm. In this scope, crowdsensing emerges as a powerful solution to address environmental monitoring, allowing to control air pollution levels in crowded urban areas in a distributed, collaborative, inexpensive and accurate manner. However, even though technology is already available, such environmental sensing devices have not yet reached consumers. In this paper, we present an analysis of candidate technologies for crowdsensing architectures, along with the requirements for empowering users with air monitoring capabilities. Specifically, we start by providing an overview of the most relevant IoT architectures and protocols. Then, we present the general design of an off-the-shelf mobile environmental sensor able to cope with air quality monitoring requirements; we explore different hardware options to develop the desired sensing unit using readily available devices, discussing the main technical issues associated with each option, thereby opening new opportunities in terms of environmental monitoring programs.

  8. Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues

    PubMed Central

    2018-01-01

    Evidence shows that Smart Cities are starting to materialise in our lives through the gradual introduction of the Internet of Things (IoT) paradigm. In this scope, crowdsensing emerges as a powerful solution to address environmental monitoring, allowing to control air pollution levels in crowded urban areas in a distributed, collaborative, inexpensive and accurate manner. However, even though technology is already available, such environmental sensing devices have not yet reached consumers. In this paper, we present an analysis of candidate technologies for crowdsensing architectures, along with the requirements for empowering users with air monitoring capabilities. Specifically, we start by providing an overview of the most relevant IoT architectures and protocols. Then, we present the general design of an off-the-shelf mobile environmental sensor able to cope with air quality monitoring requirements; we explore different hardware options to develop the desired sensing unit using readily available devices, discussing the main technical issues associated with each option, thereby opening new opportunities in terms of environmental monitoring programs. PMID:29401711

  9. The prediction of food additives in the fruit juice based on electronic nose with chemometrics.

    PubMed

    Qiu, Shanshan; Wang, Jun

    2017-09-01

    Food additives are added to products to enhance their taste, and preserve flavor or appearance. While their use should be restricted to achieve a technological benefit, the contents of food additives should be also strictly controlled. In this study, E-nose was applied as an alternative to traditional monitoring technologies for determining two food additives, namely benzoic acid and chitosan. For quantitative monitoring, support vector machine (SVM), random forest (RF), extreme learning machine (ELM) and partial least squares regression (PLSR) were applied to establish regression models between E-nose signals and the amount of food additives in fruit juices. The monitoring models based on ELM and RF reached higher correlation coefficients (R 2 s) and lower root mean square errors (RMSEs) than models based on PLSR and SVM. This work indicates that E-nose combined with RF or ELM can be a cost-effective, easy-to-build and rapid detection system for food additive monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    NASA Astrophysics Data System (ADS)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  11. Applying State-of-the-Art Technologies to Reduce Escape Times from Fires Using Environmental Sensing, Improved Occupant Egress Guidance, and Multiple Communication Protocols

    DTIC Science & Technology

    2009-02-06

    that could monitor sensors, evaluate environmental 4 conditions, and control visual and sound devices was conducted. The home automation products used...the prototype system. Use of off-the-shelf home automation products allowed the implementation of an egress control prototype suitable for test and

  12. 30 CFR 250.401 - What must I do to keep wells under control?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.401 What must I do to keep wells under control? You... available and safest drilling technology to monitor and evaluate well conditions and to minimize the...

  13. ‘Golden Delicious’ and ‘Honeycrisp’ apple response to controlled atmosphere storage with oxygen set point determined in response to fruit chlorophyll fluorescence

    USDA-ARS?s Scientific Manuscript database

    Postharvest management of apple fruit ripening using controlled atmosphere (CA) cold storage can be enhanced as CA oxygen concentration is decreased to close to the anaerobic compensation point (ACP). Monitoring fruit chlorophyll fluorescence is one technology available to assess fruit response to ...

  14. Adapting radio technology to LED feedback systems

    NASA Astrophysics Data System (ADS)

    Salsbury, Marc; Ashdown, Ian

    2007-09-01

    Superheterodyne techniques were originally developed for radio transmission and reception nearly a century ago. In this paper we explore the adaptation of this technology to the problem of simultaneously monitoring the intensities of multiple LED channels with a single photosensor. The use of superheterodyne techniques obviates the need for multiple photosensors filters and tristimulus color filters to monitor the relative intensities of red, green, and blue LEDs. In addition, they alleviate the problems of electrical and optical noise, as well as the influence of ambient illumination on the photosensors. They can also be used to advantage with phosphor-coated white light LEDs in solid state lighting systems. Taking a broader view, the use of such techniques demonstrates the value of looking outside the realm of conventional LED power and control technologies when designing solid state lighting systems.

  15. Measuring Spatial Infiltration in Stormwater Control Measures: Results and Implications

    EPA Science Inventory

    This presentation will provide background information on research conducted by EPA-ORD on the use of soil moisture sensors in bioretention/bioinfiltration technologies to evaluate infiltration mechanisms and compares monitoring results to simplified modeling assumptions. A serie...

  16. AWWA's Program Delivers Points to Remember.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    Included are discussions surrounding organics in water that were presented at the water quality technology conference in 1978. Information is also provided on up-to-date water quality lab practices for disease control, heavy metal detection, and sodium monitoring. (CS)

  17. [Monitoring method for macroporous resin column chromatography process of salvianolic acids based on near infrared spectroscopy].

    PubMed

    Hou, Xiang-Mei; Zhang, Lei; Yue, Hong-Shui; Ju, Ai-Chun; Ye, Zheng-Liang

    2016-07-01

    To study and establish a monitoring method for macroporous resin column chromatography process of salvianolic acids by using near infrared spectroscopy (NIR) as a process analytical technology (PAT).The multivariate statistical process control (MSPC) model was developed based on 7 normal operation batches, and 2 test batches (including one normal operation batch and one abnormal operation batch) were used to verify the monitoring performance of this model. The results showed that MSPC model had a good monitoring ability for the column chromatography process. Meanwhile, NIR quantitative calibration model was established for three key quality indexes (rosmarinic acid, lithospermic acid and salvianolic acid B) by using partial least squares (PLS) algorithm. The verification results demonstrated that this model had satisfactory prediction performance. The combined application of the above two models could effectively achieve real-time monitoring for macroporous resin column chromatography process of salvianolic acids, and can be used to conduct on-line analysis of key quality indexes. This established process monitoring method could provide reference for the development of process analytical technology for traditional Chinese medicines manufacturing. Copyright© by the Chinese Pharmaceutical Association.

  18. Stroke patients and their attitudes toward mHealth monitoring to support blood pressure control and medication adherence.

    PubMed

    Jenkins, Carolyn; Burkett, Nina-Sarena; Ovbiagele, Bruce; Mueller, Martina; Patel, Sachin; Brunner-Jackson, Brenda; Saulson, Raelle; Treiber, Frank

    2016-05-01

    Mobile health, or mHealth, has increasingly been signaled as an effective means to expedite communication and improve medical regimen adherence, especially for patients with chronic health conditions such as stroke. However, there is a lack of data on attitudes of stroke patients toward mHealth. Such information will aid in identifying key indicators for feasibility and optimal implementation of mHealth to prevent and/or decrease rates of secondary stroke. Our objective was to ascertain stroke patients' attitudes toward using mobile phone enabled blood pressure (BP) monitoring and medication adherence and identify factors that modulate these attitudes. Sixty stroke patients received a brief demonstration of mHealth devices to assist with BP control and medication adherence and a survey to evaluate willingness to use this technology. The 60 participants had a mean age of 57 years, were 43.3% male, and 53.3% were White. With respect to telecommunication prevalence, 93.3% owned a cellular device and 25% owned a smartphone. About 70% owned a working computer. Regarding attitudes, 85% felt comfortable with a doctor or nurse using mHealth technologies to monitor personal health information, 78.3% believed mHealth would help remind them to follow doctor's directions, and 83.3% were confident that technology could effectively be used to communicate with health care providers for medical needs. Mobile device use is high in stroke patients and they are amenable to mHealth for communication and assistance in adhering to their medical regimens. More research is needed to explore usefulness of this technology in larger stroke populations.

  19. Research on control technology of hardware parallelism for marine controlled source electromagnetic transmitter

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Deng, Ming; Luo, Xianhu; Zhao, Qingxian; Chen, Kai; Jing, Jianen

    2018-02-01

    The marine controlled source electromagnetic (CSEM) method has been recognized as an effective exploration method of shallow hydrocarbons around the world. We developed our own underwater marine CSEM transmitter that consisted of many functional modules with various response times. We previously adopted a centralized software-control technology to design the transmitter circuit topological structure. That structure probably generated a control disorder or malfunction. These undesirable conditions could lead to repeated recovery and deployment of the transmitter, which not only consumed time but also affected data continuity and establishment of stable and continuous CSEM field. We developed an instrument design concept named ‘control technology of hardware parallelism’. In this design, a noteworthy innovation of our new technology is to solve the above-mentioned problems at the physical and fundamental levels. We used several self-contained control-units to simultaneously accomplish the predetermined functions of the transmitter. The new solution relies on two technologies: multi-core embedded technology and multi-channel parallel optical-fiber data transmission technology. The first technology depends on many independent microcontrollers. Every microcontroller is only used to achieve a customized function. The second one relies on several multiple optical-fiber transmission channels realized by a complex programmable logic device and two optical-fiber conversion devices, which are used to establish a communication link between the shipboard monitoring and control-unit and underwater transmitter. We have conducted some marine experiments to verify the reliability and stability of the new method. In particular, the new technology used in the transmitter system could help us obtain more useful measured data in a limited time, improve real-time efficiency, and support the establishment of a stable CSEM field.

  20. DTRA's Nuclear Explosion Monitoring Research and Development Program

    NASA Astrophysics Data System (ADS)

    Nichols, J.; Dainty, A.; Phillips, J.

    2001-05-01

    The Defense Threat Reduction Agency (DTRA) has a Program in Basic Research and Development for Nuclear Explosion Technology within the Nuclear Treaties Branch of the Arms Control Technology Division. While the funding justification is Arms Control Treaties (i.e., Comprehensive Nuclear-Test-Ban Treaty, CTBT), the results are made available for any user. Funding for the Program has averaged around \\10m per year recently. By Congressional mandate, the program has disbursed money through competitive, peer-reviewed, Program Research and Development Announcements (PRDAs); there is usually (but not always) a PRDA each year. Typical awards have been for about three years at ~\\100,000 per year, currently there are over 60 contracts in place. In addition to the "typical" awards, there was an initiative 2000 to fund seismic location calibration of the International Monitoring System (IMS) of the CTBT; there are three three-year contracts of ~\\$1,000,000 per year to perform such calibration for Eurasia, and North Africa and the Middle East. Scientifically, four technological areas have been funded, corresponding to the four technologies in the IMS: seismic, infrasound, hydroacoustic, and radionuclide, with the lion's share of the funding going to the seismic area. The scientific focus of the Program for all four technologies is detection of signals, locating their origin, and trying to determine of they are unambiguously natural in origin ("event screening"). Location has been a particular and continuing focus within the Program.

  1. A Web-Based System for Monitoring and Controlling Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Salas, Andrea O.; Rogers, James L.

    1997-01-01

    In today's competitive environment, both industry and government agencies are under enormous pressure to reduce the time and cost of multidisciplinary design projects. A number of frameworks have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. An examination of current frameworks reveals weaknesses in various areas such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, in conjunction with an existing framework, can improve these areas of weakness. This paper describes a system that executes a sequence of programs, monitors and controls the design process through a Web-based interface, and visualizes intermediate and final results through the use of Java(Tm) applets. A small sample problem, which includes nine processes with two analysis programs that are coupled to an optimizer, is used to demonstrate the feasibility of this approach.

  2. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  3. Vehicle health management technology needs

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Jones, W. G.

    1992-01-01

    Background material on vehicle health management (VHM) and health monitoring/control is presented. VHM benefits are described and a list of VHM technology needs that should be pursued is presented. The NASA funding process as it impacts VHM technology funding is touched upon, and the VHM architecture guidelines for generic launch vehicles are described. An example of a good VHM architecture, design, and operational philosophy as it was conceptualized for the National Launch System program is presented. Consideration is given to the Strategic Avionics Technology Working Group's role in VHM, earth-to-orbit, and space vehicle avionics technology development considerations, and some actual examples of VHM benefits for checkout are given.

