Sample records for monitoring toxic trace

  1. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART II

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  2. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART I

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  3. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  4. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients.

    PubMed

    Fessler, Theresa A

    2013-12-01

    Parenteral nutrition (PN) is a life-sustaining therapy for hundreds of thousands of people who have severe impairment of gastrointestinal function. Trace elements are a small but very important part of PN that can be overlooked during busy practice. Serious complications can result from trace element deficiencies and toxicities, and this is especially problematic during times of product shortages. Practical information on parenteral trace element use can be gleaned from case reports, some retrospective studies, and very few randomized controlled trials. A general knowledge of trace element metabolism and excretion, deficiency and toxicity symptoms, products, optimal dosages, and strategies for supplementation, restriction, and monitoring will equip practitioners to provide optimal care for their patients who depend on PN.

  5. National Trends in Trace Metals Concentrations in Ambient Particulate Matter

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Hafner, H. R.; Charrier, J. G.

    2007-12-01

    Ambient measurements of trace metals identified as hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2006 were analyzed for long-term trends. Trace metals analyzed include lead, manganese, arsenic, chromium, nickel, cadmium, and selenium. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Trend periods were required to be at least five years. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time or spatially. In addition, routine ambient monitoring methods had method detection limits (MDLs) too high to adequately measure concentrations for trends analysis. Differences between measurement methods at urban and rural sites also confound trends analyses. Improvements in MDLs, and a better understanding of comparability between networks, are needed to better quantify trends in trace metal concentrations in the future.

  6. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    PubMed

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. WAVELENGTH-RESOLVED REMPI MASS SPECTROMETRY FOR THE MONITORING OF TOXIC INCINERATION TRACE GASES

    EPA Science Inventory

    Structure-selective measurement techniques are needed for the assessment of the toxic loading of incinerator gases. This review article shows that wavelength-resolved, resonance-enhanced, multiphoton- ionization (REMPY) mass spectrometry can be used to this end. In this case, how...

  8. Water quality variability in San Francisco Bay, Some gGeneral lessons from 1996 sampling: 1996 annual report, San Francisco estuary regional monitoring program for trace substances

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Edmunds, J.L.; Baylosis, J.I.

    1997-01-01

    This report describes the results from the 1996 Regional Monitoring Program for Trace Substances (RMP). It is the fourth Annual Report from the RMP which began in 1993 and attempts to synthesize the most obvious data patterns from the last four years. This report includes data from Base Program monitoring activities, as well as results of Pilot and Special Studies conducted or completed in 1996. Additionally, several articles contributed by RMP investigators and others, are included. These articles provide perspective and insight on important contaminant issues identified by the RMP. This summary addresses which kinds of pollutants measured by the RMP appear to be at levels that warrant concern, what kinds of trends may be discerned, and which stations have consistently shown elevated contaminant levels. The goals or general objectives of the RMP are: 1. To obtain high quality baseline data describing the concentrations of toxic and potentially toxic trace elements and organic contaminants in the water and sediment of the San Francisco Estuary. 2. To determine seasonal and annual trends in chemical and biological water quality in the San Francisco Estuary. 3. To continue to develop a data set that can be used to determine long-term trends in the concentrations of toxic and potentially toxic trace elements and organic contaminants in the water and sediments of the San Francisco Estuary. 4. To determine whether water quality and sediment quality in the Estuary at large are in compliance with objectives established by the Basin Plan (the regulatory planning document used by the Regional Water Quality Control Board). 5. To provide a database on water and sediment quality in the Estuary which is compatible with data being developed in other ongoing studies, including wasteload allocation studies and model development, sediment quality objectives development, in-bay studies of dredged material disposal, Interagency Ecological Program (IEP) water quality studies, primary productivity studies, local effects biomonitoring programs, and state and federal mussel watch programs.

  9. Computerized in vitro test for chemical toxicity based on tetrahymena swimming patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.; Cronise, Raymond J.; Looger, Loren L.; Relwani, Rachna A.; Johnson, Jacqueline U.

    1994-01-01

    An apparatus and method for rapidly determining chemical toxicity was evaluated. The toxicity monitor includes an automated scoring of how motile biological cells (Tetrahymena pyriformis) slow down or otherwise change their swimming patterns in a hostile chemical environment. The device, called the Motility Assay Apparatus (MAA) is tested for 30 second determination of chemical toxicity in 20 aqueous samples containing trace organics and salts. With equal or better detection limits, results compare favorably to in vivo animal tests of eye irritancy, in addition to agreeing for all chemicals with previous manual evaluations of single cell motility.

  10. Computerized In Vitro Test for Chemical Toxicity Based on Tetrahymena Swimming Patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.; Cronise, Raymond J.; Looger, Loren L.; Relwani, Rachna A.; Johnson, Jacqueline U.

    1994-01-01

    An apparatus and a method for rapidly determining chemical toxicity have been evaluated as an alternative to the rabbit eye initancy test (Draize). The toxicity monitor includes an automated scoring of how motile biological cells (Tetrahymena pyriformis) slow down or otherwise change their swimming patterns in a hostile chemical environment. The method, called the motility assay (MA), is tested for 30 s to determine the chemical toxicity in 20 aqueous samples containing trace organics and salts. With equal or better detection limits, results compare favorably to in vivo animal tests of eye irritancy.

  11. Remediation of coal mining wastewaters using chitosan microspheres.

    PubMed

    Geremias, R; Pedrosa, R C; Benassi, J C; Fávere, V T; Stolberg, J; Menezes, C T B; Laranjeira, M C M

    2003-12-01

    This study aimed to evaluate the potential use of chitosan and chitosan/poly(vinylalcohol) microspheres incorporating with tetrasulphonated copper (II) phthalocyanine (CTS/PVA/TCP) in the remediation of coal mining wastewaters. The process was monitored by toxicity tests both before and after adsorption treatments with chitosan and microspheres. Physicochemical parameters, including pH and trace-metal concentration, as well as bioindicators of water pollution were used to that end. Wastewater samples colleted from drainage of underground coal mines, decantation pools, and contaminated rivers were scrutinized. Acute toxicity tests were performed using the Brine Shrimp Test (BST) in order to evaluate the remediation efficiency of different treatments. The results showed that the pH of treated wastewater samples were improved to values close to neutrality. Chitosan treatments were also effective in removing trace-metals. Pre-treatment with chitosan followed by microsphere treatment (CTS/PVA/TCP) was more effective in decreasing toxicity than the treatment using only chitosan. This was probably due to the elimination of pollutants other than trace-metals. Thus, the use of chitosan and microspheres is an adequate alternative towards remediation of water pollution from coal mining.

  12. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician

    PubMed Central

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-01-01

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized. PMID:28452962

  13. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician.

    PubMed

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-04-28

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized.

  14. Assessment of trace metals contamination level, bioavailability and toxicity in sediments from Dakar coast and Saint Louis estuary in Senegal, West Africa.

    PubMed

    Diop, Cheikh; Dewaelé, Dorothée; Cazier, Fabrice; Diouf, Amadou; Ouddane, Baghdad

    2015-11-01

    Trace metals have the potential to associate with sediments that have been recognised as significant source of contamination for the benthic environment. The current study aims assessing the trace metals contamination level in sediments from Dakar coast and Saint Louis estuary, and to examine their bioavailability to predict potential toxicity of sediments. Surface sediment samples were collected between June 2012 and January 2013 in three sampling periods from eight stations. Trace metals were analysed using inductively coupled plasma-optical emission spectrometer. Geoaccumulation indexes (Igeo) showed strong pollution by Cd, Cr, Cu and Pb confirmed by enrichment factor (EF) suggesting that these metals derived from anthropogenic sources. Toxicity indexes exceeded one in several sites suggesting the potential effects on sediment-dwelling organisms, which may constitute a risk to populations' health. However, seasonal variability of metal bioavailability was noted, revealing the best period to monitor metal contamination. From an ecotoxicological point of view, concentrations of Cd, Cr, Cu and Pb were above the effects range low threshold limit of the sediment quality guidelines for adverse biological effects. In addition, with Pb concentrations above the effect range medium values in some sites, biological effects may occur. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Roberts, C.; Jacobi, M.

    1998-08-01

    Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less

  16. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection

    PubMed Central

    Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano

    2006-01-01

    Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.

  17. Toxic effects of electrolyte and trace mineral administration in the intensive care unit.

    PubMed

    Besunder, J B; Smith, P G

    1991-07-01

    Electrolytes and trace minerals are administered routinely to ICU patients to correct deficiencies or as specific therapy for various conditions. Complications are usually related to the rate of infusion, rapidity of correction of a deficiency state, or iatrogenic poisoning with the agent. Adverse effects associated with Na+ administration included volume overload, CPM, and central nervous system bleeds. The toxic effects of K+, Ca2+, and Mg2+ are primarily related to their effects on the myocardium, nervous system, and muscle. Other than precipitating or maintaining a metabolic acidosis, Cl- administration is relatively nontoxic. Its accompanying anion (i.e., ammonium or arginine), however, may contribute significantly to patient morbidity and, possibly, mortality. Side effects observed with phosphate administration include hypocalcemia, metastatic calcification, and hypernatremia or hyperkalemia. Most of these toxicities are avoidable if appropriate precautions are taken and appropriate monitoring implemented. Finally, when administering any of these agents, the intensivist should be familiar with their toxicologic profiles and management of potential complications.

  18. Stress-induced injuries and trace element concentrations in vascular leaf plants from an urban environment (Palermo, Italy).

    PubMed

    Alaimo, Maria Grazia; Colombo, Paolo; Firetto, Anna; Trapani, Salvatore; Vizzì, Daniela; Melati, M Rita

    2003-01-01

    We examined leaf injuries and measured trace element concentrations in vascular plants from an urban ecosystem with distinct stress valences (the city of Palermo), and compared them with samples of the same species from sites where the stress potential is lower. Urban pollution influences macro-, micro- and toxic element concentrations in leaves. Therefore these leaves can be used as markers of the chemical and biological effects of atmospheric pollution. We studied the trace element content in the leaves of two species, oleander and oak, both fairly tolerant plants and good indicators and bio-monitors of pollution contaminants. Samples were collected at various sites in different periods.

  19. Environmental Pollution Studies in an Underdeveloped Country: (1) Heavy Metal Pollution in Ibadan, Nigeria.

    ERIC Educational Resources Information Center

    Onianwa, P. C.

    1993-01-01

    Reviews research studies related to the monitoring of trace heavy metals in environmental samples such as plants, water, soils, and other natural resources in the city of Ibadan, Nigeria. Research results indicate a significant increase in toxic heavy metal levels has occurred, implying the need for environmental education. (Contains 31…

  20. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  1. Assessing dust exposure in an integrated iron and steel manufacturing plant in South India.

    PubMed

    Ravichandran, B; Krishnamurthy, V; Ravibabu, K; Raghavan, S; Rajan, B K; Rajmohan, H R

    2008-01-01

    A study to monitor and estimate respirable particulate matter (RPM), toxic trace metal concentrations in the work environment was carried out in different sections of an integrated steel manufacturing industry. The average RPM concentration observed varied according to the section blast furnace was 2.41 mg/m;{3}; energy optimization furnace, 1.87 mg/m;{3}; sintering plant, 0.98 mg/m;{3}; continuous casting machine, 1.93 mg/m;{3}. The average trace metal concentration estimated from the RPM samples like iron, manganese, lead and chromium did not exceed ACGIH prescribed levels.

  2. TOXIC TRACE METALS IN MAMMALIAN HAIR AND NAILS

    EPA Science Inventory

    Data have been compiled from the available world literature on the accumulation and bioconcentration of selected toxic trace metals in human hair and nails and other mammalian hair, fur, nails, claws, and hoofs. The toxic trace metals and metalloids include antimony, arsenic, bor...

  3. Associations between trace elements and clinical health parameters in the North Pacific loggerhead sea turtle (Caretta caretta) from Baja California Sur, Mexico.

    PubMed

    Ley-Quiñónez, César Paúl; Rossi-Lafferriere, Natalia Alejandra; Espinoza-Carreon, Teresa Leticia; Hart, Catherine Edwina; Peckham, Sherwood Hoyt; Aguirre, Alfredo Alonso; Zavala-Norzagaray, Alan Alfredo

    2017-04-01

    This study investigated selected trace elements toxicity in sea turtles Caretta caretta population from Baja California Sur (BCS), Mexico, by analyzing associations among Zn, Se, Cu, As, Cd, Ni, Mn, Pb, and Hg with various biochemical parameters (packed cell volume, leukocytes, and selected blood parameters), and whether their concentrations could have an impact on the health status of sea turtles. Blood samples from 22 loggerhead (C. caretta) sea turtles from BCS, Mexico, were collected for trace elements on biochemistry parameter analyses. Significant associations among trace element levels and the biochemistry parameters were found: Cd vs ALP (R 2  = 0.874, p ˂ 0.001), As vs ALP (R 2  = 0.656, p ˂ 0.001), Mn vs ALP (R 2  = 0.834, p ˂ 0.001), and Ni vs LDH (R 2  = 0.587, p ˂ 0.001). This study is the first report of the biochemical parameters of the North Pacific loggerhead sea turtle (C. caretta) from Baja California Sur, Mexico, and it is the first to observe several associations with toxic and essential trace elements. Our study reinforces the usefulness of blood for the monitoring of the levels of contaminating elements and the results suggest that, based on the associations with health clinical parameters, high levels of Cd and As could be representing a risk to the North Pacific loggerhead population health.

  4. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  5. Identifying the causes of oil sands coke leachate toxicity to aquatic invertebrates.

    PubMed

    Puttaswamy, Naveen; Liber, Karsten

    2011-11-01

    A previous study found that coke leachates (CL) collected from oil sands field sites were acutely toxic to Ceriodaphnia dubia; however, the cause of toxicity was not known. Therefore, the purpose of this study was to generate CL in the laboratory to evaluate the toxicity response of C. dubia and perform chronic toxicity identification evaluation (TIE) tests to identify the causes of CL toxicity. Coke was subjected to a 15-d batch leaching process at pH 5.5 and 9.5. Leachates were filtered on day 15 and used for chemical and toxicological characterization. The 7-d median lethal concentration (LC50) was 6.3 and 28.7% (v/v) for pH 5.5 and 9.5 CLs, respectively. Trace element characterization of the CLs showed Ni and V levels to be well above their respective 7-d LC50s for C. dubia. Addition of ethylenediaminetetraacetic acid significantly (p ≤ 0.05) improved survival and reproduction in pH 5.5 CL, but not in pH 9.5 CL. Cationic and anionic resins removed toxicity of pH 5.5 CL only. Conversely, the toxicity of pH 9.5 CL was completely removed with an anion resin alone, suggesting that the pH 9.5 CL contained metals that formed oxyanions. Toxicity reappeared when Ni and V were added back to anion resin-treated CLs. The TIE results combined with the trace element chemistry suggest that both Ni and V are the cause of toxicity in pH 5.5 CL, whereas V appears to be the primary cause of toxicity in pH 9.5 CL. Environmental monitoring and risk assessments should therefore focus on the fate and toxicity of metals, especially Ni and V, in coke-amended oil sands reclamation landscapes. Copyright © 2011 SETAC.

  6. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China.

    PubMed

    Liu, Hongbo; Yang, Jian; Gan, Juli

    2010-11-01

    Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.

  7. Determination of toxic metals, trace and essentials, and macronutrients in Sarpa salpa and Chelon labrosus: risk assessment for the consumers.

    PubMed

    Afonso, Aridani; Gutiérrez, Angel J; Lozano, Gonzalo; González-Weller, Dailos; Rubio, Carmen; Caballero, José M; Hardisson, Arturo; Revert, Consuelo

    2017-04-01

    Due to increased environmental pollution, monitoring of contaminants in the environment and marine organisms is a fundamental tool for assessing the existence of risk from their consumption to human health. The levels of toxic heavy metals (Cd, Pb, and Al), trace and essential metals (B, Ba, Co, Cu, Cr, Fe, Li, Mn, Mo, Ni, Sr, V, and Zn), and macronutrients (Ca, K, Mg, Na) in two species of fish for human consumption were quantified in the present study. Eighty samples of muscle tissue and 80 samples of liver tissue belonging to two species of Osteichthyes fish; Sarpa salpa and Chelon labrosus were analyzed. The studied specimens were caught on the northern coast of Gran Canaria (Canary Islands) with fishing rods. As they caught from the shore, they are suitable samples for assessing the toxic levels of representative species caught by local amateur fishermen. The results show that both species are fit for human consumption since they have toxic levels of heavy metals (Cd, Pb, and Al) which are below the maximum established levels; however, the toxic levels of the liver samples are several orders of magnitude higher than the muscle samples, so we discourage their regular consumption. The risk assessment indicated that the two species of fish are safe for the average consumer; however, if the livers of these species are consumed, there could be risks because they exceed the PTWI for Pb and the TWI for Cd.

  8. Fast detection of toxic industrial compounds by laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Oberhuettinger, Carola; Langmeier, Andreas; Oberpriller, Helmut; Kessler, Matthias; Goebel, Johann; Mueller, Gerhard

    2009-05-01

    Trace detection of toxic industrial compounds has been investigated with the help of a laser ion mobility spectrometer (LIMS). The LIMS was equipped with a tuneable UV laser source for enabling two-photon ionization of the analyte gases and an ion drift tube for the measurement of the ion mobility. Different aromatic and aliphatic hydrocarbons as well as amines were investigated. We find that the first class of molecules can be well ionized due to the delocalization of their valence electron shells and the second due to the presence of non-bonding electrons in lone-pair orbitals. Selectivity of detection is attained on the basis of molecule-specific photo-ionization and drift time spectra. Ion currents were found to scale linearly with the substance concentration over several orders of magnitude down to the detection limits in the ppt range. As besides toxic industrial compounds, similar electron configurations also occur in illicit drugs, toxins and pharmaceutical substances, LIMS can be applied in a variety of fields ranging from environmental analysis, air pollution monitoring, drug detection and chemical process monitoring.

  9. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    NASA Technical Reports Server (NTRS)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  10. Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna

    USGS Publications Warehouse

    Dwyer, F.J.; Burch, S.A.; Ingersoll, C.G.; Hunn, J.B.

    1992-01-01

    Acute toxicity tests with reconstituted water were conducted to investigate the relationship between water hardness, salinity, and a mixture of trace elements found in irrigation drain waters entering Stillwater Wildlife Management Area (SWMA), near Fallon, Nevada. The SWMA has been the site of many fish kills in recent years, and previous toxicity studies indicated that one drain water, Pintail Bay, was acutely toxic to organisms acclimated or cultured in fresh water or salt water. This toxicity could reflect both the ionic composition of this saline water and the presence of trace elements. The lowest water salinity tested with Daphnia magna was near the upper salinity tolerance of these organisms; therefore, we were unable to differentiate between the toxic effects of ion composition and those of trace elements. In toxicity tests conducted with striped bass (Morone saxatilis), we found that the extent to which salinity was lethal to striped bass depended on the ion composition of that salinity. Survival of striped bass increased as hardness increased. In addition, a trace element mixture was toxic to striped bass, even though the concentrations of individual elements were below expected acutely lethal concentrations. Although salinity is an important water quality characteristic, the ionic composition of the water must be considered when one assesses the hazard of irrigation drain waters to aquatic organisms.

  11. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil.

    PubMed

    Beesley, Luke; Inneh, Onyeka S; Norton, Gareth J; Moreno-Jimenez, Eduardo; Pardo, Tania; Clemente, Rafael; Dawson, Julian J C

    2014-03-01

    Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Evaluation of Trace Elements in Potatoes (Solanum tuberosum) from a Suburban Area of Naples, Italy: The "Triangle of Death".

