Monitoring of tissue optical properties using OCT: application for blood glucose analysis
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Eledrisi, Mohsen S.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.
2002-07-01
Noninvasive monitoring of tissue optical properties in real time could significantly improve diagnostics and management of various diseases. Recently we proposed to use high- resolution Optical Coherence Tomography (OCT) technique for measurement of tissue scattering coefficient at the depth of up to 1mm. Our pilot studies performed in vitro and in vivo demonstrated that measurement of tissue scattering with this technique can potentially be applied for noninvasive monitoring of blood glucose concentration. High resolution and coherent photon detection of the OCT technique allowed detection of glucose-induced changes in the scattering coefficient. In this paper we report results of in vivo studies performed in dog, New Zealand rabbits, and first human subjects. OCT system with the wavelength of 1300 nm was used in our experiments. OCT signal slope was measured and compared with actual blood glucose concentration. Bolus glucose injections and glucose clamping administrations were used in animal studies. OCT signals were recorded form human subjects during oral glucose tolerance test. Results obtained form both animal and human studies show good correlation between slope of the OCT signals and actual blood glucose concentration measured using standard glucometesr. Sensitivity and accuracy of blood glucose concentrations monitoring with the OCT is discussed. Obtained result suggest that OCT is a promising technique for noninvasive monitoring of tissue analytes including glucose.
Wente, Stephen P.
2004-01-01
Many Federal, Tribal, State, and local agencies monitor mercury in fish-tissue samples to identify sites with elevated fish-tissue mercury (fish-mercury) concentrations, track changes in fish-mercury concentrations over time, and produce fish-consumption advisories. Interpretation of such monitoring data commonly is impeded by difficulties in separating the effects of sample characteristics (species, tissues sampled, and sizes of fish) from the effects of spatial and temporal trends on fish-mercury concentrations. Without such a separation, variation in fish-mercury concentrations due to differences in the characteristics of samples collected over time or across space can be misattributed to temporal or spatial trends; and/or actual trends in fish-mercury concentration can be misattributed to differences in sample characteristics. This report describes a statistical model and national data set (31,813 samples) for calibrating the aforementioned statistical model that can separate spatiotemporal and sample characteristic effects in fish-mercury concentration data. This model could be useful for evaluating spatial and temporal trends in fishmercury concentrations and developing fish-consumption advisories. The observed fish-mercury concentration data and model predictions can be accessed, displayed geospatially, and downloaded via the World Wide Web (http://emmma.usgs.gov). This report and the associated web site may assist in the interpretation of large amounts of data from widespread fishmercury monitoring efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu-wen Tan; Ying Jin; Hui Yu
2013-10-31
We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the humanmore » normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)« less
Optoacoustic Monitoring of Physiologic Variables
Esenaliev, Rinat O.
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964
Optoacoustic Monitoring of Physiologic Variables.
Esenaliev, Rinat O
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.
Optical monitoring of spinal cord subcellular damage after acute spinal cord injury
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.
2018-02-01
Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohn, Nancy P.; Kropp, Roy K.
Marine sediment remediation at the United Heckathorn Superfund Site in Richmond, California, was completed in April 1997. The Record of Decision included a requirement for five years of post-remediation monitoring be conducted in the waterways near the site. The present monitoring year, 2001? 2002, is the fifth and possibly final year of post-remediation monitoring. In March 2002, water and mussel tissues were collected from the four stations in and near Lauritzen Channel that have been routinely monitored since 1997-98. A fifth station in Parr Canal was sampled in Year 5 to document post-remediation water and tissue concentrations there. Dieldrin andmore » dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples and in tissue samples from resident (i.e., naturally occurring) mussels. As in Years 3 and 4, mussels were not transplanted to the study area in Year 5. Year 5 concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with those from Years 1 through 4 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch Program and the Ecological Risk Assessment for the United Heckathorn Superfund Site. Year 5 water samples and mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples during Year 2 monitoring and were added to the water and mussel tissue analyses in 1999. Contaminants of concern in Year 5 water samples were analyzed in both bulk (total) phase and dissolved phase, as were total suspended solids, to evaluate the contribution of particulates to the total contaminant concentration.« less
Domingo, José L; García, Francisco; Nadal, Martí; Schuhmacher, Marta
2017-04-01
Human biomonitoring is of tremendous importance to prevent potential adverse effects derived from human exposure to chemicals. Blood and urine are among the biological monitors more frequently used. However, biological matrices such as breast milk, hair, nails, saliva, feces, teeth, and expired air are also often used. In addition, and focused mainly on long-term exposure, adipose tissue and other human tissues like bone, liver, brain or kidney, are also used as biological monitors of certain substances, especially for long-term biomonitoring. However, for this kind of tissues sampling is always a limiting factor. In this paper, we have examined the role of autopsy tissues as biological monitors of human exposure to environmental pollutants. For it, we have used a case study conducted near a hazardous waste incinerator (HWI) in Catalonia (Spain), in which the concentrations of metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), have been periodically determined in autopsy tissues of subjects living in the area under potential influence of the facility. This case study does not show advantages -in comparison to other appropriate biomonitors such as blood- in using autopsy tissues in the monitoring of long-term exposure to metals and PCDD/Fs. Copyright © 2017 Elsevier Inc. All rights reserved.
Body burdens of heavy metals in Lake Michigan wetland turtles.
Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A
2016-02-01
Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.
Monitoring and assessment of tumor hemodynamics during pleural PDT
NASA Astrophysics Data System (ADS)
Ong, Yi Hong; Kim, Michele M.; Penjweini, Rozhin; Rodriguez, Carmen E.; Dimofte, Andrea; Finlay, Jarod C.; Busch, Theresa M.; Yodh, Arjun G.; Cengel, Keith A.; Singhal, Sunil; Zhu, Timothy C.
2017-02-01
Intrapleural photodynamic therapy (PDT) has been used in combination with lung sparing surgery to treat patients with malignant pleural mesothelioma. The light, photosensitizers and tissue oxygen are the three most important factors required by type II PDT to produce singlet oxygen, 1O2, which is the main photocytotoxic agent that damages the tumor vasculature and stimulates the body's anti-tumor immune response. Although light fluence rate and photosensitizer concentrations are routinely monitored during clinical PDT, there is so far a lack of a Food and Drug Administration (FDA)-approved non-invasive technique that can be employed clinically to monitor tissue oxygen in vivo. In this paper, we demonstrated that blood flow correlates well with tissue oxygen concentration during PDT and can be used in place of [3O2] to calculate reacted singlet oxygen concentration [1O2]rx using the macroscopic singlet oxygen model. Diffuse correlation spectroscopy (DCS) was used to monitor the change in tissue blood flow non-invasively during pleural PDT. A contact probe with three source and detectors separations, 0.4, 0.7 and 1.0-cm, was sutured to the pleural cavity wall of the patients after surgical resection of the pleural mesothelioma tumor to monitor the tissue blood flow during intraoperative PDT treatment. The changes of blood flow during PDT of 2 patients are found to be in good correlation with the treatment light fluence rate recorded by the isotropic detector placed adjacent to the DCS probe. [1O2]rx calculated based on light fluence, mean photosensitizer concentration, and relative blood flow was found to be 32% higher in patient #4 (0.50mM) than that for patient #3 (0.38mM).
Christensen, Victoria G.; Wente, Stephen P.; Sandheinrich, Mark B.; Brigham, Mark E.
2006-01-01
Using the model to predict fish-tissue mercury concentrations allows site-specific fish-consumption advisories to be developed for multiple species and different lengths of fish. Potential mercury exposure to fish consumers may be reduced because an individual can choose to consume sizes and species of fish that are expected to have lower fish-tissue mercury concentrations. The National Park Service can use these results to more reliably monitor fish-tissue mercury concentrations in the St. Croix River Basin and better assess potential health effects of fish consumption to humans and wildlife.
Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution.
Cui, Jia; Halbrook, Richard S; Zang, Shuying; Han, Shuang; Li, Xinyu
2018-03-01
Atmospheric pollution in urban areas is a major worldwide concern with potential adverse impacts on wildlife and humans. Biomonitoring can provide direct evidence of the bioavailability and bioaccumulation of toxic metals in the environment that is not available with mechanical air monitoring. The current study continues our evaluation of the usefulness of homing pigeon lung tissue as a biomonitor of atmospheric pollution. Homing pigeons (1-2, 5-6, and 9-10+ year old (yo)) collected from Guangzhou during 2015 were necropsied and concentrations of cadmium (Cd), lead (Pb), and mercury (Hg) were measured in lung tissue. Lung Cd and Pb concentrations were significantly greater in 9-10+-year-old pigeons compared with those in other age groups, indicating their bioavailability and bioaccumulation. Lung Pb and Cd concentrations measured in 5-yo pigeons collected from Guangzhou during 2015 were significantly lower than concentrations reported in 5-yo homing pigeons collected from Guangzhou during 2011 and correlated with concentrations measured using mechanical air monitoring. In addition to temporal differences, spatial differences in concentrations of Cd, Pb, and Hg reported in ambient air samples and in pigeon lung tissues collected from Beijing and Guangzhou are discussed.
D'Havé, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; De Coen, Wim
2006-08-01
The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs.
Whole-body to tissue concentration ratios for use in biota dose assessments for animals.
Yankovich, Tamara L; Beresford, Nicholas A; Wood, Michael D; Aono, Tasuo; Andersson, Pål; Barnett, Catherine L; Bennett, Pamela; Brown, Justin E; Fesenko, Sergey; Fesenko, J; Hosseini, Ali; Howard, Brenda J; Johansen, Mathew P; Phaneuf, Marcel M; Tagami, Keiko; Takata, Hyoe; Twining, John R; Uchida, Shigeo
2010-11-01
Environmental monitoring programs often measure contaminant concentrations in animal tissues consumed by humans (e.g., muscle). By comparison, demonstration of the protection of biota from the potential effects of radionuclides involves a comparison of whole-body doses to radiological dose benchmarks. Consequently, methods for deriving whole-body concentration ratios based on tissue-specific data are required to make best use of the available information. This paper provides a series of look-up tables with whole-body:tissue-specific concentration ratios for non-human biota. Focus was placed on relatively broad animal categories (including molluscs, crustaceans, freshwater fishes, marine fishes, amphibians, reptiles, birds and mammals) and commonly measured tissues (specifically, bone, muscle, liver and kidney). Depending upon organism, whole-body to tissue concentration ratios were derived for between 12 and 47 elements. The whole-body to tissue concentration ratios can be used to estimate whole-body concentrations from tissue-specific measurements. However, we recommend that any given whole-body to tissue concentration ratio should not be used if the value falls between 0.75 and 1.5. Instead, a value of one should be assumed.
NASA Astrophysics Data System (ADS)
Larin, Kirill V.
Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in the glucose clamping experiments (characterized by slow, controlled increase of the blood glucose concentration); and (4) the accuracy of glucose concentration monitoring may substantially be improved if optimal dimensions of the probed skin area are used. The results suggest that high-resolution OCT technique has a potential for noninvasive, accurate, and continuous glucose monitoring with high sensitivity.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the sponsored compound in the target tissue of the target animal. R m means the concentration of the... means any compound present in edible tissues of the target animal which results from the use of the... use. Target tissue means the edible tissue selected to monitor for residues in the target animals...
Code of Federal Regulations, 2013 CFR
2013-04-01
... the sponsored compound in the target tissue of the target animal. R m means the concentration of the... means any compound present in edible tissues of the target animal which results from the use of the... use. Target tissue means the edible tissue selected to monitor for residues in the target animals...
Cui, Jia; Wu, Bin; Halbrook, Richard S; Zang, Shuying
2013-12-01
Biomonitoring provides direct evidence of the bioavailability and accumulation of toxic elements in the environment. In the current study, 1-2, 5-6, and 9-10+ year old homing pigeons collected from the Haidian District of Beijing during 2011 were necropsied and concentrations of cadmium, lead, and mercury were measured in liver, lung, and kidney tissue. At necropsy, gray/black discoloration of the margins of the lungs was observed in 98 % of the pigeons. There were no significant differences in metal concentrations as a function of gender. Cadmium concentrations in all tissues and Pb concentrations in the lung tissues were significantly greater in 9-10+ year old pigeons compared to other age groups indicating that Cd and Pb were bioavailable. Mercury concentrations were not significantly different among age groups. Cadmium concentrations in kidney and lung tissues of 9-10+ year old pigeons were similar to or exceeded concentrations of Cd reported in pigeons from another high traffic urban area and most wild avian species from Korea suggesting that Cd in this region of Beijing may be of concern. Homing pigeons provide valuable exposure and bioaccumulation data not readily available from air monitoring alone, thus providing information regarding potential health effects in wildlife and humans in urban areas. As environmental quality standards are implemented in China, homing pigeons will serve as a valuable bio-monitor of the efficacy of these actions.
Rusina, Tatsiana P; Carlsson, Pernilla; Vrana, Branislav; Smedes, Foppe
2017-10-03
Passive sampling is widely used to measure levels of contaminants in various environmental matrices, including fish tissue. Equilibrium passive sampling (EPS) of persistent organic pollutants (POP) in fish tissue has been hitherto limited to application in lipid-rich tissue. We tested several exposure methods to extend EPS applicability to lean tissue. Thin-film polydimethylsiloxane (PDMS) passive samplers were exposed statically to intact fillet and fish homogenate and dynamically by rolling with cut fillet cubes. The release of performance reference compounds (PRC) dosed to passive samplers prior to exposure was used to monitor the exchange process. The sampler-tissue exchange was isotropic, and PRC were shown to be good indicators of sampler-tissue equilibration status. The dynamic exposures demonstrated equilibrium attainment in less than 2 days for all three tested fish species, including lean fish containing 1% lipid. Lipid-based concentrations derived from EPS were in good agreement with lipid-normalized concentrations obtained using conventional solvent extraction. The developed in-tissue EPS method is robust and has potential for application in chemical monitoring of biota and bioaccumulation studies.
Pollution monitoring of puget sound with honey bees.
Bromenshenk, J J; Carlson, S R; Simpson, J C; Thomas, J M
1985-02-08
To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LD Antrim; NP Kohn
This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed inmore » water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.« less
NASA Astrophysics Data System (ADS)
Singh-Moon, Rajinder P.; Hendon, Christine P.
2016-02-01
Despite considerable advances in guidance of radiofrequency ablation (RFA) therapies for atrial fibrillation, success rates have been hampered by an inability to intraoperatively characterize the extent of permanent injury. Insufficient lesions can elusively create transient conduction blockages that eventually reconduct. Prior studies suggest significantly greater met-myoglobin (Mmb) concentrations in the lesion core than those in the healthy myocardium and may serve as a marker for irreversible tissue damage. In this work, we present real-time monitoring of permanent injury through spectroscopic assessment of Mmb concentrations at the catheter tip. Atrial wedges (n=6) were excised from four fresh swine hearts and submerged under pulsatile flow of warm (37oC) phosphate buffered saline. A commercial RFA catheter inserted into a fiber optic sheath allowed for simultaneous measurement of tissue diffuse reflectance (DR) spectra (500-650nm) during application of RF energy. Optical measurements were continuously acquired before, during, and post-ablation, in addition to healthy neighboring tissue. Met-myoglobin, oxy-myoglobin, and deoxy-myoglobin concentrations were extracted from each spectrum using an inverse Monte Carlo method. Tissue injury was validated with Masson's trichrome and hematoxylin and eosin staining. Time courses revealed a rapid increase in tissue Mmb concentrations at the onset of RFA treatment and a gradual plateauing thereafter. Extracted Mmb concentrations were significantly greater post-ablation (p<0.0001) as compared to healthy tissue and correlated well with histological assessment of severe thermal tissue destruction. On going studies are aimed at integrating these findings with prior work on near infrared spectroscopic lesion depth assessment. These results support the use of spectroscopy-facilitated guidance of RFA therapies for real-time permanent injury estimation.
Pollution monitoring of Puget Sound with honey bees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.
To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors. 27 references, 2 figures.
Avian mercury exposure and toxicological risk across western North America: A synthesis
Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, Christopher; Peterson, Sarah; Evers, David C.; Jackson, Allyson K.; Elliott, John E.; Vander Pol, Stacy S.; Bryan, Colleen E.
2016-01-01
Methylmercury contamination of the environment is an important issue globally, and birds are useful bioindicators for mercury monitoring programs. The available data on mercury contamination of birds in western North America were synthesized. Original data from multiple databases were obtained and a literature review was conducted to obtain additional mercury concentrations. In total, 29219 original bird mercury concentrations from 225 species were compiled, and an additional 1712 mean mercury concentrations, representing 19998 individuals and 176 species, from 200 publications were obtained. To make mercury data comparable across bird tissues, published equations of tissue mercury correlations were used to convert all mercury concentrations into blood-equivalent mercury concentrations. Blood-equivalent mercury concentrations differed among species, foraging guilds, habitat types, locations, and ecoregions. Piscivores and carnivores exhibited the greatest mercury concentrations, whereas herbivores and granivores exhibited the lowest mercury concentrations. Bird mercury concentrations were greatest in ocean and salt marsh habitats and lowest in terrestrial habitats. Bird mercury concentrations were above toxicity benchmarks in many areas throughout western North America, and multiple hotspots were identified. Additionally, published toxicity benchmarks established in multiple tissues were summarized and translated into a common blood-equivalent mercury concentration. Overall, 66% of birds sampled in western North American exceeded a blood-equivalent mercury concentration of 0.2 μg/g wet weight (ww; above background levels), which is the lowest-observed effect level, 28% exceeded 1.0 μg/g ww (moderate risk), 8% exceeded 3.0 μg/g ww (high risk), and 4% exceeded 4.0 μg/g ww (severe risk). Mercury monitoring programs should sample bird tissues, such as adult blood and eggs, that are most-easily translated into tissues with well-developed toxicity benchmarks and that are directly relevant to bird reproduction. Results indicate that mercury contamination of birds is prevalent in many areas throughout western North America, and large-scale ecological attributes are important factors influencing bird mercury concentrations.
Avian mercury exposure and toxicological risk across western North America: A synthesis
Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Hartman, C. Alex; Peterson, Sarah H.; Evers, David C.; Jackson, Allyson K.; Elliott, John E.; Vander Pol, Stacy S.; Bryan, Colleen E.
2017-01-01
Methylmercury contamination of the environment is an important issue globally and birds are useful bioindicators for mercury monitoring programs. The available data on mercury contamination of birds in western North America were synthesized. Original data from multiple databases were obtained and a literature review was conducted to obtain additional mercury concentrations. In total, 29219 original bird mercury concentrations from 225 species were compiled, and an additional 1712 mean mercury concentrations, representing 19998 individuals and 176 species, from 200 publications were obtained. To make mercury data comparable across bird tissues, published equations of tissue mercury correlations were used to convert all mercury concentrations into blood-equivalent mercury concentrations. Blood-equivalent mercury concentrations differed among species, foraging guilds, habitat types, locations, and ecoregions. Piscivores and carnivores exhibited the greatest mercury concentrations, whereas herbivores and granivores exhibited the lowest mercury concentrations. Bird mercury concentrations were greatest in ocean and salt marsh habitats and lowest in terrestrial habitats. Bird mercury concentrations were above toxicity benchmarks in many areas throughout western North America, and multiple hotspots were identified. Additionally, published toxicity benchmarks established in multiple tissues were summarized and translated into a common blood-equivalent mercury concentration. Overall, 66% of birds sampled in western North American exceeded a blood-equivalent mercury concentration of 0.2 μg/g wet weight (ww; above background levels), which is the lowest-observed effect level, 28% exceeded 1.0 μg/g ww (moderate risk), 8% exceeded 3.0 μg/g ww (high risk), and 4% exceeded 4.0 μg/g ww (severe risk). Mercury monitoring programs should sample bird tissues, such as adult blood and eggs, that are most-easily translated into tissues with well-developed toxicity benchmarks and that are directly relevant to bird reproduction. Results indicate that mercury contamination of birds is prevalent in many areas throughout western North America, and large-scale ecological attributes are important factors influencing bird mercury concentrations. PMID:27093907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisenko, S A; Kugeiko, M M
We have solved the problem of layer-by-layer laser-light dosimetry in biological tissues and of selecting an individual therapeutic dose in laser therapy. A method is proposed for real-time monitoring of the radiation density in tissue layers in vivo, concentrations of its endogenous (natural) and exogenous (specially administered) chromophores, as well as in-depth distributions of the spectrum of light action on these chromophores. As the background information use is made of the spectrum of diffuse light reflected from a patient's tissue, measured by a fibre-optic spectrophotometer. The measured spectrum is quantitatively analysed by the method of approximating functions for fluxes ofmore » light multiply scattered in tissue and by a semi-analytical method for calculating the in-depth distribution of the light flux in a multi-layered medium. We have shown the possibility of employing the developed method for monitoring photosensitizer and oxyhaemoglobin concentrations in tissue, light power absorbed by chromophores in tissue layers at different depths and laser-induced changes in the tissue morphology (vascular volume content and ratios of various forms of haemoglobin) during photodynamic therapy. (biophotonics)« less
Chthamalus montagui as biomonitor of metal contamination in the northwest coast of Portugal.
Reis, Pedro A; Salgado, Maria Antónia; Vasconcelos, Vitor
2012-09-01
The concentrations of seven metals (Cd, Cr, Cu, Fe, Mn, Ni and Zn) were determined in coastal seawaters and soft and hard tissues of the barnacle Chthamalus montagui from the northwest coast of Portugal to assess the potential use of C. montagui as biomonitor of metal contamination. The results of this study showed that C. montagui soft tissues can be used for monitoring metal bioavailabilities in these coastal seawaters: (1) there were significant correlations (p < 0.05) between the metal concentrations in soft tissues and their concentrations in seawaters and (2) barnacle soft tissues were sensitive to spatial variation of metal bioavailabilities, accumulating different amounts of metals in different locations. The range of concentrations in tissues were: 0.59-1.7 mg Cd kg(-1), 0.5-3.2 mg Cr kg(-1), 0.72-3.0 mg Ni kg(-1), 1.2-6.7 mg Cu kg(-1), 9-26 mg Mn kg(-1), 214-785 mg Fe kg(-1) and 178-956 mg Zn kg(-1); (3) mean logarithmic bioaccumulation factors (log BAF) of Fe, Cr and Cd were higher, 5.49, 4.93 and 4.46, respectively, than mean log BAFs of Mn, Zn, Cu and Ni, 4.03, 3.97, 3.74 and 3.61, respectively. In contrary, C. montagui shell plates were not a good matrix to monitor metal bioavailability in these coastal seawaters, with no significant correlations (p < 0.05) between metal concentrations in the shell and in seawater. Regarding the high Zn concentrations obtained in the coastal seawaters and C. montagui soft tissues, all seawaters from northwest coast of Portugal should be classified as "moderately/remarkably polluted".
Zapp Sluis, Michelle; Boswell, Kevin M; Chumchal, Matthew M; Wells, R J David; Soulen, Brianne; Cowan, James H
2013-02-01
The presence of total mercury (Hg) in fish tissue and the potential associated health risks has become a global concern in marine ecosystems. Few studies have examined basin-scale variation in Hg accumulation in marine ecosystems, and determining if Hg concentrations in fish tissue vary across marine ecosystems is a key monitoring question. The present study evaluated Hg concentrations in red snapper (Lutjanus campechanus) tissue across three regions of the northern Gulf of Mexico (Alabama, Louisiana, and Texas, USA) and between two habitat types (oil and gas platforms and nonplatforms) within each region. Nitrogen (δ(15)N), carbon (δ(13)C), and sulfur (δ(34)S) stable isotopes were used to investigate ecological differences that may affect Hg concentrations among regions and between habitats. Mercury concentrations in red snapper tissue were positively correlated with fish total length. Regional differences in Hg concentrations were significant, with fish collected from Alabama having the highest concentrations and fish collected from Louisiana having the lowest. No significant difference existed in Hg concentrations between habitats, suggesting that association with platforms may not be a significant factor contributing to red snapper Hg concentrations. While δ(15)N did not differ significantly among the three regions, Texas red snapper were more enriched in δ(34)S and depleted in δ(13)C compared with Alabama and Louisiana red snapper. Although the majority of red snapper collected in the present study had Hg concentrations below safe consumption guidelines, regional differences suggest that spatially explicit monitoring programs may be important for basin-wide assessments. Copyright © 2012 SETAC.
Diffuse Optics for Tissue Monitoring and Tomography
Durduran, T; Choe, R; Baker, W B; Yodh, A G
2015-01-01
This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204
NASA Astrophysics Data System (ADS)
Lee, Songhyun; Kim, Jae Gwan
2018-04-01
Continuous wave diffuse optical tomographic/spectroscopic system does not provide absolute concentrations of chromophores in tissue and monitor only the changes of chromophore concentration. Therefore, it requires a perturbation of physiological signals, such as blood flow and oxygenation. In that sense, a few groups reported that monitoring a relative hemodynamic change during a breast tissue compression or a breath-hold to a patient can provide good contrast between tumor and nontumor. However, no longitudinal study reports the utilization of a breath-hold to predict tumor response during chemotherapy. A continuous wave near-infrared spectroscopy was employed to monitor hemodynamics in rat breast tumor during a hyperoxic to normoxic inhalational gas intervention to mimic a breath-hold during tumor growth and chemotherapy. The reduced oxyhemoglobin concentration during inhalational gas intervention correlated well with tumor growth, and it responded one day earlier than the change of tumor volume after chemotherapy. In conclusion, monitoring tumor hemodynamics during a breath-hold may serve as a biomarker to predict chemotherapeutic efficacy of tumor.
Sun, Xian; Yu, Ri-Qing; Zhang, Mei; Zhang, Xiyang; Chen, Xi; Xiao, Yousheng; Ding, Yulong; Wu, Yuping
2017-12-15
Trace element accumulation in the epidermis of cetaceans has been less studied. This study explored the feasibility of using epidermis as a surrogate tissue to evaluate internal contaminant burdens in Indo-Pacific humpback dolphin (Sousa chinensis). Eleven trace elements were analyzed in the epidermis, muscle and liver tissues from 46 individuals of dolphins stranded along the Pearl River Estuary (PRE) coast between 2007 and 2013. Trace elemental concentrations varied among the three tissues, generally with the highest concentrations found in liver tissues and lowest in the epidermis (except Zn, As, and Pb). Zn concentration in the epidermis was the highest among all tissues, indicating that Zn could be an important element for the epidermis physiology. High concentrations of Hg and Cr in liver were likely due to an excessive intake by dolphins which consumed high Hg and Cr contaminated fishes in the PRE. Hg concentrations in epidermis and muscle tissues were significantly higher in the females than in males. Concentrations of V and Pb in liver, Se and Cd in both muscle and liver, and As and Hg in all tissue samples showed significantly positive relationships with body length. Hepatic Cu concentrations were significantly negatively correlated with the body length. Hg and As concentrations in epidermis showed significantly positive correlations with those in liver tissues. Thus this study proposed that epidermis could be used as a non-invasive monitoring tissue to evaluate Hg and As bioaccumulation in internal tissues of Indo-Pacific humpback dolphins populations. Copyright © 2017 Elsevier B.V. All rights reserved.
[Fluorides in the human bones – selected issues].
Palczewska-Komsa, Mirona; Kalisińska, Elżbieta; Stogiera, Anna; Szmidt, Monika
Long -term intake of luoride leads to skeletal luorosis. The toxicity of luoride, not only for the human body, but also the entire ecosystem makes it necessary to constantly monitor their content in the environment. Accordingly, there is a need to control the level of luorides (F⁻) in humans, particularly in bone tissue, which relects long -term accumulation of these compounds. The aim of the study was to determine the concentration of luoride in the human bones depending on biological factors and environmental conditions on the basis of the published literature. Given the importance of bone tissue as the main reservoir of luoride ions is an important issue to continue to monitor the concentration of F⁻ in this tissue, particularly for people living in the polluted environment luorine compounds. There are numerous works on concentrations of this element in human bones in world literature which proves the great interest in the subject. It should be underlined the need for further study of this issue for people living in different regions of Poland.
Harper, Erin R; St Leger, Judy A; Westberg, Jody A; Mazzaro, Lisa; Schmitt, Todd; Reidarson, Tom H; Tucker, Melinda; Cross, Dee H; Puschner, Birgit
2007-06-01
Concentrations of nine heavy metals (As, Cd, Cu, Fe, Hg, Pb, Mn, Mo and Zn) were determined in the hepatic and renal tissues of 80 stranded California sea lions (Zalophus californianus). Significant age-dependant increases were observed in liver and kidney concentrations of cadmium and mercury, and renal zinc concentrations. Hepatic iron concentrations were significantly higher in females than males. Animals with suspected domoic acid associated pathological findings had significantly higher concentrations of liver and kidney cadmium; and significantly higher liver mercury concentrations when compared to animals classified with infectious disease or traumatic mortality. Significantly higher hepatic burdens of molybdenum and zinc were found in animals that died from infectious diseases. This is the largest study of tissue heavy metal concentrations in California sea lions to date. These data demonstrate how passive monitoring of stranded animals can provide insight into environmental impacts on marine mammals.
NASA Astrophysics Data System (ADS)
Shiga, Toshikazu; Chihara, Eiichi; Tanabe, Kazuhisa; Tanaka, Yoshifumi; Yamamoto, Katsuyuki
1998-01-01
A portable CW tissue oximeter of a 10-Hz sampling rate was developed for examination of pulsatile components of the output signals as a mean of checking the signal reliability during long-term monitoring. Feasible studies were performed on a healthy subject. Changes in Hb and HbO2 signals of cerebral tissue were continuously measured by placing a photoprobe on the forehead during 6-hour sleep. Pulsatile changes in Hb and HbO2 were steadily observed over a whole period of the recording. The phase relation of pulsation in Hb and HbO2 was almost inverse. Not only information for reliable monitoring but also physiological parameters with respect to cerebral circulation and metabolism could be obtained by measuring the pulsatile components.
NASA Astrophysics Data System (ADS)
Shiga, Toshikazu; Chihara, Eiichi; Tanabe, Kazuhisa; Tanaka, Yoshifumi; Yamamoto, Katsuyuki
1997-12-01
A portable CW tissue oximeter of a 10-Hz sampling rate was developed for examination of pulsatile components of the output signals as a mean of checking the signal reliability during long-term monitoring. Feasible studies were performed on a healthy subject. Changes in Hb and HbO2 signals of cerebral tissue were continuously measured by placing a photoprobe on the forehead during 6-hour sleep. Pulsatile changes in Hb and HbO2 were steadily observed over a whole period of the recording. The phase relation of pulsation in Hb and HbO2 was almost inverse. Not only information for reliable monitoring but also physiological parameters with respect to cerebral circulation and metabolism could be obtained by measuring the pulsatile components.
Huang, Lingli; Shi, Jingfei; Pan, Yuanhu; Wang, Liye; Chen, Dongmei; Xie, Shuyu; Liu, Zhenli; Yuan, Zonghui
2016-03-09
Ractopamine (RAC), a β-adrenergic leanness-enhancing agent, endangers the food safety of animal products because of overdosing and illegal use in food animals. Excretion and residue depletion of RAC in pigs and goats were investigated to determine a representative biological fluid or surface tissue for preslaughter monitoring. After a single oral gavage of RAC, 64-67% of the dose was excreted from the urine of pigs and goats within 12-24 h. RAC persisted the longest in the hair of pigs and goats but depleted rapidly in the plasma, muscle, and fat. Urine and hair were excellent for predicting RAC residues in edible tissues of pigs, whereas plasma and urine were satisfactory body fluids for the prediction of RAC concentrations in edible tissues of goats. These data provided a simple and economical preslaughter living monitoring method for the illegal use and violative residue of RAC in food animals.
Maret, Terry R.; Dutton, DeAnn M.
1999-01-01
As part of the Northern Rockies Intermontane Basins study of the National Water-Quality Assessment Program, data collected between 1974 and 1996 were compiled to describe contaminants in tissue of riverine species. Tissue-contaminant data from 11 monitoring programs and studies representing 28 sites in the study area were summarized. Tissue-contaminant data for most streams generally were lacking. Many studies have focused on and around mining-affected areas on the Clark Fork and Coeur d'Alene Rivers and their major tributaries. DDT and PCBs and their metabolites and congeners were the synthetic organic contaminants most commonly detected in fish tissue. Fish collected from the Spokane River in Washington contained elevated concentrations of PCB arochlors, some of which exceeded guidelines for the protection of human health and predatory wildlife. Tissue samples of fish from the Flathead River watershed contained higher-than-expected concentrations of PCBs, which might have resulted from atmospheric transport. Trace element concentrations in fish and macroinvertebrates collected in and around mining areas were elevated compared with background concentrations. Some cadmium, copper, lead, and mercury concentrations in fish tissue were elevated compared with results from other studies, and some exceeded guidelines. Macroinvertebrates from the Coeur d'Alene River contained higher concentrations of cadmium, lead, and zinc than did macroinvertebrates from other river systems in mining-affected areas. A few sportfish fillet samples, most from the Spokane River in Washington, were collected to assess human health risk. Concentrations of PCBs in these fillets exceeded screening values for the protection of human health. At present, there is no coordinated, long-term fish tissue monitoring program for rivers in the study area, even though contaminants are present in fish at levels considered a threat to human health. Development of a coordinated, centralized national data base for contaminants in fish tissue is needed. The National Water-Quality Assessment Program can provide a framework for other agencies to evaluate tissue contaminants in the Northern Rockies Intermontane Basins study area. As of 1996, there are no fish consumption advisories or fishing restrictions as a result of elevated contaminants on any rivers within the study area.
NASA Astrophysics Data System (ADS)
Guan, Guangying; Song, Shaozhen; Huang, Zhihong; Yang, Ying
2015-03-01
Generation of functional tissue in vitro through tissue engineering technique is a promising direction to repair and replace malfunctioned organ and tissue in the modern medicine for various diseases which could not been treated well by conventional therapy. Similar to the embryo development, the generation of tissue in vitro is a highly dynamic processing. Obtaining the feedback of the processing real time is highly demanded. In this study, a new methodology has been explored aiming to monitor the morphological and mechanical property alteration of bone tissue engineering constructs simultaneously. Optical coherence elastography (OCE) equipped with a LDS V201 permanent magnet shaker and a modulated acoustic radiation force (ARF) to provide a vibration signal, has been used for the real time and non-destructive monitoring. A phantom construct system has been used to optimize the measurement conditions in which agar hydrogel with concentration from 0, 0.75 to 2% with/without hydroxyappatite particles have been injected to 3D porous poly (lactic acid) scaffolds to simulate the collagenous extracellular matrix (ECM) and mineralized ECM. The structural and elastography images of the constructs have clearly demonstrated the linear relation with the increased mechanical property versus the increase of agar concentration within the pores of the scaffolds. The MG63 bone cells seeded in the scaffolds and cultured for 4 weeks have been monitored by the established protocol exhibiting the increased mechanical strength in the pore wall where the ECM or mineralized ECM was assumed to be formed in comparison to empty pores. This study confirms that OCE-ARF could become a valuable tool in regenerative medicine to assess the biological events during in vitro culture and conditioning.
Long, Miao-Yun; Diao, Fei-Yu; Peng, Li-Na; Tan, Lang-Ping; Zhu, Yue; Huang, Kai; Li, Hong-Hao
2018-05-16
To explore the application of intraoperative neurological monitoring in residual thyroidectomy 5-15 days after thyroid cancer operation and the influence on postoperative serum thyroglobulin (Tg), recurrent laryngeal nerve and function of parathyroid glands. Material of patients receiving thyroid surgery from January 2010 to December 2016 was retrospectively analyzed. Cases meeting with standards were enrolled for analysis and the patients were divided into neurological monitoring group and non-neurological monitoring group in line with the use of neurological monitoring during the operation. Recurrent laryngeal nerve-injured hoarseness, hypoparathyroidism and concentration of serum Tg before and after the surgery were collected and analyzed. Four-hundred and thirty-five patients met with standards, among which 227 from neurological monitoring group and 208 from non-neurological monitoring group. Temporary hoarseness rate of non-neurological monitoring group and neurological monitoring group was 8.67% and 2.2%. Permanent hoarseness rate of non-neurological monitoring group and neurological monitoring group was 1.92% and 0.44%. Temporary hypoparathyroidism rate of non-neurological monitoring group and neurological monitoring group was 18.75% and 7.48%. Permanent hypoparathyroidism rate of non-neurological monitoring group and neurological monitoring group was 1.92% and 0.88%. Average Tg concentration 1 month after the surgery in non-neurological monitoring group and neurological monitoring group was 2.82 and 1.37 ng/mL, respectively. Rate of average Tg concentration less than 1 ng/mL 1 month after the surgery in non-neurological monitoring group and neurological monitoring group was 45.06% and 67.4%. Intraoperative neurological monitoring can be adopted in residual thyroidectomy in postoperative 5-15 days after primary thyroid cancer surgery, as to reduce incidence rate of recurrent laryngeal nerve injury and hypoparathyroidism and to enhance thorough removal of thyroid tissues and cancer tissues. © 2018 John Wiley & Sons Australia, Ltd.
Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P
2016-08-01
Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.
Pfleeger, Adam Z; Eagles-Smith, Collin A; Kowalski, Brandon M; Herring, Garth; Willacker, James J; Jackson, Allyson K; Pierce, John R
2016-04-01
Exposure to environmental contaminants has been implicated as a factor in global amphibian decline. Mercury (Hg) is a particularly widespread contaminant that biomagnifies in amphibians and can cause a suite of deleterious effects. However, monitoring contaminant exposure in amphibian tissues may conflict with conservation goals if lethal take is required. Thus, there is a need to develop non-lethal tissue sampling techniques to quantify contaminant exposure in amphibians. Some minimally invasive sampling techniques, such as toe-clipping, are common in population-genetic research, but it is unclear if these methods can adequately characterize contaminant exposure. We examined the relationships between mercury (Hg) concentrations in non-lethally sampled tissues and paired whole-bodies in five amphibian species. Specifically, we examined the utility of three different tail-clip sections from four salamander species and toe-clips from one anuran species. Both tail and toe-clips accurately predicted whole-body THg concentrations, but the relationships differed among species and the specific tail-clip section or toe that was used. Tail-clips comprised of the distal 0-2 cm segment performed the best across all salamander species, explaining between 82 and 92% of the variation in paired whole-body THg concentrations. Toe-clips were less effective predictors of frog THg concentrations, but THg concentrations in outer rear toes accounted for up to 79% of the variability in frog whole-body THg concentrations. These findings suggest non-lethal sampling of tails and toes has potential applications for monitoring contaminant exposure and risk in amphibians, but care must be taken to ensure consistent collection and interpretation of samples.
NASA Astrophysics Data System (ADS)
Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.
2003-07-01
Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a patient with peripheral vascular disease (PVD) were found.
Nasyitah Sobihah, Nasri; Ahmad Zaharin, Aris; Khairul Nizam, Mohammad; Ley Juen, Looi; Kyoung-Woong, Kim
2018-04-01
Mariculture fish contains a rich source of protein, but some species may bioaccumulate high levels of heavy metals, making them unsafe for consumption. This study aims to identify heavy metal concentration in Lates calcarifer (Barramudi), Lutjanus campechanus (Red snapper) and Lutjanus griseus (Grey snapper). Three species of mariculture fish, namely, L. calcarifer, L. campechanus and L. griseus were collected for analyses of heavy metals. The concentration of heavy metal (As, Cd, Cu, Cr, Fe, Pb, Mn, Ni, Se, and Zn) was determined using inductive coupled plasma mass spectrometry (ICP-MS). The distribution of heavy metals mean concentration in muscle is Zn > Fe > As > Se > Cr > Cu > Mn > Pb > Ni > Cd for L. calcarifer, Fe > Zn > Cr > As > Ni > Mn > Se > Cu > Pb > Cd for L. campechanus and Fe > Zn > Cr > Ni > Se > Cu > As > Mn > Pb > Cd for L. griseus. Among all of the species under investigation, the highest concentration of Fe was found in the muscle tissue of L. campechanus (19.985 ± 1.773 mg kg -1 ) and liver tissue of L. griseus (58.248 ± 8.736 mg kg -1 ). Meanwhile, L. calcarifer has the lowest concentration of Cd in both muscle (0.007 ± 0.004 mg kg -1 ) and liver tissue (0.027 ± 0.016 mg kg -1 ). The heavy metal concentration in muscle tissue is below the permissible limit guidelines stipulated by the Food & Agriculture Organization, 1983 and Malaysia Food Act, 1983. The concentration of heavy metals varies significantly among fish species and tissues. L. campechanus was found to have a higher ability to accumulate heavy metals as compared to the other two species (p < .00). Among all the studied fish, liver tissue has a higher concentration of heavy metals compared to muscle tissue (p < .05). The findings from this study can serve as baseline information for future monitoring and risk assessment studies. Periodic monitoring of heavy metal concentration in mariculture fish must be performed to prevent acute and chronic food intoxication. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.
2013-07-01
A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.
Biological monitoring of heavy metal contaminations using owls.
Kim, Jungsoo; Oh, Jong-Min
2012-03-01
Iron, manganese, copper, lead and cadmium were measured in the livers, muscles, kidneys and bones of Eurasian Eagle Owls (Bubo bubo), Brown Hawk Owls (Nixos scutulata) and Collared Scops Owls (Otus lempiji) from Korea. Iron concentrations by tissue within species did not differ, but there were significant differences among tissues across all species. Manganese and copper concentrations in muscles, kidneys and bones, but not livers, differed among species and also differed among tissues in the three owl species. We suggest that manganese and copper concentrations from this study were far below the level associated with their toxicity. Lead concentrations significantly differed among all species for livers and bones, and among tissues for each species. Cadmium concentrations were significantly different among species for all tissues and among tissues in Eurasian Eagle Owls and Collared Scops Owls. For most samples, lead concentrations in livers and bones, and cadmium in livers and kidneys, were within the background levels for wild birds. For some Eurasian Eagle Owls and Collared Scops Owls, lead concentrations were at an acute exposure level, whilst lead concentrations were at a chronic exposure level in Brown Hawk Owls. Cadmium concentrations were at a chronic exposure level in all three owl species. Acute and chronic poisoning was significantly correlated between indicator tissues. We suggest that lead and cadmium contamination in Eurasian Eagle Owls may reflect a Korean source, Brown Hawk Owls may reflect Korean and wintering sites, and Collared Scops Owls may reflect breeding and/or wintering sites. This journal is © The Royal Society of Chemistry 2012
Ghosn, Mohamad G; Tuchin, Valery V; Larin, Kirill V
2007-06-01
Noninvasive functional imaging, monitoring, and quantification of analytes transport in epithelial ocular tissues are extremely important for therapy and diagnostics of many eye diseases. In this study the authors investigated the capability of optical coherence tomography (OCT) for noninvasive monitoring and quantification of diffusion of different analytes in sclera and cornea of rabbit eyes. A portable time-domain OCT system with wavelength of 1310 +/- 15 nm, output power of 3.5 mW, and resolution of 25 mum was used in this study. Diffusion of different analytes was monitored and quantified in rabbit cornea and sclera of whole eyeballs. Diffusion of water, metronidazole (0.5%), dexamethasone (0.2%), ciprofloxacin (0.3%), mannitol (20%), and glucose solution (20%) were examined, and their permeability coefficients were calculated by using OCT signal slope and depth-resolved amplitude methods. Permeability coefficients were calculated as a function of time and tissue depth. For instance, mannitol was found to have a permeability coefficient of (8.99 +/- 1.43) x 10(-6) cm/s in cornea and (6.18 +/- 1.08) x 10(-6) cm/s in sclera. The permeability coefficient of drugs with small concentrations (where water was the major solvent) was found to be in the range of that of water in the same tissue type, whereas permeability coefficients of higher concentrated solutions varied significantly. Results suggest that the OCT technique might be a powerful tool for noninvasive diffusion studies of different analytes in ocular tissues. However, additional methods of OCT signal acquisition and processing are required to study the diffusion of agents of small concentrations.
Design of a tissue oxygenation monitor and verification on human skin
NASA Astrophysics Data System (ADS)
Liu, Hongyuan; Kohl-Bareis, Matthias; Huang, Xiabing
2011-07-01
We report the design of a tissue oxygen and temperature monitor. The non-invasive, fibre based device monitors tissue haemoglobin (Hb) and oxygen saturation (SO2) and is based on white-light reflectance spectroscopy.Visible light with wavelengths in the 500 - 650nm range is utilized. The spectroscopic algorithm takes into account the tissue scattering and melanin absorption for the calculation of tissue haemoglobin concentration and oxygen saturation. The monitor can probe superficial layers of tissue with a high spatial resolution (mm3) and a high temporal resolution (40 Hz). It provides an accurate measurement with the accuracy of SO2 at 2 % and high reliability with less than 2 % variation of continuous SO2 measurement over 12 hours. It can also form a modular system when used in conjunction with a laser Doppler monitor, enabling simultaneous measurements of Hb, SO2 and blood flow. We found experimentally that the influence of the source-detector separation on the haemoglobin parameters is small. This finding is discussed by Monte Carlo simulations for the depth sensitivity profile. The influence of probe pressure and the skin pigmentation on the measurement parameters are assessed before in vivo experimental data is presented. The combination with laser Doppler flowmetry demonstrates the importance of a measurement of both the haemoglobin and the blood flow parameters for a full description of blood tissue perfusion. This is discussed in experimental data on human skin during cuff occlusion and after hyperemisation by a pharmacological cream. Strong correlation is observed between tissue oxygen (Hb and SO2) and blood flow measurements.
NASA Astrophysics Data System (ADS)
Bauer, Daniel R.; Stevens, Benjamin; Taft, Jefferson; Chafin, David; Petre, Vinnie; Theiss, Abbey P.; Otter, Michael
2014-03-01
Recently, it has been demonstrated that the preservation of cancer biomarkers, such as phosphorylated protein epitopes, in formalin-fixed paraffin-embedded tissue is highly dependent on the localized concentration of the crosslinking agent. This study details a real-time diffusion monitoring system based on the acoustic time-of-flight (TOF) between pairs of 4 MHz focused transducers. Diffusion affects TOF because of the distinct acoustic velocities of formalin and interstitial fluid. Tissue is placed between the transducers and vertically translated to obtain TOF values at multiple locations with a spatial resolution of approximately 1 mm. Imaging is repeated for several hours until osmotic equilibrium is reached. A post-processing technique, analogous to digital acoustic interferometry, enables detection of subnanosecond TOF differences. Reference subtraction is used to compensate for environmental effects. Diffusion measurements with TOF monitoring ex vivo human tonsil tissue are well-correlated with a single exponential curve (R2>0.98) with a magnitude of up to 50 ns, depending on the tissue size (2-6 mm). The average exponential decay constant of 2 and 6 mm diameter samples are 20 and 315 minutes, respectively, although times varied significantly throughout the tissue (σmax=174 min). This technique can precisely monitor diffusion progression and could be used to mitigate effects from tissue heterogeneity and intersample variability, enabling improved preservation of cancer biomarkers distinctly sensitive to degradation during preanalytical tissue processing.
Pfleeger, Adam Z.; Eagles-Smith, Collin A.; Kowalski, Brandon M.; Herring, Garth; Willacker, James J.; Jackson, Allyson K.; Pierce, John
2016-01-01
Exposure to environmental contaminants has been implicated as a factor in global amphibian decline. Mercury (Hg) is a particularly widespread contaminant that biomagnifies in amphibians and can cause a suite of deleterious effects. However, monitoring contaminant exposure in amphibian tissues may conflict with conservation goals if lethal take is required. Thus, there is a need to develop non-lethal tissue sampling techniques to quantify contaminant exposure in amphibians. Some minimally invasive sampling techniques, such as toe-clipping, are common in population-genetic research, but it is unclear if these methods can adequately characterize contaminant exposure. We examined the relationships between mercury (Hg) concentrations in non-lethally sampled tissues and paired whole-bodies in five amphibian species. Specifically, we examined the utility of three different tail-clip sections from four salamander species and toe-clips from one anuran species. Both tail and toe-clips accurately predicted whole-body THg concentrations, but the relationships differed among species and the specific tail-clip section or toe that was used. Tail-clips comprised of the distal 0–2 cm segment performed the best across all salamander species, explaining between 82 and 92 % of the variation in paired whole-body THg concentrations. Toe-clips were less effective predictors of frog THg concentrations, but THg concentrations in outer rear toes accounted for up to 79 % of the variability in frog whole-body THg concentrations. These findings suggest non-lethal sampling of tails and toes has potential applications for monitoring contaminant exposure and risk in amphibians, but care must be taken to ensure consistent collection and interpretation of samples.
Organochlorine residues in Baluchistan/Pakistan: Blood and fat concentrations in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawinkel, M.B.; Plehn, G.; Kruse, H.
1989-12-01
Organochlorine (OC)-residues are detected in measurable concentrations in various tissues of human beings because of the worldwide pollution of air, water, soil, and foods. The concentrations vary from region to region according to chemical, climatic, socio-economic, and geographic factors. Persisting pesticides used in agriculture are found in relevant concentrations in agriculture products, meat, and fish. As developing countries face economic pressure to increase their agricultural exports cheap pesticides are sometimes used without the precautions necessary to prevent contaminations of water and food. The authors conducted a small survey monitoring the OC-concentrations in human blood and fat tissue under the aimmore » to detect more recent as well as elder expositions.« less
Janaydeh, Mohammed; Ismail, Ahmad; Omar, Hishamuddin; Zulkifli, Syaizwan Zahmir; Bejo, Mohd Hair; Aziz, Nor Azwady Abd
2017-12-27
Heavy metal pollution has become a global concern due to accumulation in tissue and transferable effects to humans via the food chain. This study focused on monitoring the accumulation of cadmium (Cd) and lead (Pb) in surface soil and body content: bone, heart, brain, liver, lung, muscle, kidney, feathers, feces, and gizzard contents of house crow Corvus splendens in the Klang region, Malaysia. The results revealed the occurrence of Pb and Cd in all biological samples from house crows, food contents, and surface soil samples. Heart and kidney accrued high amounts of Cd, while high amounts of Pb were found to accumulate in bones and feathers. Major discrepancies were also discovered in the concentrations of metals between juvenile and adults, as well as female and male bird samples. Concentrations of Pb and Cd in house crow internal tissues correlated significantly with that of bird feathers, but none could be established with that of surface soil. In addition, a significant correlation was observed between Pb concentration in the internal tissues to that of the feces, but the same was not the case when compared with the surface soil concentration. Metal accrual in the house crows feathers and feces may be through a long-term transmission via the food chain, which are eliminated from feathers via molting. This may suggest the utility of molted breast feathers of house crow in the bio-monitoring of Cd and Pb contamination, whereas feces of house crow appear only to be suitable for the bio-monitoring of Pb contamination.
Ackerson, J.R.; Schmitt, C.J.; McKee, M.J.; Brumbaugh, W.G.
2013-01-01
A non-lethal biopsy method for monitoring mercury (Hg) concentrations in smallmouth bass (Micropterus dolomieu; smallmouth) from the Eleven Point River in southern Missouri USA was evaluated. A biopsy punch was used to remove a muscle tissue plug from the area immediately below the anterior dorsal fin of 31 smallmouth. An additional 35 smallmouth (controls) were held identically except that no tissue plug was removed. After sampling, all fish were held in a concrete hatchery raceway for 6 weeks. Mean survival at the end of the holding period was 97 % for both groups. Smallmouth length, weight and Fulton’s condition factor at the end of the holding period were also similar between plugged and non-plugged controls, indicating that the biopsy procedure had minimal impact on growth under these conditions. Tissue plug Hg concentrations were similar to smallmouth Hg data obtained in previous years by removing the entire fillet for analysis.
Ackerson, R.J.; McKee, J.M.; Schmitt, C.J.; Brumbaugh, William G.
2014-01-01
A non-lethal biopsy method for monitoring mercury (Hg) concentrations in smallmouth bass (Micropterus dolomieu; smallmouth) from the Eleven Point River in southern Missouri USA was evaluated. A biopsy punch was used to remove a muscle tissue plug from the area immediately below the anterior dorsal fin of 31 smallmouth. An additional 35 smallmouth (controls) were held identically except that no tissue plug was removed. After sampling, all fish were held in a concrete hatchery raceway for 6 weeks. Mean survival at the end of the holding period was 97 % for both groups. Smallmouth length, weight and Fulton’s condition factor at the end of the holding period were also similar between plugged and non-plugged controls, indicating that the biopsy procedure had minimal impact on growth under these conditions. Tissue plug Hg concentrations were similar to smallmouth Hg data obtained in previous years by removing the entire fillet for analysis.
Comparison of trace element concentrations in tissue of common carp and implications for monitoring
Goldstein, R.M.; DeWeese, L.R.
1999-01-01
Common carp (Cyprinus carpio) collected from four sites in the Red River of the North in 1994 were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), selenium (So), and zinc (Zn). Concentrations differed among liver, muscle, and whole body. Generally, trace element concentrations were the greatest in livers while concentrations in whole bodies were greater than those in muscle for Cd, Cu, Ni, Pb, and Zn, and concentrations in muscle were similar to whole body for As and Se. Concentrations of Cr were lower in liver than either muscle or whole body. Correlations between liver and whole body concentrations were stronger than those between liver and muscle concentrations, but the strongest correlations were between muscle and whole body concentrations. Examination of tissue concentrations by collection sites suggested that, for a general survey, the whole body may be the most effective matrix to analyze.
Klimov, S V; Burakhanova, E A; Dubinina, I M; Alieva, G P; Sal'nikova, E B; Trunova, T I
2006-01-01
Data on morphophysiological monitoring of winter wheat (Triticum aestivum L.) cultivar Mironovskaya 808 grown in Hoagland and Arnon solution in a greenhouse and transferred to natural conditions in March-April 2004 with the mean daily temperature of 0.6 +/- 0.7 degrees C within the exposure period of 42 days are presented. Water content, dry weight of plants and their organs, frost hardiness of plants, degree of tissue damage by frost, CO2 metabolism (photosynthesis and respiration), concentrations of sugars in tissues and proportions between different sugar forms, and activities of soluble and insoluble acid and alkaline phosphatases were monitored. Monitoring was carried out for three experimental variants simulating different microclimatic conditions in spring: after snow melting (experiment I), under ice crust (experiment II), and under snow cover (experiment III). Plants in experiments III and II demonstrated a higher water content in tissues, lower frost hardiness, higher rates of biomass loss, lower concentration of sugars and lower di- to monosaccharide ratio in tissues, and higher total invertase activity, particularly, cell wall-associated acid invertase activity. The dark respiration rates at 0 degrees C did not significantly differ between experimental variants. The photosynthetic capacity at this measurement temperature was maintained in all experimental variants being most pronounced in experiment II with the most intense photoinhibition under natural conditions. Comparison of experiments III and II with experiment I is used to discuss the negative effect of changes in certain microclimatic variables associated with global warming and leading to plant extortion and death from frost in spring.
NASA Astrophysics Data System (ADS)
Li, Zebin; Li, Xianglin; Li, Ting
2018-02-01
Tissue inflammation is often accompanied by fever and edema, which are common and troublesome problems that probably trigger disability, lymphangitis, cosmetic deformity and cellulitis. Here we developed a device, which can measure concentration and temperature variations of water in local human body by extended near infrared spectroscopy in 900 1000 nm wavelength range. An experiment of four steps incremental cycling exercise was designed to change tissue water concentration and temperature of subjects. Body temperature was also estimated by tympanic thermometer and surface thermometer as comparisons during the experiment. In the stage of recovery after exercise, the signal detected by custom device is similar to tympanic thermometer at the beginning, but it is closer to the temperature of surface later. In particular, this signal shows a better linearity, and a significant change when the exercise was suspended. This study demonstrated the potential of optical touch-sensing for inflammation severity monitoring by measuring water concentration and temperature variations in local lesions.
Imaging of oxygen and hypoxia in cell and tissue samples.
Papkovsky, Dmitri B; Dmitriev, Ruslan I
2018-05-14
Molecular oxygen (O 2 ) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O 2 concentration, state of decreased O 2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O 2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O 2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.
NASA Astrophysics Data System (ADS)
Bradley, D. A.; Ng, K. H.; Green, S.; Mountford, P. J.; Shukri, A.; Evans, J.
1996-05-01
Members of this group have responded to a number of challenging health issues by attempting to devise sensitive XRF, NAA and low-kV radiographic measurement systems foboth in vivo and in vitro applications. These studies are generally either of toxicological importance, examine potential for diagnosing the presence of disease, or offer effective means for monitoring potentially harmful side-effects of therapy. Particular examples include the in vivo XRF investigation of human skeletal uptake of Pb in working and living environments, in vivo XRF monitoring of elevated levels of Fe in skin (indicating the presence of an undesirable side-effect of the treatment of thalassaemia), in vivo NAA monitoring of elevated levels of Al in bone (indicating an undesirable side-effect of the treatment of chronic renal failure) and in vitro characterization, by means of low-kV imaging, of a range of calcification parameters in healthy and diseased breast tissue. The latter investigation has been conducted in association with an in vitro NAA study of concentrations of trace elements in the same types of tissue. Figures of merit for the various measurement systems have been obtained in terms of minimum detectable levels and concentrations (MDL's and MDC's) and where applicable, image related parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LD Antrim; NP Kohn
This report, PNNL-11911 Rev. 1, was published in July 2000 and replaces PNNL-11911, which was published in September 1998. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samplesmore » from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Chlorinated pesticide concentrations in water samples were similar to pre-remediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.65 ng/L to 18.1 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 0.65 ng/L to 103 ng/L and exceeded the remediation goal of 0.59 ng/L. The highest concentrations of both pesticides were found in Lauritzen Canal, and the lowest levels were from the Richmond Inner Harbor Channel water. Unusual amounts of detritus in the water column at the time of sampling, particularly in Lauritzen Canal, could have contributed to the elevated pesticide concentrations and poor analytical precision.« less
DR5 as a reporter system to study auxin response in Populus.
Chen, Yiru; Yordanov, Yordan S; Ma, Cathleen; Strauss, Steven; Busov, Victor B
2013-03-01
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
Metal and transuranic records in mussel shells, byssal threads and tissues
NASA Astrophysics Data System (ADS)
Koide, Minoru; Lee, Dong Soo; Goldberg, Edward D.
1982-12-01
Bivalve shells offer several advantages over tissues for the monitoring of heavy metal pollutants in the marine environment. They are easier to handle and to store. The problem of whether to depurate the animals before analyses is avoided. The shells appear to be more sensitive to environmental heavy metals levels over the long term than do the soft parts. Of the substances examined (Cd, Cu, Zn, Pb, Ag, Ni, 238Pu and 239 + 240Pu) only Pb and Pu displayed a strong covariance between soft tissue and shell concentrations. There were strong correlations between metals in the shell but not in the soft tissues in general. The byssal threads, because of their enrichment of transuranic elements and of their ease in handling, may be useful in monitoring these metals. A very weak discharge of 238Pu to marine waters adjacent to a nuclear reactor was detected in the byssal threads of mussels.
Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum.
Zobayed, S M A; Afreen, F; Goto, E; Kozai, T
2006-10-01
Hypericum perforatum is a perennial herbaceous plant and an extract from this plant has a significant antidepressant effect when administered to humans. The plant is characterized by its secretory glands, also known as dark glands, which are mainly visible on leaves and flowers. The current study evaluates the influence of several environmental factors and developmental stages of the plant on the accumulation and synthesis of hypericin and pseudohypericin (Hy-G), the major bioactive constituents, in H. perforatum plants. The appearance of dark glands on different parts of the plant, under several environmental conditions, was monitored by microscopy. Hy-G concentrations were quantified by high-performance liquid chromatography. A significant presence of dark glands accompanying the highest concentrations of Hy-G was observed in the stamen tissues more than in any other organ of H. perforatum. A linear relationship between the number of dark glands and net photosynthetic rate of the leaf and Hy-G concentration in the leaf tissue was also established. A very high concentration of Hy-G was measured in the dark-gland tissues, but in the tissues without any dark glands it was almost absent. The presence of emodin, a precursor of Hy-G, at a high concentration in the dark-gland tissues, and its absence in the surrounding tissues was also observed, suggesting that the site of biosynthesis of Hy-G is in the dark-gland cells. A significantly low concentration of Hy-G (occasionally non-detectable) was measured in the xylem sap of the stem tissues. The dark-gland tissues collected from leaves, stems or flowers contained similar concentrations of Hy-G. The concentration of Hy-G in various organs of H. perforatum plants is dependent on the number of dark glands, their size or area, not on the location of the dark glands on the plant. The study provides the first experimental evidence that Hy-G is synthesized and accumulates in dark glands.
Shepherd, Thomas; Rumengan, Inneke; Sahami, Ali
2018-06-01
The post-depositional geochemical behaviour of mercury and arsenic in submarine mine tailings from the Mesel Gold Mine in Buyat Bay, North Sulawesi, Indonesia was assessed by in situ sampling of tailings porewaters using dialysis arrays and seawater and fish monitoring. Under steady-state conditions one year after cessation of tailings discharge, the calculated arsenic efflux incrementally added 0.8 μg/L of arsenic to the overlying seawater. The mercury efflux across the tailings-seawater interface was negligible. The arsenic and mercury concentration in seawater bottom samples monitored biannually during a 9-year post-closure program were 1.54 μg/L and <0.05 μg/L, respectively. Analysis of 650 fish tissue samples, from the post-closure monitoring had mean mercury and arsenic concentrations consistently below the FAO/WHO CODEX, and Australian and New Zealand National Food Standards, respectively. The results of the porewater, seawater and fish tissue demonstrate that the arsenic and mercury-bearing bearing compounds in the tailings are geochemically stable. Copyright © 2018 Elsevier Ltd. All rights reserved.
Implementing oxygen control in chip-based cell and tissue culture systems.
Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth
2016-09-21
Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.
Kacprzak, Michal; Liebert, Adam; Staszkiewicz, Walerian; Gabrusiewicz, Andrzej; Sawosz, Piotr; Madycki, Grzegorz; Maniewski, Roman
2012-01-01
Recent studies have shown that time-resolved optical measurements of the head can estimate changes in the absorption coefficient with depth discrimination. Thus, changes in tissue oxygenation, which are specific to intracranial tissues, can be assessed using this advanced technique, and this method allows us to avoid the influence of changes to extracerebral tissue oxygenation on the measured signals. We report the results of time-resolved optical imaging that was carried out during carotid endarterectomy. This surgery remains the "gold standard" treatment for carotid stenosis, and intraoperative brain oxygenation monitoring may improve the safety of this procedure. A time-resolved optical imager was utilized within the operating theater. This instrument allows for the simultaneous acquisition of 32 distributions of the time-of-flight of photons at two wavelengths on both hemispheres. Analysis of the statistical moments of the measured distributions of the time-of-flight of photons was applied for estimating changes in the absorption coefficient as a function of depth. Time courses of changes in oxy- and deoxyhemoglobin of the extra- and intracerebral compartments during cross-clamping of the carotid arteries were obtained. A decrease in the oxyhemoglobin concentration and an increase in the deoxyhemoglobin concentrations were observed in a large area of the head. Large changes were observed in the hemisphere ipsilateral to the site of clamped carotid arteries. Smaller amplitude changes were noted at the contralateral site. We also found that changes in the hemoglobin signals, as estimated from intracerebral tissue, are very sensitive to clamping of the internal carotid artery, whereas its sensitivity to clamping of the external carotid artery is limited. We concluded that intraoperative multichannel measurements allow for imaging of brain tissue hemodynamics. However, when monitoring the brain during carotid surgery, a single-channel measurement may be sufficient.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki
2017-02-01
We propose a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation, and the scattering power b in the expression of μs'=aλ-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, the RGB-values are converted into the tristimulus values in CIEXYZ color space which is compatible with the common RGB working spaces. Monte Carlo simulation (MCS) for light transport in tissue is used to specify a relation among the tristimulus XYZ-values and the concentration of oxygenated hemoglobin, that of deoxygenated hemoglobin, and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed rat brain during the cortical spreading depolarization evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Decrease in the scattering power b was observed before the profound increase in the total hemoglobin concentration, which is indicative of the reversible morphological changes in brain tissue during CSD. The results in this study indicate potential of the method to evaluate the pathophysiological conditions in brain tissue with a digital red-green-blue camera.
Or-Tzadikario, Shira; Sopher, Ran; Gefen, Amit
2010-10-01
Adipose tissue engineering is investigated for native fat substitutes and wound healing model systems. Research and clinical applications of bioartificial fat require a quantitative and objective method to continuously measure adipogenesis in living cultures as opposed to currently used culture-destructive techniques that stain lipid droplet (LD) accumulation. To allow standardization, automatic quantification of LD size is further needed, but currently LD size is measured mostly manually. We developed an image processing-based method that does not require staining to monitor adipose cell maturation in vitro nondestructively using optical micrographs taken consecutively during culturing. We employed our method to monitor LD accumulation in 3T3-L1 and mesenchymal stem cells over 37 days. For each cell type, percentage of lipid area, number of droplets per cell, and droplet diameter were obtained every 2-3 days. In 3T3-L1 cultures, high insulin concentration (10 microg/mL) yielded a significantly different (p < 0.01) time course of all three outcome measures. In mesenchymal stem cell cultures, high fetal bovine serum concentration (12.5%) produced significantly more lipid area (p < 0.01). Our method was able to successfully characterize time courses and extents of adipogenesis and is useful for a wide range of applications testing the effects of biochemical, mechanical, and thermal stimulations in tissue engineering of bioartificial fat constructs.
CONTAMINANT CONCENTRATIONS IN WHOLE-BODY FISH AND SHELLFISH FROM U.S. ESTUARIES
Persistent bioaccumulative and toxic (PBT) pollutants are chemical contaminants that pose risks to ecosystems and human health. For these reasons, available tissue contaminant data from the US EPA Environmental Monitoring and Assessment Program's National Coastal Assessment were...
Noll, Benjamin D; Coller, Janet K; Somogyi, Andrew A; Morris, Raymond G; Russ, Graeme R; Hesselink, Dennis A; Van Gelder, Teun; Sallustio, Benedetta C
2013-10-01
Tacrolimus (TAC) has a narrow therapeutic index and high interindividual and intraindividual pharmacokinetic variability, necessitating therapeutic drug monitoring to individualize dosage. Recent evidence suggests that intragraft TAC concentrations may better predict transplant outcomes. This study aimed to develop a method for the quantification of TAC in small biopsy-sized samples of rat kidney and liver tissue, which could be applied to clinical biopsy samples from kidney transplant recipients. Kidneys and livers were harvested from Mrp2-deficient TR- Wistar rats administered TAC (4 mg·kg·d for 14 days, n = 8) or vehicle (n = 10). Tissue samples (0.20-1.00 mg of dry weight) were solubilized enzymatically and underwent liquid-liquid extraction before analysis by liquid chromatography tandem mass spectrometry method. TAC-free tissue was used in the calibrator and quality control samples. Analyte detection was accomplished using positive electrospray ionization (TAC: m/z 821.5 → 768.6; internal standard ascomycin m/z 809.3 → 756.4). Calibration curves (0.04-2.6 μg/L) were linear (R > 0.99, n = 10), with interday and intraday calibrator coefficients of variation and bias <17% at the lower limit of quantification and <15% at all other concentrations (n = 6-10). Extraction efficiencies for TAC and ascomycin were approximately 70%, and matrix effects were minimal. Rat kidney TAC concentrations were higher (range 109-190 pg/mg tissue) than those in the liver (range 22-53 pg/mg of tissue), with median tissue/blood concentrations ratios of 72.0 and 17.6, respectively. In 2 transplant patients, kidney TAC concentrations ranged from 119 to 285 pg/mg of tissue and were approximately 20 times higher than whole blood trough TAC concentrations. The method displayed precision and accuracy suitable for application to TAC measurement in human kidney biopsy tissue.