  4. Designing personal exercise monitoring employing multiple modes of delivery: implications from a qualitative study on heart rate monitoring.

    PubMed

    Segerståhl, Katarina; Oinas-Kukkonen, Harri

    2011-12-01

    Various personal monitoring technologies have been introduced for supporting regular physical activity, which is of critical importance in reducing the risks of several chronic diseases. Recent studies suggest that combining multiple modes of delivery, such as text messages and mobile monitoring devices with web applications, holds potential for effectively supporting physical exercise. Of particular interest is how the functionality and content of these systems should be distributed across the different modes for successful outcomes. The aim of this study was to: (a) investigate how users incorporate a system employing two modes of delivery - a wearable heart rate monitor and a web service - into their training and (b) to analyze benefits and limitations in personal exercise monitoring and how they relate to the different modes in use. A qualitative field study employing diaries and semi-structured interviews was carried out with 30 participants who used a heart rate monitoring system comprising a wearable heart rate monitor, Polar FT60 and a web service, Polar Personal Trainer for a period of 21 days. The data were systematically analyzed to identify specific benefits and limitations associated with the system characteristics and modes as perceived by the end-users. The benefits include supporting exploratory learning, controlling target behavior, rectifying behaviors, motivation and logging support. The limitations are associated with information for validating the system, virtual coaching, task-technology fit, data integrity and privacy concerns. Mobile interfaces enable exploratory learning and controlling of target behaviors in situ, while web services can effectively support users' need for cognition within the early stages of adoption and long-term training with intelligent coaching functionality. This study explains several benefits and limitations in personal exercise monitoring. These can be addressed with crossmedial design, i.e., strategic distribution of functionality and content across modes within the system. Our findings suggest that personal exercise monitoring systems may be improved by more systematically combining mobile and web-based functionality. 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Batch Statistical Process Monitoring Approach to a Cocrystallization Process.

    PubMed

    Sarraguça, Mafalda C; Ribeiro, Paulo R S; Dos Santos, Adenilson O; Lopes, João A

    2015-12-01

    Cocrystals are defined as crystalline structures composed of two or more compounds that are solid at room temperature held together by noncovalent bonds. Their main advantages are the increase of solubility, bioavailability, permeability, stability, and at the same time retaining active pharmaceutical ingredient bioactivity. The cocrystallization between furosemide and nicotinamide by solvent evaporation was monitored on-line using near-infrared spectroscopy (NIRS) as a process analytical technology tool. The near-infrared spectra were analyzed using principal component analysis. Batch statistical process monitoring was used to create control charts to perceive the process trajectory and define control limits. Normal and non-normal operating condition batches were performed and monitored with NIRS. The use of NIRS associated with batch statistical process models allowed the detection of abnormal variations in critical process parameters, like the amount of solvent or amount of initial components present in the cocrystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Innovative solutions in monitoring systems in flood protection

    NASA Astrophysics Data System (ADS)

    Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra

    2018-02-01

    The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.

  7. The foundation mass concrete construction technology of Hongyun Building B tower raft

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying

    2017-08-01

    The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness and 2800mm beside side of the core tube. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing.

  8. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  9. Wearable activity monitors in oncology trials: Current use of an emerging technology.

    PubMed

    Gresham, Gillian; Schrack, Jennifer; Gresham, Louise M; Shinde, Arvind M; Hendifar, Andrew E; Tuli, Richard; Rimel, B J; Figlin, Robert; Meinert, Curtis L; Piantadosi, Steven

    2018-01-01

    Physical activity is an important outcome in oncology trials. Physical activity is commonly assessed using self-reported questionnaires, which are limited by recall and response biases. Recent advancements in wearable technology have provided oncologists with new opportunities to obtain real-time, objective physical activity data. The purpose of this review was to describe current uses of wearable activity monitors in oncology trials. We searched Pubmed, Embase, and the Cochrane Central Register of Controlled Trials for oncology trials involving wearable activity monitors published between 2005 and 2016. We extracted details on study design, types of activity monitors used, and purpose for their use. We summarized activity monitor metrics including step counts, sleep and sedentary time, and time spent in moderate-to-vigorous activity. We identified 41 trials of which 26 (63%) involved cancer survivors (post-treatment) and 15 trials (37%) involved patients with active cancer. Most trials (65%) involved breast cancer patients. Wearable activity monitors were commonly used in exercise (54%) or behavioral (29%) trials. Cancer survivors take between 4660 and 11,000 steps/day and those undergoing treatment take 2885 to 8300steps/day. Wearable activity monitors are increasingly being used to obtain objective measures of physical activity in oncology trials. There is potential for their use to expand to evaluate and predict clinical outcomes such as survival, quality of life, and treatment tolerance in future studies. Currently, there remains a lack of standardization in the types of monitors being used and how their data are being collected, analyzed, and interpreted. Recent advancements in wearable activity monitor technology have provided oncologists with new opportunities to monitor their patients' daily activity in real-world settings. The integration of wearable activity monitors into cancer care will help increase our understanding of the associations between physical activity and the prevention and management of the disease, in addition to other important cancer outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. MEMS sensing and control: an aerospace perspective

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Arch, David K.; Yang, Wei; Cabuz, Cleopatra; Hocker, Ben; Johnson, Burgess R.; Wilson, Mark L.

    2000-06-01

    Future advanced fixed- and rotary-wing aircraft, launch vehicles, and spacecraft will incorporate smart microsensors to monitor flight integrity and provide flight control inputs. This paper provides an overview of Honeywell's MEMS technologies for aerospace applications of sensing and control. A unique second-generation polysilicon resonant microbeam sensor design is described. It incorporates a micron-level vacuum-encapsulated microbeam to optically sense aerodynamic parameters and to optically excite the sensor pick off: optically excited self-resonant microbeams form the basis for a new class of versatile, high- performance, low-cost MEMS sensors that uniquely combine silicon microfabrication technology with optoelectronic technology that can sense dynamic pressure, acceleration forces, acoustic emission, and many other aerospace parameters of interest. Honeywell's recent work in MEMS tuning fork gyros for inertial sensing and a MEMS free- piston engine are also described.

  11. Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology

    USGS Publications Warehouse

    Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.

    1991-01-01

    Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.

  12. Blinded evaluation of the effects of high definition and magnification on perceived image quality in laryngeal imaging.

    PubMed

    Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M

    2006-02-01

    Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.

  13. Implementation of Wireless Sensor Networks Based Pig Farm Integrated Management System in Ubiquitous Agricultural Environments

    NASA Astrophysics Data System (ADS)

    Hwang, Jeonghwan; Lee, Jiwoong; Lee, Hochul; Yoe, Hyun

    The wireless sensor networks (WSN) technology based on low power consumption is one of the important technologies in the realization of ubiquitous society. When the technology would be applied to the agricultural field, it can give big change in the existing agricultural environment such as livestock growth environment, cultivation and harvest of agricultural crops. This research paper proposes the 'Pig Farm Integrated Management System' based on WSN technology, which will establish the ubiquitous agricultural environment and improve the productivity of pig-raising farmers. The proposed system has WSN environmental sensors and CCTV at inside/outside of pig farm. These devices collect the growth-environment related information of pigs, such as luminosity, temperature, humidity and CO2 status. The system collects and monitors the environmental information and video information of pig farm. In addition to the remote-control and monitoring of the pig farm facilities, this system realizes the most optimum pig-raising environment based on the growth environmental data accumulated for a long time.

  14. Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System

    NASA Technical Reports Server (NTRS)

    Kalu, Alex; Acosta, R.; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.

    1999-01-01

    Savannah State University (SSU) and the Florida Solar Energy Center (FSEC) have been participating in the NASA Advanced Communications Technology Satellite (ACTS) program for the last five years. This program was designed by NASA to help maintain U.S. leadership in commercial space communications by funding high-risk research, and to flight-test next-generation digital satellite components. Launched in 1993, ACTS is an U.S. government funded technology test-bed that incorporates high power Ka-band transponders, small spot beams, and on-board digital storage and switching technology. Associated with the spacecraft, is a prototype satellite control center that supports various application experiments. The SSU/FSEC application experiment is to developing a Photovoltaic-Diesel Hybrid Power system complete with satellite Supervisory Control and Data Acquisition (SCADA). The hybrid system was design to demonstrate the feasibility of using SCADA to maintain and operate remote village power systems. This configuration would enable experts at a central location to provide technical assistance to local technicians while they acquire a measure of proficiency with the hybrid system operation and maintenance. Upon full mastery of the technology, similar SCADA arrangement are planned to remotely monitor and control constellation of hybrid systems scattered overlarge rural areas. Two Orion Energy APEX-1000 hybrid systems were delivered in 1998, one was installed at SSU in eastern Georgia and the other was installed at FSEC in Central Florida. The project was designed to: (1) evaluate the performance of ACTS in a SCADA arrangement, (2) monitor the health and performance of all major hybrid subsystems, (3) investigate load control and battery charging strategies to maximize battery capacity and lifetime, and (4) develop satellite communication protocol. Preliminary results indicate that the hybrid design is suitable for satellite Supervisory Control and Data Acquisition. A modification to the controller software has produced a robust communication link capable of real time control and long term data collection.

  15. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver

    NASA Astrophysics Data System (ADS)

    Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra

    2018-05-01

    We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.

  16. Incorporating Novel Mobile Health Technologies Into Management of Knee Osteoarthritis in Patients Treated With Intra-Articular Hyaluronic Acid: Rationale and Protocol of a Randomized Controlled Trial.

    PubMed

    Jones, Donald; Skrepnik, Nebojsa; Toselli, Richard M; Leroy, Bruno

    2016-08-09

    Osteoarthritis (OA) of the knee is one of the leading causes of disability in the United States. One relatively new strategy that could be helpful in the management of OA is the use of mHealth technologies, as they can be used to increase physical activity and promote exercise, which are key components of knee OA management. Currently, no published data on the use of a mHealth approach to comprehensively monitor physical activity in patients with OA are available, and similarly, no data on whether mHealth technologies can impact outcomes are available. Our objective is to evaluate the effectiveness of mHealth technology as part of a tailored, comprehensive management strategy for patients with knee OA. The study will assess the impact of a smartphone app that integrates data from a wearable activity monitor (thereby both encouraging changes in mobility as well as tracking them) combined with education about the benefits of walking on patient mobility. The results from the intervention group will be compared with data from a control group of individuals who are given the same Arthritis Foundation literature regarding the benefits of walking and wearable activity monitors but who do not have access to the data from those monitors. Activity monitors will capture step count estimates and will compare those with patients' step goals, calories burned, and distance walked. Patients using the novel smartphone app will be able to enter information on their daily pain, mood, and sleep quality. The relationships among activity and pain, activity and mood, and sleep will be assessed, as will patient satisfaction with and adherence to the mobile app. We present information on an upcoming trial that will prospectively assess the ability of a mobile app to improve mobility for knee OA patients who are treated with intra-articular hyaluronic acid. We anticipate the results of this study will support the concept that mHealth technologies provide continuous, real-time feedback to patients with OA on their overall level of activity for a more proactive, personalized approach to treatment that may help modify behavior and assist with self-management through treatment support in the form of motivational messages and reminders.

  17. Mobile Monitoring and Embedded Control System for Factory Environment

    PubMed Central

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  18. Mobile monitoring and embedded control system for factory environment.

    PubMed

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  19. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    PubMed

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  20. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    PubMed Central

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-01-01

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776

  1. [Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].

    PubMed

    Alekseenko, V A; Kus'min, A A; Filist, S A

    2008-01-01

    Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.

  2. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    PubMed Central

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-01-01

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine. PMID:27775657

  3. U. S. drinking-water regulations: Treatment technologies and cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykins, B.W. Jr.; Clark, R.M.