    PubMed

    Roma, Antonella De; Abete, Maria Cesarina; Brizio, Paola; Picazio, Giuseppe; Caiazzo, Marcello; D'auria, Jacopo Luigi; Esposito, Mauro

    2017-07-01

    Human exposure to contaminated food is a general health concern worldwide; it is necessary to evaluate food safety with respect to contaminants present in the edible parts of major food crops. This study evaluated the concentrations of 17 trace elements (As, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn) from 51 potato plantations in the Campania region, inside the area known as the "Triangle of Death," with inductively coupled plasma mass spectrometry analysis. Results confirm that the potatoes collected from the suburban area of Naples contained concentrations of trace elements below the safe limits prescribed by the Food and Agriculture Organization of the United Nations and the World Health Organization. The concentrations of elements were similar to those reported for potatoes grown in other countries. Monitoring the content of toxic and potentially toxic elements is one of the most important aspects of food quality assurance. The environmental persistence of metals may result in the accumulation of significant levels of these contaminants in plants. They are absorbed to different extents, depending on their source, soil and climatic factors, plant genotype, and agrotechnical conditions, thereby entering the food chain and representing a risk to human health.

  13. Factors affecting the toxicity of trace metals to fertilization success in broadcast spawning marine invertebrates: A review.

    PubMed

    Hudspith, M; Reichelt-Brushett, Amanda; Harrison, Peter L

    2017-03-01

    Significant amounts of trace metals have been released into both nearshore and deep sea environments in recent years, resulting in increased concentrations that can be toxic to marine organisms. Trace metals can negatively affect external fertilization processes in marine broadcast spawners and may cause a reduction in fertilization success at elevated concentrations. Due to its sensitivity and ecological importance, fertilization success has been widely used as a toxicity endpoint in ecotoxicological testing, which is an important method of evaluating the toxicity of contaminants for management planning. Ecotoxicological data regarding fertilization success are available across the major marine phyla, but there remain uncertainties that impair our ability to confidently interpret and analyse these data. At present, the cellular and biochemical events underlying trace metal toxicity in external fertilization are not known. Metal behavior and speciation play an important role in bioavailability and toxicity but are often overlooked, and disparities in experimental designs between studies limit the degree to which results can be synthesised and compared to those of other relevant species. We reviewed all available literature covering cellular toxicity mechanisms, metal toxicities and speciation, and differences in methodologies between studies. We conclude that the concept of metal toxicity should be approached in a more holistic manner that involves elucidating toxicity mechanisms, improving the understanding of metal behavior and speciation on bioavailability and toxicity, and standardizing the fertilization assay methods among different groups of organisms. We identify opportunities to improve the fertilization assay that will allow robust critical and comparative analysis between species and their sensitivities to trace metals during external fertilization, and enable data to be more readily extrapolated to field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Multi-decadal Records of Ocean Acidification and Toxic Heavy Metal Pollution in Coral Cores from Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Tolliver, R.; Field, D. B.; Young, C.; Stafford, G.; Day, R. D.

    2016-12-01

    Monitoring of the physiological/ecological response of marine calcifying organisms to the combination of lower pH and toxic metal pollutants (e.g. Cu and Sn from boat anti-fouling paints) into the oceans requires detailed knowledge of the rates and spatial distribution of ocean acidification (OA) and trace metal composition over time. Yet, measurement of metal concentrations and carbonate system parameters in the modern ocean from seawater bottle data is patchy (e.g. CDIAC/WOCE Carbon Data; http://cdiac.ornl.gov) and there remain few long-term surface water pH monitoring stations; the two longest continuous records of ocean pH extend back less than 30 years (Bermuda - BATS, 31°40'N, 64°10'W; Hawaii - HOTs, 22°45'N, 158°00'W). Much attention has therefore been focused on trace metal and ocean carbonate system proxy development to allow reconstruction of seawater metal content and pH in the past. Of particular promise is the boron isotope (δ11B) pH-proxy measured in marine calcifying organisms such as coral that can be cored enabling multi-decadal, annual-resolution, records of trace element incorporation and seawater pH to be generated. Here we present continuous Cu/Ca and Sn/Ca records in addition to δ11B data from three coral cores of Porites lutea. collected from waters proximal to Oahu, Hawaii. The diagenetic integrity of samples is verified using X-ray diffraction to assess the degree of calcite replacement. These cores reach a maximum depth of 80 cm and represent approximately 80 years of coral growth and seawater chemistry.

  15. Environmental Exposure of Children to Toxic Trace Elements (Hg, Cr, As) in an Urban Area of Yucatan, Mexico: Water, Blood, and Urine Levels.

    PubMed

    Arcega-Cabrera, F; Fargher, L; Quesadas-Rojas, M; Moo-Puc, R; Oceguera-Vargas, I; Noreña-Barroso, E; Yáñez-Estrada, L; Alvarado, J; González, L; Pérez-Herrera, N; Pérez-Medina, S

    2018-05-01

    Merida is the largest urban center in the Mexican State of Yucatan. Here domestic sewage is deposited in poorly built septic tanks and is not adequately treated. Because of contamination from such waste, water from the top 20 m of the aquifer is unsuitable for human consumption. Given this situation and because children are highly vulnerable to environmental pollution, including exposure to toxic trace elements, this study focused on evaluating the exposure of children to arsenic (As), chromium (Cr), and mercury (Hg) in water. It also evaluated the relationship between the levels of these elements in water and their concentrations in urine and blood. Among the 33 children monitored in the study, arsenic surpassed WHO limits for blood in 37% of the cases, which could result from the ingestion of poultry contaminated with organoarsenic compounds. In the case of WHO limits for Mercury, 65% of the water samples analyzed, 28% of urine samples, and 12% of blood samples exceeded them. Mercury exposure was correlated with biological sex, some lifestyle factors, and the zone in Merida in which children live. These data suggest that the levels of some toxic metals in children may be affected by water source, socioeconomic factors, and individual behavior.

  16. Anthropogenic Trace Compounds (ATCs) in aquatic habitats - research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management.

    PubMed

    Gerbersdorf, Sabine U; Cimatoribus, Carla; Class, Holger; Engesser, Karl-H; Helbich, Steffen; Hollert, Henner; Lange, Claudia; Kranert, Martin; Metzger, Jörg; Nowak, Wolfgang; Seiler, Thomas-Benjamin; Steger, Kristin; Steinmetz, Heidrun; Wieprecht, Silke

    2015-06-01

    Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity. We highlight the progressing sensitivity of chemical analytics and the challenges in harmonization of sampling protocols and methods, as well as the need for ATC indicator substances to enable cross-national valid monitoring routine. Secondly, the status quo in ecotoxicology is described to advocate for a better implementation of long-term tests, to address toxicity on community and environmental as well as on human-health levels, and to adapt various test levels and endpoints. Moreover, we discuss potential sources of ATCs and the current removal efficiency of wastewater treatment plants (WWTPs) to indicate the most effective places and elimination strategies. Knowledge gaps in transport and/or detainment of ATCs through their passage in surface waters and groundwaters are further emphasized in relation to their physico-chemical properties, abiotic conditions and biological interactions in order to highlight fundamental research needs. Finally, we demonstrate the importance and remaining challenges of an appropriate ATC risk assessment since this will greatly assist in identifying the most urgent calls for action, in selecting the most promising measures, and in evaluating the success of implemented management strategies. Copyright © 2015. Published by Elsevier Ltd.

  17. Surface-enhanced Raman for monitoring toxins in water

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.

    2004-02-01

    Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.

  18. Acute Toxicity of Sodium Fluorescein to Ashy Pebblesnails Fluminicola fuscus

    USGS Publications Warehouse

    Stockton, Kelly A.; Moffitt, Christine M.; Blew, David L.; Farmer, C. Neil

    2011-01-01

    Water resource agencies and groundwater scientists use fluorescein dyes to trace ground water flows that supply surface waters that may contain threatened or endangered mollusk species. Since little is known of the toxicity of sodium fluorescein to mollusks, we tested the toxicity of sodium fluorescein to the ashy pebblesnail Fluminicola fuscus. The pebblesnail was selected as a surrogate test species for the threatened Bliss Rapid snail Taylorcocha serpenticola that is endemic to the Snake River and its tributaries in the Hagerman Valley, Idaho. In laboratory tests, we expose replicated groups of snails to a series of concentrations of fluorescein in a static 24 h exposure at 15 degrees C. Following the exposure, we removed snails, rinsed them, and allowed a 48 h recovery in clean water before recording mortality. We estimated 377 mg/L as the median lethal dose. Mortality to snails occurred at concentrations well above those expected in test wells during the monitoring efforts.

  19. Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens.

    PubMed

    Vinayaka, A C; Thakur, M S

    2010-06-01

    Water-soluble quantum dots (QDs) are fluorescent semiconductor nanoparticles with narrow, very specific, stable emission spectra. Therefore, the bioconjugation of these QDs for biological fluorescent labeling may be of interest due to their unique physical and optical properties as compared to organic fluorescent dyes. These intrinsic properties of QDs have been used for the sensitive detection of target analytes. From the viewpoint of ensuring food safety, there is a need to develop rapid, sensitive and specific detection techniques to monitor food toxicants in food and environmental samples. Even trace levels of these toxicants can inadvertently enter the food chain, creating severe health hazards. The present review emphasizes the application of water-soluble bioconjugated QDs for the detection of food contaminants such as pesticides, pathogenic bacterial toxins such as botulinum toxin, enterotoxins produced by Staphylococcus aureus, Escherichia coli, and for the development of oligonucleotide-based microarrays. This review also emphasizes the application of a possible resonance energy transfer phenomenon resulting from nanobiomolecular interactions obtained through the bioconjugation of QDs with biomolecules. Furthermore, the utilization of significant changes in the spectral behavior of QDs (attributed to resonance energy transfer in the bioconjugate) in future nanobiosensor development is also emphasized.

  20. REAL-TIME MONITORING OF DIOXINS AND OTHER ...

    EPA Pesticide Factsheets

    This project is part of EPA's EMPACT program which was begun in 1998 and is jointly administered by EPA's Office of Research and Development, the National Center for Environmental Research and Quality Assurance (NCERQA), and the National Center for Environmental Assessment. The program was developed to provide understandable environmental information on various research initiatives to the public in a timely manner on various issues of importance. This particular project involves development of the application of an on-line, real time, trace organic air toxic monitor, with special emphasis on dioxin-related compounds. Research efforts demonstrate the utility and usefulness of the Resonance Enhanced Multi-Photon Ionization (REMPI) analytical method for trace organics control, monitoring, and compliance assurance. Project objectives will be to develop the REMPI instrumental method into a tool that will be used for assessment of potential dioxin sources, control and prevention of dioxin formation in known sources, and communication of facility performance. This will be accomplished through instrument development, laboratory verification, thermokinetic modelling, equilibrium modelling, statistical determinations, field validation, program publication and presentation, regulatory office support, and development of data communication/presentation procedures. For additional information on this EMPACT project, visit the website at http://www.epa.gov/appcdwww/crb/empa

  1. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  2. Marine molluscs in environmental monitoring. III. Trace metals and organic pollutants in animal tissue and sediments

    NASA Astrophysics Data System (ADS)

    Feldstein, Tamar; Kashman, Yoel; Abelson, Avigdor; Fishelson, Lev; Mokady, Ofer; Bresler, Vladimir; Erel, Yigal

    2003-10-01

    Concentrations of trace elements and organic pollutants were determined in marine sediments and molluscs from the Mediterranean and Red Sea coasts of Israel. Two bivalve species (Donax trunculus, Pteria aegyptia), two gastropod species (Patella caerulea, Cellana rota) and sediments were sampled at polluted and relatively clean, reference, sites. Along the Mediterranean coast of Israel, sediments and molluscs from Haifa Bay stations were enriched with both organic and trace element contaminants. In the Red Sea, differences between the polluted and reference sites were less pronounced. Bio-concentration factors indicate a significant concentration of Zn, As, Cd, Sn and Pb in animal tissue relative to the concentrations of these elements in the sediments. In contrast, Ce, La and U were not concentrated in molluscs. The trace element results indicate a saturation of the detoxification mechanisms in molluscs from polluted sites. The concentrations of organic pollutants at the same sites are at the lower range of values recorded in other studies. However, synergistic effects between these compounds and between them and metals can lead to acute toxicity.

  3. Do trace metals (chromium, copper, and nickel) influence toxicity of diesel fuel for free-living marine nematodes?

    PubMed

    Hedfi, Amor; Boufahja, Fehmi; Ben Ali, Manel; Aïssa, Patricia; Mahmoudi, Ezzeddine; Beyrem, Hamouda

    2013-06-01

    The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace metals (chromium, copper, and nickel) used as smoke suppressants and that (2) the magnitude of toxicity of diesel fuel differs according to the level of trace metal mixture added. Nematodes from Sidi Salem beach (Tunisia) were subjected separately for 30 days to three doses of diesel fuel and three others of a trace metals mixture. Simultaneously, low-dose diesel was combined with three amounts of a trace metal mixture. Results from univariate and multivariate methods of data evaluation generally support our initial hypothesis that nematode assemblages exhibit various characteristic changes when exposed to different types of disturbances; the low dose of diesel fuel, discernibly non-toxic alone, became toxic when trace metals were added. For all types of treatments, biological disturbance caused severe specific changes in assemblage structure. For diesel fuel-treated microcosms, Marylynnia bellula and Chromaspirinia pontica were the best positive indicative species; their remarkable presence in given ecosystem may predict unsafe seafood. The powerful toxicity of the combination between diesel fuel and trace metals was expressed with only negative bioindicators, namely Trichotheristus mirabilis, Pomponema multipapillatum, Ditlevsenella murmanica, Desmodora longiseta, and Bathylaimus capacosus. Assemblages with high abundances of these species should be an index of healthy seafood. When nematodes were exposed to only trace metals, their response looks special with a distinction of a different list of indicative species; the high presence of seven species (T. mirabilis, P. multipapillatum, Leptonemella aphanothecae, D. murmanica, Viscosia cobbi, Gammanema conicauda, and Viscosia glabra) could indicate a good quality of seafood and that of another species (Oncholaimellus mediterraneus) appeared an index of the opposite situation.

  4. Agent-Based Chemical Plume Tracing Using Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William

    2004-01-01

    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  5. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  6. Cadmium toxicity among wildlife in the Colorado Rocky Mountains

    USGS Publications Warehouse

    Larison, J.R.; Likens, G.E.; Fitzpatrick, J.W.; Crock, J.G.

    2000-01-01

    Cadmium is known to be both extremely toxic and ubiquitous in natural environments. It occurs in almost all soils, surface waters and plants, and it is readily mobilized by human activities such as mining. As a result, cadmium has been named as a potential health threat to wildlife species; however, because it exists most commonly in the environment as a trace constituent, reported incidences of cadmium toxicity are rare. Here we have measured trace metals in the food web and tissues of white-tailed ptarmigan (Lagopus leucurus) in Colorado. Our results suggest that cadmium toxicity may be more common among natural populations of vertebrates than has been appreciated to date and that cadmium toxicity may often go undetected or unrecognized. In addition, our research shows that ingestion of even trace quantities of cadmium can influence not only the physiology and health of individual organisms, but also the demographics and the distribution of species.

  7. Toxic trace elements at gastrointestinal level.

    PubMed

    Vázquez, M; Calatayud, M; Jadán Piedra, C; Chiocchetti, G M; Vélez, D; Devesa, V

    2015-12-01

    Many trace elements are considered essential [iron (Fe), zinc (Zn), copper (Cu)], whereas others may be harmful [lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As)], depending on their concentration and chemical form. In most cases, the diet is the main pathway by which they enter our organism. The presence of toxic trace elements in food has been known for a long time, and many of the food matrices that carry them have been identified. This has led to the appearance of legislation and recommendations concerning consumption. Given that the main route of exposure is oral, passage through the gastrointestinal tract plays a fundamental role in their entry into the organism, where they exert their toxic effect. Although the digestive system can be considered to be of crucial importance in their toxicity, in most cases we do not know the events that occur during the passage of these elements through the gastrointestinal tract and of ascertaining whether they may have some kind of toxic effect on it. The aim of this review is to summarize available information on this subject, concentrating on the toxic trace elements that are of greatest interest for organizations concerned with food safety and health: Pb, Cd, Hg and As. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Heavy - metal biomonitoring by using moss bags in Florence urban area, Italy

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Canu, Annalisa; Arca, Angelo; Duce, Pierpaolo

    2013-04-01

    In the last century, pollution has become one of the most important risks for environment. In particular, heavy metal presence in air, water and soil induces toxic effects on ecosystems and human health. Monitoring airborne trace element over large areas is a task not easy to reach since the concentrations of pollutants are variable in space and time. Data from automatic devices are site-specific and very limited in number to describe spatial-temporal trends of pollutants. In addition, especially in Italy, trace elements concentrations are not often recorded by most of the automated monitoring stations. In the last decades, development of alternative and complementary methods as bio-monitoring techniques, allowed to map deposition patterns not only near single pollution sources, but also over relatively large areas at municipal or even regional scale. Bio-monitoring includes a wide array of methodologies finalised to study relationships between pollution and living organisms. Mosses and lichens have been widely used as bio-accumulators for assessing the atmospheric deposition of heavy metals in natural ecosystems and urban areas. In this study bio-monitoring of airborne trace metals was made using moss bags technique. The moss Hypnum cupressiforme was used as bio-indicator for estimating atmospheric traces metal deposition in the urban area of Florence. Moss carpets were collected in a forested area of central Sardinia (municipality of Bolotana - Nuoro), which is characterised by absence of air pollution. Moss bags were located in the urban area of Florence close to three monitoring air quality stations managed by ARPAT (Agenzia Regionale Protezione Ambiente Toscana). Two stations were located in high-traffic roads whereas the other one was located in a road with less traffic density. In each site moss bags were exposed during three campaigns of measurement conducted during the periods March-April, May-July, and August-October 2010. Two moss bags, used as control, were not exposed. After exposure periods, moss bags were removed and moss samples were analyzed for As, Cr, Cu, Fe, Ni, Pb, V, and Zn by Inductively Coupled Plasma Atomic Emission Spectrometry. Results show differences between mean concentration of trace metals in moss bags after-exposure and the respective blanks in the three sample sites of Florence during the three campaigns of measurement. The highest concentrations for almost all elements were recorded at high-traffic road sites. Whereas lower values were detected in site located in a road with less traffic density In conclusion, Hypnum cupressiforme, for his high ability to accumulate trace metals, can be efficiently used as bio-indicator to estimate the trend of air pollution in a urban area during a period time.

  9. Gas Chromatic Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  10. Metals in edible seaweed.

    PubMed

    Rubio, C; Napoleone, G; Luis-González, G; Gutiérrez, A J; González-Weller, D; Hardisson, A; Revert, C

    2017-04-01

    The concentration levels of 20 metals were analyzed by ICP-OES in edible seaweed (Chondrus, Eisenia, Gelidium, Himanthalia, Laminaria, Palmaria, Porphyra, Undaria), from two origins (Asia vs EU) according to their cultivation practices (conventional vs organic). Red seaweed showed higher concentrations of trace and toxic elements. Porphyra may be used as a potential bioindicator for metals. Significant differences were found between the Asian vs European mean contents. The mean Cd level from the conventional cultivation (0.28 mg/kg) was two points higher than the organic cultivation (0.13 mg/kg). A daily consumption of seaweed (4 g/day) contributes to the dietary intake of metals, mainly Mg and Cr. The average intakes of Al, Cd and Pb were 0.064, 0.001 and 0.0003 mg/day, respectively. Based on obtained results, this study suggests that exposure to the toxic metals analyzed (Al, Cd and Pb) through seaweed consumption does not raise serious health concerns, but other toxic metals should be monitored. Copyright © 2017. Published by Elsevier Ltd.