NASA Astrophysics Data System (ADS)
Xu, Guodong; Luo, Qingming; Ge, Xinfa; Gong, Hui; Zeng, Shaoqun
2002-04-01
Near-infrared spectroscopy (NIRS) is a focus of attention in the research field of biomedical photonics. The concentration of HbO2 in human skeletal muscle has been measured noninvasive NIRS using a portable tissue oximeter continuously when the subjects did incremental exercises on a power bicycle. Blood lactate is one of traditional physical research subjects which is applied most widely. We study blood volume in the tissue of sportsmen when they are subjected by the incremental physical load, simultaneously detecting some parameters such as the heart rate, maximal oxygen absorption and the concentration of blood lactate. As the intensity of exercises was heightened, the concentration of blood lactate and blood volume in tissue increased, while the concentration of HbO2 decreased. Thus the rudimental characteristics of energy consumption and supply during hypoxia and aerobic exercises are investigated. By discovering the relationship between blood lactate in human skeletal muscle and blood oxygenation, a novel approach for measuring blood lactate noninvasively and assessing the sports ability could be provided. Furthermore, it is possible to assess the fatigue state with tissue oximeter to monitor the human sports intensity noninvasively and dynamically.
NASA Astrophysics Data System (ADS)
Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan
2014-12-01
Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.
Lead and cadmium in wild birds in southeastern Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Fernandez, A.J.; Sanchez-Garcia, J.A.; Luna, A.
1995-12-01
The main purpose of this study was to monitor exposure to lead and cadmium in wild birds in Murcia, a southeastern region of Spain on the Mediterranean coast. This region lies on one of the African-European flyways. Samples of liver, kidney, brain, bone, and whole blood from several species of wild birds were obtained during 1993. The authors found a clear relationship between cadmium and lead concentrations in birds and their feedings habits. Vultures (Gyps fulvus) had the highest concentrations of lead (mean 40 {micro}g/dl in blood), and seagulls (Larus argentatus and Larus ridibundus) the highest concentrations of cadmium (meanmore » 4.43 {micro}g/g in kidney). Insectivores had high concentrations of both metals, and diurnal and nocturnal raptors showed the lowest tissue concentrations. The findings that tissue and blood concentrations were generally not elevated suggests environmental (rather than acute) exposure. Birds from more industrialized areas of the region studied here had higher concentrations of both lead and cadmium.« less
Rouane-Hacene, Omar; Boutiba, Zitouni; Benaissa, Meriem; Belhaouari, Benkhedda; Francour, Patrice; Guibbolini-Sabatier, Marielle E; Faverney, Christine Risso-De
2018-04-01
The aim of the present work was to extend our knowledge on the variability of trace metals in sea urchin tissues, focusing on seasonal fluctuations (2010 February for "winter," May for "spring," August for "summer," November for "autumn") in the three different sampling sites of Algerian west coast (Oran Harbor (S1), Ain Defla (S2), and Hadjaj (belonging to Mostaganem City S3)). For this purpose, the bioavailability (metal indices) and bioaccumulation (metal concentrations in soft tissues) of heavy metals (Zn, Cu, Pb, and Cd), the physiological characteristics (e.g., biological indices such as condition index (CI), repletion index (RI), gonad index (GI)), and the biometric parameters (diameter (D) and the height (H)) of sea urchins Paracentrotus lividus were assessed and related to seasons and sites. To investigate the metal bioavailability to sea urchins more precisely, the metal indices were used as a reliable tool in the present work, instead of the metal concentrations only. The interest to standardize metal concentrations with the weight of the urchin test is to overcome the metal burden variations in the soft tissues of urchin related to the seasonal weight changes of the soft body of animal. We evidence that the most contaminated sites were S1 and S2. Furthermore, it should be noted that the bioavailability of metals, corresponding to the values of metal indices, is also more pronounced in S1 and S2 compared to that measured in S3. Thus, a correlation is observed between seasonal metal content in urchin tissues from the three sites and the corresponding metal indices. The high metal concentrations were obtained during the period when RI and CI were highest. So, it appears that the bioaccumulation of metals in sea urchins of the three sites studied is significantly influenced by the reproductive cycle and diet, feeding activity, and physiological state of these organisms. We noticed that the sea urchins from the sites S1 and S2 were small in size. It is probable that these animals, whose internal tissues contained high concentrations of metals, have been exposed to metal pollution, which might have affected both their growth and altered their physiological capacity. This approach is very original and might be used in the monitoring of the quality of coastal waters, and the present work provided a useful data set for Mediterranean monitoring network.
Roszkowska, Anna; Tascon, Marcos; Bojko, Barbara; Goryński, Krzysztof; Dos Santos, Pedro Reck; Cypel, Marcelo; Pawliszyn, Janusz
2018-06-01
The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g -1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mercado, Karla Patricia E.
Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.
Rejmstad, Peter; Johansson, Johannes D; Haj-Hosseini, Neda; Wårdell, Karin
2017-03-01
Continuous measurement of local brain oxygen saturation (SO 2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO 2 ), which is closely related to SO 2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO 2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO 2 for different blood concentrations. The P 3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO 2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO 2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A device for high-throughput monitoring of degradation in soft tissue samples.
Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G
2018-06-06
This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biotransformation of glyceryl trinitrate occurs concurrently with relaxation of rabbit aorta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brien, J.F.; McLaughlin, B.E.; Breedon, T.H.
1986-05-01
This study was conducted to test the hypothesis that biotransformation of glyceryl trinitrate (GTN) is involved in GTN-induced relaxation of vascular smooth muscle. Isolated rabbit aortic strips (RAS) were contracted submaximally with phenylephrine (PE) and then were incubated with 0.5 microM (/sup 14/C)GTN in a time course study. GTN-induced relaxation (inhibition of PE-induced tone) of RAS was monitored and tissue GTN and glyceryl-1,2- and 1,3-dinitrate (GDN) concentrations were measured by thin-layer chromatography and liquid scintillation spectrometry at 0.5, 1, 2 and 20 min after incubation. Biotransformation of GTN to GDN occurred during GTN-induced relaxation of RAS. The tissue GDN concentrationmore » was dependent on the time duration of incubation with GTN and was related to the magnitude of GTN-induced tissue relaxation. At the 20-min interval, the GDN concentration in the incubation medium indicated appreciable efflux of GDN metabolites from the RAS. In the biotransformation of GTN by RAS, there was about 4-fold preferential formation of 1,2-GDN compared with 1,3-GDN. RAS were made tolerant to GTN in vitro by incubation with 500 microM GTN for 1 hr. After washing, GTN-tolerant and nontolerant (incubation with vehicle for 1 hr) RAS were contracted submaximally with PE, and then were incubated with 0.5 microM (/sup 14/C)GTN for 2 min. GTN-induced relaxation of RAS and tissue GDN concentration were significantly less for GTN-tolerant tissue compared with nontolerant tissue. Tissue GTN concentration was similar for both GTN-tolerant and nontolerant RAS, which indicated that the tissue uptake of GTN was similar and that GTN biotransformation was diminished in tolerant tissue.(ABST« less
Use of rapid sampling microdialysis for intraoperative monitoring of bowel ischemia.
Deeba, S; Corcoles, E P; Hanna, G B; Hanna, B G; Pareskevas, P; Aziz, O; Boutelle, M G; Darzi, A
2008-09-01
Intestinal ischemia is a major cause of anastomotic leak and death and remains a clinical challenge as the physician relies on several nonspecific signs, biologic markers, and radiologic studies to make the diagnosis. This study used rapid sampling online microdialysis to evaluate the biochemical changes occurring in a segment of human bowel during and after resection, and assessed for the feasibility and reproducibility of this technique in monitoring intestinal ischemia. A custom made, rapid sampling online microdialysis analyzer was used to monitor the changes in the bowel wall of specimens being resected intraoperatively. Two patients were recruited for the pilot study to optimize the analyzer and seven patients undergoing colonic resections were recruited for the data collection and analysis. The concentration of glucose in the extracellular bowel wall fluid decreased transiently after division of individual feeding arteries followed by a rebound increase in the concentration back to baseline concentrations. After completion of resection, glucose concentrations continued to decrease while lactate concentrations increased constantly. Rapid sampling microdialysis was feasible in the clinical environment. These results suggest that tissue responds to ischemic insult by mobilizing glucose stores which later decrease again, whereas lactate concentrations constantly increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LD Antrim; NP Kohn
Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California Statemore » Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieidrin concentrations in water ranged from 0.62 rig/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both pesticides were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. Tissue samples from biomonitoring organisms (mussels) provide an indication of the longer-term integrated exposure to contaminants in the water column, which overcomes the limitations of grab samples of water. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were dramatically lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. The lowest levels were found at the Richmond Inner Harbor Channel station (4.1 {micro}g/kg total DDT and 0.59 {micro}g/kg dieldrin, wet weight; mean of resident and transplant mussels). Mean chlorinated pesticide concentrations were highest at Lauritzen Canal/End (82 {micro}g/kg total DDT and 7.1 {micro}g/kg dieldrin, wet weight), followed by Lauritzen Canal/Mouth (22 {micro}/kg total DDT and 1.7 {micro}g/kg dieldrin, wet weight) and Santa Fe Channel/End (7.5 {micro}g/kg total DOT and 0.61 {micro}g/kg dieldrin, wet weight). These levels are 95% to 99% lower than those recorded by the California State Mussel Watch program prior to EPA's response actions. The levels of PCBs in mussel tissue were also reduced by 93% to 97% from preremediation levels. Surface sediment concentrations of dieldrin and DDT in November 1998 were highest in samples from the head or north end of Lauritzen Canal and progressively lower toward the mouth, or south end. Total DDT ranged from 130 ppm (dry weight) at the north end to 3 ppm at the south end. Dieldrin concentrations decreased from 3,270 ppb (dry weight) at the north end to 52 ppb at the south end. These results confirmed elevated pesticide concentrations in sediments collected from Lauritzen Channel by Anderson et al. (1999). The pesticide concentrations were lower than maximum concentrations found in the 1993 Remedial Investigation but comparable to the median levels measured before remediation was completed. Sediment analyses also showed the presence of elevated PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.« less
Mercury in Indiana watersheds: retrospective for 2001-2006
Risch, Martin R.; Baker, Nancy T.; Fowler, Kathleen K.; Egler, Amanda L.; Lampe, David C.
2010-01-01
Information about total mercury and methylmercury concentrations in water samples and mercury concentrations in fish-tissue samples was summarized for 26 watersheds in Indiana that drain most of the land area of the State. Mercury levels were interpreted with information on streamflow, atmospheric mercury deposition, mercury emissions to the atmosphere, mercury in wastewater, and landscape characteristics. Unfiltered total mercury concentrations in 411 water samples from streams in the 26 watersheds had a median of 2.32 nanograms per liter (ng/L) and a maximum of 28.2 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 5.4 percent exceeded the 12-ng/L chronic-aquatic criterion, 59 percent exceeded the 1.8-ng/L Great Lakes human-health criterion, and 72.5 percent exceeded the 1.3-ng/L Great Lakes wildlife criterion. Mercury concentrations in water were related to streamflow, and the highest mercury concentrations were associated with the highest streamflows. On average, 67 percent of total mercury in streams was in a particulate form, and particulate mercury concentrations were significantly lower downstream from dams than at monitoring stations not affected by dams. Methylmercury is the organic fraction of total mercury and is the form of mercury that accumulates and magnifies in food chains. It is made from inorganic mercury by natural processes under specific conditions. Unfiltered methylmercury concentrations in 411 water samples had a median of 0.10 ng/L and a maximum of 0.66 ng/L. Methylmercury was a median 3.7 percent and maximum 64.8 percent of the total mercury in 252 samples for which methylmercury was reported. The percentages of methylmercury in water samples were significantly higher downstream from dams than at other monitoring stations. Nearly all of the total mercury detected in fish tissue was assumed to be methylmercury. Fish-tissue samples from the 26 watersheds had wet-weight mercury concentrations that exceeded the 0.3 milligram per kilogram (mg/kg) U.S. Environmental Protection Agency (USEPA) methylmercury criterion in 12.4 percent of the 1,731 samples. The median wet-weight concentration in the fish-tissue samples was 0.13 mg/kg, and the maximum was 1.07 mg/kg. A coarse-scale analysis of all fish-tissue data in each watershed and a fine-scale analysis of data within 5 kilometers (km) of the downstream end of each watershed showed similar results overall. Mercury concentrations in fish-tissue samples were highest in the White River watershed in southern Indiana and the Fall Creek watershed in central Indiana. In fish-tissue samples within 5 km of the downstream end of a watershed, the USEPA methylmercury criterion was exceeded by 45 percent of mercury concentrations from the White River watershed and 40 percent of the mercury concentration from the Fall Creek watershed. A clear relation between mercury concentrations in fish-tissue samples and methylmercury concentrations in water was not observed in the data from watersheds in Indiana. Average annual atmospheric mercury wet-deposition rates were mapped with data at 156 locations in Indiana and four surrounding states for 2001-2006. These maps revealed an area in southeastern Indiana with high mercury wet-deposition rates-from 15 to 19 micrograms per square meter per year (ug/m2/yr). Annual atmospheric mercury dry-deposition rates were estimated with an inferential method by using concentrations of mercury species in air samples at three locations in Indiana. Mercury dry deposition-rates were 5.6 to 13.6 ug/m2/yr and were 0.49 to 1.4 times mercury wet-deposition rates. Total mercury concentrations were detected in 96 percent of 402 samples of wastewater effluent from 50 publicly owned treatment works in the watersheds; the median concentration was 3.0 ng/L, and the maximum was 88 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 12 percent exceeded the 12-n
Zhao, Daoli; Brown, Andrew; Wang, Tingting; Yoshizawa, Sayuri; Sfeir, Charles; Heineman, William R
2018-04-20
Magnesium (Mg) medical devices are currently being marketed for orthopedic applications and have a complex degradation process which includes the evolution of hydrogen gas (H 2 ). The effect of H 2 exposure on relevant cell types has not been studied; and the concentration surrounding degrading Mg devices has not been quantified to enable such mechanistic studies. A simple and effective method to measure the concentration of H 2 in varying microenvironments surrounding Mg implants is the first step to understanding the biological impact of H 2 on these cells. Here, the in vivo measurement of H 2 surrounding fracture fixation devices implanted in vivo is demonstrated. An electrochemical H 2 microsensor detected increased levels of H 2 at three anatomical sites with a response time of about 30 s. The sensor showed the H 2 concentration in the bone marrow at 1 week post-implantation (1460 ± 320 µM) to be much higher than measured in the subcutaneous tissue (550 ± 210 µM) and at the skin surface (120 ± 50 µM). Additionally, the H 2 concentrations measured in the bone marrow exceeded the concentration in a H 2 saturated water solution (∼800 µM). These results suggest that H 2 emanating from Mg implants in bone during degradation pass through the bone marrow and become at least partially trapped because of slow permeation through the bone. This study is the first to identify H 2 concentrations in the bone marrow environment and will enable in vitro experiments to be executed at clinically relevant H 2 concentrations to explore possible biological effects of H 2 exposure. An electrochemical H 2 sensor was used to monitor the degradation of a Mg fracture fixation system in a lapine ulna fracture model. Interestingly, the H 2 concentration in the bone marrow is 82% higher than H 2 saturated water solution. This suggests H 2 generated in situ is trapped in the bone marrow and bone is less permeable than the surrounding tissues. The detectable H 2 at the rabbit skin also demonstrates a H 2 sensor's ability to monitor the degradation process under thin layers of tissue. H 2 sensing shows promise as a tool for monitoring the degradation of Mg alloy in vivo and creating in vitro test beds to more mechanistically evaluate the effects of varying H 2 concentrations on cell types relevant to osteogenesis. Copyright © 2018. Published by Elsevier Ltd.
Moncaleano-Niño, Angela M; Barrios-Latorre, Sergio A; Poloche-Hernández, Javier F; Becquet, Vanessa; Huet, Valérie; Villamil, Luisa; Thomas-Guyon, Hélène; Ahrens, Michael J; Luna-Acosta, Andrea
2017-04-01
Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5-5.0cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000μg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations≥100μg/L showed a significant increase, from 8.0 to 14.8μg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297μg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96h of exposure to 1000μg/L Cd, were significantly lower (0.04mg P/g gonad) compared to control oysters (0.68mg P/g gonad), suggestive of an anti-estrogenic effect of Cd at high concentrations, whereas no significant changes in vitellogenin concentrations were observed at intermediate Cd exposure concentrations. This study confirms acute responses of metallothionein and vitellogenin concentrations in tissues of Saccostrea sp. exposed to high concentrations of cadmium (Cd≥100μg/L, 96h). The present results are first step towards validating the use of these two proteins as biomarkers of metal exposure in this species. Copyright © 2017 Elsevier B.V. All rights reserved.
Study on the abuse of amantadine in tissues of broiler chickens by HPLC-MS/MS.
You, X; Yang, S; Zhao, J; Zhang, Y; Zhao, L; Cheng, Y; Hou, C; Xu, Z
2017-10-01
To evaluate the residual target tissues for better monitoring of amantadine abuse in broiler chickens, 22-day-old commercial Arbor Acres broiler chickens were, respectively, fed with 10, 20, and 40 mg/kg of amantadine for five consecutive days. Plasma, breast, and liver tissue samples from the chickens were collected 0, 4, 16, 24, 48, 96, 144, and 312 h after amantadine withdrawal. The high-performance liquid chromatography-tandem mass spectrometry method was used to detect the concentrations of amantadine. The highest concentration was found in the chicken liver and it took the longest time for amantadine to vanish by metabolism. In the high-dose group, amantadine residues were still detected 312 h after amantadine withdrawal. As the amantadine dose increased, amantadine residues in the chicken liver were more slowly to disappear than in other tissues. Even if approximately the same concentration of amantadine residues was found in chicken breast and plasma samples, it took a shorter time before the residues were eliminated. In the medium- and high-dose groups, the concentrations of amantadine residues in chicken liver samples were substantially higher than those in chicken breast and plasma samples, and it took more time to eliminate them. Therefore, the chicken liver can be used as a target tissue to detect illegal use of amantadine. © 2017 John Wiley & Sons Ltd.
Progress toward the development of an implantable sensor for glucose.
Wilson, G S; Zhang, Y; Reach, G; Moatti-Sirat, D; Poitout, V; Thévenot, D R; Lemonnier, F; Klein, J C
1992-09-01
The development of an electrochemically based implantable sensor for glucose is described. The sensor is needle-shaped, about the size of a 28-gauge needle. It is flexible and must be implanted subcutaneously by using a 21-gauge catheter, which is then removed. When combined with a monitoring unit, this device, based on the glucose oxidase-catalyzed oxidation of glucose, reliably monitors glucose concentrations for as long as 10 days in rats. Various design considerations, including the decision to monitor the hydrogen peroxide produced in the enzymatic reaction, are discussed. Glucose constitutes the most important future target analyte for continuous monitoring, but the basic methodology developed for glucose could be applied to several other analytes such as lactate or ascorbate. The success in implementation of such a device depends on a reaction of the tissue surrounding the implant so as not to interfere with the proper functioning of the sensor. Histochemical evidence indicates that the tissue response leads to enhanced sensor performance.
Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches.
Novák, Ondřej; Napier, Richard; Ljung, Karin
2017-04-28
Plant hormones are a group of naturally occurring, low-abundance organic compounds that influence physiological processes in plants. Our knowledge of the distribution profiles of phytohormones in plant organs, tissues, and cells is still incomplete, but advances in mass spectrometry have enabled significant progress in tissue- and cell-type-specific analyses of phytohormones over the last decade. Mass spectrometry is able to simultaneously identify and quantify hormones and their related substances. Biosensors, on the other hand, offer continuous monitoring; can visualize local distributions and real-time quantification; and, in the case of genetically encoded biosensors, are noninvasive. Thus, biosensors offer additional, complementary technologies for determining temporal and spatial changes in phytohormone concentrations. In this review, we focus on recent advances in mass spectrometry-based quantification, describe monitoring systems based on biosensors, and discuss validations of the various methods before looking ahead at future developments for both approaches.
Analysis of heavy metal accumulation in fish from the coastal waters of Terengganu, Malaysia
NASA Astrophysics Data System (ADS)
Rosli, M. N. R.; Samat, S. B.; Yasir, M. S.
2018-04-01
Bioaccumulation of toxic metals in fish causes serious threats to the human when they are consumed. Thus, the detection of toxic element concentration levels in fish is important. The accumulation of four heavy metal concentration of Cd, Cu, Mn and Zn in fish was determined. Five fish species namely Epinephelus lanceolatus, Rastrelliger, Megalaspis cordyla, Bramidae and Siganus canaliculatus were collected from the coastal waters of Terengganu, Malaysia. The analysis was done using inductive coupled plasma-mass spectrometer (ICP-MS) technique. The accumulation of the four heavy metals in muscle tissues of the fish are lower compared to liver and gill tissues. Cd concentration was higher in liver tissues except in Megalaspis cordyla. Meanwhile Cu concentration was higher in liver for all selected fishes. Mn concentration was higher in gill tissues of all fish studied while Zn concentration was higher in gill tissues except in Epinephelus lanceolatus and Rastrelliger. The highest average level of heavy metal recorded in fish is Zn (11.05 × 10-2 ± 1.44 × 10-2 mg kg-1) followed by Mn (1.81 × 10-2 ± 0.58 × 10-2 mg kg-1), Cu (0.70 × 10-2 ± 0.10 × 10-2 mg kg-1) and Cd (0.52×10-2 ± 0.27 × 10-2 mg kg-1). The metal concentration found in this study was lower than the national and international Recommended Dietary Allowance (RDA) for human consumption. Long term monitoring system of metal bioaccumulation in fishes need to be done to provide useful information for the assessment of the potential health risks of metals in Malaysia.
Smalling, Kelly L.; Deshpande, Ashok D.; Galbraith, Heather S.; Sharack, Beth; Timmons, DeMond; Baker, Ronald J.
2016-01-01
Resident mussels are effective indicators of ecosystem health and have been utilized in national assessment and monitoring studies for over two decades. Mussels were chosen because contaminant concentrations in their tissues respond to changes in ambient environmental levels, accumulation occurs with little metabolic transformation and a substantial amount of historic data were available. Mussels were collected from 10 previously studied locations approximately a year after Hurricane Sandy. Regionally, concentrations of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) decreased significantly, while concentrations of organochlorine pesticides (OCPs) remained unchanged, and polybrominated diphenyl ethers (PBDEs) increased compared to historic concentrations. Although concentrations of PCBs, OCPs and PAHs were at or near record low concentrations, long-term trends did not change after Hurricane Sandy. To effectively measure storm-induced impacts it is necessary to understand the factors influencing changes in mussel body burdens and have a long-term monitoring network and an ability to mobilize post event.
Smalling, Kelly L; Deshpande, Ashok D; Galbraith, Heather S; Sharack, Beth L; Timmons, DeMond; Baker, Ronald J
2016-06-30
Resident mussels are effective indicators of ecosystem health and have been utilized in national assessment and monitoring studies for over two decades. Mussels were chosen because contaminant concentrations in their tissues respond to changes in ambient environmental levels, accumulation occurs with little metabolic transformation and a substantial amount of historic data were available. Mussels were collected from 10 previously studied locations approximately a year after Hurricane Sandy. Regionally, concentrations of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) decreased significantly, while concentrations of organochlorine pesticides (OCPs) remained unchanged, and polybrominated diphenyl ethers (PBDEs) increased compared to historic concentrations. Although concentrations of PCBs, OCPs and PAHs were at or near record low concentrations, long-term trends did not change after Hurricane Sandy. To effectively measure storm-induced impacts it is necessary to understand the factors influencing changes in mussel body burdens and have a long-term monitoring network and an ability to mobilize post event. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Charamisinau, Ivan; Keymel, Kenneth; Potter, William; Oseroff, Allan R.
2006-02-01
Photodynamic therapy is an effective, minimally invasive skin cancer treatment modality with few side effects. Improved therapeutic selectivity and efficacy is expected if treatment is optimized individually for each patient based on detailed measurements prior and during the treatment. The handheld system presented allows measuring optical properties of the skin, the rate of photosensitizer photobleaching during the ALA PDT and oxygen saturation in the tissue. The photobleaching rate is monitored using fluorescence spectroscopy, where protoporphyrin IX in tissue is exited by 410 nm (blue) or 532 nm (green) laser light, and fluorescence in the 580-800 nm range is monitored. The photobleaching rate is calculated by correlating the measured spectrum with known protoporphyrin IX, photoproduct and nonspecific tissue autofluorescence spectra using correlation analysis. Double-wavelength excitation allows a rough estimation of the depth of the fluorescence source due to the significant difference in penetration depth for blue and green light. Blood concentration and oxygenation in the tissue are found from the white light reflectance spectrum in the 460-800 nm range. Known spectra for the oxy- and deoxyhemoglobin, melanin, and tissue baseline absorption and tissue scattering are substituted in nonlinear equations to find the penetration depth and diffuse reflectance coefficient. The nonlinear equation for the diffuse reflectance coefficient is solved for blood and melanin concentrations and blood oxygenation values that provide the best fit to the measured spectrum. The optical properties of the tissue obtained from the reflectance spectroscopy are used to correct the fluorescence data. A noncontact probe with 5 fibers (3 excitation and 2 detection) focused to the same 5 mm diameter spot: 2 excitation lasers, a white light lamp and a two-channel spectrometer are used. A LabView program with custom nonlinear equation solvers written in C++ automatically performs the measurements and calculations, and writes data to a database. The system is currently used in a clinical trial to find the relationship between skin pigmentation, oxygen saturation in blood, photobleaching rate and optimal fluence rate for skin cancer treatment of actinic keratoses.
Kjelgaard-Hansen, Mads; Strom, Henriette; Mikkelsen, Lars F; Eriksen, Thomas; Jensen, Asger L; Luntang-Jensen, Michael
2013-09-01
C-reactive protein (CRP) is an established serum marker for the presence of systemic inflammation in dogs. Results from previous experimental and clinical studies suggest that CRP concentrations also quantitatively reflect the degree and progress of an inflammatory process, suggesting its use for inflammation monitoring. The objective was to investigate whether the canine CRP response in serum correlates with the amount of trauma and the consequent inflammatory response after 3 standard aseptic soft-tissue surgical procedures in 3 groups of dogs. A total of 24 client-owned intact female dogs of various breeds were enrolled in a clinical study with random allocation into 2 surgical groups, for either conventional, open-approach ovariohysterectomy (OVH; n = 14) or laparoscopic assisted OVH (n = 10). In addition, a group of 8 male Beagles from a laboratory animal facility underwent vasectomy, serving as the third and mildest surgical trauma group. Serum CRP was measured pre- and at 4, 8, 12, 23, and 27 hours postsurgery. Cumulative concentration over time and point concentrations of CRP were correlated with the surgical trauma impact level. There was a significant surgery trauma-related difference in cumulative CRP concentrations among the 3 groups, and also in the 12 hours postsurgery concentration. The CRP response varied according to the degree of surgical trauma on 3 standardized levels, thus supporting the use of canine serum concentrations of CRP as an inflammatory activity indicator and monitoring marker. © 2013 American Society for Veterinary Clinical Pathology.
Thomé-Duret, V; Reach, G; Gangnerau, M N; Lemonnier, F; Klein, J C; Zhang, Y; Hu, Y; Wilson, G S
1996-11-01
The development of a hypoglycemic alarm system using a subcutaneous glucose sensor implies that a decrease in blood glucose is rapidly followed by a decrease in the signal generated by the sensor. In a first set of experiments the linearity and the kinetics of the response of sensors implanted in the subcutaneous tissue of normal rats were investigated during a progressive increase in plasma glucose concentration: the sensitivities determined between 5 and 10 mM and between 10 and 15 mM were not significantly different, and a 5-10 min delay in the sensor's response was observed. In a second set of experiments, performed in diabetic rats, the kinetics of the decrease in subcutaneous glucose concentration following insulin administration was monitored during a decrease in plasma glucose level, from 15 to 3 mmol/L. During the 20 first min following insulin administration, the sensor monitored glucose concentration in subcutaneous tissue with no lag time. Subsequently, the decrease in the estimation of subcutaneous glucose concentration preceded that of plasma glucose. This phenomenon was not observed when the same sensors were investigated in vitro during a similar decrease in glucose concentration and may be due to a mechanism occurring in vivo, such as the effect of insulin on glucose transfer from the interstitial space to the cells surrounding the sensor. It reinforces the interest of the use of implantable glucose sensors as a part of a hypoglycemic alarm.
TISSUE ASSAYS AND POPULATION CHARACTERISTICS OF ROOSEVELT HOT SPRINGS' ANIMALS (1977-1978)
Geothermal energy exploration is being conducted at several locations in the United States including a site at Roosevelt Hot Springs in southwest Utah. To assess any possible impact and to help design a monitoring strategy for geothermal development, element concentrations in ani...
Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru
2016-11-01
Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.
Development and clinical evaluation of noninvasive near-infrared monitoring of cerebral oxygenation
NASA Astrophysics Data System (ADS)
Wickramasinghe, Yappa A.; Rolfe, Peter J.; Palmer, Keith; Watkins, S.; Spencer, S. A.; Doyle, M.; O'Brien, S.; Walker, A.; Rice, C.; Smallpeice, C.
1994-02-01
Near infrared spectroscopy (NIRS) is a relatively new method which is suitable for monitoring oxygenation in blood and tissue in the brain of the fetus and the neonate. The technique involves in-vivo determination of the absorption of light in the wavelength range 775 to 900 nm through such tissue and converting such changes in absorbance to provide information about the changes in the concentration of oxygenated and de-oxygenated haemoglobin (HbO2 and Hb). Recent developments of the methodology now enable the calculation of changes in cerebral blood volume (CBV) as well as absolute CBV and cerebral blood flow (CBF). The attraction of this method is its applicability to monitor cerebral function in a wide variety of patient groups. Although primarily developed for neonatal use it is today applied on the fetus to investigate fetal hypoxia and on adults undergoing surgery.
Gaidajis, George
2003-01-01
To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.
Shenai-Tirodkar, Prachi S; Gauns, Mangesh U; Ansari, Zakir A
2016-12-01
The major beds of oyster along the central-west coast of India are exposed to different anthropogenic activities and are severely exploited for human consumption. In this viewpoint, tissues of oyster Crassostrea madrasensis, C. gryphoides and Saccostrea cucullata were analyzed for Cu, Ni, Cd and Pb concentrations (dry weight) from Chicalim Bay, Nerul Creek and Chapora Bay in pre-monsoon, monsoon and post-monsoon seasons. A higher concentration of Cu (134.4-2167.9 mg kg -1 ) and Cd (7.1-88.5 mg kg -1 ) was found, which is greater than the recommended limits in all the three species (and sites). Moreover, significant (p < 0.05) variations were observed for all the metals concentrations among the species, seasons and sites. The high concentrations of Cd and Cu in tissues of edible oyster pose a threat to human health. Therefore, continuous monitoring, people awareness and a stringent government policy should be implemented to mitigate the metal pollution along the studied sites.
NASA Astrophysics Data System (ADS)
Desrochers, Johanne; Vermette, Patrick; Fontaine, Réjean; Bérubé-Lauzière, Yves
2009-02-01
Current efforts in tissue engineering target the growth of 3D volumes of tissue cultures in bioreactor conditions. Fluorescence optical tomography has the potential to monitor cells viability and tissue growth non-destructively directly within the bioreactor via bio-molecular fluorescent labelling strategies. We currently work on developing the imaging instrumentation for tissue cultures in bioreactor conditions. Previously, we localized in 3D thin fluorescent-labelled capillaries in a cylindrically shaped bioreactor phantom containing a diffusive medium with our time-of-flight localization technique. Here, we present our first reconstruction results of the spatial distribution of fluorophore concentrations for labelled capillaries embedded in a bioreactor phantom.
Oaten, J F P; Hudson, M D; Jensen, A C; Williams, I D
2015-06-15
Metallothionein (MT) is established as a potentially useful biomarker for monitoring aquatic pollution. This paper addresses widespread inconsistencies in storage conditions, tissue type selection and pre-treatment of samples before MT and metal analysis in biomarker studies. This variation hampers comparability and so the widespread implementation of this monitoring approach. Actively sampled Mytilus edulis in Southampton Water, UK were exposed to different storage temperatures, a variety of tissue types were analysed, and various pre-treatments of transportation on ice, transportation in seawater, depuration, and rapid dissection in the field were examined. Storage temperatures of -20 °C were found to be adequate for periods of at least ten weeks, as MT was not reduced by protein degradation compared with samples kept at -80 °C. Whole tissue and digestive gland concentrations of MT and metals were significantly positively correlated and directly relatable. MT in the digestive gland appeared to be more responsive to metals than in whole tissue, where it may be diluted, masking MT responses. However, longer study periods may suffer the effects of mass changes to the digestive gland, which alters MT concentration, and it may therefore be advisable to measure whole tissue. Depuration and transportation in seawater reduced both MT and metal concentrations in the digestive gland, and few correlations between MT and metals were identified for these treatments. It is therefore recommended that: i) samples are transported to the laboratory on ice and dissected as soon as possible thereafter, ii) depuration should not be used when examining MT response to metal exposure until further research clarifying its utility is reported, iii) either whole tissue or the digestive gland can be used to measure MT, though whole tissue may be preferable on long-term studies, and iv) organisms can be stored at -20 °C before analysis for up to ten weeks. These practices can be applied to future biomonitoring studies and will improve the comparability and repeatability of using MT as a biomarker. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oruganti, Tanmayi; Petrova, Elena; Oraevsky, Alexander A.; Ermilov, Sergey A.
2015-03-01
Optoacoustic (photoacoustic) imaging is being adopted for monitoring tissue temperature during hypothermic and hyperthermic cancer treatments. The technique's accuracy benefits from the knowledge of speed of sound (SoS) and acoustic coefficient of attenuation (AcA) as they change with temperature in biological tissues, blood, and acoustic lens of an ultrasound probe. In these studies we measured SoS and AcA of different ex vivo tissues and blood components (plasma and erythrocyte concentrates) in the temperature range from 5°C to 60°C. We used the technique based on measurements of time-delay and spectral amplitude of pressure pulses generated by wideband planar acoustic waves propagating through the interrogated medium. Water was used as a reference medium with known acoustic properties. In order to validate our experimental technique, we measured the temperature dependence of SoS and AcA for aqueous NaCl solution of known concentration and obtained the results in agreement with published data. Similar to NaCl solution and pure water, SoS in blood and plasma was monotonously increasing with temperature. However, SoS of erythrocyte concentrates displayed abnormalities at temperatures above 45°C, suggesting potential effects from hemoglobin denaturation and/or hemolysis of erythrocytes. On the contrary to aqueous solutions, the SoS in polyvinyl-chloride (plastisol) - a material frequently used for mimicking optical and acoustic properties of tissues - decreased with temperature. We also measured SoS and AcA in silicon material of an acoustic lens and did not observe temperature-related changes of SoS.
Chan, Caroline; Heinbokel, John F; Myers, John A; Jacobs, Robert R
2012-10-01
A complex interplay of factors determines the degree of bioaccumulation of Hg in fish in any particular basin. Although certain watershed characteristics have been associated with higher or lower bioaccumulation rates, the relationships between these characteristics are poorly understood. To add to this understanding, a dynamic model was built to examine these relationships in stream systems. The model follows Hg from the water column, through microbial conversion and subsequent concentration, through the food web to piscivorous fish. The model was calibrated to 7 basins in Kentucky and further evaluated by comparing output to 7 sites in, or proximal to, the Ohio River Valley, an underrepresented region in the bioaccumulation literature. Water quality and basin characteristics were inputs into the model, with tissue concentrations of Hg of generic trophic level 3, 3.5, and 4 fish the output. Regulatory and monitoring data were used to calibrate and evaluate the model. Mean average prediction error for Kentucky sites was 26%, whereas mean error for evaluation sites was 51%. Variability within natural systems can be substantial and was quantified for fish tissue by analysis of the US Geological Survey National Fish Database. This analysis pointed to the need for more systematic sampling of fish tissue. Analysis of model output indicated that parameters that had the greatest impact on bioaccumulation influenced the system at several points. These parameters included forested and wetlands coverage and nutrient levels. Factors that were less sensitive modified the system at only 1 point and included the unfiltered total Hg input and the portion of the basin that is developed. Copyright © 2012 SETAC.
Photoacoustic microscopy of bilirubin in tissue phantoms
NASA Astrophysics Data System (ADS)
Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.
2012-12-01
Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.
Simulation of an enzyme-based glucose sensor
NASA Astrophysics Data System (ADS)
Sha, Xianzheng; Jablecki, Michael; Gough, David A.
2001-09-01
An important biosensor application is the continuous monitoring blood or tissue fluid glucose concentration in people with diabetes. Our research focuses on the development of a glucose sensor based on potentiostatic oxygen electrodes and immobilized glucose oxidase for long- term application as an implant in tissues. As the sensor signal depends on many design variables, a trial-and-error approach to sensor optimization can be time-consuming. Here, the properties of an implantable glucose sensor are optimized by a systematic computational simulation approach.
RF Safety Analysis of a Novel Ultra-wideband Fetal Monitoring System.
Bushberg, Jerrold T; Tupin, J Paul
2017-05-01
The LifeWave Ultra-Wideband RF sensor (LWUWBS) is a monitoring solution for a variety of physiologic assessment applications, including maternal fetal monitoring in both the antepartum and intrapartum periods. The system uses extremely low power radio frequency (RF) ultra-wide band (UWB) signals to provide continuous fetal heart rate and contractions monitoring during labor and delivery. Even with the incorporation of three very conservative assumptions, (1) concentration of the RF energy in 1 cm, (2) minimal (2.5 cm) maternal tissue attenuation of fetal exposure, and (3) absence of normal thermoregulatory compensation, the maternal whole body spatial-averaged specific absorption rate (WBSAR) would be 34,000 times below the FCC public exposure limit of 0.08 W kg and, at 8 wk or more gestation, the peak spatial-averaged specific absorption rate (PSSAR) in the fetus would be more than 160 times below the localized exposure limit of 1.6 mW g. Even when using very conservative assumptions, an analysis of the LWUWBS's impact on tissue heating is a factor of 7 lower than what is allowed for fetal ultrasound and at least a factor of 650 compared to fetal MRI. The actual transmitted power levels of the LWUWBS are well below all Federal safety standards, and the potential for tissue heating is substantially lower than associated with current ultrasonic fetal monitors and MRI.
Surface-enhanced Raman scattering of rat tissues.
Aydin, Omer; Kahraman, Mehmet; Kiliç, Ertuğul; Culha, Mustafa
2009-06-01
Surface-enhanced Raman scattering (SERS) is proven to be a powerful tool for investigation of biological structures. In this study, tissues obtained from different rat organs are examined using SERS. The tissue samples are crushed with a pestle after sudden freezing in liquid nitrogen and mixed with a concentrated colloidal silver nanoparticle suspension. The reproducibility of SERS spectra acquired from several tissue samples from different organs is demonstrated. The collected spectra are comparatively evaluated based on the physiological function of the organ from which the tissue is obtained. The spectra from the tissues show significant differences and indicate that they can be used for tissue characterization and differentiation. The identification of the origins of the bands on the spectra is also attempted. This study suggests that SERS can be used to monitor the changes at the molecular level during metabolic changes in an organ or tissue as a result of a disease or another cause.
Plakas, S.M.; El Said, K. R.; Stehly, G.R.; Gingerich, W.H.; Allen, J.L.
1996-01-01
The disposition of malachite green was determined in channel catfish (Ictalurus punctatus) after intravascular dosing (0.8 mg . Kg-1) or waterborne exposure (0.8 mg . L-1 for 1 h). After intravascular dosing, mean plasma concentrations of the parent compound exhibited a triphasic decline with a terminal elimination half-life of 6.2 h. Malachite green was rapidly absorbed and concentrated in the tissues during waterborne exposure. The rate of accumulation was directly related to pH of the exposure water. After waterborne exposure, elimination of the parent compound from plasma also was triphasic with a terminal half-life of 4.7 h. In muscle, the half-life of the parent compound was approximately 67 h. Malachite green and its metabolites were widely distributed in all tissues. In fish exposed to C-14-labeled malachite green, total drug equivalent concentrations were highest in abdominal fat and lowest in plasma. Malachite green was rapidly and extensively metabolized to its reduced form, leucomalachite green, which was slowly eliminated from the tissues. Leucomalachite green is an appropriate target analyte for monitoring exposure of channel catfish to this drug.
Pea, Federico
2016-04-01
This article gives an overview of the practical concept of pharmacokinetic/pharmacodynamic principles useful for clinicians in the management of skin and soft tissue infections (SSTIs). Recent studies suggest that distinguishing between bacteriostatic or bactericidal activity when choosing an antimicrobial for the treatment of severe infections could probably be clinically irrelevant. Conversely, what could help clinicians in maximizing the therapeutic efficacy of the various drugs in routine practice is taking care of some pharmacokinetic/pharmacodynamic principles. Concentration-dependent agents may exhibit more rapid bacterial killing than observed with time-dependent agents. Serum concentrations may not always adequately predict tissue exposure in patients with SSTIs, and measuring concentrations at the infection site is preferable. Hydrophilic antimicrobials showed generally lower penetration rates than the lipophilic ones and might require alternative dosing approaches in the presence of severe sepsis or septic shock. Conversely, tissue penetration of lipophilic antimicrobials is often unaffected by the pathophysiological status. Real-time therapeutic drug monitoring may be a very helpful tool for optimizing therapy of severe infections. Taking care of pharmacokinetic/pharmacodynamic principles deriving from the most recent findings may help clinicians in maximizing treatment of SSTIs with antimicrobials in every situation.
Sustained subconjunctival protein delivery using a thermosetting gel delivery system.
Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J
2010-02-01
An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.
Sustained Subconjunctival Protein Delivery Using a Thermosetting Gel Delivery System
2010-01-01
Purpose: An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. Methods: The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37°C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Results: Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Conclusions: Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye. PMID:20148655
Lam, Nguyen-Hoang; Cho, Chon-Rae; Lee, Jung-Sick; Soh, Ho-Young; Lee, Byoung-Cheun; Lee, Jae-An; Tatarozako, Norihisa; Sasaki, Kazuaki; Saito, Norimitsu; Iwabuchi, Katsumi; Kannan, Kurunthachalam; Cho, Hyeon-Seo
2014-09-01
Water, sediment, plankton, and blood and liver tissues of crucian carp (Carassius auratus) and mandarin fish (Siniperca scherzeri) were collected from six major rivers and lakes in South Korea (including Namhan River, Bukhan River, Nakdong River, Nam River, Yeongsan River and Sangsa Lake) and analyzed for perfluorinated alkyl substances (PFASs). Perfluorooctane sulfonate (PFOS) was consistently detected at the greatest concentrations in all media surveyed with the maximum concentration in water of 15 ng L(-1) and in biota of 234 ng mL(-1) (fish blood). A general ascending order of PFAS concentration of water
Rosenkrantz, H; Metterville, J J
1980-05-01
The use of EDBPHA as a potential iron chelator in cases of hemochromatosis provided impetus for investigating its toxicology. Because a reddish coloration of excreta was observed during subchronic administration of the drug to dogs, measurements of iron concentrations in blood, excreta, and hematopoietic tissues were made. Groups of beagle dogs of both sexes were injected i.v. with EDBPHA doses of 6, 12, or 18 mg/kg or were given capsules containing doses of 30, 100, or 240 mg/kg for 14 days. Control dogs received either saline i.v. or empty gelatin capsules orally. In addition to the monitoring of toxicological effects, iron levels in plasma, urine, feces, liver, spleen, and kidney were monitored before drug, at the end of treatment, and after a 16-day recovery period. In the absence of hemoglobin and hematocrit changes, i.v. EDBPHA reduced renal iron 40% and hepatic iron 15% to 25% without altering splenic iron. Serum iron rose 34% to 54%, urinary iron 80% to 119%, and fecal iron 23% to 41%. Oral EDBPHA did not induce changes in tissue iron or excreta iron, but serum iron was increased 22% to 29%. These alterations in iron concentrations were transient and may be related to iron redistribution and inactivation of drug by liver.
Optical monitoring of kidney oxygenation and hemodynamics using a miniaturized near-infrared sensor
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Macnab, Andrew; Nigro, Mark; Nguan, Christopher
2017-02-01
Background: Following human renal allograft transplant primary graft dysfunction can occur early in the postoperative period as a result of acute tubular necrosis, acute rejection, drug toxicity, and vascular complications. Successful treatment of graft dysfunction requires early detection and accurate diagnosis so that disease-specific medical and/or surgical intervention can be provided promptly. However, current diagnostic methods are not sensitive or specific enough, so that identifying the cause of graft dysfunction is problematic and often delayed. Near-infrared spectroscopy (NIRS) is an established optical method that monitors changes in tissue hemodynamics and oxygenation in real time. We report the feasibility of directly monitoring kidney the kidney in an animal model using NIRS to detect renal ischemia and hypoxia. Methods: In an anesthetized pig, a customized continuous wave spatially resolved (SR) NIRS sensor was fixed directly to the surface of the surgically exposed kidney. Changes in the concentration of oxygenated (O2Hb) deoxygenated (HHb) and total hemoglobin (THb) were monitored before, during and after renal artery clamping and reperfusion, and the resulting fluctuations in chromophore concentration from baseline used to measure variations in renal perfusion and oxygenation. Results: On clamping the renal artery THb and O2Hb concentrations declined progressively while HHb rose. With reperfusion after releasing the artery clamp O2Hb and THb rose while HHb fell with all parameters returning to its baseline. This pattern was similar in all three trials. Conclusion: This pilot study indicates that a miniaturized NIRS sensor applied directly to the surface of a kidney in an animal model can detect the onset of renal ischemia and tissue hypoxia. With modification, our NIRS-based method may contribute to early detection of renal vascular complications and graft dysfunction following renal transplant.
Analyzing the value of monitoring duodenal mucosal perfusion using photoplethysmography.
Fink, Mitchell P
2014-10-13
Photoplethysmography (PPG) is a technique that permits noninvasive measurement of changes in the volume of tissues. A novel device uses PPG to assess changes in duodenal mucosal perfusion. When tested in septic piglets, data obtained using this device correlate with the blood lactate concentration and duodenal serosal microvascular blood flow as measured with a laser Doppler flowmeter. This new PPG-based approach for continuously monitoring gut mucosal perfusion warrants further development, leading to prospective clinical trials in patients.
Tura, Andrea; Sbrignadello, Stefano; Cianciavicchia, Domenico; Pacini, Giovanni; Ravazzani, Paolo
2010-01-01
In recent years there has been considerable interest in the study of glucose-induced dielectric property variations of human tissues as a possible approach for non-invasive glycaemia monitoring. We have developed an electromagnetic sensor, and we tested in vitro its ability to estimate variations in glucose concentration of different solutions with similarities to blood (sodium chloride and Ringer-lactate solutions), differing though in the lack of any cellular components. The sensor was able to detect the effect of glucose variations over a wide range of concentrations (∼78–5,000 mg/dL), with a sensitivity of ∼0.22 mV/(mg/dL). Our proposed system may thus be useful in a new approach for non-invasive and non-contact glucose monitoring. PMID:22219665
NASA Astrophysics Data System (ADS)
Peterson, Hannah M.; Hoang, Bang H.; Geller, David; Yang, Rui; Gorlick, Richard; Berger, Jeremy; Tingling, Janet; Roth, Michael; Gill, Jonathon; Roblyer, Darren
2017-12-01
Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.
Cox, S.E.
2002-01-01
Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous-waste disposal. In addition, the results from the passive-diffusion samples may show that TCE concentrations are stratified across some screened intervals. The overall results of the limited test of passive-diffusion samplers at site SS-34N were similar to more detailed tests conducted at other contaminated sites across the country and indicate that further evaluation of the use of passive-diffusion samplers at McChord site SS-34N is warranted.
NASA Astrophysics Data System (ADS)
Feldstein, Tamar; Kashman, Yoel; Abelson, Avigdor; Fishelson, Lev; Mokady, Ofer; Bresler, Vladimir; Erel, Yigal
2003-10-01
Concentrations of trace elements and organic pollutants were determined in marine sediments and molluscs from the Mediterranean and Red Sea coasts of Israel. Two bivalve species (Donax trunculus, Pteria aegyptia), two gastropod species (Patella caerulea, Cellana rota) and sediments were sampled at polluted and relatively clean, reference, sites. Along the Mediterranean coast of Israel, sediments and molluscs from Haifa Bay stations were enriched with both organic and trace element contaminants. In the Red Sea, differences between the polluted and reference sites were less pronounced. Bio-concentration factors indicate a significant concentration of Zn, As, Cd, Sn and Pb in animal tissue relative to the concentrations of these elements in the sediments. In contrast, Ce, La and U were not concentrated in molluscs. The trace element results indicate a saturation of the detoxification mechanisms in molluscs from polluted sites. The concentrations of organic pollutants at the same sites are at the lower range of values recorded in other studies. However, synergistic effects between these compounds and between them and metals can lead to acute toxicity.
Frew, John A.; Grue, Christian E.
2012-01-01
The neonicotinoid insecticide imidacloprid (IMI) has been proposed as an alternative to carbaryl for controlling indigenous burrowing shrimp on commercial oyster beds in Willapa Bay and Grays Harbor, Washington. A focus of concern over the use of this insecticide in an aquatic environment is the potential for adverse effects from exposure to non-target species residing in the Bay, such as juvenile Chinook (Oncorhynchus tshawytscha) and cutthroat trout (O. clarki). Federal registration and State permiting approval for the use of IMI will require confirmation that the compound does not adversely impact these salmonids following field applications. This will necessitate an environmental monitoring program for evaluating exposure in salmonids following the treatment of beds. Quantification of IMI residues in tissue can be used for determining salmonid exposure to the insecticide. Refinement of an existing protocol using liquid-chromatography mass spectrometry (LC-MS) detection would provide the low limits of quantification, given the relatively small tissue sample sizes, necessary for determining exposure in individual fish. Such an approach would not be viable for the environmental monitoring effort in Willapa Bay and Grays Harbor due to the high costs associated with running multiple analyses, however. A new sample preparation protocol was developed for use with a commercially available enzyme-linked immunosorbent assay (ELISA) for the quantification of IMI, thereby providing a low-cost alternative to LC-MS for environmental monitoring in Willapa Bay and Grays Harbor. Extraction of the analyte from the salmonid brain tissue was achieved by Dounce homogenization in 4.0 mL of 20.0 mM Triton X-100, followed by a 6 h incubation at 50–55 °C. Centrifugal ultrafiltration and reversed phase solid phase extraction were used for sample cleanup. The limit of quantification for an average 77.0 mg whole brain sample was calculated at 18.2 μg kg-1 (ppb) with an average recovery of 79%. This relatively low limit of quantification allows for the analysis of individual fish. Using controlled laboratory studies, a curvelinear relationship was found between the measured IMI residue concentrations in brain tissue and exposure concentrations in seawater. Additonally, a range of IMI brain residue concentrations was associated with an overt effect; illustrating the utility of the IMI tissue residue quantification approach for linking exposure with defined effects.
Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events.
Lussier, Félix; Brulé, Thibault; Vishwakarma, Medhavi; Das, Tamal; Spatz, Joachim P; Masson, Jean-François
2016-06-08
We monitored metabolite secretion near living cells using a plasmonic nanosensor. The nanosensor created from borosilicate nanopipettes analogous to the patch clamp was decorated with Au nanoparticles and served as a surface-enhanced Raman scattering (SERS) substrate with addressable location. With this nanosensor, we acquired SERS locally near Madin-Darby canine kidney (MDCKII) epithelial cells, and we detected multiple metabolites, such as pyruvate, lactate, ATP, and urea simultaneously. These plasmonic nanosensors were capable of monitoring metabolites in the extracellular medium with enough sensitivity to detect an increase in metabolite concentration following the lyses of MDCKII cells with a nonionic surfactant. The plasmonic nanosensors also allowed a relative quantification of a chemical gradient for a metabolite near cells, as demonstrated with a decrease in relative lactate to pyruvate concentration further away from the MDCKII cells. This SERS optophysiology technique for the sensitive and nondestructive monitoring of extracellular metabolites near living cells is broadly applicable to different cellular and tissue models and should therefore provide a powerful tool for cellular studies.
Using fluorescence to augment the efficacy of photodynamic therapy
NASA Astrophysics Data System (ADS)
Dickey, Dwayne J.; Liu, Weiyang; Naicker, Selvaraj; Woo, Thomas; Moore, Ronald B.; Tulip, John
2006-09-01
Photodynamic Therapy (PDT) is a relatively novel oncological treatment modality, in which a patient is administered a photosensitive drug, called a photosensitizer. After allowing sufficient time for biodistribution, the cancerous area is irradiated with light of the appropriate wavelength, activating the photosensitizer to produce highly reactive singlet oxygen, which produces a highly localized cell kill. The efficacy of PDT is determined by a) the intensity of the light b) the local concentration of the photosensitizer, and c) the availability of oxygen. However, with the clinical application of PDT, the patient is simply administered a body mass dependent quantity of photosensitizer, and then the target area is administered a prescribed amount of radiant energy (joules per cubic centimetre). For treatment of superficial malignancies, PDT has many successes; however, interstitial PDT (PDT of solid, internal malignancies) has inconsistent outcomes mostly due to the inability to predict, calculate or measure the variables that affect PDT: the radiation dose, oxygen concentration, and the photosensitizer concentration. We have developed sophisticated methods to determine the behaviour of light in homogeneous biological tissues. Tissue oxygen levels can be replenished by fractionating the light dose - allowing areas of your target tissue to go through a "dark" cycle during PDT. However, to date, there has not been an accurate method of determining tissue photosensitizer concentrations in-vivo. We are researching the efficacy of a novel hypocrellin derivative, SL-052. Like other photosensitizers available, SL-052 shows strong therapeutic photodynamic activity when irradiated by 635 nm light. Like most photosensitizers, SL-052 exhibits fluorescent activity, but SL-052 also shows strong fluorescent emission at 725nm when excited by 635 nm. The intensity of the fluorescent emission can been correlated with the local concentration of the photosenstizer. However, many clinically available photosensitizers require that fluorescence is excited using a wavelength of light much shorter than the therapeutic wavelength. This characteristic allows us to monitor the availability of the photosensitizer during PDT and to correlate the outcome of PDT to the observed fluorescence. In this paper, we monitor the temporal distribution of SL-052 in the Dunning R3327-AT cell line grown on the flank of a Fisher Copenhangen rats.
Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.
Nomura, Y; Hazeki, O; Tamura, M
1997-06-01
The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.
Inhibition of chlorophyll synthesis and carotenoid accumulation by manganese and cobalt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clairmont, K.B.; Davis, E.; Hagar, W.
1986-05-01
The authors have developed methods for the separation and identification of the major pigments of the photosynthetic apparatus in plants using reversed phase microbore high performance liquid chromatography. Using these methods they have monitored the concentrations of pigments in tissue cultured tobacco callus in the absence and presence of excess manganese and cobalt. Manganese and cobalt were reported to inhibit chlorophyll synthesis in blue green algae. They have found that excess manganese blocks chlorophyll synthesis in tobacco callus also. In the manganese inhibited callus there is an increase in the concentration of protoporphyrin IX- the last common precursor to bothmore » the chlorophyll and heme synthetic pathways. They have found that cobalt also blocks chlorophyll synthesis in tissue cultured tobacco callus, but at a much lower concentration. In addition to the inhibition of chlorophyll synthesis by excess manganese and cobalt, the accumulation of carotenoids is reduced by several orders of magnitude in this tissue. The absence of chlorophyll may prevent assembly of any components of the photosynthetic apparatus in these cells.« less
Sun, Dayong; Cree, Melanie G; Zhang, Xiao-Jun; Bøersheim, Elisabet; Wolfe, Robert R
2006-02-01
We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.
Schlager, Oliver; Gschwandtner, Michael E; Willfort-Ehringer, Andrea; Kurz, Martin; Mueller, Markus; Koppensteiner, Renate; Heinz, Gottfried
2014-12-01
Whether transfusions of packed red blood cells (PRBCs) affect tissue oxygenation in stable critically ill patients is still matter of discussion. The microvascular capacity for tissue oxygenation can be determined noninvasively by measuring transcutaneous oxygen tension (tcpO2). The aim of this study was to assess tissue oxygenation by measuring tcpO2 in stable critically ill patients receiving PRBC transfusions. Nineteen stable critically ill patients, who received 2 units of PRBC, were prospectively included into this pilot study. Transcutaneous oxygen tension was measured continuously during PRBC transfusions using Clark's electrodes. In addition, whole blood viscosity and global hemodynamics were determined. Reliable measurement signals during continuous tcpO2 monitoring were observed in 17 of 19 included patients. Transcutaneous oxygen tension was related to the global oxygen consumption (r=-0.78; P=.003), the arterio-venous oxygen content difference (r=-0.65; P=.005), and the extraction rate (r=-0.71; P=.02). The transfusion-induced increase of the hemoglobin concentration was paralleled by an increase of the whole blood viscosity (P<.001). Microvascular tissue oxygenation by means of tcpO2 was not affected by PRBC transfusions (P=.46). Packed red blood cell transfusions resulted in an increase of global oxygen delivery (P=.02) and central venous oxygen saturation (P=.01), whereas oxygen consumption remained unchanged (P=.72). In stable critically ill patients, microvascular tissue oxygenation can be continuously monitored by Clark's tcpO2 electrodes. According to continuous tcpO2 measurements, the microvascular tissue oxygenation is not affected by PRBC transfusions. Copyright © 2014 Elsevier Inc. All rights reserved.
Method and apparatus for non-invasive monitoring of blood glucose
Thomas, Graham H.; Watson, Roger M.; Noell, J. Oakey
1992-06-09
A new and improved method and apparatus are provided for non-invasive monitoring of changes in blood glucose concentration in a tissue specimen and particularly in an individual. The method uses acoustic velocity measurements for monitoring the effect of glucose concentration upon the density and adiabatic compressibility of the serum. In a preferred embodiment, the acoustic velocity measurements are made through the earlobe of a subject by means of an acoustic probe or monitor which includes a transducer for transmitting and receiving ultrasonic energy pulses to and from the blood flowing in the subject's earlobe and a reflector for facilitating reflection of the acoustic pulses from the blood. The probe is designed in such a way that when properly affixed to an ear, the transducer is positioned flush against the anterior portion of an earlobe while the reflector is positioned flush against the interior portion of the earlobe. A microthermocouple is provided on the probe for monitoring the internal temperature of the blood being sampled. An electrical system, essentially comprising a frequency generator, a time intervalometer and an oscilloscope, is linked to the glucose monitoring probe. The electrical system analyzes selected ones of the pulses reflected from the blood sample in order to determine therefrom the acoustic velocity of the blood which, in turn, provides a representation of the blood glucose concentration levels at the time of the acoustic velocity measurements.
Photoacoustic microscopy of bilirubin in tissue phantoms
Zhou, Yong; Zhang, Chi; Yao, Da-Kang
2012-01-01
Abstract. Determining both bilirubin’s concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications. PMID:23235894
Kamman, Neil C; Burgess, Neil M; Driscoll, Charles T; Simonin, Howard A; Goodale, Wing; Linehan, Janice; Estabrook, Robert; Hutcheson, Michael; Major, Andrew; Scheuhammer, Anton M; Scruton, David A
2005-03-01
As part of an initiative to assemble and synthesize mercury (Hg) data from environmental matrices across northeastern North America, we analyzed a large dataset comprised of 15,305 records of fish tissue Hg data from 24 studies from New York State to Newfoundland. These data were summarized to provide mean Hg concentrations for 40 fish species and associated families. Detailed analyses were carried out using data for 13 species. Hg in fishes varied by geographic area, waterbody type, and waterbody. The four species with the highest mean Hg concentrations were muskellunge (Esox masquinongy), walleye (Sander vitreus), white perch (Morone americana), and northern pike (Esox luscius). Several species displayed elevated Hg concentrations in reservoirs, relative to lakes and rivers. Normalized deviations from mean tissue levels for yellow perch (Perca flavescens) and brook trout (Salvelinus fontinalis) were mapped, illustrating how Hg concentrations in these species varied across northeastern North America. Certain geographic regions showed generally below or above-average Hg concentrations in fish, while significant heterogeneity was evident across the landscape. The proportion of waterbodies exhibiting exceedances of USEPA's criterion for fish methylmercury ranged from 14% for standard-length brook trout fillets to 42% for standard-length yellow perch fillets. A preliminary correlation analysis showed that fish Hg concentrations were related to waterbody acidity and watershed size.
NASA Astrophysics Data System (ADS)
Braun, Frank; Schalk, Robert; Heintz, Annabell; Feike, Patrick; Firmowski, Sebastian; Beuermann, Thomas; Methner, Frank-Jürgen; Kränzlin, Bettina; Gretz, Norbert; Rädle, Matthias
2017-07-01
In this report, a quantitative nicotinamide adenine dinucleotide hydrate (NADH) fluorescence measurement algorithm in a liquid tissue phantom using a fiber-optic needle probe is presented. To determine the absolute concentrations of NADH in this phantom, the fluorescence emission spectra at 465 nm were corrected using diffuse reflectance spectroscopy between 600 nm and 940 nm. The patented autoclavable Nitinol needle probe enables the acquisition of multispectral backscattering measurements of ultraviolet, visible, near-infrared and fluorescence spectra. As a phantom, a suspension of calcium carbonate (Calcilit) and water with physiological NADH concentrations between 0 mmol l-1 and 2.0 mmol l-1 were used to mimic human tissue. The light scattering characteristics were adjusted to match the backscattering attributes of human skin by modifying the concentration of Calcilit. To correct the scattering effects caused by the matrices of the samples, an algorithm based on the backscattered remission spectrum was employed to compensate the influence of multiscattering on the optical pathway through the dispersed phase. The monitored backscattered visible light was used to correct the fluorescence spectra and thereby to determine the true NADH concentrations at unknown Calcilit concentrations. Despite the simplicity of the presented algorithm, the root-mean-square error of prediction (RMSEP) was 0.093 mmol l-1.
Musa, R; Gerber, R; Greenfield, R
2017-06-01
Increased toxicity due to high metal concentrations may hinder the ecological integrity of aquatic ecosystems in sustaining life. The non-biodegradable nature of metals may result in bioaccumulation in aquatic organisms. Due to ecological and social aspects it is imperative for monitoring schemes to identify possible impacts to the systems integrity. This paper discusses accumulation patterns of seven metals (Al, Cr, Cu, Fe, Mn, Sr and Zn) in tissues of two fish species, namely Clarias gariepinus and Oreochromis mossambicus at two selected sites, the first located upstream of Modimolle (NRS1), and the second located downstream of the town (NRS2). Gills, liver, muscle and skin tissues were analysed for metal concentrations using standard microwave digestion and inductively coupled plasma mass spectrometry techniques. Statistical results indicated higher concentrations of metals at NRS2 in comparison to NRS1, indicating that Modimolle plays a potential role in introducing metals into the aquatic system.
Lemly, A Dennis; Skorupa, Joseph P
2007-10-01
The US Environmental Protection Agency is developing a national water quality criterion for selenium that is based on concentrations of the element in fish tissue. Although this approach offers advantages over the current water-based regulations, it also presents new challenges with respect to implementation. A comprehensive protocol that answers the "what, where, and when" is essential with the new tissue-based approach in order to ensure proper acquisition of data that apply to the criterion. Dischargers will need to understand selenium transport, cycling, and bioaccumulation in order to effectively monitor for the criterion and, if necessary, develop site-specific standards. This paper discusses 11 key issues that affect the implementation of a tissue-based criterion, ranging from the selection of fish species to the importance of hydrological units in the sampling design. It also outlines a strategy that incorporates both water column and tissue-based approaches. A national generic safety-net water criterion could be combined with a fish tissue-based criterion for site-specific implementation. For the majority of waters nationwide, National Pollution Discharge Elimination System permitting and other activities associated with the Clean Water Act could continue without the increased expense of sampling and interpreting biological materials. Dischargers would do biotic sampling intermittently (not a routine monitoring burden) on fish tissue relative to the fish tissue criterion. Only when the fish tissue criterion is exceeded would a full site-specific analysis including development of intermedia translation factors be necessary.
Noninvasive optical monitoring multiple physiological parameters response to cytokine storm
NASA Astrophysics Data System (ADS)
Li, Zebin; Li, Ting
2018-02-01
Cancer and other disease originated by immune or genetic problems have become a main cause of death. Gene/cell therapy is a highlighted potential method for the treatment of these diseases. However, during the treatment, it always causes cytokine storm, which probably trigger acute respiratory distress syndrome and multiple organ failure. Here we developed a point-of-care device for noninvasive monitoring cytokine storm induced multiple physiological parameters simultaneously. Oxy-hemoglobin, deoxy-hemoglobin, water concentration and deep-tissue/tumor temperature variations were simultaneously measured by extended near infrared spectroscopy. Detection algorithms of symptoms such as shock, edema, deep-tissue fever and tissue fibrosis were developed and included. Based on these measurements, modeling of patient tolerance and cytokine storm intensity were carried out. This custom device was tested on patients experiencing cytokine storm in intensive care unit. The preliminary data indicated the potential of our device in popular and milestone gene/cell therapy, especially, chimeric antigen receptor T-cell immunotherapy (CAR-T).
Kagawa, Yuki; Haraguchi, Yuji; Tsuneda, Satoshi; Shimizu, Tatsuya
2017-05-01
Recent progress in tissue engineering technology has enabled us to develop thick tissue constructs that can then be transplanted in regenerative therapies. In clinical situations, it is vital that the engineered tissues to be implanted are safe and functional before use. However, there is currently a limited number of studies on real-time quality evaluation of thick living tissue constructs. Here we developed a system for quantifying the internal activities of engineered tissues, from which we can evaluate its quality in real-time. The evaluation was achieved by measuring oxygen concentration profiles made along the vertical axis and the thickness of the tissues estimated from cross-sectional images obtained noninvasively by an optical coherence tomography system. Using our novel system, we obtained (i) oxygen concentration just above the tissues, (ii) gradient of oxygen along vertical axis formed above the tissues within culture medium, and (iii) gradient of oxygen formed within the tissues in real-time. Investigating whether these three parameters could be used to evaluate engineered tissues during culturing, we found that only the third parameter was a good candidate. This implies that the activity of living engineered tissues can be monitored in real-time by measuring the oxygen gradient within the tissues. The proposed measuring strategy can be applied to developing more efficient culturing methods to support the fabrication of engineered thick tissues, as well as providing methods to confirm the quality in real-time. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 855-864, 2017. © 2015 Wiley Periodicals, Inc.