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the US drinking-water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of these regulations is an Information Collection Rule and an Enhanced Surface Water Treatment Rule. These rules will require monitoring for microorganisms such as Giardia, Cryptosporidium, and viruses. Certain surface-water systems may be required to remove microbiological contaminants above levels currently required by the Surface Water Treatment Rule. Also included in these rules will be monitoring requirements for disinfection by-products andmore » evaluation of precursor removal technologies. As various regulations are promulgated, regulators and those associated with the drinking-water industry need to be cognizant of the potential impact of treatment to control one contaminant or group of contaminants on control of other contaminants. Compliance with drinking-water regulations mandated under the Safe Drinking Water Act and its amendments has been estimated to cost about $1.6 billion.« less

  4. Continuous Glucose Monitoring

    PubMed Central

    van Beers, Cornelis A. J.; DeVries, J. Hans

    2016-01-01

    The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia. PMID:27257169

  5. Development of a wearable measurement and control unit for personal customizing machine-supported exercise.

    PubMed

    Wang, Zhihui; Tamura, Naoki; Kiryu, Tohru

    2005-01-01

    Wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of personal customizing machine-supported exercise that have biosignal-based controls. In this paper, we propose a new wearable unit design equipped with measurement and control functions to support the personal customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise and output workload control commands to the exercise machines. We then applied a prototype of the wearable unit to an Internet-based cycle ergometer system. The wearable unit was examined using twelve young people to check its feasibility. The results verified that the unit could successfully adapt to the control of the workload and was effective for continuously supporting gradual changes in physical activities.

  6. Reliability-based optimization of an active vibration controller using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Saraygord Afshari, Sajad; Pourtakdoust, Seid H.

    2017-04-01

    Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.

  7. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of E. I. Du Pont de Nemours and Company, Chambers Works, Deepwater, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastas, M.

    1984-01-01

    A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at du Pont de Nemours and Company (SIC-2800), Deepwater, New Jersey in November 1981. Hazardous wastes generated at the facility were disposed of by incineration, wastewater and thermal treatment, and landfilling. Engineering controls for the incineration process and at the landfill were noted. At the landfill, water from a tank trailer was sprayed periodically to suppress dust generation. Vapor control devices, such as spot scrubbers, were used during transfer of organic wastes from trailers and drums to storage prior to incineration. Wastes were also recirculatedmore » to prevent build up of grit in the strainers. The company conducted area monitoring for nitrobenzene (98953) and amines at the landfill and personal monitoring for chloramines at the incinerator. Half mask dust respirators were worn by landfill operators. Operators who unloaded and emptied drums at the incinerator were required to wear face masks, rubber gloves, and boots. The author concludes that disposal of hazardous wastes at the facility is state of the art. An in depth survey is recommended.« less

  8. Mobile Phone Based System Opportunities to Home-based Managing of Chemotherapy Side Effects.

    PubMed

    Davoodi, Somayeh; Mohammadzadeh, Zeinab; Safdari, Reza

    2016-06-01

    Applying mobile base systems in cancer care especially in chemotherapy management have remarkable growing in recent decades. Because chemotherapy side effects have significant influences on patient's lives, therefore it is necessary to take ways to control them. This research has studied some experiences of using mobile phone based systems to home-based monitor of chemotherapy side effects in cancer. In this literature review study, search was conducted with keywords like cancer, chemotherapy, mobile phone, information technology, side effects and self managing, in Science Direct, Google Scholar and Pub Med databases since 2005. Today, because of the growing trend of the cancer, we need methods and innovations such as information technology to manage and control it. Mobile phone based systems are the solutions that help to provide quick access to monitor chemotherapy side effects for cancer patients at home. Investigated studies demonstrate that using of mobile phones in chemotherapy management have positive results and led to patients and clinicians satisfactions. This study shows that the mobile phone system for home-based monitoring chemotherapy side effects works well. In result, knowledge of cancer self-management and the rate of patient's effective participation in care process improved.

  9. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Lightmore » Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.« less

  10. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  11. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  12. Contribution of concentrator photovoltaic installations to grid stability and power quality

    NASA Astrophysics Data System (ADS)

    del Toro García, Xavier; Roncero-Sánchez, Pedro; Torres, Alfonso Parreño; Vázquez, Javier

    2012-10-01

    Large-scale integration of Photovoltaic (PV) generation systems, including Concentrator Photovoltaic (CPV) technologies, will require the contribution and support of these technologies to the management and stability of the grid. New regulations and grid codes for PV installations in countries such as Spain have recently included dynamic voltage control support during faults. The PV installation must stay connected to the grid during voltage dips and inject reactive power in order to enhance the stability of the system. The existing PV inverter technologies based on the Voltage-Source Converter (VSC) are in general well suited to provide advanced grid-support characteristics. Nevertheless, new advanced control schemes and monitoring techniques will be necessary to meet the most demanding requirements.

  13. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This publication represents the NASA research and technology program for FY92. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  14. Research and technology objectives and plans: Summary fiscal year 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This publication represents the NASA research and technology program for FY 1991. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and in universities. The first section contains citations and abstracts of the RTOP's and is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  15. Renaissance of the Web

    NASA Astrophysics Data System (ADS)

    McCarty, M.

    2009-09-01

    The renaissance of the web has driven development of many new technologies that have forever changed the way we write software. The resulting tools have been applied to both solve problems and creat new ones in a wide range of domains ranging from monitor and control user interfaces to information distribution. This discussion covers which of and how these technologies are being used in the astronomical computing community. Topics include JavaScript, Cascading Style Sheets, HTML, XML, JSON, RSS, iCalendar, Java, PHP, Python, Ruby on Rails, database technologies, and web frameworks/design patterns.

  16. Reference earth orbital research and applications investigations (blue book). Volume 7: Technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The candidate experiment program for manned space stations with specific application to technology disciplines is presented. The five functional program elements are devoted to the development of new technology for application to future generation spacecraft and experiments. The functional program elements are as follows: (1) monitor and trace movement of external contaminants to determine methods for controlling contamination, (2) analysis of fundamentals of fluid systems management, (3) extravehicular activity, (4) advanced spacecraft systems tests, and (5) development of teleoperator system for use with space activities.

  17. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication represents the NASA research and technology program for FY-93. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  18. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This publication represents the NASA research and technology program for FY88. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  19. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This publication represents the NASA research and technology program for FY89. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  20. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This publication represents the NASA research and technology program for FY 1985. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP number.

  1. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This publication represents the NASA research and technology program for FY87. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  2. Hybrid Modeling Improves Health and Performance Monitoring

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  3. Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1994-01-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  4. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  5. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  6. Field test of monitoring of urban vehicle operations using non-intrusive technologies : final report

    DOT National Transportation Integrated Search

    2000-01-01

    This document describes institutional issues associated with the retiming of traffic signals along the Scottsdale/Rural Road Corridor in Scottsdale and Tempe, Arizona in order to provide for coordinated traffic signal control in both jurisdictions. A...

  7. 40 CFR 52.26 - Visibility monitoring strategy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determine both background visibility conditions and reasonably attributable visibility impairment caused by...) teleradiometers, (iv) nephelometers, (v) human observation, or (vi) other appropriate technology. (4) The... State or local air pollution control agency of any State whose boundaries encompass that area or to any...

  8. 40 CFR 52.26 - Visibility monitoring strategy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine both background visibility conditions and reasonably attributable visibility impairment caused by...) teleradiometers, (iv) nephelometers, (v) human observation, or (vi) other appropriate technology. (4) The... State or local air pollution control agency of any State whose boundaries encompass that area or to any...

  9. 40 CFR 52.26 - Visibility monitoring strategy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... determine both background visibility conditions and reasonably attributable visibility impairment caused by...) teleradiometers, (iv) nephelometers, (v) human observation, or (vi) other appropriate technology. (4) The... State or local air pollution control agency of any State whose boundaries encompass that area or to any...

  10. 40 CFR 52.26 - Visibility monitoring strategy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determine both background visibility conditions and reasonably attributable visibility impairment caused by...) teleradiometers, (iv) nephelometers, (v) human observation, or (vi) other appropriate technology. (4) The... State or local air pollution control agency of any State whose boundaries encompass that area or to any...

  11. 40 CFR 52.26 - Visibility monitoring strategy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine both background visibility conditions and reasonably attributable visibility impairment caused by...) teleradiometers, (iv) nephelometers, (v) human observation, or (vi) other appropriate technology. (4) The... State or local air pollution control agency of any State whose boundaries encompass that area or to any...

  12. Accuracy and practicality of a portable ozone monitor for personal exposure estimates

    NASA Astrophysics Data System (ADS)

    Sagona, Jessica A.; Weisel, Clifford P.; Meng, Qingyu

    2018-02-01

    Accurate measurements of personal exposure to atmospheric pollutants such as ozone are important for understanding health risks. We tested a new personal ozone monitor (POM; 2B Technologies) for accuracy, precision, and ease of use. The POM's measurements were compared to simultaneous ozone measurements from a 2B Model 205 monitor and a ThermoScientific 49i monitor, and multiple POMs were placed side-by-side to check precision. Tests were undertaken in a controlled environmental facility, outdoors, and in a private residence. Additionally, ten volunteers wore a POM for five days and answered a questionnaire about its ease of use. The POM measured ozone accurately compared to the 49i ozone monitor, with average relative differences of less than 8%. In the controlled environment tests, the POM's ozone measurements did not change in the presence of additional atmospheric constituents with similar absorption lines to ozone, though there may have been a small decrease in precision and accuracy. Precision between POMs varied by environment (r2 = 0.98 outdoors; r2 = 0.3 to 0.9 in controlled lab conditions). Volunteers reported that the POM was reasonably comfortable to wear, although all reported that they felt that it was too noisy. Overall, the POM is a viable option for personal ozone monitoring.

  13. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators

    PubMed Central

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-01-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine. PMID:26928456

  14. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-03-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.

  15. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators.

    PubMed

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Baj Rossi, Camilla; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-03-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.

  16. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.

  17. Managing and monitoring tuberculosis using web-based tools in combination with traditional approaches

    PubMed Central

    Chapman, Ann LN; Darton, Thomas C; Foster, Rachel A

    2013-01-01

    Tuberculosis (TB) remains a global health emergency. Ongoing challenges include the coordination of national and international control programs, high levels of drug resistance in many parts of the world, and availability of accurate and rapid diagnostic tests. The increasing availability and reliability of Internet access throughout both affluent and resource-limited countries brings new opportunities to improve TB management and control through the integration of web-based technologies with traditional approaches. In this review, we explore current and potential future use of web-based tools in the areas of TB diagnosis, treatment, epidemiology, service monitoring, and teaching and training. PMID:24294008

  18. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  19. The Advanced Monitoring Systems Initiative--Performance Monitoring for DOE Environmental Remediation and Contaminant Containment

    NASA Astrophysics Data System (ADS)

    Haas, W. J.; Venedam, R. J.; Lohrstorfer, C. F.; Weeks, S. J.

    2005-05-01

    The Advanced Monitoring System Initiative (AMSI) is a new approach to accelerate the development and application of advanced sensors and monitoring systems in support of Department of Energy needs in monitoring the performance of environmental remediation and contaminant containment activities. The Nevada Site Office of the National Nuclear Security Administration (NNSA) and Bechtel Nevada manage AMSI, with funding provided by the DOE Office of Environmental Management (DOE EM). AMSI has easy access to unique facilities and capabilities available at the Nevada Test Site (NTS), including the Hazardous Materials (HazMat) Spill Center, a one-of-a-kind facility built and permitted for releases of hazardous materials for training purposes, field-test detection, plume dispersion experimentation, and equipment and materials testing under controlled conditions. AMSI also has easy access to the facilities and considerable capabilities of the DOE and NNSA National Laboratories, the Special Technologies Laboratory, Remote Sensing Laboratory, Desert Research Institute, and Nevada Universities. AMSI provides rapid prototyping, systems integration, and field-testing, including assistance during initial site deployment. The emphasis is on application. Important features of the AMSI approach are: (1) customer investment, involvement and commitment to use - including definition of needs, desired mode of operation, and performance requirements; and (2) employment of a complete systems engineering approach, which allows the developer to focus maximum attention on the essential new sensing element or elements while AMSI assumes principal responsibility for infrastructure support elements such as power, packaging, and general data acquisition, control, communication, visualization and analysis software for support of decisions. This presentation describes: (1) the needs for sensors and performance monitoring for environmental systems as seen by the DOE Long Term Stewardship Science and Technology Roadmap and the Long Term Monitoring Sensors and Analytical Methods Workshop, and (2) AMSI operating characteristics and progress in addressing those needs. Topics addressed will include: vadose zone and groundwater tritium monitoring, a wireless moisture monitoring system, Cr(VI) and CCl4 monitoring using a commercially available "universal sensor platform", strontium-90 and technetium-99 monitoring, and area chemical monitoring using an array of multi-chemical sensors.