  11. Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica).

    PubMed

    Majer, Alessandra Pereira; Petti, Mônica Angélica Varella; Corbisier, Thais Navajas; Ribeiro, Andreza Portella; Theophilo, Carolina Yume Sawamura; Ferreira, Paulo Alves de Lima; Figueira, Rubens Cesar Lopes

    2014-02-15

    Data about the concentration, accumulation and transfer of potentially toxic elements in Antarctic marine food webs are essential for understanding the impacts of these elements, and for monitoring the pollution contribution of scientific stations, mainly in Admiralty Bay due to the 2012 fire in the Brazilian scientific station. Accordingly, the concentration of As, Cd, Cu, Ni, Pb and Zn was measured in eight benthic species collected in the 2005/2006 austral summer and the relationship between concentration and trophic position (indicated by δ(15)N values) was tested. A wide variation in metal content was observed depending on the species and the element. In the studied trophic positions, it was observed bioaccumulation for As, Cd and Pb, which are toxic elements with no biological function. In addition, Cd showed a positive relationship between concentration and trophic level suggesting the possible biomagnification of this element. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Toxic Trace Elements in the Hair of Children with Autism

    ERIC Educational Resources Information Center

    Fido, Abdullahi; Al-Saad, Samira

    2005-01-01

    Excess or deficiency of natural trace elements has been implicated in the etiology of autism. This study explores whether concentration levels of toxic metals in the hair of children with autism significantly differ from those of age- and sex-matched healthy controls. In-hair concentration levels of antimony, uranium, arsenic, beryllium, mercury,…

  13. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields.

    PubMed

    Kim, Sung Chul; Hong, Young Kyu; Oh, Se Jin; Oh, Seung Min; Lee, Sang Phil; Kim, Do Hyung; Yang, Jae E

    2017-04-01

    Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p < 0.05) with the addition of chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = -0.70 for As and r = -0.54 for Cd) and soil respiration (SR) (r = -0.88 for As and r = -0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.

  14. Detection of selected trace elements in yogurt components.

    PubMed

    Capcarova, Marcela; Harangozo, Lubos; Toth, Tomas; Schwarczova, Loretta; Bobkova, Alica; Stawarz, Robert; Guidi, Alessandra; Massanyi, Peter

    2017-12-02

    The objective of this study was to determine the concentrations of Cu, Cd, Pb, Mn, Cr, Co, Ni, Zn, and Hg in the white and fruit parts of commercially available yogurts (n = 30) from Nitra markets (Slovak Republic). The results were correlated to determine their relationships. Three yogurt fruit flavors were chosen and tested, strawberry (n = 10), blueberry (n = 10), and cherry (n = 10). The elements were analyzed using atomic absorption spectrophotometry. Higher concentrations of toxic elements, such as Cd and Pb, were found in the fruit parts of the yogurt, and in some cases, the tolerable limit was exceeded. The white part of the yogurt was not contaminated by toxic elements. White yogurt is a good source of nutrients for humans, but the fruit part in yogurt requires detailed monitoring and improvements in the processing techniques.

  15. Commentary on the 1978 Kristiansand Conference on Nickel Toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, F.W. Jr.

    1978-01-01

    Abstracts of presentations at the 1978 Kristiansand Conference on Nickel Toxicity are presented. Major developments in the study of nickel toxicity are summarized. They include: the demonstration that nickel is an essential trace element; the discovery of the first nickel metalloenzyme; the discovery that ureases are also nickel enzymes; the improvement of analytical methods for the determination of nickel in biological material; the recognition of the need to monitor occupationl exposures to nickel; the observation that nickel carbonyl is a potent teratogen in rats; the finding that internal exposure to nickel by ingestion plays a role in exacerbation of nickelmore » eczema in man; and the observation that intrarenal injection of nickel subsulfide in rats induces marked polycythemia which appears to be mediated by enhanced renal synthesis and/or release of erythropoietin.« less

  16. Occupational blood lead testing: Practical concerns in analysis and interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saryan, L.A.

    Lead has attracted more attention from toxicologists and public health officials than any of the other industrially and biologically significant trace elements. Lead is widely distributed in the human environment and is used in numerous industrial applications. It may be present, sometimes in significant quantities, as a contaminant in the air we breathe, food, water and beverages, paints, folk medications, soil, dust, and other objects. As a consequence, all humans have some lead in their bodies. Excessive lead exposure is a serious health concern because of the numerous well-known toxic effects associated with this metal. Furthermore, unlike some other elements,more » lead has no established therapeutic or nutritional benefit. The toxic effects of lead have been described often in medical literature. This paper discusses the occupational health hazards of lead exposure and monitoring needs.« less

  17. Review of chemical, medication, and anesthesia toxicity in the OR.

    PubMed

    Fiedler, M A; Biddle, C

    1998-02-01

    A host of toxic substances exist in the OR. The toxicity of prep solutions, cleaning chemicals, common medications, and trace anesthetic gases varies greatly. Nurses use, direct others in the use of, or administer potential toxins while breathing air that may be contaminated to some degree with anesthetic vapors. Often, the OR nurse is the neighborhood resource when questions about the toxicity of common chemicals and drugs arise. A general knowledge of the toxicity of these substances improves the nurse's ability to assess the risk from trace anesthetic gases, prevent injury to patients, provide first aid when potentially dangerous exposure occurs, and direct others in the safe use of OR chemicals.

  18. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  19. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  20. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity.

    PubMed

    Nissim, Werther Guidi; Hasbroucq, Séverine; Kadri, Hafssa; Pitre, Frederic E; Labrecque, Michel

    2015-01-01

    In this preliminary screening study, we tested the phytoextraction potential of nine Canadian native/well-adapted plant species on a soil highly polluted by trace elements (TE) from a copper refinery. Plant physiological parameters and soil cover index were monitored for a 12-week period. At the end of the trial, biomass yield, bioconcentration (BFC) and translocation (TF) factors for the main TE as well as phytoextraction potential were determined. Most plants were severely injured by the high pollution levels, showing symptoms of toxicity including chlorosis, mortality and very low biomass yield. However, Indian mustard showed the highest selenium extraction potential (65 mg m(-2)), even under harsh growing conditions. Based on our results, tall fescue and ryegrass, which mainly stored As, Cu, Pb and Zn within roots, could be used effectively for phytostabilization.

  1. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.

  2. MONITORING OF WATERWAYS FOR EMERGING ...

    EPA Pesticide Factsheets

    Assessing the potential impact to the aquatic environment from emerging contaminants, entails monitoring a complex mixture (pharmaceuticals, polar pesticides, industrial by- products and degradation products) in natural waters. The presence of these chemicals, often at ultra-trace levels, may be responsible for development of sub-lethal toxic effects in aquatic organisms (i.e., reproductive dysfunction, immune dysfunction, neurological disorders). Conventional sampling techniques (i.e., grab sampling) often are insufficient for detecting these trace levels. An integrative sampler, the Polar Organic Chemical Integrative Sampler (POCIS), developed by the USGS Columbia Environmental Research Center, provided a way to measure the time-weighted average concentrations of these complex mixtures of contaminants. When POCIS was combined with liquid chromatography/mass spectrometry (LC/MS), it proved to be a powerful tool in identification and quantification of polar anthropogenic contaminants. Data from a pilot study showed the antibiotic azithromycin, illicit drugs [methamphetamine and MDMA (Ecstasy)], polyfluorinated organic acids (PFOA and PFOS) (essential ingredients in the manufacture of fluoropolymers), and surfactants [i.e., diethanolamine polyethylene glycols (DAPGs), polyethylene glycols (PEGs), and nonylphenol ethoxylates (NPEOs)] were all present in the extracts from the effluents of three wastewater treatment plants and other bodies of natural waters. Althoug

  3. Determination of beryllium concentrations in UK ambient air

    NASA Astrophysics Data System (ADS)

    Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.

    2016-12-01

    Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.

  4. Effects of mineral amendments on trace elements leaching from pre-treated marine sediment after simulated rainfall events.

    PubMed

    Hurel, C; Taneez, M; Volpi Ghirardini, A; Libralato, G

    2017-01-01

    Bauxite extraction by-products (red mud) were used to evaluate their potential ability to stabilize trace elements from dredged and aerated/humidified marine sediment. The investigated by-products were: bauxaline ® (BX) that is a press-filtered red mud; bauxsol™(BS) that is a press-filtered red mud previously washed with excess of seawater, and gypsum neutralized bauxaline ® (GBX). These materials were separately mixed to dredged composted sediment sample considering 5% and 20% sediment: stabilizer ratios. For pilot experiments, rainfall events were regularly simulated for 3 months. Concentrations of As, Mo, Cd, Cr, Zn, Cu, and Ni were analyzed in collected leachates as well as toxicity. Results showed that Cd, Mo, Zn, and Cu were efficiently stabilized in the solid matrix when 20% of BX, BS, and GBX was applied. Consequently, toxicity of leachates was lower than for the untreated sediment, meaning that contaminants mobility was reduced. A 5% GBX was also efficient for Mo, Zn and Cu stabilization. In all scenarios, As stabilization was not improved. Compared to all other monitored elements, Mo mobility seemed to depend upon temperature-humidity conditions during pilot experiments suggesting the need of further investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Subtask 4.8 - Fate and Control of Mercury and Trace Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlish, John; Lentz, Nicholas; Martin, Christopher

    2011-12-31

    The Center for Air Toxic Metals® (CATM®) Program at the Energy & Environmental Research Center (EERC) continues to focus on vital basic and applied research related to the fate, behavior, measurement, and control of trace metals, especially mercury, and the impact that these trace metals have on human health and the environment. For years, the CATM Program has maintained an international perspective, performing research and providing results that apply to both domestic and international audiences, with reports distributed in the United States and abroad. In addition to trace metals, CATM’s research focuses on other related emissions and issues that impactmore » trace metal releases to the environment, such as SO x, NO x, CO 2, ash, and wastewater streams. Of paramount interest and focus has been performing research that continues to enable the power and industrial sectors to operate in an environmentally responsible manner to meet regulatory standards. The research funded by the U.S. Department of Energy’s (DOE’s) National Energy Technology Laboratory (NETL) through CATM has allowed significant strides to be made to gain a better understanding of trace metals and other emissions, improve sampling and measurement techniques, fill data gaps, address emerging technical issues, and develop/test control technologies that allow industry to cost-effectively meet regulatory standards. The DOE NETL–CATM research specifically focused on the fate and control of mercury and trace elements in power systems that use CO 2 control technologies, such as oxycombustion and gasification systems, which are expected to be among those technologies that will be used to address climate change issues. In addition, research addressed data gaps for systems that use conventional and multipollutant control technologies, such as electrostatic precipitators, selective catalytic reduction units, flue gas desulfurization systems, and flue gas-conditioning methods, to understand mercury interactions, develop better control strategies and, in some cases, prevent mercury from being reemitted. This research also addressed stakeholder concerns and questions related to sampling and analytical methods for mercury, especially for continuous mercury monitors and sorbent trap methods for future compliance. Advancements were made toward the development of a much simpler dry-based method for measurement of halogens and trace metals. Finally, this research resulted in significant outcomes related to mercury and selenium concentrations in freshwater fish and how it is associated with other elements, thereby potentially impacting health; this has greatly enhanced the understanding of the second-order mechanism of mercury toxicity. The outcomes of this research have been shared with stakeholders in various domestic and international forums, working groups, conferences, educational settings, and published documents, with information available and accessible to those most impacted or interested in timely and current results on toxic metals. This subtask was funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291.« less

  6. Deficiencies and toxicities of trace elements and micronutrients in tropical soils: Limitations of knowledge and future research needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, B.E.

    1997-01-01

    This article reviews present knowledge concerning deficiencies and toxicities of trace elements and micronutrients in tropical soils. The myth that all tropical soils are highly leached and nutrient-poor is challenged. Continuing use of the term laterite by ecologists and geologists is criticized and adoption of plinthite is urged. The trace element content of plinthite and its possible influence on micronutrient availability are described. Micronutrient limitations of tropical agriculture are related to soil type and formation, and the special problem of aluminum toxicity in acid soils is discussed in both agricultural and ecological contexts. Studies of micronutrient cycling in tropical forestsmore » or savannas are needed to supplement the emerging picture of the complexities of major element cycles in these ecosystems.« less

  7. Mortality of sea lions along the central California coast linked to a toxic diatom bloom.

    PubMed

    Scholin, C A; Gulland, F; Doucette, G J; Benson, S; Busman, M; Chavez, F P; Cordaro, J; DeLong, R; De Vogelaere, A; Harvey, J; Haulena, M; Lefebvre, K; Lipscomb, T; Loscutoff, S; Lowenstine, L J; Marin, R; Miller, P E; McLellan, W A; Moeller, P D; Powell, C L; Rowles, T; Silvagni, P; Silver, M; Spraker, T; Trainer, V; Van Dolah, F M

    2000-01-06

    Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.

  8. Mussel watch

    NASA Astrophysics Data System (ADS)

    Contamination of U.S. coastal areas may be decreasing as a result of environmental regulations that have banned or curtailed toxic chemicals, concludes a report by the National Oceanic and Atmospheric Administration. The report, “Recent Trends in Coastal Environmental Quality: Results from the Mussel Watch Project,” presents results of analyzing chemical concentrations found in mussel and oyster tissues collected every year since 1986.These mollusks are collected once a year at more than 240 sites nationwide and analyzed for over 70 polycyclic aromatic hydrocarbons, polychlorinated biphenyls, chlorinated pesticides, butyltins, and toxic trace elements such as copper, cadmium, and lead. The report states that from 1986 to 1993 there were many more decreases than increases in chemical concentrations in coastal regions. These decreasing trends were not unexpected; all of the monitored chlorinated hydrocarbons have been banned for use in the United States, and tributyltin has been banned as a biocide on recreational boats.

  9. A review of Human Biomonitoring studies of trace elements in Pakistan.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib

    2016-11-01

    Human biomonitoring (HBM) measures the concentration levels of substances or their metabolites in human body fluids and tissues. HBM of dose and biochemical effect monitoring is an effective way of measuring human exposure to chemical substances. Many countries have conducted HBM studies to develop a data base for many chemicals including trace metals of health concern for their risk assessment and risk management. However, in Pakistan, HBM program on large scale for general population does not exist at present or in the past has been reported. Various individual HBM studies have been reported on the assessment of trace elements (usually heavy metals) from Pakistan; most of them are epidemiological cross sectional surveys. In this current review we tried to develop a data base of HBM studies of trace elements namely arsenic, cadmium, copper, chromium, iron, lead, manganese, nickel, and zinc in biological fluids (blood, urine) and tissues (hair, nails) in general population of Pakistan. Studies from all available sources have been explored, discussed and presented in the form of tables and figures. The results of these studies were critically compared with large scale HBM programs of other countries, (US & European communities etc). It was observed from the present study that the most of the toxic metals in biological fluids/tissues in general population of Pakistan, have higher background values comparatively. For example the mean values of toxic metals like As, Cd, Cr, Ni, and Pb in blood of general population were found as 2.08 μg/L, 4.24 μg/L, 60.5 μg/L, 1.95 μg/L, 198 μg/L respectively. Similarly, the urine mean values of 67.6 μg/L, 3.2 μg/L, 16.4 μg/L, 6.2 μg/L and 86.5 μg/L were observed for As, Cd, Cr, Ni, and Pb respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Toxic phytoplankton in San Francisco Bay

    USGS Publications Warehouse

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  11. Determination of inorganic and organic priority pollutants in biosolids from meat processing industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Rennio F. de; Institute of Environmental Engineering; Tambosi, Jose L.

    2009-09-15

    The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content - polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) - were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards. Toxic equivalent factors were evaluated for the biosolids, and the results proved that these wastesmore » can be safely deposited on land or used in combustion/incineration plants. Since no previous data were found for meat processing waste, comparisons were made using municipal sewage sludge data reported in the literature. Since, this report monitored part of the priority pollutants established by the US EPA for meat and poultry processing wastewater and sludge, the results verified that low pollution loads are generated by the meat processing plant located in the southern part of Brazil. However, the BS generated in the treatment processes are in accordance with the limits established for waste disposal and even for soil fertilizer.« less

  12. Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soil in Alpine areas?

    PubMed

    Schwitzguébel, Jean-Paul; Comino, Elena; Plata, Nadia; Khalvati, Mohammadali

    2011-07-01

    Phytoremediation does exploit natural plant physiological processes and can be used to decontaminate agricultural soils, industrial sites, brownfields, sediments and water containing inorganic and organic pollutants or to improve food chain safety by phytostabilisation of toxic elements. It is a low-cost and environment friendly technology targetting removal, degradation or immobilisation of contaminants. The aim of the present review is to highlight some recent advances in phytoremediation in the Alpine context. Case studies are presented where phytoremediation has been or can be successfully applied in Alpine areas to: (1) clean-up industrial wastewater containing sulphonated aromatic xenobiotics released by dye and textile industries; (2) remediate agricultural soils polluted by petroleum hydrocarbons; (3) improve food chain safety in soils contaminated with toxic trace elements (As, Co, Cr and Pb); and (4) treat soils impacted by modern agricultural activities with a special emphasis on phosphate fertilisation. Worlwide, including in Alpine areas, the controlled use of appropriate plants is destined to play a major role for remediation and restoration of polluted and degraded ecosystems, monitoring and assessment of environmental quality, prevention of landscape degradation and immobilisation of trace elements. Phytotechnologies do already offer promising approaches towards environmental remediation, human health, food safety and sustainable development for the 21st century in Alpine areas and elsewhere all over the world.

  13. Integrating mHealth in Oncology: Experience in the Province of Trento.

    PubMed

    Galligioni, Enzo; Piras, Enrico Maria; Galvagni, Michele; Eccher, Claudio; Caramatti, Silvia; Zanolli, Daniela; Santi, Jonni; Berloffa, Flavio; Dianti, Marco; Maines, Francesca; Sannicolò, Mirella; Sandri, Marco; Bragantini, Lara; Ferro, Antonella; Forti, Stefano

    2015-05-13

    The potential benefits of the introduction of electronic and mobile health (mHealth) information technologies, to support the safe delivery of intravenous chemotherapy or oral anticancer therapies, could be exponential in the context of a highly integrated computerized system. Here we describe a safe therapy mobile (STM) system for the safe delivery of intravenous chemotherapy, and a home monitoring system for monitoring and managing toxicity and improving adherence in patients receiving oral anticancer therapies at home. The STM system is fully integrated with the electronic oncological patient record. After the prescription of chemotherapy, specific barcodes are automatically associated with the patient and each drug, and a bedside barcode reader checks the patient, nurse, infusion bag, and drug sequence in order to trace the entire administration process, which is then entered in the patient's record. The usability and acceptability of the system was investigated by means of a modified questionnaire administered to nurses. The home monitoring system consists of a mobile phone or tablet diary app, which allows patients to record their state of health, the medications taken, their side effects, and a Web dashboard that allows health professionals to check the patient data and monitor toxicity and treatment adherence. A built-in rule-based alarm module notifies health care professionals of critical conditions. Initially developed for chronic patients, the system has been subsequently customized in order to monitor home treatments with capecitabine or sunitinib in cancer patients (Onco-TreC). The STM system never failed to match the patient/nurse/drug sequence association correctly, and proved to be accurate and reliable in tracing and recording the entire administration process. The questionnaires revealed that the users were generally satisfied and had a positive perception of the system's usefulness and ease of use, and the quality of their working lives. The pilot studies with the home monitoring system with 43 chronic patients have shown that the approach is reliable and useful for clinicians and patients, but it is also necessary to pay attention to the expectations that mHealth solutions may raise in users. The Onco-TreC version has been successfully laboratory tested, and is now ready for validation. The STM and Onco-TreC systems are fully integrated with our complex and composite information system, which guarantees privacy, security, interoperability, and real-time communications between patients and health professionals. They need to be validated in order to confirm their positive contribution to the safer administration of anticancer drugs.