Yang, Ting; Chen, Fei; Xu, Feifei; Wang, Fengliang; Xu, Qingqing; Chen, Yun
2014-09-25
P-glycoprotein (P-gp) can efflux drugs from cancer cells, and its overexpression is commonly associated with multi-drug resistance (MDR). Thus, the accurate quantification of P-gp would help predict the response to chemotherapy and for prognosis of breast cancer patients. An advanced liquid chromatography-tandem mass spectrometry (LC/MS/MS)-based targeted proteomics assay was developed and validated for monitoring P-gp levels in breast tissue. Tryptic peptide 368IIDNKPSIDSYSK380 was selected as a surrogate analyte for quantification, and immuno-depleted tissue extract was used as a surrogate matrix. Matched pairs of breast tissue samples from 60 patients who were suspected to have drug resistance were subject to analysis. The levels of P-gp were quantified. Using data from normal tissue, we suggested a P-gp reference interval. The experimental values of tumor tissue samples were compared with those obtained from Western blotting and immunohistochemistry (IHC). The result indicated that the targeted proteomics approach was comparable to IHC but provided a lower limit of quantification (LOQ) and could afford more reliable results at low concentrations than the other two methods. LC/MS/MS-based targeted proteomics may allow the quantification of P-gp in breast tissue in a more accurate manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Cain, Daniel J.; Parcheso, Francis; Thompson, Janet K.; Luoma, Samuel N.; Lorenzi, Allison H.; Moon, Edward; Shouse, Michelle K.; Hornberger, Michelle I.; Dyke, Jessica
2006-01-01
Trace elements in sediment and the clam Macoma petalum (formerly reported as Macoma balthica (Cohen and Carlton 1995), clam reproductive activity and benthic, macroinvertebrate community structure are reported for a mudflat one kilometer south of the discharge of the Palo Alto Regional Water Quality Control Plant in South San Francisco Bay. This report includes data collected for the period January to December 2005, and extends a critical long-term biogeochemical record dating back to 1974. These data serve as the basis for the City of Palo Alto's Near-Field Receiving Water Monitoring Program, initiated in 1994. Metal concentrations in both sediments and clam tissue during 2005 were consistent with results observed since 1990. Copper and zinc concentrations in sediment and bivalve tissue displayed a continued decrease over the last decade. In 2005, Cu concentrations were at or below the effects range-low (ERL) concentration (34 ?g/g) for the entire year, the first time this has been observed. Also, zinc concentrations never exceeded the ERL (150 ?g/g). Yearly average concentrations of copper, zinc and silver in Macoma petalum for 2005 were some of the lowest recorded since monitoring for metals began in 1975. The concentrations of mercury and selenium in sediments, during April and January 2004, respectively, were the highest values observed for these elements during this study. Later in 2005, concentrations decreased to historic levels. The increase in mercury and selenium in 2004 was not a permanent trend and concentrations of these elements in sediments and clams at Palo Alto remain similar to concentrations observed elsewhere in the San Francisco Bay. Analyses of the benthic-community structure of a mudflat in South San Francisco Bay over a 31-year period show that changes in the community have occurred concurrent with reduced concentrations of metals in the sediment and in the tissues of the biosentinal clam Macoma petalum from the same area. Analysis of the reproductive activity of M. petalum shows increases in reproductive activity concurrent with the decline in metal concentrations in the tissues of this organism. Reproductive activity is presently stable with almost all animals initiating reproduction in the fall and spawning the following spring of most years. The community has shifted from being dominated by several opportunistic species to a community where the species are more similar in abundance, a pattern that suggests a more stable community that is subjected to less stress. In addition, two of the opportunistic species (Ampelisca abdita and Streblospio benedicti) that brood their young and live on the surface of the sediment in tubes have shown a continual decline in dominance coincident with the decline in metals. Heteromastus filiformis, a subsurface polychaete worm that lives in the sediment, consumes sediment and organic particles residing in the sediment, and reproduces by laying their eggs on or in the sediment has shown a concurrent increase in dominance. These changes in species dominance reflect a change in the community from one dominated by surface dwelling, brooding species to one with species with varying life history characteristics. For the first time since its invasion in 1986, the non-indigenous filter-feeding bivalve Corbula (Potamocorbula) amurensis has shown up in small but persistent numbers in the benthic community.
Zeng, Xiaolan; Zhang, Xuesheng; Qin, Li; Wang, Zunyao
2015-09-15
The tissue distribution, excretion, and metabolic pathway of 2,2',4,4',5-penta-chlorinated diphenylsulfide (CDPS-99) in ICR mice were investigated after oral perfusion at 10mg/kg body weight (b.w.). Biological samples were extracted and separated and, for the first time, were determined by a novel, sensitive, and specific GC-MS method under the full scan and selected ion monitoring (SIM) modes. The results showed that the concentrations of CDPS-99 in the liver, kidneys, and serum reached a maximum after a one-day exposure and that the CDPS-99 concentration in the liver was the highest (3.43μg/g). The increase in the concentration of CDPS-99 in muscle, skin, and adipose tissue was slower, and the concentrations of CDPS-99 achieved their highest levels after 3 days of exposure. It was observed that the CDPS-99 concentration in adipose tissue was still very high (0.71μg/g) after 21 days of exposure, which suggested that CDPS-99 was able to accumulate in adipose tissue. In addition, mouse feces accounted for approximately 75% of the total gavage dose, indicating that CDPS-99 was mainly excreted via mouse feces. Metabolism analysis demonstrated that there were three possible metabolic pathways of CDPS-99 in mice: dechlorination reactions with the formation of tetra-CDPS and hydroxylation and oxidation reactions with the formation of OH-CDPS-99 and chlorinated diphenylsulfone. The present study will help to develop a better understanding of mammalian metabolism of CDPS-99. Copyright © 2015 Elsevier B.V. All rights reserved.
Waliszewski, Stefan M; Caba, M; Herrero-Mercado, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Martínez-Valenzuela, C; Infanzon, R; Hernández-Chalate, F
2011-11-01
The objective of the present study was to monitor the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in 150 adipose tissue samples of Veracruz, Mexico inhabitants. In analyzed samples, the following pesticides were detected: p,p'-DDE in 100% of the samples at mean 1.643 mg/kg; p,p'-DDT in 99.3.% of the samples at mean 0.227 mg/kg; β-HCH in 97.3% of the samples at mean 0.063 mg/kg; and op'DDT in 93.3% of the samples at mean 0.022 mg/kg. Comparing mean, median and geometric mean concentrations of organochlorine pesticides shows a decrease in values from mean to median and to geometric mean which points out a prevalence of lower concentrations among the total samples and the existence of occasional cases of extreme exposure expressed in range values. The pooled samples divided according to sex, showed only significant differences of pp'DDE median concentrations between sexes. The other organochlorine pesticides indicated no statistical differences between sexes, including the pp'DDE/pp'DDT ratio. The samples grouped according to age, showed that the third tertile was more contaminated for both sexes, indicating age as a positively associated factor with organochlorine pesticide levels in adipose tissue of Veracruz inhabitants. Comparing organochlorine pesticide levels between 2008 and 2010 years, a decreased tendency for β-HCH, pp'DDE, Σ-DDT and pp'DDE/pp'DDT ratio levels was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovska, Ivana, E-mail: jankovska@af.czu.cz; Miholova, Daniela; Lukesova, Daniela
2012-01-15
We monitored concentrations of Cd, Cu, Mn and Zn in acantocephalan parasites (Acanthocephalus lucii) and its final host (Perca fluviatilis). The concentrations in parasites were found to be significantly higher than those found in the muscle, gonads and liver of fish host. The bioaccumulation factor values were 194, 24.4, 2.2 and 4.7 for Cd, Cu, Mn and Zn, respectively. This suggests a benefit for the host due to the high accumulation of toxic cadmium.
The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.
Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol
2015-10-01
Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Góźdź, S.; Majewska, U.; Pajek, M.
2007-07-01
The total reflection X-ray fluorescence method was applied to study the trace element concentrations in human breast malignant and breast benign neoplasm tissues taken from the women who were patients of Holycross Cancer Centre in Kielce (Poland). These investigations were mainly focused on the development of new possibilities of cancer diagnosis and therapy monitoring. This systematic comparative study was based on relatively large (˜ 100) population studied, namely 26 samples of breast malignant and 68 samples of breast benign neoplasm tissues. The concentrations, being in the range from a few ppb to 0.1%, were determined for thirteen elements (from P to Pb). The results were carefully analysed to investigate the concentration distribution of trace elements in the studied samples. The measurements of concentration of trace elements by total reflection X-ray fluorescence were limited, however, by the detection limit of the method. It was observed that for more than 50% of elements determined, the concentrations were not measured in all samples. These incomplete measurements were treated within the statistical concept called left-random censoring and for the estimation of the mean value and median of censored concentration distributions, the Kaplan-Meier estimator was used. For comparison of concentrations in two populations, the log-rank test was applied, which allows to compare the censored total reflection X-ray fluorescence data. Found statistically significant differences are discussed in more details. It is noted that described data analysis procedures should be the standard tool to analyze the censored concentrations of trace elements analysed by X-ray fluorescence methods.
Metabolic Biofouling of Glucose Sensors in Vivo: Role of Tissue Microhemorrhages
Klueh, Ulrike; Liu, Zenghe; Feldman, Ben; Henning, Timothy P; Cho, Brian; Ouyang, Tianmei; Kreutzer, Don
2011-01-01
Objective: Based on our in vitro study that demonstrated the adverse effects of blood clots on glucose sensor function, we hypothesized that in vivo local tissue hemorrhages, induced as a consequence of sensor implantation or sensor movement post-implantation, are responsible for unreliable readings or an unexplained loss of functionality shortly after implantation. Research Design and Methods: To investigate this issue, we utilized real-time continuous monitoring of blood glucose levels in a mouse model. Direct injection of blood at the tissue site of sensor implantation was utilized to mimic sensor-induced local tissue hemorrhages. Results: It was found that blood injections, proximal to the sensor, consistently caused lowered sensor glucose readings, designated temporary signal reduction, in vivo in our mouse model, while injections of plasma or saline did not have this effect. Conclusion: These results support our hypothesis that tissue hemorrhage and resulting blood clots near the sensor can result in lowered local blood glucose concentrations due to metabolism of glucose by the clot. The lowered local blood glucose concentration led to low glucose readings from the still functioning sensor that did not reflect the systemic glucose level. PMID:21722574
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antrim, Liam D.; Kohn, Nancy P.
Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did notmore » meet remediation goals. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. Sediment analyses showed the presence of elevated DDT, dieldrin, PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.« less
Rapid degradation of [3H]-substance p in guinea-pig ileum and rat vas deferens in vitro.
Watson, S. P.
1983-01-01
The degradation of [3H]-substance P was monitored in guinea-pig ileum and rat vas deferens. Substantial and rapid metabolism occurred in both tissues within the time course of the pharmacological responses; for example, after 1 min more than 50% of the extracted tritium from both tissues was present in the form of metabolites. [3H]-inulin was used to estimate the rate of equilibration of the extracellular space of guinea-pig ileum longitudinal muscle and rat vas deferens with the bath fluid; half-lives of 30 s and 5 min respectively were observed. These two factors combine to give different concentrations of substance P in the biophase of the tissues. The peak concentration of substance P reached in the guinea-pig ileum longitudinal muscle was approximately five times higher than in the rat vas deferens. An analogue of substance P, [3H]-DiMe-C7, was found to be stable in both tissues. These results are discussed in the light of the suggested existence of multiple receptors for substance P, based on agonist potency differences. PMID:6197123
Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes
Kim H. Ludovici; Lance W. Kress
2006-01-01
Root decomposition and nutrient release are typically estimated from dried root tissues; however, it is unlikely that roots dehydrate prior to decomposing. Soil fertility and root diameter may also affect the rate of decomposition. This study monitored mass loss and nutrient concentrations of dried and fresh roots of two size classes (
Photosensitizer quantitation in vivo by flourescence microsampling
NASA Astrophysics Data System (ADS)
Pogue, Brian W.; Burke, Gregory C.; Lee, Claudia C.; Hoopes, P. Jack
2000-06-01
Photodynamic therapy can provide a reliable method of tumor destruction when the appropriate dosimetry is applied. Current dosimetry practice involves quantification of the drug and light doses applied to the tumor, but it would be desirable to monitor in vivo light and drug levels to provide the most accurate determination of dosimetry. In vivo measurements can be used to minimize variations in treatment response due to inter-animal variability, by providing animal-specific or patient-specific treatment planning. This study reports on the development of a micro-sampling method to measure fluorescence from tissue, which is not significantly affected by the tissue optical properties. The system measures fluorescence from the surface of a tissue, using a fiber bundle composed of individual 100 micron fibers which ar all spaced apart by 700 microns from one another at the tissue contact end. This design provides sampling of the fluorescence at multiple sites to increase the signal intensity, while maintaining a micro- sampling of the tissue volume just below the surface. The calibration studies here indicate that the 1/e sampling depth is near 60 microns when measured in optical phantoms, which are similar to typical tissue properties. The probe fluorescence signal is independent of blood concentration up to a maximum of 10% blood by volume, which is similar to most tumor tissue. Animal tests indicate that the sensitivity to drug concentration is essentially the same in when measured in murine liver and muscle tissues, both in vivo and ex vivo. These preliminary calibration results suggest that the probe can be used to measure photosensitizer uptake in vivo non- invasively and rapidly via conversion of fluorescence intensity to photosensitizer concentration.
Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging.
Clemis, Elizabeth J; Smith, Derek S; Camenzind, Alexander G; Danell, Ryan M; Parker, Carol E; Borchers, Christoph H
2012-04-17
MALDI imaging allows the creation of a "molecular image" of a tissue slice. This image is reconstructed from the ion abundances in spectra obtained while rastering the laser over the tissue. These images can then be correlated with tissue histology to detect potential biomarkers of, for example, aberrant cell types. MALDI, however, is known to have problems with ion suppression, making it difficult to correlate measured ion abundance with concentration. It would be advantageous to have a method which could provide more accurate protein concentration measurements, particularly for screening applications or for precise comparisons between samples. In this paper, we report the development of a novel MALDI imaging method for the localization and accurate quantitation of proteins in tissues. This method involves optimization of in situ tryptic digestion, followed by reproducible and uniform deposition of an isotopically labeled standard peptide from a target protein onto the tissue, using an aerosol-generating device. Data is acquired by MALDI multiple reaction monitoring (MRM) mass spectrometry (MS), and accurate peptide quantitation is determined from the ratio of MRM transitions for the endogenous unlabeled proteolytic peptides to the corresponding transitions from the applied isotopically labeled standard peptides. In a parallel experiment, the quantity of the labeled peptide applied to the tissue was determined using a standard curve generated from MALDI time-of-flight (TOF) MS data. This external calibration curve was then used to determine the quantity of endogenous peptide in a given area. All standard curves generate by this method had coefficients of determination greater than 0.97. These proof-of-concept experiments using MALDI MRM-based imaging show the feasibility for the precise and accurate quantitation of tissue protein concentrations over 2 orders of magnitude, while maintaining the spatial localization information for the proteins.
Accumulation and distribution of selenium in mussel and shrimp tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, S.W.; Benayoun, G.
1976-09-01
The tissue distribution of selenium in mussels and shrimp was examined and the bioaccumulation kinetics in the various tissues was elucidated with the aid of radio selenium. Mussels (Mytilus galloprovincialis) and shrimp (Lysmata seticaudata) collected near the Monaco port, were apportioned into several groups. One group of mussels and shrimp was maintained in sea water containing 0.8 ..mu..Ci/liter high specific activity Se-75. Three to four individuals were dissected and their tissues monitored for Se-75 content periodically. Another group of shrimp, maintained in flowing sea water, were fed ad libitum mussels that had previously accumulated Se-75 from sea water for severalmore » days. Shrimp were periodically dissected to follow tissue accumulation of ingested selenium. The highest concentrations of selenium were found in the exoskeleton, presumably due, in part, to the relatively large amount of isotope sorbed to its outer surface. Molts, cast by shrimp at various times throughout uptake, contained from 60 to 90% of the total Se-75 body burden. Direct uptake of water led to initially small fractions in internal tissues such as muscle and viscera compared to the relatively large fraction associated with the exoskeleton. With time percentages in internal tissues gradually increased relative to that in the exoskeleton. When Se-75 was accumulated through the food chain an opposite trend was noted with the Se-75 fraction in exoskeleton slowly increasing and that in viscera decreasing during the course of the experiment. All tissues examined readily accumulated the isotope and, in general, did not appear to have reached a steady state concentration after 63 days. The highest Se-75 concentrations were found in the visceral mass with lesser amounts in gills, muscle and mantle, in that order.« less
Lorenzi, Allison H.; Cain, Daniel J.; Parcheso, Francis; Thompson, Janet K.; Luoma, Samuel N.; Hornberger, Michelle I.; Dyke, Jessica
2008-01-01
Results reported herein include trace element concentrations in sediment and in the clam Macoma petalum (formerly reported as Macoma balthica (Cohen and Carlton 1995)), clam reproductive activity, and benthic macroinvertebrate community structure for a mudflat one kilometer south of the discharge of the Palo Alto Regional Water Quality Control Plant in South San Francisco Bay. This report includes data collected for the period January 2007 to December 2007, and extends a critical long-term biogeochemical record dating back to 1974. These data serve as the basis for the City of Palo Alto?s Near-Field Receiving Water Monitoring Program, initiated in 1994. Metal concentrations in both sediments and clam tissue during 2007 remained consistent with results observed since 1990. Most notably, copper and silver concentrations in sediment and clam tissue are elevated for the second consecutive year, but the values remain well within the range of past findings. Other metals such as chromium, nickel, vanadium, and zinc remained relatively constant throughout the year except for maximum values that generally occur in winter months (January-March). Mercury levels in sediment and clam tissue were some of the lowest seen on record. Last year?s elevated selenium levels appear to be transient, and selenium concentrations have returned to background levels. Overall, metal concentrations in sediments and tissue remain within past findings. Analyses of the benthic-community structure of a mudflat in South San Francisco Bay over a 31-year period show that changes in the community have occurred concurrent with reduced concentrations of metals in the sediment and in the tissues of the biosentinel clam, M. petalum, from the same area. Analysis of the reproductive activity of M. petalum shows increases in reproductive activity concurrent with the decline in metal concentrations in the tissues of this organism. Reproductive activity is presently stable, with almost all animals initiating reproduction in the fall and spawning the following spring of most years. The community has shifted from being dominated by several opportunistic species to a community where the species are more similar in abundance, a pattern that suggests a more stable community that is subjected to less stress. In addition, two of the opportunistic species (Ampelisca abdita and Streblospio benedicti) that brood their young and live on the surface of the sediment in tubes, have shown a continual decline in dominance coincident with the decline in metals. Heteromastus filiformis, a subsurface polychaete worm that lives in the sediment, consumes sediment and organic particles residing in the sediment, and reproduces by laying their eggs on or in the sediment, has shown a concurrent increase in dominance and is now showing signs of population stability. These changes in species dominance reflect a change in the community from one dominated by surface dwelling, brooding species to one with species with varying life history characteristics.
Diffuse optical tomography and spectroscopy of breast cancer and fetal brain
NASA Astrophysics Data System (ADS)
Choe, Regine
Diffuse optical techniques utilize light in the near infrared spectral range to measure tissue physiology non-invasively. Based on these measurements, either on average or a three-dimensional spatial map of tissue properties such as total hemoglobin concentration, blood oxygen saturation and scattering can be obtained using model-based reconstruction algorithms. In this thesis, diffuse optical techniques were applied for in vivo breast cancer imaging and trans-abdominal fetal brain oxygenation monitoring. For in vivo breast cancer imaging, clinical diffuse optical tomography and related instrumentation was developed and used in several contexts. Bulk physiological properties were quantified for fifty-two healthy subjects in the parallel-plate transmission geometry. Three-dimensional images of breast were reconstructed for subjects with breast tumors and, tumor contrast with respect to normal tissue was found in total hemoglobin concentration and scattering and was quantified for twenty-two breast carcinomas. Tumor contrast and tumor volume changes during neoadjuvant chemotherapy were tracked for one subject and compared to the dynamic contrast-enhanced MRI. Finally, the feasibility for measuring blood flow of breast tumors using optical methods was demonstrated for seven subjects. In a qualitatively different set of experiments, the feasibility for trans-abdominal fetal brain oxygenation monitoring was demonstrated on pregnant ewes with induced fetal hypoxia. Preliminary clinical experiences were discussed to identify future directions. In total, this research has translated diffuse optical tomography techniques into clinical research environment.
Infrared monitoring of dinitrotoluenes in sunflower and maize roots.
Dokken, K M; Davis, L C
2011-01-01
Infrared microspectroscopy (IMS) is emerging as an important analytical tool for the structural analysis of biological tissue. This report describes the use of IMS coupled to a synchrotron source combined with principal components analysis (PCA) to monitor the fate and effect of dinitrotoluenes in the roots of maize and sunflower plants. Infrared imaging revealed that maize roots metabolized 2,4-dinitrotoluene (DNT) and 2,6-DNT. The DNTs and their derivative aromatic amines were predominantly associated with epidermis and xylem. Both isomers of DNT altered the structure and production of pectin and pectic polysaccharides in maize and sunflower plant roots. Infrared peaks diagnostic for aromatic amines were seen at the 5 mg L concentrations for both DNTs in maize and sunflower treated tissue. However, only infrared peaks for nitro groups, not aromatic amines, were present in the maize treated at 10 mg L For sunflower, the 10 mg L level was toxic and also produced very dark root systems making spectra difficult to obtain. Maize and sunflower seem unable to metabolize effectively at concentrations higher than about 5 mg L DNT in hydroponic solution. Based on the results of this study, IMS combined with PCA can be an effective means of determining the fate and metabolism of organic contaminants in plant tissue when isotopically labeled compounds are not available. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Function of an Implanted Tissue Glucose Sensor for More than One Year in Animals
Gough, David A.; Kumosa, Lucas S.; Routh, Timothy L.; Lin, Joe T.; Lucisano, Joseph Y.
2015-01-01
An implantable sensor capable of long-term monitoring of tissue glucose concentrations by wireless telemetry has been developed for eventual application in people with diabetes. In a recent trial, the sensor-telemetry system functioned continuously while implanted in subcutaneous tissues of two pigs for a total of 222 days and 520 days respectively, with each animal in both non-diabetic and diabetic states. The sensor detects glucose via an enzyme electrode principle that is based on differential electrochemical oxygen detection, which reduces the sensitivity of the sensor to encapsulation by the body, variations in local microvascular perfusion, limited availability of tissue oxygen, and inactivation of the enzymes. After an initial two-week stabilization period, the implanted sensors maintained stability of calibration for extended periods. The lag between blood and tissue glucose concentrations was 11.8 ± 5.7 minutes and 6.5 ± 13.3 minutes respectively, for rising and falling blood glucose challenges (mean ± SD). The lag was determined mainly by glucose mass transfer in the tissues, rather than the intrinsic response of the sensor, and showed no systematic change over implant test periods. These results represent a milestone in the translation of the sensor system to human applications. PMID:20668297
Reyes-Herrera, I; Schneider, M J; Blore, P J; Donoghue, D J
2011-02-01
In 2005, the US Food and Drug Administration withdrew approval for use of enrofloxacin in poultry, thus effectively imposing zero tolerance for residues of this antibiotic in poultry. Conventional residue monitoring for most antibiotics, including enrofloxacin, involves removing poultry carcasses from the processing line and collecting muscle tissues for analysis. Because of the loss of valuable edible products and the difficulties and expense of sampling all the carcasses, only a small portion of carcasses are tested for violative residues. Unlike muscle tissue, blood is readily available from all birds at the beginning of processing and may be used to screen for illegal residues in all poultry carcasses. It is unknown, however, if enrofloxacin concentrations in blood are predictive of muscle concentrations. In an effort to evaluate this relationship, 156 broiler chickens, 5 wk of age, were dosed with either 25 or 50 µg/mL of enrofloxacin for 3 or 7 d, respectively, in the drinking water. Blood and muscle samples were collected at 0, 1, 3, 6, 12, and 24 h (n = 6 birds/group) during the first dosing day, every 48 h during the dosing period, and every 12 h during the withdrawal period for up to 60 h after withdrawal. Enrofloxacin residues were determined in all blood and tissue samples during the dosing periods and in most of the withdrawal period for both doses. These results support the potential to use blood to screen for illegal enrofloxacin residues in edible poultry tissues in an effort to protect the human food supply.
Shenai-Tirodkar, Prachi; Gauns, Mangesh; Kumar, Girish; Ansari, Zakir
2018-05-15
This study aimed to evaluate the relationship between physicochemical parameters and heavy metal (Cu, Ni, Pb, and Cd) concentrations from sediment, seawater, and its accumulation in tissues of oyster species (Crassostrea madrasensis and C. gryphoides) from the three sites (Chicalim Bay (CB), Nerul Creek (NC), Chapora Bay (ChB)) along the Goa coast (India). Results showed enrichment of Cu and Ni in sediment exceeding the effect range low (ERL) level. The higher concentrations of Cu and Ni in sediments and in suspended particulate matter (SPM) from all the study sites are indicative of severe contamination of estuarine and associated habitats. Moreover, particulate Ni (at all the sites), Cu (at NC and ChB), Pb (at NC), and Cd (at CB and NC) concentrations were recorded more than its total loadings in surface sediment. Concentration of Cu and Cd in oyster tissue was several folds higher than its concentration in ambience. Further, this study showed that the levels of metal in oysters and their ambient environment were higher during the monsoon season. Hence, the consumption of oysters needs to be considered carefully with respect to the health hazards posed by the elevated levels of metal contaminants in certain seasons. The present study concludes that metals associated with the particulate matter in water column are the main source of metal accumulation in oyster. It is also suggested that concentration of metal pollutants in coastal and estuarine water bodies should be monitored regularly to ensure the acceptable limits of metal concentrations.
Dual-mode imaging with radiolabeled gold nanorods
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Shao, Xia; Rajian, Justin R.; Zhang, Huanan; Chamberland, David L.; Kotov, Nicholas A.; Wang, Xueding
2011-05-01
Many nanoparticle contrast agents have difficulties with deep tissue and near-bone imaging due to limited penetration of visible photons in the body and mineralized tissues. We are looking into the possibility of mediating this problem while retaining the capabilities of the high spatial resolution associated with optical imaging. As such, the potential combination of emerging photoacoustic imaging and nuclear imaging in monitoring of antirheumatic drug delivery by using a newly developed dual-modality contrast agent is investigated. The contrast agent is composed of gold nanorods (GNRs) conjugated to the tumor necrosis factor (TNF-α) antibody and is subsequently radiolabeled by 125I. ELISA experiments designed to test TNF-α binding are performed to prove the specificity and biological activity of the radiolabeled conjugated contrast agent. Photoacoustic and nuclear imaging are performed to visualize the distribution of GNRs in articular tissues of the rat tail joints in situ. Findings from the two imaging modalities correspond well with each other in all experiments. Our system can image GNRs down to a concentration of 10 pM in biological tissues and with a radioactive label of 5 μCi. This study demonstrates the potential of combining photoacoustic and nuclear imaging modalities through one targeted contrast agent for noninvasive monitoring of drug delivery as well as deep and mineralized tissue imaging.
Boison, Joe; Lee, Stephen; Gedir, Ron
2009-01-01
A liquid chromatographic-mass spectrometric (LC-MS) method was developed and validated for the determination and confirmation of virginiamycin (VMY) M1 residues in porcine liver, kidney, and muscle tissues at concentrations > or =2 ng/g. Porcine liver, kidney, or muscle tissue is homogenized with methanol-acetonitrile. After centrifugation, the supernatant is diluted with phosphate buffer and cleaned up on a C18 solid-phase extraction cartridge. VMY in the eluate is partitioned into chloroform and the aqueous upper layer is removed by aspiration. After evaporating the chloroform in the residual mixture to dryness, the dried extract is reconstituted in mobile phase and VMY is quantified by LC-MS. Any samples eliciting quantifiable levels of VMY M1 (i.e., at concentrations > or =2 ng/g) are subjected to confirmatory analysis by LC-MSIMS. VMY S1, a minor component of the VMY complex, is monitored but not quantified or confirmed.
Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan
2018-01-01
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time. PMID:29541519
Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan
2018-03-01
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time.
Ovarian tissue cryopreservation by stepped vitrification and monitored by X-ray computed tomography.
Corral, Ariadna; Clavero, Macarena; Gallardo, Miguel; Balcerzyk, Marcin; Amorim, Christiani A; Parrado-Gallego, Ángel; Dolmans, Marie-Madeleine; Paulini, Fernanda; Morris, John; Risco, Ramón
2018-04-01
Ovarian tissue cryopreservation is, in most cases, the only fertility preservation option available for female patients soon to undergo gonadotoxic treatment. To date, cryopreservation of ovarian tissue has been carried out by both traditional slow freezing method and vitrification, but even with the best techniques, there is still a considerable loss of follicle viability. In this report, we investigated a stepped cryopreservation procedure which combines features of slow cooling and vitrification (hereafter called stepped vitrification). Bovine ovarian tissue was used as a tissue model. Stepwise increments of the Me 2 SO concentration coupled with stepwise drops-in temperature in a device specifically designed for this purpose and X-ray computed tomography were combined to investigate loading times at each step, by monitoring the attenuation of the radiation proportional to Me 2 SO permeation. Viability analysis was performed in warmed tissues by immunohistochemistry. Although further viability tests should be conducted after transplantation, preliminary results are very promising. Four protocols were explored. Two of them showed a poor permeation of the vitrification solution (P1 and P2). The other two (P3 and P4), with higher permeation, were studied in deeper detail. Out of these two protocols, P4, with a longer permeation time at -40 °C, showed the same histological integrity after warming as fresh controls. Copyright © 2018 Elsevier Inc. All rights reserved.
Frenzel, Steven A.
1996-01-01
Surface and ground water in Nebraska may contain contaminants resulting from human activities. For purposes of this publication, a contaminant is any element or compound whose presence may affect the water's suitability for certain uses. For example, herbicide concentrations may exceeed the U.S. Environmental Protection Agency's (USEPA) Health Advisory Levels (HAL) for drinking water or trace-element concentrations may exceed guidelines for the protection of aquatic life. In general, the contaminats discussed in this report enter the aquatic system through nonpoint-source runoff from agricultural lands that dominate the Nebraska landscape. However,because this assessment was conducted as part of a larger, national program, a screening for contaminants with non-agricultural origins was included.The measurement of water quality involves a variety of steps, each contributing unique information while also aggregating to an overall assessment. One aspect of water-quality assesment is to describe the occurrence and distribution of contaminants. Some contaminants may be hundreds or thousands of times more concentrated in the tissues of aquatic organisms or in fine sediments than they are in the water. As a result, fish tissue and streambed sediments are well suited for the detection of certain contaminants. For example, pesticides used in the United States prior to the early 1970's, such as DDT, may have degraded into more stable but still toxic compounds that are highly concentrated in fish tissues. Conversely, other contaminants are not concentrated in sediments or tissues but are readily detected in water samples. Organonitrogen herbicides (such as atrazine), the most commonly used herbicides in Nebraska, are examples of water-soluble contaminants.Several sampling strategies were used to address specific questions. Some sites were sampled repeatedly through time and during all hydrologic conditions, whereas others were sampled only once to determine presence of contaminants. Because a strong relation between concentration and streamflow often exists for contaminants originating from nonpoint sources, streams typically were sampled near gaging stations that monitor streamflow.
Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland
2017-06-20
Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.
Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor
NASA Astrophysics Data System (ADS)
Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli
2007-02-01
Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.
Online quantitative analysis of multispectral images of human body tissues
NASA Astrophysics Data System (ADS)
Lisenko, S. A.
2013-08-01
A method is developed for online monitoring of structural and morphological parameters of biological tissues (haemoglobin concentration, degree of blood oxygenation, average diameter of capillaries and the parameter characterising the average size of tissue scatterers), which involves multispectral tissue imaging, image normalisation to one of its spectral layers and determination of unknown parameters based on their stable regression relation with the spectral characteristics of the normalised image. Regression is obtained by simulating numerically the diffuse reflectance spectrum of the tissue by the Monte Carlo method at a wide variation of model parameters. The correctness of the model calculations is confirmed by the good agreement with the experimental data. The error of the method is estimated under conditions of general variability of structural and morphological parameters of the tissue. The method developed is compared with the traditional methods of interpretation of multispectral images of biological tissues, based on the solution of the inverse problem for each pixel of the image in the approximation of different analytical models.
Hedaya, Mohsen A; Thomas, Vidhya; Abdel-Hamid, Mohamed E; Kehinde, Elijah O; Phillips, Oludotun A
2017-01-01
Linezolid is the first approved oxazolidinone antibacterial agent, whereas PH027 is a novel compound of the same class that exhibits good in vitro antibacterial activity. The objective of this study was to develop an UPLC-MS/MS assay for the analysis of linezolid and PH027 in plasma and to apply the method for comparative pharmacokinetic and tissue distribution studies of both compounds. Plasma samples and calibrators were extracted with diethyl ether after addition of the internal standard solution. After evaporation of the ether layer, the residue was reconstituted in mobile phase and injected into UPLC-MS/MS. The mobile phase consisted of 2mM ammonium acetate buffer solution and acetonitrile (70:30) at a flow rate of 0.2ml/min. Separation was achieved using UPLC BEH C 18 column, and quantitative determination of the analytes was performed using multiple-reaction monitoring (MRM) scanning mode. The method was validated by analyzing quality control tissue homogenate samples, and was applied to analyze tissue homogenate samples obtained following IV injections of linezolid and PH027 in rabbits. The developed UPLC-MS/MS method was linear in the concentration range of 50-5000ng/ml. Validation of the method proved that the method's precision, selectivity and stability were all within the acceptable limits. Linezolid and PH027 concentrations were accurately determined in the quality control tissue homogenate samples, and analysis of samples obtained following IV administration of the two compounds showed that the tissue to plasma concentration ratio of PH027 was higher than that of linezolid probably due to its higher lipophilicity. The developed UPLC-MS/MS method for the analysis of linezolid and PH027 in rabbit's plasma can accurately determine the concentrations of these compounds in different tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
Santini, Andrew D; King, Todd; Krawczyk, Keith; Kern, John W
2015-01-01
Documenting successful remediation of polychlorinated biphenyl (PCB)-contaminated sediments is limited; potentially due to inadequate monitoring methods, complexities associated with the environment, and selected remedial techniques. At some sites, absence of appropriate baseline and postremoval monitoring limits proper evaluation of remedial efficacy. Accurate interpretation of interactions between media, space, time, species, lipid content, and remedial technique requires robust study design and data. This article presents baseline and postremoval data documenting reduced PCB concentrations in fish tissue, surface water, and sediment in response to the US Environmental Protection Agency (USEPA) time-critical removal action (TCRA) that was conducted at the former Bryant Mill Pond (BMP) on Portage Creek in Kalamazoo, Michigan. The BMP is part of an operable unit (OU) within the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. PCBs discharged to the creek as a byproduct of carbonless copy paper recycling are the primary contaminant of concern. Paper waste residuals commonly appear as gray to light gray clays in river sediments and floodplain soils. The cleanup criterion was 10 mg/kg, with a residual PCB concentration goal of 1 mg/kg. Because the PCB-containing waste is (generally) associated with readily visible light gray clay, excavation of all visibly contaminated current or formerly impounded sediment served as a surrogate for the cleanup criteria and goal. Sediment was wet excavated and backfilled after diversion of the creek. After confirmation that PCB concentrations met cleanup criteria, the stream was diverted to the excavated side, and excavation and backfilling were completed. Overall, 146000 cubic yards of material including PCB-contaminated sediments were removed from the BMP. The long-term monitoring (LTM) program implemented by the Michigan Department of Environmental Quality (MDEQ), and historic data from a variety of sources (federal, state, and local agencies and responsible parties) provided data demonstrating TCRA effectiveness. Before TCRA, surface sediment PCB concentration in instream and formerly inundated sediment combined was 83 mg/kg (with a maximum of 700 mg/kg). Instream sediments that are more representative of fish exposures had a pre-TCRA surface weighted average concentration (SWAC) of 27 mg/kg. The post-TCRA SWAC for instream and floodplain sediments combined was 0.26 mg/kg. Average surface water concentrations at the downstream end of the BMP were reduced from 0.11 µg/L pre-TCRA to 0.0025 µg/L post-TCRA. Tissue samples for adult carp fillets decreased from 4 mg/kg pre-TCRA to 0.26 mg/kg post-TCRA; whole body white suckers from 3 mg/kg pre-TCRA to 0.1 mg/kg post-TCRA; whole body channel catfish from 39 mg/kg-L pre-TCRA to 2.6 mg/kg-L post-TCRA. Concentrations of PCBs in 2 species of resident fish (carp and white suckers), caged channel catfish, surface water, and sediment were reduced by over 1 order of magnitude within 1 year of completion, substantively accelerating natural recovery processes. A slight increase in PCB concentration was observed in both whole body suckers and adult carp fillets in the second monitoring period post-TCRA; however, these concentrations are still near an order of magnitude less than pre-TCRA concentrations and appear to be currently stable or on a slight downward trend. © 2014 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, S.C.; Evenden, W.G.; Cornwell, T.C.
The relative depuration and uptake kinetics of contaminants should be known to interpret appropriately the use of organisms such as earthworms in environmental bioassays and monitoring. For example, 14-d earthworm bioassays should be interpreted with the knowledge that some contaminants will continue to accumulate in tissues for months. The radiotracers {sup 125}I, {sup 134}Cs, {sup 54}Mn, {sup 65}Zn, and {sup 109}Cd were applied to deciduous litter and specimens of Lumbricus terrestris were exposed, either to litter alone or to litter on the top of soil columns. Depuration was monitored for 120 d and uptake, in a separate experiment, for 20more » d. Both depuration and uptake were described using two-phase, first-order statistical models. Cut clearance had a mean half-time of 1.4 d. The mean half-time for physiological depuration decreased from I (210 d) > Cd (150 d) > Zn (69 d) > Mn (40 d) > Cs (24 d). Both the depuration and the uptake experiments were necessary to resolve even partially the multiphase processes. Earthworm/soil dry weight concentration ratios decreased from Cd > Zn > I {ge} Cs {ge} Mn. The very slow kinetics indicate that tissue concentrations will increase continuously for a long time, with important implications for subsequent food-chain transfers.« less
Cadmium distribution in field-grown fruit trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korcak, R.F.
The effect of soil applied Cd on Cd distribution in and growth of five species of fruit trees was investigated. Cadmium was applied at three rates (0, 5, and 10 mg kg{sup {minus}1} soil) as CdSO{sub 4} to orchard plots established at two pH levels, low (5.5) and high (6.5). Five fruit tree types were planted: Gala apple (Malus domestica Borkh.) budded on M.26 (dwarfing) or MM.111 (semistandard) rootstocks, Redskin peach (Prunus persica L.) on Lovell rootstock, Stanley plum (Prunus domestica L.) on Myrobalon rootstock, and Seckel pear (Pyrus communis L.) on seedling rootstock. The trees were grown for 6more » yr, 7 yr in the case of pear, and leaf, bark, wood, fruit, and root Cd concentrations were monitored. Gala apple on both rootstocks accumulated very small concentrations of Cd, usually 0.1 mg kg{sup {minus}1} dry wt. in all tissues tested. Peach and plum were intermediate in Cd accumulation, but both still relatively low. Seckel pear had high Cd concentrations in all tissues including fruit flesh and peel. Pear leaf Cd concentrations were 2.0 mg kg{sup {minus}1} from the 10 mg kg{sup {minus}1} soil Cd application after 5 yr. Pear fruit peel and flesh showed elevated, although nonsignificant, Cd concentrations with increased Cd applied. There was little difference between bark and wood tissue Cd concentrations independent of tree type. Root Cd concentrations were highest for pear followed by peach and plum, and lowest in apple.« less
Doxycycline and sulfadimethoxine transfer from cross-contaminated feed to chicken tissues.
Segato, G; Benetti, C; Angeletti, R; Montesissa, C; Biancotto, G
2011-01-01
During feed preparation at feed mills or during feed mixing in bins at farms, the accidental contamination of feed at trace levels by veterinary drug residues, commonly known as carry-over, can accidentally but frequently occur. To evaluate the concentrations of residual antimicrobials in poultry edible tissues, due to contaminated feed, sulfadimethoxine and doxycycline were administered for 10 days to chickens in poultry feed incurred at the contamination levels frequently found during national feed monitoring programmes (1-5 mg kg(-1)). Sulfadimethoxine and doxycycline residual concentrations detected in muscle (
NASA Astrophysics Data System (ADS)
Daniel, Marie-Christine; Aras, Omer; Smith, Mark F.; Nan, Anjan; Fleiter, Thorsten
2010-04-01
The development of cardiac and pulmonary fibrosis have been associated with overexpression of angiotensin-converting enzyme (ACE). Moreover, ACE inhibitors, such as lisinopril, have shown a benificial effect for patients diagnosed with heart failure or systemic hypertension. Thus targeted imaging of the ACE is of crucial importance for monitoring of the tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-capped gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. Concentrated solutions of these modified gold nanoparticles, with a diameter around 16 nm, showed high contrast in CT imaging. These new targeted imaging agents were thus used for in vivo imaging on rat models.
[Delivery room resuscitation with room air and oxygen in newborns. State of art, recommendations].
Lauterbach, Ryszard; Musialik-Swietlińska, Ewa; Swietliński, Janusz; Pawlik, Dorota; Bober, Klaudiusz
2008-01-01
The authors present and discuss the current data, concerning delivery room resuscitation with oxygen and room air in neonates. On the ground of the results obtained from literature and the Polish National Survey on Paediatric and Neonatal Intensive Care, 2007/2008 issue, the authors give the following proposals regarding optimal oxygen treatment: 1. there is a need for optimizing tissue oxygenation in order to prevent injury caused by radical oxygen species; 2. newborn resuscitation should be monitored by measuring the haemoglobin saturation - the values above 90%, found in resuscitated newborn within the first minutes of life may be dangerous and cause tissue injury; 3. starting the resuscitation with oxygen concentration lower than 40% and adjusting it according to the effects of the procedure - the less mature infant the lower oxygen concentration at the beginning of resuscitation; 4. heart rate >100/min and SatO2Hb between 70-80% within the first minutes of life should not be an indication for increasing oxygen concentration.
Bioanalytical procedures for monitoring in utero drug exposure
Gray, Teresa
2009-01-01
Drug use by pregnant women has been extensively associated with adverse mental, physical, and psychological outcomes in their exposed children. This manuscript reviews bioanalytical methods for in utero drug exposure monitoring for common drugs of abuse in urine, hair, oral fluid, blood, sweat, meconium, amniotic fluid, umbilical cord tissue, nails, and vernix caseosa; neonatal matrices are particularly emphasized. Advantages and limitations of testing different maternal and neonatal biological specimens including ease and invasiveness of collection, and detection time frames, sensitivities, and specificities are described, and specific references for available analytical methods included. Future research involves identifying metabolites unique to fetal drug metabolism to improve detection rates of in utero drug exposure and determining relationships between the amount, frequency, and timing of drug exposure and drug concentrations in infant biological fluids and tissues. Accurate bioanalytical procedures are vital to defining the scope of and resolving this important public health problem. PMID:17370066
Pedersen, Kathrine Eggers; Styrishave, Bjarne; Sonne, Christian; Dietz, Rune; Jenssen, Bjørn Munro
2015-01-01
This review addresses biological effects of anthropogenic organohalogenated compounds in the arctic fox (Vulpes lagopus). When considering the current levels, spatial and tissue distributions of selected organic pollutants in arctic fox subpopulations, especially the Svalbard based populations accumulate high levels. The dominating contaminant groups are the polychlorinated biphenyls (PCBs) and chlordanes (CHLs), which reach high levels in adipose tissues, adrenals and liver. Recent controlled exposure studies on domesticated arctic fox and Greenland sledge dogs, show adverse health effects associated with OC concentrations lower than those measured in free-ranging populations. This indicates that especially populations at Svalbard may be at risk of experiencing OC related effects. The arctic fox as such may be an overlooked species in the Arctic Monitoring and Assessment Programs and it would add further information about pollution in the Arctic to include this species in the monitoring program. Copyright © 2014 Elsevier B.V. All rights reserved.
Biological monitoring of an agricultural food chain: soil cadmium and lead in ruminant tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brams, E.; Anthony, W.; Weatherspoon, L.
1988-01-01
The hypothesis that low-level contamination of a sandy loam soil with cadmium and lead at 0.01-9.0 and 3.0-54.0 ug g-1 soil respectively could induce a response in grasses as measured by the accumulation of soil Cd and Pb in sudan sorghum hay, was verified at the 0.08 and 0.05 levels respectively. Employing these data and the concentrations of Cd and Pb in blood, liver, kidney, select brain tissues and fetal tissues of pregnant goats as test animals consuming the hay over a 98 day feeding period, an assessment of the magnitude of these metals retained along select pathways of themore » agricultural food chain was developed.« less
Grace, N D; Knowles, S O; Hittmann, A R
2010-06-01
To document the Cu supplementation practices on dairy farms in the Waikato region, determine the Cu status of those herds, and compare the suitability of liver samples sourced from biopsies and cull cows for assessing Cu status. During spring 2008, concentrations of Cu, Mo and S were determined from pasture samples from 24 dairy farms. Feeding regimens, herd size, milksolids production, soil type, fertiliser policy and Cu supplementation practices were recorded for each property. Based on these data, 10 monitor farms were selected to represent a range of Cu intakes for herds, from 5 to 12 mg Cu/kg dry matter (DM). On each monitor farm 12 healthy lactating cows were selected for liver biopsy and collection of blood samples during the following autumn. Around the same time, livers were collected from 12 cull cows per farm when they were slaughtered, and samples of pasture were again collected from each farm. Concentrations of Cu were measured in all tissue samples. Concentrations of Cu in pasture tended to be higher (mean 10.4 vs 8.2 mg/kg DM) in the autumn than spring, while concentrations of Mo were lower in the autumn (mean 0.35 vs 1.07 mg/kg DM). Most of the 24 farms used Cu supplementation in some form. Mean concentrations of Cu in liver for herds ranged from 640 (SD 544) to 2,560 (SD 474) micromol/kg fresh tissue in biopsies, and 520 (SD 235) to 2,610 (SD 945) micromol/kg in liver from cull cows. Mean concentrations of Cu in serum ranged from 7.9 to 13.4 micromol/L. The variability in concentrations of Cu for each farm was greater for liver (CV 50%) than serum (CV 21%). For individual cows, concentrations of Cu in liver, obtained by biopsy, and serum were not correlated. The concentration of Cu in liver of dairy cows reflected widely differing dietary intakes of Cu between herds, although levels indicated an adequate Cu status on all farms in this study. Use of either biopsy samples or livers from cull cows were indicative of the Cu status of the herd. Wide variation in observed concentrations of Cu in liver indicated that at least 12 cows per herd should be sampled. On farms with intensive, long-term Cu supplementation programmes there is a risk of chronic Cu toxicity in some animals. Thus, the Cu status of dairy herds should be determined, and monitored, before making any recommendations regarding supplementation.
Proof of the quantitative potential of immunofluorescence by mass spectrometry.
Toki, Maria I; Cecchi, Fabiola; Hembrough, Todd; Syrigos, Konstantinos N; Rimm, David L
2017-03-01
Protein expression in formalin-fixed, paraffin-embedded patient tissue is routinely measured by Immunohistochemistry (IHC). However, IHC has been shown to be subject to variability in sensitivity, specificity and reproducibility, and is generally, at best, considered semi-quantitative. Mass spectrometry (MS) is considered by many to be the criterion standard for protein measurement, offering high sensitivity, specificity, and objective molecular quantification. Here, we seek to show that quantitative immunofluorescence (QIF) with standardization can achieve quantitative results comparable to MS. Epidermal growth factor receptor (EGFR) was measured by quantitative immunofluorescence in 15 cell lines with a wide range of EGFR expression, using different primary antibody concentrations, including the optimal signal-to-noise concentration after quantitative titration. QIF target measurement was then compared to the absolute EGFR concentration measured by Liquid Tissue-selected reaction monitoring mass spectrometry. The best agreement between the two assays was found when the EGFR primary antibody was used at the optimal signal-to-noise concentration, revealing a strong linear regression (R 2 =0.88). This demonstrates that quantitative optimization of titration by calculation of signal-to-noise ratio allows QIF to be standardized to MS and can therefore be used to assess absolute protein concentration in a linear and reproducible manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antrim, Liam D.; Kohn, Nancy P.
Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessmentmore » for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.« less
Moatti-Sirat, D; Capron, F; Poitout, V; Reach, G; Bindra, D S; Zhang, Y; Wilson, G S; Thévenot, D R
1992-03-01
A miniaturized amperometric, enzymatic, glucose sensor (outer diameter 0.45 mm) was evaluated after implantation in the subcutaneous tissue of normal rats. A simple experimental procedure was designed for the long-term assessment of the sensor's function which was performed by recording the current during an intraperitoneal glucose load. The sensor was calibrated by accounting for the increase in the current during the concomitant increase in plasma glucose concentration, determined in blood sampled at the tail vein. This made it possible to estimate the glucose concentration in subcutaneous tissue. During the glucose load, the change in subcutaneous glucose concentration followed that in blood with a lag time consistently shorter than 5 min. The estimations of subcutaneous glucose concentration during these tests were compared to the concomitant plasma glucose concentrations by using a grid analysis. Three days after implantation (n = 6 experiments), 79 estimations were considered accurate, except for five which were in the acceptable zone. Ten days after implantation (n = 5 experiments), 101 estimations were accurate, except for one value, which was still acceptable. The sensitivity was around 0.5 nA.mmol-1.l-1 on day 3 and day 10. A longitudinal study on seven sensors tested on different days demonstrated a relative stability of the sensor's sensitivity. Finally, histological examination of the zone around the implantation site revealed a fibrotic reaction containing neocapillaries, which could explain the fast response of the sensor to glucose observed in vivo, even on day 10. We conclude that this miniaturized glucose sensor, whose size makes it easily implanted, works for at least ten days after implantation into rat subcutaneous tissue.
Fukayama, Toshiharu; Ozai, Yusuke; Shimokawadoko, Haruka; Aytemiz, Derya; Tanaka, Ryou; Machida, Noboru; Asakura, Tetsuo
2015-01-01
ABSTRACT Vascular grafts under 5 mm or less in diameter are not developed due to a problem caused by early thrombus formation, neointimal hyperplasia, etc. Bombyx mori silk fibroin (SF) which has biodegradability and tissue infiltration is focused as tube and coating material of vascular grafts. Coating is an important factor to maintain the strength of the anastomotic region of vascular grafts, and to prevent the blood leak from the vascular grafts after implantation. Therefore, in this research, we focused on the SF concentration of the coating solution, and tissue infiltration and remodeling were compared among each SF concentration. Silk poly (-ethylene) glycol diglycidyl ether (PGDE) coating with concentrations of 1.0%, 2.5%, 5.0%, and 7.5% SF were applied for the double-raschel knitted small-sized vessel with 1.5 mm diameter and 1cm in length. The grafts were implanted in the rat abdominal aorta and removed after 3 weeks or 3 months. Vascular grafts patency was monitored by ultrasound, and morphological evaluation was performed by histopathological examination. SF concentration had no significant effects on the patency rate. However, tissue infiltration was significantly higher in the sample of 2.5% SF in 3 weeks, and 1.0% and 2.5% SF in 3 months. Also, in comparison of length inside of the graft, stenosis were not found in 3 weeks, however, found with 5.0% and 7.5% in 3 months. From these results, it is clear that 2.5% SF coating is the most suitable concentration, based on the characteristics of less stenosis, early tissue infiltration, and less neointimal hyperplasia. PMID:26496652
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.
2003-10-01
Approximately 14 million people in the USA and more than 140 million people worldwide suffer from Diabetes Mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for chemical analysis. Recently we proposed to use optical coherence tomography (OCT) for continuous noninvasive blood glucose sensing through skin. In this paper we tested the OCT technique for noninvasive monitoring of blood glucose concentration in lip tissue of New Zealand rabbits and Yucatan micropigs during glucose clamping experiments. Obtained results show good agreement with results obtained in skin studies, good correlation of changes in the OCT signal slope measured at the depth of 250 to 500 μm with changes in blood glucose concentration, and higher stability of the OCT data points than that obtained from skin.
Lorenzi, Allison H.; Cain, Daniel J.; Parcheso, Francis; Thompson, Janet K.; Luoma, Samuel N.; Hornberger, Michelle I.; Dyke, Jessica; Cervantes, Raul; Shouse, Michelle K.
2007-01-01
Results reported herein include trace element concentrations in sediment and in the clam Macoma petalum (formerly reported as Macoma balthica (Cohen and Carlton 1995)), clam reproductive activity, and benthic macroinvertebrate community structure for a mudflat one kilometer south of the discharge of the Palo Alto Regional Water Quality Control Plant in South San Francisco Bay. This report includes data collected for the period January 2006 to December 2006, and extends a critical long-term biogeochemical record dating back to 1974. These data serve as the basis for the City of Palo Alto's Near-Field Receiving Water Monitoring Program, initiated in 1994. Metal concentrations in both sediments and clam tissue during 2006 were consistent with results observed since 1990. Most notably, copper and silver concentrations in sediment and clam tissue increased in the last year but the values remain well within range of past data. Other metals such as chromium, nickel, vanadium, and zinc remained relatively constant throughout the year except for maximum values generally occurring in winter months (January-March). Mercury levels in sediment and clam tissue were some of the lowest seen on record. Conversely, selenium concentrations reached a maximum level but soon returned to baseline levels. In all, metal concentrations in sediments and tissue remain within past findings. There are no obvious directional trends (increasing or decreasing). Analyses of the benthic-community structure of a mudflat in South San Francisco Bay over a 31-year period show that changes in the community have occurred concurrent with reduced concentrations of metals in the sediment and in the tissues of the biosentinel clam M. petalum from the same area. Analysis of the reproductive activity of M. petalum shows increases in reproductive activity concurrent with the decline in metal concentrations in the tissues of this organism. Reproductive activity is presently stable, with almost all animals initiating reproduction in the fall and spawning the following spring of most years. The community has shifted from being dominated by several opportunistic species to a community where the species are more similar in abundance, a pattern that suggests a more stable community that is subjected to less stress. In addition, two of the opportunistic species (Ampelisca abdita and Streblospio benedicti) that brood their young and live on the surface of the sediment in tubes, have shown a continual decline in dominance coincident with the decline in metals. Heteromastus filiformis, a subsurface polychaete worm that lives in the sediment, consumes sediment and organic particles residing in the sediment, and reproduces by laying their eggs on or in the sediment, has shown a concurrent increase in dominance. These changes in species dominance reflect a change in the community from one dominated by surface dwelling, brooding species to one with species with varying life history characteristics. For the first time since its invasion in 1986, the non-indigenous filter-feeding clam Corbula (Potamocorbula) amurensis has shown up in small, but persistent, numbers in the benthic community.
Development of a murre (Uria spp.) egg control material
Vander Pol, Stacy S.; Ellisor, M.B.; Pugh, Rebecca S.; Becker, P.R.; Poster, D.L.; Schantz, M.M.; Leigh, S.D.; Wakeford, B.J.; Roseneau, David G.; Simac, K.S.
2007-01-01
The Seabird Tissue Archival and Monitoring Project (STAMP) is a collaborative Alaska-wide effort by the US Fish and Wildlife Service's Alaska Maritime National Wildlife Refuge (USFWS/AMNWR), the US Geological Survey's Biological Resources Division (USGS/BRD), the Bureau of Indian Affairs Alaska Region Subsistence Branch (BIA/ARSB), and the National Institute of Standards and Technology (NIST) to monitor long-term (decadal) trends in environmental contaminants using seabird eggs. To support this effort, a matrix- (seabird egg) and concentration-specific control material was needed to ensure quality during analytical work. Although a herring gull egg quality assurance (HGQA) material is available from Environment Canada (EC), contaminant concentrations in this material tended to be higher than those observed in Alaskan murre (Uria spp.) eggs. Therefore, to prepare a more appropriate control material, a total of 12 common murre (U. aalge) and thick-billed murre (U. lomvia) eggs from four Bering Sea and Gulf of Alaska nesting locations were cryohomogenized to create 190 aliquots each containing approximately 6 g. This new control material was analyzed by different methods at NIST and EC facilities for the determination of concentrations and value assignment of 63 polychlorinated biphenyl (PCB) congeners, 20 organochlorine pesticides, and 11 polybrominated diphenyl ether (PBDE) congeners. The total PCB concentration is approximately 58 ng g -1 wet mass. Results obtained for analytes not listed on the certificates of analysis of the previously used control materials, HGQA and NIST's Standard Reference Material (SRM) 1946 Lake Superior Fish Tissue, are also presented. [Figure not available: see fulltext.]. ?? Springer-Verlag 2007.
Fontanarosa, Carolina; Pane, Francesca; Sepe, Nunzio; Pinto, Gabriella; Trifuoggi, Marco; Squillace, Marta; Errico, Francesco; Usiello, Alessandro; Pucci, Piero; Amoresano, Angela
2017-01-01
Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75-110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.
PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT)
NASA Astrophysics Data System (ADS)
Ong, Yi Hong; Kim, Michele M.; Finlay, Jarod C.; Dimofte, Andreea; Singhal, Sunil; Glatstein, Eli; Cengel, Keith A.; Zhu, Timothy C.
2018-01-01
Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.
Quantitative ultrasound imaging for monitoring in situ high-intensity focused ultrasound exposure.
Ghoshal, Goutam; Kemmerer, Jeremy P; Karunakaran, Chandra; Abuhabsah, Rami; Miller, Rita J; Sarwate, Sandhya; Oelze, Michael L
2014-10-01
Quantitative ultrasound (QUS) imaging is hypothesized to map temperature elevations induced in tissue with high spatial and temporal resolution. To test this hypothesis, QUS techniques were examined to monitor high-intensity focused ultrasound (HIFU) exposure of tissue. In situ experiments were conducted on mammary adenocarcinoma tumors grown in rats and lesions were formed using a HIFU system. A thermocouple was inserted into the tumor to provide estimates of temperature at one location. Backscattered time-domain waveforms from the tissue during exposure were recorded using a clinical ultrasonic imaging system. Backscatter coefficients were estimated using a reference phantom technique. Two parameters were estimated from the backscatter coefficient (effective scatterer diameter (ESD) and effective acoustic concentration (EAC). The changes in the average parameters in the regions corresponding to the HIFU focus over time were correlated to the temperature readings from the thermocouple. The changes in the EAC parameter were consistently correlated to temperature during both heating and cooling of the tumors. The changes in the ESD did not have a consistent trend with temperature. The mean ESD and EAC before exposure were 120 ± 16 μm and 32 ± 3 dB/cm3, respectively, and changed to 144 ± 9 μm and 51 ± 7 dB/cm3, respectively, just before the last HIFU pulse was delivered to the tissue. After the tissue cooled down to 37 °C, the mean ESD and EAC were 126 ± 8 μm and 35 ± 4 dB/cm3, respectively. Peak temperature in the range of 50-60 °C was recorded by a thermocouple placed just behind the tumor. These results suggest that QUS techniques have the potential to be used for non-invasive monitoring of HIFU exposure. © The Author(s) 2014.
Shadgan, Babak; Pakravan, Amir H.; Hoens, Alison; Reid, W. Darlene
2015-01-01
Context Vapocoolant spray, commonly known as cold spray (CS), is a cryotherapy modality used in sports medicine, athletic training, and rehabilitation settings. Proposed physiologic effects of cryotherapy modalities include reductions in tissue blood flow, oxygenation, and cell metabolism in addition to attenuation of pain perception attributed to reduced superficial nerve conduction velocity. Objective To examine the effects of CS on subcutaneous and intramuscular blood flow and oxygenation on the thigh muscle using near-infrared spectroscopy, an optical method to monitor changes in tissue oxygenated (O2Hb), deoxygenated (HHb), and total (tHb) hemoglobin. Design Cross-sectional study. Setting Muscle Biophysics Laboratory. Patients or Other Participants Participants were 13 healthy adults (8 men, 5 women; age = 37.4 ± 6 years, body mass index = 27.4 ± 2.6, adipose tissue thickness = 7.2 ± 1.8 mm). Intervention(s) Conventional CS was applied to the vastus medialis muscles. Main Outcome Measure(s) Changes in chromophore concentrations of O2Hb, HHb, and tHb at superficial and deep layers were monitored for 5 minutes using a 2-channel near-infrared spectroscopy. Results Thirty seconds after CS application, we observed a decrease from baseline in O2Hb and tHb only in the superficial layer that was maintained for 3 minutes. Conclusions Application of CS induced a transient change in blood flow and oxygenation of the superficial tissues with no change in deeper tissues over the healthy vastus medialis muscle. The limited physiologic effect of CS on the superficial hemodynamics and oxygenation of limb muscles may limit the therapeutic benefit of this cryotherapy modality to a temporary analgesic effect, a hypothesis that warrants a clinical trial on traumatized muscles. PMID:26098273
Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study
NASA Astrophysics Data System (ADS)
Bakhsheshi, Mohammad Fazel; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim
2014-05-01
Mild hypothermia (HT) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C±1.1°C for the in vitro experiments and 0.5°C±1.6°C for the in vivo measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iranzo, E.; Salvador, S.; Iranzo, C.E.
1987-04-01
On 17 January 1966, an accident during a refueling operation resulted in the destruction of an air force KC-135 tanker and a B-52 bomber carrying four thermonuclear weapons. Two weapons, whose parachutes opened, were found intact. The others experienced non-nuclear explosion with some burning and release of the fissile fuel at impact. Joint efforts by the United States and Spain resulted in remedial action and a long-term program to monitor the effectiveness of the cleanup. Air concentrations of /sup 239/Pu and /sup 240/Pu have been continuously monitored since the accident. The average annual air concentration for each location was usedmore » to estimate committed dose equivalents for individuals living and working around the air sampling stations. The average annual /sup 239/Pu and /sup 240/Pu air concentrations during the 15-y period corresponding to 1966-1980 and the potential committed dose equivalents for various tissues due to the inhalation of the /sup 239/Pu and /sup 240/Pu average annual air concentration during this period are shown and discussed in the report.« less
Court, Michael H; Robbins, Alison H; Whitford, Anne M; Beck, Erika V; Tseng, Flo S; Reeder, DeeAnn M
2017-01-01
OBJECTIVE To determine the pharmacokinetics of terbinafine in little brown myotis (Myotis lucifugus) infected with Pseudogymnoascus destructans. ANIMALS 123 bats from a P destructans-infected hibernation site in Virginia. PROCEDURES 3 bats were euthanized and necropsied to confirm the presence of P destructans within the population. The remaining 120 bats were systematically assigned to 6 groups (20 bats/group). Bats in each of 3 groups received 6, 20, or 60 mg of terbinafine/kg, SC, once daily for 10 days. Bats in another group received 200 mg of terbinafine/kg, SC, once daily for 5 days. Bats in 1 group received the terbinafine vehicle solution (0.1 mL/kg, SC, once daily for 10 days). Bats in the remaining group did not receive any treatment. Following the treatment period (days 1 through 10), bats were housed in a hibernation chamber and monitored daily until euthanasia on day 42, 75, or 109. Tissue specimens were collected from all bats as soon as possible after death or euthanasia to determine terbinafine concentration. Within each group and tissue type, terbinafine concentration data were pooled, and pharmacokinetic parameters were calculated by noncompartmental methods. RESULTS Adverse neurologic effects and a high mortality rate before day 10 were observed in bats that received the highest terbinafine dose (200 mg/kg) but not those that received lower doses. Presumed therapeutic terbinafine concentrations (≥ 2 μg/g) were maintained in skin and wing for at least 30 and 6 days in bats that received the 60 and 20 mg/kg doses, respectively, but were not achieved in most bats that received the 6 mg/kg dose. Tissue terminal half-life ranged from 14 to 22 days. Terbinafine concentration in hair was positively correlated with that in skin and wing. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated terbinafine doses > 6 but < 200 mg/kg should be further evaluated for the treatment of P destructans-infected bats. Collection of serial hair specimens may represent a noninvasive method for monitoring terbinafine concentration in treated bats.
Seasonal distribution of bird populations at the Patuxent Research Refuge
Hoffman, D.J.; Henny, C.J.; Hill, E.F.; Keith, J.A.; Grove, R.A.
2000-01-01
High concentrations of mercury from past mining activities have accumulated in the food chain of fish-eating birds nesting along the mid to lower Carson River. Activities of nine plasma and tissue enzymes, and concentrations of other plasma and tissue constituents were measured for black-crowned night-heron, Nycticorax nycticorax, (BCNH) and snowy egret, Egretta thula, (SE) nestlings from two high mercury sites and one low mercury site. Geometric mean blood Hg concentrations for BCNHs at the high mercury sites were 2.6 and 2.8 ppm (ww) and 0.6 ppm at the low mercury site. Blood concentrations for SEs were 3.6 and 1.9 ppm at the high mercury sites and 0.7 ppm at the low mercury site. In BCNHs plasma glutathione peroxidase (GSH peroxidase) activity was lower in both high mercury sites relative to the low mercury site. Butyryl cholinesterase (BuChe), ALT, glutathione reductase (GSSG-reductase) and LDH-L activities were lower in one high mercury site. In SEs significant differences were lower BuChe and LDH-L, but elevated GGT activities. Evidence of renal stress in both species at high mercury sites included increased plasma uric acid, blood urea nitrogen, and creatinine concentrations as well as oxidative stress in the kidney tissue itself where oxidized glutathione increased. A number of the mercury site-related effects, including decreased plasma GSH-peroxidase and hepatic G-6-PDH activities, higher GSSG-reductase activity, and lower hepatic concentrations of reduced thiols have been reported in methylmercury feeding studies with great egrets and mallards. These findings suggest the utility of herons and egrets for monitoring mercury sites.
Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.
2016-09-19
Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two-stage arrangement. With the modified IEC design, ammonium, nitrate, and sulfate ions were determined with a precision of between 5 and 10 percent relative standard deviation for the low loads that happen in remote areas of Alaska. Results from 2012 field studies demonstrated that the targeted ions were stable and fully retained on the IEC during field deployment and could be fully recovered by extraction in the laboratory. Importantly, measurements of annual loads determined by combining snowpack and IEC sampling at sites near National Atmospheric Deposition Program monitoring stations was comparable to results obtained by the National Atmospheric Deposition Program.Field studies completed in 2014 included snowpack and IEC samples to measure depositional loads; the results were compared to concentrations of similar substances in co-located moss samples. Analyses of constituents in snow and IECs included ammonium, nitrate, and sulfate ions; and a suite of trace metals. Constituent measurements in Hylocomium splendens moss included total nitrogen, phosphorous, and sulfur, and trace metals. To recover ammonium ions and metal ions from the upper cation-exchange column, a two-step extraction procedure was developed from laboratory spiking experiments. The 2014 studies determined that concentrations of certain metals, nitrogen, and sulfur in tissues of Hylocomium splendens moss reflected differences in presumptive deposition from local atmospheric sources. Moss tissues collected from two sites farthest from urban locales had the lowest levels of total nitrogen and sulfur, whereas tissues collected from three of the urban sites had the greatest concentrations of many of the trace metals. Moss tissue concentrations of three trace metals (cobalt, chromium, and nickel) were strongly (positively) Spearman’s rank correlated (p<0.05) with annual depositional loads of those metals. In addition, moss sulfur concentrations were positively rank correlated with annual depositional loads of sulfate (p<0.07). Exploratory models indicated linear uptake of the three metals by Hylocomium splendens moss and nonlinear uptake of sulfur from sulfate.Our results provided useful preliminary models for several of the targeted substances; however, our ability to characterize relations between concentrations in moss and loadings for many of the metals was precluded by several factors. The few test sites, small concentration gradients, and generally low concentrations hampered model developments. In addition, the weather was unusually warm throughout Alaska during the winter of 2013–14, which caused intermittent melting of the snowpack at some of the test sites; consequently, our measurements of overwinter loads based on snowpack samples (obtained in late March) probably underestimated the actual loads. Regardless of these potential limitations, these studies have established a foundation to support further studies that can improve our understanding of how mosses accumulate inorganic substances and ultimately how mosses might be used as biomonitors of atmospheric pollutants; moreover, the successful development and validation of the IECs during this research documents how the methodology can be used for future monitoring efforts in remote regions of Alaska and elsewhere.