  20. Towards Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice

    PubMed Central

    Hahn, Jin-Oh; Inan, Omer T.; Mestha, Lalit K.; Kim, Chang-Sei; Töreyin, Hakan; Kyal, Survi

    2015-01-01

    Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known, potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable, ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work towards putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach. PMID:26057530

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.

    The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without themore » use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.« less

  2. FRIEND: a brain-monitoring agent for adaptive and assistive systems.

    PubMed

    Morris, Alexis; Ulieru, Mihaela

    2012-01-01

    This paper presents an architectural design for adaptive-systems agents (FRIEND) that use brain state information to make more effective decisions on behalf of a user; measuring brain context versus situational demands. These systems could be useful for alerting users to cognitive workload levels or fatigue, and could attempt to compensate for higher cognitive activity by filtering noise information. In some cases such systems could also share control of devices, such as pulling over in an automated vehicle. These aim to assist people in everyday systems to perform tasks better and be more aware of internal states. Achieving a functioning system of this sort is a challenge, involving a unification of brain- computer-interfaces, human-computer-interaction, soft-computin deliberative multi-agent systems disciplines. Until recently, these were not able to be combined into a usable platform due largely to technological limitations (e.g., size, cost, and processing speed), insufficient research on extracting behavioral states from EEG signals, and lack of low-cost wireless sensing headsets. We aim to surpass these limitations and develop control architectures for making sense of brain state in applications by realizing an agent architecture for adaptive (human-aware) technology. In this paper we present an early, high-level design towards implementing a multi-purpose brain-monitoring agent system to improve user quality of life through the assistive applications of psycho-physiological monitoring, noise-filtering, and shared system control.

  3. The GBT-SCA, a radiation tolerant ASIC for detector control and monitoring applications in HEP experiments

    NASA Astrophysics Data System (ADS)

    Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.

    2015-03-01

    The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.

  4. Development of High Temperature Gas Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  5. Towards Intelligent Environments: An Augmented Reality–Brain–Machine Interface Operated with a See-Through Head-Mount Display

    PubMed Central

    Takano, Kouji; Hata, Naoki; Kansaku, Kenji

    2011-01-01

    The brain–machine interface (BMI) or brain–computer interface is a new interface technology that uses neurophysiological signals from the brain to control external machines or computers. This technology is expected to support daily activities, especially for persons with disabilities. To expand the range of activities enabled by this type of interface, here, we added augmented reality (AR) to a P300-based BMI. In this new system, we used a see-through head-mount display (HMD) to create control panels with flicker visual stimuli to support the user in areas close to controllable devices. When the attached camera detects an AR marker, the position and orientation of the marker are calculated, and the control panel for the pre-assigned appliance is created by the AR system and superimposed on the HMD. The participants were required to control system-compatible devices, and they successfully operated them without significant training. Online performance with the HMD was not different from that using an LCD monitor. Posterior and lateral (right or left) channel selections contributed to operation of the AR–BMI with both the HMD and LCD monitor. Our results indicate that AR–BMI systems operated with a see-through HMD may be useful in building advanced intelligent environments. PMID:21541307

  6. IT Security Support for the Spaceport Command Control System Development

    NASA Technical Reports Server (NTRS)

    Varise, Brian

    2014-01-01

    My job title is IT Security support for the Spaceport Command & Control System Development. As a cyber-security analyst it is my job to ensure NASA's information stays safe from cyber threats, such as, viruses, malware and denial-of-service attacks by establishing and enforcing system access controls. Security is very important in the world of technology and it is used everywhere from personal computers to giant networks ran by Government agencies worldwide. Without constant monitoring analysis, businesses, public organizations and government agencies are vulnerable to potential harmful infiltration of their computer information system. It is my responsibility to ensure authorized access by examining improper access, reporting violations, revoke access, monitor information request by new programming and recommend improvements. My department oversees the Launch Control System and networks. An audit will be conducted for the LCS based on compliance with the Federal Information Security Management Act (FISMA) and The National Institute of Standards and Technology (NIST). I recently finished analyzing the SANS top 20 critical controls to give cost effective recommendations on various software and hardware products for compliance. Upon my completion of this internship, I will have successfully completed my duties as well as gain knowledge that will be helpful to my career in the future as a Cyber Security Analyst.

  7. A prospective randomized trial examining health care utilization in individuals using multiple smartphone-enabled biosensors.

    PubMed

    Bloss, Cinnamon S; Wineinger, Nathan E; Peters, Melissa; Boeldt, Debra L; Ariniello, Lauren; Kim, Ju Young; Sheard, Judith; Komatireddy, Ravi; Barrett, Paddy; Topol, Eric J

    2016-01-01

    Background. Mobile health and digital medicine technologies are becoming increasingly used by individuals with common, chronic diseases to monitor their health. Numerous devices, sensors, and apps are available to patients and consumers-some of which have been shown to lead to improved health management and health outcomes. However, no randomized controlled trials have been conducted which examine health care costs, and most have failed to provide study participants with a truly comprehensive monitoring system. Methods. We conducted a prospective randomized controlled trial of adults who had submitted a 2012 health insurance claim associated with hypertension, diabetes, and/or cardiac arrhythmia. The intervention involved receipt of one or more mobile devices that corresponded to their condition(s) (hypertension: Withings Blood Pressure Monitor; diabetes: Sanofi iBGStar Blood Glucose Meter; arrhythmia: AliveCor Mobile ECG) and an iPhone with linked tracking applications for a period of 6 months; the control group received a standard disease management program. Moreover, intervention study participants received access to an online health management system which provided participants detailed device tracking information over the course of the study. This was a monitoring system designed by leveraging collaborations with device manufacturers, a connected health leader, health care provider, and employee wellness program-making it both unique and inclusive. We hypothesized that health resource utilization with respect to health insurance claims may be influenced by the monitoring intervention. We also examined health-self management. Results & Conclusions. There was little evidence of differences in health care costs or utilization as a result of the intervention. Furthermore, we found evidence that the control and intervention groups were equivalent with respect to most health care utilization outcomes. This result suggests there are not large short-term increases or decreases in health care costs or utilization associated with monitoring chronic health conditions using mobile health or digital medicine technologies. Among secondary outcomes there was some evidence of improvement in health self-management which was characterized by a decrease in the propensity to view health status as due to chance factors in the intervention group.

  8. A prospective randomized trial examining health care utilization in individuals using multiple smartphone-enabled biosensors

    PubMed Central

    Peters, Melissa; Boeldt, Debra L.; Ariniello, Lauren; Kim, Ju Young; Sheard, Judith; Komatireddy, Ravi; Barrett, Paddy

    2016-01-01

    Background. Mobile health and digital medicine technologies are becoming increasingly used by individuals with common, chronic diseases to monitor their health. Numerous devices, sensors, and apps are available to patients and consumers–some of which have been shown to lead to improved health management and health outcomes. However, no randomized controlled trials have been conducted which examine health care costs, and most have failed to provide study participants with a truly comprehensive monitoring system. Methods. We conducted a prospective randomized controlled trial of adults who had submitted a 2012 health insurance claim associated with hypertension, diabetes, and/or cardiac arrhythmia. The intervention involved receipt of one or more mobile devices that corresponded to their condition(s) (hypertension: Withings Blood Pressure Monitor; diabetes: Sanofi iBGStar Blood Glucose Meter; arrhythmia: AliveCor Mobile ECG) and an iPhone with linked tracking applications for a period of 6 months; the control group received a standard disease management program. Moreover, intervention study participants received access to an online health management system which provided participants detailed device tracking information over the course of the study. This was a monitoring system designed by leveraging collaborations with device manufacturers, a connected health leader, health care provider, and employee wellness program–making it both unique and inclusive. We hypothesized that health resource utilization with respect to health insurance claims may be influenced by the monitoring intervention. We also examined health-self management. Results & Conclusions. There was little evidence of differences in health care costs or utilization as a result of the intervention. Furthermore, we found evidence that the control and intervention groups were equivalent with respect to most health care utilization outcomes. This result suggests there are not large short-term increases or decreases in health care costs or utilization associated with monitoring chronic health conditions using mobile health or digital medicine technologies. Among secondary outcomes there was some evidence of improvement in health self-management which was characterized by a decrease in the propensity to view health status as due to chance factors in the intervention group. PMID:26788432

  9. Combining Modeling and Monitoring to Produce a New Paradigm of an Integrated Approach to Providing Long-Term Control of Contaminants

    NASA Astrophysics Data System (ADS)

    Fogwell, T. W.

    2009-12-01

    Sir David King, Chief Science Advisor to the British government and Cambridge University Professor, stated in October 2005, "The scientific community is considerably more capable than it has been in the past to assist governments to avoid and reduce risk to their own populations. Prime ministers and presidents ignore the advice from the science community at the peril of their own populations." Some of these greater capabilities can be found in better monitoring techniques applied to better modeling methods. These modeling methods can be combined with the information derived from monitoring data in order to decrease the risk of population exposure to dangerous substances and to promote efficient control or cleanup of the contaminants. An introduction is presented of the types of problems that exist for long-term control of radionuclides at DOE sites. A breakdown of the distributions at specific sites is given, together with the associated difficulties. A paradigm for remediation showing the integration of monitoring with modeling is presented. It is based on a feedback system that allows for the monitoring to act as principal sensors in a control system. The resulting system can be optimized to improve performance. Optimizing monitoring automatically entails linking the monitoring with modeling. If monitoring designs were required to be more efficient, thus requiring optimization, then the monitoring automatically becomes linked to modeling. Records of decision could be written to accommodate revisions in monitoring as better modeling evolves. Currently the establishment of a very prescriptive monitoring program fails to have a mechanism for improving models and improving control of the contaminants. The technical pieces of the required paradigm are already available; they just need to be implemented and applied to solve the long-term control of the contaminants. An integration of the various parts of the system is presented. Each part is described, and examples are given. References are given to other projects which bring together similar elements in systems for the control of contaminants. Trends are given for the development of the technical features of a robust system. Examples of monitoring methods for specific sites are given. The examples are used to illustrate how such a system would work. Examples of technology needs are presented. Finally, other examples of integrated modeling-monitoring approaches are presented.

  10. Wearable Sensor Technology Efficacy in Peripheral Vascular Disease (wSTEP): A Randomized Controlled Trial.

    PubMed

    Normahani, Pasha; Kwasnicki, Richard; Bicknell, Colin; Allen, Louise; Jenkins, Mike P; Gibbs, Richard; Cheshire, Nicholas; Darzi, Ara; Riga, Celia

    2017-05-11

    To evaluate the effect of using wearable activity monitors (WAMs) in patients with intermittent claudication (IC) within a single-center randomized controlled trial. WAMs allow users to set daily activity targets and monitor their progress. They may offer an alternative treatment to supervised exercise programs (SEPs) for patients with IC. Thirty-seven patients with IC were recruited and randomized into intervention or control group. The intervention consisted of a feedback-enabled, wrist-worn activity monitor (WAM) in addition to access to SEP. The control group was given access to SEP only. The outcome measures were maximum walking distance (MWD), claudication distance (CD), and quality of life as measured by the VascuQol questionnaire. Participants were assessed upon recruitment, and at 3, 6, and 12 months. Patients in the WAM group showed significant improvement in MWD at 3 and 6 months (80-112 m, to 178 m; P < 0.001), which was sustained at 12 months. The WAM group also increased CD (40 vs 110 m; P < 0.001) and VascuQol score (4.7 vs 5.8; P = 0.004). The control group saw a temporary increase in VascuQol score at 6 months (4.5 vs 4.7; P = 0.028), but no other improvements in MWD or CD were observed. Significantly higher improvements in MWD were seen in the WAM group compared with that in the control group at 6 months (82 vs -5 m; P = 0.009, r = 0.47) and 12 months (69 vs 7.5 m; P = 0.011, r = 0.52). The study demonstrates the significant, sustained benefit of WAM-led technologies for patients with IC. This potentially resource-sparing intervention is likely to provide a valuable adjunct or alternative to SEP.

  11. Design of Plant Eco-physiology Monitoring System Based on Embedded Technology

    NASA Astrophysics Data System (ADS)

    Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu

    A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.

  12. An intelligent control and virtual display system for evolutionary space station workstation design

    NASA Technical Reports Server (NTRS)

    Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.

    1992-01-01

    Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.

  13. [Development of Monitoring System for Infant Incubator Based on IOT Technology].