  14. Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities.

    PubMed

    Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech

    2016-09-01

    Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prendez, M.; Ortiz, J.L.; Cortes, E.

    In Chile, the State Public Health Office (Ministerio de Salud Publica) is responsible for pollution control and for air quality. This office has been monitoring only toxic gases and total suspended particulate matter. The present work is the first study in Chile designed to determine trace elements and their concentrations in particulate matter in the air. By use of enrichment factors, 25 trace elements were classified according to natural or anthropogenic origin. There were two sampling periods: July (winter) and September (spring) 1976. Four sites were studied, located about 6 km north, south, west and east of downtown Santiago. Themore » south, north and west sites are urban and 55 m above sea level. The east site is suburban and approximately 270 m higher than the others. Twenty-four-hour samples were collected on Whatman-41 cellulose filter paper, in a modified stainless steel Buchner funnel. Approximately 10 m/sup 3/ were used at the urban sites and 200 m/sup 3/ at the suburban site. Instrumental neutron activation analysis (INAA) was used as the analytical technique.« less

  16. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    NASA Astrophysics Data System (ADS)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  17. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology

    NASA Astrophysics Data System (ADS)

    Pořízka, P.; Prochazka, D.; Pilát, Z.; Krajcarová, L.; Kaiser, J.; Malina, R.; Novotný, J.; Zemánek, P.; Ježek, J.; Šerý, M.; Bernatová, S.; Krzyžánek, V.; Dobranská, K.; Novotný, K.; Trtílek, M.; Samek, O.

    2012-08-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters.

  18. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  19. Environmental monitoring of the area surrounding oil wells in Val d'Agri (Italy): element accumulation in bovine and ovine organs.

    PubMed

    Miedico, Oto; Iammarino, Marco; Paglia, Giuseppe; Tarallo, Marina; Mangiacotti, Michele; Chiaravalle, A Eugenio

    2016-06-01

    In this work, environmental heavy metal contamination in the Val d'Agri area of Southern Italy was monitored, measuring the accumulation of 18 heavy metals (U, Hg, Pb, Cd, As, Sr, Sn, V, Ni, Cr, Mo, Co, Cu, Zn, Ca, Mn, Fe, and Al) in the organs of animals raised in the surrounding area (kidney, lung, and liver of bovine and ovine species). Val d'Agri features various oil processing centers which are potentially a significant source of environmental pollution, making it essential to perform studies that will outline the state of the art on which any recovery plans and interventions may be developed. The analysis was carried out using official and accredited analytical methods based on inductively coupled plasma mass spectrometry, and the measurements were statistically processed in order to give a contribution to risk assessment. Even though five samples showed Pb and Cd concentrations above the limits defined in the European Commission Regulation (EC) No 1881/2006, the mean concentrations of most elements suggest that contamination in this area is low. Consequently, these results also suggest that there is no particular risk for human exposure to toxic trace elements. Nevertheless, the findings of this work confirm that element accumulation in ovine species is correlated with geographical livestock area. Therefore, ovine-specific organs might be used as bioindicators for monitoring contamination by specific toxic elements in exposed areas.

  20. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  1. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment.

    PubMed

    Raknuzzaman, Mohammad; Ahmed, Md Kawser; Islam, Md Saiful; Habibullah-Al-Mamun, Md; Tokumura, Masahiro; Sekine, Makoto; Masunaga, Shigeki

    2016-09-01

    Trace metals contamination in commercial fish and crustaceans have become a great problem in Bangladesh. This study was conducted to determine seven trace metals concentration (Cr, Ni, Cu, Zn, As, Cd, and Pb) in some commercial fishes and crustaceans collected from coastal areas of Bangladesh. Trace metals in fish samples were in the range of Cr (0.15 - 2.2), Ni (0.1 - 0.56), Cu (1.3 - 1.4), Zn (31 - 138), As (0.76 - 13), Cd (0.033 - 0.075), and Pb (0.07 - 0.63 mg/kg wet weight (ww)), respectively. Arsenic (13 mg/kg ww) and Zn (138 mg/kg ww) concentrations were remarkably high in fish of Cox's Bazar due to the interference of uncontrolled huge hatcheries and industrial activities. The elevated concentrations of Cu (400), Zn (1480), and As (53 mg/kg ww) were also observed in crabs of Cox's Bazar which was considered as an absolutely discrepant aquatic species with totally different bioaccumulation pattern. Some metals in fish and crustaceans exceeded the international quality guidelines. Estimated daily intake (EDI) and target cancer risk (TR) revealed high dietary intake of As and Pb, which was obviously a matter of severe public health issue of Bangladeshi coastal people which should not be ignored and concentrate our views to solve this problem with an integrated approaches. Thus, continuous monitoring of these toxic trace elements in seafood and immediate control measure is recommended.

  2. Sediment Chemistry and Toxicity in Barnegat Bay, New Jersey: Pre- and Post- Hurricane Sandy, 2012-2013.

    USGS Publications Warehouse

    Romanok, Kristin M.; Szabo, Zoltan; Reilly, Timothy J.; Defne, Zafer; Ganju, Neil K.

    2016-01-01

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.

  3. Sediment chemistry and toxicity in Barnegat Bay, New Jersey: Pre- and post-Hurricane Sandy, 2012-13.

    PubMed

    Romanok, Kristin M; Szabo, Zoltan; Reilly, Timothy J; Defne, Zafer; Ganju, Neil K

    2016-06-30

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality. Published by Elsevier Ltd.

  4. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: documenting the uptake of elemental toxicants.

    PubMed

    Seltzer, Michaeld; Berry, Kristinh

    2005-03-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  5. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants

    USGS Publications Warehouse

    Seltzer, M.D.; Berry, K.H.

    2005-01-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  6. High levels of heavy metal accumulation in dental calculus of smokers: a pilot inductively coupled plasma mass spectrometry study.

    PubMed

    Yaprak, E; Yolcubal, I; Sinanoğlu, A; Doğrul-Demiray, A; Guzeldemir-Akcakanat, E; Marakoğlu, I

    2017-02-01

    Various trace elements, including toxic heavy metals, may exist in dental calculus. However, the effect of environmental factors on heavy metal composition of dental calculus is unknown. Smoking is a major environmental source for chronic toxic heavy metal exposition. The aim of this study is to compare toxic heavy metal accumulation levels in supragingival dental calculus of smokers and non-smokers. A total of 29 supragingival dental calculus samples were obtained from non-smoker (n = 14) and smoker (n = 15) individuals. Subjects with a probability of occupational exposure were excluded from the study. Samples were analyzed by inductively coupled plasma mass spectrometry in terms of 26 metals and metalloids, including toxic heavy metals. Toxic heavy metals, arsenic (p < 0.05), cadmium (p < 0.05), lead (p < 0.01), manganese (p < 0.01) and vanadium (p < 0.01) levels were significantly higher in smokers than non-smokers. The levels of other examined elements were similar in both groups (p > 0.05). Within the limitations of this study, it can be concluded that the elementary composition of dental calculus may be affected by environmental factors such as tobacco smoke. Therefore, dental calculus may be utilized as a non-invasive diagnostic biological material for monitoring chronic oral heavy metal exposition. However, further studies are required to evaluate its diagnostic potential. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Characterization of selected bed-sediment-bound organic and inorganic contaminants and toxicity, Barnegat Bay and major tributaries, New Jersey, 2012

    USGS Publications Warehouse

    Romanok, Kristin M.; Reilly, Timothy J.; Lopez, Anthony R.; Trainor, John J.; Hladik, Michelle; Stanley, Jacob K.; Farrar, Daniel

    2014-01-01

    A study of bed-sediment toxicity and organic and inorganic contaminants was conducted by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). Bed-sediment samples were collected once from 22 sites in Barnegat Bay and selected major tributaries during August–September 2012 and analyzed for toxicity and a suite of organic and inorganic contaminants by the USGS and the U.S. Army Corps of Engineers. Sampling sites were selected to coincide with an existing water-quality monitoring network used by the NJDEP and others in order to evaluate water-quality conditions in Barnegat Bay and the surrounding watershed. Two of the 22 sites are reference sites and are within or adjacent to the study area; bed-sediment samples from reference sites allow for comparisons of results for the Barnegat Bay watershed to results from less affected settings within the region. Toxicity testing was conducted by exposing the estuarine amphipod Leptocheirus plumulosus and the freshwater amphipod Hyalella azteca to sediments for 28 days, and the percent survival, difference in biomass, and individual dry weights were measured. Reproductive effects also were evaluated for estuarine samples. Bed-sediment samples from four sites within Barnegat Bay were subjected to a toxicity identification evaluation to determine probable causes of toxicity. Samples were analyzed for a suite of 94 currently-used pesticides, 21 legacy pesticides, 24 trace elements, 40 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls (PCBs) as Arochlor mixtures, and 145 individual PCB congeners. Concentrations of detected compounds were compared to sediment-quality guidelines, where appropriate.

  8. Environmental concerns of desalinating seawater using reverse osmosis.

    PubMed

    Tularam, Gurudeo Anand; Ilahee, Mahbub

    2007-08-01

    This Critical Review on environmental concerns of desalination plants suggests that planning and monitoring stages are critical aspects of successful management and operation of plants. The site for the desalination plants should be selected carefully and should be away from residential areas particularly for forward planning for possible future expansions. The concerning issues identified are noise pollution, visual pollution, reduction in recreational fishing and swimming areas, emission of materials into the atmosphere, the brine discharge and types of disposal methods used are the main cause of pollution. The reverse osmosis (RO) method is the preferred option in modern times especially when fossil fuels are becoming expensive. The RO has other positives such as better efficiency (30-50%) when compared with distillation type plants (10-30%). However, the RO membranes are susceptible to fouling and scaling and as such they need to be cleaned with chemicals regularly that may be toxic to receiving waters. The input and output water in desalination plants have to be pre and post treated, respectively. This involves treating for pH, coagulants, Cl, Cu, organics, CO(2), H(2)S and hypoxia. The by-product of the plant is mainly brine with concentration at times twice that of seawater. This discharge also includes traces of various chemicals used in cleaning including any anticorrosion products used in the plant and has to be treated to acceptable levels of each chemical before discharge but acceptable levels vary depending on receiving waters and state regulations. The discharge of the brine is usually done by a long pipe far into the sea or at the coastline. Either way the high density of the discharge reaches the bottom layers of receiving waters and may affect marine life particularly at the bottom layers or boundaries. The longer term effects of such discharge concentrate has not been documented but it is possible that small traces of toxic substances used in the cleaning of RO membranes may be harmful to marine life and ecosystem. The plants require saline water and thus the construction of input and discharge output piping is vital. The piping are often lengthy and underground as it is in Tugun (QLD, Australia), passing below the ground. Leakage of the concentrate via cracks in rocks to aquifers is a concern and therefore appropriate monitoring quality is needed. Leakage monitoring devices ought to be attached to such piping during installation. The initial environment impact assessment should identify key parameters for monitoring during discharge processes and should recommend ongoing monitoring with devices attached to structures installed during construction of plants.

  9. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application.

    PubMed

    Wu, Qimei; Wang, Xin; Zhou, Qixing

    2014-05-01

    Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Toxic effects of trace elements on newborns and their birth outcomes.

    PubMed

    Tang, Mengling; Xu, Chenye; Lin, Nan; Yin, Shanshan; Zhang, Yongli; Yu, Xinwei; Liu, Weiping

    2016-04-15

    Some trace elements are essential for newborns, their deficiency may cause abnormal biological functions, whereas excessive intakes due to environmental contamination may create adverse health effects. This study was conducted to measure the levels of selected trace elements in Chinese fish consumers by assessing their essentiality and toxicity via colostrum intake in newborns, and evaluated the effects of these trace elements on birth outcomes. Trace elements in umbilical cord serum and colostrum of the studied population were relatively high compared with other populations. The geometric means (GM) of estimated daily intake (EDI, mgday(-1)) of the trace elements were in the safe ranges for infant Dietary Reference Intakes (DRIs) recommended by the United States Food and Drug Administration (FDA). When using total dietary intake (TDI, mgkg(-1)bwday(-1)), zinc (Zn) (0.880mgkg(-1)bwday(-1)) and selenium (Se) (6.39×10(-3)mgkg(-1)bwday(-1)) were above the Reference Doses (RfD), set by the United States Environmental Protection Agency (EPA). Multivariable linear regression analyses showed that Se was negatively correlated with birth outcomes. Our findings suggested that overloading of trace elements due to environmental contamination may contribute to negative birth outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Tracing the spatiotemporally resolved inactivation of optically arranged bacteria by photofunctional microparticles at the single-cell level (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barroso Peña, Alvaro; Grüner, Malte; Forbes, Taylor; Denz, Cornelia; Strassert, Cristian A.

    2016-09-01

    Antimicrobial Photodynamic Inactivation (PDI) represents an attractive alternative in the treatment of infections by antibiotic-resistant pathogenic bacteria. In PDI a photosensitizer (PS) is administered to the site of the biological target in order to generate cytotoxic singlet oxygen which reacts with the biological membrane upon application of harmless visible light. Established methods for testing the photoinduced cytotoxicity of PSs rely on the observation of the whole bacterial ensemble providing only a population-averaged information about the overall produced toxicity. However, for a deeper understanding of the processes that take place in PDI, new methods are required that provide simultaneous regulation of the ROS production, monitoring the subsequent damage induced in the bacteria cells, and full control of the distance between the bacteria and the center of the singlet oxygen production. Herein we present a novel method that enables the quantitative spatio-time-resolved analysis at the single cell level of the photoinduced damage produced by transparent microspheres functionalized with PSs. For this purpose, a methodology was introduced to monitor phototriggered changes with spatiotemporal resolution employing holographic optical tweezers and functional fluorescence microscopy. The defined distance between the photoactive particles and individual bacteria can be fixed under the microscope before the photosensitization process, and the photoinduced damage is monitored by tracing the fluorescence turn-on of a suitable marker. Our methodology constitutes a new tool for the in vitro design and analysis of photosensitizers, as it enables a quantitative response evaluation of living systems towards oxidative stress.

  12. Soil-plant relationships and contamination by trace elements: A review of twenty years of experimentation and monitoring after the Aznalcóllar (SW Spain) mine accident.

    PubMed

    Madejón, Paula; Domínguez, María T; Madejón, Engracia; Cabrera, Francisco; Marañón, Teodoro; Murillo, José M

    2018-06-01

    Soil contamination by trace elements (TE) is a major environmental problem and much research is done into its effects on ecosystems and human health, as well as into remediation techniques. The Aznalcóllar mine accident (April 1998) was a large-scale ecological and socio-economic catastrophe in the South of Spain. We present here a literature review that synthesizes the main results found during the research conducted at the affected area over the past 20years since the mine accident, focused on the soil-plant system. We review, in depth, information about the characterization of the mine slurry and contaminated soils, and of the TE monitoring, performed until the present time. The reclamation techniques included the removal of sludge and soil surface layer and use of soil amendments; we review the effects of different types of amendments at different spatial scales and their effectiveness with time. Monitoring of TE in soil and their transfer to plants (crops, herbs, shrubs, and trees) were evaluated to assess potential toxicity effects in the food web. The utility of some plants (accumulators) with regard to the biomonitoring of TE in the environment was also evaluated. On the other hand, retention of TE by plant roots and their associated microorganisms was used as a low-cost technique for TE stabilization and soil remediation. We also evaluate the experience acquired in making the Guadiamar Green Corridor a large-scale soil reclamation and phytoremediation case study. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Heavy metals and essential elements in Italian cereals.

    PubMed

    Brizio, P; Benedetto, A; Squadrone, S; Curcio, A; Pellegrino, M; Ferrero, M; Abete, M C

    2016-12-01

    Crops intended for human nutrition and food production containing different essential trace elements, such as copper and zinc, could be contaminated by toxic metals like cadmium and lead. The interrelationship between micronutrients and contaminant trace elements in different cereals was investigated in North-western Italy, where both agricultural and industrial activities are present. Elemental concentrations in sampled cereals were assessed by inductively coupled plasma mass spectrometry (ICP-MS). Rice, oats and barley reached the highest median levels for Al, Cd and Pb content, while corn samples were less contaminated by toxic metals. Regarding essential elements highest median values of Cu and Zn were both found in barley, while Ni median content was higher in oats. Rice had the lowest median levels of essential elements. The correlation study between toxic and essential elements seemed to demonstrate fixed trends in analysed samples, corroborating the importance of a different diet to limit potential adverse effects caused by toxic elements.

  14. Salinity-dependent mechanisms of copper toxicity in the galaxiid fish, Galaxias maculatus.

    PubMed

    Glover, Chris N; Urbina, Mauricio A; Harley, Rachel A; Lee, Jacqueline A

    2016-05-01

    The euryhaline galaxiid fish, inanga (Galaxias maculatus) is widely spread throughout the Southern hemisphere occupying near-coastal streams that may be elevated in trace elements such as copper (Cu). Despite this, nothing is known regarding their sensitivity to Cu contamination. The mechanisms of Cu toxicity in inanga, and the ameliorating role of salinity, were investigated by acclimating fish to freshwater (FW), 50% seawater (SW), or 100% SW and exposing them to a graded series of Cu concentrations (0-200μgL(-1)) for 48h. Mortality, whole body Cu accumulation, measures of ionoregulatory disturbance (whole body ions, sodium (Na) influx, sodium/potassium ATPase activity) and ammonia excretion were monitored. Toxicity of Cu was greatest in FW, with mortality likely resulting from impaired Na influx. In both FW and 100% SW, ammonia excretion was significantly elevated, an effect opposite to that observed in previous studies, suggesting fundamental differences in the effect of Cu in this species relative to other studied fish. Salinity was protective against Cu toxicity, and physiology seemed to play a more important role than water chemistry in this protection. Inanga are sensitive to waterborne Cu through a conserved impairment of Na ion homeostasis, but some effects of Cu exposure in this species are distinct. Based on effect concentrations, current regulatory tools and limits are likely protective of this species in New Zealand waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples.

    PubMed

    Abolhasani, Jafar; Behbahani, Mohammad

    2015-01-01

    Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and <4%, respectively. The adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.

  16. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    PubMed Central

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  17. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    PubMed

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  18. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    USGS Publications Warehouse

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace elements and other sources of bias and variability in the sampling process. Trace elements have both natural and anthropogenic sources that may affect the sampling process, including the sample-collection and handling materials used in many trace-element monitoring studies. Trace elements also react with these materials within the timescales typical for collection, processing and analysis of runoff samples. To study the characteristics and potential effects of trace elements in highway and urban runoff, investigators typically sample one or more operationally defined matrixes including: whole water, dissolved (filtered water), suspended sediment, bottom sediment, biological tissue, and contaminant sources. The sampling and analysis of each of these sample matrixes can provide specific information about the occurrence and distribution of trace elements in runoff and receiving waters. There are, however, technical concerns specific to each matrix that must be understood and addressed through use of proper collection and processing protocols. Valid protocols are designed to minimize inherent problems and to maximize the accuracy, precision, comparability, and representativeness of data collected. Documentation, including information about monitoring protocols, quality assurance and quality control efforts, and ancillary data also is necessary to establish data quality. This documentation is especially important for evaluation of historical traceelement monitoring data, because trace-element monitoring protocols and analysis methods have been constantly changing over the past 30 years.