NASA Astrophysics Data System (ADS)
Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong
2017-02-01
Biolasers are an emerging technology for next generation biochemical detection and clinical applications. Progress has recently been made to achieve lasing from biomolecules and single living cells. Tissues, which consist of cells embedded in extracellular matrix, mimic more closely the actual complex biological environment in a living body and therefore are of more practical significance. Here, we developed a highly versatile tissue laser platform, in which tissues stained with fluorophores are sandwiched in a high-Q Fabry-Pérot microcavity. Distinct lasing emissions from muscle and adipose tissues stained respectively with fluorescein isothiocyanate (FITC) and boron-dipyrromethene (BODIPY), and hybrid muscle/adipose tissue with dual-staining were achieved with a threshold of only 10 μJ/mm2. Additionally, we investigated how tissue structure/geometry, tissue thickness, and staining dye concentration affect the tissue laser. It is further found that, despite large fluorescence spectral overlap between FITC and BODIPY in tissues, their lasing emissions could be clearly distinguished and controlled due to their narrow lasing bands and different lasing thresholds, thus enabling highly multiplexed detection. Our tissue laser platform can be broadly applicable to various types of tissues/diseases. It provides a new tool for a wide range of biological and biomedical applications, such as diagnostics/screening of tissues and identification/monitoring of biological transformations in tissue engineering.
Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy
NASA Astrophysics Data System (ADS)
Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.
2017-06-01
We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n = 4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.
NASA Astrophysics Data System (ADS)
Abookasis, David; Lay, Christopher C.; Mathews, Marlon S.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.
2009-03-01
We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (Iisch=ctHHb/ctO2Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.
PAH bioconcentration in Mytilus sp from Sinclair Inlet, WA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, J.; Young, D.; Ozretich, R.
1995-12-31
Approximately 20 polynuclear aromatic hydrocarbons (PAH) were measured by GC/MS in seawater and whole soft tissues of the intertidal mussel Mytilus sp. collected in July 1991 within and around Puget Sound`s Sinclair Inlet. Low variability was observed in the water concentrations collected over three days at control sites, yielding reliable values for the exposure levels experienced by this bioindicator mollusk. Mean water concentrations of acenaphthene, phenanthrene, and fluoranthene in the control region were 2.7 {+-} 0.8, 2.8 {+-} 0.8, and 3.1 {+-} 0.7 ng/liter, respectively. Levels measured near sites of vessel activity were higher but much more variable; this reducedmore » the reliability of the tissue/water bioconcentration factors (BCF) obtained from these samples. An empirical model relating values of Log BCF and Log Kow for the control zone samples supports the utility of this estuarine bioindicator for monitoring general levels of PAH in nearshore surface waters.« less
Teng, Yichao; Ding, Haishu; Gong, Qingcheng; Jia, Zaishen; Huang, Lan
2006-01-01
During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (C(tHb)) compared with its original value is also monitored. It is shown that C(tHb) decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.
NASA Astrophysics Data System (ADS)
Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang
2017-04-01
The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.
D'Costa, Avelyno; Shyama, S K; Praveen Kumar, M K
2017-08-01
The present study reports the genetic damage and the concentrations of trace metals and total petroleum hydrocarbons prevailing in natural populations of an edible fish, Arius arius in different seasons along the coast of Goa, India as an indicator of the pollution status of coastal water. Fish were collected from a suspected polluted site and a reference site in the pre-monsoon, monsoon and post-monsoon seasons. Physico-chemical parameters as well as the concentrations of total petroleum hydrocarbons (TPH) and trace metals in the water and sediment as well as the tissues of fish collected from these sites were recorded. The genotoxicity status of the fish was assessed employing the micronucleus test and comet assay. A positive correlation (p<0.001) was observed between the tail DNA and micronuclei in all the fish collected. Multiple regression analysis revealed that tissue and environmental pollutant concentrations and genotoxicity were positively associated and higher in the tissues of the fish collected from the polluted site. Pollution indicators and genotoxicity tests, combined with other physiological or biochemical parameters represent an essential integrated approach for efficient monitoring of aquatic ecosystems in Goa. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantification of Neural Ethanol and Acetaldehyde Using Headspace GC-MS
Heit, Claire; Eriksson, Peter; Thompson, David C; Fritz, Kristofer S; Vasiliou, Vasilis
2016-01-01
BACKGROUND There is controversy regarding the active agent responsible for alcohol addiction. The theory that ethanol itself was the agent in alcohol drinking behavior was widely accepted until acetaldehyde was found in the brain. The importance of acetaldehyde formation in the brain role is still subject to speculation due to the lack of a method to accurately assay the acetaldehyde levels directly. A highly sensitive GC-MS method to reliably determine acetaldehyde concentration with certainty is needed to address whether neural acetaldehyde is indeed responsible for increased alcohol consumption. METHODS A headspace gas chromatograph coupled to selected ion monitoring mass spectrometry was utilized to develop a quantitative assay for acetaldehyde and ethanol. Our GC-MS approach was carried out using a Bruker Scion 436-GC SQ MS. RESULTS Our approach yields limits of detection of acetaldehyde in the nanomolar range and limits of quantification in the low micromolar range. Our linear calibration includes 5 concentrations with a least square regression greater than 0.99 for both acetaldehyde and ethanol. Tissue analyses using this method revealed the capacity to quantify ethanol and acetaldehyde in blood, brain, and liver tissue from mice. CONCLUSIONS By allowing quantification of very low concentrations, this method may be used to examine the formation of ethanol metabolites, specifically acetaldehyde, in murine brain tissue in alcohol research. PMID:27501276
Dedrick, D F; Sherer, Y D; Biebuyck, J F
1975-06-01
A new method of rapid sampling of brain tissue, "freeze-blowing," has been used to compare the neurochemistry of the brain during anesthesia with that in the awake state. The method avoids anoxia associated with the sampling process. Physiologic variables, including body temperature, blood-gas tensions and blood pressure, were carefully monitored and controlled in the experimental animals. None of the agents tested (halothane, morphine, and ketamine) reduced the brain tissue high-energy phosphate reserved. All three drugs doubled glucose levels. Morphine lowered both lactate and the lactate/pyruvate ratio. Uniformly, the three anesthetic agents led to twofold increases of brain cyclic 3'-5' adenosine monophosphate concentrations. These changes suggest a possible role for cyclic nucleotides in central neurotransmission.
317/319 phytoremediation site monitoring report - 2004 growing season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negri, M. C.; Gopalakrishnan, G.; Bogner, J.
2009-02-21
In 1999, Argonne National Laboratory (ANL) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by hydraulic control of the contaminated plume by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual volatile organic compounds (VOCs), and removing tritium from themore » subsoil and groundwater. This report presents the results of the monitoring activities conducted by Argonne's Energy Systems Division (ES) in the growing season of 2004. Monitoring of the planted trees began soon after the trees were installed in 1999 and has been conducted every summer since then. As the trees grew and consolidated their growth into the contaminated soil and groundwater, their exposure to the contaminants was progressively shown through tissue sampling. Since the inception of the project, significant progress was made in the refinement and testing of the analytical method (for which no official method is available), the determination of the optimal tissue for sampling, and of the variability of the concentrations within a specific tree. An understanding has also been developed on background concentrations of VOCs, and how to discriminate between VOCs that are associated with plant tissue because of aerial or of soil/groundwater uptake pathways. Also, during the 2003 sampling campaign, core samples from tree trunks were collected for the first time (the trees were large enough to stand the procedure). Data collected from the French Drain area last year supported the hypothesis that a correlation was present between concentrations of VOCs in the soil and in corresponding branch tissue. During this year (2004), systematic data collection in the French Drain area further consolidated this correlation and indicated that trees are clearly in the condition to have reached the target rooting depth. Concentrations in the hundreds of ppb in branch and trunk samples confirm that uptake can be a quantitative way to remove VOCs from the contaminated media. Additionally, laboratory studies were conducted in 2004 to determine mass recoveries from leaves and branches using the headspace method, and to determine if we could further modify our sample pretreatment method to ensure optimal recovery. Results showed that the recovery of TCE in leaves and branches with our current method ranged between 98 and 138%, indicating that most of the TCE present in the samples is recovered during the analysis. Freezing and heating had variable results in recovery rates, which resulted in no significant changes being introduced to the current SOP.« less
A headlight on liquid biopsies: a challenging tool for breast cancer management.
Massihnia, Daniela; Perez, Alessandro; Bazan, Viviana; Bronte, Giuseppe; Castiglia, Marta; Fanale, Daniele; Barraco, Nadia; Cangemi, Antonina; Di Piazza, Florinda; Calò, Valentina; Rizzo, Sergio; Cicero, Giuseppe; Pantuso, Gianni; Russo, Antonio
2016-04-01
Breast cancer is the most frequent carcinoma and second most common cause of cancer-related mortality in postmenopausal women. The acquisition of somatic mutations represents the main mechanism through which cancer cells overcome physiological cellular signaling pathways (e.g., PI3K/Akt/mTOR, PTEN, TP53). To date, diagnosis and metastasis monitoring is mainly carried out through tissue biopsy and/or re-biopsy, a very invasive procedure limited only to certain locations and not always feasible in clinical practice. In order to improve disease monitoring over time and to avoid painful procedure such as tissue biopsy, liquid biopsy may represent a new precious tool. Indeed, it represents a basin of "new generation" biomarkers that are spread into the bloodstream from both primary and metastatic sites. Moreover, elevated concentrations of circulating tumor DNA (ctDNA) as well as circulating tumor cells (CTCs) have been found in blood plasma of patients with various tumor types. Nowadays, several new approaches have been introduced for the detection and characterization of CTCs and ctDNA, allowing a real-time monitoring of tumor evolution. This review is focused on the clinical relevance of liquid biopsy in breast cancer and will provide an update concerning CTCs and ctDNA utility as a tool for breast cancer patient monitoring during the course of disease.
NASA Astrophysics Data System (ADS)
Furdella, Kenneth J.; Witte, Russell S.; Vande Geest, Jonathan P.
2017-04-01
Although the drug-eluting stent (DES) has dramatically reduced the rate of coronary restenosis, it still occurs in up to 20% of patients with a DES. Monitoring drug delivery could be one way to decrease restenosis rates. We demonstrate real-time photoacoustic imaging and spectroscopy (PAIS) using a wavelength-tunable visible laser and clinical ultrasound scanner to track cardiac drug delivery. The photoacoustic signal was initially calibrated using porcine myocardial samples soaked with a known concentration of a drug surrogate (DiI). Next, an in situ coronary artery was perfused with DiI for 20 min and imaged to monitor dye transport in the tissue. Finally, a partially DiI-coated stent was inserted into the porcine brachiocephalic trunk for imaging. The photoacoustic signal was proportional to the DiI concentration between 2.4 and 120 μg/ml, and the dye was detected over 1.5 mm from the targeted coronary vessel. Photoacoustic imaging was also able to differentiate the DiI-coated portion of the stent from the uncoated region. These results suggest that PAIS can track drug delivery to cardiac tissue and detect drugs loaded onto a stent with sub-mm precision. Future work using PAIS may help improve DES design and reduce the probability of restenosis.
Remote optical stethoscope and optomyography sensing device
NASA Astrophysics Data System (ADS)
Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev
2017-02-01
In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.
NASA Astrophysics Data System (ADS)
Liu, L.; Huang, Zh.; Qiu, Zh.; Li, B.
2018-01-01
A handheld RGB camera was developed to monitor the in vivo distribution of porphyrin-based photosensitizer (PS) hematoporphyrin monomethyl ether (HMME) in blood vessels during photodynamic therapy (PDT). The focal length, f-number, International Standardization Organization (ISO) sensitivity, and shutter speed of the camera were optimized for the solution sample with various HMME concentrations. After the parameter optimization, it was found that the red intensity value of the fluorescence image was linearly related to the fluorescence intensity under investigated conditions. The RGB camera was then used to monitor the in vivo distribution of HMME in blood vessels in a skin-fold window chamber model. The red intensity value of the recorded RGB fluorescence image was found to be linearly correlated to HMME concentrations in the range 0-24 μM. Significant differences in the red to green intensity ratios were observed between the blood vessels and the surrounding tissue.
Rossetti, Paolo; Bondia, Jorge; Vehí, Josep; Fanelli, Carmine G.
2010-01-01
Evaluation of metabolic control of diabetic people has been classically performed measuring glucose concentrations in blood samples. Due to the potential improvement it offers in diabetes care, continuous glucose monitoring (CGM) in the subcutaneous tissue is gaining popularity among both patients and physicians. However, devices for CGM measure glucose concentration in compartments other than blood, usually the interstitial space. This means that CGM need calibration against blood glucose values, and the accuracy of the estimation of blood glucose will also depend on the calibration algorithm. The complexity of the relationship between glucose dynamics in blood and the interstitial space, contrasts with the simplistic approach of calibration algorithms currently implemented in commercial CGM devices, translating in suboptimal accuracy. The present review will analyze the issue of calibration algorithms for CGM, focusing exclusively on the commercially available glucose sensors. PMID:22163505
Development of time-resolved reflectance diffuse optical tomography for breast cancer monitoring
NASA Astrophysics Data System (ADS)
Yoshimoto, Kenji; Ohmae, Etsuko; Yamashita, Daisuke; Suzuki, Hiroaki; Homma, Shu; Mimura, Tetsuya; Wada, Hiroko; Suzuki, Toshihiko; Yoshizawa, Nobuko; Nasu, Hatsuko; Ogura, Hiroyuki; Sakahara, Harumi; Yamashita, Yutaka; Ueda, Yukio
2017-02-01
We developed a time-resolved reflectance diffuse optical tomography (RDOT) system to measure tumor responses to chemotherapy in breast cancer patients at the bedside. This system irradiates the breast with a three-wavelength pulsed laser (760, 800, and 830 nm) through a source fiber specified by an optical switch. The light collected by detector fibers is guided to a detector unit consisting of variable attenuators and photomultiplier tubes. Thirteen irradiation and 12 detection points were set to a measurement area of 50 × 50 mm for a hand-held probe. The data acquisition time required to obtain the temporal profiles within the measurement area is about 2 minutes. The RDOT system generates topographic and tomographic images of tissue properties such as hemoglobin concentration and tissue oxygen saturation using two imaging methods. Topographic images are obtained from the optical properties determined for each source-detector pair using a curve-fitting method based on the photon diffusion theory, while tomographic images are reconstructed using an iterative image reconstruction method. In an experiment using a tissue-like solid phantom, a tumor-like cylindrical target (15 mm diameter, 15 mm high) embedded in a breast tissue-like background medium was successfully reconstructed. Preliminary clinical measurements indicated that the tumor in a breast cancer patient was detected as a region of high hemoglobin concentration. In addition, the total hemoglobin concentration decreased during chemotherapy. These results demonstrate the potential of RDOT for evaluating the effectiveness of chemotherapy in patients with breast cancer.
Gosselin, Marc; Bouquegneau, Jean-Marie; Lefèbvre, Frédéric; Lepoint, Gilles; Pergent, Gerard; Pergent-Martini, Christine; Gobert, Sylvie
2006-01-01
Background Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb) in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1) the spatial and 2) temporal variations of these metals in these areas and 3) to compared these two types of tissues. Results We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue) and in sheaths (dead tissue) demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. Conclusion Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months) with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades), seem to be less sensitive to variations in the metal concentration in the environment. Changes in human consumption of metals (e.g., the reduction of Pb in fuel) are clearly reflected in both organs. These results confirm that P. oceanica is a good bioindicator of metals and a good biomonitor species for assessing Cu in the environment. PMID:16965615
Microminiature Monitor for Vital Electrolyte and Metabolite Levels of Astronauts
NASA Technical Reports Server (NTRS)
Tohda, Koji; Gratzl, Miklos
2004-01-01
Ions, such as proton (pH) and potassium, play a crucial role in body fluids to maintain proper basic functioning of cells and tissues. Metabolites, such as glucose, control the energy available to the entire human body in normal as well as stress situations, and before, during, and after meals. These molecules diffuse easily between blood in the capillaries and the interstitial fluid residing between cells and tissues. We have developed and approach to monitoring of critical ions (called electrolytes) and glucose in the interstitial fluid under the human skin. Proton and potassium levels sensed using optode technology that translates the respective ionic concentrations into variable colors of corresponding ionophore/dye/polymeric liquid membranes. Glucose is monitored indirectly, by coupling through immobilized glucose oxidase with local pH that is then detected using a similar color scheme. The monitor consists of a tiny plastic bar, 100-200 microns wide and 1-2 mm long, placed just under the skin, with color changing spots for each analyte as well as blanks. The colors are read and translated into concentration values by a CCD camera. Direct optical coupling between the in vivo sensing bar and the ex vivo detector device requires no power, and thus eliminates the need for wires or optical fibers crossing the skin. The microminiature bar penetrates the skin easily and painlessly, so that astronauts could insert it themselves. The approach is fully compatible with telemetry in space, and thus, in vivo clinical data will be available real time in the Earth based command center once the device is fully developed. The information provided can be used for collecting hitherto unavailable vital data on clinical effects of space travel. Managing clinical emergencies in space with the sensor already in place should also become much more efficient than without a continuous monitor, as is currently the case. Civilian applications may include better glucose control of patients with moderate to severe diabetes: a growing health problem in the US and World-wide.
Chevillot, Fanny; Guyot, Mélanie; Desrosiers, Mélanie; Cadoret, Nicole; Veilleux, Éloïse; Cabana, Hubert; Bellenger, Jean-Philippe
2018-04-18
Municipal biosolids are increasingly used as a low-cost fertilizer in agricultural soil. Biosolids are contaminated by low concentrations (ng g -1 dw range) of a large variety of organic contaminants, such as triclosan (TCS). The effect of exposure to low concentrations of organic contaminants on soil biota remains largely undocumented. We evaluated the sublethal effects of TCS on the earthworm Eisenia andrei using an artificial soil amended with a nominal concentration of TCS of 50 ng g -1 dry weight soil. Using a 56-d reproduction test, we monitored the effect of TCS exposure on adult earthworm survival, growth, and reproduction. The bioaccumulation of TCS in earthworm tissue (adults and juveniles) and degradation of TCS were monitored. The genotoxicity of TCS was evaluated using a comet assay (DNA damage) on adult earthworm coelomocytes. Exposure to a low concentration of TCS had no significant effects on adult earthworm survival and DNA damage, but significantly stimulated growth (P <0.05) by 2-fold compared to controls. It also significantly affected E. andrei reproduction parameters (P <0.05), as evidenced by an increase in the number of cocoons and juveniles, and a decrease in the mean dry weight of juveniles. The bioaccumulation of TCS in earthworms was moderate (bioaccumulation factor ∼ 2). In biosolid-borne trials, the bioaccumulation of methyl-triclosan in earthworm tissues was higher than the parent compound TCS. We conclude that exposure to low concentrations of TCS in artificial soil can significantly affect the growth and reproductive performance of earthworms (i.e., E. andrei). More research is required with natural soils to assess TCS bioavailability for earthworms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gruber, A; Pirkebner, D; Oberhuber, W
2013-10-01
Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra (L.) and Larix decidua (Mill.) growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation during the course of the year. After a delayed start in spring, NSC concentrations in L. decidua were significantly higher in all sampled tissues from August until the end of growing season. In both species, NSC concentrations were five to seven times higher in phloem than that in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long-term carbon reserves in both tissues. In L. decidua also, free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while a lack of correlation between xylem and phloem free sugar pools in P. cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand.
Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers
GRUBER, A.; PIRKEBNER, D.; OBERHUBER, W.
2016-01-01
Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra and Larix decidua growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation in the course of the year. After a delayed start in spring, NSC concentrations in Larix decidua were significantly higher in all sampled tissues from August until end of growing season. In both species NSC concentrations were five to seven times higher in phloem than in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long term carbon reserves in both tissues. In Larix decidua also free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while missing correlations between xylem and phloem free sugar pools in Pinus cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand. PMID:24186941
Hittmann, A R; Grace, N D; Knowles, S O
2012-03-01
To monitor the consequences of withdrawing mineral Cu supplements from two dairy herds with initially high concentrations of Cu in liver. Two herds were selected from dairy farms in the Waikato region of New Zealand that participated in an earlier survey of Cu supplementation practices and Cu status of dairy cows. The herds were fed pasture, grass and maize silage, plus palm kernel expeller (PKE) containing 25-30 mg Cu/kg dry matter (DM) fed at 2-4 kg/cow/day. No mineral Cu supplements were supplied from January 2009. Pasture samples were collected for mineral analysis in September 2008 and April 2009. Concentration of Cu in liver biopsies from the same 9-10 cows per herd was measured on three occasions between April 2009 and May 2010. Pastures on both farms contained 10 mg Cu/kg DM, 0.1-0.5 mg Mo/kg DM and 3.5-4.0 g S/kg DM. The initial herd mean concentrations of Cu in liver were 1,500 (SD 590) and 1,250 (SD 640) μmol Cu/kg fresh tissue. In the absence of mineral Cu supplements, those mean concentrations decreased over 12 months to 705 (SD 370) and 1,120 (SD 560) μmol Cu/kg fresh tissue, respectively. For cows in the first herd, the rate of depletion of liver Cu reserves was influenced by initial concentration of Cu, such that high concentration led to faster loss according to first-order kinetics. Mineral Cu supplementation was not necessary over 12 months for two dairy herds with mean concentrations of Cu in liver >1,250 μmol Cu/kg fresh tissue, grazing pastures containing 10 mg Cu/kg DM and concentrations of Mo <1 mg/kg DM. The quantity and particularly the duration of feeding PKE appeared to be a factor in whether or not the herd lost substantial reserves of Cu in liver during the year. However, the Cu status of both herds in this study was more than adequate to support late pregnancy and mating. CLINICAL REVELANCE: Copper status of the herd should be monitored and on-farm management of Cu nutrition should take into account all sources contributing to daily intake of Cu. Where Cu supplementation has been excessive and there is risk of chronic Cu toxicity, mineral Cu supplements may be withdrawn for a period commensurate with the expected rate of liver Cu depletion.
Mercury concentrations in tissues of Florida bald eagles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, P.B.; Wood, J.M.; White, J.H.
1996-01-01
We collected 48 blood and 61 feather samples from nestling bald eagles at 42 nests and adult feather samples from 20 nests in north and central Florida during 1991-93. We obtained 32 liver, 10 feather, and 5 blood samples from 33 eagle carcasses recovered in Florida during 1987-93. For nestlings, mercury concentrations in blood (GM = 0.16 ppm wet wt) and feather (GM = 3.23 ppm) samples were correlated (r = 0.69, P = 0.0001). Although nestlings had lower mercury concentrations in feathers than did adults (GM = 6.03 ppm), the feather mercury levels in nestlings and adults from themore » same nest were correlated (r = 0.63, P < 0.02). Mercury concentrations in blood of captive adult eagles (GM = 0.23 ppm) was similar to Florida nestlings but some Florida nestlings had blood mercury concentrations up to 0.61 ppm, more than twice as high as captive adults. Feather mercury concentrations in both nestlings and adults exceeded those in captive eagles, but concentrations in all tissues were similar to, or lower than, those in bald eagles from other wild populations. Although mercury concentrations in Florida eagles are below those that cause mortality, they are in the range of concentrations that can cause behavioral changes or reduce reproduction. We recommend periodic monitoring of mercury in Florida bald eagles for early detection of mercury increases before negative effects on reproduction occur. 26 refs., 5 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.
2017-06-01
Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.
Luci, Giacomo; Intorre, Luigi; Ferruzzi, Guido; Mani, Danilo; Giuliotti, Lorella; Pretti, Carlo; Tognetti, Rosalba; Bertini, Simone; Meucci, Valentina
2018-03-01
Ochratoxin A (OTA) is a secondary toxic metabolite synthesized by Aspergillus or Penicillium species, which can contaminate various crops. The International Agency for Research on Cancer (IARC) classified OTA as a group 2B possible human carcinogen. The aim of the present study was to assess OTA concentrations in tissues of wild boar (Sus scrofa L.) from Tuscany (Italy). Over a period of 2 years, samples of muscle, liver, and kidney from 48 wild boars were collected and concentrations of OTA were determined by enzymatic digestion (ED) coupled to high-performance liquid chromatography with a fluorescence detector (HPLC-FLD). The highest concentrations of OTA were found in the kidneys of the 48 wild boars analyzed. No difference in concentrations was found based on years of collection and sex while a significantly higher OTA concentration was found in the kidney of the young wild boars with respect to the adult one. Monitoring the quality of meat destined for transformation is a priority in order to decrease the possibility of toxin carry-over to humans. The present study showed that contamination of wild boar meat products by OTA represents a potential emerging source of OTA.
Wieder, R Kelman; Vile, Melanie A; Scott, Kimberli D; Albright, Cara M; McMillen, Kelly J; Vitt, Dale H; Fenn, Mark E
2016-12-06
Oil extraction and development activities in the Athabasca Oil Sands Region of northern Alberta, Canada, release NO x , SO x , and NH y to the atmosphere, ultimately resulting in increasing N and S inputs to surrounding ecosystems through atmospheric deposition. Peatlands are a major feature of the northern Alberta landscape, with bogs covering 6-10% of the land area, and fens covering 21-53%. Bulk deposition of NH 4 + -N, NO 3 - -N, dissolved inorganic N (DIN), and SO 4 2- -S, was quantified using ion-exchange resin collectors deployed at 23 locations, over 1-6 years. The results reveal maximum N and S deposition of 9.3 and 12.0 kg ha -1 yr -1 , respectively, near the oil sands industrial center (the midpoint between the Syncrude and Suncor upgrader stacks), decreasing with distance to a background deposition of 0.9 and 1.1 kg ha -1 yr -1 , respectively. To assess potential influences of high N and S deposition on bogs, we quantified N and S concentrations in tissues of two Sphagnum species, two lichen species, and four vascular plant species, as well as surface porewater concentrations of H + , NH 4 + -N, NO 3 - -N, SO 4 2- -S and dissolved organic N in 19 ombrotrophic bogs, distributed across a 3255 km 2 sampling area surrounding the oil sands industrial center. The two lichen species (Evernia mesomorpha and Cladonia mitis), two vascular plant species (Rhododendron groenlandicum and Picea mariana), and to a lesser extent one moss (Sphagnum fuscum), showed patterns of tissue N and S concentrations that were (1) highest near the oil sands industrial center and (2) positively correlated with bulk deposition of N or S. Concentrations of porewater H + and SO 4 2- -S, but not of NH 4 + -N, NO 3 - -N, DIN, or dissolved inorganic N, also were higher near the oil sands industrial center than at more distant locations. The oil sands region of northern Alberta is remote, with few roads, posing challenges to the monitoring of oil sands-related N and S deposition. Quantification of N and S concentrations in bog plant/lichen tissues and porewaters may serve as a monitoring tool to assess both the local intensity and the spatial extent of bulk N and S deposition, and as harbingers of potential shifts in ecosystem structure and function.
Poitout, V; Moatti-Sirat, D; Reach, G; Zhang, Y; Wilson, G S; Lemonnier, F; Klein, J C
1993-07-01
We have developed a miniaturized glucose sensor which has been shown previously to function adequately when implanted in the subcutaneous tissue of rats and dogs. Following a glucose load, the sensor output increases, making it possible to calculate a sensitivity coefficient to glucose in vivo, and an extrapolated background current in the absence of glucose. These parameters are used for estimating at any time the apparent subcutaneous glucose concentration from the current. In the previous studies, this calibration was performed a posteriori, on the basis of the retrospective analysis of the changes in blood glucose and in the current generated by the sensor. However, for clinical application of the system, an on line estimation of glucose concentration would be necessary. Thus, this study was undertaken in order to assess the possibility of calibrating the sensor in real time, using a novel calibration procedure and a monitoring unit which was specifically designed for this purpose. This electronic device is able to measure, to filter and to store the current. During an oral glucose challenge, when a stable current is reached, it is possible to feed the unit with two different values of blood glucose and their corresponding times. The unit calculates the in vivo parameters, transforms every single value of current into an estimation of the glucose concentration, and then displays this estimation. In this study, 11 sensors were investigated of which two did not respond to glucose. In the other nine trials, the volunteers were asked to record every 30 s what appeared on the display during the secondary decrease in blood glucose.(ABSTRACT TRUNCATED AT 250 WORDS)
Hashemi, Majid
2018-06-15
Toxic (lead, cadmium and mercury) and essential trace (copper and zinc) metals were measured in muscle, liver and kidney samples of bovine and their relationships with heavy metal concentrations in consumed feed were studied. A total of 216 tissue samples from 72 cows and 216 feed samples from 18 farms were collected during four seasons and analyzed for heavy metals by inductively coupled plasma-optical emission spectrometry after wet digestion. The arithmetic mean concentrations (mg/Kg wet weight) of lead (Pb), cadmium (Cd) and mercury were respectively, 0.221, 0.028 and 0.003 in muscle, 0.273, 0.047 and 0.002 in liver and 0.244, 0.114 and 0.003 in kidney. All measured concentrations (with the exception of Pb in muscle) were below the European Union maximum residual limits (MRL). The Cd contents of the kidney were significantly higher than which observed in other tissues. Although, copper (Cu) and zinc (Zn) levels in all of samples were below MRL, but results showed that many cattles may be suffering from Cu and/or Zn deficiency. Significant and positive correlations between Pb (p < 0.05, r = 0.163) and Cd (p < 0.01, r = 0.303) concentrations in feed and studied organs were observed. As a considerable amount of metals above MRL were noticed in our study, continuous monitoring of these metals is recommended to avoid hazardous transfer to human through the food of animal origin. Copyright © 2018 Elsevier Inc. All rights reserved.
Tripodi, M A; Hancke, D; Suarez, O V
2017-10-11
The overall goal of this study was to use the Rattus spp./Hymenolepis diminuta model to assess environmental lead pollution in different landscape units of an urban ecosystem. Rats of the genus Rattus were collected from three shanty towns and three residential neighbourhoods of the city of Buenos Aires. Concentrations of lead in the livers of wild rats and in their parasite H. diminuta were measured using inductively coupled plasma mass spectrometry (ICP-MS). The landscape unit and tissue type had a significant effect on lead concentration, being higher in residential neighbourhoods as well as in H. diminuta tissue. Nevertheless, no significant differences were found for the mean lead concentration in livers between uninfected and infected rats. Since the available information describing heavy-metal pollution within the city of Buenos Aires is scarce, the results of this study allow us to update data about the extent of biologically available lead contamination. Considering that rats and H. diminuta are distributed worldwide, this monitoring system for lead pollution might be applied successfully in other urban ecosystems.
Anderson, Shanoy C; Subbiah, Seenivasan; Gentles, Angella; Austin, Galen; Stonum, Paul; Brooks, Tiffanie A; Brooks, Chance; Smith, Ernest E
2016-10-15
A method for confirmation and detection of Florfenicol amine residues in white-tailed deer tissues was developed and validated in our laboratory. Tissue samples were extracted with ethyl acetate and cleaned up on sorbent (Chem-elut) cartridges. Liguid chromatography (LC) separation was achieved on a Zorbax Eclipse plus C18 column with gradient elution using a mobile phase composed of ammonium acetate in water and methanol at a flow rate of 300μL/min. Qualitative and quantitative analyses were carried out using liquid chromatography - heated electrospray ionization(HESI) and atmospheric pressure chemical ionization (APCI)-tandem mass spectrometry in the multiple reaction monitoring (MRM) interface. The limits of detection (LODs) for HESI and APCI probe were 1.8ng/g and 1.4ng/g respectively. Limits of quantitation (LOQs) for HESI and APCI probe were 5.8ng/g and 3.4ng/g respectively. Mean recovery values ranged from 79% to 111% for APCI and 30% to 60% for HESI. The validated method was used to determine white-tailed deer florfenicol tissue residue concentration 10-days after exposure. Florfenicol tissue residues concentration ranged from 0.4 to 0.6μg/g for liver and 0.02-0.05μg/g for muscle and a trace in blood samples. The concentration found in the tested edible tissues were lower than the maximum residual limit (MRL) values established by the federal drug administration (FDA) for bovine tissues. In summary, the resulting optimization procedures using the sensitivity of HESI and APCI probes in the determination of florfenicol in white-tailed deer tissue are the most compelling conclusions in this study, to the extent that we have applied this method in the evaluation of supermarket samples drug residue levels as a proof of principle. Copyright © 2016. Published by Elsevier B.V.
Lemes, Marcos; Wang, Feiyue; Stern, Gary A; Ostertag, Sonja K; Chan, Hing Man
2011-12-01
Monitoring data have shown that the total monomethylmercury (CH(3) Hg(+) and its complexes; collectively referred as MeHg hereafter) concentrations in Arctic marine mammals have remained very high in recent decades. Toward a better understanding of the metabolic and toxicological implications of these high levels of MeHg, we report here on the molecular forms of MeHg in the muscle, brain, liver, and kidneys of 10 beluga whales from the western Canadian Arctic. In all tissues analyzed, monomethylmercury was found to be dominated by methylmercuric cysteinate, a specific form of MeHg believed to be able to transport across the blood-brain barrier. Another MeHg-thiol complex, methylmercuric glutathionate, was also detected in the muscle and, to a much lesser extent, in the liver and brain tissues. Furthermore, a profound inorganic Hg peak was detected in the liver and brain tissues, which showed the same retention time as a selenium (Se) peak, suggesting the presence of an Hg-Se complex, most likely an inorganic Hg complex with a selenoamino acid. These results provide the first analytical support that the binding of MeHg with glutathione and Se may have protected beluga whales from the toxic effect of high concentrations of MeHg in their body. Copyright © 2011 SETAC.
Pharmacokinetics of warfarin in rats: role of serum protein binding and tissue distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, W.K.
The purpose of this study was to explore the role of serum protein binding and tissue distribution in the non-linear pharmacokinetics of warfarin in rats. The first phase of the research was an attempt to elucidate the causes of intersubject differences in serum protein binding of warfarin in rats. It was found that the distribution of S-warfarin between blood and liver, kidneys, muscle, or fatty tissue was non-linear. Based on the tissue distribution data obtained, a physiologically-based pharmacokinetic model was developed to describe the time course of S-warfarin concentrations in the serum and tissues of rats. The proposed model wasmore » able to display the dose-dependent pharmacokinetics of warfarin in rats. Namely a lower clearance and a smaller apparent volume of distribution with increasing dose, which appear to be due to the presence of capacity-limited, high-affinity binding sites for warfarin in various tissues. To determine if the binding of warfarin to the high-affinity binding sites in the liver of rats is reversible, concentrations of S-warfarin in the liver and serum of rats were monitored for a very long time after an intravenous injection of a 1 mg/kg dose. In another study in rats, non-radioactive warfarin was found to be able to displace tissue-bound C/sup 14/-warfarin which was administered about 200 hours before the i.v. injection of the non-radioactive warfarin, showing that the binding of warfarin to the high-affinity binding sites in the body is persistent and reversible.« less
Optical monitoring of spinal cord hemodynamics, a feasibility study
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Kwon, Brian K.; Streijger, Femke; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Cripton, Peter A.; Macnab, Andrew
2017-02-01
Background: After an acute traumatic spinal cord injury (SCI), the spinal cord is subjected to ischemia, hypoxia, and increased hydrostatic pressure which exacerbate further secondary damage and neuronal deficit. The purpose of this pilot study was to explore the use of near infrared spectroscopy (NIRS) for non-invasive and real-time monitoring of these changes within the injured spinal cord in an animal model. NIRS is a non-invasive optical technique that utilizes light in the near infrared spectrum to monitor changes in the concentration of tissue chromophores from which alterations in tissues oxygenation and perfusion can be inferred in real time. Methods: A custom-made miniaturized NIRS sensor was developed to monitor spinal cord hemodynamics and oxygenation noninvasively and in real time simultaneously with invasive, intraparenchymal monitoring in a pig model of SCI. The spinal cord around the T10 injury site was instrumented with intraparenchymal probes inserted directly into the spinal cord to measure oxygen pressure, blood flow, and hydrostatic pressure, and the same region of the spinal cord was monitored with the custom-designed extradural NIRS probe. We investigated how well the extradural NIRS probe detected intraparenchymal changes adjacent to the injury site after alterations in systemic blood pressure, global hypoxia, and traumatic injury generated by a weight-drop contusion. Results: The NIRS sensor successfully identified periods of systemic hypoxia, re-ventilation and changes in spinal cord perfusion and oxygenation during alterations of mean arterial pressure and following spinal cord injury. Conclusion: This pilot study indicates that extradural NIRS monitoring of the spinal cord is feasible as a non-invasive optical method to identify changes in spinal cord hemodynamics and oxygenation in real time. Further development of this technique would allow clinicians to monitor real-time physiologic changes within the injured spinal cord during the acute post-injury period.
Wade, Mark R; Tzavara, Eleni T; Nomikos, George G
2004-04-16
The cannabinoid receptor subtype 1 (CB1R) is a member of the G(i)-protein-coupled receptor family and cannabinoid signaling is largely dependent on the suppression of adenylyl cyclase-catalyzed cAMP production. In cell lines transfected with the CB1R or in native tissue preparations, treatment with cannabinoid agonists reduces both basal and forskolin-stimulated cAMP synthesis. We measured extracellular cAMP concentrations in the striatum of freely moving rats utilizing microdialysis to determine if changes in cAMP concentrations in response to CB1R agonists can be monitored in vivo. Striatal infusion of the CB1R agonist WIN55,212-2 (100 microM or 1 mM), dose-dependently decreased basal and forskolin-stimulated extracellular cAMP. These effects were reversed by co-infusion of the CB1R antagonist SR141716A (30 microM), which alone had no effect up to the highest concentration tested (300 microM). These data indicate that changes in extracellular cAMP concentrations in response to CB1R stimulation can be monitored in vivo allowing the study of cannabinoid signaling in the whole animal.
Concentrations of Selected Elements in Liver Tissue of Grey Wolves (Canis lupus) from Serbia.
Subotić, Srđan; Višnjić-Jeftić, Željka; Penezić, Aleksandra; Ćirović, Duško
2017-12-01
The grey wolf (Canis lupus) is a large carnivore species and a top predator in the ecosystems that it inhabits. Considering its role in food webs, wolves may be exposed to high concentrations of potentially harmful elements. Therefore liver samples from 28 legally hunted wolves were analyzed for concentrations of 16 elements using inductively coupled plasma optical emission spectrometry. The Mann-Whitney U test showed a significant difference between the genders only for Li, and there were no differences between individuals caught in different years. The majority of statistically significant correlations between element levels were positive, except for three cases. Compliance with several criteria for suitable bioindicator organisms imply that wolves may serve for monitoring environmental contamination.
Calderón-Garcidueñas, Ana Laura; Waliszewski, Stefan M; Ruiz-Ramos, Rubén; Del Carmen Martinez-Valenzuela, María
2018-03-10
The population that lives in areas where organochlorine pesticides were spread in the past is still exposed to them through contaminated food, particulate matter, and vapors. Due to their lipophilic properties and resistance to metabolic reactions, they accumulate in tissues and fluids rich in lipids. The aim of the study was to monitor the concentrations of organochlorine pesticides in forensic adipose tissue samples of adult inhabitants of Veracruz City, Mexico, and compare their time trend levels from 1988 to 2014. During the study, hexachlorobenzene (HCB); lindane; β-hexachorocyclohexane; p,p'-dichlorodiphenyldichloroethylene (pp'DDE); p,p'-dichlorodiphenyldichloroethane (p,p'-DDT); and o,p'-dichlorodiphenyldichloroethane (o,p'-DDT) were determined. Our survey was divided into two periods: first, from the years 1988 to 1999, during which DDT was allowed to fight malaria and dengue vectors and the second from the years 2001 to 2014, after the DDT ban. A total of 1435 samples were analyzed. There were substantial differences in the forecasted time trend values of p,p'-DDE and p,p'-DDT in human adipose tissue samples in the two different periods. During the first period, p,p'-DDE decrease time trend was 1.198 mg/kg on lipid base per year; for the second one, decrease was 0.128 mg/kg on lipid base per year. p,p'-DDT decreased 0.507 mg/kg on lipid base during the first period and 0.039 mg/kg on lipid base for the second. The different concentrations may be explained by the cessation of fresh exposure after the first period and a more equilibrated decontamination tendency during the second period. This model was useful to show the decrease in the concentration of pesticides in human adipose tissue samples.
Cáceres-Saez, Iris; Goodall, R Natalie P; Dellabianca, Natalia A; Cappozzo, H Luis; Ribeiro Guevara, Sergio
2015-11-01
The skin of bycaught Commerson's dolphins was tested for mercury (Hg) and selenium (Se) biomonitoring in Subantarctic environments. The correlation of levels detected in the skin with those found in internal tissues - lung, liver, kidney and muscle - was assessed to evaluate how skin represents internal Hg and Se distribution for monitoring purposes. Mercury in skin had a concentration range of 0.68-3.11 μg g(-1) dry weight (DW), while Se had a higher concentration range of 74.3-124.5 μg g(-1) DW. There was no significant correlation between selenium levels in any of the analyzed tissues. Thus, the skin selenium concentration did not reflect the tissular Se levels and did not provide information for biomonitoring. The lack of correlation is explained by the biological role of Se, provided that each tissue regulates Se levels according to physiological needs. However, the skin Hg level had significant positive correlation with the levels in internal tissues (ANOVA p<0.05), particularly with that of muscle (R(2)=0.79; ANOVA p=0.0008). Thus, this correlation permits the estimation of Hg content in muscle based on the multiplication of skin biopsy levels by a factor of 1.85. Mercury bioindication using skin biopsies is a non-lethal approach that allows screening of a large number of specimens with little disturbance and makes possible an adequate sampling strategy that produces statistically valid results in populations and study areas. The correlation between Hg levels in the skin and internal tissues supports the use of the epidermis of Commerson's dolphins for Hg biomonitoring in the waters of the Subantarctic, which is a poorly studied region regarding Hg levels, sources and processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Løkke, Mette Marie; Edelenbos, Merete; Larsen, Erik; Feilberg, Anders
2012-01-01
Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor) and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration. PMID:23443367
Development of a near-infrared spectroscopy instrument for applications in urology.
Macnab, Andrew J; Stothers, Lynn
2008-10-01
Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.
Treatment of experimentally induced pneumonic pasteurellosis of young calves with tilmicosin.
Morck, D W; Merrill, J K; Gard, M S; Olson, M E; Nation, P N
1997-01-01
Twenty four (24) healthy male Holstein calves (< 70 kg) were each experimentally infected by intrabronchial inoculation of 4.0 x 10(9) viable cells of Pasteurella haemolytica-AI (B122) at Time = 0 h. At 1 h following inoculation animals received either: 1) Sham treatment with sterile 0.85% saline SC (n = 12); or 2) a single injection of 10 mg tilmicosin per kg body weight (n = 12). Calves that were non-infected and tilmicosin-treated were also included for determining tilmicosin concentrations in serum and lung tissue at 1, 2, 4, 6, 8, 24, 48, and 72 h (n = 3-per time). In the infected calves, response to therapy was monitored clinically. Serum samples were collected for determination of tilmicosin concentrations using HPLC. Any animal becoming seriously ill was humanely killed. Complete necropsy examinations were performed on all animals and included gross pathologic changes, bacteriologic analysis, histopathology, and determination of pulmonary concentrations of tilmicosin. Tilmicosin treated animals responded significantly better to therapy than saline-treated control calves. Clinical assessment of calves during the study indicated that tilmicosin-treated calves had significantly improved by T = 8 h compared to satine-treated animals (P < 0.05). At necropsy tilmicosin-treated calves had significantly less severe gross and histological lesions (P < 0.05) of the pulmonary tissue. Of the 12 saline-treated calves, 92% (11/12) had Pasteurella haemolytica-A1 in lung tissue, while of the tilmicosin-treated calves 0% (0/12) cultured positive for P. haemolytica. Mean (+/- standard error) serum tilmicosin concentrations in infected calves peaked at 1 h post-injection (1.10 +/- 0.06 micrograms/mL) and rapidly decreased to 0.20 +/- 0.03 microgram/mL, well below the MIC of 0.50 microgram/mL for P. haemolytica-A1 (B122), by 12 h. These serum concentrations were very similar to serum concentrations of tilmicosin in non-infected tilmicosin-treated calves. Lung tissue concentrations of the antibiotic were comparatively high, even at 72 h post-infection (6.50 +/- 0.75 ppm). Lung tissue concentrations at 72 h were significantly higher in experimentally infected calves than in non-infected tilmicosin-treated animals (P < 0.05). These data demonstrate that tilmicosin was effective in treating experimentally-induced pneumonic pasteurellosis as determined by alleviation of clinical signs, pathological findings at post mortem, and presence of viable bacteria from the lung. Concentrations substantially above MIC for P. haemolytica were present in lung tissue even at 72 h following a single subcutaneous injection of 10 mg tilmicosin per kg body weight. Images Figure 2A. Figure 2B. PMID:9242998
Guo, Changchuan; Jiang, Yan; Li, Li; Hong, Lan; Wang, Yuqing; Shen, Qian; Lou, Yan; Hu, Haihong; Zhou, Hui; Yu, Lushan; Jiang, Huidi; Zeng, Su
2013-02-23
The herbal ingredients of isocorydine and protopine were isolated from Dactylicapnos scandens. This study was aimed at developing a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method to quantify isocorydine and protopine in rat plasma and tissues for pharmacokinetic, tissue distribution and excretion studies. Biological samples were processed with ethyl acetate extraction, and corydaline was chosen as the internal standard (IS). The analytes were separated by a C(18) column and detected with a triple quadrupole mass spectrometer using positive ion ESI in the multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 342.0→278.9 for isocorydine, 354.1→188.0 for protopine and 370.0→192.0 for IS, respectively. Excellent linearity was observed over the concentration range between 10 and 3000 ng/mL for isocorydine and 10-300 ng/mL for protopine. The lower limit of quantification (LLOQ) was 10 ng/mL for both isocorydine and protopine. This novel method was rapid, accurate, high sensitive and high selective. It was successfully applied to the pharmacokinetic, tissue distribution and excretion studies of D. scandens. These preclinical data of D. scandens would be useful for the clinical reference. Copyright © 2012 Elsevier B.V. All rights reserved.
Combined pulse-oximeter-NIRS system for biotissue diagnostics
NASA Astrophysics Data System (ADS)
Hovhannisyan, Vladimir A.
2005-08-01
Multi-wavelength (670, 805, 848 and 905 nm), multi-detector device for non-invasive measurement of biochemical components concentration in human or animal tissues, combining the methods of conventional pulse-oximetry and near infrared spectroscopy, is developed. The portable and clinically applicable system allows to measure heart pulse rate, oxygen saturation of arterial hemoglobin (pulse-oximetry method) and local absolute concentration of oxyhemoglobin, deoxyhemoglobin and oxidized cytochrome aa3 or other IR absorbed compounds (NIRS method). The system can be applied in monitoring of oxygen availability and utilization by the brain in neonatal and adults, neuro- traumatology, intensive care medicine, transplantation and plastic surgery, in sport, high-altitude and aviation medicine.
Surrogate Tissue Analysis: Monitoring Toxicant Exposure And Health Status Of Inaccessible Tissues Through The Analysis Of Accessible Tissues And Cells*
John C. Rockett1, Michael E. Burczynski 2, Albert J. Fornace, Jr.3, Paul.C. Herrmann4, Stephen A. Krawetz5, and David J. Dix1...
Korabecna, Marie; Ulcova-Gallova, Zdenka; Horinek, Ales; Pazourková, Eva; Calda, Pavel
2014-11-01
Apoptosis of tissues of fetal origin is thought to be one of the main sources of cell-free fetal DNA (cffDNA) in maternal circulation, impaired apoptosis is also involved in the mechanisms contributing to recurrent spontaneous miscarriages (RSM) associated with antiphospholipid syndrome (APS). The APS increases the risk for preeclampsia nine times. In preeclampsia, the elevated levels of cffDNA were described by different authors. To our knowledge, cffDNA in pregnant patients with APS was never studied. In our pilot study, we focused on the levels of cffDNA in four pregnant patients with treated primary APS and compared them with values obtained in twenty-one healthy subjects of comparable gestation age (the third trimester of pregnancy). We supposed that the increase of cffDNA concentration in our treated patients would signalize the elevated apoptosis of fetal tissues as in other pathological changes of placentation. The aim of our pilot study was to determine cffDNA concentrations in patients with treated APS and to compare them with values detected in healthy pregnant women of comparable gestation age in order to discover potential non-physiological elevations in patients. The elevated values of cffDNA were not observed in our patients (p value = 0.4363, Mann-Whitney test). All patients delivered healthy children. The measurement of concentrations of cffDNA seems to be a promising tool for monitoring of therapy effectiveness in pregnant women with APS but evaluation of randomized controlled trials would be necessary to determine the specificity and the sensitivity of this test.
Integrated fiber optical and thermal sensor for noninvasive monitoring of blood and human tissue
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schiffner, Gerhard
2007-05-01
A novel concept of noninvasive monitoring of human tissue and blood based on optical diffuse reflective spectroscopy combined with metabolic heat measurements has been under development. A compact integrated fiber optical and thermal sensor has been developed. The idea of the method was to evaluate by optical spectroscopy haemoglobin and derivative concentrations and supplement with data associated with the oxidative metabolism of glucose. Body heat generated by glucose oxidation is based on the balance of capillary glucose and oxygen supply to the cells. The variation in glucose concentration is followed also by a difference from a distance (or depth) of scattered through the body radiation. So, blood glucose can be estimated by measuring the body heat and the oxygen supply. The sensor pickup contains of halogen lamp and LEDs combined with fiber optical bundle to deliver optical radiation inside and through the patient body, optical and thermal detectors. Fiber optical probe allows diffuse scattering measurement down to a depth of 2.5 mm in the skin including vascular system, which contributes to the control of the body temperature. The sensor pickup measures thermal generation, heat balance, blood flow rate, haemoglobin and derivative concentrations, environmental conditions. Multivariate statistical analysis was applied to convert various signals from the sensor pickup into physicochemical variables. By comparing the values from the noninvasive measurement with the venous plasma result, analytical functions for patient were obtained. Cluster analysis of patient groups was used to simplify a calibration procedure. Clinical testing of developed sensor is being performed.
Modulation sensing of fluorophores in tissue: a new approach to drug compliance monitoring
NASA Astrophysics Data System (ADS)
Abugo, Omoefe O.; Gryczynski, Zygmunt; Lakowicz, Joseph R.
1999-10-01
We describe a method to detect the presence of fluorophores in scattering media, including intralipid suspensions and chicken muscle covered with skin. The fluorophores were rhodamine 800 (Rb800) and indocyanine green (IcG), both of which can be excited at long wavelengths where there is minimal absorption by tissues. These fluorophores were dissolved in intralipid or in chicken muscle under skin. A method to approximate the fluorophore concentration in such samples was developed using a long lifetime reference fluorophores in a polymer film placed immediately on the illuminated surface of the sample. Because of the long lifetime of the reference film, the modulation of its emission at low frequencies near 2 MHz is near zero. Since the lifetime of Rh800 and IcG are below 2 ns the modulation of the combined emission is a measure of the intensity of the fluorophore (Rh800 or IcG) relative to the long lifetime reference. Using this method we were able to measure the concentration-dependent intensities of Rh800 and IcG in an intralipid suspension. Additionally, micromolar concentrations of these probes could be detected in chicken muscles, even when the muscle was covered with a layer of chicken skin. The presence of an India ink absorber in the intralipid had only a moderate effect on the modulation values. We suggest the use of this transdermal detection of long-wavelength fluorophores as a noninvasive method to monitor patient compliance when taking medicines used for treatment of chronic diseases such as AIDS or tuberculosis.
Measurement of intestinal edema using an impedance analyzer circuit.
Radhakrishnan, Ravi S; Shah, Kunal; Xue, Hasen; Moore-Olufemi, Stacey D; Moore, Frederick A; Weisbrodt, Norman W; Allen, Steven J; Gill, Brijesh; Cox, Charles S
2007-03-01
Acute intestinal edema adversely affects intestinal transit, permeability, and contractility. Current resuscitation modalities, while effective, are associated with development of acute intestinal edema. Knowledge of levels of tissue edema would allow clinicians to monitor intestinal tissue water and may help prevent the detrimental effects of edema. However, there is no simple method to measure intestinal tissue water without biopsy. We sought to develop a tissue impedance analyzer to measure tissue edema, without the need for invasive biopsy. Oscillating voltage input was applied to the analyzer circuit and an oscilloscope measured the voltage output across any load. Rats were randomized to three groups: sham, mild edema (80 mL/kg of NS resuscitation), and severe edema (80 mL/kg of NS resuscitation with intestinal venous hypertension). Intestinal edema was measured by wet-to-dry tissue weight ratio. Bowel impedance was measured and converted to capacitance using a standard curve. Acute intestinal edema causes a significant increase in bowel capacitance. This capacitance can be used to predict tissue water concentration. Using an impedance analyzer circuit, it is possible to measure intestinal edema reliably and quickly. This may prove to be a useful tool in the resuscitation of critically ill patients.
A Non-Invasive Deep Tissue PH Monitor.
1995-08-11
disturbances in acid-base regulation may have serious effects on metabolic activity, circulation, and the central nervous system. Currently, acid-base...to tissue ischemia than is arterial pH. Consequently, a non-invasive deep tissue pH monitor has enormous value as a mechanism for rapid and effective ...achieved, and improve our understanding of what physical effects are important to successful non-invasive deep tissue pH monitoring. This last statement
McAllister, Tim A.; Ayroud, Mejid; Bray, Tammy M.; Yost, Garold S.
2006-01-01
Abstract Over a 3-y period, 906 000 cattle were monitored in 23 feedlots in southern Alberta for symptoms of acute interstitial pneumonia (AIP). Plasma, urine, and lung tissue were collected at slaughter from 299 animals clinically diagnosed with AIP and from 156 healthy penmates and analyzed for 3-methylindole (3MI) derivatives and reduced glutathione concentration. From each animal, the left lung was subsampled for histologic examination. Concentrations of glutathione in lung tissue were reduced (P < 0.001) in animals showing clinical symptoms of AIP as compared with their asymptomatic penmates. Animals histologically confirmed as having AIP had higher levels of 3MI protein adducts in blood and lung tissue (P < 0.05) than did emergency-slaughtered animals without AIP. Within feedlots, where pens of heifers were fed either a standard dosage of melengestrol acetate (MGA) or none, the rate of death attributable to AIP was similar between treatment groups, but emergency slaughter after clinical diagnosis of AIP was done 3.2 times more often (P < 0.001) in the MGA-fed heifers than in the group not fed MGA. Use of MGA did not influence glutathione concentration. As growth performance of heifers given steroidal implants may not be improved by feeding MGA, the most cost-effective method of reducing the incidence of AIP-related emergency slaughter in feedlot heifers may be to eliminate MGA from the diet. PMID:16850945
Quist, S R; Heimburg, A; Bank, U; Mahnkopf, D; Koch, G; Gollnick, H; Täger, M; Ansorge, S
2017-08-01
Cutaneous microdialysis (CM) is an ex vivo technique that allows study of tissue chemistry, including bioavailability of actual tissue concentration of unbound drug in the interstitial fluid of the body. To test the penetration and dermal bioavailability of galenic formulations of the small-molecule IP10.C8, a dual-protease inhibitor of the dipeptidyl peptidase and aminopeptidase families. Using CM, we tested the penetration and dermal bioavailability of IP10.C8 into the dermis and subcutis of pigs, and determined the tissue concentration of IP10.C8 enzymatically, using an enzyme activity assay (substrate Gly-Pro-pNA) and high performance liquid chromatography. Dermal bioavailability was enhanced by using microemulsion or the addition of the penetration enhancer oleic acid to a hydroxyethylcellulose (HEC) gel formulation. Dermal bioavailability was also enhanced when galenic formulations were prepared with higher pH (7.5 vs. 6.5) or higher drug concentration (5% vs. 1%) in HEC gel. It seems possible, using CM for topical skin penetration testing in anaesthetized domestic pigs, to test the bioavailability of newly designed drugs. However, the experimental time is limited due to the anaesthesia, and is dependent on drug recovery. Validation of this technique for routine use is challenging, and more experiments are needed to validate this preclinical set-up. © 2017 British Association of Dermatologists.
Messere, Alessandro; Roatta, Silvestro
2013-12-01
The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near-infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer-Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS-based), total hemoglobin concentration (tHb, BL-based), tissue oxygenation index (TOI, SRS-based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10-fold increase in SBF. Contraction-induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL-based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded.
Ko, Sang-Bae; Choi, H. Alex; Parikh, Gunjan; Helbok, Raimund; Schmidt, J. Michael; Lee, Kiwon; Badjatia, Neeraj; Claassen, Jan; Connolly, E. Sander; Mayer, Stephan A.
2011-01-01
Background and Purpose Limited data exists to recommend specific cerebral perfusion pressure (CPP) targets in patients with intracerebral hemorrhage (ICH). We sought to determine the feasibility of brain multimodality monitoring (MMM) for optimizing CPP and potentially reducing secondary brain injury after ICH. Methods We retrospectively analyzed brain MMM data targeted at perihematomal brain tissue in 18 comatose ICH patients (median monitoring: 164 hours). Physiological measures were averaged over one-hour intervals corresponding to each microdialysis sample. Metabolic crisis (MC) was defined as a lactate/pyruvate ratio (LPR) >40 with a brain glucose concentration <0.7 mmol/L. Brain tissue hypoxia (BTH) was defined as PbtO2 <15 mm Hg. Pressure reactivity index (PRx) and oxygen reactivity index (ORx) were calculated. Results Median age was 59 years, median GCS score 6, and median ICH volume was 37.5 ml. The risk of BTH, and to a lesser extent MC, increased with lower CPP values. Multivariable analyses showed that CPP <80 mm Hg was associated with a greater risk of BTH (OR 1.5, 95% CI 1.1–2.1, P=0.01) compared to CPP >100 mm Hg as a reference range. Six patients died (33%). Survivors had significantly higher CPP and PbtO2 and lower ICP values starting on post-bleed day 4, whereas LPR and PRx values were lower, indicating preservation of aerobic metabolism and pressure autoregulation. Conclusions PbtO2 monitoring can be used to identify CPP targets for optimal brain tissue oxygenation. In patients who do not undergo MMM, maintaining CPP >80 mm Hg may reduce the risk of BTH. PMID:21852615
Messere, Alessandro; Roatta, Silvestro
2013-01-01
Abstract The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near‐infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer–Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS‐based), total hemoglobin concentration (tHb, BL‐based), tissue oxygenation index (TOI, SRS‐based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10‐fold increase in SBF. Contraction‐induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL‐based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded. PMID:24744858
Optical sensor technology for a noninvasive continuous monitoring of blood components
NASA Astrophysics Data System (ADS)
Kraitl, Jens; Timm, Ulrich; Lewis, Elfed; Ewald, Hartmut
2010-02-01
NIR-spectroscopy and Photoplethysmography (PPG) is used for a measurement of blood components. The absorptioncoefficient of blood differs at different wavelengths. This fact is used to calculate the optical absorbability characteristics of blood which is yielding information about blood components like hemoglobin (Hb), carboxyhemoglobin (CoHb) and arterial oxygen saturation (SpO2). The measured PPG time signals and the ratio between the peak to peak pulse amplitudes are used for a measurement of these parameters. Hemoglobin is the main component of red blood cells. The primary function of Hb is the transport of oxygen from the lungs to the tissue and carbon dioxide back to the lungs. The Hb concentration in human blood is an important parameter in evaluating the physiological status of an individual and an essential parameter in every blood count. Currently, invasive methods are used to measure the Hb concentration, whereby blood is taken from the patient and subsequently analyzed. Apart from the discomfort of drawing blood samples, an added disadvantage of this method is the delay between the blood collection and its analysis, which does not allow real time patient monitoring in critical situations. A noninvasive method allows pain free continuous on-line patient monitoring with minimum risk of infection and facilitates real time data monitoring allowing immediate clinical reaction to the measured data.
Khazaee, Manoochehr; Hamidian, Amir Hossein; Alizadeh Shabani, Afshin; Ashrafi, Sohrab; Mirjalili, Seyyed Ali Ashghar; Esmaeilzadeh, Esmat
2016-02-01
Rodents frequently serve as bioindicator to monitor the quality of the environment. Concentrations of 11 elements (Cd, Co, Ti, Fe, Mn, Cu, Sb, As, Sr, Ni, and Cr) were investigated and compared in liver, hair, femur, and lung of the Persian jird (Meriones persicus) from Darreh Zereshk copper mine, Iran. Metals were determined in different tissues of 39 individuals of Persian jird, collected by snap trap in 2014 from five areas of Darreh Zereshk copper mine. Samples were prepared by wet digestion method, and the contents of elements were analyzed with ICP-OES (VARIAN, 725-ES) instrument. Cadmium, Sb, and Co were below the limit of detection, and Mn and As were found only in hair and liver tissues. We detected the highest concentration of Cu, As, Ti, Fe, Mn, Cr, and Ni in hair in comparison with other tissues. Significant higher levels of Ti in femur and hair; Fe in liver and hair; Mn in liver; As in hair; Sr in lung; Cr in lung, hair, femur, and liver; Cu in femur; and Ni in liver and lung tissues were observed in females. Nearly all element concentrations in the tissues of Persian jird from flotation site, Darreh Zereshk and Hasan Abad villages and leaching site (mining areas) were higher than those from tailing dump site (reference site). We found the highest concentrations of As in liver and hair; Ni and Cr in liver, hair, and lung; and Sr in lung and hair tissues of Persian jird in leaching site. We tried to specify the status of elements before fully exploitation of Darreh Zereshk copper mine by using bioindicator species. Based on our achievements, initial activities did not strongly pollute the surrounded environment of the mine. The high abundance of Persian jird as well as their several proper features makes them a suitable species for biomonitoring programs especially for further studies will be performed after full exploitation of Darreh Zereshk copper mine.
[Research on human movement with noninvasive tissue oximeter using near infrared spectroscopy].
Lin, Hong; Xi, Yu-bao; Yu, Hui
2014-06-01
The present paper discusses how to monitor and analyze the relative change in muscle oxygen content in quadriceps tissue, and measures and records the change in blood lactate acid concentration, blood volume and heart rate when eight players who are good at middle-distance races perform grade incremental intensity exercise on cycle ergometer by using noninvasive tissue oximeter with near infrared spectroscopy produced by China independently. The results show that muscle oxygen content has a close relationship (p < 0.01)with exercise load, blood lactic acid, blood volume and heart rate. When determined muscle oxygen content and blood lactate acid concentration was determined for many times to the same person, the test proved regular falling and rising. There was no significant changes when analyzed each set of the data was analyzed through horizontal comparison. It verifies we can judge the subjects's endurable exercise intensity and the upward inflection point of blood lactic acid corresponding to the decreasing inflection point of blood lactate acid concentration & muscle oxygen content according to the muscle oxygen content change of skeletal muscle while exercising. This paper shows NIRS research status and present situation in sports field through investigation, and analyzes the main trouble and research tendency in the future. By understanding NIRS technology gradually, the authors can realize that the muscle oxygen content which measured by noninvasive tissue oximeter using near infrared spectroscopy produced by China independently is a sensitive, nondestructive, up-to-date and reliable index, it has irreplaceable advantages when compared with traditional invasive, excised and fussy test methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talmage, S.S.; Walton, B.T.
1990-08-01
The primary purpose of this study was to evaluate which small mammal species are the best monitors of specific environmental contaminants. The evaluation is based on the published literature and on an analysis of small mammals trapped at several sites on the Oak Ridge National Laboratory (ORNL) Reservation in Oak Ridge, Tennessee. Studies on the uptake of heavy metals, radionuclides, and organic chemicals are reviewed in Chapter II to evaluate several small mammal species for their capacity to serve as sentinels for the presence, accumulation, and effects of various contaminants. Where several species were present at a site, a comparativemore » evaluation was made and species are ranked for their capacity to serve as monitors of specific contaminants. Food chain accumulation and food habits of the species are used to establish a relationship with suitability as a biomonitor. Tissue-specific concentration factors were noted in order to establish target tissues. Life histories, habitat, and food habits are reviewed in order to make generalizations concerning the ability of similar taxa to serve as biomonitor. Finally, the usefulness of several small mammal species as monitors of three contaminants -- benzo(a)pyrene, mercury, and strontium-90 -- present on or near the ORNL facilities was investigated. 133 refs., 5 figs., 20 tabs.« less
Dupont-Deshorgue, A; Oudart, J B; Brassart, B; Deslee, G; Perotin, J M; Diebold, M D; Monboisse, J C; Ramont, L; Brassart-Pasco, S
2015-08-01
Basement membrane collagens or derived fragments are measured in biological fluids such as blood and urine of patients and appear to be useful for diagnosis, prognostication, or treatment monitoring as proposed for endostatin, a fragment of collagen XVIII, or tumstatin, a fragment of collagen IV. Tetrastatin, the NC1 alpha 4 collagen IV domain, was previously reported to inhibit tumor growth and angiogenesis. The aim of this study was to develop and validate a method to measure tetrastatin concentrations in human fluids. We developed a competitive enzyme-linked immunosorbent assay (ELISA). It allowed measuring tetrastatin levels in human serum, bronchial aspiration and bronchoalveolar lavage fluids, and lung tissue extracts. The tetrastatin level was significantly higher in tumor tissues than in healthy lung tissues. Tetrastatin competitive ELISA could be useful to quantify tetrastatin in tissues and biological fluids for the diagnosis or prognostication of diseases in which basement membrane metabolism may be altered, especially tumor progression. Copyright © 2015 Elsevier Inc. All rights reserved.
Hédouin, Laetitia; Metian, Marc; Teyssié, Jean-Louis; Oberhänsli, François; Ferrier-Pagès, Christine; Warnau, Michel
2016-08-01
Development of nickel mining activities along the New Caledonia coasts threatens the biodiversity of coral reefs. Although the validation of tropical marine organisms as bioindicators of metal mining contamination has received much attention in the literature over the last decade, few studies have examined the potential of corals, the fundamental organisms of coral reefs, to monitor nickel (Ni) contamination in tropical marine ecosystems. In an effort to bridge this gap, the present work investigated the bioaccumulation of (63)Ni in the scleractinian coral Stylophora pistillata and in its isolated zooxanthellae Symbiodinium, using radiotracer techniques. Results highlight the high capacities of coral tissues (zooxanthellae and host tissues) to efficiently bioconcentrate (63)Ni compared to skeleton (Concentration Factors CF at 14 days of exposure are 3 orders of magnitude higher in tissues than in skeleton). When non-contaminated conditions were restored, (63)Ni was more efficiently retained in skeleton than in coral tissues, with biological half-lives (Tb½) of 44.3 and 6.5 days, respectively. In addition, our work showed that Symbiodinium bioconcentrated (63)Ni exponentially, with a vol/vol concentration factor at steady state (VCFSS) reaching 14,056. However, compilation of our results highlighted that despite efficient bioconcentration of (63)Ni in Symbiodinium, their contribution to the whole (63)Ni accumulation in coral nubbins represents less than 7%, suggesting that other biologically controlled processes occur in coral host allowing such efficient bioconcentration in coral tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fortoul, T I; Osorio, L S; Tovar, A T; Salazar, D; Castilla, M E; Olaiz-Fernández, G
1996-01-01
In autopsies performed on residents of Mexico City during the 1950s and 1980s (45 males and 24 females and 42 males and 42 females, respectively), concentrations of cadmium, copper, cobalt, nickel, and lead in the lungs were studied by atomic absorption spectrometry. Sharp increases were noted in samples taken in the 1980s compared to those from the 1950s. In samples from both time periods, the concentrations were influenced by gender. Smoking was not associated with higher levels of the metals. Only lead seemed to have a relation with age. The enormous differences by gender in the 1950s could be due to different patterns of exposure. The differences among samples from both periods appear to be associated with the increase of air pollutants in the metropolitan areas of Mexico City during the years under study. These results reinforce the importance of studying lung tissue to monitor air pollution by metals. PMID:8793351
Heavy metals in livers and kidneys of goats in Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, A.T.; Diffay, B.C.; Datiri, B.C.