    PubMed

    Wang, Wenfeng; Peng, Dunlu; Gu, Nan

    2017-05-30

    IOT(Internet of things) is a relatively new technology, more and more integrated into our lives. In this paper we use infant incubator for example, introduce the application of IOT technology to reduce the risk of the use of medical devices, and through the dynamic management to improve the management level and efficiency. Put forward a method of medical equipment linked. Combined with the point of IOT technology and sensor technology, we find out the actual needs of the management and use of infant incubator. For the dynamic management of medical equipment, we use sensors to control risk points. The system meets the needs of the hospital and patients in many areas.

  14. Impact of new technologies on diabetes care.

    PubMed

    Giani, Elisa; Scaramuzza, Andrea Enzo; Zuccotti, Gian Vincenzo

    2015-07-25

    Technologies for diabetes management, such as continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) systems, have improved remarkably over the last decades. These developments are impacting the capacity to achieve recommended hemoglobin A1c levels and assisting in preventing the development and progression of micro- and macro vascular complications. While improvements in metabolic control and decreases in risk of severe and moderate hypoglycemia have been described with use of these technologies, large epidemiological international studies show that many patients are still unable to meet their glycemic goals, even when these technologies are used. This editorial will review the impact of technology on glycemic control, hypoglycemia and quality of life in children and youth with type 1 diabetes. Technologies reviewed include CSII, CGM systems and sensor-augmented insulin pumps. In addition, the usefulness of advanced functions such as bolus profiles, bolus calculators and threshold-suspend features will be also discussed. Moreover, the current editorial will explore the challenges of using these technologies. Indeed, despite the evidence currently available of the potential benefits of using advanced technologies in diabetes management, many patients still report barriers to using them. Finally this article will highlight the importance of future studies tailored toward overcome these barriers to optimizing glycemic control and avoiding severe hypoglycemia.

  15. The use of mobile applications to support self-management for people with asthma: a systematic review of controlled studies to identify features associated with clinical effectiveness and adherence.

    PubMed

    Hui, Chi Yan; Walton, Robert; McKinstry, Brian; Jackson, Tracy; Parker, Richard; Pinnock, Hilary

    2017-05-01

    Telehealth is promoted as a strategy to support self-management of long-term conditions. The aim of this systematic review is to identify which information and communication technology features implemented in mobile apps to support asthma self-management are associated with adoption, adherence to usage, and clinical effectiveness. We systematically searched 9 databases, scanned reference lists, and undertook manual searches (January 2000 to April 2016). We include randomized controlled trials (RCTs) and quasiexperimental studies with adults. All eligible papers were assessed for quality, and we extracted data on the features included, health-related outcomes (asthma control, exacerbation rate), process/intermediate outcomes (adherence to monitoring or treatment, self-efficacy), and level of adoption of and adherence to use of technology. Meta-analysis and narrative synthesis were used. We included 12 RCTs employing a range of technologies. A meta-analysis (n = 3) showed improved asthma control (mean difference -0.25 [95% CI, -0.37 to -0.12]). Included studies incorporated 10 features grouped into 7 categories (education, monitoring/electronic diary, action plans, medication reminders/prompts, facilitating professional support, raising patient awareness of asthma control, and decision support for professionals). The most successful interventions included multiple features, but effects on health-related outcomes were inconsistent. No studies explicitly reported adoption of and adherence to the technology system. Meta-analysis of data from 3 trials showed improved asthma control, though overall the clinical effectiveness of apps, typically incorporating multiple features, varied. Further studies are needed to identify the features that are associated with adoption of and adherence to use of the mobile app and those that improve health outcomes. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Balloon-borne air traffic management (ATM) as a precursor to space-based ATM

    NASA Astrophysics Data System (ADS)

    Brodsky, Yuval; Rieber, Richard; Nordheim, Tom

    2012-01-01

    The International Space University—Balloon Air traffic control Technology Experiment (I-BATE ) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ˜30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception. I-BATE: International Space University—Balloon Air traffic control Technology Experiment.

  17. Application for temperature and humidity monitoring of data center environment

    NASA Astrophysics Data System (ADS)

    Albert, Ş.; Truşcǎ, M. R. C.; Soran, M. L.

    2015-12-01

    The technology and computer science registered a large development in the last years. Most systems that use high technologies require special working conditions. The monitoring and the controlling are very important. The temperature and the humidity are important parameters in the operation of computer systems, industrial and research, maintaining it between certain values to ensure their proper functioning being important. Usually, the temperature is maintained in the established range using an air conditioning system, but the humidity is affected. In the present work we developed an application based on a board with own firmware called "AVR_NET_IO" using a microcontroller ATmega32 type for temperature and humidity monitoring in Data Center of INCDTIM. On this board, temperature sensors were connected to measure the temperature in different points of the Data Center and outside of this. Humidity monitoring is performed using data from integrated sensors of the air conditioning system, thus achieving a correlation between humidity and temperature variation. It was developed a software application (CM-1) together with the hardware, which allows temperature monitoring and register inside Data Center and trigger an alarm when variations are greater with 3°C than established limits of the temperature.

  18. Monitoring and analysis of data from complex systems

    NASA Technical Reports Server (NTRS)

    Dollman, Thomas; Webster, Kenneth

    1991-01-01

    Some of the methods, systems, and prototypes that have been tested for monitoring and analyzing the data from several spacecraft and vehicles at the Marshall Space Flight Center are introduced. For the Huntsville Operations Support Center (HOSC) infrastructure, the Marshall Integrated Support System (MISS) provides a migration path to the state-of-the-art workstation environment. Its modular design makes it possible to implement the system in stages on multiple platforms without the need for all components to be in place at once. The MISS provides a flexible, user-friendly environment for monitoring and controlling orbital payloads. In addition, new capabilities and technology may be incorporated into MISS with greater ease. The use of information systems technology in advanced prototype phases, as adjuncts to mainline activities, is used to evaluate new computational techniques for monitoring and analysis of complex systems. Much of the software described (specially, HSTORESIS (Hubble Space Telescope Operational Readiness Expert Safemode Investigation System), DRS (Device Reasoning Shell), DART (Design Alternatives Rational Tool), elements of the DRA (Document Retrieval Assistant), and software for the PPS (Peripheral Processing System) and the HSPP (High-Speed Peripheral Processor)) is available with supporting documentation, and may be applicable to other system monitoring and analysis applications.

  19. Stroke patients and their attitudes toward mHealth monitoring to support blood pressure control and medication adherence

    PubMed Central

    Burkett, Nina-Sarena; Ovbiagele, Bruce; Mueller, Martina; Patel, Sachin; Brunner-Jackson, Brenda; Saulson, Raelle; Treiber, Frank

    2016-01-01

    Background Mobile health, or mHealth, has increasingly been signaled as an effective means to expedite communication and improve medical regimen adherence, especially for patients with chronic health conditions such as stroke. However, there is a lack of data on attitudes of stroke patients toward mHealth. Such information will aid in identifying key indicators for feasibility and optimal implementation of mHealth to prevent and/or decrease rates of secondary stroke. Our objective was to ascertain stroke patients’ attitudes toward using mobile phone enabled blood pressure (BP) monitoring and medication adherence and identify factors that modulate these attitudes. Methods Sixty stroke patients received a brief demonstration of mHealth devices to assist with BP control and medication adherence and a survey to evaluate willingness to use this technology. Results The 60 participants had a mean age of 57 years, were 43.3% male, and 53.3% were White. With respect to telecommunication prevalence, 93.3% owned a cellular device and 25% owned a smartphone. About 70% owned a working computer. Regarding attitudes, 85% felt comfortable with a doctor or nurse using mHealth technologies to monitor personal health information, 78.3% believed mHealth would help remind them to follow doctor’s directions, and 83.3% were confident that technology could effectively be used to communicate with health care providers for medical needs. Conclusions Mobile device use is high in stroke patients and they are amenable to mHealth for communication and assistance in adhering to their medical regimens. More research is needed to explore usefulness of this technology in larger stroke populations. PMID:27347490

  20. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  1. Interaction and Impact Studies for Distributed Energy Resource, Transactive Energy, and Electric Grid, using High Performance Computing ?based Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, B. M.

    The electric utility industry is undergoing significant transformations in its operation model, including a greater emphasis on automation, monitoring technologies, and distributed energy resource management systems (DERMS). With these changes and new technologies, while driving greater efficiencies and reliability, these new models may introduce new vectors of cyber attack. The appropriate cybersecurity controls to address and mitigate these newly introduced attack vectors and potential vulnerabilities are still widely unknown and performance of the control is difficult to vet. This proposal argues that modeling and simulation (M&S) is a necessary tool to address and better understand these problems introduced by emergingmore » technologies for the grid. M&S will provide electric utilities a platform to model its transmission and distribution systems and run various simulations against the model to better understand the operational impact and performance of cybersecurity controls.« less

  2. Japan Toughens Pollution Control Stance

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Special responsibility for chemical firms are delineated in three areas: (1) chemical processes that are toxic to man; (2) use best available technology to monitor the safety of effluents; (3) when any doubt of safety exists, the firm should halt operations at once and take preventive action. (DF)

  3. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  4. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation.

    PubMed

    Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2016-02-01

    Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.

  5. Annual Fuze Conference and Munitions Technology Symposium VI (43rd)

    DTIC Science & Technology

    1999-04-07

    part manufacture and assembly and identify the parameters that we must control through production. Analyzing the coefficients of variation and the...processing energetic materials. The extruder is equipped with four independent temperature control zones, segmented screws, a jacketed die block capable of...and has vacuum capability. Data monitoring capabilities include melt temperature and pressure, torque, screw speed, and temperatures in all of the

  6. Design and performance test of NIRS-based spinal cord lesion detector

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Li, Ting

    2018-02-01

    Spinal cord lesions can cause a series of severe complications, which can even lead to paralysis with high mortality. However, the traditional diagnosis of spinal cord lesion relies on complicated imaging modalities and other invasive and dangerous methods. Here, we have designed a small monitor based on NIRS technology for noninvasive monitoring for spinal cord lesions. The development of the instrument system includes the design of hardware circuits and the program of software. In terms of hardware, OPT1011 is selected as the light detector, and the appropriate probe distribution structure is selected according to the simulation result of Monte Carlo Simulation. At the same time, the powerful controller is selected as our system's central processing chip for the circuit design, and the data is transmitted by serial port to the host computer for post processing. Finally, we verify the stability and feasibility of the instrument system. It is found that the spinal signal could be obviously detected in the system, which indicates that our monitor based on NIRS technology has the potential to monitor the spinal lesion.

  7. A beam monitor based on MPGD detectors for hadron therapy

    NASA Astrophysics Data System (ADS)

    Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.

    2018-02-01

    Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.

  8. Monitoring-Based Model for Personalizing the Clinical Process of Crohn’s Disease

    PubMed Central

    de Ramón-Fernández, Alberto; Ruiz-Fernández, Daniel; Vives-Boix, Víctor

    2017-01-01

    Crohn’s disease is a chronic pathology belonging to the group of inflammatory bowel diseases. Patients suffering from Crohn’s disease must be supervised by a medical specialist for the rest of their lives; furthermore, each patient has its own characteristics and is affected by the disease in a different way, so health recommendations and treatments cannot be generalized and should be individualized for a specific patient. To achieve this personalization in a cost-effective way using technology, we propose a model based on different information flows: control, personalization, and monitoring. As a result of the model and to perform a functional validation, an architecture based on services and a prototype of the system has been defined. In this prototype, a set of different devices and technologies to monitor variables from patients and their environment has been integrated. Artificial intelligence algorithms are also included to reduce the workload related to the review and analysis of the information gathered. Due to the continuous and automated monitoring of the Crohn’s patient, this proposal can help in the personalization of the Crohn’s disease clinical process. PMID:28678162

  9. A GPS-based Real-time Road Traffic Monitoring System

    NASA Astrophysics Data System (ADS)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  10. Diabetes management using modern information and communication technologies and new care models.