  19. Continuous Seismic Threshold Monitoring

    DTIC Science & Technology

    1992-05-31

    Continuous threshold monitoring is a technique for using a seismic network to monitor a geographical area continuously in time. The method provides...area. Two approaches are presented. Site-specific monitoring: By focusing a seismic network on a specific target site, continuous threshold monitoring...recorded events at the site. We define the threshold trace for the network as the continuous time trace of computed upper magnitude limits of seismic

  20. SHOULD LATITUDINAL ATMOSPHERIC TRACE VAPOR CONCENTRATIONS BE REPORTED ON A MASS DENSITY BASIS?

    EPA Science Inventory

    For the past several decades the issue of global atmospheric trace vapor migration has been of concern to environmental professionals concerned with global distillation/cold condensation of toxic compounds, contamination of remote ecosystems, global climate change and stratospher...

  1. TEMPORAL VARIABILITY OF TOXIC CONTAMINANTS IN ANIMAL DIETS

    EPA Science Inventory

    Uncertified commercial research animal feed (Purina Chow TM) was analyzed over forty-one months to determine essential and trace elements and toxic contaminants. Parametric statistics and graphic chronologic progressions of the results are presented for cat, monkey, rodent (rat/m...

  2. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  3. Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay

    USGS Publications Warehouse

    Flegal, A.R.; Brown, C.L.; Squire, S.; Ross, J.R.M.; Scelfo, G.M.; Hibdon, S.

    2007-01-01

    Although San Francisco Bay has a "Golden Gate", it may be argued that it is the "Silver Estuary". For at one time the Bay was reported to have the highest levels of silver in its sediments and biota, along with the only accurately measured values of silver in solution, of any estuarine system. Since then others have argued that silver contamination is higher elsewhere (e.g., New York Bight, Florida Bay, Galveston Bay) in a peculiar form of pollution machismo, while silver contamination has measurably declined in sediments, biota, and surface waters of the Bay over the past two to three decades. Documentation of those systemic temporal declines has been possible because of long-term, ongoing monitoring programs, using rigorous trace metal clean sampling and analytical techniques, of the United States Geological Survey and San Francisco Bay Regional Monitoring Program that are summarized in this report. However, recent toxicity studies with macro-invertebrates in the Bay have indicated that silver may still be adversely affecting the health of the estuarine system, and other studies have indicated that silver concentrations in the Bay may be increasing due to new industrial inputs and/or the diagenetic remobilization of silver from historically contaminated sediments being re-exposed to overlying surface waters and benthos. Consequently, the Bay may not be ready to relinquish its title as the "Silver Estuary". ?? 2007 Elsevier Inc. All rights reserved.

  4. Trace element concentrations in feathers and blood of Northern goshawk (Accipiter gentilis) nestlings from Norway and Spain.

    PubMed

    Dolan, Kevin J; Ciesielski, Tomasz M; Lierhagen, Syverin; Eulaers, Igor; Nygård, Torgeir; Johnsen, Trond V; Gómez-Ramírez, Pilar; García-Fernández, Antonio J; Bustnes, Jan O; Ortiz-Santaliestra, Manuel E; Jaspers, Veerle L B

    2017-10-01

    Information on trace element pollution in the terrestrial environment and its biota is limited compared to the marine environment. In the present study, we collected body feathers and blood of 37 Northern goshawk (Accipiter gentilis) nestlings from Tromsø (northern Norway), Trondheim (central Norway), and Murcia (southeastern Spain) to study regional exposure, hypothesizing the potential health risks of metals and other trace elements. Blood and body feathers were analyzed by a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) for aluminum (Al), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), mercury (Hg) and lead (Pb). The influence of regional differences, urbanization and agricultural land usage in proximity to the nesting Northern goshawks was investigated using particular spatial analysis techniques. Most trace elements were detected below literature blood toxicity thresholds, except for elevated concentrations (mean ± SD µgml -1 ww) found for Zn (5.4 ± 1.5), Cd (0.00023 ± 0.0002), and Hg (0.021 ± 0.01). Corresponding mean concentrations in feathers (mean ± SD µgg -1 dw) were 82.0 ± 12.4, 0.0018 ± 0.002, and 0.26 ± 0.2 for Zn, Cd and Hg respectively. Multiple linear regressions indicated region was a significant factor influencing Al, Zn, Se and Hg feather concentrations. Blood Cd and Hg concentrations were significantly influenced by agricultural land cover. Urbanization did not have a significant impact on trace element concentrations in either blood or feathers. Overall metal and trace element levels do not indicate a high risk for toxic effects in the nestlings. Levels of Cd in Tromsø and Hg in Trondheim were however above sub-lethal toxic threshold levels. For holistic risk assessment purposes it is important that the concentrations found in the nestlings of this study indicate that terrestrial raptors are exposed to various trace elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Endogenous levels of nitrites and nitrates in wide consumption foodstuffs: Results of five years of official controls and monitoring.

    PubMed

    Iammarino, Marco; Di Taranto, Aurelia; Cristino, Marianna

    2013-10-15

    The massive introduction of nitrogen fertilisers, necessary to maximise the global food production, has brought about an increase of the residual amounts of nitrites and nitrates in the products. Notoriously, these compounds may exercise toxic effects. In this work the results obtained from 5years of official controls and monitoring focused on tracing quantifiable amounts of nitrites and nitrates in 1785 samples of meat, dairy, fish products and leafy vegetables are reported. A widespread presence of nitrates at low concentrations in foodstuffs was verified. High concentrations of nitrates were registered in some leafy vegetables and mussels samples, while high nitrites concentrations were registered in some spinach samples. The results confirmed the necessity to develop most controls and suggest the introduction of new legal limits related to some combinations contaminant/matrix. Such new limits may fill legislative gaps that may cause wrong interpretations of the results obtained during official controls. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.

    USGS Publications Warehouse

    Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There is a clear trend of decreasing PAH and trace metal contaminant concentrations with distance from the STP outfall.Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2>0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ??PAHs and ??PCBs are potentially toxic and/or bi

  7. INTERNATIONAL SOURCE WATER TOXICITY MONITORING CONSORTIUM

    EPA Science Inventory

    Many researchers in the field of time-relevant, on-line toxicity monitors for source water protection believe that some mechanism to guide and prioritize research in this emerging field would be beneficial. On-line toxicity monitors are tools designed to screen water quality and ...

  8. Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity.

    PubMed

    Nguyen, Luong N; van de Merwe, Jason P; Hai, Faisal I; Leusch, Frederic D L; Kang, Jinguo; Price, William E; Roddick, Felicity; Magram, Saleh F; Nghiem, Long D

    2016-01-01

    Redox-mediators such as syringaldehyde (SA) can improve laccase-catalyzed degradation of trace organic contaminants (TrOCs) but may increase effluent toxicity. The degradation performance of 14 phenolic and 17 non-phenolic TrOCs by a continuous flow enzymatic membrane reactor (EMR) at different TrOC and SA loadings was assessed. A specific emphasis was placed on the investigation of the toxicity of the enzyme (laccase), SA, TrOCs and the treated effluent. Batch tests demonstrated significant individual and interactive toxicity of the laccase and SA preparations. Reduced removal of resistant TrOCs by the EMR was observed for dosages over 50μg/L. SA addition at a concentration of 10μM significantly improved TrOC removal, but no removal improvement was observed at the elevated SA concentrations of 50 and 100μM. The treated effluent showed significant toxicity at SA concentrations beyond 10μM, providing further evidence that higher dosage of SA must be avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. ELEMENTAL SPECIATION IN ENVIRONMENTAL EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    Arsenic and tin are two trace metals where exposure assessments have moved towards a speciation based approach because the toxicity is very chemical form dependent. This toxicity difference can be one of many factors which influence the formulation of certain regulations. For a...

  10. Chemical mixtures in untreated water from public-supply wells in the U.S. — Occurrence, composition, and potential toxicity

    USGS Publications Warehouse

    Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.

    2012-01-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources.

  11. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-09-01

    The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Pharmaceuticals, hormones, personal-care products, and other organic wastewater contaminants in water resources: Recent research activities of the U.S. Geological Survey's toxic substances hydrology program

    USGS Publications Warehouse

    Focazio, Michael J.; Kolpin, Dana W.; Buxton, Herbert T.

    2003-01-01

    Recent decades have brought increasing concerns for potential contamination of water resources that could inadvertently result during production, use, and disposal of the numerous chemicals offering improvements in industry, agriculture, medical treatment, and even common household products. Increasing knowledge of the environmental occurrence or toxicological behavior of these contaminants from various studies in Europe, United States, and elsewhere has resulted in increased concern for potential adverse environmental and human health effects (Daughton and Ternes, 1999). Ecologists and public health experts often have incomplete understandings of the toxicological significance of many of these contaminants, particularly long-term, low-level exposure and when they occur in mixtures with other contaminants (Daughton and Ternes, 1999; Kümmerer, 2001). In addition, these ‘emerging contaminants’ are not typically monitored or assessed in ambient water resources. The need to understand the processes controlling the transport and fate of these contaminants in the environment, and the lack of knowledge of the significance of long-term exposures have increased the need to study environmental occurrence down to trace (nanogram per liter) levels. Furthermore, the possibility that mixtures of environmental contaminants may interact synergistically or antagonistically has increased the need to characterize the types of mixtures that are found in our waters. The U.S. Geological Survey’s Toxic Substances Hydrology Program (Toxics Program) is developing information and tools on emerging water-quality issues that will be used to design and improve water-quality monitoring and assessment programs of the USGS and others, and for proactive decision-making by industry, regulators, the research community, and the public (http://toxics.usgs.gov/regional/emc.html). This research on emerging water-quality issues includes a combination of laboratory work to develop new analytical capabilities as well as field work on the occurrence, fate, and effects of these contaminants.

  13. A monitoring of chemical contaminants in waters used for field irrigation and livestock watering in the Veneto region (Italy), using bioassays as a screening tool.

    PubMed

    De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo

    2014-03-01

    In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.

  14. Comparison of essential and toxic elements in esophagus, lung, mouth and urinary bladder male cancer patients with related to controls.

    PubMed

    Kazi, Tasneem Gul; Wadhwa, Sham Kumar; Afridi, Hassan Imran; Talpur, Farah Naz; Tuzen, Mustafa; Baig, Jameel Ahmed

    2015-05-01

    There is a compelling evidence in support of negative associations between essential trace and toxic elements in different types of cancer. The aim of the present study was to investigate the relationship between carcinogenic (As, Cd, Ni) and anti-carcinogenic (Se, Zn) trace elements in scalp hair samples of different male cancerous patients (esophagus, lung, mouth, and urinary bladder). For comparative purposes, the scalp hair samples of healthy males of the same age group (ranged 35-65 years) as controls were analyzed. Both controls and patients have the same socioeconomic status, localities, dietary habits, and smoking locally made cigarette. The scalp hair samples were oxidized by 65% nitric acid: 30% hydrogen peroxide (2:1) ratio in microwave oven followed by atomic absorption spectrometry. The validity and accuracy of the methodology were checked using certified reference material of human hair BCR 397. The mean concentrations of As, Cd, and Ni were found to be significantly higher in scalp hair samples of patients having different cancers as compared to the controls, while reverse results were obtained in the case of Se and Zn levels (p < 0.01). The study revealed that the carcinogenic processes are significantly affecting the trace elements burden and mutual interaction of essential trace and toxic elements in the cancerous patients.

  15. Predicting Water Quality Problems Associated with Coal Fly Ash Disposal Facilities Using a Trace Element Partitioning Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.

    2006-12-01

    For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the type of coal burned. Preliminary studies show that in some fly ash samples, significant amounts of As, B, Mo, Se, Sr and V are associated with the soluble and exchangeable fraction, and thus would be highly mobile in the environment. Lead, on the other hand, is mainly associated with the amorphous Fe and Mn oxide fractions and would be highly immobile in oxidizing conditions, but mobile in reducing conditions. Ni and Cr show different associations in different fly ash samples. In most fly ash samples, significant amounts of the trace elements are associated with more stable fractions that do not threaten the environment. The study of trace element partitioning in coal fly ash thus helps us to predict their leaching behavior under various conditions.

  16. The Heavy Metals in Agrosystems and Impact on Health and Quality of Life.

    PubMed

    Tutic, Adnan; Novakovic, Srecko; Lutovac, Mitar; Biocanin, Rade; Ketin, Sonja; Omerovic, Nusret

    2015-06-15

    The metal is a chemical element that conducts electricity well and heat, and the nonferrous metals builds cations and ionic bonds. Heavy metals include metals whose density is higher than 5 g/cm(3). The whole range of the metal is in the form of essential trace elements, essential for a number of functions in the human body, and its deficiency results in a lack of occurrence of a serious symptom. The best examples are anemia lack of iron, lack of chromium in diabetes, growth problems in lack of nickel. Other elements such as lead, cadmium, mercury, arsenic and molybdenum have been shown to exhibit large quantities of toxic effects. The paper examines the problem of heavy metals originating from agriculture on agroecosystems. This group of pollutants is considered the most important cause of degradation of soil quality, surface and groundwater and direct causal adverse effects on human and animal health. In order to complete the environmental monitoring of pollutants, these main categories, origins, and possible negative impacts of the basic principles of preventing their toxic effects were examined.

  17. The Heavy Metals in Agrosystems and Impact on Health and Quality of Life

    PubMed Central

    Tutic, Adnan; Novakovic, Srecko; Lutovac, Mitar; Biocanin, Rade; Ketin, Sonja; Omerovic, Nusret

    2015-01-01

    The metal is a chemical element that conducts electricity well and heat, and the nonferrous metals builds cations and ionic bonds. Heavy metals include metals whose density is higher than 5 g/cm3. The whole range of the metal is in the form of essential trace elements, essential for a number of functions in the human body, and its deficiency results in a lack of occurrence of a serious symptom. The best examples are anemia lack of iron, lack of chromium in diabetes, growth problems in lack of nickel. Other elements such as lead, cadmium, mercury, arsenic and molybdenum have been shown to exhibit large quantities of toxic effects. The paper examines the problem of heavy metals originating from agriculture on agroecosystems. This group of pollutants is considered the most important cause of degradation of soil quality, surface and groundwater and direct causal adverse effects on human and animal health. In order to complete the environmental monitoring of pollutants, these main categories, origins, and possible negative impacts of the basic principles of preventing their toxic effects were examined. PMID:27275249

  18. Trace and major element levels in rats after oral administration of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) seeds.

    PubMed

    Aksoy, Laçine; Sözbilir, Nalan Bayşu

    2015-10-01

    The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.

  19. Survey of toxicity and carcinogenity of mineral deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furst, A.; Harding-Barlow, I.

    1981-11-03

    The toxicities and biogeochemical cycles of arsenic, cadmium, chromium, lead and nickel are reviewed in some detail, and other trace elements briefly mentioned. These heavy metals are used as a framework within which the problem of low-level radioactive waste disposal can be compared. (ACR)

  20. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    PubMed Central

    Economou, Anastasios

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned. PMID:29596391

  1. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    PubMed

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  2. Use of neutralized industrial residue to stabilize trace elements (Cu, Cd, Zn, As, Mo, and Cr) in marine dredged sediment from South-East of France.

    PubMed

    Taneez, Mehwish; Marmier, Nicolas; Hurel, Charlotte

    2016-05-01

    Management of marine dredged sediments polluted with trace elements is prime issue in the French Mediterranean coast. The polluted sediments possess ecological threats to surrounding environment on land disposal. Therefore, stabilization of contaminants in multi-contaminated marine dredged sediment is a promising technique. Present study aimed to assess the effect of gypsum neutralized bauxaline(®) (bauxite residue) to decrease the availability of pollutants and inherent toxicity of marine dredged sediment. Bauxaline(®), (alumia industry waste) contains high content of iron oxide but its high alkalinity makes it not suitable for the stabilization of all trace elements from multi-contaminated dredged sediments. In this study, neutralized bauxaline(®) was prepared by mixing bauxaline(®) with 5% of plaster. Experiments were carried out for 3 months to study the effect of 5% and 20% amendment rate on the availability of Cu, Cd, Zn, As, Mo, and Cr. Trace elements concentration, pH, EC and dissolved organic carbon were measured in all leachates. Toxicity of leachates was assessed against marine rotifers Brachionus plicatilis. The Results showed that both treatments have immobilization capacity against different pollutants. Significant stabilization of contaminants (Cu, Cd, Zn) was achieved with 20% application rate whereas As, Mo, and Cr were slightly stabilized. Toxicity results revealed that leachates collected from treated sediment were less toxic than the control sediment. These results suggest that application of neutralized bauxaline(®) to dredged sediment is an effective approach to manage large quantities of dredged sediments as well as bauxite residue itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Betha, Raghu; Tan, Li Yun; Balasubramanian, Rajasekhar

    2016-01-01

    Smoke-haze episodes, caused by uncontrolled peat and forest fires, occur almost every year in the South-East Asian region with increased concentrations of PM2.5 (airborne particulate matter (PM) with diameter ≤ 2.5 μm). Particulate-bound trace elements (TrElems), especially carcinogenic and toxic elements, were measured during smoke haze as well as non-haze periods in 2014 as they are considered to be indicators of potential health effects. The bioaccessibilities of 13 TrElems were investigated using two types of simulated lung fluids (SLFs), Gamble's solution and artificial lysosomal fluid (ALF), instead of the commonly used leaching agent (water). The dissolution kinetics was also examined for these TrElems. Many TrElems showed higher solubility in SLFs, and were more soluble in ALF compared to the Gamble's solution. Cu, Mn and Cd were observed to be the most soluble trace elements in ALF, while in Gamble's solution the most soluble trace elements were Cu, Mn and Zn. The dissolution rates were highly variable among the elements. Health risk assessment was conducted based on the measured concentrations of TrElems and their corresponding toxicities for three possible scenarios involving interactions between carcinogenic and toxic TrElems and SLFs, using the United States Environmental Protection Agency (USEPA) human health risk assessment model. The cumulative cancer risks exceeded the acceptable level (1 in a million i.e. 1 × 10-6). However, the estimation of health quotient (HQ) indicated no significant chronic toxic health effects. The risk assessment results revealed that the assessment of bioaccessibility of particulate-bound TrElems using water as the leaching agent may underestimate the health risk.

  4. Toxic and trace elements in tobacco and tobacco smoke.

    PubMed Central

    Chiba, M.; Masironi, R.