1995-10-01
The popularity of goat farming is increasing in the southeastern region of the United States. Baseline values of Hg, Pb, and Cd are not available in goat tissues in the United States. These values are needed when monitoring food for heavy metal contamination which may be associated with urbanization and industrialization. Due to human activities or anthropogenic sources of metals in the environment, high concentrations of these metals have been observed in herbage and animal tissues. It has also been reported that toxic heavy metals are concentrated mostly in kidneys and livers of animals. The risk of exposure of humansmore » to heavy metals contained in edible organs of animals has received widespread concern. The objectives of this study were to (i) measure the levels of Hg,Pb, and Cd in livers and kidneys of goats; and (ii) determine whether accumulation of these metals is related to age and/or sex. 20 refs., 3 tabs.« less
Versatile tissue lasers based on high-Q Fabry-Pérot microcavities.
Chen, Yu-Cheng; Chen, Qiushu; Zhang, Tingting; Wang, Wenjie; Fan, Xudong
2017-01-31
Biolasers are an emerging technology for next generation biochemical detection and clinical applications. Progress has recently been made to achieve lasing from biomolecules and single living cells. Tissues, which consist of cells embedded in an extracellular matrix, mimic more closely the actual complex biological environment in a living body and therefore are of more practical significance. Here, we developed a highly versatile tissue laser platform, in which tissues stained with fluorophores are sandwiched in a high-Q Fabry-Pérot microcavity. Distinct lasing emissions from muscle and adipose tissues stained respectively with fluorescein isothiocyanate (FITC) and boron-dipyrromethene (BODIPY), and hybrid muscle/adipose tissue with dual staining were achieved with a threshold of only ∼10 μJ mm -2 . Additionally, we investigated how the tissue structure/geometry, tissue thickness, and staining dye concentration affect the tissue laser. Lasing emission from FITC conjugates (FITC-phalloidin) that specifically target F-actin in muscle tissues was also realized. It is further found that, despite the large fluorescence spectral overlap between FITC and BODIPY in tissues, their lasing emissions could be clearly distinguished and controlled due to their narrow lasing bands and different lasing thresholds, thus enabling highly multiplexed detection. Our tissue laser platform can be broadly applicable to various types of tissues/diseases. It provides a new tool for a wide range of biological and biomedical applications, such as diagnostics/screening of tissues and identification/monitoring of biological transformations in tissue engineering.
Luginbühl, Marc; Willem, Sytske; Schürch, Stefan; Weinmann, Wolfgang
2018-02-01
In the presence of alcohol, phosphatidylcholine (PC) is transformed to the direct alcohol biomarker phosphatidylethanol (PEth). This reaction is catalyzed by the enzyme phospholipase D (PLD) and dependent on substrate availability. As recent methods have solely focused on the determination of PEth, information about the PC composition was generally missing. To address this issue and monitor PC (16:0/18:1 and 16:0/18:2) and PEth (16:0/18:1 and 16:0/18:2) simultaneously, a reversed phase LC-MS/MS method based on a C8 core-shell column, coupled to a Sciex 5500 QTrap instrument was developed. By application of polarity switching, at first, PC was measured in ESI positive SRM mode, while PEth was determined at a later stage in ESI negative SRM mode. The PEth method was validated for human blood samples to show its robustness and subsequently applied for the investigation of systematic in vitro PEth formation in animal tissue samples (brain, kidney, liver, and blood) from a pig, a calf, and a goat. Homogenized tissue was incubated at 37°C with varying ethanol concentrations from 1 to 7g/kg (determined by HS-GC-FID) for 5h, whereby a sample was taken every 30min. For all tissue samples, an increase in PEth was measurable. PEth concentrations formed in blood remained below the LLOQ, in agreement with literature. Data analysis of Michaelis-Menten kinetics and PC within the tissue provided a detailed insight about PEth formation, as the occurrence of PEth species can be linked to the observed PC composition. The results of this study show that PEth formation rates vary from tissue to tissue and among different species. Furthermore, new recommendations for PEth analysis are presented. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Kanie, Takuya; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki
2018-02-01
We investigated a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation (StO2), and the scattering power b in the expression of musp=a(lambda)^-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, Monte Carlo simulation (MCS) for light transport in brain tissue is used to specify a relation among the RGB-values and the concentration of oxygenated hemoglobin (CHbO), that of deoxygenated hemoglobin (CHbR), and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed brain of rats while changing the fraction of inspired oxygen (FiO2), using a surgical microscope camera system. The time courses of CHbO, CHbR, CHbT, and StO2 indicated the well-known physiological responses in cerebral cortex. On the other hand, a fast decrease in the scattering power b was observed immediately after the respiratory arrest, which is similar to the negative deflection of the extracellular DC potential so-called anoxic depolarization. It is said that the DC shift coincident with a rise in extracellular potassium and can evoke cell deformation generated by water movement between intracellular and extracellular compartments, and hence the light scattering by tissue. Therefore, the decrease in the scattering power b after the respiratory arrest is indicative of changes in light scattering by tissue. The results in this study indicate potential of the method to evaluate the pathophysiological conditions and loss of tissue viability in brain tissue.
Development and testing of an artificial arterial and venous pulse oximeter.
Cloete, G; Fourie, P R; Scheffer, C
2013-01-01
The monitoring of patients healthcare is of a prime importance to ensure their efficient and effective treatment. Monitoring blood oxygen saturation is a field which has grown significantly in recent times and more specifically in tissues affected by diseases or conditions that may negatively affect the function of the tissue. This study involved the development and testing of a highly sensitive non-invasive blood oxygen saturation monitoring device. A device that can be used to continuously monitor the condition of tissue affected by diseases which affect the blood flow through the tissue, and the oxygen usage in tissue. The device's system was designed to specifically monitor occluded tissue which has low oxygen saturations and low perfusion. Although with limitted validation the system was unable to accurately measure the venous oxygenation specifically, but it was able to measure the mixed oxygen saturation. With further research it would be possible to validate the system for measuring both the arterial and venous oxygen saturations.
Gold nanoshell thermal confinement of conformal laser thermal therapy in liver metastasis
NASA Astrophysics Data System (ADS)
Elliott, Andrew M.; Wang, James; Shetty, Anil M.; Schwartz, Jon; Hazle, John D.; Stafford, R. Jason
2008-02-01
Cooled fiber tip technology has significantly improved the volume coverage of laser induced thermal therapy (LITT), making LITT an attractive technology for the minimally invasive treatment of cancer. Gold coated nanoshells can be tuned to experience a plasmon resonance at a desired laser frequency, there introduction into the treatment region can greatly amplify the effectiveness of the thermal treatment. The goal is to conformaly heat the target, while sparing surrounding healthy tissue. To this end a treatment option that is self-confining to the target lesion is highly desirable. This can be achieved in the liver by allowing nanoshells to be taken up by the healthy tissue of the liver as part of their natural removal from the blood stream. The lesion is then incased inside the nanoshell laden tissue of the surrounding healthy tissue. When an interstitial laser probe is introduced into the center of the lesion the thermal radiation scatters outward until it interacts with and is absorbed by the nanoshells located around the lesion periphery. As the periphery heats it acts as secondary source of thermal radiation, sending heat back into lesion and giving rise to ablative temperatures within the lesion while sparing the surrounding tissue. In order to better monitor therapy and know when the target volume has been ablated, or exceeded, accurate knowledge is needed of both the spatial distribution of heating and the maximum temperature achieved. Magnetic resonance temperature imaging (MRTI) is capable of monitoring the spatiotemporal distribution of temperature in vivo[1]. Experiments have been performed in vitro using a dog liver containing nanoshells (concentration 860ppm) and a tissue like lesion phantom designed to have the optical properties of liver metastasis [2].
NASA Astrophysics Data System (ADS)
Kumar, Alla S.; Clark, Joseph; Beyette, Fred R., Jr.
2009-02-01
Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. The excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. As the bilirubin levels rise in the blood stream, there is a continuous exchange between the extra vascular bilirubin and bilirubin in the blood stream. Exposure to phototherapy alters the concentration of bilirubin in the vascular and extra vascular regions by causing bilirubin in the skin layers to be broken down. Thus, the relative concentration of extra vascular bilirubin is reduced leading to a diffusion of bilirubin out of the vascular region. Diffuse reflectance spectra from human skin contains physiological and structural information of the skin and nearby tissue. A diffuse reflectance spectrum must be captured before and after blanching in order to isolate the intravascular and extra vascular bilirubin. A new mathematical model is proposed with extra vascular bilirubin concentration taken into consideration along with other optical parameters in defining the diffuse reflectance spectrum from human skin. A nonlinear optimization algorithm has been adopted to extract the optical properties (including bilirubin concentration) from the skin reflectance spectrum. The new system model and nonlinear algorithm have been combined to enable extraction of Bilirubin concentrations within an average error of 10%.
Diffuse Optical Tomography for Brain Imaging: Theory
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Jiang, Huabei
Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.
Ahmed, Quratulan; Benzer, Semra; Elahi, Naeema; Ali, Qadeer Mohammad
2015-08-01
The concentrations of cadmium, iron, lead, manganese, nickel, and zinc in muscle tissue samples taken from Goldstripe sardinella (Sardinella gibbosa Bleeker, 1849) caught off the coast of Balochistan, Pakistan, in 2009 were determined. The samples were analyzed using a Perkin Elmer AAnalyst 700 flame atomic absorption spectrophotometer. The mean Cd, Fe, Mn, Ni, Pb, and Zn concentrations in the muscle samples were 0.65±0.05 µg g(-1), 23.39±1.97 µg g(-1), 4.35±0.22 µg g(-1), 0.61±0.07 µg g(-1), 0.39±0.04 µg g(-1), and 6.59±0.33 µg g(-1), respectively. The Cd, Fe, Pb, and Zn concentrations did not exceed the regulatory limits, but the Mn concentrations were high enough to potentially pose health risks to humans consuming S. gibbosa. Therefore, the Mn concentrations in S. gibbosa from the Balochistan coast should be monitored regularly.
Dyke, Jessica; Parchaso, Janet K.; Thompson, Janet K.; Cain, Daniel J.; Luoma, Samuel N.; Hornberger, Michelle I.
2010-01-01
Results reported herein include trace element concentrations in sediment and in the clam Macoma petalum (formerly reported as Macoma balthica (Cohen and Carlton, 1995)), clam reproductive activity, and benthic macroinvertebrate community structure for a mudflat one kilometer south of the discharge of the Palo Alto Regional Water Quality Control Plant (PARWQCP) in South San Francisco Bay. This report includes data collected for the period January 2009 to December 2009 and extends a critical long-term biogeochemical record dating back to 1974. These data serve as the basis for the City of Palo Alto's Near-Field Receiving Water Monitoring Program, initiated in 1994. In 2009, metal concentrations in both sediments and clam tissue were among the lowest concentrations on record and consistent with results observed since 1991. Following significant reductions in the late 1980s, silver (Ag) and copper (Cu) concentrations appeared to have stabilized. Annual mean concentrations have fluctuated modestly (2-4 fold) in a nondirectional manner. Data for other metals, including chromium, mercury, nickel, selenium, vanadium, and zinc, have been collected since 1994. Over this period, concentrations of these elements, which more likely reflect regional inputs and systemwide processes, have remained relatively constant, aside from typical seasonal variation that is common to all elements. Within years, the winter months (January-March) generally exhibit maximum concentrations, with a decline to annual minima in spring through fall. Mercury (Hg) in sediments and M. petalum were comparable to concentrations observed in 2008 and were generally consistent with data from previous years. Selenium (Se) concentrations in sediment varied among years and showed no sustained temporal trend. In 2009, sedimentary Se concentrations declined from the record high concentrations observed in 2008 to concentrations that were among the lowest on record. Selenium in M. petalum was unchanged from 2008. Overall, Cu and Ag concentrations in sediments and soft tissues of the clam, M. petalum, remained representative of the concentrations observed since 1991 following significant reductions in the discharge of these elements from the PARWQCP. This suggests that, as with other elements of regulatory interest, regional-scale factors now largely influence sedimentary and bioavailable concentrations of Ag and Cu. Analyses of the benthic community structure of a mudflat in South San Francisco Bay over a 36-year period show that changes in the community have occurred concurrent with reduced concentrations of metals in the sediment and in the tissues of the biosentinel clam, M. petalum, from the same area. Analysis of the reproductive activity of M. petalum shows increases in reproductive activity concurrent with the decline in metal concentrations in the tissues of this organism. Reproductive activity is presently stable, with almost all animals initiating reproduction in the fall and spawning the following spring of most years. The community has shifted from being dominated by several opportunistic species to a community where the species are more similar in abundance, a pattern that suggests a more stable community that is subjected to fewer stressors. In addition, two of the opportunistic species (Ampelisca abdita and Streblospio benedicti) that brood their young and live on the surface of the sediment in tubes have shown a continual decline in dominance coincident with the decline in metals; both species had short-lived rebounds in abundance in 2008 and 2009. Heteromastus filiformis (a subsurface polychaete worm that lives in the sediment, consumes sediment and organic particles residing in the sediment, and reproduces by laying its eggs on or in the sediment) showed a concurrent increase in dominance, with the last several years prior to 2008 showing a stable population. An unidentified disturbance occurred on the mudflat in early 2008 that resulted in the loss o
Walker, Tony R; MacAskill, Devin
2014-03-01
Using mussels as monitoring tools we measured water quality in Sydney Harbour during a large scale, multi-year remediation project of the Sydney Tar Ponds (STPs); one of Canada's most contaminated sites. Chemical contaminants were measured in blue mussels (Mytilus edulis) in Sydney Harbour, which were used as monitoring tools to assess the spatio-temporal distribution of polycyclic aromatic hydrocarbons (PAHs); polychlorinated biphenyls (PCBs); metals (As, Cd, Cu, Hg, Pb, Zn) and lipid content during baseline and 3 years of remediation. The overall spatio-temporal distribution of chemicals in mussels was also compared to contaminants in other marine indicators (e.g., sediment, water and crab tissue). Measured metal concentrations in mussels showed some minor temporal variability (4 years), but these did not appear to be directly related to remediation activities, with the highest concentrations of As, Hg and Zn measured at reference stations. Most measured contaminants showed stable or potentially decreasing concentrations during the study, except Pb and Zn. Individual PAH compounds were mostly undetected during baseline and remediation, except for fluoranthene and pyrene. Concentrations of fluoranthene in mussels and deep water samples were moderately related. Generally, PCBs were undetected (<0.05 μg g(-1)), except during year 2 remediation at some near-field stations. Contaminants measured during this study were at much lower concentrations than previously reported in other studies of mussels in Sydney Harbour and eastern Canada. This is likely due to the ongoing natural recovery of Sydney Harbour and to a lesser extent because of the environmental mitigation protection measures implemented during remediation activities at the STPs. The lack of detection of most individual PAHs and PCBs, plus relatively low bio-accumulation of metals observed during baseline and remediation attest to the effectiveness of using mussels as monitoring tools for environmental quality.
Specimen banking of marine organisms in the United States: Current status and long-term prospective
Becker, P.R.; Wise, S.A.; Thorsteinson, L.; Koster, B.J.; Rowles, T.
1997-01-01
A major part of the activities conducted over the last decade by the National Biomonitoring Specimen Bank (NBSB) has involved the archival of marine specimens collected by ongoing environmental monitoring programs. These archived specimens include bivalves, marine sediments, and fish tissues collected by the National Status and Trends and the Exxon Valdez Oil Spill Damage Assessment programs, and marine mammal tissues collected by the Marine Mammal Health and Stranding Response Program and the Alaska Marine Mammal Tissue Archival Project. In addition to supporting these programs, the specimens have been used to investigate circumpolar patterns of chlorinated hydrocarbon concentrations, genetic separation of marine animal stocks, baseline levels of essential and nonessential elements in marine mammals, and the potential risk to human consumers in the Arctic from anthropogenic contaminants found in local subsistence foods. The NBSB specimens represent a resource that has the potential for addressing future issues of marine environmental quality and ecosystem changes through retrospective analysis; however, an ecosystem-based food web approach would maximize this potential. The current status of the NBSB activities related to the banking of marine organisms is presented and discussed, the long-term prospective of these activities is presented, and the importance of an ecosystem-based food web monitoring approach to the value of specimen banking is discussed.
Assessment of corneal hydration sensing in the terahertz band: in vivo results at 100 GHz
Taylor, Zachary; Tewari, Pria; Sung, Shijun; Maccabi, Ashkan; Singh, Rahul; Culjat, Martin; Grundfest, Warren; Hubschman, Jean-Pierre; Brown, Elliott
2012-01-01
Abstract. Terahertz corneal hydration sensing has shown promise in ophthalmology applications and was recently shown to be capable of detecting water concentration changes of about two parts in a thousand in ex vivo corneal tissues. This technology may be effective in patient monitoring during refractive surgery and for early diagnosis and treatment monitoring in diseases of the cornea. In this work, Fuchs dystrophy, cornea transplant rejection, and keratoconus are discussed, and a hydration sensitivity of about one part in a hundred is predicted to be needed to successfully distinguish between diseased and healthy tissues in these applications. Stratified models of corneal tissue reflectivity are developed and validated using ex vivo spectroscopy of harvested porcine corneas that are hydrated using polyethylene glycol solutions. Simulation of the cornea’s depth-dependent hydration profile, from 0.01 to 100 THz, identifies a peak in intrinsic reflectivity contrast for sensing at 100 GHz. A 100 GHz hydration sensing system is evaluated alongside the current standard ultrasound pachymetry technique to measure corneal hydration in vivo in four rabbits. A hydration sensitivity, of three parts per thousand or better, was measured in all four rabbits under study. This work presents the first in vivo demonstration of remote corneal hydration sensing. PMID:23085925
Assessment of corneal hydration sensing in the terahertz band: in vivo results at 100 GHz
NASA Astrophysics Data System (ADS)
Bennett, David; Taylor, Zachary; Tewari, Pria; Sung, Sijun; Maccabi, Ashkan; Singh, Rahul; Culjat, Martin; Grundfest, Warren; Hubschman, Jean-Pierre; Brown, Elliott
2012-09-01
Terahertz corneal hydration sensing has shown promise in ophthalmology applications and was recently shown to be capable of detecting water concentration changes of about two parts in a thousand in ex vivo corneal tissues. This technology may be effective in patient monitoring during refractive surgery and for early diagnosis and treatment monitoring in diseases of the cornea. In this work, Fuchs dystrophy, cornea transplant rejection, and keratoconus are discussed, and a hydration sensitivity of about one part in a hundred is predicted to be needed to successfully distinguish between diseased and healthy tissues in these applications. Stratified models of corneal tissue reflectivity are developed and validated using ex vivo spectroscopy of harvested porcine corneas that are hydrated using polyethylene glycol solutions. Simulation of the cornea's depth-dependent hydration profile, from 0.01 to 100 THz, identifies a peak in intrinsic reflectivity contrast for sensing at 100 GHz. A 100 GHz hydration sensing system is evaluated alongside the current standard ultrasound pachymetry technique to measure corneal hydration in vivo in four rabbits. A hydration sensitivity, of three parts per thousand or better, was measured in all four rabbits under study. This work presents the first in vivo demonstration of remote corneal hydration sensing.
A noninvasive multimodal technique to monitor brain tumor vascularization
NASA Astrophysics Data System (ADS)
Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E.
2007-09-01
Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.
Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.
Wydallis, John B; Feeny, Rachel M; Wilson, William; Kern, Tucker; Chen, Tom; Tobet, Stuart; Reynolds, Melissa M; Henry, Charles S
2015-10-21
A high-density amperometric electrode array containing 8192 individually addressable platinum working electrodes with an integrated potentiostat fabricated using Complementary Metal Oxide Semiconductor (CMOS) processes is reported. The array was designed to enable electrochemical imaging of chemical gradients with high spatiotemporal resolution. Electrodes are arranged over a 2 mm × 2 mm surface area into 64 subarrays consisting of 128 individual Pt working electrodes as well as Pt pseudo-reference and auxiliary electrodes. Amperometric measurements of norepinephrine in tissue culture media were used to demonstrate the ability of the array to measure concentration gradients in complex media. Poly(dimethylsiloxane) microfluidics were incorporated to control the chemical concentrations in time and space, and the electrochemical response at each electrode was monitored to generate electrochemical heat maps, demonstrating the array's imaging capabilities. A temporal resolution of 10 ms can be achieved by simultaneously monitoring a single subarray of 128 electrodes. The entire 2 mm × 2 mm area can be electrochemically imaged in 64 seconds by cycling through all subarrays at a rate of 1 Hz per subarray. Monitoring diffusional transport of norepinephrine is used to demonstrate the spatiotemporal resolution capabilities of the system.
NASA Astrophysics Data System (ADS)
Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.
2013-06-01
The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.
Efficacy of hair analysis for monitoring exposure to uranium: a mini-review.
Joksić, Agnes Šömen; Katz, Sidney A
2014-01-01
In spite of the ease with which samples may be collected and the stability of the samples after collection, the use of hair mineral analysis for monitoring environmental exposures and evaluating heavy metal poisonings has remained controversial since its initial applications for these purposes in the early 1950s. Among the major arguments against using hair mineral analysis in general were the absence of biokinetic models and/or metabolic data that adequately described the incorporation of trace elements into the hair, the absence of correlations between the concentrations of trace elements in the hair and their concentrations in other tissues, the inability to distinguish between trace elements that were deposited in the hair endogenously and those that were deposited on the hair exogenously, the absence of reliable reference ranges for interpreting the results of hair mineral analysis and a lack of standard procedures for the collecting, preparing and analyzing the hair samples. The developments of the past two decades addressing these objections are reviewed here, and arguments supporting the use of hair analysis for monitoring environmental and/or occupational exposures to uranium are made on the basis of the information presented in this review.
Gene Expression Profiling Of Accessible Surrogate Tissues To Monitor Molecular Changes In Inaccessible Target Tissues Following Toxicant Exposure
John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Judith E. Schmid and David J. Dix
Reproductive Toxicology ...
Gravitational effects on plant growth hormone concentration
NASA Technical Reports Server (NTRS)
Bandurski, R. S.; Schulze, A.
1983-01-01
Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.
NASA Astrophysics Data System (ADS)
Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya
2017-07-01
A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.
Laser tissue welding mediated with a protein solder
NASA Astrophysics Data System (ADS)
Small, Ward, IV; Heredia, Nicholas J.; Celliers, Peter M.; Da Silva, Luiz B.; Eder, David C.; Glinsky, Michael E.; London, Richard A.; Maitland, Duncan J.; Matthews, Dennis L.; Soltz, Barbara A.
1996-05-01
A study of laser tissue welding mediated with an indocyanine green dye-enhanced protein solder was performed. Freshly obtained sections of porcine artery were used for the experiments. Sample arterial wall thickness ranged from two to three millimeters. Incisions approximately four millimeters in length were treated using an 805 nanometer continuous- wave diode laser coupled to a one millimeter diameter fiber. Controlled parameters included the power delivered by the laser, the duration of the welding process, and the concentration of dye in the solder. A two-color infrared detection system was constructed to monitor the surface temperatures achieved at the weld site. Burst pressure measurements were made to quantify the strengths of the welds immediately following completion of the welding procedure.
Transcleral delivery of triamcinolone acetonide and ranibizumab to retinal tissues using macroesis.
Singh, Rishi P; Mathews, Michael Ellen; Kaufman, Michael; Riga, Alan
2010-02-01
To determine the feasibility of macroesis for the delivery of ranibizumab and triamcinolone acetonide via a transcleral route. Macroesis is a non-invasive method of drug delivery that uses alternating current (AC) to deliver drugs to target tissues. Two preclinical models of drug delivery were used for feasibility studies of delivering ranibizumab and triamcinolone acetonide to ocular tissues. In the first model, full-thickness sections of rabbit ocular tissue (conjunctiva to retina) were placed on an interdigitated electrode platform, and the drug was placed on the surface of the tissue. A non-uniform electrical field was applied to the ocular tissue, and electrical conductivity, a measurement of drug delivery, was monitored during the course of the experiment. In a second model, termed a 'simulated vitreous model,' the same full-thickness sections of rabbit ocular tissue were mounted below the electrode device, and the test compounds were placed on the electrodes. The fluid below the tissue, which simulated the vitreous cavity, was analysed using UV spectroscopy at the end of the study for the presence of drug. In the electrical conductivity studies, the electric characteristics of the tissue-drug system clearly showed movement of the drug through the tissue to the dielectric sensor based on changes in the electrical conductivity of the tissue sample with triamcinolone. No change in tissue conductivity was observed when no drug was placed. No heat generation occurred during the course of the study; nor was any gross tissue destruction noted. In the simulated vitreous model, studies using triamcinolone yielded concentrations ranging from 0.280 to 0.970 mg/ml, depending on the voltage, frequency and time applied. In as little as 6.7 min, clinically efficacious doses could be obtained in the preclinical system. Studies using ranibizumab yielded concentrations of 0.070-0.171 mg/ml, depending on the voltage, frequency, and time applied. In as little at 6.7 min, 92.8% throughput could be achieved. Successful delivery of ranibizumab and triamcinolone acetonide can be achieved with macroesis in preclinical studies.
Meinertz, Jeffery R.; Greseth, Shari L.; Schreier, Theresa M.; Bernardy, Jeffry A.; Gingerich, William H.
2006-01-01
At common water temperatures, the tissue concentration of isoeugenol in fillet tissue from fish exposed to 14-mg/L AQUI-S™ for 60 min was significantly greater than the isoeugenol concentration in fillet tissue from fish exposed to 34-mg/L AQUI-S™ for 10 min (P < 0.01). The isoeugenol concentration (78.8 μg/g) found in fillet tissue from fish exposed to 14-mg/L AQUI-S™ for 60 min at 17 °C was significantly greater than the isoeugenol tissue concentration (57.3 μg/g) generated at 7 °C (P < 0.01), but was not significantly greater than the isoeugenol tissue concentration (70.7 μg/g) generated at 12 °C (P = 0.22). AQUI-S™ exposure regimens and exposure temperatures can significantly impact drug residue concentrations in fillet tissue.
NASA Astrophysics Data System (ADS)
Chamberland, David L.; Agarwal, Ashish; Kotov, Nicholas; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding
2008-03-01
Monitoring of anti-rheumatic drug delivery in experimental models and in human diseases would undoubtedly be very helpful for both basic research and clinical management of inflammatory diseases. In this study, we have investigated the potential of an emerging hybrid imaging technology—photoacoustic tomography—in noninvasive monitoring of anti-TNF drug delivery. After the contrast agent composed of gold nanorods conjugated with Etanercept molecules was produced, ELISA experiments were performed to prove the conjugation and to show that the conjugated anti-TNF-α drug was biologically active. PAT of ex vivo rat tail joints with the joint connective tissue enhanced by intra-articularly injected contrast agent was conducted to examine the performance of PAT in visualizing the distribution of the gold-nanorod-conjugated drug in articular tissues. By using the described system, gold nanorods with a concentration down to 1 pM in phantoms or 10 pM in biological tissues can be imaged with good signal-to-noise ratio and high spatial resolution. This study demonstrates the feasibility of conjugating TNF antagonist pharmaceutical preparations with gold nanorods, preservation of the mechanism of action of TNF antagonist along with preliminary evaluation of novel PAT technology in imaging optical contrast agents conjugated with anti-rheumatic drugs. Further in vivo studies on animals are warranted to test the specific binding between such conjugates and targeted antigen in joint tissues affected by inflammation.
Post-Surgical Clinical Monitoring of Soft Tissue Wound Healing in Periodontal and Implant Surgery
Pippi, Roberto
2017-01-01
Clinical features of surgical soft tissue wound healing in dentistry have been rarely discussed in the international literature. The aim of the present paper is to highlight both the main clinical findings of surgical wound healing, especially in periodontal and implant dentistry, and the wound healing monitoring procedures which should be followed. Wound inspection after careful food and plaque debridement is the essential part of wound healing monitoring. Periodontal and peri-implant probing should be performed only after tissue healing has been completed and not on a weekly basis in peri-implant tissue monitoring. Telephone follow-up and patient self-assessment scales can also be used the days following surgery to monitor the most common surgical complications such as pain, swelling, bleeding, and bruising. Wound healing monitoring is an important concern in all surgical procedures since it allows to identify signs or/and symptoms possibly related to surgical complications. PMID:28824306
Post-Surgical Clinical Monitoring of Soft Tissue Wound Healing in Periodontal and Implant Surgery.
Pippi, Roberto
2017-01-01
Clinical features of surgical soft tissue wound healing in dentistry have been rarely discussed in the international literature. The aim of the present paper is to highlight both the main clinical findings of surgical wound healing, especially in periodontal and implant dentistry, and the wound healing monitoring procedures which should be followed. Wound inspection after careful food and plaque debridement is the essential part of wound healing monitoring. Periodontal and peri-implant probing should be performed only after tissue healing has been completed and not on a weekly basis in peri-implant tissue monitoring. Telephone follow-up and patient self-assessment scales can also be used the days following surgery to monitor the most common surgical complications such as pain, swelling, bleeding, and bruising. Wound healing monitoring is an important concern in all surgical procedures since it allows to identify signs or/and symptoms possibly related to surgical complications.
Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Md Yunus, Sabarina, E-mail: sabarina2020@salam.uitm.edu.m; Hamzah, Zaini; Wood, Ab. Khalik
This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia’s major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly,more » in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985). Therefore, it is safe for human consumption. Moreover, the pollution levels of these heavy metals were also compared with other studies. This present study can also be used to evaluate the safety dose uptake level of marine biota as well as to monitor environmental health.« less
Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia
NASA Astrophysics Data System (ADS)
Md Yunus, Sabarina; Hamzah, Zaini; Wood, Ab. Khalik; Ahmad
2015-04-01
This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia's major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985). Therefore, it is safe for human consumption. Moreover, the pollution levels of these heavy metals were also compared with other studies. This present study can also be used to evaluate the safety dose uptake level of marine biota as well as to monitor environmental health.
Al-Armaghany, Allann; Tong, Kenneth; Highton, David; Leung, Terence S
2016-01-01
We have previously developed a hybrid microwave-optical system to monitor microvascular changes in response to thermal provocation in muscle. The hybrid probe is capable of inducing deep heat from the skin surface using mild microwaves (1-3 W) and raises the tissue temperature by a few degrees Celsius. This causes vasodilation and the subsequent increase in blood volume is detected by the hybrid probe using near infrared spectroscopy. The hybrid probe is also equipped with a skin cooling system which lowers the skin temperature while allowing microwaves to warm up deeper tissues. The hybrid system can be used to assess the condition of the vasculature in response to thermal stimulation. In this validation study, thermal imaging has been used to assess the temperature distribution on the surface of phantoms and human calf, following microwave warming. The results show that the hybrid system is capable of changing the skin temperature with a combination of microwave warming and skin cooling. It can also detect thermal responses in terms of changes of oxy/deoxy-hemoglobin concentrations.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Zhang, Xiyang; Li, Zhifang; Li, Hui
2016-10-01
Blood glucose concentration measurement is essential for the diagnosis and treatment of diabetes. However, conventional glucose measurement methods are invasive and not suitable for real-time monitoring. This study demonstrated a noninvasive blood glucose measurement method using optical coherence tomography to image human lip in vivo. Optical coherence tomography (OCT) is a noninvasive and depth-resolved technique capable of acquiring tissue structure images in real time. Human lip has very thin skin and is full of blood vessels, which is appropriate for noninvasive glucose measurement. To verify the feasibility of OCT for glucose concentration monitoring, two groups of OCT imaging data were obtained from human lips of normal people. In one group, OCT images of lip were acquired from people on an empty stomach. In the other group, the same sites of lip were observed by OCT 2 hours after breakfast. Evident differences were found from two groups of OCT images that correspond to preprandial glucose and 2- hour postprandial glucose, respectively. The relationship between OCT image and blood glucose concentration was investigated. The result indicates that OCT possesses considerable prospects in terms of noninvasive blood glucose measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDiarmid, Melissa A.; Gaitens, Joanna M.; Hines,
Background: A small group of Gulf War I veterans wounded in depleted uranium (DU) friendly-fire incidents have been monitored for health changes in a clinical surveillance program at the Veterans Affairs Medical Center, Baltimore since 1994. Methods: During the spring of 2015, an in-patient clinical surveillance protocol was performed on 36 members of the cohort, including exposure monitoring for total and isotopic uranium concentrations in urine and a comprehensive assessment of health outcomes. Results: On-going mobilization of U from embedded fragments is evidenced by elevated urine U concentrations. The DU isotopic signature is observed principally in participants possessing embedded fragments.more » Those with only an inhalation exposure have lower urine U concentration and a natural isotopic signature. Conclusions: At 25 years since first exposure to DU, an aging cohort of military veterans continues to show no U-related health effects in known target organs of U toxicity. As U body burden continues to accrue from in-situ mobilization from metal fragment depots, and increases with exposure duration, critical tissue-specific U concentration thresholds may be reached, thus recommending on-going surveillance of this veteran cohort. - Highlights: • Gulf War I veterans wounded with depleted uranium are monitored for health changes. • In 2015 in-patient clinical surveillance was performed on 36 members of the cohort. • Mobilization of U from embedded fragments is evidenced by elevated U in urine. • This cohort of continues to show no U-related health effects.« less
Processes of contaminant accumulation in an Arctic beluga whale population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickie, B.E.; Muir, D.; Kingsley, M.
1995-12-31
As long-lived top predators in marine food chains, marine mammals accumulate high levels of persistent organic contaminants. While arctic marine mammal contaminant concentrations are lower than those from temperate regions, levels are sufficiently high to be a health concern to people who rely on marine mammals as food. Monitoring programs developed to address this problem and to define spatial and temporal trends often are difficult to interpret since tissue contaminant concentrations vary with species, age, sex, reproductive effort, and condition (ie blubber thickness). It can be difficult to relate contaminant concentrations in other environmental compartments to those in marine mammalsmore » since their residues reflect exposure over their entire life, often 20 to 30 years. Contaminant accumulation models for marine mammals enable us to better understand the importance of, and interaction between, factors affecting contaminant accumulation, and can provide a dynamic framework for interpreting contaminant monitoring data. The authors developed two models for the beluga whale (Delphinapterus leucas): one provides a detailed view of processes at the individual level, the other examines population-based processes. The models quantify uptake, release and disposition of organic contaminants over their entire lifespan by incorporating all aspects of life-history. These models are used together to examine impact of a variety of factors on patterns and variability of PCBs found in the West Greenland beluga population (sample size: 696, 729). Factors examined include: energetics, growth, birth rate, lactation, contaminant assimilation and clearance rates, and dietary contaminant concentrations. Results are discussed in relation to the use of marine mammals for monitoring contaminant trends.« less
Cain, Daniel J.; Thompson, Janet K.; Dyke, Jessica; Parcheso, Francis; Luoma, Samuel N.; Hornberger, Michelle I.
2009-01-01
Results reported herein include trace element concentrations in sediment and in the clam Macoma petalum (formerly reported as Macoma balthica (Cohen and Carlton, 1995)), clam reproductive activity, and benthic macroinvertebrate community structure for a mudflat one kilometer south of the discharge of the Palo Alto Regional Water Quality Control Plant (PARWQCP) in South San Francisco Bay. This report includes data collected for the period January 2008 to December 2008 and extends a critical long-term biogeochemical record dating back to 1974. These data serve as the basis for the City of Palo Alto's Near-Field Receiving Water Monitoring Program, initiated in 1994. In 2008, metal concentrations in both sediments and clam tissue were among the lowest concentrations on record and consistent with results observed since 1991. Following significant reductions in the late 1980's, silver (Ag) and copper (Cu) concentrations appeared to have stabilized. Annual mean concentrations have fluctuated modestly (2-4 fold) in a nondirectional manner. Data for other metals, including chromium, mercury, nickel, selenium, vanadium, and zinc, have been collected since 1994. Over this period, concentrations of these elements, which more likely reflect regional inputs and systemwide processes, have remained relatively constant, aside from typical seasonal variation that is common to all elements. Within years, concentrations generally reach maximum in winter months (January-March) and decline to annual minima in spring through fall. Mercury (Hg) in sediments spiked to the highest observed level in January 2008. However, sedimentary concentrations for the rest of the year and concentrations of Hg in M. petalum for the entire year were consistent with data from previous years. Average selenium (Se) concentrations in sediment were the highest on record, but there is no evidence, yet, to suggest a temporal trend of increasing sedimentary Se. Selenium in M. petalum was not elevated relative to past years. Overall, Cu and Ag concentrations in sediments and soft tissues of the clam, M. petalum, remained representative of the concentrations observed since 1991 following significant reductions in the discharge of these elements from PARWQCP, suggesting that, similar to other elements of regulatory interest, regional scale factors now largely influence sedimentary and bioavailable concentrations of Cu and Ag. Analyses of the benthic-community structure of a mudflat in South San Francisco Bay over a 31-year period show that changes in the community have occurred concurrent with reduced concentrations of metals in the sediment and in the tissues of the biosentinel clam, M. petalum, from the same area. Analysis of the reproductive activity of M. petalum shows increases in reproductive activity concurrent with the decline in metal concentrations in the tissues of this organism. Reproductive activity is presently stable, with almost all animals initiating reproduction in the fall and spawning the following spring of most years. The community has shifted from being dominated by several opportunistic species to a community where the species are more similar in abundance, a pattern that suggests a more stable community that is subjected to less stress. In addition, two of the opportunistic species (Ampelisca abdita and Streblospio benedicti) that brood their young and live on the surface of the sediment in tubes, have shown a continual decline in dominance coincident with the decline in metals. Heteromastus filiformis, a subsurface polychaete worm that lives in the sediment, consumes sediment and organic particles residing in the sediment, and reproduces by laying their eggs on or in the sediment, has shown a concurrent increase in dominance and is now showing signs of population stability. An unidentified disturbance occurred on the mudflat in early 2008 that resulted in the loss of the benthic animals, except for those deep dwelling animals like Macoma petalum.
Raman Spectroscopy of Ocular Tissue
NASA Astrophysics Data System (ADS)
Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner
The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in excised tissue samples and synthetic preparations and thus to identify potential biomarkers for the onset of this disease. Using resonance Raman detection techniques, the concentration and spatial distribution of macular pigment, a protective compound, can be detected in the living human retina Useable in clinical settings for patient screening, the technology is suitable to investigate correlations between pigment concentration levels and risk for macular degeneration and to monitor increases in pigment levels occurring as a result of dietary intervention strategies.
Concentration of cadmium, nickel and aluminium in female breast cancer.
Romanowicz-Makowska, Hanna; Forma, Ewa; Bryś, Magdalena; Krajewska, Wanda M; Smolarz, Beata
2011-12-01
The aim of this study was to investigate the cadmium (Cd), nickel (Ni) and aluminium (Al) concentrations in female breast cancer and normal tissue. The concentration of metals in 16 non-cancerous breast tissues and 67 breast cancer samples was measured by flame atomic absorption spectrometry. In the case of normal breast tissue the concentrations were 0.61 ± 0.24 μg Cd/g dry tissue, 1.84 ± 0.67 μg Ni/g dry tissue, and 3.63 ± 1.00 μg Al/g dry tissue, whereas in breast cancer concentrations of metals were 0.76 ± 0.38 μg/g dry tissue, 2.26 ± 0.79 μg/g dry tissue, and 4.40 ± 1.82 μg/g dry tissue, respectively. The concentration of Cd and Al in normal breast tissue was significantly lower than in breast cancer. In the case of Ni concentration, we did not observe statistically significant differences between normal and cancerous tissue. There were no significant differences in concentration of studied metals, in breast cancer, in the context of age, menopausal status, and cancer histological grading. The data obtained show higher concentration of cadmium and aluminium and support a possible relationship between those metals and breast cancer.
Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox.
Zhu, Xudong; Huang, Lingli; Xu, Yamei; Xie, Shuyu; Pan, Yuanhu; Chen, Dongmei; Liu, Zhenli; Yuan, Zonghui
2017-02-01
Physiologically based pharmacokinetic (PBPK) models are scientific methods used to predict veterinary drug residues that may occur in food-producing animals, and which have powerful extrapolation ability. Quinocetone (QCT) and mequindox (MEQ) are widely used in China for the prevention of bacterial infections and promoting animal growth, but their abuse causes a potential threat to human health. In this study, a flow-limited PBPK model was developed to simulate simultaneously residue depletion of QCT and its marker residue dideoxyquinocetone (DQCT) in pigs. The model included compartments for blood, liver, kidney, muscle and fat and an extra compartment representing the other tissues. Physiological parameters were obtained from the literature. Plasma protein binding rates, renal clearances and tissue/plasma partition coefficients were determined by in vitro and in vivo experiments. The model was calibrated and validated with several pharmacokinetic and residue-depletion datasets from the literature. Sensitivity analysis and Monte Carlo simulations were incorporated into the PBPK model to estimate individual variation of residual concentrations. The PBPK model for MEQ, the congener compound of QCT, was built through cross-compound extrapolation based on the model for QCT. The QCT model accurately predicted the concentrations of QCT and DQCT in various tissues at most time points, especially the later time points. Correlation coefficients between predicted and measured values for all tissues were greater than 0.9. Monte Carlo simulations showed excellent consistency between estimated concentration distributions and measured data points. The extrapolation model also showed good predictive power. The present models contribute to improve the residue monitoring systems of QCT and MEQ, and provide evidence of the usefulness of PBPK model extrapolation for the same kinds of compounds.
Rhind, Stewart M.; Kyle, Carol E.; Telfer, Gillian; Duff, Elizabeth I.; Smith, Alistair
2005-01-01
We studied selected tissues from ewes and their lambs that were grazing pastures fertilized with either sewage sludge (treated) or inorganic fertilizer (control) and determined concentrations of alkylphenols and phthalates in these tissues. Mean tissue concentrations of alkylphenols were relatively low (< 10–400 μg/kg) in all animals and tissues. Phthalates were detected in tissues of both control and treated animals at relatively high concentrations (> 20,000 μg/kg in many tissue samples). The use of sludge as a fertilizer was not associated with consistently increased concentrations of either alkylphenols or phthalates in the tissues of animals grazing treated pastures relative to levels in control animal tissues. Concentrations of the two classes of chemicals differed but were of a similar order of magnitude in liver and muscle as well as in fat. Concentrations of each class of compound were broadly similar in tissues derived from ewes and lambs. Although there were significant differences (p < 0.01 or p < 0.001) between years (cohorts) in mean tissue concentrations of both nonylphenol (NP) and phthalate in each of the tissues from both ewes and lambs, the differences were not attributable to either the age (6 months or 5 years) of the animal or the duration of exposure to treatments. Octylphenol concentrations were generally undetectable. There was no consistent cumulative outcome of prolonged exposure on the tissue concentrations of either class of pollutant in any ewe tissue. Mean tissue concentrations of phthalate were higher (p < 0.001) in the liver and kidney fat of male compared with female lambs. We suggest that the addition of sewage sludge to pasture is unlikely to cause large increases in tissue concentrations of NP and phthalates in sheep and other animals with broadly similar diets and digestive systems (i.e., domestic ruminants) grazing such pasture. PMID:15811823
Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue
Morley, John W.; Tapson, Jonathan; Breen, Paul P.; van Schaik, André
2016-01-01
Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45–150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6–8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals. PMID:27183102
NASA Astrophysics Data System (ADS)
Rybynok, V. O.; Kyriacou, P. A.
2007-10-01
Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.
Distant drivers or local signals: where do mercury trends in western Arctic belugas originate?
Loseto, L L; Stern, G A; Macdonald, R W
2015-03-15
Temporal trends of contaminants are monitored in Arctic higher trophic level species to inform us on the fate, transport and risk of contaminants as well as advise on global emissions. However, monitoring mercury (Hg) trends in species such as belugas challenge us, as their tissue concentrations reflect complex interactions among Hg deposition and methylation, whale physiology, dietary exposure and foraging patterns. The Beaufort Sea beluga population showed significant increases in Hg during the 1990 s; since that time an additional 10 years of data have been collected. During this time of data collection, changes in the Arctic have affected many processes that underlie the Hg cycle. Here, we examine Hg in beluga tissues and investigate factors that could contribute to the observed trends after removing the effect of age and size on Hg concentrations and dietary factors. Finally, we examine available indicators of climate variability (Arctic Oscillation (AO), the Pacific Decadal Oscillation (PDO) and sea-ice minimum (SIM) concentration) to evaluate their potential to explain beluga Hg trends. Results reveal a decline in Hg concentrations from 2002 to 2012 in the liver of older whales and the muscle of large whales. The temporal increases in Hg in the 1990 s followed by recent declines do not follow trends in Hg emission, and are not easily explained by diet markers highlighting the complexity of feeding, food web dynamics and Hg uptake. Among the regional-scale climate variables the PDO exhibited the most significant relationship with beluga Hg at an eight year lag time. This distant signal points us to consider beluga winter feeding areas. Given that changes in climate will impact ecosystems; it is plausible that these climate variables are important in explaining beluga Hg trends. Such relationships require further investigation of the multiple connections between climate variables and beluga Hg. Copyright © 2014 Elsevier B.V. All rights reserved.
Biomarker responses in the bivalve Chlamys farreri to the water-soluble fraction of crude oil
NASA Astrophysics Data System (ADS)
Jiang, Fenghua; Zhang, Li; Yang, Baijuan; Zheng, Li; Sun, Chengjun
2015-07-01
To investigate the effect of the water soluble fraction of crude oil (WSF) on marine bivalves, the scallop Chlamys farreri was exposed to three WSF concentrations (0.18 mg/L, 0.32 mg/L, and 0.51 mg/L, respectively) in seawater. Petroleum hydrocarbon contents in scallops and a suite of enzymes [7-Ethoxyresorufin-O-deethylase (EROD), aryl hydrocarbon hydroxylase (AHH), glutathione S-transferase (GST), and glutathione peroxidase (GPx)] in gills and digestive glands were monitored over 10 days. The results revealed that WSF affected the activity of the four enzymes in the gills and digestive glands. EROD activity in the gills was significantly induced in most individuals of the three test groups, while in the digestive gland it was significantly induced in the low-concentration group within 4 days but was inhibited in the middle- and high-concentration groups on days 1, 4, and 10. AHH activity in the gills of all treatment groups was significantly induced on day 1. In the digestive gland, AHH activity was induced in most individuals from the treatment groups. In all treatment groups, GST activity was significantly inhibited from days 2 to 10 in the gills and was induced after day 4 in the digestive gland. GPx activity in the gills was significantly inhibited throughout the exposure period in all treatment groups. There was no overall significant difference in GPx activity in the digestive gland between the control and treatment groups. Our results also revealed that petroleum hydrocarbon concentrations in the tissues increased linearly with exposure time. EROD activity in the digestive gland and GST and GPx activity in the gill tissue were negatively correlated with petroleum hydrocarbon body burden. These enzymes play important roles in detoxification and can act as potential biomarkers for monitoring petroleum hydrocarbon contaminants in the marine environment.
MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc
2017-10-18
Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.
Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza
2016-03-01
Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc.
Deng, Li; Li, Yongzhi; Zhang, Xinshi; Chen, Bo; Deng, Yulin; Li, Yujuan
2015-10-10
A UPLC-MS method was developed for determination of pterostilbene (PTS) in plasma and tissues of mice. PTS was separated on Agilent Zorbax XDB-C18 column (50 × 2.1 mm, 1.8 μm) with gradient mobile phase at the flow rate of 0.2 ml/min. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode. The linear calibration curve of PTS in mouse plasma and tissues ranged from 1.0 to 5000 and 0.50 to 500 ng/ml (r(2)>0.9979), respectively, with lowest limits of quantification (LLOQ) were between 0.5 and 2.0 ng/ml, respectively. The accuracy and precision of the assay were satisfactory. The validated method was applied to the study of bioavailability and tissue distribution of PTS in normal and Lewis lung carcinoma (LLC) bearing mice. The bioavailability of PTS (dose 14, 28 and 56 mg/kg) in normal mice were 11.9%, 13.9% and 26.4%, respectively; and the maximum level (82.1 ± 14.2 μg/g) was found in stomach (dose 28 mg/kg). The bioavailability, peak concentration (Cmax), time to peak concentration (Tmax) of PTS in LLC mice was increased compared with normal mice. The results indicated the UPLC-MS method is reliable and bioavailability and tissue distribution of PTS in normal and LLC mice were dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.
Donoghue, J. K.; Dyson, E. D.; Hislop, J. S.; Leach, A. M.; Spoor, N. L.
1972-01-01
Donoghue, J. K., Dyson, E. D., Hislop, J. S., Leach, A. M., and Spoor, N. L. (1972).Brit. J. industr. Med.,29, 81-89. Human exposure to natural uranium: a case history and analytical results from some postmortem tissues. After the collapse and sudden death of an employee who had worked for 10 years in a natural uranium workshop, in which the airborne uranium was largely U3O8 with an Activity Median Aerodynamic Diameter in the range 3·5-6·0 μm and average concentration of 300 μg/m3, his internal organs were analysed for uranium. The tissues examined included lungs (1041 g), pulmonary lymph nodes (12 g), sternum (114 g), and kidneys (217 g). Uranium was estimated by neutron activation analysis, using irradiated tissue ash, and counting the delayed neutrons from uranium-235. The concentrations of uranium (μg U/g wet tissue) in the lungs, lymph nodes, sternum, and kidneys were 1·2, 1·8, 0·09, and 0·14 respectively. The weights deposited in the lungs and lymph nodes are less than 1% of the amounts calculated from the environmental data using the parameters currently applied in radiological protection. The figures are compatible with those reported by Quigley, heartherton, and Ziegler in 1958 and by Meichen in 1962. The relation between these results, the environmental exposure data, and biological monitoring data is discussed in the context of current views on the metabolism of inhaled insoluble uranium. PMID:5060250
Sunjog, Karolina; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Višnjić-Jeftić, Željka; Skorić, Stefan; Gačić, Zoran; Lenhardt, Mirjana; Vasić, Nebojša; Vuković-Gačić, Branka
2016-06-01
Metals and metalloids are natural components of the biosphere, which are not produced per se by human beings, but whose form and distribution can be affected by human activities. Like all substances, they are a contaminant if present in excess compared to background levels and/or in a form that would not normally occur in the environment. Samples of liver, gills, gonads and muscle from European chub, Squalius cephalus, were analyzed for Al, As, B, Ba, Cr, Cu, Fe, Hg, Mn, Mo, Sr and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES) to highlight the importance of tissue selection in monitoring research. The comet assay or single cell gel electrophoresis (SCGE) was selected as an in vivo genotoxicity assay, a rapid and sensitive method for measuring genotoxic effects in blood, liver and gills of the European chub. Microscopic images of comets were scored using Comet IV Computer Software (Perceptive Instruments, UK). The objective of our study was to investigate two reservoirs, Zlatar and Garasi, and one river, Pestan by: (i) determining and comparing metal and metalloid concentrations in sediment, water and tissues of European chub: liver, gills, muscle and gonads (ii) comparing these findings with genotoxicity of water expressed through DNA damage of fish tissues. A clear link between the level of metals in water, sediment and tissues and between metal and genotoxicity levels at examined sites was not found. This suggests that other xenobiotics (possibly the organic compounds), contribute to DNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.
Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai
2016-06-01
Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also conducted to investigate the relationship between attenuation and tissue denaturation level at different temperature ranges. The tissues were grouped according to their histology results, namely normal tissue with large predominance of cells (NPC), cancer tissue with large predominance of cells (CPC) and cancer with high collagen fiber content (CHF). The result shows that the attenuation coefficient of ultrasound measured following the local hyperthermia treatment increases with the increment of collagen fiber content in tissue as the CHF attenuated ultrasound at the highest rate, followed by NPC and CPC. Additionally, the attenuation increment is more pronounced at the temperature over 55 °C. This describes that the ultrasound wave experienced more energy loss when it propagates through a heated tissue as the tissue structure changes due to protein coagulation effect. Additionally, a significant increase in the sensitivity of attenuation to protein denaturation is also observed with the highest sensitivity obtained in monitoring NPC. Overall, it is concluded that one-dimensional ultrasound can be used as a monitoring method of local hyperthermia since its attenuation is very sensitive to the changes in tissue microstructure during hyperthermia.
Lee, Sindre; Norheim, Frode; Langleite, Torgrim M; Noreng, Hans J; Storås, Trygve H; Afman, Lydia A; Frost, Gary; Bell, Jimmy D; Thomas, E Louise; Kolnes, Kristoffer J; Tangen, Daniel S; Stadheim, Hans K; Gilfillan, Gregor D; Gulseth, Hanne L; Birkeland, Kåre I; Jensen, Jørgen; Drevon, Christian A; Holen, Torgeir
2016-11-01
Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance- and strength-training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT-PCR In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free-fatty acids. This increase was strongly related to increased expression of markers for M1-like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12-week intervention), there was a marked reduction in the expression of markers of M2-like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy-related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
MacCoy, Dorene E.
2014-01-01
Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA’s fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to advise of allowable fish consumption from specific water bodies. The geometric mean Hg concentration of 10 fish of a single species collected from a single water body (lake or stream) in Idaho is compared to the action level to determine if a fish consumption advisory should be issued. The U.S. Geological Survey collected and analyzed individual fillets of mountain whitefish (Prosopium williamsoni), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) for Hg. The median Hg concentration of 0.32 mg/kg exceeded the Idaho water-quality criterion at the site in Brownlee Reservoir. Average Hg concentrations from Brownlee Reservoir (0.32 mg/kg) and the Boise River at mouth (0.33 mg/kg) exceeded the Hg RPTE threshold (>0.24 mg/kg). IFCAP action levels also were exceeded at the sites on Brownlee Reservoir and at the mouth of the Boise River. Median Hg concentrations in fish at the remaining four river sites were less than 0.20 mg/kg with average concentrations ranging from 0.14 to 0.21 mg/kg Hg. Selenium (Se) analysis also was conducted on one composite fish tissue sample per site to screen for general concentrations and to provide information for future risk assessments. Concentrations of Se ranged from 0.07 to 0.49 mg/kg wet weight; average concentrations were highest in smallmouth bass (0.40 mg/kg) and lowest in mountain whitefish (0.12 mg/kg).
Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao
2010-07-01
Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.
Biochemical measurement of bilirubin with an evanescent wave optical sensor
NASA Astrophysics Data System (ADS)
Poscio, Patrick; Depeursinge, Christian D.; Emery, Y.; Parriaux, Olivier M.; Voirin, Guy
1991-09-01
Optical sensing techniques can be considered as powerful information sources on the biochemistry of tissue, blood, and physiological fluids. Various sensing modalities can be considered: spectroscopic determination of the fluorescence or optical absorption of the biological medium itself, or more generally, of a reagent in contact with the biological medium. The principle and realization of the optical sensor developed are based on the use of polished fibers: the cladding of a monomode fiber is removed on a longitudinal section. The device can then be inserted into an hypodermic needle for in-vivo measurements. Using this minute probe, local measurements of the tissue biochemistry or metabolic processes can be obtained. The sensing mechanism is based on the propagation of the evanescent wave in the tissues or reagent: the proximity of the fiber core allows the penetration of the model field tail into the sensed medium, with a uniquely defined field distribution. Single or multi-wavelength analysis of the light collected into the fiber yields the biochemical information. Here an example of this sensing technology is discussed. In-vitro measurement of bilirubin in gastric juice demonstrates that the evanescent wave optical sensor provides a sensitivity which matches the physiological concentrations. A device is proposed for in-vivo monitoring of bilirubin concentration in the gastro-oesophageal tract.
Changes in optical properties during heating of ex vivo liver tissues
NASA Astrophysics Data System (ADS)
Nagarajan, Vivek Krishna; Gogineni, Venkateshwara R.; White, Sarah B.; Yu, Bing
2017-02-01
Thermal ablation is the use of heat to induce cell death through coagulative necrosis. Ideally, complete ablation of tumor cells with no damage to surrounding critical structures such as blood vessels, nerves or even organs is desired. Ablation monitoring techniques are often employed to ensure optimal tumor ablation. In thermal tissue ablation, tissue damage is known to be dependent on the temperature and time of exposure. Aptly, current methods for monitoring ablation rely profoundly on local tissue temperature and duration of heating to predict the degree of tissue damage. However, such methods do not take into account the microstructural and physiological changes in tissues as a result of thermocoagulation. Light propagation within biological tissues is known to be dependent on the tissue microstructure and physiology. During tissue denaturation, changes in tissue structure alter light propagations in tissue which could be used to directly assess the extent of thermal tissue damage. We report the use of a spectroscopic system for monitoring the tissue optical properties during heating of ex vivo liver tissues. We observed that during tissue denaturation, continuous changes in wavelength-averaged μa(λ) and μ's(λ) followed a sigmoidal trend and are correlated with damage predicted by Arrhenius model.
Spaeder, Michael C; Klugman, Darren; Skurow-Todd, Kami; Glass, Penny; Jonas, Richard A; Donofrio, Mary T
2017-03-01
To evaluate the value of perioperative cerebral near-infrared spectroscopy monitoring using variability analysis in the prediction of neurodevelopmental outcomes in neonates undergoing surgery for congenital heart disease. Retrospective cohort study. Urban, academic, tertiary-care children's hospital. Neonates undergoing surgery with cardiopulmonary bypass for congenital heart disease. Perioperative monitoring of continuous cerebral tissue oxygenation index by near-infrared spectroscopy and subsequent neurodevelopmental testing at 6, 15, and 21 months of age. We developed a new measure, cerebral tissue oxygenation index variability, using the root mean of successive squared differences of averaged 1-minute cerebral tissue oxygenation index values for both the intraoperative and first 24-hours postoperative phases of monitoring. There were 62 neonates who underwent cerebral tissue oxygenation index monitoring during surgery for congenital heart disease and 44 underwent subsequent neurodevelopmental testing (12 did not survive until testing and six were lost to follow-up). Among the 44 monitored patients who underwent neurodevelopmental testing, 20 (45%) had abnormal neurodevelopmental indices. Patients with abnormal neurodevelopmental indices had lower postoperative cerebral tissue oxygenation index variability when compared with patients with normal indices (p = 0.01). Adjusting for class of congenital heart disease and duration of deep hypothermic circulatory arrest, lower postoperative cerebral tissue oxygenation index variability was associated with poor neurodevelopmental outcome (p = 0.02). We found reduced postoperative cerebral tissue oxygenation index variability in neonatal survivors of congenital heart disease surgery with poor neurodevelopmental outcomes. We hypothesize that reduced cerebral tissue oxygenation index variability may be a surrogate for impaired cerebral metabolic autoregulation in the immediate postoperative period. Further research is needed to investigate clinical implications of this finding and opportunities for using this measure to drive therapeutic interventions.
Jin, Y C; Li, Z H; Hong, Z S; Xu, C X; Han, J A; Choi, S H; Yin, J L; Zhang, Q K; Lee, K B; Kang, S K; Song, M K; Kim, Y J; Kang, H S; Choi, Y J; Lee, H G
2012-08-01
This study was conducted to identify proteins associated with the endogenous synthesis of conjugated linoleic acid (CLA) from trans-vaccenic acid (TVA; trans-11 C18:1, a precursor for CLA endogenous synthesis) in mammary tissues. Six lactating goats were divided into 2 groups. One group was given an intravenous bolus injection of TVA (150mg) twice daily over 4 d; the other group received saline injections. Treatment with TVA increased the concentration of cis-9,trans-11 CLA and TVA in goat milk. Additionally, TVA treatment increased the expression of stearoyl-CoA desaturase (SCD) in mammary tissue. Using 2-dimensional gel electrophoresis and electrospray ionization quadrupole time-of-flight mass spectrometry, 3 proteins affected by infusions of TVA were identified. Proteasome (prosome, macropain) subunit α type 5 (PSMA5) was upregulated, whereas peroxiredoxin-1 and translationally controlled tumor protein 1 were downregulated in TVA-treated animals compared with the vehicle-injected controls. Only the effect of TVA on PSMA5 could be confirmed by Western blot analysis. To further explore the regulation of PSMA5 in mammary epithelial cells when TVA is converted into CLA, we used a differentiated bovine mammary epithelial cell line treated with TVA for 6h. Changes in cis-9,trans-11 CLA concentrations and mRNA expression patterns of both SCD and PSMA5 were monitored. The concentration of cis-9,trans-11 CLA increased after TVA treatment. The mRNA expression level of PSMA5 was significantly elevated to 6h, but SCD mRNA expression only increased in 2h after TVA treatment. These results indicate that PSMA5 is highly expressed in goat mammary tissue and bovine mammary epithelial cells when TVA is converted into CLA. Our data suggest that PSMA5 protein is associated with CLA biosynthesis in mammary tissue. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Serum tumor markers in breast cancer: are they of clinical value?
Duffy, Michael J
2006-03-01
Although multiple serum-based tumor markers have been described for breast cancer, such as CA 15-3, BR 27.29 (CA27.29), carcinoembryonic antigen (CEA), tissue polypeptide antigen, tissue polypeptide specific antigen, and HER-2 (the extracellular domain), the most widely used are CA 15-3 and CEA. The literature relevant to serum tumor markers in breast cancer was reviewed. Particular attention was given to systematic reviews, prospective randomized trials, and guidelines issued by expert panels. Because of a lack of sensitivity for early disease and lack of specificity, none of the available markers is of value for the detection of early breast cancer. High preoperative concentrations of CA 15-3 are, however, associated with adverse patient outcome. Although serial determinations of tumor markers after primary treatment for breast cancer can preclinically detect recurrent/metastatic disease with lead times of approximately 2-9 months, the clinical value of this lead time remains to be determined. Serum markers, however, are the only validated approach for monitoring treatment in patients with advanced disease that cannot be evaluated by use of conventional criteria. CA 15-3 is one of the first circulating prognostic factors for breast cancer. Preoperative concentrations thus might be combined with existing prognostic factors for predicting outcome in patients with newly diagnosed breast cancer. At present, the most important clinical application of CA 15-3 is in monitoring therapy in patients with advanced breast cancer that is not assessable by existing clinical or radiologic procedures.
Monitoring of tissue ablation using time series of ultrasound RF data.
Imani, Farhad; Wu, Mark Z; Lasso, Andras; Burdette, Everett C; Daoud, Mohammad; Fitchinger, Gabor; Abolmaesumi, Purang; Mousavi, Parvin
2011-01-01
This paper is the first report on the monitoring of tissue ablation using ultrasound RF echo time series. We calcuate frequency and time domain features of time series of RF echoes from stationary tissue and transducer, and correlate them with ablated and non-ablated tissue properties. We combine these features in a nonlinear classification framework and demonstrate up to 99% classification accuracy in distinguishing ablated and non-ablated regions of tissue, in areas as small as 12mm2 in size. We also demonstrate significant improvement of ablated tissue classification using RF time series compared to the conventional approach of using single RF scan lines. The results of this study suggest RF echo time series as a promising approach for monitoring ablation, and capturing the changes in the tissue microstructure as a result of heat-induced necrosis.
Byrne, Frank J; Daugherty, Matthew P; Grafton-Cardwell, Elizabeth E; Bethke, James A; Morse, Joseph G
2017-03-01
Studies were conducted to evaluate uptake and retention of three systemic neonicotinoid insecticides, dinotefuran, imidacloprid and thiamethoxam, in potted citrus nursery plants treated at standard label rates. Infestation of these plants placed at a field site with moderate levels of Asian citrus psyllid (ACP) was monitored for 14 weeks following treatments, and insecticide residues in leaf tissue were quantified using enzyme-linked immunosorbent assay (ELISA). Bioassays were conducted using leaves harvested on various dates post-treatment to compare the efficacies of residues against adult ACP. Residues of the three neonicotinoids were detected in leaf tissues within 1 week after treatment. Peak concentrations established at 1 week for imidacloprid and dinotefuran and at 2 weeks for thiamethoxam. Imidacloprid and thiamethoxam outperformed the control and dinotefuran treatments at protecting trees from infestations by ACP eggs and nymphs. For a given insecticide concentration in leaf tissue, thiamethoxam induced the highest mortality of the three insecticides, and dinotefuran was the least toxic. If the time needed to achieve effective thresholds of a systemic neonicotinoid is known, treatments at production facilities could be scheduled that would minimize unnecessary post-treatment holding periods and ensure maximum retention of effective concentrations after the plants have shipped to retail outlets. The rapid uptake of the insecticides and retention at effective concentrations in containerized citrus suggest that the current 30 day post-treatment shipping restriction from production facilities to retail outlets outside of quarantine could be shortened to 14 days. Thiamethoxam should be added to the list of approved nursery treatments. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J.; Li, Qing X.
2015-01-01
The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g-1 wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g-1 ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and C16 PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817
Real time monitoring in-vivo micro-environment through the wound heal mechanism
NASA Astrophysics Data System (ADS)
Yan, Jack
2013-02-01
One of the In-vivo system's challenge is real time display the sensing information. Usually Ultrasound, CT, MRI, PET are used to get the internal information, this thesis proposed another approach to address the display challenge. Special nano-particles are in-taken or injected to living subject (usually into blood circulation) to sense and collect psychological information when the active particles pass through the tissues of interest. Using the wound healing mechanism, these activated particles (Information collected) can be drifted out to the wound area and adhibited close to the skin, then skin can show different color if the activated particles are concentrated enough in the specific area to create a skin screen. The skin screen can display the blood status, internal organ's temperature, pressure depending the nano-particles' function and their pathway. This approach can also be used to display in-body video if the particles are sensitive and selective enough. In the future, the skin screen can be bio-computer's monitor. The wound healing in an animal model normally divides in four phase: Hemostasis, Inflammation, Proliferation and Maturation. Hemostasis phase is to form a stable clot sealing the damaged vessel. Inflammation phase causes the blood vessels to become leaky releasing plasma and PMN's (polymorphonucleocytes) into the surrounding tissue and provide the first line of defense against infection. Proliferation phase involves replacement of dermal tissues and sometimes subdermal tissues in deeper wounds as well as contraction of the wound. Maturation phase remodels the dermal tissues mainly by fibroblast to produce greater tensile strength. The skin screen wound will be carefully controlled to be triggered at dermis layer.
M. G. Shelton; L. E. Nelson; G. L. Switzer; B. G. Blackmon
1981-01-01
Nutrient concentrations were determined for 10 tissues from each of 24 cottonwood trees that ranged in age from four to 16 years. Highest concentrations occurred in the most physiologically active tissues; i.e., stemtips, current branches and foliage. Tree age had little influence on the variation in nutrient concentration of tissues. Some differences in concentrations...
Comparison of two wild rodent species as sentinels of environmental contamination by mine tailings.