    PubMed

    Spanakis, Emmanouil G; Chiarugi, Franco; Kouroubali, Angelina; Spat, Stephan; Beck, Peter; Asanin, Stefan; Rosengren, Peter; Gergely, Tamas; Thestrup, Jesper

    2012-10-04

    Diabetes, a metabolic disorder, has reached epidemic proportions in developed countries. The disease has two main forms: type 1 and type 2. Disease management entails administration of insulin in combination with careful blood glucose monitoring (type 1) or involves the adjustment of diet and exercise level, the use of oral anti-diabetic drugs, and insulin administration to control blood sugar (type 2). State-of-the-art technologies have the potential to assist healthcare professionals, patients, and informal carers to better manage diabetes insulin therapy, help patients understand their disease, support self-management, and provide a safe environment by monitoring adverse and potentially life-threatening situations with appropriate crisis management. New care models incorporating advanced information and communication technologies have the potential to provide service platforms able to improve health care, personalization, inclusion, and empowerment of the patient, and to support diverse user preferences and needs in different countries. The REACTION project proposes to create a service-oriented architectural platform based on numerous individual services and implementing novel care models that can be deployed in different settings to perform patient monitoring, distributed decision support, health care workflow management, and clinical feedback provision. This paper presents the work performed in the context of the REACTION project focusing on the development of a health care service platform able to support diabetes management in different healthcare regimes, through clinical applications, such as monitoring of vital signs, feedback provision to the point of care, integrative risk assessment, and event and alarm handling. While moving towards the full implementation of the platform, three major areas of research and development have been identified and consequently approached: the first one is related to the glucose sensor technology and wearability, the second is related to the platform architecture, and the third to the implementation of the end-user services. The Glucose Management System, already developed within the REACTION project, is able to monitor a range of parameters from various sources including glucose levels, nutritional intakes, administered drugs, and patient's insulin sensitivity, offering decision support for insulin dosing to professional caregivers on a mobile tablet platform that fulfills the need of the users and supports medical workflow procedures in compliance with the Medical Device Directive requirements. Good control of diabetes, as well as increased emphasis on control of lifestyle factors, may reduce the risk profile of most complications and contribute to health improvement. The REACTION project aims to respond to these challenges by providing integrated, professional, management, and therapy services to diabetic patients in different health care regimes across Europe in an interoperable communication platform.

  11. Open Source Platform Application to Groundwater Characterization and Monitoring

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  12. [Telemetric monitoring reduces visits to the emergency room and cost of care in patients with chronic heart failure].

    PubMed

    Pérez-Rodríguez, Gilberto; Brito-Zurita, Olga Rosa; Sistos-Navarro, Enrique; Benítez-Aréchiga, Zaria Margarita; Sarmiento-Salazar, Gloria Leticia; Vargas-Lizárraga, José Feliciano

    2015-01-01

    Tele-cardiology is the use of information technologies that help prolong survival, improve quality of life and reduce costs in health care. Heart failure is a chronic disease that leads to high care costs. To determine the effectiveness of telemetric monitoring for controlling clinical variables, reduced emergency room visits, and cost of care in a group of patients with heart failure compared to traditional medical consultation. A randomized, controlled and open clinical trial was conducted on 40 patients with Heart failure in a tertiary care centre in north-western Mexico. The patients were divided randomly into 2 groups of 20 patients each (telemetric monitoring, traditional medical consultation). In each participant was evaluated for: blood pressure, heart rate and body weight. The telemetric monitoring group was monitored remotely and traditional medical consultation group came to the hospital on scheduled dates. All patients could come to the emergency room if necessary. The telemetric monitoring group decreased their weight and improved control of the disease (P=.01). Systolic blood pressure and cost of care decreased (51%) significantly compared traditional medical consultation group (P>.05). Admission to the emergency room was avoided in 100% of patients in the telemetric monitoring group. In patients with heart failure, the telemetric monitoring was effective in reducing emergency room visits and saved significant resources in care during follow-up. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  13. Implications of advanced vehicle technologies for older drivers.

    PubMed

    Molnar, Lisa J; Eby, David W

    2017-09-01

    Advances are being made in vehicle technologies that may help older adults compensate for some of the declines in abilities associated with aging. These advances hold promise for increasing vehicle safety, reducing injuries, and making the driving task more comfortable. However, important research gaps remain with regard to how various advanced technologies impact the safety of older drivers, as well as older drivers' perceptions about these technologies. This special issue contains seven original contributions that address these issues. Specific topics include the: congruence of design guidelines with the needs and abilities of older drivers, transfer of control between automated and manual driving, use of in-vehicle monitoring technology, motivations for technology use and assigned meanings, technology valuation, and effects on driving behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Vascular Glucose Sensor Symposium: Continuous Glucose Monitoring Systems (CGMS) for Hospitalized and Ambulatory Patients at Risk for Hyperglycemia, Hypoglycemia, and Glycemic Variability.

    PubMed

    Joseph, Jeffrey I; Torjman, Marc C; Strasma, Paul J

    2015-07-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non-critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. © 2015 Diabetes Technology Society.

  15. The efficacy and stability of an information and communication technology-based centralized monitoring system of adherence to immunosuppressive medication in kidney transplant recipients: study protocol for a randomized controlled trial.

    PubMed

    Jung, Hee-Yeon; Seong, Sook Jin; Choi, Ji-Young; Cho, Jang-Hee; Park, Sun-Hee; Kim, Chan-Duck; Yoon, Young-Ran; Kim, Hyung-Kee; Huh, Seung; Yoon, Se-Hee; Lee, Jong Soo; Kim, Yong-Lim

    2017-10-16

    Immunosuppression non-adherence in kidney transplant recipients (KTRs) not only increases the risk of medical intervention due to acute rejection and graft loss but burdens the socioeconomic system in the form of increased healthcare costs. An aggressive preemptive effort by healthcare professionals, geared to ensure adherence to immunosuppressants in KTRs, is significant and imperative. This study was designed as a prospective, open-label, multicenter, randomized controlled study aimed at evaluating the efficacy and stability of an information and communication technology (ICT)-based centralized monitoring system in boosting medication adherence in KTRs. One hundred fourteen KTRs registered throughout the year 2017 to 2018 are randomized into either the ICT-based centralized home monitoring system or to ambulatory follow-up. The planned follow-up duration is 6 months. The ICT-based centralized home monitoring system described consists of a smart pill box equipped with personal identification system, a home monitoring system, an electronic Case Report Form (eCRF) system, and a comprehensive clinical trial management system (CTMS). It alerts both patients and medical staff with texts and pill box alarms if there is a dosage/dosing time error or a missed dose. Medication adherence and transplant outcomes for the follow-up period are compared between the two groups, while patient satisfaction as well as the stability and cost-effectiveness of the ICT-based monitoring system are to be evaluated. This on-going study is expected to determine if consistent use of the ICT-based centralized monitoring system described could maximize mediation adherence and subsequently enhance transplant outcomes in KTRs. Further, it would lay the foundation for successful implementation of this ICT-based monitoring system for effective management of medication adherence in KTRs. ClinicalTrials.gov, Identifier: NCT03136588 . Registered on 20 April 2017.

  16. Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano — A Case Study

    PubMed Central

    Mecocci, Alessandro; Abrardo, Andrea

    2014-01-01

    This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the “Rognosa” tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached. PMID:24394600

  17. Comprehensive Nuclear-Test-Ban Treaty seismic monitoring: 2012 USNAS report and recent explosions, earthquakes, and other seismic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Paul G.

    A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major studymore » published in March 2012 by the US National Academy of Sciences.« less

  18. Improving the management of warfarin in aged-care facilities utilising innovative technology: a proof-of-concept study.

    PubMed

    Bereznicki, Luke R E; Jackson, Shane L; Kromdijk, Wiete; Gee, Peter; Fitzmaurice, Kimbra; Bereznicki, Bonnie J; Peterson, Gregory M

    2014-02-01

    In aged-care facilities (ACFs) monitoring of warfarin can be logistically challenging and International Normalised Ratio (INR control) is often suboptimal. We aimed to determine whether an integrated information and communications technology system and the use of point-of-care (POC) monitors by nursing staff could improve the INR control of aged-care facility residents who take warfarin. Nursing staff identified residents who were prescribed warfarin in participating ACFs. A computer program (MedePOC) was developed to store and transmit INR results from the ACFs to general practitioners (GPs) for dosage adjustment. Nursing staff received training in the use of the CoaguChek XS point-of-care INR monitor and the MedePOC software. Following a run-in phase, eligible patients were monitored weekly for up to 12 weeks. The primary outcome was the change in the time in therapeutic range (TTR) in the intervention phase compared to the TTR in the 12 months preceding the study. All GPs, nursing staff and patients were surveyed for their experiences and opinions of the project. Twenty-four patients and 19 GPs completed the trial across six ACFs. The mean TTR for all patients improved non-significantly from 58.9 to 60.6% (P=0.79) and the proportion of INR tests in range improved non-significantly from 57.1 to 64.1% (P=0.21). The mean TTR improved in 14 patients (58%) and in these patients the mean absolute improvement in TTR was 23.1%. A post hoc analysis of the INR data using modified therapeutic INR ranges to reflect the dosage adjustment practices of GPs suggested that the intervention did lead to improved INR control. The MedePOC program and POC monitoring was well received by nursing staff. Weekly POC INR monitoring conducted in ACFs and electronic communication of the results and warfarin doses resulted in non-significant improvements in INR control in a small cohort of elderly residents. Further research involving modification to the communication strategy and a longer follow-up period is warranted to investigate whether this strategy can improve INR control and clinical outcomes in this vulnerable population. © 2013 The Authors. IJPP © 2013 Royal Pharmaceutical Society.

  19. Intelligent Controls for Net-Zero Energy Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less

  20. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.

    2012-10-31

    Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), aboutmore » 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.« less

  1. Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Zook, J. David

    1998-07-01

    An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.

  2. Proceedings of the Defense Nuclear Agency Conference on Arms Control and Verification Technology (ACT) Held in Williamsburg, Virginia on 1-4 June 1992

    DTIC Science & Technology

    1993-12-01

    operational schedules and overall mission costs. Several team members should be qualified to operate each item of equipment so the mission can proceed...establishing verified data exchange, scheduled on-site inspections of declared facilities and operation of a perimeter to portal monitoring system; (3...listed in Schedule 1, 2A, and 2B shall be subject to international monitoring. Each State Party also has the right to request an on-site challenge

  3. Next generation control system for reflexive aerostructures

    NASA Astrophysics Data System (ADS)

    Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.

  4. Advances in Audio-Based Systems to Monitor Patient Adherence and Inhaler Drug Delivery.

    PubMed

    Taylor, Terence E; Zigel, Yaniv; De Looze, Céline; Sulaiman, Imran; Costello, Richard W; Reilly, Richard B

    2018-03-01

    Hundreds of millions of people worldwide have asthma and COPD. Current medications to control these chronic respiratory diseases can be administered using inhaler devices, such as the pressurized metered dose inhaler and the dry powder inhaler. Provided that they are used as prescribed, inhalers can improve patient clinical outcomes and quality of life. Poor patient inhaler adherence (both time of use and user technique) is, however, a major clinical concern and is associated with poor disease control, increased hospital admissions, and increased mortality rates, particularly in low- and middle-income countries. There are currently limited methods available to health-care professionals to objectively and remotely monitor patient inhaler adherence. This review describes recent sensor-based technologies that use audio-based approaches that show promising opportunities for monitoring inhaler adherence in clinical practice. This review discusses how one form of sensor-based technology, audio-based monitoring systems, can provide clinically pertinent information regarding patient inhaler use over the course of treatment. Audio-based monitoring can provide health-care professionals with quantitative measurements of the drug delivery of inhalers, signifying a clear clinical advantage over other methods of assessment. Furthermore, objective audio-based adherence measures can improve the predictability of patient outcomes to treatment compared with current standard methods of adherence assessment used in clinical practice. Objective feedback on patient inhaler adherence can be used to personalize treatment to the patient, which may enhance precision medicine in the treatment of chronic respiratory diseases. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  5. Precision segmented reflector, figure verification sensor

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K.; Macenka, Steve A.

    1989-01-01

    The Precision Segmented Reflector (PSR) program currently under way at the Jet Propulsion Laboratory is a test bed and technology demonstration program designed to develop and study the structural and material technologies required for lightweight, precision segmented reflectors. A Figure Verification Sensor (FVS) which is designed to monitor the active control system of the segments is described, a best fit surface is defined, and an image or wavefront quality of the assembled array of reflecting panels is assessed

  6. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    NASA Astrophysics Data System (ADS)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  7. Technology Developments Integrating a Space Network Communications Testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.

  8. Detection, monitoring, and evaluation of spatio-temporal change in mosquito populations

    USDA-ARS?s Scientific Manuscript database

    USDA-ARS scientists seek to implement a sampling and global information technology based system that can be used for mosquito detection and trap deployment, to estimate mosquito species composition and distribution in space and time, and for targeting and evaluation of mosquito controls. Knowledge ...