    1992-01-01

    While the harmful health effects of carbon monoxide, nicotine, tar, irritants and other noxious gases that are present in tobacco smoke are well known, those due to heavy metals and other toxic mineral elements in tobacco smoke are not sufficiently emphasized. Tobacco smoking influences the concentrations of several elements in some organs. This review summarizes the known effects of some trace elements and other biochemically important elements (Al, As, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Po-210, Se, and Zn) which are linked with smoking. Cigarette smoking may be a substantial source of intake of these hazardous elements not only to the smoker but also, through passive smoking, to nonsmokers. The adverse health effects of these toxic elements on the fetus through maternal smoking, and on infants through parental smoking, are of special concern. PMID:1600587

  5. Subsurface agricultural irrigation drainage: the need for regulation.

    PubMed

    Lemly, A D

    1993-04-01

    Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the Migratory Bird Treaty Act under U.S. Federal law. Critical wetlands and waterfowl populations are threatened in both the Pacific and Central flyways. The public is also at risk and health warnings have been issued in some locations. Subsurface irrigation drainage is a complex effluent containing toxic concentrations of trace elements, salts, and nitrogenous compounds. Some of the contaminants are classified by the U.S. Environmental Protection Agency (EPA) as priority pollutants and they can be present in concentrations that exceed EPA's criteria for toxic waste. The on-farm drainage systems used to collect and transport this wastewater provide point-source identification as well as a mechanism for toxics control through the National Pollutant Discharge Elimination System (NPDES) permit process. A four-step approach is presented for dealing with irrigation drainage in an environmentally sound manner. This regulatory strategy is very similar to those commonly used for industrial discharges and includes site evaluation, contaminant reduction through NPDES, and compliance monitoring. The EPA must recognize subsurface irrigation drainage as a specific class of pollution subject to regulation under the NPDES process. Active involvement by EPA is necessary to ensure that adequate controls on this wastewater are implemented.

  6. AUTOMATED RESPIROMETER METHOD FOR MICROBIAL TOXICITY ASSESSMENT OF LOW-LEVEL ZINC CONTAMINATION IN SOIL

    EPA Science Inventory

    Zinc is an essential trace element for all living organisms including humans. ecause microbial-based toxicity approaches to assess the changes in ecosystem processes are not well defined for soil application, this laboratory has developed an automated respirometer capable of meas...

  7. COMPARING THE RECOMMENDED DIETARY ALLOWANCE TO TOXICITY VALUES FOR ZN, SE, MN, AND MB

    EPA Science Inventory

    Certain essential nutrients can be toxic when ingested at dosages higher than the daily nutritional requirement. Research data for the essential trace elements, zinc, selenium, manganese and molybdenum have been reviewed by various government agencies for both their nutritional n...

  8. The Problem with Toxic Wastes.

    ERIC Educational Resources Information Center

    Beecher, John L.; Fossa, Arthur J.

    1980-01-01

    Traced is the historical development of toxic waste problems in western New York State from 1825 to the present. Three major data sources are described: Industrial Chemical Survey, Inventory of Industrial Waste Generation Study, and the Interagency Task Force Study, developed by the Department of Environmental Conservation to prevent future…

  9. Monitorization of technosols in old mining sites treated with calcareous fillers

    NASA Astrophysics Data System (ADS)

    Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Garcia-Lorenzo, MariLuz; Gonzalez, Eva; Perez-Espinosa, Victor; Martínez-Lopez, Salvadora; Hernandez, Carmen; Molina, Jose; Martínez, Lucia B.

    2014-05-01

    A large number of soils around the world are contaminated by heavy metals due to mining activities, generating adverse effects on human health and the environment. In response to these negative effects, a variety of technologies to remediate soils affected by heavy metals have been developed. Among them, in situ immobilization by means of soil amendment is a non-intrusive and cost effective alternative, that transforms the highly mobile toxic heavy metals to physico-chemically stable forms, reducing their mobility and environmental risks. Limestone filler is a good selection for such a purpose, because of its low permeability and low solubility, due to its high degree of physical-chemical stability and because is a non-toxic material with a high finely divided calcium carbonate content. In addition, the use of this amendment could revalorize the residues, reducing the costs of the process. The objective of this work was to evaluate the effectiveness of a immobilization technique in sediments contaminated by heavy metals as a results of mining activities. The study area was Portman bay, located close to the mining region of La Unión and subjected to mining from the time of the Roman Empire to 1991. Wastes from mining activities mainly consisted in ore materials (galena, pyrite and sphalerite), phyllosilicates, in addition to siderite, iron oxides and sometimes alteration products such as jarosite, alunite, kaolinite and greenalite. These materials have suffered a concentration process by floatation with sea water and, as a result of the discharge, the whole of the bay has filled up with wastes which also extend into the Mediterranean Sea. Two experimental areas, approximately 1 Ha each one, were selected and technosols were developed as follows: original sediments from the bay, sediments mixed with limestone filler in a 1:1 proportion, gravel to avoid capillary and natural soil to allow plant growth. After the remediation technique was applied, monitorization of experimental areas was done in 18 sampling points in which sediment and water samples were collected and analyzed. Monitorization was carried out during a 4 years period, samples being obtained at two month intervals. The pH and the electrical conductivity were determined, in naddition to the heavy metal concentration. The Zn content was determined by flame atomic absorption spectrometry. The Pb, Cd and Cu content was determined by electrothermal atomization atomic absorption spectrometry. The As content was measured by atomic fluorescence spectrometry using an automated continuous flow hydride generation spectrometer. In addition, Microtox bioassay was applied in order to study ecotoxicity of collected water samples. Sediments before the remediation technique showed acidic pH, high EC values and high trace elements content. The results obtained after the immobilization showed that sediment samples had neutral pH (average value of 8.3) low electrical conductivity (1.32 dS m-1) and low trace elements concentration, in some cases below the detection limit. When water samples obtained in the piezometers were evaluated, the results indicated that these samples correspond to rainfall waters and were characterized by neutral pH and trace elements concentration below the detection limit. In addition, none of them showed toxicity when submitted to the selected bioassay Then, we can conclude that the use of limestone filler constitutes an excellent option in sediments polluted by trace elements, because of risk for human health or ecosystem does not exist or is decreased in a large extent after the intervention. In addition, the designed experience allows stabilizer proportion to be optimized and may suppose a big cost-saving in the project in areas affected by mining activities.

  10. Evaluation of trace element status of organic dairy cattle.

    PubMed

    Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M

    2018-06-01

    The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.

  11. Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants.

    PubMed

    Zamyadi, Arash; Dorner, Sarah; Ndong, Mouhamed; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle

    2014-02-01

    The increasing presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs) has been reported worldwide. The objectives of this study are to validate the application of in vivo probes for the detection and management of cyanobacteria breakthrough inside DWTPs, and to verify the possibility of treatment adjustment based on intensive real-time monitoring. In vivo phycocyanin YSI probes were used to monitor the fate of cyanobacteria in raw water, clarified water, filtered water, and chlorinated water in a full scale DWTP. Simultaneous samples were also taken for microscopic enumeration. The in vivo probe was successfully used to detect the incoming densities of high cyanobacterial cell number into the clarification process and their breakthrough into the filtered water. In vivo probes were used to trace the increase in floating cells over the clarifier, a robust sign of malfunction of the coagulation-sedimentation process. Pre-emptive treatment adjustments, based on in vivo probe monitoring, resulted in successful removal of cyanobacterial cells. The field results on validation of the probes with cyanobacterial bloom samples showed that the probe responses are highly linear and can be used to trigger alerts to take action.

  12. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    PubMed

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  13. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  14. Trace elements in blood of sea turtles Lepidochelys olivacea in the Gulf of California, Mexico.

    PubMed

    Zavala-Norzagaray, A A; Ley-Quiñónez, C P; Espinosa-Carreón, T L; Canizalez-Román, A; Hart, C E; Aguirre, A A

    2014-11-01

    This study determined the concentrations of heavy metals in blood collected from Pacific Ridley sea turtles (Lepidochelys olivacea) inhabiting the coast of Guasave, Mexico, in the Gulf of California. The highest reported metal concentration in blood was Zn, followed by Se. Of nonessential toxic metals, As was reported in higher percentage compared to Cd. The concentrations of metals detected were present as follows: Zn > Se > Mn > As > Ni > Cd > Cu. Cd concentration in blood is higher in our population in comparison with other populations of L. olivacea, and even higher in other species of sea turtles. Our study reinforces the usefulness of blood for the monitoring of the levels of contaminating elements, and is easily accessible and nonlethal for sea turtles.

  15. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment.

    PubMed

    Murray, Kyle E; Thomas, Sheeba M; Bodour, Adria A

    2010-12-01

    Organic chemicals have been detected at trace concentrations in the freshwater environment for decades. Though the term trace pollutant indicates low concentrations normally in the nanogram or microgram per liter range, many of these pollutants can exceed an acceptable daily intake (ADI) for humans. Trace pollutants referred to as emerging contaminants (ECs) have recently been detected in the freshwater environment and may have adverse human health effects. Analytical techniques continue to improve; therefore, the number and frequency of detections of ECs are increasing. It is difficult for regulators to restrict use of pollutants that are a human health hazard; scientists to improve treatment techniques for higher priority pollutants; and the public to modify consumption patterns due to the vast number of ECs and the breadth of literature on the occurrence, use, and toxicity. Hence, this paper examines literature containing occurrence and toxicity data for three broad classes of trace pollutants and ECs (industrials, pesticides, and pharmaceuticals and personal care products (PPCPs)), and assesses the relevance of 71 individual compounds. The evaluation indicates that widely used industrials (BPF) and PPCPs (AHTN, HHCB, ibuprofen, and estriol) occur frequently in samples from the freshwater environment but toxicity data were not available; thus, it is important to establish their ADI. Other widely used industrials (BDE-47, BDE-99) and pesticides (benomyl, carbendazim, aldrin, endrin, ethion, malathion, biphenthrin, and cypermethrin) have established ADI values but occurrence in the freshwater environment was not well documented. The highest priority pollutants for regulation and treatment should include industrials (PFOA, PFOS and DEHP), pesticides (diazinon, methoxychlor, and dieldrin), and PPCPs (EE2, carbamazepine, βE2, DEET, triclosan, acetaminophen, and E1) because they occur frequently in the freshwater environment and pose a human health hazard at environmental concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. EAGLE Monitors by Collecting Facts and Generating Obligations

    NASA Technical Reports Server (NTRS)

    Barrnger, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. A monitor for an EAGLE formula checks if a finite trace of states satisfies the given formula. We present, in details, an algorithm for the synthesis of monitors for EAGLE. The algorithm is implemented as a Java application and involves novel techniques for rule definition, manipulation and execution. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace of states. Our initial experiments have been successful as EAGLE detected a previously unknown bug while testing a planetary rover controller.

  17. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects ofmore » Se and Cu on planarians.« less

  18. Risk assessment of trace elements in the stomach contents of Indo-Pacific Humpback Dolphins and Finless Porpoises in Hong Kong waters.

    PubMed

    Hung, Craig L H; Lau, Ridge K F; Lam, James C W; Jefferson, Thomas A; Hung, Samuel K; Lam, Michael H W; Lam, Paul K S

    2007-01-01

    The potential health risks due to inorganic substances, mainly metals, was evaluated for the two resident marine mammals in Hong Kong, the Indo-Pacific Humpback Dolphin (Sousa chinensis) and the Finless Porpoise (Neophocaena phocaenoides). The stomachs from the carcasses of twelve stranded dolphins and fifteen stranded porpoises were collected and the contents examined. Concentrations of thirteen trace elements (Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mn, Ni, Se, V and Zn) were determined by inductively coupled plasma mass spectrometer (ICP-MS). An assessment of risks of adverse effects was undertaken using two toxicity guideline values, namely the Reference Dose (RfD), commonly used in human health risk assessment, and the Toxicity Reference Value (TRV), based on terrestrial mammal data. The levels of trace metals in stomach contents of dolphins and porpoises were found to be similar. Risk quotients (RQ) calculated for the trace elements showed that risks to the dolphins and porpoises were generally low and within safe limits using the values based on the TRV, which are less conservative than those based on the RfD values. Using the RfD-based values the risks associated with arsenic, cadmium, chromium, copper, nickel and mercury were comparatively higher. The highest RQ was associated with arsenic, however, most of the arsenic in marine organisms should be in the non-toxic organic form, and thus the calculated risk is likely to be overestimated.

  19. Long-term Operation of an External Cavity Quantum Cascade Laser-based Trace-gas Sensor for Building Air Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Craig, Ian M.

    2013-11-03

    We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.

  20. Universal trace pollutant detector for aircraft monitoring of the ozone layer and industrial areas

    NASA Technical Reports Server (NTRS)

    Filiouguine, I. V.; Kostiouchenko, S. V.; Koudriavtsev, N. N.

    1994-01-01

    A method of monitoring the trace impurities of nitrogen oxides based on controlling of luminescence of NO molecules excited by nanosecond gas discharge have been developed having pptv-ppbv sensitivity and temporal resolution less than 0.01 s.

  1. Selected chemical characteristics and acute toxicity of urban stormwater, streamflow, and bed material, Maricopa County, Arizona

    USGS Publications Warehouse

    Lopes, T.J.; Fossum, K.D.

    1995-01-01

    Statistical analyses indicated that urban stormwater could degrade the quality of streamflow because of oil and grease, pesticides, dissolved trace metals, and ammonia in stormwater. Ammonia, lead, cadmium, and zinc are released by urban activities and accumulate in bed material. Ammonia could be from fertilizers, fecal matter, and other sources. Lead is probably from vehicles that use leaded gasoline. Cadmium and zinc could be from particulate metal in oil, brake pads, and other sources. Samples of the initial runoff from urban drainage basins appeared to be more toxic than flow-weighted composite samples, and stormwater was more harmful to fathead minnows than to Ceriodaphnia dubia. Streamflow samples from the Salt River were not toxic to either species. The sensitivity of fathead minnows to urban stormwater from most urban drainage basins indicated that the toxicants were detrimental to fish and could be present in stormwater throughout Phoenix. Results of toxicity identification evaluations indicated the toxicity was mostly due to organic constituents. Mortality, however, did not correlate with organophosphate pesticide concentrations. Surfactants and (or) other constituents leached from asphalt could be toxic. The most toxic bed-material samples were collected from an undeveloped drainage basin. Within urban-drainage basins, bed-material samples collected where stormwater accumulates appeared to be more toxic than samples collected from areas unaffected by stormwater. Mortality rates correlated with recoverable concentrations of zinc, copper, and cadmium; however these rates correlated poorly with pesticide concentrations. The bioavailability of trace metals appeared to be controlled by the adsorption properties of bed material.

  2. A Rewriting-Based Approach to Trace Analysis

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present a rewriting-based algorithm for efficiently evaluating future time Linear Temporal Logic (LTL) formulae on finite execution traces online. While the standard models of LTL are infinite traces, finite traces appear naturally when testing and/or monitoring red applications that only run for limited time periods. The presented algorithm is implemented in the Maude executable specification language and essentially consists of a set of equations establishing an executable semantics of LTL using a simple formula transforming approach. The algorithm is further improved to build automata on-the-fly from formulae, using memoization. The result is a very efficient and small Maude program that can be used to monitor program executions. We furthermore present an alternative algorithm for synthesizing probably minimal observer finite state machines (or automata) from LTL formulae, which can be used to analyze execution traces without the need for a rewriting system, and can hence be used by observers written in conventional programming languages. The presented work is part of an ambitious runtime verification and monitoring project at NASA Ames, called PATHEXPLORER, and demonstrates that rewriting can be a tractable and attractive means for experimenting and implementing program monitoring logics.

  3. The public health significance of trace chemicals in waste water utilization

    PubMed Central

    Shuval, Hillel I.

    1962-01-01

    The practice of waste water utilization has grown considerably in recent years, owing to the growing demand for water for agricultural, industrial and domestic purposes. Such utilization presents certain problems in respect of the quality of the reclaimed water, on account of the presence of certain trace chemicals in the waste waters to be re-used. The presence of these trace chemicals may have important consequences in the agricultural or industrial utilization of waste waters, but from the public health point of view it is in the re-use of waste waters for domestic purposes that their presence has most importance, owing to their possible toxic effects. This paper discusses the public health significance of trace chemicals in water, with special reference to some of the newer complex synthetic organic compounds that are appearing in ever-increasing numbers in industrial wastes. Current information on the acute and chronic toxicity of these substances is reviewed and related to possible methods of treatment of waste waters. In conclusion, the author points out that the problem of trace chemicals is not confined only to direct waste-water reclamation projects, but arises in all cases where surface waters polluted with industrial wastes are used as a source of domestic supply. PMID:13988826

  4. Detection and Monitoring of Toxic Chemical at Ultra Trace Level by Utilizing Doped Nanomaterial

    PubMed Central

    Khan, Sher Bahadar; Rahman, Mohammed M.; Akhtar, Kalsoom; Asiri, Abdullah M.

    2014-01-01

    Composite nanoparticles were synthesized by eco-friendly hydrothermal process and characterized by different spectroscopic techniques. All the spectroscopic techniques suggested the synthesis of well crystalline optically active composite nanoparticles with average diameter of ∼30 nm. The synthesized nanoparticles were applied for the development of chemical sensor which was fabricated by coating the nanoparticles on silver electrode for the recognition of phthalimide using simple I–V technique. The developed sensor exhibited high sensitivity (1.7361 µA.mM−1.cm−2), lower detection limit (8.0 µM) and long range of detection (77.0 µM to 0.38 M). Further the resistances of composite nanoparticles based sensor was found to be 2.7 MΩ which change from 2.7 to 1.7 with change in phthalimide concentration. The major advantages of the designed sensor over existing sensors are its simple technique, low cost, lower detection limit, high sensitivity and long range of detection. It can detect phthalimide even at trace level and sense over wide range of concentrations. Therefore the composite nanoparticals would be a better choice for the fabrication of phthalimide chemical sensor and would be time and cost substituted implement for environmental safety. PMID:25329666

  5. Control of trace element toxicity in Chesapeake Bay by dominant phytoplankton. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J.G.; Riedel, G.F.; Connell, D.B.

    1992-02-01

    Copper (Cu) and arsenic (As), but not chromium (Cr), underwent large changes in chemical form during the development and senescence of natural phytoplankton blooms. In general, the percentage of organically-associated Cu was lowest during periods of rapid cell growth and highest during periods of cell decline or periods of dominance by red tide-forming dinoflagellates, a pattern tied to periods of release of organic compounds during either bloom senescence or during unusual algal blooms. Chromium, in contrast, was unreactive. The end result of biological mediation of both As and Cu was to increase the proportion of the element present in amore » less toxic form, at least to phytoplankton, thus affecting the potential toxicity of either element to a natural ecosystem. The results of the project provide a framework for the construction of general predictive models of likely trace element behavior in productive ecosystems and provide a conceptual theory of how such toxic contaminants may affect ecosystem structure and food webs within Chesapeake Bay. Predictive models of ecosystem impact will require further experimentation with multi-trophic level food chains.« less

  6. Enhanced treatment of secondary municipal wastewater effluent: comparing (biological) filtration and ozonation in view of micropollutant removal, unselective effluent toxicity, and the potential for real-time control.

    PubMed

    Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H

    2017-07-01

    Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.

  7. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Trace elements have beneficial, as well as detrimental effects on bone homeostasis.

    PubMed

    Zofkova, I; Davis, M; Blahos, J

    2017-07-18

    The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.

  9. MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...

  10. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.