Tovar-Sánchez, E; Cervantes, L T; Martínez, C; Rojas, E; Valverde, M; Ortiz-Hernández, M L; Mussali-Galante, P
2012-06-01
Contamination with heavy metals is among the most hazardous environmental concerns caused by mining activity. A valuable tool for monitoring these effects is the use of sentinel organisms. Particularly, small mammals living inside mine tailings are an excellent study system because their analysis represents a realistic approach of mixtures and concentrations of metal exposure. We analyzed metal tissue concentrations and DNA damage levels for comparison between genders of a sentinel (Peromyscus melanophrys) and a nonsentinel (Baiomys musculus) species. Also, the relationship between DNA damage and the distance from the contamination source was evaluated. This study was conducted in an abandoned mine tailing at Morelos, Mexico. Thirty-six individuals from both species at the exposed and reference sites were sampled. Metal concentrations in bone and liver of both species were analyzed by atomic absorption spectrophotometry, and DNA damage levels were assayed using the alkaline comet assay. In general, concentrations of zinc, nickel, iron, and manganese were statistically higher in exposed individuals. A significant effect of the organ and the site on all metal tissue concentrations was detected. Significant DNA damage levels were registered in the exposed group, being higher in B. musculus. Females registered higher DNA damage levels than males. A negative relationship between distance from the mine tailing and DNA damage in B. musculus was observed. We consider that B. musculus is a suitable species to assess environmental quality, especially for bioaccumulable pollutants--such as metals--and recommend that it may be considered as a sentinel species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nassif Del Lama, Silvia, E-mail: dsdl@ufscar.br; Dosualdo Rocha, Cristiano; Figueiredo Jardim, Wilson
Sedentary organisms that are at top trophic levels allow inference about the level of local mercury contamination. We evaluated mercury contamination in feather tissue of nestling Wood Storks (Mycteria americana), sampled in different parts of the Brazilian Pantanal that were variably polluted by mercury releases from gold mining activities. Levels of mercury in feathers sampled in seven breeding colonies were determined by atomic absorption spectroscopy, and the mean value of mercury concentration was 0.557 {mu}g/g, dry weight (n=124), range 0.024-4.423 {mu}g/g. From this total sample, 21 feathers that represent 30% of nestlings collected in Porto da Fazenda and Tucum colonies,more » in the northern region, ranged from 1.0 to 4.43 {mu}g/g, dry weight (median value=1.87 {mu}g/g). We found significant differences among regions (H=57.342; p=0<0.05). Results suggest that permanently flooded areas, or along mainstream rivers are more contaminated by mercury than dry areas, regardless of the distance from the gold mining center, which is located in the northern Pantanal. Highest values found in nestlings feathers were similar to those found in feathers of adult birds and in tissues of adult mammals that are less sedentary and were captured in the same region of Pantanal. These findings indicate that mercury released has been biomagnified and it is present in high concentrations in tissues of top consumers. We suggest a program to monitor mercury availability in this ecosystem using sedentary life forms of top predators like Wood Storks or other piscivorous birds. - Highlights: Black-Right-Pointing-Pointer Sedentary stork nestlings were used for the first time to show local mercury contamination of Pantanal. Black-Right-Pointing-Pointer Differences were found among regions but they are not explained only by distance from the gold mining. Black-Right-Pointing-Pointer Permanently flooded areas and areas along mainstream rivers are more contaminated than dry areas. Black-Right-Pointing-Pointer Mercury has been biomagnified in Pantanal and it is found in high concentrations in top consumers.« less
Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis.
van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd
2015-05-01
This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. β-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.
Sandheinrich, Mark B; Bhavsar, Satyendra P; Bodaly, R A; Drevnick, Paul E; Paul, Eric A
2011-10-01
Contamination of fish populations with methylmercury is common in the region of the Laurentian Great Lakes as a result of atmospheric deposition and methylation of inorganic mercury. Using fish mercury monitoring data from natural resource agencies and information on tissue concentrations injurious to fish, we conducted a screening-level risk assessment of mercury to sexually mature female walleye (Sander vitreus), northern pike (Esox lucius), smallmouth bass (Micropterus dolomieu), and largemouth bass (Micropterus salmoides) in the Great Lakes and in interior lakes, impoundments, and rivers of the Great Lakes region. The assessment included more than 43,000 measurements of mercury in fish from more than 2000 locations. Sexually mature female fish that exceeded threshold-effect tissue concentrations of 0.20 μg g(-1) wet weight in the whole body occurred at 8% (largemouth bass) to 43% (walleye) of sites. Fish at 3% to 18% of sites were at risk of injury and exceeded 0.30 μg g(-1) where an alteration in reproduction or survival is predicted to occur. Most fish at increased risk were from interior lakes and impoundments. In the Great Lakes, no sites had sexually mature fish that exceeded threshold-effect concentrations. Results of this screening-level assessment indicate that fish at a substantive number of locations within the Great Lakes region are potentially at risk from methylmercury contamination and would benefit from reduction in mercury concentrations.
Hu, Y; Wilson, G S
1997-10-01
A successfully developed enzyme-based lactate microsensor with rapid response time allows the direct and continuous in vivo measurement of lactic acid concentration with high temporal resolution in brain extracellular fluid. The fluctuations coupled to neuronal activity in extracellular lactate concentration were explored in the dentate gyrus of the hippocampus of the rat brain after electrical stimulation of the perforant pathway. Extracellular glucose and oxygen levels were also detected simultaneously by coimplantation of a fast-response glucose sensor and an oxygen electrode, to provide novel information of trafficking of energy substances in real time related to local neuronal activity. The results first give a comprehensive picture of complementary energy supply and use of lactate and glucose in the intact brain tissue. In response to acute neuronal activation, the brain tissue shifts immediately to significant energy supply by lactate. A local temporary fuel "reservoir" is established behind the blood-brain barrier, evidenced by increased extracellular lactate concentration. The pool can be depleted rapidly, up to 28% in 10-12 s, by massive, acute neuronal use after stimulation and can be replenished in approximately 20 s. Glutamate-stimulated astrocytic glycolysis and the increase of regional blood flow may regulate the lactate concentration of the pool in different time scales to maintain local energy homeostasis.
NASA Astrophysics Data System (ADS)
Benaron, David A.; Parachikov, Ilian H.; Cheong, Wai-Fung; Friedland, Shai; Duckworth, Joshua L.; Otten, David M.; Rubinsky, Boris E.; Horchner, Uwe B.; Kermit, Eben L.; Liu, Frank W.; Levinson, Carl J.; Murphy, Aileen L.; Price, John W.; Talmi, Yair; Weersing, James P.
2003-07-01
We report the development of a general, quantitative, and localized visible light clinical tissue oximeter, sensitive to both hypoxemia and ischemia. Monitor design and operation were optimized over four instrument generations. A range of clinical probes were developed, including non-contact wands, invasive catheters, and penetrating needles with injection ports. Real-time data were collected (a) from probes, standards, and reference solutions to optimize each component, (b) from ex vivo hemoglobin solutions co-analyzed for StO2% and pO2 during deoxygenation, and (c) from normoxic human subject skin and mucosal tissue surfaces. Results show that (a) differential spectroscopy allows extraction of features with minimization of the effects of scattering, (b) in vitro oximetry produces a hemoglobin saturation binding curve of expected sigmoid shape and values, and (c) that monitoring human tissues allows real-time tissue spectroscopic features to be monitored. Unlike with near-infrared (NIRS) or pulse oximetry (SpO2%) methods, we found non-pulsatile, diffusion-based tissue oximetry (StO2%) to work most reliably for non-contact reflectance monitoring and for invasive catheter- or needle-based monitoring, using blue to orange light (475-600 nm). Measured values were insensitive to motion artifact. Down time was non-existent. We conclude that the T-Stat oximeter design is suitable for the collection of spectroscopic data from human subjects, and that the oximeter may have application in the monitoring of regional hemoglobin oxygen saturation in the capillary tissue spaces of human subjects.
Schantz, Michele M; Pugh, Rebecca S; Pol, Stacy S Vander; Wise, Stephen A
2015-04-01
The stability of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and chlorinated pesticides in frozen mussel tissue Standard Reference Materials (SRMs) stored at -80 °C was assessed by analyzing samples of SRM 1974, SRM 1974a, and SRM 1974b Organics in Mussel Tissue (Mytilus edulis) periodically over 25 y, 20 y, and 12 y, respectively. The most recent analyses were performed during the certification of the fourth release of this material, SRM 1974c. Results indicate the concentrations of these persistent organic pollutants have not changed during storage at -80 °C. In addition, brominated diphenyl ethers (BDEs) were quantified in each of the materials during this study. The stability information is important for on-going monitoring studies collecting large quantities of samples for future analyses (i.e., formally established specimen banking programs). Since all four mussel tissue SRMs were prepared from mussels collected at the same site in Dorchester Bay, MA, USA, the results provide a temporal trend study for these contaminants over a 17 year period (1987 to 2004).
Du, Guangyan; Fu, Lingling; Jia, Jun; Pang, Xu; Yu, Haiyang; Zhang, Youcai; Fan, Guanwei; Gao, Xiumei; Han, Lifeng
2018-06-01
A rapid, sensitive and specific ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method was developed to investigate the pharmacokinetics and tissue distribution of Eclipta prostrata extract. Rats were orally administrated the 70% ethanol extract of E. prostrata, and their plasma as well as various organs were collected. The concentrations of seven main compounds, ecliptasaponin IV, ecliptasaponin A, apigenin, 3'-hydroxybiochanin A, luteolin, luteolin-7-O-glucoside and wedelolactone, were quantified by UPLC-MS/MS through multiple reactions monitoring method. The precisions (RSD) of the analytes were all <15.00%. The extraction recoveries ranged from 74.65 to 107.45% with RSD ≤ 15.36%. The matrix effects ranged from 78.00 to 118.06% with RSD ≤ 15.04%. To conclude, the present pharmacokinetic and tissue distribution studies provided useful information for the clinical usage of Eclipta prostrata L. Copyright © 2018 John Wiley & Sons, Ltd.
Williams, Marshall L.; MacCoy, Dorene E.
2016-06-30
Mercury (Hg) analyses were conducted on samples of sport fish and water collected from selected sampling sites in Brownlee Reservoir and the Boise and Snake Rivers to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho, between 2013 and 2015. City of Boise personnel collected water samples from six sites between October and November 2013 and 2015, with one site sampled in 2014. Total Hg concentrations in unfiltered water samples ranged from 0.48 to 8.8 nanograms per liter (ng/L), with the highest value in Brownlee Reservoir in 2013. All Hg concentrations in water samples were less than the U.S. Environmental Protection Agency (USEPA) Hg chronic aquatic life criterion of 12 ng/L.The USEPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). The Idaho Department of Environmental Quality adopted the USEPA’s fish-tissue criterion and established a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg Hg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to advise allowable fish consumption from specific water bodies. The geometric mean Hg concentration of 10 fish of a single species collected from a single water body (lake or stream) in Idaho is compared to the action level to determine if a fish consumption advisory should be issued.The U.S. Geological Survey collected and analyzed individual fillets of mountain whitefish (Prosopium williamsoni), rainbow trout (Oncorhynchus mykiss), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) for Hg. The 2013 average Hg concentration for small mouth bass (0.32 mg/kg) collected at Brownlee Reservoir and for channel catfish (0.33 mg/kg) collected at the Boise River mouth, exceeded the Idaho water quality criterion (>0.3 mg/kg), the Hg RPTE threshold (>0.24 mg/kg), and the IFCAP action level (>0.22 mg/kg). Average Hg concentrations in fish collected in 2014 or 2015 did not exceed evaluation criteria for any of the species assessed.Selenium (Se) analysis was conducted on one composite fish tissue sample per site to assess general concentrations and to provide information for future risk assessments. Composite concentrations of Se in fish tissue collected between 2013 and 2015 ranged from 0.07 and 0.49 mg/kg wet weight with the highest concentration collected from smallmouth bass from the Snake River near Murphy, and the lowest from mountain whitefish from the Boise River at Eckert Road.
Multiparametric monitoring of tissue vitality in clinical situations
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Manor, Tamar; Meilin, Sigal; Razon, Nisim; Ouknine, George E.; Ornstein, Eugene
2001-05-01
The monitoring of various tissue's physiological and biochemical parameters is one of the tools used by the clinicians to improve diagnosis capacity. As of today, the very few devices developed for real time clinical monitoring of tissue vitality are based on a single parameter measurement. Tissue energy balance could be defined as the ratio between oxygen or energy supply and demand. In order to determine the vitality of the brain, for example, it is necessary to measure at least the following 3 parameters: Energy Demand--potassium ion homeostasis; Energy Supply-- cerebral blood flow; Energy Balance--mitochondrial NADH redox state. For other tissues one can measure various energy demand processes specific to the tested organ. We have developed a unique multiparametric monitoring system tested in various experimental and clinical applications. The multiprobe assembly (MPA) consists of a fiber optic probe for measurement of tissue blood flow and mitochondrial NADH redox state, ion selective electrodes (K+, Ca2+, H+), electrodes for electrical activities (ECoG or ECG and DC potential), temperature probe and for monitoring the brain - Intra Cranial Pressure probe (ICP). The computerized monitoring system was used in the neurological intensive care unit to monitor comatose patients for a period of 24-48 hours. Also, a simplified MPA was used in the neurosurgical operating room or during organ transplantation procedure. It was found that the MPA could be used in clinical situations and that the data collected has a significant diagnosis value for the medical team.
Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.
Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa
2018-04-01
Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.
Ricci, Joseph A; Vargas, Christina R; Ho, Olivia A; Lin, Samuel J; Tobias, Adam M; Lee, Bernard T
2017-07-01
Postoperative free flap care has historically required intensive monitoring for 24 hours in an intensive care unit. Continuous monitoring with tissue oximetry has allowed earlier detection of vascular compromise, decreasing flap loss and improving salvage. This study aims to identify whether a fast-track postoperative paradigm can be safely used with tissue oximetry to decrease intensive monitoring and costs. All consecutive microsurgical breast reconstructions performed at a single institution were reviewed (2008-2014) and cases requiring return to the operating room were identified. Data evaluated included patient demographics, the take back time course, and complications of flap loss and salvage. A cost-benefit analysis was performed to analyse the utility of a postoperative intensive monitoring setting. There were 900 flaps performed and 32 required an unplanned return to the operating room. There were 16 flaps that required a reexploration within the first 24 hours; the standard length of intensive unit monitoring. After 4 hours, there were 7 flaps (44%) detected by tissue oximetry for reexploration. After 15 hours of intensive monitoring postoperatively, cost analysis revealed that the majority (15/16; 94%) of failing flaps had been identified and the cost of identifying each subsequent failing flap exceeded the cost of another hour of intensive monitoring. The postoperative paradigm for microsurgical flaps has historically required intensive unit monitoring. Using tissue oximetry, a fast-track pathway can reduce time spent in an intensive monitoring setting from 24 to 15 hours with significant cost savings and minimal risk of missing a failing free flap.
Vermeulen, Frouke; D'Havé, Helga; Mubiana, Valentine K; Van den Brink, Nico W; Blust, Ronny; Bervoets, Lieven; De Coen, Wim
2009-02-15
Hair has been proven to be suitable for non-destructive and non-invasive exposure assessments in human and mammal populations. A previous study with European hedgehog (Erinaceus europaeus) showed that, for some metals, hair and spine metal concentrations were positively correlated to levels in liver, kidney and muscle. Although blood has been studied in a wide variety of species, the relationship between hair and blood metal concentrations has yet to be quantified in many mammalian species. Tissue concentrations from hedgehogs residing in a park with known metal pollution were compared with those from a reference park and correlations between contaminant levels in hair and blood, and spines and blood were studied. Moreover, the relative distribution of arsenic and metals in hair, spines and blood was determined. Elevated concentrations were found in hedgehogs residing in the polluted site for As (8.2 microg/g, 6.3 microg/g, 3.6 microg/ml), Cd (0.48 microg/g, 0.17 microg/g, 0.02 microg/ml) and Pb (7.6 microg/g, 7.3 microg/g, 54 microg/ml), in hair, spines and blood respectively. Positive correlations were identified for exposure levels between hair and blood as well as between spines and blood for three elements (As, Cd, and Pb), whereas a negative correlation was found between Cr concentrations in spines and blood. In conclusion, hair and spines can be used to monitor blood concentrations of some metals, although more data are needed on uptake from the food chain and on the incorporation dynamics of these contaminants.
Haga, S; Miyaji, M; Nakano, M; Ishizaki, H; Matsuyama, H; Katoh, K; Roh, S G
2018-03-28
Blood α-tocopherol (α-Toc) concentrations decline gradually throughout the prepartum period, reaching the nadir after calving in dairy cows. The 6 α-Toc-related molecules [α-Toc transfer protein (TTPA); afamin; scavenger receptor class B, Type I; ATP-binding cassette transporter A1; tocopherol-associated protein (SEC14L2); and cytochrome P450 family 4, subfamily F, polypeptide 2 (CYP4F2)] are expressed in liver and other peripheral tissues. These molecules could regulate α-Toc transport, blood concentrations, and metabolism of α-Toc. Therefore, the aim of this study was to evaluate the changes in the expression of α-Toc-related genes in liver and mammary gland tissues of dairy cows around calving, which have remained elusive until now. In experiment (Exp.) 1, 28 multiparous Holstein cows were used (from -5 to 6 wk relative to parturition) to monitor the changes in dietary α-Toc intake, blood concentrations of α-Toc, and lipoproteins; in Exp. 2, 7 peripartum Holstein cows were used (from -4 to 4 wk relative to parturition) for liver tissue biopsy; and in Exp. 3, 10 peripartum Holstein cows were used (from -8 to 6 wk relative to parturition) to carry out the mammary gland tissue biopsy and milk sampling. In Exp. 1, the serum α-Toc concentrations declined gradually with decreasing amount of α-Toc intake and plasma high-density lipoprotein concentrations toward calving time. However, in the early lactation period after calving, serum α-Toc concentrations remained at a lower concentration despite the recovery of α-Toc intake and plasma high-density lipoprotein concentrations. In Exp. 2, just after calving, the TTPA, SEC14L2, afamin, and albumin mRNA expression levels in the liver were temporarily downregulated, and the hepatic mRNA levels of endoplasmic reticulum stress-induced unfolded protein response markers and acute-phase response marker increased at calving. In Exp. 3, the concentrations of α-Toc in colostrum were greater than those in precolostrum (samples were collected at wk -1 relative to parturition) and mature milk. The expression of TTPA, SEC14L2, and CYP4F2 mRNA in bovine mammary gland tissue was detected. However, TTPA and SEC14L2 mRNA expressions showed the opposite trends: the expression levels of TTPA mRNA peaked whereas SEC14L2 mRNA reached a nadir at calving. These results indicate that the expression of α-Toc-related genes involved in specific α-Toc transfer and metabolism in the liver and mammary gland are altered during calving. Moreover, these changes might be associated with the maintenance of lower serum α-Toc concentrations after calving. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bioaccumulation of metals and PCBs in Raja clavata.
Torres, Paulo; Tristão da Cunha, Regina; Micaelo, Cristina; Rodrigues, Armindo Dos Santos
2016-12-15
The goal of this study was to assess stable isotopes profiles, metals concentration and PCBs in Raja clavata muscle and liver, according to sex and size, and to elucidate its suitability as a Mid-Atlantic biomonitor. The results reflected bioaccumulation and suggested biomagnification processes for As and Hg in muscle tissue. Cd, Cu and Zn were detected in high amounts in liver, Cr, Mn and Rb were relatively stable and low, Pb was not detected and Sr was present in muscle at high levels, decreasing with length. Hg and Se were strongly correlated, suggesting a mitigation role. Both tissues presented low concentrations of PCBs, especially the dioxin-like congeners, although always higher in liver and not correlated with size. None of these contaminants exceed EU legislated limits. However, they need to be monitored given study area's location, volcanic nature and the expected increase of anthropogenic activity related to future prospective mining activities and the establishment of the Transatlantic Trade and Investment Partnership (TTIP) between Europe and the USA. Copyright © 2016 Elsevier B.V. All rights reserved.
CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...
Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge-and-trap vessel is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar and nonpolar solvents, concentrated, and directly analyzed by high resolution gas chromatography coupled to a mass spectrometer operating in the selected ion monitoring mode. In this paper, we analyzed two homogenized samples of whole fish tissues with spiked synthetic musk compounds using closed-loop stripping analysis (CLSA) and pressurized liquid extraction (PLE). The analytes were not recovered quantitatively but the extraction yield was sufficiently reproducible for at least semi-quantitative purposes (screening). The method was less expensive to implement and required significantly less sample preparation than the PLE technique. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water,
Foley, Conor P; Nishimura, Nozomi; Neeves, Keith B; Schaffer, Chris B; Olbricht, William L
2012-02-01
Convection-enhanced delivery (CED) is a promising technique for administering large therapeutics that do not readily cross the blood brain barrier to neural tissue. It is of vital importance to understand how large drug constructs move through neural tissue during CED to optimize construct and delivery parameters so that drugs are concentrated in the targeted tissue, with minimal leakage outside the targeted zone. Experiments have shown that liposomes, viral vectors, high molecular weight tracers, and nanoparticles infused into neural tissue localize in the perivascular spaces of blood vessels within the brain parenchyma. In this work, we used two-photon excited fluorescence microscopy to monitor the real-time distribution of nanoparticles infused in the cortex of live, anesthetized rats via CED. Fluorescent nanoparticles of 24 and 100 nm nominal diameters were infused into rat cortex through microfluidic probes. We found that perivascular spaces provide a high permeability path for rapid convective transport of large nanoparticles through tissue, and that the effects of perivascular spaces on transport are more significant for larger particles that undergo hindered transport through the extracellular matrix. This suggests that the vascular topology of the target tissue volume must be considered when delivering large therapeutic constructs via CED.
NASA Astrophysics Data System (ADS)
Kachenko, Anthony G.; Siegele, Rainer; Bhatia, Naveen P.; Singh, Balwant; Ionescu, Mihail
2008-04-01
Hybanthus floribundus subsp. floribundus, a rare Australian Ni-hyperaccumulating shrub and Pityrogramma calomelanos var. austroamericana, an Australian naturalized As-hyperaccumulating fern are promising species for use in phytoremediation of contaminated sites. Micro-proton-induced X-ray emission (μ-PIXE) spectroscopy was used to map the elemental distribution of the accumulated metal(loid)s, Ca and K in leaf or pinnule tissues of the two plant species. Samples were prepared by two contrasting specimen preparation techniques: freeze-substitution in tetrahydrofuran (THF) and freeze-drying. The specimens were analysed to compare the suitability of each technique in preserving (i) the spatial elemental distribution and (ii) the tissue structure of the specimens. Further, the μ-PIXE results were compared with concentration of elements in the bulk tissue obtained by ICP-AES analysis. In H. floribundus subsp. floribundus, μ-PIXE analysis revealed Ni, Ca and K concentrations in freeze-dried leaf tissues were at par with bulk tissue concentrations. Elemental distribution maps illustrated that Ni was preferentially localised in the adaxial epidermal tissues (1% DW) and least concentration was found in spongy mesophyll tissues (0.53% DW). Conversely, elemental distribution maps of THF freeze-substituted tissues indicated significantly lower Ni, Ca and K concentrations than freeze-dried specimens and bulk tissue concentrations. Moreover, Ni concentrations were uniform across the whole specimen and no localisation was observed. In P. calomelanos var. austroamericana freeze-dried pinnule tissues, μ-PIXE revealed statistically similar As, Ca and K concentrations as compared to bulk tissue concentrations. Elemental distribution maps showed that As localisation was relatively uniform across the whole specimen. Once again, THF freeze-substituted tissues revealed a significant loss of As compared to freeze-dried specimens and the concentrations obtained by bulk tissue analysis. The results demonstrate that freeze-drying is a suitable sample preparation technique to study elemental distribution of ions in H. floribundus and P. calomelanos plant tissues using μ-PIXE spectroscopy. Furthermore, cellular structure was preserved in samples prepared using this technique.
Alkas, Fehmi Burak; Shaban, Jehad Abdullah; Sukuroglu, Ayca Aktas; Kurt, Mehmet Ali; Battal, Dilek; Saygi, Sahan
2017-09-22
The presence of heavy metals/metalloids in the ecosystem has been an increasing ecological and global public health concern due to their potential to cause adverse health effects. For this reason, the accumulation of some heavy metals such as Cr, Mn, Ni, Cu, As, Cd, Pb was assessed by way of ICP-MS in water, sediment and fish (Cyprinus carpio) sampled from Gonyeli Lake, North Cyprus. The results showed that these metals/metalloids are found widespread throughout the study area. In water, most concentrated element was manganese with 92.1 ppb and least concentrated was lead with 0.914 ppb. In sediment, copper had the highest concentration with 613 ppm, and cadmium the lowest with 1.57 ppm. In fish tissues (muscle and gills), the most concentrated element was manganese with 12.5 ppm and the least concentrated cadmium with 0.017 ppm. These results indicate that future remediation efforts are indispensable for the rehabilitation of the lake.
Application of fluorescence spectroscopy for on-line bioprocess monitoring and control
NASA Astrophysics Data System (ADS)
Boehl, Daniela; Solle, D.; Toussaint, Hans J.; Menge, M.; Renemann, G.; Lindemann, Carsten; Hitzmann, Bernd; Scheper, Thomas-Helmut
2001-02-01
12 Modern bioprocess control requires fast data acquisition and in-time evaluation of bioprocess variables. On-line fluorescence spectroscopy for data acquisition and the use of chemometric methods accomplish these requirements. The presented investigations were performed with fluorescence spectrometers with wide ranges of excitation and emission wavelength. By detection of several biogenic fluorophors (amino acids, coenzymes and vitamins) a large amount of information about the state of the bioprocess are obtained. For the evaluation of the process variables partial least squares regression is used. This technique was applied to several bioprocesses: the production of ergotamine by Claviceps purpurea, the production of t-PA (tissue plasminogen activator) by animal cells and brewing processes. The main point of monitoring the brewing processes was to determine the process variables cell count and extract concentration.
Spatiotemporal Oxygen Sensing Using Dual Emissive Boron Dye–Polylactide Nanofibers
2015-01-01
Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye–polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing. PMID:25426706
Quantitative dual-probe microdialysis: mathematical model and analysis.
Chen, Kevin C; Höistad, Malin; Kehr, Jan; Fuxe, Kjell; Nicholson, Charles
2002-04-01
Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.
Müntze, Gesche Mareike; Pouokam, Ervice; Steidle, Julia; Schäfer, Wladimir; Sasse, Alexander; Röth, Kai; Diener, Martin; Eickhoff, Martin
2016-03-15
The response characteristics of acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors (AcFETs) are quantitatively analyzed by means of a kinetic model. The characterization shows that the covalent enzyme immobilization process yields reproducible AcFET characteristics with a Michaelis constant KM of (122 ± 4) μM for the immobilized enzyme layer. The increase of KM by a factor of 2.4 during the first four measurement cycles is attributed to partial denaturation of the enzyme. The AcFETs were used to record the release of acetylcholine (ACh) by neuronal tissue cultivated on the gate area upon stimulation by rising the extracellular K(+) concentration. The neuronal tissue constituted of isolated myenteric neurons from four to 12 days old Wistar rats, or sections from the muscularis propria containing the myenteric plexus from adult rats. For both cases the AcFET response was demonstrated to be related to the activity of the immobilized acetylcholinesterase using the reversible acetylcholinesterase blocker donepezil. A concentration response curve of this blocking agent revealed a half maximal inhibitory concentration of 40 nM which is comparable to values measured by complementary in vitro methods. Copyright © 2015 Elsevier B.V. All rights reserved.
May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.
2013-01-01
This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillet samples of yellow bullhead (Ameiurus natalis), golden redhorse (Moxostoma erythrurum), longear sunfish (Lepomis megalotis), and channel catfish (Ictalurus punctatus) were collected from six sites as part of the Missouri Department of Conservation’s Fish Contaminant Monitoring Program. Fish dorsal muscle plugs were collected from largemouth bass (Micropterus salmoides) at eight of the sites, and crayfish from two sites. Following preparation and analysis of the samples, highlights of the data were as follows: cadmium and lead residues were most elevated in crayfish tissue samples from the Big River at Cherokee Landing, with 1 to 8 micrograms per gram dry weight and 22 to 45 micrograms per gram dry weight, respectively. Some dorsal muscle plugs from largemouth bass collected from Clearwater Lake, Lake St. Louis, Noblett Lake, Hazel Creek Lake, and Harrison County Lake contained mercury residues (1.7 to 4.7 micrograms per gram dry weight) that exceeded the U.S. Environmental Protection Agency Water Quality Criterion of 1.5 micrograms per gram dry weight of fish tissue (equivalent to 0.30 micrograms per gram wet weight).
Imaging hypoxia using 3D photoacoustic spectroscopy
NASA Astrophysics Data System (ADS)
Stantz, Keith M.
2010-02-01
Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.
Illuminati, S; Annibaldi, A; Truzzi, C; Scarponi, G
2016-10-15
May sponge spicules represent a "tank" to accumulate heavy metals? In this study we test this hypothesis determining the distribution of Cd, Pb and Cu concentrations between organic and siliceous tissues in Antarctic Demospongia (Sphaerotylus antarcticus, Kirkpatrikia coulmani and Haliclona sp.) and in the Mediterranean species Petrosia ficiformis. Results show that although, in these sponges, spicules represent about 80% of the mass content, the accumulation of pollutant is lower in the spicules than in the corresponding organic fraction. The contribution of tissues to the total sponge content of Cd, Pb and Cu is respectively 99%, 82% and 97% for Antarctic sponges and 96%, 95% and 96% for P. ficiformis, similar in polar and temperate organisms. These results pave the way to a better understanding of the role of marine sponges in uptaking heavy metals and to their possible use as monitor of marine ecosystems, recommend by the Water Framework Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.
Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi
2017-09-01
A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmanan, P.T.; Nambisan, P.N.K.
Bivalves are well known for their ability to concentrate heavy metals in their tissue from environmental water. Experimental studies on the accumulation of these pollutants by molluscs have been extensively conducted. The depuration of accumulated metals in a toxicant free medium has also been studied. Bivalve molluscs may form useful tools in monitoring heavy metal pollution. However, such studies are scant in tropical species. This paper reports the bioaccumulation and depuration of Hg, Cu, Zn and Pb by the mussel Perna viridis (Linnaeus) from seawater and explores its suitability as an indicator organism for metal pollution.
Brumbaugh, William G; Mora, Miguel A; May, Thomas W; Phalen, David N
2010-11-01
Voles and small passerine birds were live-captured near the Delong Mountain Regional Transportation System (DMTS) haul road in Cape Krusenstern National Monument in northwest Alaska to assess metals exposure and sub-lethal biological effects. Similar numbers of animals were captured from a reference site in southern Cape Krusenstern National Monument for comparison. Histopathological examination of selected organs, and analysis of cadmium, lead, and zinc concentrations in liver and blood samples were performed. Voles and small birds captured from near the haul road had about 20 times greater blood and liver lead concentrations and about three times greater cadmium concentrations when compared to those from the reference site, but there were no differences in zinc tissue concentrations. One vole had moderate metastatic mineralization of kidney tissue, otherwise we observed no abnormalities in internal organs or DNA damage in the blood of any of the animals. The affected vole also had the greatest liver and blood Cd concentration, indicating that the lesion might have been caused by Cd exposure. Blood and liver lead concentrations in animals captured near the haul road were below concentrations that have been associated with adverse biological effects in other studies; however, subtle effects resulting from lead exposure, such as the suppression of the activity of certain enzymes, cannot be ruled out for some individual animals. Results from our 2006 reconnaissance-level study indicate that overall, voles and small birds obtained from near the DMTS road in Cape Krusenstern National Monument were not adversely affected by metals exposure; however, because of the small sample size and other uncertainties, continued monitoring of lead and cadmium in terrestrial habitats near the DMTS road is advised.
Brumbaugh, William G.; Mora, Miguel A.; May, Thomas W.; Phalen, David N.
2010-01-01
Voles and small passerine birds were live-captured near the Delong Mountain Regional Transportation System (DMTS) haul road in Cape Krusenstern National Monument in northwest Alaska to assess metals exposure and sub-lethal biological effects. Similar numbers of animals were captured from a reference site in southern Cape Krusenstern National Monument for comparison. Histopathological examination of selected organs, and analysis of cadmium, lead, and zinc concentrations in liver and blood samples were performed. Voles and small birds captured from near the haul road had about 20 times greater blood and liver lead concentrations and about three times greater cadmium concentrations when compared to those from the reference site, but there were no differences in zinc tissue concentrations. One vole had moderate metastatic mineralization of kidney tissue, otherwise we observed no abnormalities in internal organs or DNA damage in the blood of any of the animals. The affected vole also had the greatest liver and blood Cd concentration, indicating that the lesion might have been caused by Cd exposure. Blood and liver lead concentrations in animals captured near the haul road were below concentrations that have been associated with adverse biological effects in other studies; however, subtle effects resulting from lead exposure, such as the suppression of the activity of certain enzymes, cannot be ruled out for some individual animals. Results from our 2006 reconnaissance-level study indicate that overall, voles and small birds obtained from near the DMTS road in Cape Krusenstern National Monument were not adversely affected by metals exposure; however, because of the small sample size and other uncertainties, continued monitoring of lead and cadmium in terrestrial habitats near the DMTS road is advised.
Lanza, Heather A; Cochran, Rebecca S; Mudge, Joseph F; Olson, Adric D; Blackwell, Brett R; Maul, Jonathan D; Salice, Christopher J; Anderson, Todd A
2017-08-01
Perfluoroalkyl substances (PFAS) have recently received increased research attention, particularly concerning aquatic organisms and in regions of exposure to aqueous film forming foams (AFFFs). Air Force bases historically applied AFFFs in the interest of fire training exercises and have since expressed concern for PFAS contamination in biota from water bodies surrounding former fire training areas. Six PFAS were monitored, including perfluorooctane sulfonate (PFOS), in aquatic species from 8 bayou locations at Barksdale Air Force Base in Bossier City, Louisiana (USA) over the course of 1 yr. The focus was to evaluate temporal and spatial variability in PFAS concentrations from historic use of AFFF. The PFOS concentrations in fish peaked in early summer, and also increased significantly downstream of former fire training areas. Benthic organisms had lower PFOS concentrations than pelagic species, contrary to previous literature observations. Bioconcentration factors varied with time but were reduced compared with previously reported literature values. The highest concentration of PFOS in whole fish was 9349 ng/g dry weight, with 15% of samples exceeding what is believed to be the maximum whole fish concentration reported to date of 1500 ng/g wet weight. Further studies are ongoing, to measure PFAS in larger fish and tissue-specific partitioning data to compare with the current whole fish values. The high concentrations presently observed could have effects on higher trophic level organisms in this system or pose a potential risk to humans consuming contaminated fish. Environ Toxicol Chem 2017;36:2022-2029. © 2016 SETAC. © 2016 SETAC.
Rana, Vivek; Maiti, Subodh Kumar
2018-04-01
Opencast bituminous coal mining invariably generates huge amount of metal-polluted waste rocks (stored as overburden (OB) dumps) and reclaimed by planting fast growing hardy tree species which accumulate metals in their tissues. In the present study, reclaimed OB dumps located in Jharia coal field (Jharkhand, India) were selected to assess the accumulation of selected metals (Pb, Zn, Mn, Cu and Co) in tissues (leaf, stem bark, stem wood, root bark and root wood) of two commonly planted tree species (Acacia auriculiformis A.Cunn. ex Benth. and Melia azedarach L.). In reclaimed mine soil (RMS), the concentrations of pseudo-total and available metals (DTPA-extractable) were found 182-498 and 196-1877% higher, respectively, than control soil (CS). The positive Spearman's correlation coefficients between pseudo-total concentration of Pb and Cu (r = 0.717; p < 0.05), Pb and Co (r = 0.650; p < 0.05), Zn and Mn (0.359), Cu and Co (r = 0.896; p < 0.01) suggested similar sources for Pb-Cu-Co and Mn-Zn. Among the five tree tissues considered, Pb selectively accumulated in root bark, stem bark and leaves; Zn and Mn in leaves; and Cu in root wood and stem wood. These results suggested metal accumulation to be "tissue-specific". The biological indices (BCF, TF leaf , TF stem bark and TF stem wood ) indicated variation in metal uptake potential of different tree tissues. The study indicated that A. auriculiformis could be employed for Mn phytoextraction (BCF, TF leaf , TF stem bark and TF stem wood > 1). The applicability of both the trees in Cu phytostabilization (BCF > 1; TF leaf , TF stem bark and TF stem wood < 1) was suggested. The study enhanced knowledge about the selection of tree species for the phytoremediation of coal mine OB dumps and specific tree tissues for monitoring metal pollution.
Comparison of metal concentrations in rat tibia tissues with various metallic implants.
Okazaki, Yoshimitsu; Gotoh, Emiko; Manabe, Takeshi; Kobayashi, Kihei
2004-12-01
To compare metal concentrations in tibia tissues with various metallic implants, SUS316L stainless steel, Co-Cr-Mo casting alloy, and Ti-6Al-4V and V-free Ti-15Zr-4Nb-4Ta alloys were implanted into the rat tibia for up to 48 weeks. After the implant was removed from the tibia by decalcification, the tibia tissues near the implant were lyophilized. Then the concentrations of metals in the tibia tissues by microwave acid digestion were determined by inductively coupled plasma-mass spectrometry. Fe concentrations were determined by graphite-furnace atomic absorption spectrometry. The Fe concentration in the tibia tissues with the SUS316L implant was relatively high, and it rapidly increased up to 12 weeks and then decreased thereafter. On the other hand, the Co concentration in the tibia tissues with the Co-Cr-Mo implant was lower, and it increased up to 24 weeks and slightly decreased at 48 weeks. The Ni concentration in the tibia tissues with the SUS316L implant increased up to 6 weeks and then gradually decreased thereafter. The Cr concentration tended to be higher than the Co concentration. This Cr concentration linearly increased up to 12 weeks and then decreased toward 48 weeks in the tibia tissues with the SUS316L or Co-Cr-Mo implant. Minute quantities of Ti, Al and V in the tibia tissues with the Ti-6Al-4V implant were found. The Ti concentration in the tibia tissues with the Ti-15Zr-4Nb-4Ta implant was lower than that in the tibia tissues with the Ti-6Al-4V implant. The Zr, Nb and Ta concentrations were also very low. The Ti-15Zr-4Nb-4Ta alloy with its low metal release in vivo is considered advantageous for long-term implants.
Spencer, Paula; Bowman, Michelle F; Dubé, Monique G
2008-07-01
It is not known if current chemical and biological monitoring methods are appropriate for assessing the impacts of growing industrial development on ecologically sensitive northern waters. We used a multitrophic level approach to evaluate current monitoring methods and to determine whether metal-mining activities had affected 2 otherwise pristine rivers that flow into the South Nahanni River, Northwest Territories, a World Heritage Site. We compared upstream reference conditions in the rivers to sites downstream and further downstream of mines. The endpoints we evaluated included concentrations of metals in river water, sediments, and liver and flesh of slimy sculpin (Cottus cognatus); benthic algal and macroinvertebrate abundance, richness, diversity, and community composition; and various slimy sculpin measures, our sentinel forage fish species. Elevated concentrations of copper and iron in liver tissue of sculpin from the Flat River were associated with high concentrations of mine-derived iron in river water and copper in sediments that were above national guidelines. In addition, sites downstream of the mine on the Flat River had increased algal abundances and altered benthic macroinvertebrate communities, whereas the sites downstream of the mine on Prairie Creek had increased benthic macroinvertebrate taxa richness and improved sculpin condition. Biological differences in both rivers were consistent with mild enrichment of the rivers downstream of current and historical mining activity. We recommend that monitoring in these northern rivers focus on indicators in epilithon and benthic macroinvertebrate communities due to their responsiveness and as alternatives to lethal fish sampling in habitats with low fish abundance. We also recommend monitoring of metal burdens in periphyton and benthic invertebrates for assessment of exposure to mine effluent and causal association. Although the effects of mining activities on riverine biota currently are limited, our results show that there is potential for effects to occur with proposed growth in mining activities.
Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.
1996-01-01
The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339
Cleanrooms and tissue banking how happy I could be with either GMP or GTP?
Klykens, J; Pirnay, J-P; Verbeken, G; Giet, O; Baudoux, E; Jashari, R; Vanderkelen, A; Ectors, N
2013-12-01
The regulatory framework of tissue banking introduces a number of requirements for monitoring cleanrooms for processing tissue or cell grafts. Although a number of requirements were clearly defined, some requirements are open for interpretation. This study aims to contribute to the interpretation of GMP or GTP guidelines for tissue banking. Based on the experience of the participating centers, the results of the monitoring program were evaluated to determine the feasibility of a cleanroom in tissue banking and the monitoring program. Also the microbial efficacy of a laminar airflow cabinet and an incubator in a cleanroom environment was evaluated. This study indicated that a monitoring program of a cleanroom at rest in combination with (final) product testing is a feasible approach. Although no statistical significance (0.90 < p < 0.95) was found there is a strong indication that a Grade D environment is not the ideal background environment for a Grade A obtained through a laminar airflow cabinet. The microbial contamination of an incubator in a cleanroom is limited but requires closed containers for tissue and cell products.
Robust Accurate Non-Invasive Analyte Monitor
Robinson, Mark R.
1998-11-03
An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.
Methodological issues in microdialysis sampling for pharmacokinetic studies.
de Lange, E C; de Boer, A G; Breimer, D D
2000-12-15
Microdialysis is an in vivo technique that permits monitoring of local concentrations of drugs and metabolites at specific sites in the body. Microdialysis has several characteristics, which makes it an attractive tool for pharmacokinetic research. About a decade ago the microdialysis technique entered the field of pharmacokinetic research, in the brain, and later also in peripheral tissues and blood. Within this period much has been learned on the proper use of this technique. Today, it has outgrown its child diseases and its potentials and limitations have become more or less well defined. As microdialysis is a delicate technique for which experimental factors appear to be critical with respect to the validity of the experimental outcomes, several factors should be considered. These include the probe; the perfusion solution; post-surgery interval in relation to surgical trauma, tissue integrity and repeated experiments; the analysis of microdialysate samples; and the quantification of microdialysate data. Provided that experimental conditions are optimized to give valid and quantitative results, microdialysis can provide numerous data points from a relatively small number of individual animals to determine detailed pharmacokinetic information. An example of one of the added values of this technique compared with other in vivo pharmacokinetic techniques, is that microdialysis reflects free concentrations in tissues and plasma. This gives the opportunity to assess information on drug transport equilibration across membranes such as the blood-brain barrier, which already has provided new insights. With the progress of analytical methodology, especially with respect to low volume/low concentration measurements and simultaneous measurement of multiple compounds, the applications and importance of the microdialysis technique in pharmacokinetic research will continue to increase.
NASA Astrophysics Data System (ADS)
Xu, Xiaochun; Wang, Yu; Xiang, Jialing; Liu, Jonathan T. C.; Tichauer, Kenneth M.
2017-06-01
Conventional molecular assessment of tissue through histology, if adapted to fresh thicker samples, has the potential to enhance cancer detection in surgical margins and monitoring of 3D cell culture molecular environments. However, in thicker samples, substantial background staining is common despite repeated rinsing, which can significantly reduce image contrast. Recently, ‘paired-agent’ methods—which employ co-administration of a control (untargeted) imaging agent—have been applied to thick-sample staining applications to account for background staining. To date, these methods have included (1) a simple ratiometric method that is relatively insensitive to noise in the data but has accuracy that is dependent on the staining protocol and the characteristics of the sample; and (2) a complex paired-agent kinetic modeling method that is more accurate but is more noise-sensitive and requires a precise serial rinsing protocol. Here, a new simplified mathematical model—the rinsing paired-agent model (RPAM)—is derived and tested that offers a good balance between the previous models, is adaptable to arbitrary rinsing-imaging protocols, and does not require calibration of the imaging system. RPAM is evaluated against previous models and is validated by comparison to estimated concentrations of targeted biomarkers on the surface of 3D cell culture and tumor xenograft models. This work supports the use of RPAM as a preferable model to quantitatively analyze targeted biomarker concentrations in topically stained thick tissues, as it was found to match the accuracy of the complex paired-agent kinetic model while retaining the low noise-sensitivity characteristics of the ratiometric method.
Cresson, P; Bouchoucha, M; Miralles, F; Elleboode, R; Mahé, K; Marusczak, N; Thebault, H; Cossa, D
2015-02-15
Mercury (Hg) is one of the main chemicals currently altering Mediterranean ecosystems. Red mullet (Mullus barbatus and M. surmuletus) have been widely used as quantitative bio-indicators of chemical contamination. In this study, we reassess the ability of these species to be used as efficient bio-indicators of Hg contamination by monitoring during 18 months Hg concentrations in muscle tissue of mullet sampled from 5 French Mediterranean coastal areas. Mean concentrations ranged between 0.23 and 0.78 μg g(-1) dry mass for both species. Values were consistent with expected contamination patterns of all sites except Corsica. Results confirmed that red mullets are efficient bio-indicators of Hg contamination. Nevertheless, the observed variability in Hg concentrations calls for caution regarding the period and the sample size. Attention should be paid to environmental and biologic specificities of each studied site, as they can alter the bioaccumulation of Hg, and lead to inferences about environmental Hg concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Elmer, Jonathan; Flickinger, Katharyn L; Anderson, Maighdlin W; Koller, Allison C; Sundermann, Matthew L; Dezfulian, Cameron; Okonkwo, David O; Shutter, Lori A; Salcido, David D; Callaway, Clifton W; Menegazzi, James J
2018-04-18
Brain tissue hypoxia may contribute to preventable secondary brain injury after cardiac arrest. We developed a porcine model of opioid overdose cardiac arrest and post-arrest care including invasive, multimodal neurological monitoring of regional brain physiology. We hypothesized brain tissue hypoxia is common with usual post-arrest care and can be prevented by modifying mean arterial pressure (MAP) and arterial oxygen concentration (PaO 2 ). We induced opioid overdose and cardiac arrest in sixteen swine, attempted resuscitation after 9 min of apnea, and randomized resuscitated animals to three alternating 6-h blocks of standard or titrated care. We invasively monitored physiological parameters including brain tissue oxygen (PbtO 2 ). During standard care blocks, we maintained MAP > 65 mmHg and oxygen saturation 94-98%. During titrated care, we targeted PbtO2 > 20 mmHg. Overall, 10 animals (63%) achieved ROSC after a median of 12.4 min (range 10.8-21.5 min). PbtO 2 was higher during titrated care than standard care blocks (unadjusted β = 0.60, 95% confidence interval (CI) 0.42-0.78, P < 0.001). In an adjusted model controlling for MAP, vasopressors, sedation, and block sequence, PbtO 2 remained higher during titrated care (adjusted β = 0.75, 95%CI 0.43-1.06, P < 0.001). At three predetermined thresholds, brain tissue hypoxia was significantly less common during titrated care blocks (44 vs 2% of the block duration spent below 20 mmHg, P < 0.001; 21 vs 0% below 15 mmHg, P < 0.001; and, 7 vs 0% below 10 mmHg, P = .01). In this model of opioid overdose cardiac arrest, brain tissue hypoxia is common and treatable. Further work will elucidate best strategies and impact of titrated care on functional outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Walden, Raphael; Pewzner, Eliyahu; Deutsch, Assaf; Heldenberg, Eitan; Lavee, Jacob; Tager, Salis; Kachel, Erez; Raanani, Ehud; Preisman, Sergey; Glauber, Violete; Segal, Eran
2011-06-01
Background: The involvement of mitochondria in pathological states, such as neurodegenerative diseases, sepsis, stroke, and cancer, are well documented. Monitoring of nicotinamide adenine dinucleotide (NADH) fluorescence in vivo as an intracellular oxygen indicator was established in 1950 to 1970 by Britton Chance and collaborators. We use a multiparametric monitoring system enabling assessment of tissue vitality. In order to use this technology in clinical practice, the commercial developed device, the CritiView (CRV), is tested in animal models as well as in patients. Methods and Results: The new CRV enables the optical monitoring of four different parameters, representing the energy balance of various tissues in vivo. Mitochondrial NADH is measured by surface fluorometry/reflectometry. In addition, tissue microcirculatory blood flow, tissue reflectance and oxygenation are measured as well. The device is tested both in vitro and in vivo in a small animal model and in preliminary clinical trials in patients undergoing vascular or open heart surgery. In patients, the monitoring is started immediately after the insertion of a three-way Foley catheter (urine collection) to the patient and is stopped when the patient is discharged from the operating room. The results show that monitoring the urethral wall vitality provides information in correlation to the surgical procedure performed.
Çağdaş, Beste; Kocagöz, Rasih; Onat, İlgen; Perçin, Fatih; Özaydın, Okan; Orhan, Hilmi
2017-02-01
Concentrations of persistent organic pollutants (POPs) were quantified in river water and sediment, as well as in the liver and muscle tissues of Cyprinus carpio that were sampled four times in a year at three stations in the Büyük Menderes River (BMR). Potential biomarkers of possible cellular molecular damage, namely lipid peroxidation (LPO) degradation products, protein carbonyls (PCO) and DNA repair product 8-hydroxy-2'-deoxyguanosine (8-OHdG), were analysed. All the targeted pollutants were measurable both in biotic and abiotic samples. Interestingly, the results suggested that there was recent organochlorine pesticide (OCP) input into the river water in the first two sampling periods in all stations in contrast to prohibition, while input of polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) was not detected. Liver POP concentrations were higher than in muscle, as expected, and were found to decrease from the first to the fourth sampling period in all stations, except PBDEs. Levels of LPO degradation products in the liver and in muscle tissues decreased from the first to the fourth sampling period. This suggests that these markers reflect the lipid damage in respective tissues due to the tissue burden of targeted POPs. Protein carbonyls were the highest in the first sampling period, followed by a dramatic decrease in the second, and then a gradual increase towards the fourth sampling period in all stations. 8-OHdG levels were lower in Sarayköy station in the first sampling period. Among the measured biomarkers, only several LPO degradation products were significantly correlated with OCPs and PCBs in liver tissue.
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Macnab, Andrew; Nigro, Mark; Stothers, Lynn
2012-02-01
Background: One of the most important conditions where there is loss of normal bladder function is spinal cord injury (SCI). Currently, evaluation of bladder function is limited to periodic invasive urodynamic testing (UDS). The purpose of this study was to assess the feasibility and usefulness of near-infrared spectroscopy (NIRS) in monitoring bladder function in patients with SCI during bladder filling and emptying and to investigate the correlations of NIRS measures with simultaneous UDS parameters. NIRS is a non-invasive optical method to study tissue oxygenation, hemodynamics and function by monitoring changes in the chromophore concentrations of oxygenated (O2Hb), deoxygenated (HHb) and total hemoglobin (tHb). Methods: 10 adult paraplegic patients with neurogenic bladder dysfunction who were referred for regular urodynamic evaluation were recruited. Changes in O2Hb, HHb and tHb, and tissue saturation index (TSI%) in the detrusor were monitored and recorded by a wireless NIRS system during the urodynamic evaluation. Time points of urgency and urinary leakage were marked and patterns of change in NIRS parameters were compared to standard urodynamic pressure tracings. Results: Strong consistency between changes in NIRS-derived tHb and changes in intravesical pressure were observed during filling across the subjects. During bladder filling a gradual increase in O2Hb and tHb with minimal changes in HHb was observed. Interestingly, a drop in TSI% was detected seconds before strong urgency and urinary leakage. Conclusions: Our preliminary data suggest a relationship between noninvasive NIRS measures and UDS parameters during bladder filling in SCI patients.
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Alibouzar, Mitra; Castro, Nathan J.; Zhang, Lijie G.; Sarkar, Kausik; Plesniak, Michael W.
2016-11-01
Degradable polymer-based prosthetics for the treatment of osseous tissue defects, maxillo-/cranio-facial trauma and brain injury face two common clinical obstacles impeding efficient tissue engraftment i.e., controlled material release and neovascularization. Ascertaining the time scales of polymer degradation for controlled delivery of drugs and nutrients is critical to treatment efficacy and strategy. We incorporated multiple experimental methodologies to understand the driving forces of transport mechanisms in polyvinyl alcohol-based (PVA) 3D-printed scaffolds of different porosity. Scaffold degradation was monitored various pulsatile flow conditions using MEMS-based pressure catheters and an ultrasonic flow rate sensor. Ultrasonic properties (bulk attenuation and sound velocity) were measured to monitor the degradation process in a static, alkaline medium. Viscosity and the absorption spectra variations with PVA-solute concentrations were measured using a rheometer and a spectrophotometer, respectively. A simple mathematical model based on Fick's law of diffusion provides the fundamental description of solute transport from the scaffold matrices. However, macroscopic material release could become anomalous or non-Fickian in complex polymeric scaffold matrices. Supported by the GW Center for Biomimetics and Bioinspired Engineering and NIH Director's New Innovator Award 1DP2EB020549-01.
NASA Astrophysics Data System (ADS)
Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio
1999-07-01
Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.
Enoxacin penetration into human prostatic tissue.
Bergeron, M G; Roy, R; Lessard, C; Foucault, P
1988-01-01
Concurrent enoxacin concentrations in serum and prostatic tissue were determined in 14 patients. The mean ratios of enoxacin concentration in tissue over concentration in serum were 1.4 +/- 0.2 (standard error of the mean). The levels in serum and prostatic tissue were above the MICs for most urinary pathogens. PMID:3196004
Subclinical hyperthyroidism: possible danger of overzealous thyroxine replacement therapy.
Ross, D S
1988-12-01
Many patients taking customary doses of levothyroxine have slightly elevated serum thyroxine (T4), apparently normal serum triiodothyronine, suppressed serum thyrotropin (thyroid-stimulating hormone; TSH) concentrations, and no clinical symptoms of hyperthyroidism. Recent reports suggest that these patients may have adverse effects from subclinical hyperthyroidism, including abnormally short systolic time intervals, elevations in liver enzymes, and reductions in bone density. Controversy exists about which thyroid function tests should be used to monitor patients taking levothyroxine. A review of currently available data suggests that replacement doses of levothyroxine given to hypothyroid patients should be adjusted so that serum TSH measured by the new sensitive assays is within the normal range. Patients requiring suppressive doses of levothyroxine to shrink goitrous thyroid tissue or to prevent growth of abnormal tissue should be given the minimal dose needed to accomplish the desired clinical or biochemical response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraud, A.S.; Webster, L.K.; Fabris, J.G.
1986-01-01
The blue mussel (Mytilus edulis) has been proposed for use as a sentinel organism to monitor the effects of marine pollution (Goldberg et al., 1978). Recently, there has been interest in quantifying histopathological changes in mussel tissues, as one indicator of pollution-induced stress. Cadmium is a common and toxic aquatic pollutant. Gill and digestive diverticula have been shown to be major sites of cadmium detoxification. In these same tissues, histopathological changes have been demonstrated after exposure to crude oil and to an oil dispersant. However, whether similar morphological changes are induced by heavy metals, such as cadmium, is not known.more » In this study, the authors have assessed the cellular effects of sublethal concentrations of cadmium on the gill and digestive diverticula of Mytilus.« less
Wall, Mark J.
2016-01-01
Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. PMID:27927788
Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E
2017-03-01
Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Kyle B.; Poston, Ted M.; Tiller, Brett L.
2008-01-31
The Asiatic clam (Corbicula fluminea) has been identified as an indicator species for locating and monitoring contaminated groundwater in the Columbia River. Pacific Northwest National Laboratory conducted a field study to explore the use of caged Asiatic clams to monitor contaminated groundwater upwelling in the 300 Area near-shore environment and assess seasonal differences in uranium uptake in relation to seasonal flow regimes of the Columbia River. Additional objectives included examining the potential effects of uranium accumulation on growth, survival, and tissue condition of the clams. This report documents the field conditions and procedures, laboratory procedures, and statistical analyses used inmore » collecting samples and processing the data. Detailed results are presented and illustrated, followed by a discussion comparing uranium concentrations in Asiatic clams collected at the 300 Area and describing the relationship between river discharge, groundwater indicators, and uranium in clams. Growth and survival, histology, and other sources of environmental variation also are discussed.« less
NASA Astrophysics Data System (ADS)
Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong
2001-09-01
A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-12-14
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-01-01
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system. PMID:29240666
Ivanković, Dušica; Erk, Marijana; Župan, Ivan; Čulin, Jelena; Dragun, Zrinka; Bačić, Niko; Cindrić, Ana-Marija
2016-10-01
Commercially important bivalve Noah's Ark shell (Arca noae Linnaeus, 1758) represents a high-quality seafood product, but the data on levels of metal contaminants that could pose a human health risk and also on some essential elements that are important for health protection are lacking. This study examined the concentrations of Cd, Pb, Cr, Ni, Cu, Co, and Zn in the soft tissue of A. noae from harvesting area in the central Adriatic Sea, to survey whether heavy metals are within the acceptable limits for public health and whether tourism could have an impact on them. The concentrations of analysed metals varied for Cd: 0.15-0.74, Pb: 0.06-0.26, Cr: 0.11-0.34, Ni: 0.09-0.22, Cu: 0.65-1.95, Co: 0.04-0.09, and Zn: 18.3-74.7 mg/kg wet weight. These levels were lower than the permissible limits for safe consummation of seafood, and only for Cd, some precautions should be taken into account if older shellfish were consumed. Increase of Cd, Cr, and Cu in shell tissue was observed during the tourist season at the site closest to the marine traffic routes, indicating that metal levels in shellfish tissue should be monitored especially carefully during the peak tourist season to prevent eventual toxic effects due to increased intake of metals, specifically of Cd.
Al-Ghanim, K.A.; Mahboob, Shahid; Seemab, Sadia; Sultana, S.; Sultana, T.; Al-Misned, Fahad; Ahmed, Z.
2015-01-01
We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003–0.708; cobalt 0.002–0.768 and zinc 47.4–1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541
Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z
2016-01-01
We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003-0.708; cobalt 0.002-0.768 and zinc 47.4-1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.
Sexual difference in polychlorinated biphenyl accumulation rates of walleye (Stizostedion vitreum)
Madenjian, Charles P.; Noguchi, George E.; Haas, Robert C.; Schrouder, Kathrin S.
1998-01-01
Adult male walleye (Stizostedion vitreum) exhibited significantly higher polychlorinated biphenyl (PCB) concentrations than similarly aged female walleye from Saginaw Bay (Lake Huron). To explain this difference, we tested the following three hypotheses: (i) females showed a considerably greater reduction in PCB concentration immediately following spawning than males, (ii) females grew at a faster rate and therefore exhibited lower PCB concentrations than males, and (iii) males spent more time in the Saginaw River system than females, and therefore received a greater exposure to PCBs. The first hypothesis was tested by comparing PCB concentration in gonadal tissue with whole-body concentration, the second hypothesis was tested via bioenergetics modeling, and we used mark-recapture data from the Saginaw Bay walleye fishery to address the third hypothesis. The only plausible explanation for the observed difference in PCB accumulation rate was that males spent substantially more time in the highly contaminated Saginaw River system than females, and therefore were exposed to greater environmental concentrations of PCBs. Based on the results of our study, we strongly recommend a stratified random sampling design for monitoring PCB concentration in Saginaw Bay walleye, with fixed numbers of females and males sampled each year.
Al-Mohanna, S Y; Subrahmanyam, M N
2001-10-01
The metal levels of arsenic, chromium, copper, lead, magnesium, manganese, selenium, vanadium, and zinc concentrations were determined in various body organs, viz., hepatopancreas, gills, gonad, gastric stomach, and muscle of the blue crab, Portunus pelagicus (Crustacea: Decapoda) to assess the bioaccumulation of metals associated with petroleum input a decade after the 1991 Gulf War oil spillage. Sample solutions prepared were analyzed using an atomic absorption spectrophotometry. High concentrations of Zn and Cu in the muscle and hepatopancreas tissues were a strong indicative of high exposure of P. pelagicus to these metals. However, muscle tissue had been found to accumulate the highest values for all metal speciations analyzed. Copper, zinc, and chromium in samples collected from Station II covering the Kuwait City area were often in excess of those present in Station I and III. Arsenic, lead, magnesium, manganese, selenium, and vanadium were greater in individuals obtained from Station I. A significant correlation was found to exist between Se and V in crab muscle with a surge in Se metal concentration, which was found to be inversely proportional to that of V metal concentration irrespective of the sex of the crab. The difference in patterns of metal occurrence and the significant increase in the Cu and Zn concentrations in various organs of the crab were largely associated with the 1991 Gulf War oil spill. Such results could be used as a baseline for the monitoring of the level of metals in marine organisms of future studies.
The plutonium isotopic composition of marine biota on Enewetak Atoll: a preliminary assessment.
Hamilton, Terry F; Martinelli, Roger E; Kehl, Steven R; McAninch, Jeffrey E
2008-10-01
We have determined the level and distribution of gamma-emitting radionuclides, plutonium activity concentrations, and 240Pu/239Pu atom ratios in tissue samples of giant clam (Tridacna gigas and Hippopus hippopus), a top snail (Trochus nilaticas) and sea cucumber (Holothuria atra) collected from different locations around Enewetak Atoll. The plutonium isotopic measurements were performed using ultra-high sensitivity accelerator mass spectrometry (AMS). Elevated levels of plutonium were observed in the stomachs (includes the stomach lining) of Tridacna clam (0.62 to 2.98 Bq kg(-1), wet wt.), in the soft parts (edible portion) of top snails (0.25 to 1.7 Bq kg(-1)), wet wt.) and, to a lesser extent, in sea cucumber (0.015 to 0.22 Bq kg(-1), wet wt.) relative to muscle tissue concentrations in clam (0.006 to 0.021 Bq kg(-1), wet wt.) and in comparison with previous measurements of plutonium in fish. These data and information provide a basis for re-evaluating the relative significance of dietary intakes of plutonium from marine foods on Enewetak Atoll and, perhaps most importantly, demonstrate that discrete 240Pu239Pu isotope signatures might well provide a useful investigative tool to monitor source-term attribution and consequences on Enewetak Atoll. One potential application of immediate interest is to monitor and assess the health and ecological impacts of leakage of plutonium (as well as other radionuclides) from a low-level radioactive waste repository on Runit Island relative to background levels of fallout contamination in Enewetak Atoll lagoon.
Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
Nagarajan, Vivek Krishna; Yu, Bing
2016-09-01
Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, <μ's (λ)> and <μa (λ)>, for native porcine tissues (n = 66) at room temperature, were 5.4 ± 0.3 cm(-1) and 0.780 ± 0.008 cm(-1) (SD), respectively. The <μ's (λ)> and <μa (λ)> for native chicken breast tissues (n = 66) at room temperature, were 2.69 ± 0.08 cm(-1) and 0.29 ± 0.01 cm(-1) (SD), respectively. In the first experiment, the <μ's (λ)> of coagulated porcine and chicken breast tissue rose to 56.4 ± 3.6 cm(-1) at 68.7 ± 1.7°C (SD), and 52.8 ± 1 cm(-1) at 57.1 ± 1.5°C (SD), respectively. Correspondingly, the <μa (λ)> of coagulated porcine (140.6°C), and chicken breast tissues (130°C) were 0.75 ± 0.05 cm(-1) and 0.263 ± 0.004 cm(-1) (SD). For both tissues, charring was observed at temperatures above 80°C. During continuous monitoring of porcine tissue (with connective tissues) heating, the <μ's (λ)> started to rise rapidly from 13.7 ± 1.5 minutes and plateaued at 19 ± 2.5 (SD) minutes. The <μ's (λ)> plateaued at 11.7 ± 3 (SD) minutes for porcine tissue devoid of connective tissue between probe and tissue surface. No charring was observed during continuous monitoring of thermal ablation process. The changes in optical absorption and scattering properties can be continuously quantified, which could be used as a diagnostic biomarker for assessing tissue coagulation/damage during thermal ablation. Lasers Surg. Med. 48:686-694, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Thomson, R B; Smith, T F; Wilson, W R
1982-01-01
The laboratory diagnosis of Pneumocystis carinii pneumonia in humans includes the identification of cysts in stained lung tissue impression smears. By using a mouse model, we compared the number of cysts in lung tissue impression smears with those contained in a concentrate of homogenized lung tissue. Eleven C3H/HEN mice developed P. carinii infection after corticosteroid injections, a low protein (8%) diet, and tetracycline administered in drinking water. Impression smears were prepared with freshly bisected lung tissue. Smears of concentrates were prepared with sediment from centrifuged lung tissue homogenates. All smears were made in duplicate, stained with toluidine blue O or methenamine silver, coded, randomized, and examined. The concentrate preparations contained more cysts per microscopic field than the impression preparations (P less than 0.01). Concentrates prepared by grinding with a mortar and pestle contained more cysts than concentrates prepared by blending with a Stomacher (P less than 0.05). Cysts were detected equally well with either the toluidine blue O or silver stain (not significant). Lung tissue concentrates were superior to lung tissue impressions for detecting P. carinii cysts in mice. Use of lung tissue concentrates should be considered for the diagnosis of human P. carinii infection. PMID:6181088
Waadt, Rainer; Hitomi, Kenichi; Nishimura, Noriyuki; Hitomi, Chiharu; Adams, Stephen R; Getzoff, Elizabeth D; Schroeder, Julian I
2014-01-01
Abscisic acid (ABA) is a plant hormone that regulates plant growth and development and mediates abiotic stress responses. Direct cellular monitoring of dynamic ABA concentration changes in response to environmental cues is essential for understanding ABA action. We have developed ABAleons: ABA-specific optogenetic reporters that instantaneously convert the phytohormone-triggered interaction of ABA receptors with PP2C-type phosphatases to send a fluorescence resonance energy transfer (FRET) signal in response to ABA. We report the design, engineering and use of ABAleons with ABA affinities in the range of 100–600 nM to map ABA concentration changes in plant tissues with spatial and temporal resolution. High ABAleon expression can partially repress Arabidopsis ABA responses. ABAleons report ABA concentration differences in distinct cell types, ABA concentration increases in response to low humidity and NaCl in guard cells and to NaCl and osmotic stress in roots and ABA transport from the hypocotyl to the shoot and root. DOI: http://dx.doi.org/10.7554/eLife.01739.001 PMID:24737861
Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.
2005-04-01
PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.
Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.
2014-01-01
Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles.