  9. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Compressed television transmission: A market survey

    NASA Technical Reports Server (NTRS)

    Lizak, R. M.; Cagan, L. Q.

    1981-01-01

    NASA's compressed television transmission technology is described, and its potential market is considered; a market that encompasses teleconferencing, remote medical diagnosis, patient monitoring, transit station surveillance, as well as traffic management and control. In addition, current and potential television transmission systems and their costs and potential manufacturers are considered.

  11. ARC-1969-A-33200-4

    NASA Image and Video Library

    1964-08-27

    R4D-6 (Bu. No. 99827 NACA 18, NASA 701). TAKE-OFF MONITOR TEST, EDWARDS AIR FORCE BASE. Gunsight Tracking and Guidance and Control Displays. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 76

  12. Recent developments in smart freezing technology applied to fresh foods.

    PubMed

    Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu

    2017-09-02

    Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh like quality of foods. In this article, we review the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts have greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during the freezing process and help improve product quality and freezing efficiency. We also provide a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies include computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.

  13. Deep-brain stimulator and control of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Harbaugh, Robert; Abraham, Jose K.

    2004-07-01

    The design of a novel feedback sensor system with wireless implantable polymer MEMS sensors for detecting and wirelessly transmitting physiological data that can be used for the diagnosis and treatment of various neurological disorders, such as Parkinson's disease, epilepsy, head injury, stroke, hydrocephalus, changes in pressure, patient movements, and tremors is presented in this paper. The sensor system includes MEMS gyroscopes, accelerometers, and pressure sensors. This feedback sensor system focuses on the development and integration of implantable systems with various wireless sensors for medical applications, particularly for the Parkinson's disease. It is easy to integrate and modify the sensor network feed back system for other neurological disorders mentioned above. The monitoring and control of tremor in Parkinson's disease can be simulated on a skeleton via wireless telemetry system communicating with electroactive polymer actuator, and microsensors attached to the skeleton hand and legs. Upon sensing any abnormal motor activity which represent the characteristic rhythmic motion of a typical Parkinson's (PD) patient, these sensors will generate necessary control pulses which will be transmitted to a hat sensor system on the skeleton head. Tiny inductively coupled antennas attached to the hat sensor system can receive these control pulses, demodulate and deliver it to actuate the parts of the skeleton to control the abnormal motor activity. This feedback sensor system can further monitor and control depending on the amplitude of the abnormal motor activity. This microsystem offers cost effective means of monitoring and controlling of neurological disorders in real PD patients. Also, this network system offers a remote monitoring of the patients conditions without visiting doctors office or hospitals. The data can be monitored using PDA and can be accessed using internet (or cell phone). Cellular phone technology will allow a health care worker to be automatically notified if monitoring indicates an emergency situation. The main advantage of such system is that it can effectively monitor large number of patients at the same time, which helps to compensate the present shortage of health care workers.

  14. Real-time monitoring through the use of technology to enhance performances throughout HIV cascades.

    PubMed

    Avery, Matthew; Mills, Stephen J; Stephan, Eric

    2017-09-01

    Controlling the HIV epidemic requires strong linkages across a 'cascade' of prevention, testing, and treatment services. Information and communications technology (ICT) offers the potential to monitor and improve the performance of this HIV cascade in real time. We assessed recent (<18 months) peer-reviewed publications regarding uses of ICT to improve performance through expanded and targeted reach, improved clinical service delivery, and reduced loss to follow-up. Research on ICT has tended to focus on a specific 'silo' of the HIV cascade rather than on tracking individuals or program performance across the cascade. Numerous innovations have been described, including use of social media to expand reach and improve programmatic targeting; technology in healthcare settings to strengthen coordination, guide clinical decision-making and improve clinical interactions; and telephone-based follow-up to improve treatment retention and adherence. With exceptions, publications have tended to be descriptive rather than evaluative, and the evidence-base for the effectiveness of ICT-driven interventions remains mixed. There is widespread recognition of the potential for ICT to improve HIV cascade performance, but with significant challenges. Successful implementation of real-time cascade monitoring will depend upon stakeholder engagement, compatibility with existing workflows, appropriate resource allocation, and managing expectations.

  15. Preliminary study on activity monitoring using an android smart-watch

    PubMed Central

    Ahanathapillai, Vijayalakshmi; Goodwin, Zoe; James, Christopher J.

    2015-01-01

    The global trend for increasing life expectancy is resulting in aging populations in a number of countries. This brings to bear a pressure to provide effective care for the older population with increasing constraints on available resources. Providing care for and maintaining the independence of an older person in their own home is one way that this problem can be addressed. The EU Funded Unobtrusive Smart Environments for Independent Living (USEFIL) project is an assistive technology tool being developed to enhance independent living. As part of USEFIL, a wrist wearable unit (WWU) is being developed to monitor the physical activity (PA) of the user and integrate with the USEFIL system. The WWU is a novel application of an existing technology to the assisted living problem domain. It combines existing technologies and new algorithms to extract PA parameters for activity monitoring. The parameters that are extracted include: activity level, step count and worn state. The WWU, the algorithms that have been developed and a preliminary validation are presented. The results show that activity level can be successfully extracted, that worn state can be correctly identified and that step counts in walking data can be estimated within 3% error, using the controlled dataset. PMID:26609402

  16. Preliminary study on activity monitoring using an android smart-watch.

    PubMed

    Ahanathapillai, Vijayalakshmi; Amor, James D; Goodwin, Zoe; James, Christopher J

    2015-02-01

    The global trend for increasing life expectancy is resulting in aging populations in a number of countries. This brings to bear a pressure to provide effective care for the older population with increasing constraints on available resources. Providing care for and maintaining the independence of an older person in their own home is one way that this problem can be addressed. The EU Funded Unobtrusive Smart Environments for Independent Living (USEFIL) project is an assistive technology tool being developed to enhance independent living. As part of USEFIL, a wrist wearable unit (WWU) is being developed to monitor the physical activity (PA) of the user and integrate with the USEFIL system. The WWU is a novel application of an existing technology to the assisted living problem domain. It combines existing technologies and new algorithms to extract PA parameters for activity monitoring. The parameters that are extracted include: activity level, step count and worn state. The WWU, the algorithms that have been developed and a preliminary validation are presented. The results show that activity level can be successfully extracted, that worn state can be correctly identified and that step counts in walking data can be estimated within 3% error, using the controlled dataset.

  17. Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies

    PubMed Central

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P.; Bonastre, Alberto; Serrano, Juan J.

    2012-01-01

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.). PMID:23202232

  18. Monitoring pest insect traps by means of low-power image sensor technologies.

    PubMed

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P; Bonastre, Alberto; Serrano, Juan J

    2012-11-13

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.).

  19. Evaluation of the BioVigilant IMD-A, a novel optical spectroscopy technology for the continuous and real-time environmental monitoring of viable and nonviable particles. Part II. Case studies in environmental monitoring during aseptic filling, intervention assessments, and glove integrity testing in manufacturing isolators.

    PubMed

    Miller, Michael J; Walsh, Michael R; Shrake, Jerry L; Dukes, Randall E; Hill, Daniel B

    2009-01-01

    This paper describes the use of the BioVigilant IMD-A, a real-time and continuous monitoring technology based on optical spectroscopy, to simultaneously and instantaneously detect, size, and enumerate both viable and nonviable particles in a variety of filling and transfer isolator environments during an aseptic fill, transfer of sterilized components, and filling interventions. Continuous monitoring of three separate isolators for more than 16 h and representing more than 28 m3 of air per isolator (under static conditions) yielded a mean viable particle count of zero (0) per cubic meter. Although the mean count per cubic meter was zero, the detection of very low levels of single viable particles was randomly observed in each of these sampling runs. No viable particles were detected during the manual transfer of sterilized components from transfer isolators into a filling isolator, and similar results were observed during an aseptic fill, a filling needle change-out procedure, and during disassembly, movement, and reassembly of a vibrating stopper bowl. During the continuous monitoring of a sample transfer port and a simulated mousehole, no viable particles were detected; however, when the sampling probe was inserted beyond the isolator-room interface, the IMD-A instantaneously detected and enumerated both viable and nonviable particles originating from the surrounding room. Data from glove pinhole studies showed no viable particles being observed, although significant viable particles were immediately detected when the gloves were removed and a bare hand was allowed to introduce microorganisms into the isolator. The IMD-A technology offers the industry an unprecedented advantage over growth-based bioaerosol samplers for monitoring the state of microbiological control in pharmaceutical manufacturing environments, and represents significant progress toward the acceptance of microbiology process analytical technology solutions for the industry.

  20. Site Rehabilitation Completion Report with No Further Action Proposal for the Northeast Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Joe; Tabor, Charles; Survochak, Scott

    2013-05-01

    The purpose of this Site Rehabilitation Completion Report is to present the post-active-remediation monitoring results for the Northeast Site and to propose No Further Action with Controls. This document includes information required by Chapter 62-780.750(4)(d), 62-780.750(6), and 62-780.600(8)(a)27 Florida Administrative Code (F.A.C.). The Closure Monitoring Plan for the Northeast Site and 4.5 Acre Site (DOE 2009a) describes the approach for post-active-remediation monitoring. The Young - Rainey Science, Technology, and Research Center (STAR Center) is a former U.S. Department of Energy (DOE) facility constructed in the mid-1950s. The 99-acre STAR Center is located in Largo, Florida. The Northeast Site is locatedmore » in the northeast corner of the STAR Center. The Northeast Site meets all the requirements for an RMO II closure—No Further Action with Controls. DOE is nearing completion of a restrictive covenant for the Northeast Site. DOE has completed post-active-remediation monitoring at the Northeast Site as of September 2012. No additional monitoring will be conducted.« less

  1. A review of electrostatic monitoring technology: The state of the art and future research directions

    NASA Astrophysics Data System (ADS)

    Wen, Zhenhua; Hou, Junxing; Atkin, Jason

    2017-10-01

    Electrostatic monitoring technology is a useful tool for monitoring and detecting component faults and degradation, which is necessary for system health management. It encompasses three key research areas: sensor technology; signal detection, processing and feature extraction; and verification experimentation. It has received considerable recent attention for condition monitoring due to its ability to provide warning information and non-obstructive measurements on-line. A number of papers in recent years have covered specific aspects of the technology, including sensor design optimization, sensor characteristic analysis, signal de-noising and practical applications of the technology. This paper provides a review of the recent research and of the development of electrostatic monitoring technology, with a primary emphasis on its application for the aero-engine gas path. The paper also presents a summary of some of the current applications of electrostatic monitoring technology in other industries, before concluding with a brief discussion of the current research situation and possible future challenges and research gaps in this field. The aim of this paper is to promote further research into this promising technology by increasing awareness of both the potential benefits of the technology and the current research gaps.

  2. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor array. In addition, this paper will outline recent efforts to produce sensors capable of making real-time measurements at temperatures up to 850 C, and discuss previous results demonstrating capability to monitor carbon fiber temperature changes within a composite material.

  3. Monitoring osseointegration and developing intelligent systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salvino, Liming W.

    2017-05-01

    Effective monitoring of structural and biological systems is an extremely important research area that enables technology development for future intelligent devices, platforms, and systems. This presentation provides an overview of research efforts funded by the Office of Naval Research (ONR) to establish structural health monitoring (SHM) methodologies in the human domain. Basic science efforts are needed to utilize SHM sensing, data analysis, modeling, and algorithms to obtain the relevant physiological and biological information for human-specific health and performance conditions. This overview of current research efforts is based on the Monitoring Osseointegrated Prosthesis (MOIP) program. MOIP develops implantable and intelligent prosthetics that are directly anchored to the bone of residual limbs. Through real-time monitoring, sensing, and responding to osseointegration of bones and implants as well as interface conditions and environment, our research program aims to obtain individualized actionable information for implant failure identification, load estimation, infection mitigation and treatment, as well as healing assessment. Looking ahead to achieve ultimate goals of SHM, we seek to expand our research areas to cover monitoring human, biological and engineered systems, as well as human-machine interfaces. Examples of such include 1) brainwave monitoring and neurological control, 2) detecting and evaluating brain injuries, 3) monitoring and maximizing human-technological object teaming, and 4) closed-loop setups in which actions can be triggered automatically based on sensors, actuators, and data signatures. Finally, some ongoing and future collaborations across different disciplines for the development of knowledge automation and intelligent systems will be discussed.