  11. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  12. Occurrence and Control of Genotoxins in Drinking Water: A Monitoring Proposal

    PubMed Central

    Ceretti, Elisabetta; Moretti, Massimo; Zerbini, Ilaria; Villarini, Milena; Zani, Claudia; Monarca, Silvano; Feretti, Donatella

    2016-01-01

    Many studies have shown the presence of numerous organic genotoxins and carcinogens in drinking water. These toxic substances derive not only from pollution, but also from the disinfection treatments, particularly when water is obtained from surface sources and then chlorinated. Most of the chlorinated compounds in drinking water are nonvolatile and are difficult to characterize. Thus, it has been proposed to study such complex mixtures using short-term genotoxicity tests predictive of carcinogenic activity. Mutagenicity of water before and after disinfection has mainly been studied by the Salmonella/microsome (Ames test); in vitro genotoxicity tests have also been performed in yeasts and mammalian cells; in situ monitoring of genotoxins has also been performed using complete organisms such as aquatic animals or plants (in vivo). The combination of bioassay data together with results of chemical analyses would give us a more firm basis for the assessment of human health risks related to the consumption of drinking water. Tests with different genetic end-points complement each other with regard to sensitivity toward environmental genotoxins and are useful in detecting low genotoxicity levels which are expected in drinking water samples. Significance for public health The provision of a safe drinking water is an important public health problem. Many studies have shown the presence of numerous genotoxins and carcinogens in drinking water. These toxic substances derive not only from pollution, but also from the disinfection treatments, particularly when water is obtained from surface sources and then chlorinated. The potential health risks of disinfection by-products (DBPs) from drinking water include cancer and adverse reproductive outcomes. People are exposed to disinfected drinking/shower/bathing water as a mixture of at least 600 identified DBPs and other toxic compounds via dermal, inhalation, and ingestion routes. Many of these substances are present in trace concentration, hardly detectable by chemical standard analysis. The monitoring of environmental genotoxins by short-term bioassays could allow a better evaluation of the global human exposure to water genotoxins and could help health officers and drinking water managers to reduce genotoxic hazards and distribute high quality drinking water. PMID:28083525

  13. On-line Toxicity Monitors and Their Use in an Upper Mississippi Watershed Water Quality Monitoring Network

    EPA Science Inventory

    A collaborative effort to monitor the upper Mississippi River watershed using On-line Toxicity Monitors (OTMs) is underway with three sites currently deployed and several more at various stages of development. Federal, State, and Local, agencies as well as utilities and Universi...

  14. Safety evaluation of traces of nickel and chrome in cosmetics: The case of Dead Sea mud.

    PubMed

    Ma'or, Ze'evi; Halicz, Ludwik; Portugal-Cohen, Meital; Russo, Matteo Zanotti; Robino, Federica; Vanhaecke, Tamara; Rogiers, Vera

    2015-12-01

    Metal impurities such as nickel and chrome are present in natural ingredients-containing cosmetic products. These traces are unavoidable due to the ubiquitous nature of these elements. Dead Sea mud is a popular natural ingredient of cosmetic products in which nickel and chrome residues are likely to occur. To analyze the potential systemic and local toxicity of Dead Sea mud taking into consideration Dead Sea muds' natural content of nickel and chrome. The following endpoints were evaluated: (Regulation No. 1223/20, 21/12/2009) systemic and (SCCS's Notes of Guidance) local toxicity of topical application of Dead Sea mud; health reports during the last five years of commercial marketing of Dead Sea mud. Following exposure to Dead Sea mud, MoS (margin of safety) calculations for nickel and chrome indicate no toxicological concern for systemic toxicity. Skin sensitization is also not to be expected by exposure of normal healthy skin to Dead Sea mud. Topical application, however, is not recommended for already nickel-or chrome-sensitized persons. As risk assessment of impurities present in cosmetics may be a difficult exercise, the case of Dead Sea mud is taken here as an example of a natural material that may contain traces of unavoidable metals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale.

    PubMed

    Boonpeng, Chaiwat; Polyiam, Wetchasart; Sriviboon, Chutima; Sangiamdee, Duangkamon; Watthana, Santi; Nimis, Pier Luigi; Boonpragob, Kansri

    2017-05-01

    Several trace elements discharged by the petrochemical industry are toxic to humans and the ecosystem. In this study, we assessed airborne trace elements in the vicinity of the Map Ta Phut petrochemical industrial complex in Thailand by transplanting the lichen Parmotrema tinctorum to eight industrial, two rural, and one clean air sites between October 2013 and June 2014. After 242 days, the concentrations of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Ti, V, and Zn in lichens at most industrial sites were higher than those at the rural and the control sites; in particular, As, Cu, Mo, Sb, V, and Zn were significantly higher than at the control site (p < 0.05). Contamination factors (CFs) indicated that Cd, Cu, Mo, and Sb, which have severe health impacts, heavily contaminated at most industrial sites. Principal component analysis (PCA) showed that most elements were associated with industry, with lesser contributions from traffic and agriculture. Based on the pollution load indexes (PLIs), two industrial sites were highly polluted, five were moderately polluted, and one had a low pollution level, whereas the pollution load at the rural sites was comparable to background levels. This study reinforces the utility of lichens as cost-effective biomonitors of airborne elements, suitable for use in developing countries, where adequate numbers of air monitoring instruments are unavailable due to financial, technical, and policy constraints.

  16. Understanding Fire Through Improved Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Aztec(TradeMark) is the commercial name for Southwest Sciences laser. The laser has coarse tuning ranges of 10 nanometers (nm) to 30 nm at wavelengths ranging from 630 nm to 2,300 nm, making it the only commercially available external cavity diode laser with wavelengths beyond 1,650 nm. The laser's high-speed tuning in both coarse and fine wavelength regimes allows for increased trace gas detection. With the automated coarse tuning option, the Aztec sweeps through its wavelength range in less than 1 millisecond. While some diode lasers can only detect one type, or species, of a trace gas, the Aztec's broad wavelength tuning provides access to multiple trace gas species. The Aztec has a wide range of applications for both NASA and commercial users, from protecting astronauts in space to improving combustion processes on Earth. It may serve as a new tool for planetary exploration, as it can detect a wide range of multiple gas species in planetary atmospheres. The laser could optically detect gaseous indicators of incipient fires on the International Space Station and Space Shuttle, as well as detect low concentrations of potentially toxic gases in spacecraft crew habitats. The laser could also provide more accurate fire detection in aircraft cargo compartments. Since the Aztec can detect several gases that only evolve during an actual fire, its implementation could reduce the large number of commercial aircraft landings that currently occur due to false alarms. Other applications include environmental and industrial process monitoring.

  17. Impact of trace metal concentrations on coccolithophore growth and morphology: species-specific responses in past and present ocean

    NASA Astrophysics Data System (ADS)

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart Thomas; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf

    2017-04-01

    The Cretaceous witnessed intervals of profound perturbation named "Oceanic Anoxic Events (OAEs)" characterized by volcanic injection of large amounts of CO2, ocean anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a number of nannofossil species. To detect the cause/s of such changes in the fossil record is challenging. Evidence of a correspondence between intervals of high trace metals concentrations and nannofossil dwarfism may be suggestive for a negative effect of these elements on nannoplankton biocalcification process. In order to verify the hypothesis that anomalously high quantities of essential and/or toxic metals were the cause of coccolith dwarfism, we explored the toxicities of a mixture of trace metals on four living coccolithophores species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The trace metals tested were chosen based upon concentration peaks identified in the geological record and upon known trace metal interaction with living coccolithophores algae. Our results demonstrate a species-specific response to trace metal enrichment in living coccolithophores: E. huxleyi, G. oceanica and C. pelagicus showed a decrease in their growth rate with progressively and exponentially increased trace metal concentrations, while P. carterae is unresponsive to trace metal content. Furthermore, E. huxleyi, G. oceanica and C. pelagicus evidenced a decrease in the cell diameter. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccolith of G. oceanica showed a decrease in size only at the highest trace metal concentrations tested. P. carterae size was unresponsive for changing trace metal concentration. Our results on living coccolithophore algae, demonstrate that elevated trace metal concentrations not only affect growth but also coccolith size and/or weight and that there are large differences between different species. These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions. Following the laboratory experiment results, elevated trace metal conditions in the past oceans could have caused at least part of the observed morphological changes detected during some Mesozoic OAEs.

  18. Pretending Pirates: Tracing the Toxic Trail in South Asia

    ERIC Educational Resources Information Center

    Singh, Nivedita; Dev, Santosh; Sengupta, Santoshi

    2018-01-01

    The recent decades that launched us into the 21st century had a long list of horrendous errors, and scams, which can be traced back to decisions made by those in positions of authority, whether in the public sphere or in business. It questions the very intentions and objectives of leaders and one wonders if failures were deliberate or due to the…

  19. Choosing optimum station configurations for summarizing water quality characteristics, in 1994 Annual Report, San Francisco Estuary Regional Monitoring Program for Trace Substances: San Francisco Estuary Institute

    USGS Publications Warehouse

    Cloern, James E.; Cole, Brian E.; Caffrey, J.M.

    1996-01-01

    In this report, we focus on selection of an “optimum” station configuration for the channel of San Francisco Bay for vertical profiling of water quality. Our analysis is based on the monthly cruises conducted by the USGS under the auspices of the Regional Monitoring Program for Trace Substances (Caffrey et al. 1994; SFEI 1994). The underlying rationale for undertaking the analysis is that the distribution of trace substances is structured, at least in part, by the same forces acting on water quality parameters. This must be true to some extent, as trace substance concentrations are partially dependent on water quality characteristics such as salinity. On the other hand, the quantitative importance of these parameters in accounting for overall variability in individual trace substances is unknown. Furthermore, trace substances have their own unique sources, and these sources may dominate their distribution.

  20. A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Hao, Zeyu; Zhao, Xiaohuan; Maharjan, Suraj; Zhu, Shoujun; Song, Yubin; Yang, Bai; Lu, Laijin

    2015-09-01

    The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers.The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers. Electronic supplementary information (ESI) available: PL spectra of CTB; absorption spectra of dialysate; fluorescence signal and immunohistochemical staining of CTB-CDs in L4 DRG. See DOI: 10.1039/c5nr04361a

  1. ON-LINE TOXICITY MONITORS AND WATERSHED EARLY WARNING SYSTEMS

    EPA Science Inventory

    A Water Quality Early Warning System using On-line Toxicity Monitors (OTMs) has been deployed in the East Fork of the Little Miami River, Clermont County, OH. Living organisms have long been used to determine the toxicity of environmental samples. With advancements in electronic ...

  2. Calcium EDTA toxicity: renal excretion of endogenous trace metals and the effect of repletion on collagen degradation in the rat.

    PubMed

    Braide, V B

    1984-01-01

    Studies on total hydroxyproline concentrations in urine of rats infused with toxic doses of CaEDTA at 6 mmol/kg per 24 hr for 48 hr or injected i.p. with the chelate at 4.8 mmol/kg/day for 10 days, indicate a two- to six-fold increase in urine excretion of the imino acid. This is due to increased degradation of collagen induced by CaEDTA. CaEDTA infusion was also shown to enhance urine excretion of some trace metals (Zn, Mn, Cu and Fe). Rats infused with CaEDTA for 36 hr showed a gradual fall in concentration of hydroxyproline in the urine, following cessation of chelate infusion. The decline in hydroxyproline concentrations was faster in rats receiving trace metal (Zn, Co, Mn or Ni) treatment during the post-CaEDTA infusion period; suggesting that the metals may affect collage, making the protein less susceptible to degradation in the body.

  3. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta

    USGS Publications Warehouse

    Su, T.; Shu, S.; Shi, Honglan; Wang, Jingyuan; Adams, Craig; Witt, Emitt C.

    2008-01-01

    This study provided a comprehensive assessment of seven toxic trace elements (As, Pb, V, Cr, Cd, Cu, and Hg) in the soil/sediment of Katrina affected greater New Orleans region 1 month after the recession of flood water. Results indicated significant contamination of As and V and non-significant contamination of Cd, Cr, Cu, Hg and Pb at most sampling sites. Compared to the reported EPA Region 6 soil background inorganic levels, except As, the concentrations of other six elements had greatly increased throughout the studied area; St. Bernard Parish and Plaquemines Parish showed greater contamination than other regions. Comparison between pre- and post-Katrina data in similar areas, and data for surface, shallow, and deep samples indicated that the trace element distribution in post-Katrina New Orleans was not obviously attributed to the flooding. This study suggests that more detailed study of As and V contamination at identified locations is needed. ?? 2008 Elsevier Ltd.

  4. Nuclear microscopy in trace-element biology — from cellular studies to the clinic

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1993-05-01

    The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.

  5. Coupling online effects-based monitoring with physicochemical, optical, and spectroscopy methods to assess quality at a surface water intake

    EPA Science Inventory

    Effects-based monitoring of water quality is a proven approach to monitoring the status of a water source. Only biological material can integrate factors which dictate toxicity. Online Toxicity Monitors (OTMs) provide a means to digitize sentinel organism responses to dynamic wa...

  6. 40 CFR 413.03 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping... monitoring report. I further certify that this facility is implementing the toxic organic management plan... POTWs shall submit a toxic organic management plan that specifies to the control authority's...

  7. Online Toxicity Monitors (OTM) for Distribution System Water Quality Monitoring

    EPA Science Inventory

    Drinking water distribution systems in the U.S. are vulnerable to episodic contamination events (both unintentional and intentional). The U.S. Environmental Protection Agency (EPA) is conducting research to investigate the use of broad-spectrum online toxicity monitors (OTMs) in ...

  8. DEPLOYMENT OF A WATER QUALITY EARLY WARNING SYSTEM USING ON-LINE TOXICITY MONITORS

    EPA Science Inventory

    Contaminants are of concern when they are found in concentrations that are toxic to plants and/or animals. On–line Toxicity Monitors (OTMs) integrate all factors resulting in stress including physical and chemical qualities. This is important because of the limitations of c...

  9. Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.

    PubMed

    Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K

    2014-11-01

    Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. © The Author(s) 2012.

  10. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  11. Comparison between pulse oximetry and transthoracic impedance alarm traces during home monitoring.

    PubMed

    Nassi, N; Piumelli, R; Lombardi, E; Landini, L; Donzelli, G; de Martino, M

    2008-02-01

    To compare transthoracic impedance (TTI/ECG) and pulse oximetry alarm traces detected during home monitoring in infants at risk of apnoea, bradycardia and hypoxaemia. A retrospective evaluation of the monitor downloads of 67 infants who had undergone either TTI/ECG or pulse oximetry home monitoring using a device which can detect both parameters. The patients were categorised as: apparent life-threatening events (n = 39), preterm infants (n = 21) and miscellaneous (n = 7). TTI/ECG and pulse oximetry alarm traces were scored as either true or false alarms. Classification criteria were based on visual analysis of the impedance and plethysmographic waveforms captured by the memory monitor every time alarm thresholds were violated. 5242 alarms occurred over 3452 days of monitoring: 4562 (87%) were false and 680 (13%) true. The mean duration of monitoring was 51 days (range 5-220 days). There were 2982 TTI/ECG false alarms (65% of the total) and 1580 pulse oximetry false alarms (35%) (p = 0.0042). Of the 680 true alarms, 507 (74%) were desaturations not attributable to central apnoea and 173 (26%) were true TTI/ECG alarms (p = 0.0013). Comparison of pulse oximetry and TTI/ECG alarm traces shows that true events were mostly attributable to desaturations, while false alarms were mainly provoked by TTI/ECG. The total number of false alarms is lower than reported in other studies using TTI/ECG only, thus indicating that monitoring using both pulse oximetry and TTI/ECG is suitable for home use. When the combination of both techniques is not feasible or not required, we recommend the use of motion resistant pulse oximetry alone.

  12. Linking the occurrence of cutaneous opportunistic fungal invaders with elemental concentrations in false killer whale (Pseudorca crassidens) skin.

    PubMed

    Mouton, Marnel; Przybylowicz, Wojciech; Mesjasz-Przybylowicz, Jolanta; Postma, Ferdinand; Thornton, Meredith; Archer, Edward; Botha, Alfred

    2015-10-01

    Cetaceans, occupying the top levels in marine food chains, are vulnerable to elevated levels of potentially toxic trace elements, such as aluminium (Al), mercury (Hg) and nickel (Ni). Negative effects associated with these toxic metals include infection by opportunistic microbial invaders. To corroborate the link between the presence of cutaneous fungal invaders and trace element levels, skin samples from 40 stranded false killer whales (FKWs) were analysed using culture techniques and inductively coupled plasma-mass spectroscopy. Twenty-two skin samples yielded 18 clinically relevant fungal species. While evidence for bioaccumulation of Hg in the skin of the FKWs was observed, a strong link was found to exist between the occurrence of opportunistic fungal invaders and higher Al : Se and Al : Zn ratios. This study provides indications that elevated levels of some toxic metals, such as Al, contribute to immunotoxicity rendering FKWs susceptible to colonization by cutaneous opportunistic fungal invaders. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Ecotoxicological assessment of bluegill sunfish inhabiting a selenium-enriched fly ash stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reash, R.J.; Lohner, T.W.; Wood, K.V.

    1999-07-01

    Little Scary Creek (LSC), a 2nd-order tributary of the Kanawha River in West Virginia, receives treated fly ash produced during coal combustion. Selenium and other trace metals were determined in water column and sediment samples, caddisflies, and bluegill sunfish liver and gonads during 1995--96 to estimate pathways of selenium exposure and assess the likelihood of toxic effects. Selenium levels in LSC water and sediment samples, and in caddisflies were elevated compared to reference sites. Mean dry weight selenium concentrations in bluegill liver, ovary, and tested tissue equaled or exceeded published toxic thresholds. Other trace metals were significantly higher in LSCmore » bluegill. Leukopenia, elevated serum salts, and lowered liver weight were found in LSC bluegill. Fewer older bluegill were found in LSC. Sunfish in LSC are experiencing various kinds of sublethal stress, presumably due to metals exposure. However, major toxic effects that would be predicted to occur based on tissue selenium levels (complete reproductive failure or mortality) have not been observed in this population.« less

  14. Report from the NOAA workshops to standardize protocols for monitoring toxic Pfiesteria species and associated environmental conditions.

    PubMed

    Luttenberg, D; Turgeon, D; Higgins, J

    2001-10-01

    Long-term monitoring of water quality, fish health, and plankton communities in susceptible bodies of water is crucial to identify the environmental factors that contribute to outbreaks of toxic Pfiesteria complex (TPC) species. In the aftermath of the 1997 toxic Pfiesteria outbreaks in North Carolina and Maryland, federal and several state agencies agreed that there was a need to standardize monitoring protocols. The National Oceanic & Atmospheric Administration convened two workshops that brought together state, federal, and academic resource managers and scientific experts to a) seek consensus on responding to and monitoring potential toxic Pfiesteria outbreaks; b) recommend standard parameters and protocols to characterize water quality, fish health, and plankton at historical event sites and potentially susceptible sites; and c) discuss options for integrating monitoring data sets from different states into regional and national assessments. Workshop recommendations included the development of a three-tiered TPC monitoring strategy: Tier 1, rapid event response; Tier 2, comprehensive assessment; and Tier 3, routine monitoring. These tiers correspond to varying levels of water quality, fish health, and plankton monitoring frequency and intensity. Under the strategy, sites are prioritized, depending upon their history and susceptibility to TPC events, and assigned an appropriate level of monitoring activity. Participants also agreed upon a suite of water quality parameters that should be monitored. These recommendations provide guidance to state and federal agencies conducting rapid-response and assessment activities at sites of suspected toxic Pfiesteria outbreaks, as well as to states that are developing such monitoring programs for the first time.

  15. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    NASA Astrophysics Data System (ADS)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  16. Ebola virus disease contact tracing activities, lessons learned and best practices during the Duport Road outbreak in Monrovia, Liberia, November 2015.