Ekberg, Neda Rajamand; Brismar, Kerstin; Malmstedt, Jonas; Hedblad, Mari-Anne; Adamson, Ulf; Ungerstedt, Urban; Wisniewski, Natalie
2010-01-01
Objective The very presence of an implanted sensor (a foreign body) causes changes in the adjacent tissue that may alter the analytes being sensed. The objective of this study was to investigate changes in glucose availability and local tissue metabolism at the sensor–tissue interface in patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Method Microdialysis was used to model implanted sensors. Capillary glucose and subcutaneous (sc) microdialysate analytes were monitored in five T1DM and five T2DM patients. Analytes included glucose, glycolysis metabolites (lactate, pyruvate), a lipolysis metabolite (glycerol), and a protein degradation byproduct (urea). On eight consecutive days, four measurements were taken during a period of steady state blood glucose. Results Microdialysate glucose and microdialysate-to-blood-glucose ratio increased over the first several days in all patients. Although glucose recovery eventually stabilized, the lactate levels continued to rise. These trends were explained by local inflammatory and microvascular changes observed in histological analysis of biopsy samples. Urea concentrations mirrored glucose trends. Urea is neither produced nor consumed in sc tissue, and so the initially increasing urea trend is explained by increased local capillary presence during the inflammatory process. Pyruvate in T2DM microdialysate was significantly higher than in T1DM, an observation that is possibly explained by mitochondrial dysfunction in T2DM. Glycerol in T2DM microdialysate (but not in T1DM) was higher than in healthy volunteers, which is likely explained by sc insulin resistance (insulin is a potent antilipolytic hormone). Urea was also higher in microdialysate of patients with diabetes mellitus compared to healthy volunteers. Urea is a byproduct of protein degradation, which is known to be inhibited by insulin. Therefore, insulin deficiency or resistance may explain the higher urea levels. To our knowledge, this is the first histological evaluation of a human tissue biopsy containing an implanted glucose monitoring device. Conclusions Monitoring metabolic changes at a material–tissue interface combined with biopsy histology helped to formulate an understanding of physiological changes adjacent to implanted glucose sensors. Microdialysate glucose trends were similar over 1-week in T1DM and T2DM; however, differences in other analytes indicated wound healing and metabolic activities in the two patient groups differ. We propose explanations for the specific observed differences based on differential insulin insufficiency/resistance and mitochondrial dysfunction in T1DM versus T2DM. PMID:20920426
Ekberg, Neda Rajamand; Brismar, Kerstin; Malmstedt, Jonas; Hedblad, Mari-Anne; Adamson, Ulf; Ungerstedt, Urban; Wisniewski, Natalie
2010-09-01
The very presence of an implanted sensor (a foreign body) causes changes in the adjacent tissue that may alter the analytes being sensed. The objective of this study was to investigate changes in glucose availability and local tissue metabolism at the sensor-tissue interface in patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Microdialysis was used to model implanted sensors. Capillary glucose and subcutaneous (sc) microdialysate analytes were monitored in five T1DM and five T2DM patients. Analytes included glucose, glycolysis metabolites (lactate, pyruvate), a lipolysis metabolite (glycerol), and a protein degradation byproduct (urea). On eight consecutive days, four measurements were taken during a period of steady state blood glucose. Microdialysate glucose and microdialysate-to-blood-glucose ratio increased over the first several days in all patients. Although glucose recovery eventually stabilized, the lactate levels continued to rise. These trends were explained by local inflammatory and microvascular changes observed in histological analysis of biopsy samples. Urea concentrations mirrored glucose trends. Urea is neither produced nor consumed in sc tissue, and so the initially increasing urea trend is explained by increased local capillary presence during the inflammatory process. Pyruvate in T2DM microdialysate was significantly higher than in T1DM, an observation that is possibly explained by mitochondrial dysfunction in T2DM. Glycerol in T2DM microdialysate (but not in T1DM) was higher than in healthy volunteers, which is likely explained by sc insulin resistance (insulin is a potent antilipolytic hormone). Urea was also higher in microdialysate of patients with diabetes mellitus compared to healthy volunteers. Urea is a byproduct of protein degradation, which is known to be inhibited by insulin. Therefore, insulin deficiency or resistance may explain the higher urea levels. To our knowledge, this is the first histological evaluation of a human tissue biopsy containing an implanted glucose monitoring device. Monitoring metabolic changes at a material-tissue interface combined with biopsy histology helped to formulate an understanding of physiological changes adjacent to implanted glucose sensors. Microdialysate glucose trends were similar over 1-week in T1DM and T2DM; however, differences in other analytes indicated wound healing and metabolic activities in the two patient groups differ. We propose explanations for the specific observed differences based on differential insulin insufficiency/resistance and mitochondrial dysfunction in T1DM versus T2DM. © 2010 Diabetes Technology Society.
Cherenkov imaging and biochemical sensing in vivo during radiation therapy
NASA Astrophysics Data System (ADS)
Zhang, Rongxiao
While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of its kind with external beam irradiation, a dendritic platinum-based phosphor (PtG4) was used at micro-molar concentrations (~5 microM) to generate Cherenkov-induced luminescent signals, which are sensitive to the partial pressure of oxygen. Both tomographic reconstruction methods and linear scanned imaging were investigated here to examine the limits of detection. Recovery of optical molecular distributions was shown in tissue phantoms and small animals, with high accuracy (~1 microM), high spatial resolution (~0.2 mm) and deep-tissue detectability (~2 cm for Cherenkov luminescence scanned imaging (CELSI)), indicating potentials for in vivo and clinical use. In summary, many of the physical and technological details of Cherenkov imaging and Cherenkov-excited emission imaging were specified in this study.
Renoud, Marie‐Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe
2016-01-01
Abstract Adipose‐derived stem cells (ADSCs) have led to growing interest in cell‐based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA‐seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress‐associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68–76 PMID:28170194
Ma, Y L; Lindemann, M D; Pierce, J L; Unrine, J M; Cromwell, G L
2014-12-01
The objective of this experiment was to evaluate 2 supplemental forms of Se on reproductive performance and tissue trace mineral concentration in fetus and first-parity gilts during pregnancy and their progeny. Crossbred gilts (n=100) were selected at 183±2.7 d and 137±10 kg BW and fed a common diet. After 1 mo, 8 gilts were sacrificed to establish baseline liver Se concentration and the remaining 92 gilts allotted to receive Se (0.3 mg/kg diet) as inorganic Se (Na2SeO3) or a Se supplement that contains organoselenium compounds (Sel-Plex; Alltech Inc., Nicholasville, KY). At 267±5.7 d (171±11 kg), gilts were estrus-synchronized and bred. Gilts were then slaughtered at defined time points throughout gestation (d 0, 43, 58, 73, 91, 101, or 108 of gestation; n=6 to 12 gilts/time point). A week before the expected farrowing day, 10 pregnant gilts (5 from each treatment) were moved to farrowing crates and monitored. Two pigs from each litter were randomly selected and euthanized at d 0 (within 2 h after birth; nursing deprived), 7, 14, and 21 from each litter. During the gestation phase, maternal liver, and fetal body and liver were collected for determination of trace mineral concentration by inductively coupled plasma mass spectrometry. Total number of fetus, crown-rump length, and corpora lutea of gilts were recorded as well. During the lactation phase, pigs (without liver and gastrointestinal tract) and associated liver were analyzed for Se concentration. The results demonstrated that the source of Se generally did not affect the maternal reproductive traits and fetal characteristics. Also, the source of Se supplemented to the maternal diet did not, in general, affect Cu, Fe, Mn, or Zn concentrations in the tissues evaluated other than the observation of a greater maternal liver Mn content (P<0.01) in gilts fed Sel-Plex and a greater amount of Fe accumulated in the entire litter (P<0.01) in gilts fed Sel-Plex. However, with regard to Se concentrations, Se in fetal body, fetal liver, and maternal liver were greater (P<0.01) when Sel-Plex was fed. Postnatal pigs from gilts fed Sel-Plex had greater (P<0.05) Se retention in body and liver with similar growth performance during the 21-d period. The results demonstrate Se form differences wherein Sel-Plex is associated with greater Se accumulation in both maternal and fetal tissues.
NASA Astrophysics Data System (ADS)
Rajkumar, K. S.; Kanipandian, N.; Thirumurugan, R.
2016-01-01
The increasing use of nano based-products induces the potential hazards from their manufacture, transportation, waste disposal and management processes. In this report, we emphasized the acute toxicity of silver nanoparticles (AgNPs) using freshwater fish Labeo rohita as an aquatic animal model. The AgNPs were synthesized using chemical reduction method and the formation of AgNPs was monitored by UV-Visible spectroscopy analysis. The functional groups, crystaline nature and morphological characterizations were carried out by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis. UV-Vis range was observed at 420 nm and XRD pattern showed that the particles are crystalline nature. HRTEM analysis revealed that the morphology of particles was spherical and size ranges between 50 and 100 nm. This investigation was extended to determine the potential acute toxicity, L. rohita was treated orally with the lethal concentration (LC50) of AgNPs. The antioxidative responses were studied in the three major tissues such as gill, liver and muscle of L. rohita. The results of this investigation showed that increasing the concentration of AgNPs led to bioaccumulation of AgNPs in the major tissues. The haematological parameters showed significant alterations in the treated fish. The histological changes caused by chemically synthesized AgNPs demonstrated the damages in the tissues, primary lamella and blood vessels of L. rohita. The histological study also displayed the formation of vacuolation in liver and muscle when compared with untreated tissues (control) of L. rohita.
Preclinical studies of photodynamic therapy of intracranial tissues
NASA Astrophysics Data System (ADS)
Lilge, Lothar D.; Sepers, Marja; Park, Jane; O'Carroll, Cindy; Pournazari, Poupak; Prosper, Joe; Wilson, Brian C.
1997-05-01
The applicability and limitations of the photodynamic threshold model were investigated for an intracranial tumor (VX2) and normal brain tissues in a rabbit model. Photodynamic threshold values for four different photosensitizers, i.e., Photofrin, 5(delta) -aminolaevulinic acid (5(delta) -ALA) induced Protoporphyrin IX (PPIX), Tin Ethyl Etiopurpurin (SnET2), and chloroaluminum phthalocyanine (AlClPc), were determined based on measured light fluence distributions, macroscopic photosensitizer concentration in various brain structures, and histologically determined extent of tissue necrosis following PDT. For Photofrin, AlClPc, and SnET2, normal brain displayed a significantly lower threshold value than VX2 tumor. For 5(delta) -ALA induced PPIX and SnET2 no or very little white matter damage, equalling to very high or infinite threshold values, was observed. Additionally, the latter two photosensitizers showed significantly lower uptake in white matter compared to other brain structures and VX2 tumor. Normal brain structures lacking a blood- brain-barrier, such as the choroid plexus and the meninges, showed high photosensitizer uptake for all photosensitizers, and, hence, are at risk when exposed to light. Results to date suggest that the photodynamic threshold values iares valid for white matter, cortex and VX2 tumor. For clinical PDT of intracranial neoplasms 5(delta) -ALA induced PPIX and SnET2 appear to be the most promising for selective tumor necrosis.However, the photosensitizer concentration in each normal brain structure and the fluence distribution throughout the treatment volume and adjacent tissues at risk must be monitored to maximize the selectivity of PDT for intracranial tumors.
Bosco-Santos, Alice; Luiz-Silva, Wanilson; Silva-Filho, Emmanoel Vieira da; Souza, Monique Dias Corrêa de; Dantas, Elton Luiz; Navarro, Margareth Sugano
2017-04-01
Fractionation of rare earth elements (REE) and other trace metal concentrations (Th, U, Cd, Cr, Cu, Ni, Pb, and Zn) between mangrove sediments and claw muscles and shells of male crabs (Ucides cordatus) from a subtropical estuary highly impacted by fertilizer industry activities was investigated. This is the first record of REE distribution in these organisms, and the results showed higher accumulations of these metals, U and Th in shells, probably related to the replacement of Ca during molting. Contents of Cd, Cr and Ni were similar in both tissues, but Cu, Zn and Pb were mostly accumulated in the claw muscle with concentrations above those considered safe for human consumption according to the Brazilian legislation. REE fractionation was different in the analyzed tissues being softer in the shells. The results provided evidences that the water absorbed during molting controls the chemistry of REE in shells. In contrast, the chemistry of REE in the claw muscle, in which was observed preferential absorption of light REE, is controlled by diet. REE fractionation obtained for the claw muscles was closely correlated to the observed in the contaminated substrate and in materials related to the production of phosphate fertilizers (contamination source), which supports their transference to this Ucides cordatus tissue without fractionation by the ingestion of sediments. Our results showed the potential use of crab tissues for monitoring REE and trace element sources in mangrove areas, with claw muscle exhibiting the contaminant source fingerprint. Copyright © 2016. Published by Elsevier B.V.
LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.
2002-11-01
Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.
2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in extracts of Baltic white-tailed sea eagles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koistinen, J.; Giesy, J.P.; Koivusaari, J.
Concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin-(TCDD) equivalents were measured in extracts of Baltic white-tailed sea eagle tissues. Extracts of salmon, ringed seal, and grey seal were analyzed as other predatory species of the same area. Concentrations in eagle and seal tissues were greater than those in salmon. Concentrations of TCDD equivalents (TCDD-EQs) determined by the H4IIE bioassay were compared with toxic equivalents (TEQs) derived from instrumental chemical analyses in fractions containing polychlorinated dibenzo-P-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) or coplanar polychlorinated biphenyls (PCBs). Toxic equivalents were calculated by use of an additive model in which the product of the concentrations of instrumentally measured individualmore » congeners were multiplied by their TCDD equivalency factors and were summed to give a total concentration of TEQs. The TCDD-EQs were compared with TEQs to develop a mass balance to determine whether all the TCDD-like activity was accounted for. The TEQs determined by chemical analyses for coplanar PCBs was 770 pg/g fw, and that of PCDD/PCDFs was 270 pg/g fw in this eagle. Thus, concentrations of TCDD-EQs were approx. 20% greater than those of TEQs. The true difference in activities is probably greater because of lower recoveries and infra-additivities among congeners in the bioassay. This indicates that there are compounds present in the extracts that can contribute to the total concentrations of TCDD-EQs in white-tailed sea eagle eggs to the no-observable-adverse-effect concentration, ranged from 7.3 to 141. This indicates that current concentrations of TCDD-EQs in these eggs are likely causing adverse effects in the Baltic populations of white-tailed sea eagles. This study indicated that the H4IIE bioassay is useful for monitoring the presence and biological activity of TCDD-like compounds in environmental samples like white-tailed sea eagles.« less
Al-Fanharawi, Ali Abdulhamza; Rabee, Adel M; Al-Mamoori, Ayad M J
2018-04-13
To investigate the effect one of the oil products, domestic heating oil (DHO), on freshwater mollusks, Unio tigridis and Viviparous bengalensis were exposed to three DHO concentrations for each species (5.8, 8.7, and 17.4 ml L -1 for mussels; 6.5, 9.7, and 19.5 mlL -1 for snails, respectively). Antioxidant enzymes (superoxide dismutase, catalase), malondialdehyde, acetylcholinesterase and DNA damage in both species tissues were monitored over 21 days. The results showed that both antioxidant enzymes concentration (SOD and CAT) increased in the lowest DHO concentrations (5.8, and 8.7 ml L -1 ), and then decreased in the highest concentration (17.4 ml L -1 ) as the same pattern for Unio tigridis, but this not occurred for Viviparous bengalensis. MDA values recorded significantly increased compared to control. No reduction was observed in AChE concentrations in soft tissues of both mollusks may due to that DHO was a non-neurotoxicant to Unio tigridis and Viviparous bengalensis. The results of DNA damage parameters were showed significant differences (p≤ 0.05) between control and DHO concentrations except lowest concentration for each parameter measured in digestive gland of Unio tigridis. As well as, these significant differences were recorded between control and three concentrations of DHO exposure for comet length, and tail length parameters, and between control and highest oil concentration for tail moment in Viviparous bengalensis. DHO has the ability to prevent the reproduction of Viviparous bengalensis snail relation to control, that is what we considered strong evidence of the toxicity properties of DHO on the reproductive status of this species of snails. SOD, CAT, and MDA were useful biomarkers for evaluating the toxicity of DHO in mussel and snails, and comet assay was a good tool to assess the potential genotoxicity of DHO. Copyright © 2018 Elsevier Inc. All rights reserved.
Bitziou, Eleni; O'Hare, Danny; Patel, Bhavik Anil
2010-03-01
The acid secretion mechanism can be studied by measuring a series of metabolic markers and neurotransmitters from in vitro isolated tissue. A microelectrode array was used to monitor proton concentration and histamine levels from isolated guinea pig stomach tissue. The device was partially modified using iridium oxide to form a series of pH sensors, whereas unmodified gold microelectrodes were used to measure the level of histamine in the gut. Real-time measurements in the presence of the H2-receptor antagonist ranitidine produced significant decreases in the overall Delta pH response, as expected. Also, a significant variation in the Delta pH response in between pH sensors was observed in the presence of pharmacological treatment due to structural features of the tissue. No significant differences in Delta i(H) were detected in the presence of ranitidine as expected. More significantly, clear variations in Delta pH responses between animals in control conditions and those in the presence of ranitidine was observed highlighting possible variation in parietal cell density and/or variations in tissue activity. These results identify great possibilities in applying these multi-sensing devices as a long-term stable personalised diagnostic tool for pharmacological screening and disease status.
Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR
NASA Astrophysics Data System (ADS)
Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun
2010-11-01
Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.
Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration
NASA Astrophysics Data System (ADS)
Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.
2001-05-01
Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.
NASA Astrophysics Data System (ADS)
Dong, Yang; He, Honghui; He, Chao; Ma, Hui
2017-02-01
Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.
NASA Astrophysics Data System (ADS)
Oyaga Landa, Francisco Javier; Ronda Penacoba, Silvia; Deán-Ben, Xosé Luís.; Montero de Espinosa, Francisco; Razansky, Daniel
2018-02-01
Medium intensity focused ultrasound (MIFU) holds promise in important clinical applications. Generally, the aim in MIFU is to stimulate physiological mechanisms that reinforce healing responses, avoiding reaching temperatures that can cause permanent tissue damage. The outcome of interventions is then strongly affected by the temperature distribution in the treated region, and accurate monitoring represents a significant clinical need. In this work, we showcase the capacities of 4D optoacoustic imaging to monitor tissue heating during MIFU. The proposed method allows localizing the ultrasound focus, estimating the peak temperature and measuring the size of the heat-affected volume. Calibration experiments in a tissue-mimicking phantom demonstrate that the optoacoustically-estimated temperature accurately matches thermocouple readings. The good performance of the suggested approach in real tissues is further showcased in experiments with bovine muscle samples.
Felt, Stephen; Papich, Mark G; Howard, Antwain; Long, Tyler; McKeon, Gabriel; Torreilles, Stéphanie; Green, Sherril
2013-01-01
As part of an enrofloxacin pharmacokinetic study, concentrations of enrofloxacin and ciprofloxacin (metabolite) were measured in various tissues (brain, heart, kidney, liver, lung, and spleen) collected from treated (subcutaneous delivery, n = 3; intramuscular delivery, n = 3; untreated controls, n = 2) adult female Xenopus laevis by using HPLC. Enrofloxacin was rapidly absorbed after administration by either route and readily diffused into all sampled tissues. Enrofloxacin and ciprofloxacin were present in the tissue samples collected at 8 h. The highest average tissue concentrations for enrofloxacin were found in kidney, with the lowest concentrations in liver. Ciprofloxacin tissue concentrations paralleled but were always lower than those of enrofloxacin for all time points and tissues except brain and kidney. These results, together with previously published pharmacokinetic data and known minimal inhibitory concentrations of common pathogenic bacteria, provide a strong evidence-based rationale for choosing enrofloxacin to treat infectious diseases in X. laevis. PMID:23562103
Felt, Stephen; Papich, Mark G; Howard, Antwain; Long, Tyler; McKeon, Gabriel; Torreilles, Stéphanie; Green, Sherril
2013-03-01
As part of an enrofloxacin pharmacokinetic study, concentrations of enrofloxacin and ciprofloxacin (metabolite) were measured in various tissues (brain, heart, kidney, liver, lung, and spleen) collected from treated (subcutaneous delivery, n = 3; intramuscular delivery, n = 3; untreated controls, n = 2) adult female Xenopus laevis by using HPLC. Enrofloxacin was rapidly absorbed after administration by either route and readily diffused into all sampled tissues. Enrofloxacin and ciprofloxacin were present in the tissue samples collected at 8 h. The highest average tissue concentrations for enrofloxacin were found in kidney, with the lowest concentrations in liver. Ciprofloxacin tissue concentrations paralleled but were always lower than those of enrofloxacin for all time points and tissues except brain and kidney. These results, together with previously published pharmacokinetic data and known minimal inhibitory concentrations of common pathogenic bacteria, provide a strong evidence-based rationale for choosing enrofloxacin to treat infectious diseases in X. laevis.
Stable microwave radiometry system for long term monitoring of deep tissue temperature
NASA Astrophysics Data System (ADS)
Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.
2013-02-01
Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.
Stable Microwave Radiometry System for Long Term Monitoring of Deep Tissue Temperature.
Stauffer, Paul R; Rodriques, Dario B; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W; Maccarini, Paolo F
2013-02-26
There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.
Dedecjus, Marek; Kołomecki, Krzysztof; Brzeziński, Jan; Adamczewski, Zbigniew; Tazbir, Józef; Lewiński, Andrzej
2007-02-01
Angiogenesis is a process of new blood vessel development from pre-existing vasculature. It is a crucial process in normal physiology, as well as in several pathological conditions. The vascular endothelial growth factor (VEGF) represents a family of specific endothelial cell mitogens, involved in normal angiogenesis and in tumour development. The aim of the present study was to estimate the influence of L-thyroxine (L-T4) administration on poor-platelet plasma (P-PP) VEGF concentrations in patients with induced short-term hypothyroidism, monitored for differentiated thyroid carcinoma. In the present study, P-PP concentrations of VEGF, thyroglobulin, thyrotropin and free thyroid hormones were investigated in a population of 24 hypothyroid patients, who were withdrawn from L-T4 treatment for 5 weeks and studied before and after 2 months of L-T4 therapy. Only healthy female patients with no evidence of metastasis in whole body scintigraphy were included in the study. They were then compared with 20 healthy control subjects, matched for age, sex and body mass index (BMI). The patients had significantly lower plasma VEGF concentrations before treatment with L-T4 than after administration of that hormone. There was no significant difference in plasma VEGF levels, either between the patients treated with L-T4, and the controls, or between the patients untreated with L-T4, and the controls. Even short-time changes in thyrometabolic profile exert an important influence on P-PP VEGF concentrations, even if there is no thyroid tissue.
Biedermann, J S; van den Besselaar, A M H P; de Maat, M P M; Leebeek, F W G; Kruip, M J H A
2017-03-01
Essentials Differences in sensitivity to factor VII (FVII) have been suggested between thromboplastins. FVII-induced International Normalized Ratio (INR) changes differ between commercial reagents. Recombinant human thromboplastins are more sensitive to FVII than tissue-extract thromboplastins. Thromboplastin choice may affect FVII-mediated INR stability. Background Differences regarding sensitivity to factor VII have been suggested for recombinant human and tissue-extract thromboplastins used for International Normalized Ratio (INR) measurement, but the evidence is scarce. Differences in FVII sensitivity are clinically relevant, as they can affect INR stability during treatment with vitamin K antagonists (VKAs). Objectives To determine whether commercial thromboplastins react differently to changes in FVII. Methods We studied the effect of addition of FVII on the INR in plasma by using three tissue-extract (Neoplastin C1+, Hepato Quick, and Thromborel S) and three recombinant human (Recombiplastin 2G, Innovin, and CoaguChek XS) thromboplastins. Three different concentrations of purified human FVII (0.006, 0.012 and 0.062 μg mL -1 plasma), or buffer, were added to five certified pooled plasmas of patients using VKAs (INR of 1.5-3.5). Changes in FVII activity were measured with two bioassays (Neoplastin and Recombiplastin), and relative INR changes were compared between reagents. Results After addition of 0.062 μg mL -1 FVII, FVII activity in the pooled plasmas increased by approximately 20% (Neoplastin) or 32% (Recombiplastin) relative to the activity in pooled normal plasma. All thromboplastins showed dose-dependent INR decreases. The relative INR change in the pooled plasmas significantly differed between the six thromboplastins. No differences were observed among recombinant or tissue-extract thromboplastins. Pooled results indicated that the FVII-induced INR change was greater for recombinant than for tissue-extract thromboplastins. Conclusions Differences regarding FVII sensitivity exist between various thromboplastins used for VKA monitoring. Recombinant human thromboplastins are more sensitive to FVII than tissue-extract thromboplastins. Therefore, thromboplastin choice may affect FVII-mediated INR stability. © 2017 International Society on Thrombosis and Haemostasis.
NASA Astrophysics Data System (ADS)
Monica Bricelj, V.; Cembella, Allan D.; Laby, David
2014-05-01
Surfclams, Spisula solidissima, pose a particular health risk for human consumption as they are characterized by accumulation of extremely high levels of toxins associated with paralytic shellfish poisoning (PSP), slow toxin elimination and an extremely high post-ingestive capacity for toxin bioconversion. Surfclam populations experience a wide range of temperatures along the NW Atlantic continental shelf, and are undergoing range contraction that has been attributed to global warming. In this study the influence of temperature (5, 12 and 21 °C) on detoxification kinetics of individual PSP toxins in two tissue compartments of juvenile surfclams (∼35 mm shell length) was determined under controlled laboratory conditions, over prolonged (2.4 months) depuration. Clams were toxified with a representative regional Gulf of Maine isolate of the dinoflagellate Alexandrium fundyense of known toxin profile, allowing tracking of changes in toxin composition and calculated toxicity in surfclam tissues. The visceral mass detoxified at all temperatures, although toxin loss rate increased with increasing temperature. In contrast, total toxin content and calculated toxicities in other tissues remained constant or even increased during depuration, suggesting a physiological or biochemical toxin-retention mechanism in this tissue pool and temperature-independent detoxification. In vivo toxin compositional changes in surfclam tissues found in this study provide evidence of specific toxin conversion pathways, involving both reductive and decarbamoylation pathways. We conclude that such toxin biotransformations, especially in non-visceral tissues, may introduce a discrepancy in describing kinetics of total toxicity (in saxitoxin equivalents [STXeq]) of S. solidissima over prolonged detoxification. Nevertheless, use of total toxicity values generated by routine regulatory monitoring based upon mouse bioassays or calculated from chemical analytical determination of molar toxin concentrations is adequate for first-order modeling of toxin kinetics in this species. Furthermore, the differential detoxification response of viscera and other tissues in relation to temperature emphasizes the need for two-compartment modeling to describe the fate of PSP toxins in this species. Finally, key parameters were identified that may prove useful in hindcasting the timing of toxic blooms or new toxin input in deep offshore waters where routine monitoring of toxic phytoplankton is impractical.
Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico.
Waliszewski, Stefan M; Sanchez, K; Caba, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Valencia Quintana, R; Infanzon, R
2012-02-01
The objective of this study was to determine the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in adipose tissue of females living in Puebla, Mexico. Organochlorine pesticides were analyzed in 75 abdominal adipose tissue samples taken during 2010 by autopsy at the Forensic Services of Puebla. The results were expressed as mg/kg on fat basis. In analyzed samples the following pesticides were detected: p,p'-DDE in 100% of samples at mean 1.464 mg/kg; p,p'-DDT in 96.0.% of samples at mean 0.105 mg/kg; op'DDT in 89.3% of monitored samples at mean 0.025 mg/kg and β-HCH in 94.7% of the samples at mean 0.108 mg/kg. To show if organochlorine pesticide levels in monitored female's adipose tissues are age dependant, the group was divided in three ages ranges (13-26, 26-57 and 57-96 years). The mean and median levels of all organochlorine pesticides increase significantly (p < 0.05) from the first to second and from the first to third group. At the same time, the increase of mean and medians levels from the second to third group were not statistically significant (p > 0.05). The present results compared to previous ones from 2008 indicates an increase in the concentrations during the 2010 study, but only the differences for pp'DDE and op'DDT were statistically significant. The 2010 group of females was older compared to the 2008 group. The presence of organochlorine pesticide residues is still observed, indicating uniform and permanent exposure to the pesticides by Puebla inhabitants.
ASSESSMENT OF INHALATION DOSE FROM THE INDOOR 222Rn AND 220Rn USING RAD7 AND PINHOLE CUP DOSEMETERS.
Mehra, R; Jakhu, R; Bangotra, P; Kaur, K; Mittal, H M
2016-10-01
Radon is the most important source of natural radiation and is responsible for approximately half of the received dose from all sources. Most of this dose is from inhalation of the radon progeny, especially in closed atmospheres. Concentration of radon ( 222 Rn) and thoron ( 220 Rn) in the different villages of Jalandhar and Kapurthala district of Punjab has been calculated by pinhole cup dosemeters and RAD7. On an average, it has been observed from the study that the values of all the parameters calculated are higher in case of active monitoring than the passive monitoring. The calculated equilibrium equivalent 222 Rn concentration (EEC Rn ) and equilibrium equivalent 220 Rn concentration (EEC Th ) fluctuate in the range from 5.58 to 34.29 and from 0.35 to 2.7 Bq m -3 as estimated by active technique, respectively. Similarly, the observed mean value of the potential alpha energy concentration of 222 Rn (PAEC Rn ) and 220 Rn (PAEC Th ) is 4.55 and 4.34 mWL, respectively. The dose rate to the soft tissues and lung from indoor 222 Rn varies from 0.06 to 0.38 and from 0.50 to 3.05 nGy h -1 , respectively. The total annual effective dose for the residents of the study area is less than 10 mSv. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High Protein Diet and Huntington's Disease
Wu, Yih-Ru; Chen, Pei; Tsai, Fuu-Jen; Yang, Chueh-Lien; Tsao, Ya-Tzu; Chang, Wen; Hsieh, I-Shan; Chern, Yijuang; Soong, Bing-Wen
2015-01-01
Huntington’s disease (HD) is a neurodegenerative disorder caused by the huntingtin (HTT) gene with expanded CAG repeats. In addition to the apparent brain abnormalities, impairments also occur in peripheral tissues. We previously reported that mutant Huntingtin (mHTT) exists in the liver and causes urea cycle deficiency. A low protein diet (17%) restores urea cycle activity and ameliorates symptoms in HD model mice. It remains unknown whether the dietary protein content should be monitored closely in HD patients because the normal protein consumption is lower in humans (~15% of total calories) than in mice (~22%). We assessed whether dietary protein content affects the urea cycle in HD patients. Thirty HD patients were hospitalized and received a standard protein diet (13.7% protein) for 5 days, followed by a high protein diet (HPD, 26.3% protein) for another 5 days. Urea cycle deficiency was monitored by the blood levels of citrulline and ammonia. HD progression was determined by the Unified Huntington’s Disease Rating Scale (UHDRS). The HPD increased blood citrulline concentration from 15.19 μmol/l to 16.30 μmol/l (p = 0.0378) in HD patients but did not change blood ammonia concentration. A 2-year pilot study of 14 HD patients found no significant correlation between blood citrulline concentration and HD progression. Our results indicated a short period of the HPD did not markedly compromise urea cycle function. Blood citrulline concentration is not a reliable biomarker of HD progression. PMID:25992839
Faust, Derek R; Hooper, Michael J; Cobb, George P; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N
2014-09-01
Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles. © 2014 SETAC.
Risch, Martin R.
2004-01-01
A base-wide assessment of surface-water quality at the U.S. Army Atterbury Reserve Forces Training Area near Edinburgh, Indiana, examined short-term and long-term quality of surface water flowing into, across, and out of a 33,760-acre study area. The 30-day geometric-mean concentrations of fecal-indicator bacteria (Escherichia coli) in water samples from all 16 monitoring sites on streams in the study area were greater than the Indiana recreational water-quality standard. None of the bacteria concentrations in samples from four lakes exceeded the standard. Half the samples with bacteria concentrations greater than the single-sample standard contained chemical tracers potentially associated with human sewage. Increased turbidity of water samples was related statistically to increased bacteria concentration. Lead concentrations ranging from 0.5 to 2.0 micrograms per liter were detected in water samples at seven monitoring sites. Lead in one sample collected during high-streamflow conditions was greater than the calculated Indiana water-quality standard. With the exception of Escherichia coli and lead, 211 of 213 chemical constituents analyzed in water samples did not exceed Indiana water-quality standards. Out of 131 constituents analyzed in streambed-sediment and fish-tissue samples from three sites in the Common Impact Area for weapons training, the largest concentrations overall were detected for copper, lead, manganese, strontium, and zinc. Fish-community integrity, based on diversity and pollution tolerance, was rated poor at one of those three sites. Compared with State criteria, the fish-community data indicated 8 of 10 stream reaches in the study area could be categorized as "fully supporting" aquatic-life uses.
Therapeutic drug monitoring of intracellular anti-infective agents.
D'Avolio, Antonio; Pensi, Debora; Baietto, Lorena; Di Perri, Giovanni
2014-12-01
Many microorganisms, including viruses, some bacteria and fungi, replicate within the cells. Therefore, the efficacy of therapy and the selection of resistances could be related to intracellular concentration of the drugs and to their ability to cross biological membranes and penetrate into various tissue compartments. The efficacy of treatment may be limited by pharmacological factors. Dose-response relationship exists for many agents, and failure to maintain adequate concentrations may allow the development of viral or bacterial resistance, thereby decreasing the probability of response of current and subsequent therapies. The major target of antivirals and many other anti-infective agents is within infected cells. Therefore, clinical outcome ultimately should be related to intracellular drug concentrations. Intracellular pharmacokinetics provides information regarding drug disposition in a compartment where microorganism replication occurs and combined with plasma data may be useful in understanding therapeutic failure in relation to cellular resistance. With a focus on possible methodological biases, this review reports the current state of the art in intracellular, particularly in peripheral blood mononuclear cells, therapeutic drug monitoring of the following anti-infective drugs: antivirals, antifungals and antibiotics. Although measurement of intracellular concentrations needs to be still standardized focusing on each single drug, this review showed some relationships between intracellular concentrations of few anti-infective drugs and their efficacy and/or toxicity. Such relationships should be interpreted with caution, as intracellular concentrations reflect the total amount of drug within the cell and not the effective unbound fraction. The number of clinical studies in that area is, however, rather limited, and not always adequately designed. Then, intracellular drug determination has to be considered a test for research only and not to be carried out as routine. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eikje, Natalja Skrebova; Sota, Takayuki; Aizawa, Katsuo
2007-07-01
Attempts were made to non-invasively detect glucose-specific spectral signals in the skin by ATR-FTIR spectroscopy. In vivo spectra were collected from the inner wrists of healthy, prediabetes and diabetes subjects in the 750-4000 cm -1 region, with a closer assessment of the glucose-related region between 1000 and 1180 cm -1. Spectra in vivo showed glucose-specific peaks at 1030, 1080, 1118 and 1151 cm -1, as a variety of glucose solutions are found in vitro. Based on the differences of intensities at 1030 and 1118 cm -1 two spectral patterns were seen: I 1118 > I 1030 for a diabetes and I 1030> I 1118 for non-diabetes subjects. The peak at 1030 cm -1 was used to assess glucose concentrations in the skin due to its good correlation with glucose concentrations in vitro. Calculated mean values of the peak at 1030 cm -1 showed evidence of correlation with blood glucose levels when grouped as <= 140, 140-200 and >= 200 mg/dL, though there was no constant correlation between them when compared before/after OGTT or at the fasting/postprandial states. Absorbances at 1030 cm -1 were not only increased in a dose-dependent manner in a diabetes patient, but were also generally higher than in non-diabetes subjects at 30 min OGTT assessment. Also we could monitor absorbances at 1030 cm -1 and determine their changes in the skin tissue at different times of OGTT. We assume that our approach to in vivo measurement and monitoring of glucose concentrations at 1030 cm -1 may be one of the indicators to assess glucose activity level and its changes in the skin tissue, and has further implications in the study of clinical and pathophysiological aspects of hyperglycemia in diabetes and non-diabetes subjects by ATR-FTIR spectroscopy.
Costa, Marcela Brandão; Tavares, Francesca Valêncio; Martinez, Claudia Bueno; Colares, Ioni Gonçalves; Martins, Camila de Martinez Gaspar
2018-07-15
This study investigated the ability of Potamogeton pectinatus L. to accumulate copper and its effects on plants. In accumulation tests, macrophytes were exposed (96 h) to different copper concentrations (0-1000 µM) and the metal was measured in media and plant tissues (roots, stems and leaves) to determine the bioconcentration factor (BCF). Plants accumulated high concentrations of copper in a dose-dependent manner and roots was the main organ for copper accumulation. However, the more copper increased in water, the more BCF values decreased. It may be due to either saturation of copper uptake or down-regulation of metal uptake by plants. In the physiological and morphological analyses, plants were kept (96 h) in Hoagland nutrient solution without copper, in full Hoagland solution (0.5 µM Cu) and in Hoagland medium with copper from 1 to 100 µM. The absence and the presence of copper above to 1 µM inhibited photosynthesis. Chlorophylls and carotenoid levels also decreased with the excess of copper, a fact that may have affected the photosystem II-dependent of chlorophyll and caused photosynthesis suppression. Only macrophytes at 10 µM Cu showed decrease in length and number of leaves on the 10th day of the test, when they died. Chlorosis and necrosis were observed in control groups and groups with extra copper, but not in Hoalgand group. Overall, the macrophyte P. pectinatus can be considered a suitable plant for monitoring environments contaminated by copper, based on results of copper accumulation in the plant, decrease in pigment concentration and presence of chlorosis and necrosis. However, values of BCF based on fresh water tissues was not proper to indicate the use of P. pectinatus for cleaning environments contaminated by copper. Copyright © 2018 Elsevier Inc. All rights reserved.
Relationship between air pollution and metal levels in cancerous and non-cancerous lung tissues.
Binkowski, Łukasz J; Rogoziński, Paweł; Błaszczyk, Martyna; Semla, Magdalena; Melia, Patrick M; Stawarz, Robert
2016-12-05
We aimed to check the relationships between levels of metals (Ca, Cd, Cu, Fe, Hg and Zn) in cancerous and non-cancerous lung tissues and their link to air pollution, expressed as particulate matter (PM) concentrations. The study also examines the influence on metal concentration in the lung tissue of patients' sex and the distance of their homes from the nearest emitter. We found that the general pattern of ascending concentrations in tumor tissue was as follows: Hg < Cd < Cu < Ca < Zn < Fe. In non-affected lung tissue the order of concentrations of Ca and Fe was reversed. With the exception of Cd and Cu, levels of metals were found in higher accumulations in non-cancerous tissue (e.g., Fe 326.423 and Ca 302.730 μg/g d.w) than in tumorous tissue (Fe 150.735 and Ca 15.025 μg/g d.w). Neither the PM10 (PM of a diameter of 10 μm) concentration nor sex revealed any connection with metal concentrations. The shorter the distance from the emitter, the higher the metal concentrations that tended to be observed for almost all metals, but a statistically significant (but weak) relationship was noted only for Cu in tumor tissue (r s : -0.4869).
Stafford, Jennifer M; Lambert, Charles E; Zyskowski, Justin A; Engfehr, Cheryl L; Fletcher, Oscar J; Clark, Shanna L; Tiwary, Asheesh; Gulde, Cynthia M; Sample, Bradley E
2016-03-01
Limited data are available on the effects of molybdenum (Mo) on avian wildlife, which impairs evaluation of ecological exposure and risk. While Mo is an essential trace nutrient in birds, little is known of its toxicity to birds exposed to molybdenum disulfide (MoS2), the predominant form found in molybdenite ore. The chemical form and bioavailability of Mo is important in determining its toxicity. Avian toxicity tests typically involve a soluble form of Mo, such as sodium molybdate dihydrate (SMD, Na2MoO4·2H2O); however MoS2 is generally insoluble, with low bioaccessibility under most environmental conditions. The current study monitored survival and general health (body weight and food consumption) of 9-day old northern bobwhite exposed to soluble Mo (SMD) and ore-related Mo (MoS2) in their diet for 30 days. Toxicity and bioavailability (e.g. tissue distribution) of the two Mo forms were compared. Histopathology evaluations and serum, kidney, liver, and bone tissue sample analyses were conducted. Copper, a nutrient integrally associated with Mo toxicity, was also measured in the diet and tissue. No treatment-related mortality occurred and no treatment-related lesions were recorded for either Mo form. Tissue analyses detected increased Mo concentrations in serum, kidney, liver, and bone tissues following exposure to SMD, with decreasing concentrations following a post-exposure period. For the soluble form, a No-Observed-Adverse-Effect Concentration (NOAEC) of 1200 mg Mo as SMD/kg feed (134 mg SMD/kg body weight/day) was identified based on body weight and food consumption. No adverse effects were observed in birds exposed to MoS2 at the maximum dose of 5000 mg MoS2/kg feed (545 mg MoS2/kg body weight/day). These results show that effects associated with MoS2, the more environmentally prevalent and less bioavailable Mo form, are much less than those observed for SMD. These data should support more realistic representations of exposure and risks to avian receptors from environmental Mo.
Implicit Versus Explicit Applications of the Tissue Residue Approach, Oral Presentation
Toxic effect models based on the relationship of toxic effects to chemical concentrations within receptor organism tissues can often be reformulated to describe the relationship of toxic effects to exposure concentrations without actual specification of the tissue concentrations....
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Deutsch, Assaf; Dekel, Nava; Pevzner, Eliyahu; Jaronkin, Alex
2005-04-01
Real time Monitoring of mitochondrial function in vivo is a significant factor in the understanding of tissue vitality. Nevertheless a single parameter monitoring device is not appropriate and effective in clinical diagnosis of tissue vitality. Therefore we have developed a multi-parametric monitoring system that monitors, in addition to mitochondrial NADH redox state, tissue microcirculatory blood flow, tissue total back-scattered light as an indication of blood volume and blood oxygenation (Hb02). In the present communication a new device named "CritiView" is described. This device was developed in order to enable real time monitoring of the four parameters from various organs in the body. The main medical application of the CritiView is in critical care medicine of patients hospitalized in the Intensive Care Units (ICUs) and intraoperatively in operating rooms. The physiological basis for our clinical monitoring approach is based on the well known response to the development of body emergency situation, such as shock or trauma. Under such conditions a process of blood flow redistribution will give preference to vital organs (Brain, Heart) neglecting less vital organs (Skin, G-I tract or the urinary system). Under such condition the brain will by hyperperfused and O2 supply will increase to provide the need of the activated mitochondria. The non-vital organs will be hypoperfused and mitochondial function will be inhibited leading to energy failure. This differentiation between the two types of organs could be used for the early detection of body deterioration by monitoring of the non-vital organ vitality. A fiber optic sensor was embedded in a Foley catheter, enabling the monitoring of Urethral wall vitality, to serve as an early warning signal of body deterioration.
Bahrami, Helale; De Kok, Luit J; Armstrong, Roger; Fitzgerald, Glenn J; Bourgault, Maryse; Henty, Samuel; Tausz, Michael; Tausz-Posch, Sabine
2017-09-01
The atmospheric CO 2 concentration ([CO 2 ]) is increasing and predicted to reach ∼550ppm by 2050. Increasing [CO 2 ] typically stimulates crop growth and yield, but decreases concentrations of nutrients, such as nitrogen ([N]), and therefore protein, in plant tissues and grains. Such changes in grain composition are expected to have negative implications for the nutritional and economic value of grains. This study addresses two mechanisms potentially accountable for the phenomenon of elevated [CO 2 ]-induced decreases in [N]: N uptake per unit length of roots as well as inhibition of the assimilation of nitrate (NO 3 - ) into protein are investigated and related to grain protein. We analysed two wheat cultivars from a similar genetic background but contrasting in agronomic features (Triticum aestivum L. cv. Scout and Yitpi). Plants were field-grown within the Australian Grains Free Air CO 2 Enrichment (AGFACE) facility under two atmospheric [CO 2 ] (ambient, ∼400ppm, and elevated, ∼550ppm) and two water treatments (rain-fed and well-watered). Aboveground dry weight (ADW) and root length (RL, captured by a mini-rhizotron root growth monitoring system), as well as [N] and NO 3 - concentrations ([NO 3 - ]) were monitored throughout the growing season and related to grain protein at harvest. RL generally increased under e[CO 2 ] and varied between water supply and cultivars. The ratio of total aboveground N (TN) taken up per RL was affected by CO 2 treatment only later in the season and there was no significant correlation between TN/RL and grain protein concentration across cultivars and [CO 2 ] treatments. In contrast, a greater percentage of N remained as unassimilated [NO 3 - ] in the tissue of e[CO 2 ] grown crops (expressed as the ratio of NO 3 - to total N) and this was significantly correlated with decreased grain protein. These findings suggest that e[CO 2 ] directly affects the nitrate assimilation capacity of wheat with direct negative implications for grain quality. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.
Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization
NASA Astrophysics Data System (ADS)
Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom
2014-03-01
Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.
Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu
2016-09-01
Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.
NASA Astrophysics Data System (ADS)
Felici, A.; Trombetta, C.; Abundo, P.; Foti, C.; Rosato, N.
2012-10-01
Mechanical vibrations application is increasingly common in clinical practice due to the effectiveness induced by these stimuli on the human body. Local vibration (LV) application allows to apply and act only where needed, focusing the treatment on the selected body segment. An experimental device for LV application was used to generate the vibrations. The aim of this study was to detect and analyze the metabolic effects induced by LV on the brachial bicep muscle by means of an oximeter. This device monitors tissue and muscle oxygenation using NIRS (Near Infrared Spectroscopy) and is able to determine the concentration of haemoglobin and oxygen saturation in the tissue. In a preliminary stage we also investigated the effects induced by LV application, by measuring blood pressure, heart rate, oxygen saturation and temperature. These data confirmed that the effects induced by LV application are actually localized. The results of the measurements obtained using the oximeter during the vibration application, have shown a variation of the concentrations. In particular an increase of oxygenate haemoglobin was shown, probably caused by an increased muscle activity and/or a rise in local temperature detected during the application.
Conformable actively multiplexed high-density surface electrode array for brain interfacing
Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan
2015-01-13
Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.
Whitaker, Hayley C; Kote-Jarai, Zsofia; Ross-Adams, Helen; Warren, Anne Y; Burge, Johanna; George, Anne; Bancroft, Elizabeth; Jhavar, Sameer; Leongamornlert, Daniel; Tymrakiewicz, Malgorzata; Saunders, Edward; Page, Elizabeth; Mitra, Anita; Mitchell, Gillian; Lindeman, Geoffrey J; Evans, D Gareth; Blanco, Ignacio; Mercer, Catherine; Rubinstein, Wendy S; Clowes, Virginia; Douglas, Fiona; Hodgson, Shirley; Walker, Lisa; Donaldson, Alan; Izatt, Louise; Dorkins, Huw; Male, Alison; Tucker, Kathy; Stapleton, Alan; Lam, Jimmy; Kirk, Judy; Lilja, Hans; Easton, Douglas; Cooper, Colin; Eeles, Rosalind; Neal, David E
2010-10-13
Microseminoprotein-beta (MSMB) regulates apoptosis and using genome-wide association studies the rs10993994 single nucleotide polymorphism in the MSMB promoter has been linked to an increased risk of developing prostate cancer. The promoter location of the risk allele, and its ability to reduce promoter activity, suggested that the rs10993994 risk allele could result in lowered MSMB in benign tissue leading to increased prostate cancer risk. MSMB expression in benign and malignant prostate tissue was examined using immunohistochemistry and compared with the rs10993994 genotype. Urinary MSMB concentrations were determined by ELISA and correlated with urinary PSA, the presence or absence of cancer, rs10993994 genotype and age of onset. MSMB levels in prostate tissue and urine were greatly reduced with tumourigenesis. Urinary MSMB was better than urinary PSA at differentiating men with prostate cancer at all Gleason grades. The high risk allele was associated with heterogeneity of MSMB staining and loss of MSMB in both tissue and urine in benign prostate. These data show that some high risk alleles discovered using genome-wide association studies produce phenotypic effects with potential clinical utility. We provide the first link between a low penetrance polymorphism for prostate cancer and a potential test in human tissue and bodily fluids. There is potential to develop tissue and urinary MSMB for a biomarker of prostate cancer risk, diagnosis and disease monitoring.
Whitaker, Hayley C.; Warren, Anne Y.; Burge, Johanna; George, Anne; Bancroft, Elizabeth; Jhavar, Sameer; Leongamornlert, Daniel; Tymrakiewicz, Malgorzata; Saunders, Edward; Page, Elizabeth; Mitra, Anita; Mitchell, Gillian; Lindeman, Geoffrey J.; Evans, D. Gareth; Blanco, Ignacio; Mercer, Catherine; Rubinstein, Wendy S.; Clowes, Virginia; Douglas, Fiona; Hodgson, Shirley; Walker, Lisa; Donaldson, Alan; Izatt, Louise; Dorkins, Huw; Male, Alison; Tucker, Kathy; Stapleton, Alan; Lam, Jimmy; Kirk, Judy; Lilja, Hans; Easton, Douglas; Cooper, Colin; Eeles, Rosalind; Neal, David E.
2010-01-01
Background Microseminoprotein-beta (MSMB) regulates apoptosis and using genome-wide association studies the rs10993994 single nucleotide polymorphism in the MSMB promoter has been linked to an increased risk of developing prostate cancer. The promoter location of the risk allele, and its ability to reduce promoter activity, suggested that the rs10993994 risk allele could result in lowered MSMB in benign tissue leading to increased prostate cancer risk. Methodology/Principal Findings MSMB expression in benign and malignant prostate tissue was examined using immunohistochemistry and compared with the rs10993994 genotype. Urinary MSMB concentrations were determined by ELISA and correlated with urinary PSA, the presence or absence of cancer, rs10993994 genotype and age of onset. MSMB levels in prostate tissue and urine were greatly reduced with tumourigenesis. Urinary MSMB was better than urinary PSA at differentiating men with prostate cancer at all Gleason grades. The high risk allele was associated with heterogeneity of MSMB staining and loss of MSMB in both tissue and urine in benign prostate. Conclusions These data show that some high risk alleles discovered using genome-wide association studies produce phenotypic effects with potential clinical utility. We provide the first link between a low penetrance polymorphism for prostate cancer and a potential test in human tissue and bodily fluids. There is potential to develop tissue and urinary MSMB for a biomarker of prostate cancer risk, diagnosis and disease monitoring. PMID:20967219
Gurav, Sandip Dhondiram; Jeniffer, Sherine; Punde, Ravindra; Gilibili, Ravindranath Reddy; Giri, Sanjeev; Srinivas, Nuggehally R; Mullangi, Ramesh
2012-04-01
A general practice in bioanalysis is that, whatever the biological matrix the analyte is being quantified in, the validation is performed in the same matrix as per regulatory guidelines. In this paper, we are presenting the applicability of a validated LC-MS/MS method in rat plasma for JI-101, to estimate the concentrations of JI-101 in various tissues that were harvested in a rat tissue distribution study. A simple protein precipitation technique was used to extract JI-101 and internal standard from the tissue homogenates. The recovery of JI-101 in all the matrices was found to be >70%. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI-101 and 180.1 → 110.1 for internal standard. The linearity range was 5.02-4017 ng/mL. The JI-101 levels were quantifiable in the various tissue samples harvested in this study. Therefore, the use of a previously validated JI-101 assay in plasma circumvented the tedious process of method development/validation in various tissue matrices. Copyright © 2011 John Wiley & Sons, Ltd.
Patterson, Kristine B.; Malone, Stephanie A.; Shaheen, Nicholas J.; Asher Prince, Heather M.; Dumond, Julie B.; Spacek, Melissa B.; Heidt, Paris E.; Cohen, Myron S.; Kashuba, Angela D. M.
2011-01-01
Background. Antiretroviral pharmacology in seminal plasma (SP) and rectal tissue (RT) may provide insight into antiretroviral resistance and the prevention of sexual transmission of human immunodeficiency virus (HIV). Saliva may be of utility for noninvasively measuring adherence. Methods. A pharmacokinetic study was performed in 12 HIV-negative men receiving maraviroc 300 mg twice daily for 8 days. Seven time-matched pairs of blood plasma (BP) and saliva samples were collected over 12 h on day 1 (PK1) and days 7 and 8 (PK2). One RT sample from each subject was collected during PK1 and PK2. Two SP samples were collected from each subject during PK1, and 6 SP samples were collected from each subject during PK2. Results. SP AUCs were ∼50% lower than BP. However, protein binding in SP ranged from 4% to 25%, resulting in protein-free concentrations >2-fold higher than BP. RT AUCs were 7.5- to 26-fold higher than BP. Maraviroc saliva AUCs were ∼70% lower than BP, but saliva concentrations correlated with BP (r2 = 0.58). Conclusions. More pharmacologically available maraviroc was found in SP than BP. High RT concentrations are promising for preventing rectal HIV acquisition. Saliva correlation with BP suggests that this may be useful for monitoring adherence. Clinical Trials Registration. NCT00775294. PMID:21502084
Yuan, Shuai; Roney, Celeste A.; Wierwille, Jerry; Chen, Chao-Wei; Xu, Biying; Jiang, James; Ma, Hongzhou; Cable, Alex; Summers, Ronald M.; Chen, Yu
2010-01-01
Optical coherence tomography (OCT) provides high-resolution, cross-sectional imaging of tissue microstructure in situ and in real-time, while fluorescence molecular imaging (FMI) enables the visualization of basic molecular processes. There are great interests in combining these two modalities so that the tissue's structural and molecular information can be obtained simultaneously. This could greatly benefit biomedical applications such as detecting early diseases and monitoring therapeutic interventions. In this research, an optical system that combines OCT and FMI was developed. The system demonstrated that it could co-register en face OCT and FMI images with a 2.4 × 2.4 mm field of view. The transverse resolutions of OCT and FMI of the system are both ~10 μm. Capillary tubes filled with fluorescent dye Cy 5.5 in different concentrations under a scattering medium are used as the phantom. En face OCT images of the phantoms were obtained and successfully co-registered with FMI images that were acquired simultaneously. A linear relationship between FMI intensity and dye concentration was observed. The relationship between FMI intensity and target fluorescence tube depth measured by OCT images was also observed and compared with theoretical modeling. This relationship could help in correcting reconstructed dye concentration. Imaging of colon polyps of APCmin mouse model is presented as an example of biological applications of this co-registered OCT/FMI system. PMID:20009192
Tissue Penetration of Antifungal Agents
Felton, Timothy; Troke, Peter F.
2014-01-01
SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137
Naimo, T.J.; Monroe, E.M.
1999-01-01
With the development of techniques to non-lethally biopsy tissue from unionids, a new method is available to measure changes in biochemical, contaminant, and genetic constituents in this imperiled faunal group. However, before its widespread application, information on the variability of biochemical components within and among tissues needs to be evaluated. We measured glycogen concentrations in foot and mantle tissue in Amblema plicata plicata (Say, 1817) to determine if glycogen was evenly distributed within and between tissues and to determine which tissue might be more responsive to the stress associated with relocating mussels. Glycogen was measured in two groups of mussels: those sampled from their native environment (undisturbed mussels) and quickly frozen for analysis and those relocated into an artificial pond (relocated mussels) for 24 months before analysis. In both undisturbed and relocated mussels, glycogen concentrations were evenly distributed within foot, but not within mantle tissue. In mantle tissue, concentrations of glycogen varied about 2-fold among sections. In addition, glycogen varied significantly between tissues in undisturbed mussels, but not in relocated mussels. Twenty-four months after relocation, glycogen concentrations had declined by 80% in mantle tissue and by 56% in foot tissue relative to the undisturbed mussels. These data indicate that representative biopsy samples can be obtained from foot tissue, but not mantle tissue. We hypothesize that mantle tissue could be more responsive to the stress of relocation due to its high metabolic activity associated with shell formation.
Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops.
Bhandari, Shiva Ram; Jo, Jung Su; Lee, Jun Gu
2015-08-31
Glucosinolate (GSL) profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot) were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g(-1)) and sprouts (162.19 µmol·g(-1)), whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g(-1)) and roots (73.61 µmol·g(-1)). The lowest GSL concentrations were observed in radish across all tissues examined.
Atta, Alhassan; Voegborlo, Ray Bright; Agorku, Eric Selorm
2012-05-01
Total mercury concentrations were determined in seven tissues of 38 fish samples comprising six species from the Kpong hydroelectric reservoir in Ghana by cold vapour atomic absorption spectrometry technique using an automatic mercury analyzer. Mercury concentration in all the tissues ranged from 0.005 to 0.022 μg/g wet weight. In general, the concentration of mercury in all the tissues were decreasing in the order; liver > muscle > intestine > stomach > gonad > gill > swim bladder. Mercury concentration was generally greater in the tissues of high-trophic-level fish such as Clarotes laticeps, Mormyrops anguilloides and Chrysichthys aurutus whereas low-trophic-level fish such as Oreochromis niloticus recorded low mercury concentration in their tissues. The results obtained for total mercury concentration in the muscle tissues analysed in this study are below the WHO/FAO threshold limit of 0.5 μg/g. This suggests that the exposure of the general public to Hg through fish consumption can be considered negligible.
Hinck, J.E.; Schmitt, C.J.; Chojnacki, K.A.; Tillitt, D.E.
2009-01-01
Organochlorine chemical residues and elemental concentrations were measured in piscivorous and benthivorous fish at 111 sites from large U.S. river basins. Potential contaminant sources such as urban and agricultural runoff, industrial discharges, mine drainage, and irrigation varied among the sampling sites. Our objectives were to provide summary statistics for chemical contaminants and to determine if contaminant concentrations in the fish were a risk to wildlife that forage at these sites. Concentrations of dieldrin, total DDT, total PCBs, toxaphene, TCDD-EQ, cadmium, chromium, mercury, lead, selenium, and zinc exceeded toxicity thresholds to protect fish and piscivorous wildlife in samples from at least one site; most exceedences were for total PCBs, mercury, and zinc. Chemical concentrations in fish from the Mississippi River Basin exceeded the greatest number of toxicity thresholds. Screening level wildlife risk analysis models were developed for bald eagle and mink using no adverse effect levels (NOAELs), which were derived from adult dietary exposure or tissue concentration studies and based primarily on reproductive endpoints. No effect hazard concentrations (NEHC) were calculated by comparing the NOAEL to the food ingestion rate (dietary-based NOAEL) or biomagnification factor (tissue-based NOAEL) of each receptor. Piscivorous wildlife may be at risk from a contaminant if the measured concentration in fish exceeds the NEHC. Concentrations of most organochlorine residues and elemental contaminants represented no to low risk to bald eagle and mink at most sites. The risk associated with pentachloroanisole, aldrin, Dacthal, methoxychlor, mirex, and toxaphene was unknown because NOAELs for these contaminants were not available for bald eagle or mink. Risk differed among modeled species and sites. Our screening level analysis indicates that the greatest risk to piscivorous wildlife was from total DDT, total PCBs, TCDD-EQ, mercury, and selenium. Bald eagles were at greater risk to total DDT and total PCBs than mink, whereas risks of TCDD-EQ, mercury, and selenium were greater to mink than bald eagle. ?? Springer Science+Business Media B.V. 2008.
López Cadenas, Cristina; Fernández Martínez, Nélida; Sierra Vega, Matilde; Diez Liébana, Maria J; Gonzalo Orden, Jose M; Sahagún Prieto, Ana M; García Vieitez, Juan J
2012-11-01
To determine the tissue distribution of enrofloxacin after intramammary or simulated systemic administration in isolated perfused sheep udders by measuring its concentration at various sample collection sites. 26 udders (obtained following euthanasia) from 26 healthy lactating sheep. For each isolated udder, 1 mammary gland was perfused with warmed, gassed Tyrode solution. Enrofloxacin (1 g of enrofloxacin/5 g of ointment) was administered into the perfused gland via the intramammary route or systemically via the perfusion fluid (equivalent to a dose of 5 mg/kg). Samples of the perfusate were obtained every 30 minutes for 180 minutes; glandular tissue samples were obtained at 2, 4, 6, and 8 cm from the teat base after 180 minutes. The enrofloxacin content of the perfusate and tissue samples was analyzed via high-performance liquid chromatography with UV detection. After intramammary administration, maximun perfusate enrofloxacin concentration was detected at 180 minutes and, at this time, mean tissue enrofloxacin concentration was detected and mean tissue enrofloxacin concentration was 123.80, 54.48, 36.72, and 26.42 μg/g of tissue at 2, 4, 6, and 8 cm from the teat base, respectively. Following systemic administration, perfusate enrofloxacin concentration decreased with time and, at 180 minutes, tissue enrofloxacin concentrations ranged from 40.38 to 35.58 μg/g of tissue. By 180 minutes after administration via the intramammary or systemic route in isolated perfused sheep mammary glands, mean tissue concentration of enrofloxacin was greater than the minimum inhibitory concentration required to inhibit growth of 90% of many common mastitis pathogens in sheep. Use of either route of administration (or in combination) appears suitable for the treatment of acute mastitis in sheep.
Hutchinson, M J; Young, P B; Kennedy, D G
2004-06-01
Carbadox cannot be used in food-producing animals within the European Union following the adoption of Commission Regulation EC 2788/98/EC. Monitoring of the longest remaining residue--quinoxaline-2-car-boxylic acid (QCA)--is the most effective way of enforcing the prohibition on its use. The study was under taken to determine if QCA could be passed from pig to pig following the exposure of unmedicated animals to housing that had previously contained medicated animals. Drug-withdrawal studies were also carried out on medicated animals. Distinction between treated animals and those exposed to QCA might be required by competent national authorities to determine whether a positive result for QCA in tissue is truly 'violative'. Comparison of the ratio concentrations of QCA in tissues and body fluids was made to determine if they, could be used as criteria for discrimination between illegally treated animals and environmental contamination.
Ultrasonography in lung pathologies: new perspectives.
Demi, Libertario; Demi, Marcello; Smargiassi, Andrea; Inchingolo, Riccardo; Faita, Francesco; Soldati, Gino
2014-01-01
Nowadays, ultrasound techniques have not gained importance in the diagnosis and monitoring of lung pathologies yet because of the high mismatch in acoustic impedance between air and intercostal tissues. However, it is evident that B-mode imaging provides important information on pulmonary tissue, although in the form of image artifacts. Notwithstanding medical evidences, there exists no ultrasound-based method dedicated to the lung, hampering de facto the full exploitation of ultrasound potentials. A chance is given by the experience acquired in other fields, where acoustic attenuation is used to estimate concentrations of suspended particles in liquids and of air-bubbles in aerated foods. Custom hardware must be developed since commercial echographic equipment has been optimized to work with low acoustic impedance mismatches, and, in general, does not provide the primitive radiofrequency (RF) signals nor the possibility to tune key acquisition parameters such as ultrasound carrier frequency and pulse bandwidth, which are surely needed for our application.
Ultrasonography in lung pathologies: new perspectives
2014-01-01
Background Nowadays, ultrasound techniques have not gained importance in the diagnosis and monitoring of lung pathologies yet because of the high mismatch in acoustic impedance between air and intercostal tissues. However, it is evident that B-mode imaging provides important information on pulmonary tissue, although in the form of image artifacts. Findings Notwithstanding medical evidences, there exists no ultrasound-based method dedicated to the lung, hampering de facto the full exploitation of ultrasound potentials. A chance is given by the experience acquired in other fields, where acoustic attenuation is used to estimate concentrations of suspended particles in liquids and of air-bubbles in aerated foods. Conclusions Custom hardware must be developed since commercial echographic equipment has been optimized to work with low acoustic impedance mismatches, and, in general, does not provide the primitive radiofrequency (RF) signals nor the possibility to tune key acquisition parameters such as ultrasound carrier frequency and pulse bandwidth, which are surely needed for our application. PMID:24834347
NASA Astrophysics Data System (ADS)
Gannot, Israel; Bonner, Robert F.; Gannot, Gallya; Fox, Philip C.; You, Joon S.; Waynant, Ronald W.; Gandjbakhche, Amir H.
1997-08-01
A series of fluorescent surface images were obtained from physical models of localized fluorophores embedded at various depths and separations in tissue phantoms. Our random walk theory was applied to create an analytical model of multiple flurophores embedded in tissue-like phantom. Using this model, from acquired set of surface images, the location of the fluorophores was reconstructed and compared it to their known 3-D distributions. A good correlation was found, and the ability to resolve fluorophores as a function of depth and separation was determined. In parallel in in-vitro study, specific coloring of sections of minor salivary glands was also demonstrated. These results demonstrate the possibility of using inverse methods to reconstruct unknown locations and concentrations of optical probes specifically bound to infiltrating lymphocytes in minor salivary glands of patients with Sjogren's syndrome.
Quanico, Jusal; Franck, Julien
2016-01-01
Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a difference in deuterium uptake behavior was observed when the same proteins were monitored in solution and on tissue. The higher maximum deuterium uptake at equilibrium for all proteins analyzed in solution suggests a more open conformation in the absence of interacting partners normally observed on tissue. We also demonstrate a difference in the deuterium uptake behavior of a few proteins across different morphological regions of the same tissue section. Modifications of the total number of hydrogens exchanged, as well as the kinetics of exchange, were both observed. These results provide information on the implication of protein interactions with partners as well as on the conformational changes related to these interactions, and illustrate the importance of examining protein deuterium exchange behavior in the presence of its specific microenvironment directly at the level of tissues. PMID:27512083
Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J; Li, Qing X
2015-11-01
The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g(-1) wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g(-1) ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biota monitoring under the Water Framework Directive: On tissue choice and fish species selection.
Fliedner, Annette; Rüdel, Heinz; Lohmann, Nina; Buchmeier, Georgia; Koschorreck, Jan
2018-04-01
The study addresses the topic of suitable matrices for chemical analysis in fish monitoring and discusses the effects of data normalization in the context of the European Water Framework Directive (WFD). Differences between species are considered by comparing three frequently monitored species of different trophic levels, i.e., chub (Squalius cephalus, n = 28), (bream, Abramis brama, n = 11), and perch (Perca fluviatilis, n = 19) sampled in the German Danube. The WFD priority substances dioxins, furans and dioxin-like polychlorinated biphenyls (PCDD/F + dl-PCB), polybrominated diphenyl ethers (PBDE), α-hexabromocyclododecane (α-HBCDD), hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) as well as non-dioxin-like (ndl)-PCB were analyzed separately in fillet and carcass and whole body concentrations were calculated. Hg was analyzed in individual fish fillets and carcasses, all other substances were determined in pool samples, which were compiled on the basis of fish size (3 chub pools, 1 bream pool, 2 perch pools). The data were normalized to 5% lipid weight (or 26% dry mass in the case of Hg and PFOS) for comparison between matrices and species. Hg concentrations were generally higher in fillet than in whole fish (mean whole fish-to-fillet ratio: 0.7) whereas all other substances were mostly higher in whole fish. In the case of lipophilic substances these differences leveled after lipid normalization. Significant correlations (p ≤ .05) were detected between Hg and fish weight and age. Hg concentrations varied least among younger fish. PCDD/F, dl-PCB, ndl-PCB, PBDE, α-HBCDD and HCB correlated significantly (p ≤ .05) with lipid concentrations. Fillet-to-whole fish conversion equations and/or conversion factors were derived for all substances except α-HCBDD. Although more data also for individual fish would be desirable the results are nevertheless a step on the way to translate fillet concentrations of priority substances to whole fish concentrations. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Brassicaceae tissues as inhibitors of nitrification in soil.
Brown, Paul D; Morra, Matthew J
2009-09-09
Brassicaceae crops often produce an unexplained increase in plant-available soil N possibly related to bioactive compounds produced from glucosinolates present in the tissues. Our objective was to determine if glucosinolate-containing tissues inhibit nitrification, thereby potentially explaining this observation. Ammonium, NO(2)(-), and NO(3)(-) N were measured in soils amended with Brassicaceae ( Isatis tinctoria L., Brassica napus L., Brassica juncea L., and Sinapis alba L.) tissues containing different glucosinolate types and concentrations or Kentucky bluegrass ( Poa pratensis L.) residues with equivalent C/N ratios as the Brassicaceae samples. There was greater accumulation of NH(4)(+) N in soils amended with tissues containing high glucosinolate concentrations as compared to soils amended with tissues containing no or low glucosinolate concentrations. Nitrite N was detected only in soils amended with Brassicaceae tissues having the highest glucosinolate concentrations. The positive correlation of both NH(4)(+) and NO(2)(-) N accumulation with the glucosinolate concentration indicates the participation of glucosinolate hydrolysis products in nitrification inhibition.
Chen, Hong; Hou, Gary Y.; Han, Yang; Payen, Thomas; Palermo, Carmine F.; Olive, Kenneth P.; Konofagou, Elisa E.
2015-01-01
Harmonic motion imaging (HMI) is a radiation force-based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess relative tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radiofrequency signals using a 1D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated with a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring. PMID:26415128
Chen, Hong; Hou, Gary Y; Han, Yang; Payen, Thomas; Palermo, Carmine F; Olive, Kenneth P; Konofagou, Elisa E
2015-09-01
Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.
Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans
Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.