  4. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    PubMed

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as studies evaluating alternatives to the finger for capturing the raw signals for hemodynamic assessment, and, finally, studies evaluating technologies based on a flow time measurement are current topics of clinical research.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT ANR PIPELINE COMPANY PARAMETRIC EMISSIONS MONITORING SYSTEM (PEMS)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...

  6. Actual issues of introduction of continuous emission monitoring systems for control of negative impact of TPP to atmospheric air

    NASA Astrophysics Data System (ADS)

    Kondrateva, O. E.; Roslyakov, P. V.; Borovkova, A. M.; Loktionov, O. A.

    2017-11-01

    Over the past 3 years there have been significant changes in Russian environmental legislation related to the transition to technological regulation based on the principles of the best available technologies (BAT). These changes also imply control and accounting of the harmful impact of industrial enterprises on the environment. Therefore, a mandatory requirement for equipping automatic continuous emission monitoring systems (ACEMS) is established for all large TPPs. For a successful practical solution of the problem of introducing such systems in the whole country there is an urgent need to develop the governing regulatory document for the design and operation of systems for continuous monitoring of TPP emissions into the air, allowing within reasonable limits to unify these systems for their work with the state data fund of state environmental monitoring and make easier the process of their implementation at operating facilities for industrial enterprises. Based on the large amount of research in the field of creation of ACEMS, which conducted in National Research University “MPEI”, a draft guidance document was developed, which includes the following regulatory provisions: goals and objectives of ACEMS, the stages of their introduction rules of carrying out preliminary inspection of energy facilities, requirements to develop technical specifications, general requirements for the operation of ACEMS, requirements to the structure and elements of ACEMS, recommendations on selection of places of measuring equipment installation, rules for execution, commissioning and acceptance testing, continuous measurement method, method for determination of the current gross and specific emissions. The draft guidance document, developed by the National Research University “MPEI”, formed the basis of the Preliminary national standards PNST 187-2017 “Automatic systems for continuous control and metering of contaminants emissions from thermal electric power stations into the atmospheric air. General requirements”. [1

  7. Rapid Analysis, Self-Calibrating Array for Air Monitoring

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, Abhijit V.; Lara, Liana; Huerta, Ramon; Vergara, Alexander; Muezzinoglua, Mehmet K.

    2012-01-01

    Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.

  8. The role of optical sensors in environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, S.L.; Klainer, S.M.; Saini, D.

    1995-12-31

    With the ever increasing regulations and public consciousness on pollution control there is an increasing demand for effective monitors for field use. The specifications for an effective field monitor are that it be an in situ sensor which presents real time data; that data are received without sampling or testing artifacts; and, that there is a low cost associated with running multiple tests. Fiber optic chemical sensors have been designed by FCI Environmental, Inc. which meet these specifications for the detection of hydrocarbons in air, water or soil. Recent developments at FCI Environmental in the field of optic chemical sensorsmore » include the development of a chip level waveguide sensor. With the improvements in the size and function of the sensor, which impacts the manufacturability and cost of the sensors, this new technology presents new opportunities in the fields of in situ monitoring. Current activities in the development of this technology and applications of specific solid-state immunoassay are discussed.« less

  9. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  10. Application of cabin atmosphere monitors to rapid screening of breath samples for the early detection of disease states

    NASA Technical Reports Server (NTRS)

    Valentine, J. L.; Bryant, P. J.

    1975-01-01

    Analysis of human breath is a nonintrusive method to monitor both endogenous and exogenous chemicals found in the body. Several technologies were investigated and developed which are applicable to monitoring some organic molecules important in both physiological and pathological states. Two methods were developed for enriching the organic molecules exhaled in the breath of humans. One device is based on a respiratory face mask fitted with a polyethylene foam wafer; while the other device is a cryogenic trap utilizing an organic solvent. Using laboratory workers as controls, two organic molecules which occurred in the enriched breath of all subjects were tentatively identified as lactic acid and contisol. Both of these substances occurred in breath in sufficient amounts that the conventional method of gas-liquid chromatography was adequate for detection and quantification. To detect and quantitate trace amounts of chemicals in breath, another type of technology was developed in which analysis was conducted using high pressure liquid chromatography and mass spectrometry.

  11. Optical biosensor with poly[N-nonyl-3,6-bis(ethylenedioxythiophene)carbazole] matrix for monitoring of phenol derivatives

    NASA Astrophysics Data System (ADS)

    Jedrychowska, Agnieszka; Malecha, Karol; Cabaj, Joanna; Sołoducho, Jadwiga

    2014-08-01

    The aim of the research was to develop an enzymatic, optical biosensor which provides quick and convenient determination of phenolic compounds in aqueous solutions. The biosensing strategy concerns design, fabrication and testing of a miniature ceramic-based biosensor which is destined for in-situ substrate monitoring. The base of the measuring system was fabricated using low temperature co-fired ceramics (LTCC) technology. The biocatalyst - laccase- was immobilized on the thin film of poly[N-nonyl-3,6-bis(ethylenedioxythiophene)carbazole] which provided good binding of the enzyme to the substrate and positively affected on the catalytic activity of the protein. In order to evaluate properties of the designed biosensor, its response for various concentrations of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diamonnium sal (ABTS) was measured. The optical biosensor produced by presented method could find applications in many fields, i.e. for detection of phenolic compounds in food products and beverages, in industry for control of technological processes or for environmental monitoring

  12. Young drivers' engagement with social interactive technology on their smartphone: Critical beliefs to target in public education messages.

    PubMed

    Gauld, Cassandra S; Lewis, Ioni M; White, Katherine M; Watson, Barry

    2016-11-01

    The current study forms part of a larger study based on the Step Approach to Message Design and Testing (SatMDT), a new and innovative framework designed to guide the development and evaluation of health communication messages, including road safety messages. This four step framework is based on several theories, including the Theory of Planned Behaviour. The current study followed steps one and two of the SatMDT framework and utilised a quantitative survey to validate salient beliefs (behavioural, normative, and control) about initiating, monitoring/reading, and responding to social interactive technology on smartphones by N=114 (88F, 26M) young drivers aged 17-25 years. These beliefs had been elicited in a prior in-depth qualitative study. A subsequent critical beliefs analysis identified seven beliefs as potential targets for public education messages, including, 'slow-moving traffic' (control belief - facilitator) for both monitoring/reading and responding behaviours; 'feeling at ease that you had received an expected communication' (behavioural belief -advantage) for monitoring/reading behaviour; and 'friends/peers more likely to approve' (normative belief) for responding behaviour. Potential message content targeting these seven critical beliefs is discussed in accordance with the SatMDT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Residential area streetlight intelligent monitoring management system based on ZigBee and GPRS

    NASA Astrophysics Data System (ADS)

    Liang, Guozhuang; Xu, Xiaoyu

    2017-05-01

    According to current situation of green environmental protection lighting policy and traditional residential lighting system automation degree, low energy efficiency, difficult to management and other problems, the residential area streetlight monitoring management system based on ZigBee and GPRS is proposed. This design is put forward by using sensor technology, ZigBee and GPRS wireless communication technology network. To realize intelligent lighting parameters adjustment, coordination control method of various kinds of sensors is used. The system through multiple ZigBee nodes topology network to collect street light's information, each subnet through the ZigBee coordinator and GPRS network to transmit data. The street lamps can be put on or off, or be adjusted the brightness automatic ally according to the surrounding environmental illumination.

  14. A technology roadmap of smart biosensors from conventional glucose monitoring systems.

    PubMed

    Shende, Pravin; Sahu, Pratiksha; Gaud, Ram

    2017-06-01

    The objective of this review article is to focus on technology roadmap of smart biosensors from a conventional glucose monitoring system. The estimation of glucose with commercially available devices involves analysis of blood samples that are obtained by pricking finger or extracting blood from the forearm. Since pain and discomfort are associated with invasive methods, the non-invasive measurement techniques have been investigated. The non-invasive methods show advantages like non-exposure to sharp objects such as needles and syringes, due to which there is an increase in testing frequency, improved control of glucose concentration and absence of pain and biohazard materials. This review study is aimed to describe recent invasive techniques and major noninvasive techniques, viz. biosensors, optical techniques and sensor-embedded contact lenses for glucose estimation.

  15. 30 CFR 250.302 - Definitions concerning air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and 250.304 of this part: Air pollutant means any combination of agents for which the Environmental... shown by monitored data or which is calculated by air quality modeling (or other methods determined by... standards established by EPA. Best available control technology (BACT) means an emission limitation based on...

  16. Use of Fiber Bragg Grating (FBG) sensors for performing automated bridge pier structural damage detection and scour monitoring.

    DOT National Transportation Integrated Search

    2012-04-01

    The goal of this study was to evaluate the performance of Fiber Bragg Grating (FBG) sensors able to detect impacts with : different frequencies on a bridge pier. The FBG technology was evaluated under controlled conditions in a laboratory : flume set...

  17. Paper and Other Web Coating Maximum Achievable Control Technology (MACT): Work Practice, Testing, Monitoring, Recordkeeping, and Reporting Summary Table

    EPA Pesticide Factsheets

    This April 2004 document is a table that details the various requirements of the Paper and Other Web Coating NESHAP, broken down by category. This table covers applicability, recordkeeping, emission limits, work practice standards, and other requirements

  18. Integrated NO{sub x} control at New England Power, Salem Harbor Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frish, M.B.; Johnson, S.A.; Comer, J.P.

    Selective non-catalytic reduction (SNCR) is a viable technology for reducing NO{sub x} emissions from coal-fired boilers, especially those older units where large capital expenditures for alternative technologies may not be justified. However, NO{sub x} reduction efficiency of the SNCR process is maximized when the proper amount of reagent is injected at the proper temperature and dispersed rapidly enough to avoid ammonia slip. Early NEP experience at Salem Harbor station indicated that NO{sub x} reductions of 60% were achievable with SNCR. However, less NO{sub x} reductions were tolerated to avoid NH{sub 3} slip and subsequent flyash contamination and visible stack plumemore » resulting from excess ammonia. Preliminary tests by PSI Environmental showed that ammonia slip could be monitored in real time using their patented SpectraScan{trademark}-NH{sub 3} instrument, and that furnace exit temperature could be continuously monitored and controlled using GasTemp{trademark} another PSI Environmental product. Based on this information, detailed tests were planned to show integrated control over the SNCR process. A goal of the project was to achieve lower NO{sub x} with less reagent! This paper describes the status of the project.« less

  19. Assistive technology to help persons in a minimally conscious state develop responding and stimulation control: Performance assessment and social rating.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; D'Amico, Fiora; Buonocunto, Francesca; Navarro, Jorge; Lanzilotti, Crocifissa; Fiore, Piero; Megna, Marisa; Damiani, Sabino

    2015-01-01

    Post-coma persons in a minimally conscious state (MCS) and with extensive motor impairment and lack of speech tend to be passive and isolated. This study aimed to (a) further assess a technology-aided approach for fostering MCS participants' responding and stimulation control and (b) carry out a social validation check about the approach. Eight MCS participants were exposed to the aforementioned approach according to an ABAB design. The technology included optic, pressure or touch microswitches to monitor eyelid, hand or finger responses and a computer system that allowed those responses to produce brief periods of positive stimulation during the B (intervention) phases of the study. Eighty-four university psychology students and 42 care and health professionals were involved in the social validation check. The MCS participants showed clear increases in their response frequencies, thus producing increases in their levels of environmental stimulation input, during the B phases of the study. The students and care and health professionals involved in the social validation check rated the technology-aided approach more positively than a control condition in which stimulation was automatically presented to the participants. A technology-aided approach to foster responding and stimulation control in MCS persons may be effective and socially desirable.

  20. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC). Vista Photonics developed the core technology and built the sensor. Nanoracks designed, constructed the enclosure, interfaces, and battery power management circuitry, integrated all subsystems into the enclosure, and then managed the certification tests, documentation and manifesting. The unit was calibrated in the JSC Toxicology Laboratory. The Multi-Gas Monitor is manifested to fly as a technology demonstration to the ISS in November 2013 and will operate for at least 6 months with data sent to the ground for evaluation. The primary goal is to demonstrate long term interference free operation in the real spacecraft environment.

Top