2002-01-01
The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977
NASA Astrophysics Data System (ADS)
Huerta-Núñez, L. F. E.; Villanueva-Lopez, G. Cleva; Morales-Guadarrama, A.; Soto, S.; López, J.; Silva, J. G.; Perez-Vielma, N.; Sacristán, E.; Gudiño-Zayas, Marco E.; González, C. A.
2016-09-01
The aim of this study was to determine the systemic distribution of magnetic nanoparticles of 100 nm diameter (MNPs) coupled to a specific monoclonal antibody anti-Her2 in an experimental breast cancer (BC) model. The study was performed in two groups of Sprague-Dawley rats: control ( n = 6) and BC chemically induced ( n = 3). Bioconjugated "anti-Her2-MNPs" were intravenously administered, and magnetic resonance imaging (MRI) monitored its systemic distribution at seven times after administration. Non-heme iron presence associated with the location of the bioconjugated anti-Her2-MNPs in splenic, hepatic, cardiac and tumor tissues was detected by Perl's Prussian blue (PPB) stain. Optical density measurements were used to semiquantitatively determine the iron presence in tissues on the basis of a grayscale values integration of T1 and T2 MRI sequence images. The results indicated a delayed systemic distribution of MNPs in cancer compared to healthy conditions with a maximum concentration of MNPs in cancer tissue at 24 h post-infusion.
Relationships between Circulating and Intraprostatic Sex Steroid Hormone Concentrations.
Cook, Michael B; Stanczyk, Frank Z; Wood, Shannon N; Pfeiffer, Ruth M; Hafi, Muhannad; Veneroso, Carmela C; Lynch, Barlow; Falk, Roni T; Zhou, Cindy Ke; Niwa, Shelley; Emanuel, Eric; Gao, Yu-Tang; Hemstreet, George P; Zolfghari, Ladan; Carroll, Peter R; Manyak, Michael J; Sesterhann, Isabell A; Levine, Paul H; Hsing, Ann W
2017-11-01
Background: Sex hormones have been implicated in prostate carcinogenesis, yet epidemiologic studies have not provided substantiating evidence. We tested the hypothesis that circulating concentrations of sex steroid hormones reflect intraprostatic concentrations using serum and adjacent microscopically verified benign prostate tissue from prostate cancer cases. Methods: Incident localized prostate cancer cases scheduled for surgery were invited to participate. Consented participants completed surveys, and provided resected tissues and blood. Histologic assessment of the ends of fresh frozen tissue confirmed adjacent microscopically verified benign pathology. Sex steroid hormones in sera and tissues were extracted, chromatographically separated, and then quantitated by radioimmunoassays. Linear regression was used to account for variations in intraprostatic hormone concentrations by age, body mass index, race, and study site, and subsequently to assess relationships with serum hormone concentrations. Gleason score (from adjacent tumor tissue), race, and age were assessed as potential effect modifiers. Results: Circulating sex steroid hormone concentrations had low-to-moderate correlations with, and explained small proportions of variations in, intraprostatic sex steroid hormone concentrations. Androstane-3α,17β-diol glucuronide (3α-diol G) explained the highest variance of tissue concentrations of 3α-diol G (linear regression r 2 = 0.21), followed by serum testosterone and tissue dihydrotestosterone ( r 2 = 0.10), and then serum estrone and tissue estrone ( r 2 = 0.09). There was no effect modification by Gleason score, race, or age. Conclusions: Circulating concentrations of sex steroid hormones are poor surrogate measures of the intraprostatic hormonal milieu. Impact: The high exposure misclassification provided by circulating sex steroid hormone concentrations for intraprostatic levels may partly explain the lack of any consistent association of circulating hormones with prostate cancer risk. Cancer Epidemiol Biomarkers Prev; 26(11); 1660-6. ©2017 AACR . ©2017 American Association for Cancer Research.
Chin, Seung Joon; Moore, Grant A; Zhang, Mei; Clarke, Henry D; Spangehl, Mark J; Young, Simon W
2018-07-01
Obesity is an established risk factor for periprosthetic joint infections after total knee arthroplasty (TKA). In obese patients, a larger dose of prophylactic vancomycin based on actual body weight is required to reach therapeutic concentrations. It is unclear how tissue concentrations are affected when intraosseous regional administration (IORA) is used in this population. This study compared tissue concentrations of low-dose vancomycin via IORA vs actual body weight-adjusted systemic intravenous (IV) dose in primary TKA. Twenty-two patients with a body mass index (BMI) >35 undergoing TKA were randomized into 2 groups. The IV group received 15 mg/kg (maximum of 2 g) of systemic IV vancomycin and the IORA group received 500 mg vancomycin into the tibia. Subcutaneous fat and bone samples were taken at regular intervals. Tissue antibiotic concentrations were measured using liquid chromatography coupled with tandem mass spectrometry. A blood sample was taken 1 to 2 hours after tourniquet deflation to measure systemic concentration. The mean BMI was 41.1 in the IORA group and 40.1 in the IV systemic group. The overall mean tissue concentration in subcutaneous fat was 39.3 μg/g in the IORA group and 4.4 μg/g in the IV systemic group (P < .01). Mean tissue concentrations in bones were 34.4 μg/g in the IORA group and 6.1 μg/g in the IV systemic group (P < .01). Low-dose IORA was effective in the high-BMI population group, providing tissue concentrations of vancomycin 5-9 times higher than systemic administration. IORA optimizes timing of vancomycin administration and provides high tissue antibiotic concentrations during TKA in this high-risk patient group. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, P. Robinan, E-mail: rgentry@ramboll.com
A physiologically-based pharmacokinetic (PBPK) model (Schroeter et al., 2011) was applied to simulate target tissue manganese (Mn) concentrations following occupational and environmental exposures. These estimates of target tissue Mn concentrations were compared to determine margins of safety (MOS) and to evaluate the biological relevance of applying safety factors to derive acceptable Mn air concentrations. Mn blood concentrations measured in occupational studies permitted verification of the human PBPK models, increasing confidence in the resulting estimates. Mn exposure was determined based on measured ambient air Mn concentrations and dietary data in Canada and the United States (US). Incorporating dietary and inhalation exposuresmore » into the models indicated that increases in target tissue concentrations above endogenous levels only begin to occur when humans are exposed to levels of Mn in ambient air (i.e. > 10 μg/m{sup 3}) that are far higher than those currently measured in Canada or the US. A MOS greater than three orders of magnitude was observed, indicating that current Mn air concentrations are far below concentrations that would be required to produce the target tissue Mn concentrations associated with subclinical neurological effects. This application of PBPK modeling for an essential element clearly demonstrates that the conventional application of default factors to “convert” an occupational exposure to an equivalent continuous environmental exposure, followed by the application of safety factors, is not appropriate in the case of Mn. PBPK modeling demonstrates that the relationship between ambient Mn exposures and dose-to-target tissue is not linear due to normal tissue background levels and homeostatic controls. - Highlights: • Manganese is an essential nutrient, adding complexity to its risk assessment. • Nonlinearities in biological processes are important for manganese risk assessment. • A PBPK model was used to estimate target tissue concentrations of manganese. • An MOS approach also considered target tissue concentrations for ambient exposures. • Relationships between ambient Mn exposures and dose-to-target tissue are not linear.« less
NASA Astrophysics Data System (ADS)
Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming
2016-10-01
Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies.
NASA Astrophysics Data System (ADS)
Ares, A.; Fernández, J. A.; Carballeira, A.; Aboal, J. R.
2014-09-01
The moss bag technique is a simple and economical environmental monitoring tool used to monitor air quality. However, routine use of the method is not possible because the protocols involved have not yet been standardized. Some of the most variable methodological aspects include (i) selection of moss species, (ii) ratio of moss weight to surface area of the bag, (iii) duration of exposure, and (iv) height of exposure. In the present study, the best option for each of these aspects was selected on the basis of the mean concentrations and data replicability of Cd, Cu, Hg, Pb and Zn measured during at least two exposure periods in environments affected by different degrees of contamination. The optimal choices for the studied aspects were the following: (i) Sphagnum denticulatum, (ii) 5.68 mg of moss tissue for each cm-2 of bag surface, (iii) 8 weeks of exposure, and (iv) 4 m height of exposure. Duration of exposure and height of exposure accounted for most of the variability in the data. The aim of this methodological study was to provide data to help establish a standardized protocol that will enable use of the moss bag technique by public authorities.
Sariev, A K; Lun'shina, E V; Zherdev, V P; Mirzoian, N R
2006-01-01
Experiments showed that a new drug composition containing pyrrolidone and pyroglutamic acid exhibits a significant cerebrovascular effect upon peroral administration in rats. The pharmacokinetics of pyrrolidone monitored upon its combined administration with pyroglutamic acid shows that this drug, as a component of the composition, is characterized by a high absolute bioavailability and permeability trough the blood-brain barrier. The presence of pyroglutamic acid slows down the absorption and elimination of pyrrolidone and enhances its distribution in the organs and tissues. There is a correlation between the concentration of pyrrolidone in the brain, on the one hand, and the levels of cerebral microcirculation and arterial pressure on the other hand. An increase in the concentration of pyrrolidone in the brain is accompanied by more intensive cerebral blood flow and by a decrease in the arterial pressure.
NASA Technical Reports Server (NTRS)
Schaefer, H. J.
1974-01-01
The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.
Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.
Li, Ying; Bentzley, Catherine M; Tarloff, Joan B
2005-04-01
Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations of reduced NPSH in renal epithelial cells than in hepatocytes.
Kreitsberg, Randel; Zemit, Irina; Freiberg, Rene; Tambets, Meelis; Tuvikene, Arvo
2010-09-15
In January 2006 an oil spill that involved approximately 40tons of heavy fuel oil affected more than 30km of the north-west coast of Estonia. The aquatic pollution of the coastal area of the Baltic Sea was monitored by measuring the content of selected polycyclic aromatic hydrocarbons (PAHs and PAH metabolites) in flounder (Platichthys flesus trachurus Duncker). One hundred and thirty-one fish were collected: muscle and liver tissues were analyzed by high-performance liquid chromatography (HPLC); bile and urine samples were analyzed using fixed wavelengths fluorescence. Fifteen different types of PAHs were analyzed in liver and muscle, and four types of PAH metabolites were analyzed in bile and urine (2-, 3-, 4- and 5-ringed PAH metabolites represented by naphthalene, phenanthrene, pyrene and benzo(a)pyrene). Fluorescence analyses were carried out using excitation/emission wavelength pairs: 290/380, 256/380, 341/383 and 380/430nm, respectively. There was a time-dependent decrease of PAH concentrations in liver (83%), bile (82%) and urine (113%). HPLC analysis of muscle tissues demonstrated low concentrations of single PAHs, but a decrease of concentrations during the study period was not observed. During the analyses concentrations of PAH metabolites in bile and urine were compared. Liver metabolic transformation activity is believed to exceed that of the kidney but the analyses demonstrated high metabolite concentration in fish urine, particularly of 4- and 5-ring PAH metabolites. The results indicate remarkable buffer capacity of hydrodynamically active sea as well as considerable importance of kidney-urine metabolic pathways in flounder physiology. 2010 Elsevier B.V. All rights reserved.
Kim, David; Andersen, Melvin E.; Chao, Yi-Chun E.; Egeghy, Peter P.; Rappaport, Stephen M.; Nylander-French, Leena A.
2007-01-01
Background Dermal and inhalation exposure to jet propulsion fuel 8 (JP-8) have been measured in a few occupational exposure studies. However, a quantitative understanding of the relationship between external exposures and end-exhaled air concentrations has not been described for occupational and environmental exposure scenarios. Objective Our goal was to construct a physiologically based toxicokinetic (PBTK) model that quantitatively describes the relative contribution of dermal and inhalation exposures to the end-exhaled air concentrations of naphthalene among U.S. Air Force personnel. Methods The PBTK model comprised five compartments representing the stratum corneum, viable epidermis, blood, fat, and other tissues. The parameters were optimized using exclusively human exposure and biological monitoring data. Results The optimized values of parameters for naphthalene were a) permeability coefficient for the stratum corneum 6.8 × 10−5 cm/hr, b) permeability coefficient for the viable epidermis 3.0 × 10−3 cm/hr, c) fat:blood partition coefficient 25.6, and d) other tissue:blood partition coefficient 5.2. The skin permeability coefficient was comparable to the values estimated from in vitro studies. Based on simulations of workers’ exposures to JP-8 during aircraft fuel-cell maintenance operations, the median relative contribution of dermal exposure to the end-exhaled breath concentration of naphthalene was 4% (10th percentile 1% and 90th percentile 11%). Conclusions PBTK modeling allowed contributions of the end-exhaled air concentration of naphthalene to be partitioned between dermal and inhalation routes of exposure. Further study of inter- and intraindividual variations in exposure assessment is required to better characterize the toxicokinetic behavior of JP-8 components after occupational and/or environmental exposures. PMID:17589597
Kim, David; Andersen, Melvin E; Chao, Yi-Chun E; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A
2007-06-01
Dermal and inhalation exposure to jet propulsion fuel 8 (JP-8) have been measured in a few occupational exposure studies. However, a quantitative understanding of the relationship between external exposures and end-exhaled air concentrations has not been described for occupational and environmental exposure scenarios. Our goal was to construct a physiologically based toxicokinetic (PBTK) model that quantitatively describes the relative contribution of dermal and inhalation exposures to the end-exhaled air concentrations of naphthalene among U.S. Air Force personnel. The PBTK model comprised five compartments representing the stratum corneum, viable epidermis, blood, fat, and other tissues. The parameters were optimized using exclusively human exposure and biological monitoring data. The optimized values of parameters for naphthalene were a) permeability coefficient for the stratum corneum 6.8 x 10(-5) cm/hr, b) permeability coefficient for the viable epidermis 3.0 x 10(-3) cm/hr, c) fat:blood partition coefficient 25.6, and d) other tissue:blood partition coefficient 5.2. The skin permeability coefficient was comparable to the values estimated from in vitro studies. Based on simulations of workers' exposures to JP-8 during aircraft fuel-cell maintenance operations, the median relative contribution of dermal exposure to the end-exhaled breath concentration of naphthalene was 4% (10th percentile 1% and 90th percentile 11%). PBTK modeling allowed contributions of the end-exhaled air concentration of naphthalene to be partitioned between dermal and inhalation routes of exposure. Further study of inter- and intraindividual variations in exposure assessment is required to better characterize the toxicokinetic behavior of JP-8 components after occupational and/or environmental exposures.
Apollo 12 lunar material - Effects on lipid levels of tobacco tissue cultures.
NASA Technical Reports Server (NTRS)
Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.
1972-01-01
Tobacco tissue cultures grown in contact with lunar material from Apollo 12, for a 12-week period, resulted in fluctuations of both the relative and absolute concentrations of endogenous sterols and fatty acids. The experimental tissues contained higher concentrations of sterols than the controls did. The ratio of campesterol to stigmasterol was greater than 1 in control tissues, but less than 1 in the experimental tissues after 3 weeks. High relative concentrations (17.1 to 22.2 per cent) of an unidentified compound or compounds were found only in control tissues that were 3 to 9 weeks of age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, P.A.; Sheard, J.W.; Swanson, S.
1994-12-31
This report examines baseline concentrations and transfer of the uranium decay products polonium-210 and lead-210 in the lichen-caribou-wolf food chain at two locations in the Northwest Territories, Baker Lake and Snowdrift. At each location, concentrations of the two radionuclides were determined in the lichen species Cetraria nivalis and Cladina mitis, and several tissues from caribou and wolves. Baseline concentrations and transfer coefficients within the food chain were compared between the two locations. Lichen samples were also collected from Kasba Lake, a third hunting ground used by northern Saskatchewan hunters. The lichen species chosen were common forage for caribou. Both themore » predominant lichen species at each location and rumen contents were used to estimate the winter diet of caribou in the calculation of transfer coefficients. The results are relevant to environmental monitoring in areas of potential future uranium mining development and the transfer coefficients determined in the study may be used to estimate radionuclide concentrations and radiation doses in future environmental assessments.« less
NASA Technical Reports Server (NTRS)
Strangman, Gary; Franceschini, Maria Angela; Boas, David A.; Sutton, J. P. (Principal Investigator)
2003-01-01
Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.
NASA Astrophysics Data System (ADS)
Papazoglou, Elisabeth S.; Neidrauer, Michael; Zubkov, Leonid; Weingarten, Michael S.; Pourrezaei, Kambiz
2009-11-01
A pilot human study is conducted to evaluate the potential of using diffuse photon density wave (DPDW) methodology at near-infrared (NIR) wavelengths (685 to 830 nm) to monitor changes in tissue hemoglobin concentration in diabetic foot ulcers. Hemoglobin concentration is measured by DPDW in 12 human wounds for a period ranging from 10 to 61 weeks. In all wounds that healed completely, gradual decreases in optical absorption coefficient, oxygenated hemoglobin concentration, and total hemoglobin concentration are observed between the first and last measurements. In nonhealing wounds, the rates of change of these properties are nearly zero or slightly positive, and a statistically significant difference (p<0.05) is observed in the rates of change between healing and nonhealing wounds. Differences in the variability of DPDW measurements over time are observed between healing and nonhealing wounds, and this variance may also be a useful indicator of nonhealing wounds. Our results demonstrate that DPDW methodology with a frequency domain NIR device can differentiate healing from nonhealing diabetic foot ulcers, and indicate that it may have clinical utility in the evaluation of wound healing potential.
Luo, Niancui; Li, Zhenhao; Qian, Dawei; Qian, Yefei; Guo, Jianming; Duan, Jin-Ao; Zhu, Min
2014-07-15
A highly sensitive and rapid ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) has been developed and validated for simultaneous quantification of seven components in rat plasma and five components in rat tissues after oral administration of the extracts of different combination Radix Angelicae Sinensis-Radix Paeoniae Alba herb couple and has been applied to compare the different pharmacokinetics and tissue distribution properties of these bioactive components. The extracts of Radix Angelicae Sinensis (RAS), Radix Paeoniae Alba (RPA) and Radix Angelicae Sinensis-Radix Paeoniae Alba herb couple (RRHC) were orally administrated to rats, respectively. The concentrations of ferulic acid, caffeic acid, vanillic acid, ligustilide, paeoniflorin, albiflorin and oxypaeoniflorin in rat plasma and the concentrations of ferulic acid, vanillic acid, paeoniflorin, albiflorin and oxypaeoniflorin in tissues were determined by UPLC-MS/MS. The plasma samples were pretreated by protein precipitation with methanol and the tissue samples were homogenated with water and pretreated by protein precipitation with methanol. Chromatographic separation was performed on a C18 column using 0.1% formic acid-acetonitrile as mobile phase for gradient elution. A triple quadrupole (TQ) tandem mass spectrometry equipped with an electrospray ionization source was used as detector operating both in positive and negative ionization mode and operated by multiple-reaction monitoring (MRM) scanning. Noncompartmental pharmacokinetic parameters were calculated by DAS 2.0 program. The differences between each group were compared by SPSS 16.0 with Independent-Samples T-test. The pharmacokinetic parameters (such as Cmax, Tmax, T1/2, AUC0-T, MRT0-T, Vz/F or CLz/F) of all the detected components between the single herb (RAS or RPA) and herb pair (RRHP) showed significant differences (P<0.05). It indicated that the compatibility of RAS and RPA could alter the pharmacokinetics features of each component. Tissue distribution results showed that ferulic acid, vanillic acid, paeoniflorin, albiflorin and oxypaeoniflorin mostly distributed in liver and kidney both in herb couple and single herb distributed most in liver and kidney. Compared with single herb, RRHC could increase or decrease the concentrations of five components at different time points compared with the sing herb. The results indicated the method was successfully applied to the comparative study on pharmacokinetics and tissue distribution of different combination of RRHC in rats. The compatibility of two Chinese herbs could alter the pharmacokinetics and tissue distribution properties of major bio-active components in the single herb. The results might be helpful for further investigation of compatibility mechanism of RRHC. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials
Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.
2015-01-01
Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347
Harrison, G.; Martin, E.A.
1982-01-01
In a preliminary survey, Crassostrea virginica from areas of the Corpus Christi Bay system of Texas show significant concentrations of Cd, Cu, Pb, and Zn in their tissues and shells; concentrations of these same metals in associated sediments are also high in certain areas of the bay system. Zn and Cd concentrations in tissue show a high negative correlation to each other, whereas Zn and Pb in tissue and shell show a high positive correlation to one another. Sediment contents of Pb and Zn best reflect tissue values of the heavy metals; sediment concentrations of Cd and Cu show a poor inverse correlation to tissue concentrations. Some possible factors influencing these correlations are suspended-sediment type, physiological changes, water quality, and Ca intake.
Anthropogenic emissions of carbon monoxide.
Horner, J M
2000-01-01
Carbon monoxide (CO) is a colorless, nonirritating, odorless and tasteless gas. Carbon monoxide combines with hemoglobin far more readily than does oxygen, leading to tissue hypoxia. Thousands of people die annually from CO poisoning, and those recovering from acute exposure commonly suffer brain damage. Chronic poisoning is of particular concern to sufferers of coronary heart disease, pregnant women, and people with certain hematological disorders. Indoor emission sources, notably fuel-burning heating appliances, cause most unintentional deaths and cases of illness and should be the main focus of concern. Motor vehicle emissions pose a chronic health risk for occupationally exposed groups. Smoking is a major source of personal exposure. Recent exposure to CO is commonly evaluated by measuring blood carboxyhemoglobin levels, which are related to the concentration of atmospheric CO. Monitoring methods are reviewed here, and monitoring is considered in relation to air quality standards and guidelines. Finally, control measures for motor vehicles and indoor heating appliances are suggested.
Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping
2018-06-01
The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (<1.0 mg/L) the root tissue of Arundo donax uses osmosis of organic substances (e.g. carbohydrates and amino acids) to improve cadmium tolerance. Organic substances (e.g. carbohydrates) that contain a lot of Osbnd H in leaf were transported to the root firstly and then could chelate cadmium, but no obvious changes in stems were noted. The cadmium in the shoots (stem and leaf) usually increased with increasing cadmium concentration. These studies demonstrate the potential of Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland.
Al-Yousuf, M H; El-Shahawi; Al-Ghais, S M
2000-07-10
A post-Gulf sea water pollution assessment program was carried out in the liver, skin and muscle tissues of the localized Lethrinus lentjan fish species [Family: Lethrinidae (Teleost)]. Monitoring the concentration of the major heavy metals at different sites along the western coast of the United Arab Emirates (UAE) on the Arabian Gulf was studied. The concentrations of Zn, Cu and Mn were found to follow the order: liver > skin > muscle while the cadmium level follows the sequence: liver > muscle > skin. The influence of fish sex and body length on the metal accumulation of those metals in the tested fish organs was critically investigated. The average metal concentrations in liver, skin and muscle of female fish were found to be higher than those found in the male fish. The detected metal levels were generally similar to previous pre-war, 1991 levels. The study concludes that the marine fish from the Arabian Gulf are comparatively clean and do not constitute a risk for human health.
Combining monitoring data and modeling identifies PAHs as emerging contaminants in the arctic.
Laender, F De; Hammer, J; Hendriks, A J; Soetaert, K; Janssen, C R
2011-10-15
Protecting Arctic ecosystems against potential adverse effects from anthropogenic activities is recognized as a top priority. In particular, understanding the accumulation and effects of persistent organic pollutants (POPs) in these otherwise pristine ecosystems remains a scientific challenge. Here, we combine more than 20,000 tissue concentrations, a food web bioaccumulation model, and time trend analyses to demonstrate that the concentrations of legacy-POPs in the Barents/Norwegian Sea fauna decreased 10-fold between 1985 and 2010, which reflects regulatory efforts to restrict these substances. In contrast, concentrations of fossil fuel derived PAHs in lower trophic levels (invertebrates and fish) increased 10 to 30 fold over the past 25 years and now dominate the summed POP burden (25 POPs, including 11 PAHs) in these biota. Before 2000, PCBs dominated the summed POP burden in top predators. Our findings indicate that the debate on the environmental impacts of fossil fuel burning should move beyond the expected seawater temperature increase and examine the possible environmental impact of fossil fuel derived PAHs.
NASA Astrophysics Data System (ADS)
Xu, Xiaorong; Zhu, Wen; Padival, Vikram; Xia, Mengna; Cheng, Xuefeng; Bush, Robin; Christenson, Linda; Chan, Tim; Doherty, Tim; Iatridis, Angelo
2003-07-01
Photonify"s tissue spectrometer uses Near-Infrared Spectroscopy for real-time, noninvasive measurement of hemoglobin concentration and oxygen saturation [SO2] of biological tissues. The technology was validated by a series of ex vivo and animal studies. In the ex vivo experiment, a close loop blood circulation system was built, precisely controlling the oxygen saturation and the hemoglobin concentration of a liquid phantom. Photonify"s tissue spectrometer was placed on the surface of the liquid phantom for real time measurement and compared with a gas analyzer, considered the gold standard to measure oxygen saturation and hemoglobin concentration. In the animal experiment, the right hind limb of each dog accepted onto the study was surgically removed. The limb was kept viable by connecting the femoral vein and artery to a blood-primed extracorporeal circuit. Different concentrations of hemoglobin were obtained by adding designated amount of saline solution into the perfusion circuit. Photonify"s tissue spectrometers measured oxygen saturation and hemoglobin concentration at various locations on the limb and compared with gas analyzer results. The test results demonstrated that Photonify"s tissue spectrometers were able to detect the relative changes in tissue oxygen saturation and hemoglobin concentration with a high linear correlation compared to the gas analyzer
Singh, P; Roberts, M S
1994-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are being administered increasingly by transdermal drug delivery for the treatment of local muscle inflammation. The human epidermal permeabilities of different NSAIDs (salicylic acid, diethylamine salicylate, indomethacin, naproxen, diclofenac and piroxicam) from aqueous solutions is dependent on the drug's lipophilicity. A parabolic relationship was observed when the logarithms of NSAID permeability coefficients were plotted against the logarithms of NSAID octanol-water partition coefficients (log P), the optimum log P being around 3. The local tissue concentrations of these drugs after dermal application in aqueous solutions were then determined in a rat model. The extent of local, as distinct from systemic delivery, for each NSAID was assessed by comparing the tissue concentrations obtained below a treated site to those in contralateral tissues. Local direct penetration was evident for all NSAIDs up to a depth of about 3 to 4 mm below the applied site, with distribution to deeper tissues being mainly through the systemic blood supply. A comparison of the predicted tissue concentrations of each NSAID after its application to human epidermis was then made by a convolution of the epidermal and underlying tissue concentration-time profiles. The estimated tissue concentrations after epidermal application of NSAIDs could be related to their maximal fluxes across epidermis from an applied vehicle.
NASA Astrophysics Data System (ADS)
Alm, S.; Mukala, K.; Tiittanen, P.; Jantunen, M. J.
The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3-6 yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24 h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6 mg m -3) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3 mg m -3). The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (-0.03--0.12 to 0.13-0.16) with increasing averaging times from 1 to 8 h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites.
Neurotoxic response of infant monkeys to methylmercury.
Willes, R F; Truelove, J F; Nera, E A
1978-02-01
Four infant monkeys were dosed orally with 500 microgram Hg/kg body wt./day /as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28--29 days of treatment; the blood Hg levels were 8.0--9.4 microgram Hg/g blood. Dosing was terminated at 28--29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35--43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver (55.8 +/- 3.2 microgram Hg/g) followed by occipital cortex (35.6 +/- 4.8 microgram Hg/g) renal cortex (32.8 +/- 1.6 microgram Hg/g). The frontal and temporal cortices had 27.0 +/- 3.4 and 29.6 +/- 4.9 microgram Hg/g respectively while the cerebellar Hg concentration averaged 13.0 +/- 1.5 microgram Hg/g. The mean blood/brain ratio was 0.21 +/- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.
Longcore, Jerry R.; Haines, Terry A.; Halteman, William A.
2007-01-01
We monitored nest boxes during 1997–1999 at Acadia National Park, Mt. Desert Island, ME and at an old-field site in Orono, ME to determine mercury (Hg) uptake in tree swallow (Tachycineta bicolor) eggs, tissues, and food boluses. Also, in 1998–1999 we monitored nest boxes at Grove Pond and Plow Shop Pond at a U.S. Environmental Protection Agency Superfund site in Ayer, MA. We recorded breeding success at all locations. On average among locations, total mercury (THg) biomagnified 2 to 4-fold from food to eggs and 9 to 18-fold from food to feathers. These are minimum values because the proportion of transferable methyl mercury (MeHg) of the THg in insects varies (i.e., 35%–95% of THg) in food boluses. THg was highest in food boluses at Aunt Betty Pond at Acadia, whereas THg in eggs was highest at the Superfund site. A few eggs from nests at each of these locations exceeded the threshold (i.e., 800–1,000 ng/g, wet wt.) of embryotoxicity established for Hg. Hatching success was 88.9% to 100% among locations, but five eggs failed to hatch from 4 of the 11 clutches in which an egg exceeded this threshold. MeHg in feathers was highest in tree swallows at Aunt Betty Pond and the concentration of THg in bodies was related to the concentration in feathers. Transfer of an average of 80%–92% of the Hg in bodies to feathers may have enhanced nestling survival. Residues of Hg in tissues of tree swallows in the Northeast seem higher than those of the Midwest.
Longcore, Jerry R; Haines, Terry A; Halteman, William A
2007-03-01
We monitored nest boxes during 1997-1999 at Acadia National Park, Mt. Desert Island, ME and at an old-field site in Orono, ME to determine mercury (Hg) uptake in tree swallow (Tachycineta bicolor) eggs, tissues, and food boluses. Also, in 1998-1999 we monitored nest boxes at Grove Pond and Plow Shop Pond at a U.S. Environmental Protection Agency Superfund site in Ayer, MA. We recorded breeding success at all locations. On average among locations, total mercury (THg) biomagnified 2 to 4-fold from food to eggs and 9 to 18-fold from food to feathers. These are minimum values because the proportion of transferable methyl mercury (MeHg) of the THg in insects varies (i.e., 35%-95% of THg) in food boluses. THg was highest in food boluses at Aunt Betty Pond at Acadia, whereas THg in eggs was highest at the Superfund site. A few eggs from nests at each of these locations exceeded the threshold (i.e., 800-1,000 ng/g, wet wt.) of embryotoxicity established for Hg. Hatching success was 88.9% to 100% among locations, but five eggs failed to hatch from 4 of the 11 clutches in which an egg exceeded this threshold. MeHg in feathers was highest in tree swallows at Aunt Betty Pond and the concentration of THg in bodies was related to the concentration in feathers. Transfer of an average of 80%-92% of the Hg in bodies to feathers may have enhanced nestling survival. Residues of Hg in tissues of tree swallows in the Northeast seem higher than those of the Midwest.
Kagaya, Yu; Miyamoto, Shimpei
2018-02-01
Near-infrared spectroscopy (NIRS) has been reported to be a reliable non-invasive modality for free flap monitoring; however, the history of its application in flap monitoring is short, and there is no definite consensus regarding its use at present. The aim of this review is to clarify the evidence related to post-operative flap monitoring using NIRS and examine its appropriateness and usability. The PubMed and Web of Science databases were searched using the strings "flap monitoring AND near-infrared spectroscopy" and "flap monitoring AND tissue oxygen saturation," with a study period from inception to December 31, 2016. Two authors independently extracted articles and assessed the quality of the studies. Articles related to NIRS for flap perfusion monitoring were classified and selected regardless of study type. A total of 15 clinical studies and 8 animal studies were identified and reviewed. The evidence and information on various aspects of NIRS flap monitoring were summarized. The overall flap success rate was 99.5%, and the flap salvage rate was 91.1%, when measuring StO 2 at intervals of every 2 h or sooner. Single StO 2 monitoring was able to detect vascular compromise with 99.1% sensitivity and 99.9% specificity, and earlier than other monitoring methods, but additional Hb concentration monitoring was useful for avoiding false negatives and differentiating arterial and venous occlusion. NIRS can be used for flap monitoring and displays high accuracy in various situations; however, further studies are needed to take full advantage of the potential of NIRS. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Wei, Kuo-Chen; Chu, Po-Chun; Wang, Hay-Yan Jack; Huang, Chiung-Yin; Chen, Pin-Yuan; Tsai, Hong-Chieh; Lu, Yu-Jen; Lee, Pei-Yun; Tseng, I-Chou; Feng, Li-Ying; Hsu, Peng-Wei; Yen, Tzu-Chen; Liu, Hao-Li
2013-01-01
The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment. PMID:23527068
Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.
Pawelec, K M; Husmann, A; Best, S M; Cameron, R E
2014-04-01
Biopolymer scaffolds have great therapeutic potential within tissue engineering due to their large interconnected porosity and biocompatibility. Using an ice-templated technique, where collagen is concentrated into a porous network by ice nucleation and growth, scaffolds with anisotropic pore architecture can be created, mimicking natural tissues like cardiac muscle and bone. This paper describes a systematic set of experiments undertaken to understand the effect of local temperatures on architecture in ice-templated biopolymer scaffolds. The scaffolds within this study were at least 10mm in all dimensions, making them applicable to critical sized defects for biomedical applications. It was found that monitoring the local freezing behavior within the slurry was critical to predicting scaffold structure. Aligned porosity was produced only in parts of the slurry volume which were above the equilibrium freezing temperature (0°C) at the time when nucleation first occurs in the sample as a whole. Thus, to create anisotropic scaffolds, local slurry cooling rates must be sufficiently different to ensure that the equilibrium freezing temperature is not reached throughout the slurry at nucleation. This principal was valid over a range of collagen slurries, demonstrating that by monitoring the temperature within slurry during freezing, scaffold anisotropy with ice-templated scaffolds can be predicted. Copyright © 2014 Elsevier B.V. All rights reserved.
Multi-spectral imaging of oxygen saturation
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.
2008-06-01
The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.
Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov
2016-01-01
Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092
Kempker, Russell R; Heinrichs, M Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A; Blumberg, Henry M; Vashakidze, Sergo
2017-06-01
Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary ( n = 6 patients), mass-like ( n = 3 patients), or consolidative ( n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis ( R = -0.66, P = 0.04) and acid-fast bacilli ( R = -0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. Copyright © 2017 American Society for Microbiology.
Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis
Heinrichs, M. Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D.; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A.; Blumberg, Henry M.; Vashakidze, Sergo
2017-01-01
ABSTRACT Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary (n = 6 patients), mass-like (n = 3 patients), or consolidative (n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis (R = −0.66, P = 0.04) and acid-fast bacilli (R = −0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. PMID:28373198
Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen
2017-03-01
Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adams, Douglas H; Engel, Marc E
2014-04-01
Blue crabs, Callinectes sapidus, from the Atlantic coast of Florida were analyzed for total mercury, methylmercury, lead, and cadmium. Paired samples of two tissue types were analyzed for each crab, (1) muscle tissue (cheliped and body muscles) and (2) whole-body tissue (all organs, muscle tissue and connective tissue), for evaluation of the concentration of metals available to human consumers as well as estuarine predators. There were clear patterns of tissue-specific partitioning for each metal. Total mercury was significantly greater in muscle tissue (mean=0.078 µg/g) than in whole-body tissue (mean=0.055 µg/g). Conversely, whole-body concentrations of lead and cadmium (means=0.131 and 0.079 µg/g, respectively) were significantly greater than concentrations in muscle (means=0.02 and 0.029 µg/g, respectively). There were no significant correlations between any metal contaminant and crab size. Cadmium levels were significantly greater in the muscle tissue of females, but, no other sex-related differences were seen for other metals or tissue types. Methylmercury composed 93-100% of the total mercury in tissues. Compared to previous blue crab studies from different regions of the United States, mean concentrations of mercury, lead, and cadmium were relatively low, although isolated groups or individual blue crabs accumulated high metal concentrations. © 2013 Published by Elsevier Inc.
Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Zappalorti, Robert; Pittfield, Taryn; DeVito, Emile
2017-05-01
Top trophic level predators are at risk from bioaccumulation of heavy metals from their prey. Using nondestructively collected tissues as a method of assessing metal concentrations in snakes is useful for populations that are threatened or declining. This paper reports concentrations of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in tissues of Northern pine snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens, a relatively pristine, undisturbed habitat. We also determined if skin is an appropriate indicator of internal concentrations and identified the factors (tissue, year of collection, length, sex) that might explain variations in metal concentrations. Because they can grow to 2-m long and live for 25 years, we suggest that these snakes might accumulate heavy metals. Multiple regression models were significant, explaining 16% (lead) to 61% (mercury) of variation by tissue type. For mercury and chromium, size also was significant. The highest concentrations were in liver and kidney for all metals, except chromium and lead. Mercury concentrations in tissues were within the range reported for other snakes and were below effects concentrations in reptiles. The concentrations in skin were correlated with all internal tissues for mercury and for all internal tissues except heart for cadmium. These data show that shed skin can be used as an indicator of metals in pine snakes and that, at present, concentrations of heavy metals in this population are within the range of those found in other snake species from uncontaminated sites.
Waddell, B.; May, T.
1995-01-01
A single muscle plug was collected from each of 25 live razorback suckers inhabiting the Colorado River basin and analyzed for selenium by instrumental neutron activation. Eight fish from Ashley Creek and three from Razorback Bar exhibited selenium concentrations exceeding 8 μg/g, a level associated with reproductive failure in fish. Concentrations of selenium in eggs and milt were significantly correlated with selenium concentrations in muscle plugs and together indicate a possible explanation for the decline of this species in the Colorado River basin. Muscle plugs (<50mg) and muscle tissue (20 g) were collected from dorsal, anterior, and posterior areas of common carp, flannelmouth sucker, and an archived razorback sucker and analyzed for selenium. Concentrations of selenium in muscle plugs were significantly correlated with selenium concentrations in muscle tissue from the same location and fish (r=0.97). Coefficients of variation for selenium concentrations in each fish were <6.5% for muscle tissue, but ranged from 1.5 to 32.4% for muscle plugs. Increased variation in muscle plugs was attributed to lower selenium concentrations found in the anterior muscle plugs of flannelmouth suckers. Mean selenium concentrations in muscle plugs and tissue from dorsal and posterior areas and muscle tissue from the anterior area were not significantly different. The non-lethal collection of a muscle plug from dorsal and posterior areas of the razorback sucker and other fish species may provide an accurate assessment of selenium concentrations that exist in adjacent muscle tissue.
Birch, G F; Apostolatos, C
2013-08-01
Filter-feeding bivalves have been used extensively as an indicator of ecosystem condition and in management of estuarine environments. The current study aimed to determine whether sedimentary metals could predict metal concentrations in tissue of filter-feeding mussels (Mytilus galloprovincialis) and to identify areas of the estuary where mussel consumption posed a human health risk. Mussel tissue Cu and Zn concentrations (wet weight) were below guideline values for human consumption in all parts of the waterway, whereas Pb tissue concentrations exceed these guidelines (2.0 μg g(-1) wet weight) in the upper reaches of some embayments of the estuary. Concentrations of Cu and Pb in the fine fraction (<62.5 μm) of bottom sediment reasonably predicted concentrations (dry weight) of these metals in mussel tissue (r (2) =0.460 and p=0.001 and r (2) =0.669 and p<0.0001, respectively) as these materials are resuspendable and available to filter-feeding estuarine animals, whereas total sediment and mussel tissue were poorly related. Lead concentrations (>350 μg g(-1)) in fine sediments indicated areas of this estuary where human health was at risk due to high tissue concentrations of this metal. These results give encouragement for the use of the metal concentration in fine sediments as an indicator of estuarine condition and risk to human health in this waterway. Mussels were distributed in all parts of the estuary, even in areas where metal concentrations exceeded sediment quality guidelines.
Brooks, Steven J; Harman, Christopher; Grung, Merete; Farmen, Eivind; Ruus, Anders; Vingen, Sjur; Godal, Brit F; Barsiene, Janina; Andreikenaite, Laura; Skarpheðinsdottir, Halldóra; Liewenborg, Birgitta; Sundt, Rolf C
2011-01-01
The Norwegian water column monitoring program investigates the biological effects of offshore oil and gas activities in Norwegian waters. In three separate surveys in 2006, 2008, and 2009, bioaccumulation and biomarker responses were measured in mussels (Mytilus edulis) and Atlantic cod (Gadus morhua) held in cages at known distances from the produced water (PW) discharge at the Ekofisk oil field. Identical monitoring studies performed in all three years have allowed the biological effects and bioaccumulation data to be compared, and in addition, enabled the potential environmental benefits of a PW treatment system (CTour), implemented in 2008, to be evaluated. The results of the 2009 survey showed that caged animals were exposed to low levels of PW components, with highest tissue concentrations in mussels located closest to the PW discharge. Mussels located approximately 1-2 km away demonstrated only background concentrations of target compounds. Concentrations of polycyclic aromatic hydrocarbons (PAH) and alkyl phenol (AP) metabolites in the bile of caged cod were elevated at stations 200-250 m from the discharge. There was also a signal of exposure relative to discharge for the biomarkers CYP1A in fish and micronuclei in mussels. All other fish and mussel biomarkers showed no significant exposure effects in 2009. The mussel bioaccumulation data in 2009 indicated a lower exposure to the PW effluent than seen previously in 2008 and 2006, resulting in an associated general improvement in the health of the caged mussels. This was due to the reduction in overall discharge of PW components (measured as oil in water) into the area in 2009 compared to previous years as a result of the improved PW treatment system.
Sage, Mickael; Fourel, Isabelle; Lahoreau, Jennifer; Siat, Vivien; Berny, Philippe; Rossi, Sophie
2013-05-01
The bait-marker iophenoxic acid (IPA) and its derivatives are increasingly used for evaluating and optimizing the cost-effectiveness of baiting campaigns on wildlife, particularly on game species such as the wild boar. We aimed to determine whether concentrations of the three main IPA derivatives ethyl, methyl and propyl-IPA measured on thoracic liquid extracts (TLE) of hunted wild boars may be representative of two exposure doses, 40 and 200 mg, from 20 to 217 days after ingestion. Then we developed a method of detection of the three IPA derivatives by LC/ESI-MS-MS in muscle and liver to evaluate the suitability of these two other tissues for monitoring the marked bait consumption and for measuring available residues in the meat of marked animals. Three semi-captive wild boars received 40 mg of each IPA derivative, three received 200 mg, and three, as controls, did not receive IPA. Blood serum was sampled 20, 197 or 217 days after IPA exposure according to animals and to the derivative. Wild boars were shot by gun after the different times of serum sampling times, and TLE, muscle and liver were sampled. Our results suggest that TLE is not a relevant tissue for quantitatively expressing IPA exposure. Due to interference, no analytical method was validated on TLE containing digestive material. On the other hand, quantifications in the muscle and particularly in the liver could discriminate wild boars that had ingested the two IPA doses from 20 days until 7 months after exposure, especially for the two long term markers ethyl and propyl-IPA. So IPA quantifications in the liver sampled on hunted animals appear to be a reliable tool for monitoring bait consumption in the field at a large scale. Nevertheless, whatever the ingested dose, ethyl- and propyl-IPA concentrations measured in the muscle and the liver of tested animals until 217 days after exposure, remained higher than 0.01 mg/kg, the Maximal Residue Limit (MRL) is recommended for molecules for which no toxicological data are available. Based on the range of IPA residues available in these two tissues, implications for humans consuming marked animals are discussed.
EZEJIOFOR, Anthonet Ndidi; OKORIE, Abednego; ORISAKWE, Orish Ebere
2013-01-01
Background: The tissue-protective potential of Persea americana necessitated a look into the histopathological effects of the plant extract on the pancreas, liver, and kidneys. This study was conceived and designed based on the gaps in the research that has been performed and what is known about the plant. The hypoglycaemic and tissue-protective effects of hot aqueous Persea americana (avocado pear) seed extracts on alloxan-induced albino rats were investigated. Methods: Persea americana seeds were extracted using hot water, and different concentrations of the extract were prepared. The effects of different concentrations (20, 30, 40 g/L) of the hot aqueous P. americana seed extract on alloxan-induced Wistar albino rats were compared with those of a reference drug, glibenclamide. The glucose level of the rats was measured daily, and the weight of the animal was monitored on a weekly basis for 21 days. The oral glucose tolerance test (OGTT) was performed at 0, 30, 60, 90 and 120 minutes, and the histopathologies of the liver, kidneys, and pancreas were investigated. Phytochemical analysis of P. americana seed extracts indicated the presence of glycosides, tannins, saponins, carbohydrates, flavonoids, and alkaloids. Results: The results showed that the extract possessed a significant hypoglycaemic (P < 0.05) effect and reversed the histopathological damage that occurred in alloxan-induced diabetic rats, comparable to the effects glibenclamide. The seeds of P. americana also had anti-diabetic and protective effects on some rat tissues such as the pancreas, kidneys, and liver. Conclusion: In conclusion, the present study provides a pharmacological basis for the folkloric use of the hot-water extract of P. americana seeds in the management of diabetes mellitus. PMID:24643349
Ezejiofor, Anthonet Ndidi; Okorie, Abednego; Orisakwe, Orish Ebere
2013-10-01
The tissue-protective potential of Persea americana necessitated a look into the histopathological effects of the plant extract on the pancreas, liver, and kidneys. This study was conceived and designed based on the gaps in the research that has been performed and what is known about the plant. The hypoglycaemic and tissue-protective effects of hot aqueous Persea americana (avocado pear) seed extracts on alloxan-induced albino rats were investigated. Persea americana seeds were extracted using hot water, and different concentrations of the extract were prepared. The effects of different concentrations (20, 30, 40 g/L) of the hot aqueous P. americana seed extract on alloxan-induced Wistar albino rats were compared with those of a reference drug, glibenclamide. The glucose level of the rats was measured daily, and the weight of the animal was monitored on a weekly basis for 21 days. The oral glucose tolerance test (OGTT) was performed at 0, 30, 60, 90 and 120 minutes, and the histopathologies of the liver, kidneys, and pancreas were investigated. Phytochemical analysis of P. americana seed extracts indicated the presence of glycosides, tannins, saponins, carbohydrates, flavonoids, and alkaloids. The results showed that the extract possessed a significant hypoglycaemic (P < 0.05) effect and reversed the histopathological damage that occurred in alloxan-induced diabetic rats, comparable to the effects glibenclamide. The seeds of P. americana also had anti-diabetic and protective effects on some rat tissues such as the pancreas, kidneys, and liver. In conclusion, the present study provides a pharmacological basis for the folkloric use of the hot-water extract of P. americana seeds in the management of diabetes mellitus.
Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A.; Pappan, Kirk L.; Lampe, Joshua W.; Becker, Lance B.
2014-01-01
Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage. PMID:25383962
Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A; Pappan, Kirk L; Lampe, Joshua W; Becker, Lance B
2014-01-01
Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.
NASA Astrophysics Data System (ADS)
Ewerlöf, Maria; Larsson, Marcus; Salerud, E. Göran
2017-02-01
Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry-Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.
Blacksom, Karen A.; Walters, David M.; Jicha, Terri M.; Lazorchak, James M.; Angradi, Theodore R.; Bolgrien, David W.
2010-01-01
Great rivers of the central United States (Upper Mississippi, Missouri, and Ohio rivers) are valuable economic and cultural resources, yet until recently their ecological condition has not been well quantified. In 2004–2005, as part of the Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP-GRE), we measured legacy organochlorines (OCs) (pesticides and polychlorinated biphenyls, PCBs) and emerging compounds (polybrominated diphenyl ethers, PBDEs) in whole fish to estimate human and wildlife exposure risks from fish consumption. PCBs, PBDEs, chlordane, dieldrin and dichlorodiphenyltrichloroethane (DDT) were detected in most samples across all rivers, and hexachlorobenzene was detected in most Ohio River samples. Concentrations were highest in the Ohio River, followed by the Mississippi and Missouri Rivers, respectively. Dieldrin and PCBs posed the greatest risk to humans. Their concentrations exceeded human screening values for cancer risk in 27–54% and 16–98% of river km, respectively. Chlordane exceeded wildlife risk values for kingfisher in 11–96% of river km. PBDE concentrations were highest in large fish in the Missouri and Ohio Rivers (mean > 1000 ng g−1 lipid), with congener 47 most prevalent. OC and PBDE concentrations were positively related to fish size, lipid content, trophic guild, and proximity to urban areas. Contamination of fishes by OCs is widespread among great rivers, although exposure risks appear to be more localized and limited in scope. As an indicator of ecological condition, fish tissue contamination contributes to the overall assessment of great river ecosystems in the U.S.
NASA Technical Reports Server (NTRS)
Strangman, Gary; Culver, Joseph P.; Thompson, John H.; Boas, David A.; Sutton, J. P. (Principal Investigator)
2002-01-01
Near-infrared spectroscopy (NIRS) has been used to noninvasively monitor adult human brain function in a wide variety of tasks. While rough spatial correspondences with maps generated from functional magnetic resonance imaging (fMRI) have been found in such experiments, the amplitude correspondences between the two recording modalities have not been fully characterized. To do so, we simultaneously acquired NIRS and blood-oxygenation level-dependent (BOLD) fMRI data and compared Delta(1/BOLD) (approximately R(2)(*)) to changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations derived from the NIRS data from subjects performing a simple motor task. We expected the correlation with deoxyhemoglobin to be strongest, due to the causal relation between changes in deoxyhemoglobin concentrations and BOLD signal. Instead we found highly variable correlations, suggesting the need to account for individual subject differences in our NIRS calculations. We argue that the variability resulted from systematic errors associated with each of the signals, including: (1) partial volume errors due to focal concentration changes, (2) wavelength dependence of this partial volume effect, (3) tissue model errors, and (4) possible spatial incongruence between oxy- and deoxyhemoglobin concentration changes. After such effects were accounted for, strong correlations were found between fMRI changes and all optical measures, with oxyhemoglobin providing the strongest correlation. Importantly, this finding held even when including scalp, skull, and inactive brain tissue in the average BOLD signal. This may reflect, at least in part, the superior contrast-to-noise ratio for oxyhemoglobin relative to deoxyhemoglobin (from optical measurements), rather than physiology related to BOLD signal interpretation.
Monitoring tissue metabolism via time-resolved laser fluorescence
NASA Astrophysics Data System (ADS)
Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Marx, Uwe
1999-05-01
Most assays for drug screening are monitoring the metabolism of cells by detecting the NADH content, which symbolize its metabolic activity, indirectly. Nowadays, the performance of a LASER enables us to monitor the metabolic state of mammalian cells directly and on-line by using time-resolved autofluorescence detection. Therefore, we developed in combination with tissue engineering, an assay for monitoring minor toxic effects of volatile organic compounds (VOC), which are accused of inducing Sick Building Syndrome (SBS). Furthermore, we used the Laserfluoroscope (LF) for pharmacological studies on human bone marrow in vitro with special interest in chemotherapy simulation. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; up to now without great success. However, it showed among other things that tissue structure plays a vital role. Consequently, we succeeded in simulating a chemotherapy in vitro on human bone marrow. Furthermore, after tumor ektomy we were able to distinguish between tumoric and its surrounding healthy tissue by using the LF. With its sensitive detection of metabolic changes in tissues the LF enables a wide range of applications in biotechnology, e.g. for quality control in artificial organ engineering or biocompatability testing.
Day, Russel D.; Vander Pol, Stacy S.; Christopher, Steven J.; Davis, W.C.; Pugh, Rebecca S.; Simac, K.S.; Roseneau, David G.; Becker, P.R.
2006-01-01
Sixty common murre (Uria aalge) and 27 thick-billed murre (Uria lomvia) eggs collected by the Seabird Tissue Archival and Monitoring Project (STAMP) in 1999−2001 from two Gulf of Alaska and three Bering Sea nesting colonies were analyzed for total mercury (Hg) using isotope dilution cold vapor inductively coupled mass spectrometry. Hg concentrations (wet mass) ranged from 0.011 μg/g to 0.357 μg/g (relative standard deviation = 76%), while conspecifics from the same colonies and years had an average relative standard deviation of 33%. Hg levels in eggs from the Gulf of Alaska (0.166 μg/g ± 0.011 μg/g) were significantly higher (p < 0.0001) than in the Bering Sea (0.047 μg/g ± 0.004 μg/g). Within the Bering Sea, Hg was significantly higher (p = 0.0007) in eggs from Little Diomede Island near the arctic than at the two more southern colonies. Although thick-billed and common murres are ecologically similar, there were significant species differences in egg Hg concentrations within each region (p < 0.0001). In the Bering Sea, eggs from thick-billed murres had higher Hg concentrations than eggs from common murres, while in the Gulf of Alaska, common murre eggs had higher concentrations than those of thick-billed murres. A separate one-way analysis of variance on the only time−trend data currently available for a colony (St. Lazaria Island in the Gulf of Alaska) found significantly lower Hg concentrations in common murre eggs collected in 2001 compared to 1999 (p = 0.017). Results from this study indicate that murre eggs may be effective monitoring units for detecting geographic, species, and temporal patterns of Hg contamination in marine food webs. The relatively small intracolony variation in egg Hg levels and the ability to consistently obtain adequate sample sizes both within and among colonies over a large geographic range means that monitoring efforts using murre eggs will have suitable statistical power for detecting environmental patterns of Hg contamination. The potential influences of trophic effects, physical transport patterns, and biogeochemical processes on these monitoring efforts are discussed, and future plans to investigate the sources of the observed variability are presented.
Carson, S D
1996-04-01
Cultured fibroblasts treated with increasing concentrations of detergents expressed only encrypted levels of tissue factor activity (measured by fX activation in the presence of fVIIa), characteristic of undamaged cells, until each detergent reached a critical concentration at which the cryptic tissue factor activity was manifested. Beyond the narrow ranges of concentrations over which the detergents stimulated tissue factor activity, the detergents were inhibitory. Studies with Triton X-100 and octyl glucoside revealed that manifestation of tissue factor activity coincided with breakdown of the plasma membrane. The magnitude of the increased tissue factor activity differed among detergents, with octyl glucoside giving the largest response. The tissue factor that was active after Triton X-100 treatment remained mostly associated with the insoluble cell residue, whereas the concentration of octyl glucoside which stimulated activity released tissue factor activity into the supernatant. Radiolabeled antibody against human tissue factor was used to show that a small percentage of the total accessible tissue factor remained in the insoluble fraction after treatment with either non-ionic detergent. Chromatographic analysis of lipids extracted from cells treated with detergents and dansyl chloride showed dansyl-reactivity of phosphatidylserine on intact cells, and solubilization of membrane lipids at sublytic concentrations of detergents. These findings reveal that there is a critical level of detergent-induced membrane damage at which tissue factor activity is maximally expressed, in essentially an all-or-none manner. The results are consistent with a major role for phospholipid asymmetry in regulation of tissue factor specific activity, but require either maintenance of asymmetry during sublytic detergent perturbation of the plasma membrane or additional control mechanisms.
How low can you go? Assessing minimum concentrations of NSC in carbon limited tree saplings
NASA Astrophysics Data System (ADS)
Hoch, Guenter; Hartmann, Henrik; Schwendener, Andrea
2016-04-01
Tissue concentrations of non-structural carbohydrates (NSC) are frequently used to determine the carbon balance of plants. Over the last years, an increasing number of studies have inferred carbon starvation in trees under environmental stress like drought from low tissue NSC concentrations. However, such inferences are limited by the fact that minimum concentrations of NSC required for survival are not known. So far, it was hypothesized that even under lethal carbon starvation, starch and low molecular sugar concentrations cannot be completely depleted and that minimum NSC concentrations at death vary across tissues and species. Here we present results of an experiment that aimed to determine minimum NSC concentrations in different tissues of saplings of two broad-leaved tree species (Acer pseudoplatanus and Quercus petratea) exposed to lethal carbon starvation via continuous darkening. In addition, we investigated recovery rates of NSC concentrations in saplings that had been darkened for different periods of time and were then re-exposed to light. Both species survived continuous darkening for about 12 weeks (confirmed by testing the ability to re-sprout after darkness). In all investigated tissues, starch concentrations declined close to zero within three to six weeks of darkness. Low molecular sugars also decreased strongly within the first weeks of darkness, but seemed to stabilize at low concentrations of 0.5 to 2 % dry matter (depending on tissue and species) almost until death. NSC concentrations recovered surprisingly fast in saplings that were re-exposed to light. After 3 weeks of continuous darkness, tissue NSC concentrations recovered within 6 weeks to levels of unshaded control saplings in all tissues and in both species. To our knowledge, this study represents the first experimental attempt to quantify minimum tissue NSC concentrations at lethal carbon starvation. Most importantly, our results suggest that carbon-starved tree saplings are able to survive several weeks without starch reserves and with extremely low sugar concentrations in all organs. Although it remains to be tested whether our findings are also valid for mature trees, these results show that NSC pools in trees are very sensitive to carbon limitation and that lethal carbon starvation is preceded by a significant (almost complete) depletion of starch and sugars in all tree organs.
Pinheiro, Marcelo Antonio Amaro; Silva, Pablo Pena Gandara E; Duarte, Luis Felipe de Almeida; Almeida, Alaor Aparecido; Zanotto, Flavia Pinheiro
2012-07-01
The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatão, state of São Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various metals. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Junlu; Chen, Tingsang; Yuan, Congcong; Zhao, Guoqiang; Xu, Min; Li, Xiaoyan; Cao, Jie; Xing, Lihua
2017-01-01
The present study aimed to investigate the effect of intravenous immunoglobulin (IVIG) on regulatory T (Treg) cells derived from immunosuppressed mice with Pseudomonas aeruginosa (PA) pneumonia. A total of 108 BALB/c mice were randomly divided into the following groups: control group (Control), immunosuppressed group (IS), PA pneumonia group (PA), PA pneumonia in immunosuppressed group (IS + PA), PA pneumonia with IVIG treatment in immunocompetent group (PA + IVIG) and PA pneumonia with IVIG treatment in immunosuppressed group (IS + PA + IVIG). Each group comprised 18 mice. The combined PA pneumonia in immunosuppressed model and the treatment models were established. The mice in each group were sacrificed at 4, 8, and 24 h time points. The general condition and pathological changes in the lung tissues of the mice were monitored. Reverse transcription-polymerase chain reaction was used to detect the forkhead box P3 (FOXP3) mRNA relative expression level in the lung tissues. The enzyme-linked immunosorbent assay was used to detect the serum concentration of active transforming growth factor beta (TGF-β). No inflammatory response were exhibited in the lung tissues of the mice in Control group and IS group, while varying degrees of acute lung injury were revealed in the mice in PA group, IS + PA group, PA + IVIG group and IS + PA + IVIG group. Lung tissue injury was most apparent at the 8 h time point, and it indicated the greatest effect in IS + PA group. Whereas tissue damages were alleviated in PA + IVIG group and IS + PA + IVIG group compared with IS + PA group. In addition, tissue damage lessened in PA + IVIG group compared with PA group and IS + PA + IVIG group. FOXP3 mRNA expression levels in the lung tissues and the serum concentration of TGF-β were lower in IS group, PA group, IS + PA group and IS + PA + IVIG group at the 4, 8 and 24 h time points, respectively compared with Control group. FOXP3 mRNA expression levels decreased in PA + IVIG group at the 4h time point and TGF-β serum concentrations decreased at the 4 and 8h time points compared with Control group, and subsequently increased. In the immunosuppred model with PA pneumonia, the immune system was greatly compromised. IVIG partially restored the immunosuppressed functions of Treg cells, suppressed the overactivated immune system and ameliorated the development of the disease.
Herrmann, S J; Nimmo, D R; Carsella, J S; Herrmann-Hoesing, L M; Turner, J A; Gregorich, J M; Heuvel, B D Vanden; Nehring, R B; Foutz, H P
2016-02-01
Total mercury (THg) and selenium (Se) were analyzed by Inductively Coupled Plasma Mass Spectrometry in 11 internal and external tissues and stomach contents from 23 brown trout, Salmo trutta, of a 22.9-km reach of a high-gradient stream (upper Fountain Creek) in Colorado, USA, impacted by coal-fired power plants, shale deposits, and urbanization. Trout and water were sampled from four sites ranging from 2335 to 1818 m elevation. Lengths, weights, and ages of fish between pairs of the four sites were not significantly different. The dry weight (dw) to wet weight (ww) conversion factor for each tissue was calculated with egg-ovary highest at 0.379 and epaxial muscle fourth highest at 0.223. THg and Se in stomach contents indicated diet and not ambient water was the major source of Hg and Se bioaccumulated. Mean THg ww in kidney was 40.33 µg/kg, and epaxial muscle second highest at 36.76 µg/kg. None of the tissues exceeded the human critical threshold for Hg. However, all 23 trout had at least one tissue type that exceeded 0.02 mg/kg THg ww for birds, and four trout tissues exceeded 0.1 mg/kg THg ww for mammals, indicating that piscivorous mammals and birds should be monitored. Se concentrations in tissues varied depending on ww or dw listing. Mean Se dw in liver was higher than ovary at the uppermost site and the two lower sites. Liver tissue, in addition to egg-ovary, should be utilized as an indicator tissue for Se toxicity.
Leonel, Ellen C R; Vilela, Janice M V; Paiva, Raísa E G; Jivago, José L P R; Amaral, Rodrigo S; Lucci, Carolina M
2018-01-01
Ovarian tissue transplantation could be a valuable technique for the preservation of endangered animals. The domestic cat affords an adequate experimental model for studies aimed at wild felids due to its phylogenetic similarity. Thus, this pilot study evaluated the efficacy of cat ovarian tissue autotransplantation to a peripheral site. Three adult queens were submitted to ovariohysterectomy. The ovaries were fragmented into eight pieces; two were fixed as a control and six were transplanted to subcutaneous tissue of the dorsal neck. Grafts were monitored weekly by ultrasound and fecal samples collected daily in order to monitor estradiol levels. Grafts were recovered on Days: 7, 14, 28, 49 and 63 post-transplantation for histological analyses. One graft was maintained in one animal for 8 months. A total of 2466 ovarian follicles were analyzed: 1406 primordial and 1060 growing follicles. All animals presented antral follicles in one or more of the grafts. The percentage of morphologically normal primordial follicles was always higher than 80%, except for Day 7 transplants. Although the proportion of growing follicles increased after transplantation, there was a general decrease in the percentage of morphologically normal growing follicles from Day 7 onwards. All animals demonstrated at least three estradiol peaks during the 63-day period, and one animal exhibited estrous behaviour on three occasions. Hormonal peaks directly correlated with the visualization of antral follicles (by ultrasound and/or histology) and the observation of estrous behaviour. Long-term results on one female showed the concentration of 37.8 pg/mL of serum estradiol on Day 233 post-grafting and the female exhibited estrous behaviour on several occasions. This graft showed one antral follicle, one luteinized follicle and two preantral follicles. In conclusion, cat ovary autotransplantation to the subcutaneous tissue restored ovarian function, with hormone production and antral follicle development, over both short and long term periods. This could be a valuable technique in the evaluation of ovarian cryopreservation methods in felids. Once the technique is shown successful, it may be applied in allografts or xenografts between different feline species. Copyright © 2017 Elsevier Inc. All rights reserved.
Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research
Stuker, Florian; Ripoll, Jorge; Rudin, Markus
2011-01-01
Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development. PMID:24310495
Preliminary results of mercury levels in raw and cooked seafood and their public health impact.
Costa, Fernanda do N; Korn, Maria Graças A; Brito, Geysa B; Ferlin, Stacy; Fostier, Anne H
2016-02-01
Mercury is toxic for human health and one of the main routes of exposure is through consumption of contaminated fish and shellfish. The objective of this work was to assess the possible mercury contamination of bivalves (Anomalocardia brasiliana, Lucina pectinata, Callinectes sapidus), crustacean (C. sapidus) and fish (Bagre marinus and Diapterus rhombeus) collected on Salinas da Margarida, BA (Brazil), a region which carciniculture, fishing and shellfish extraction are the most important economic activities. The effect of cooking on Hg concentration in the samples was also studied. The results showed that Hg concentration was generally higher in the cooked samples than in raw samples. This increase can be related to the effect of Hg pre-concentration, formation of complexes involving mercury species and sulfhydryl groups present in tissues and/or loss of water and fat. The highest concentrations were found in B. marinus samples ranging 837.0-1585.3 μg kg(-1), which exceeded those recommended by Brazilian Health Surveillance Agency (ANVISA). In addition, Hg values found in the other samples also suggest the monitoring of the Hg concentrations in seafood consumed from the region. Copyright © 2015 Elsevier Ltd. All rights reserved.
Norfloxacin penetration into human renal and prostatic tissues.
Bergeron, M G; Thabet, M; Roy, R; Lessard, C; Foucault, P
1985-01-01
Concurrent norfloxacin concentrations in serum, kidney, and prostatic tissue were determined in 14 patients. Mean ratios of norfloxacin concentration in tissue over concentration in serum were 6.6 +/- 2.8 for the kidney and 1.7 +/- 0.2 for the prostate samples. The levels were above the MICs of most urinary pathogens. PMID:3834837
Heavy metals in Franklin`s gull tissues: Age and tissue differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, J.; Gochfeld, M.
1999-04-01
The authors examined the concentrations of lead, cadmium, chromium, mercury, manganese, and selenium in feathers, liver, kidney, heart, brain, and breast muscle of Franklin`s gulls (Larus pipixcan) nesting in northwestern Minnesota, USA, in 1994. Between 16% (chromium) and 71% (selenium, manganese) of the variation in metal concentrations was explained by tissue and age, except for selenium and arsenic, which were only explained by tissue. Of 35 possible differences (seven metals in five tissues), 24 significant age-related differences were found in Franklin`s gulls, with young generally having lower concentrations of metals in all of their tissues than adults. A notable exceptionmore » was the liver; young had significantly higher concentrations of selenium, chromium, manganese, and arsenic than did adults. Three notable findings were the following: young had significantly higher concentrations of selenium, chromium, manganese, and arsenic in their liver than did adults; young had 30 times as much chromium in the liver than adults; and adults had greatly elevated concentrations of cadmium in feathers, kidney, and liver.« less
Ågren, Anna; Holmström, Margareta; Schmidt, David E; Hosokawa, Kazuya; Blombäck, Margareta; Hjemdahl, Paul
2017-01-05
Patients with type 3 von Willebrand disease (VWD-3) have no measurable levels of VW factor (VWF) and usually require treatment with VWF-FVIII concentrate to prevent and/or stop bleeding. Even though the patients are treated prophylactically, they may experience bleeding symptoms. The aim of this study was to evaluate the effect of VWF-FVIII concentrate treatment in VWD-3 patients with the Total Thrombus Analysis System (T-TAS ® ), which measures thrombus formation under flow conditions. Coagulation profiles of 10 VWD-3 patients were analysed using T-TAS before and 30 minutes after VWF-FVIII concentrate (Haemate ® ) injection. Results were compared to VWF- and FVIII activity in plasma, and results with thromboelastometry and ristocetin-activated platelet impedance aggregometry (Multiplate ® ) in whole blood. For comparison, 10 healthy controls were also analysed with T-TAS. A median dose of 27 (range 15-35) IU/kg of VWF-FVIII concentrate increased VWF- and FVIII activity as expected. T-TAS thrombus formation was enhanced when a tissue factor/collagen-coated flow chamber was used at low shear, but treatment effects at high shear using a collagen-coated flow chamber were minimal. Whole blood coagulation assessed by thromboelastometry was normal and did not change (p > 0.05) but ristocetin-induced platelet aggregation improved (p < 0.001). In conclusion, T-TAS detects effects of VWF-FVIII concentrate treatment on coagulation-dependent thrombus formation at low shear, but minor effects are observed on platelet-dependent thrombus formation at high shear. The poor prediction of bleeding by conventional laboratory monitoring in VWD-3 patients might be related to insufficient restoration of platelet-dependent thrombus formation.