    PubMed

    Wolfe, Caitlin M; Hamblion, Esther L; Schulte, Jacqueline; Williams, Parker; Koryon, Augustine; Enders, Jonathan; Sanor, Varlee; Wapoe, Yatta; Kwayon, Dash; Blackley, David J; Laney, Anthony S; Weston, Emily J; Dokubo, Emily K; Davies-Wayne, Gloria; Wendland, Annika; Daw, Valerie T S; Badini, Mehboob; Clement, Peter; Mahmoud, Nuha; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert G; Fallah, Mosoka

    2017-06-01

    Contact tracing is one of the key response activities necessary for halting Ebola Virus Disease (EVD) transmission. Key elements of contact tracing include identification of persons who have been in contact with confirmed EVD cases and careful monitoring for EVD symptoms, but the details of implementation likely influence their effectiveness. In November 2015, several months after a major Ebola outbreak was controlled in Liberia, three members of a family were confirmed positive for EVD in the Duport Road area of Monrovia. The cluster provided an opportunity to implement and evaluate modified approaches to contact tracing. The approaches employed for improved contact tracing included classification and risk-based management of identified contacts (including facility based isolation of some high risk contacts, provision of support to persons being monitored, and school-based surveillance for some persons with potential exposure but not listed as contacts), use of phone records to help locate missing contacts, and modifications to data management tools. We recorded details about the implementation of these approaches, report the overall outcomes of the contact tracing efforts and the challenges encountered, and provide recommendations for management of future outbreaks. 165 contacts were identified (with over 150 identified within 48 hours of confirmation of the EVD cases) and all initially missing contacts were located. Contacts were closely monitored and promptly tested if symptomatic; no contacts developed disease. Encountered challenges related to knowledge gaps among contact tracing staff, data management, and coordination of contact tracing activities with efforts to offer Ebola vaccine. The Duport Road EVD cluster was promptly controlled. Missing contacts were effectively identified, and identified contacts were effectively monitored and rapidly tested. There is a persistent risk of EVD reemergence in Liberia; the experience controlling each cluster can help inform future Ebola control efforts in Liberia and elsewhere.

  17. Ebola virus disease contact tracing activities, lessons learned and best practices during the Duport Road outbreak in Monrovia, Liberia, November 2015

    PubMed Central

    Schulte, Jacqueline; Williams, Parker; Koryon, Augustine; Enders, Jonathan; Sanor, Varlee; Wapoe, Yatta; Kwayon, Dash; Blackley, David J.; Laney, Anthony S.; Weston, Emily J.; Dokubo, Emily K.; Davies-Wayne, Gloria; Wendland, Annika; Daw, Valerie T. S.; Badini, Mehboob; Clement, Peter; Mahmoud, Nuha; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert G.; Fallah, Mosoka

    2017-01-01

    Background Contact tracing is one of the key response activities necessary for halting Ebola Virus Disease (EVD) transmission. Key elements of contact tracing include identification of persons who have been in contact with confirmed EVD cases and careful monitoring for EVD symptoms, but the details of implementation likely influence their effectiveness. In November 2015, several months after a major Ebola outbreak was controlled in Liberia, three members of a family were confirmed positive for EVD in the Duport Road area of Monrovia. The cluster provided an opportunity to implement and evaluate modified approaches to contact tracing. Methods The approaches employed for improved contact tracing included classification and risk-based management of identified contacts (including facility based isolation of some high risk contacts, provision of support to persons being monitored, and school-based surveillance for some persons with potential exposure but not listed as contacts), use of phone records to help locate missing contacts, and modifications to data management tools. We recorded details about the implementation of these approaches, report the overall outcomes of the contact tracing efforts and the challenges encountered, and provide recommendations for management of future outbreaks. Results 165 contacts were identified (with over 150 identified within 48 hours of confirmation of the EVD cases) and all initially missing contacts were located. Contacts were closely monitored and promptly tested if symptomatic; no contacts developed disease. Encountered challenges related to knowledge gaps among contact tracing staff, data management, and coordination of contact tracing activities with efforts to offer Ebola vaccine. Conclusions The Duport Road EVD cluster was promptly controlled. Missing contacts were effectively identified, and identified contacts were effectively monitored and rapidly tested. There is a persistent risk of EVD reemergence in Liberia; the experience controlling each cluster can help inform future Ebola control efforts in Liberia and elsewhere. PMID:28575034

  18. Sediment quality assessment using survival and embryo malformation tests in amphipod crustaceans: The Gulf of Riga, Baltic Sea AS case study

    NASA Astrophysics Data System (ADS)

    Strode, Evita; Jansons, Mintauts; Purina, Ingrida; Balode, Maija; Berezina, Nadezhda A.

    2017-08-01

    The aim of this study was to assess the toxicity of bottom sediment and to estimate the potential effects of contaminated sediment on health of benthic organisms in the Gulf of Riga (eastern Baltic Sea). Two endpoints were used: survival rate (acute toxicity test) of five crustacean amphipod species and frequency of embryo malformation (samples were collected from the field) in the two species. Toxic resistance of living animals to sediment quality was measured as survival rate (%) at 25 study sites from 2010-2012. Significant differences in the toxic resistance between species were found: 80-100% for Monoporeia affinis, 70-95% for Corophium volutator, 38-88% for Pontogammarus robustoides, 38-100% for Bathyporeia pilosa and 60-100% for Hyalella azteca. Reproductive disorders, measured as percentage (%) of malformed embryos per female, varied in the ranges of 0.0-9.5% in deep water species M. affinis and 0.3-7.5% in littoral species P. robustoides. Both the acute toxicity test and embryo malformation test (only M. affinis was used) indicated moderate and poor sediment quality at 20% and 12% accordingly in the study sites, low toxicity of sediment was estimated in 64% of cases, and no toxicity was recorded in the rest of the cases (4%). Additionally, sediment toxicity test using aquatic organisms was combined with sediment chemical analysis (trace metals) and the Benthic Quality Index (macrozoobenthos) was based on data collected from 13 sites in the Gulf of Riga in 2010 and used for triad sediment quality assessment. According to this combined approach, 23% of the bottom sediments were classified as likely impacted and 23% as possibly impacted (central and southern part of the Gulf). However, the remaining 54% was identified as likely un-impacted. The sediment quality assessment with single survival test or chemical analyses showed better sediment quality in the Gulf than the triad method. The embryo malformation test appeared to be more sensitive to pollution than acute toxicity survival test, that allow us to recommend the inclusion of this novel biomarker in environmental monitoring, while combining it with other tests. In general, our results indicate good or moderate states of sediments and minimal effects of the toxic contamination in them on the Gulf of Riga ecosystem.

  19. INAA Application for Trace Element Determination in Biological Reference Material

    NASA Astrophysics Data System (ADS)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  20. Combined micro-droplet and thin-film-assisted pre-concentration of lead traces for on-line monitoring using anodic stripping voltammetry.

    PubMed

    Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N

    2003-02-01

    An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.

  1. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: a sequential extraction analysis.

    PubMed

    Shi, Honglan; Witt, Emitt C; Shu, Shi; Su, Tingzhi; Wang, Jianmin; Adams, Craig

    2010-07-01

    Analysis of soil/sediment samples collected in the southern Louisiana, USA, region three weeks after Hurricanes Katrina and Rita passed was performed using sequential extraction procedures to determine the origin, mode of occurrence, biological availability, mobilization, and transport of trace elements in the environment. Five fractions: exchangeable, bound to carbonates, bound to iron (Fe)-manganese (Mn) oxides, bound to organic matter, and residual, were subsequently extracted. The toxic trace elements Pb, As, V, Cr, Cu, and Cd were analyzed in each fraction, together with Fe in 51 soil/sediment samples. Results indicated that Pb and As were at relatively high concentrations in many of the soil/sediment samples. Because the forms in which Pb and As are present tend to be highly mobile under naturally occurring environmental conditions, these two compounds pose an increased health concern.Vanadium and Cr were mostly associated with the crystal line nonmobile residual fraction. A large portion of the Cu was associated with organic matter and residual fraction. Cadmium concentrations were low in all soil/sediment samples analyzed and most of this element tended to be associated with the mobile fractions. An average of 21% of the Fe was found in the Fe-Mn oxide fraction, indicating that a substantial part of the Fe was in an oxidized form. The significance of the overall finding of the present study indicated that the high concentrations and high availabilities of the potentially toxic trace elements As and Pb may impact the environment and human health in southern Louisiana and, in particular, the New Orleans area. Copyright (c) 2010 SETAC.

  2. Human placenta processed for encapsulation contains modest concentrations of 14 trace minerals and elements.

    PubMed

    Young, Sharon M; Gryder, Laura K; David, Winnie B; Teng, Yuanxin; Gerstenberger, Shawn; Benyshek, Daniel C

    2016-08-01

    Maternal placentophagy has recently emerged as a rare but increasingly popular practice among women in industrialized countries who often ingest the placenta as a processed, encapsulated supplement, seeking its many purported postpartum health benefits. Little scientific research, however, has evaluated these claims, and concentrations of trace micronutrients/elements in encapsulated placenta have never been examined. Because the placenta retains beneficial micronutrients and potentially harmful toxic elements at parturition, we hypothesized that dehydrated placenta would contain detectable concentrations of these elements. To address this hypothesis, we analyzed 28 placenta samples processed for encapsulation to evaluate the concentration of 14 trace minerals/elements using inductively coupled plasma mass spectrometry. Analysis revealed detectable concentrations of arsenic, cadmium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, rubidium, selenium, strontium, uranium, and zinc. Based on one recommended daily intake of placenta capsules (3300 mg/d), a daily dose of placenta supplements contains approximately 0.018 ± 0.004 mg copper, 2.19 ± 0.533 mg iron, 0.005 ± 0.000 mg selenium, and 0.180 ± 0.018 mg zinc. Based on the recommended dietary allowance (RDA) for lactating women, the recommended daily intake of placenta capsules would provide, on average, 24% RDA for iron, 7.1% RDA for selenium, 1.5% RDA for zinc, and 1.4% RDA for copper. The mean concentrations of potentially harmful elements (arsenic, cadmium, lead, mercury, uranium) were well below established toxicity thresholds. These results indicate that the recommended daily intake of encapsulated placenta may provide only a modest source of some trace micronutrients and a minimal source of toxic elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Total reflection X-ray fluorescence as a tool for food screening

    NASA Astrophysics Data System (ADS)

    Borgese, Laura; Bilo, Fabjola; Dalipi, Rogerta; Bontempi, Elza; Depero, Laura E.

    2015-11-01

    This review provides a comprehensive overview of the applications of total reflection X-ray fluorescence (TXRF) in the field of food analysis. Elemental composition of food is of great importance, since food is the main source of essential, major and trace elements for animals and humans. Some potentially toxic elements, dangerous for human health may contaminate food, entering the food chain from the environment, processing, and storage. For this reason the elemental analysis of food is fundamental for safety assessment. Fast and sensitive analytical techniques, able to detect major and trace elements, are required as a result of the increasing demand on multi-elemental information and product screening. TXRF is suitable for elemental analysis of food, since it provides simultaneous multi-elemental identification in a wide dynamic range of concentrations. Several different matrices may be analyzed obtaining results with a good precision and accuracy. In this review, the most recent literature about the use of TXRF for the analysis of food is reported. The focus is placed on the applications within food quality monitoring of drinks, beverages, vegetables, fruits, cereals, animal derivatives and dietary supplements. Furthermore, this paper provides a critical outlook on the developments required to transfer these methods from research to the industrial and analytical laboratories contexts.

  4. Green aspects, developments and perspectives of liquid phase microextraction techniques.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2014-02-01

    Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.

  5. Electrochemosensor for trace analysis of perfluorooctane sulfonate in water based on a molecularly imprinted poly o-phenylenediamine polymer.

    PubMed

    Karimian, Najmeh; Stortini, Angela Maria; Moretto, Ligia Maria; Costantino, Claudio; Bogialli, Sara; Ugo, Paolo

    2018-06-18

    This work is aimed at developing an electrochemical sensor for the sensitive and selective detection of trace levels of perfluorooctane sulfonate (PFOS) in water. Contamination of waters by perfluorinated alkyl substances (PFAS) is a problem of global concern due to their suspected toxicity and ability to bioaccumulate. PFOS is the perfluorinated compound of major concern, as it has the lowest suggested control concentrations. The sensor reported here is based on a gold electrode modified with a thin coating of a molecularly imprinted polymer (MIP), prepared by anodic electropolymerization of o-phenylenediamine (o-PD) in the presence of PFOS as the template. Activation of the sensor is achieved by template removal with suitable a solvent mixture. Voltammetry, a quartz crystal microbalance, scanning electron microscopy and elemental analysis were used to monitor the electropolymerization process, template removal and binding of the analyte. Ferrocenecarboxylic acid (FcCOOH) has been exploited as an electrochemical probe able to generate analytically useful voltammetric signals by competing for the binding sites with PFOS, as the latter is not electroactive. The sensor has a low detection limit (0.04 nM), a satisfactory selectivity, and is reproducible and repeatable, giving analytical results in good agreement with those obtained by HPLC-MS/MS analyses.

  6. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes.

    PubMed

    Sanganyado, Edmond; Lu, Zhijiang; Fu, Qiuguo; Schlenk, Daniel; Gan, Jay

    2017-11-01

    More than 50% of pharmaceuticals in current use are chiral compounds. Enantiomers of the same pharmaceutical have identical physicochemical properties, but may exhibit differences in pharmacokinetics, pharmacodynamics and toxicity. The advancement in separation and detection methods has made it possible to analyze trace amounts of chiral compounds in environmental media. As a result, interest on chiral analysis and evaluation of stereoselectivity in environmental occurrence, phase distribution and degradation of chiral pharmaceuticals has grown substantially in recent years. Here we review recent studies on the analysis, occurrence, and fate of chiral pharmaceuticals in engineered and natural environments. Monitoring studies have shown ubiquitous presence of chiral pharmaceuticals in wastewater, surface waters, sediments, and sludge, particularly β-receptor antagonists, analgesics, antifungals, and antidepressants. Selective sorption and microbial degradation have been demonstrated to result in enrichment of one enantiomer over the other. The changes in enantiomer composition may also be caused by biologically catalyzed chiral inversion. However, accurate evaluation of chiral pharmaceuticals as trace environmental pollutants is often hampered by the lack of identification of the stereoconfiguration of enantiomers. Furthermore, a systematic approach including occurrence, fate and transport in various environmental matrices is needed to minimize uncertainties in risk assessment of chiral pharmaceuticals as emerging environmental contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Persistent Organic Pollutant Determination in Killer Whale Scat Samples: Optimization of a Gas Chromatography/Mass Spectrometry Method and Application to Field Samples.

    PubMed

    Lundin, Jessica I; Dills, Russell L; Ylitalo, Gina M; Hanson, M Bradley; Emmons, Candice K; Schorr, Gregory S; Ahmad, Jacqui; Hempelmann, Jennifer A; Parsons, Kim M; Wasser, Samuel K

    2016-01-01

    Biologic sample collection in wild cetacean populations is challenging. Most information on toxicant levels is obtained from blubber biopsy samples; however, sample collection is invasive and strictly regulated under permit, thus limiting sample numbers. Methods are needed to monitor toxicant levels that increase temporal and repeat sampling of individuals for population health and recovery models. The objective of this study was to optimize measuring trace levels (parts per billion) of persistent organic pollutants (POPs), namely polychlorinated-biphenyls (PCBs), polybrominated-diphenyl-ethers (PBDEs), dichlorodiphenyltrichloroethanes (DDTs), and hexachlorocyclobenzene, in killer whale scat (fecal) samples. Archival scat samples, initially collected, lyophilized, and extracted with 70 % ethanol for hormone analyses, were used to analyze POP concentrations. The residual pellet was extracted and analyzed using gas chromatography coupled with mass spectrometry. Method detection limits ranged from 11 to 125 ng/g dry weight. The described method is suitable for p,p'-DDE, PCBs-138, 153, 180, and 187, and PBDEs-47 and 100; other POPs were below the limit of detection. We applied this method to 126 scat samples collected from Southern Resident killer whales. Scat samples from 22 adult whales also had known POP concentrations in blubber and demonstrated significant correlations (p < 0.01) between matrices across target analytes. Overall, the scat toxicant measures matched previously reported patterns from blubber samples of decreased levels in reproductive-age females and a decreased p,p'-DDE/∑PCB ratio in J-pod. Measuring toxicants in scat samples provides an unprecedented opportunity to noninvasively evaluate contaminant levels in wild cetacean populations; these data have the prospect to provide meaningful information for vital management decisions.

  8. Root length of aquatic plant, Lemna minor L., as an optimal toxicity endpoint for biomonitoring of mining effluents.

    PubMed

    Gopalapillai, Yamini; Vigneault, Bernard; Hale, Beverley A

    2014-10-01

    Lemna minor, a free-floating macrophyte, is used for biomonitoring of mine effluent quality under the Metal Mining Effluent Regulations (MMER) of the Environmental Effects Monitoring (EEM) program in Canada and is known to be sensitive to trace metals commonly discharged in mine effluents such as Ni. Environment Canada's standard toxicity testing protocol recommends frond count (FC) and dry weight (DW) as the 2 required toxicity endpoints-this is similar to other major protocols such as those by the US Environmental Protection Agency (USEPA) and the Organisation for Economic Co-operation and Development (OECD)-that both require frond growth or biomass endpoints. However, we suggest that similar to terrestrial plants, average root length (RL) of aquatic plants will be an optimal and relevant endpoint. As expected, results demonstrate that RL is the ideal endpoint based on the 3 criteria: accuracy (i.e., toxicological sensitivity to contaminant), precision (i.e., lowest variance), and ecological relevance (metal mining effluents). Roots are known to play a major role in nutrient uptake in conditions of low nutrient conditions-thus having ecological relevance to freshwater from mining regions. Root length was the most sensitive and precise endpoint in this study where water chemistry varied greatly (pH and varying concentrations of Ca, Mg, Na, K, dissolved organic carbon, and an anthropogenic organic contaminant, sodium isopropyl xanthates) to match mining effluent ranges. Although frond count was a close second, dry weight proved to be an unreliable endpoint. We conclude that toxicity testing for the floating macrophyte should require average RL measurement as a primary endpoint. © 2014 SETAC.

  9. Multi-Dimensional Damage Detection

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Lewis, Mark E. (Inventor); Snyder, Sarah J. (Inventor); Medelius, Pedro J. (Inventor)

    2016-01-01

    Methods and systems may provide for a structure having a plurality of interconnected panels, wherein each panel has a plurality of detection layers separated from one another by one or more non-detection layers. The plurality of detection layers may form a grid of conductive traces. Additionally, a monitor may be coupled to each grid of conductive traces, wherein the monitor is configured to detect damage to the plurality of interconnected panels in response to an electrical property change with respect to one or more of the conductive traces. In one example, the structure is part of an inflatable space platform such as a spacecraft or habitat.

  10. Honeybees and honey as monitors for heavy metal contamination near thermal power plants in Mugla, Turkey.

    PubMed

    Silici, Sibel; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa

    2016-03-01

    In the present work, 6 honeydew samples of known geographical and botanical origins and 11 honeybee samples were analyzed to detect possible contamination by the thermoelectric power plants in Mugla, Turkey. The contents of trace elements were determined by atomic absorption spectrometry after application of microwave digestion. The samples from the thermal power plants, which were 10-22 km away from the hives, that did not cause pollution in honeydew honeys were also analyzed. The levels of copper, cadmium (Cd), lead (Pb), zinc, manganese, iron, chromium, nickel, and aluminum were similar to the values found in other recent studies in literature. However, it was found that the contamination levels of the toxic elements such as Pb and Cd in honeybee samples measured relatively higher than that of honey samples. The study concludes that honeybees may be better bioindicators of heavy metal pollution than honey. © The Author(s) 2013.

  11. Intrinsic Chemiluminescence Generation during Advanced Oxidation of Persistent Halogenated Aromatic Carcinogens.

    PubMed

    Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan

    2015-07-07

    The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants.

  12. Report: complexation of β-sitosterol with tris (dibenzylideneacetone) dipalladium and its anti-microbial activity.

    PubMed

    Mahmood, Talat; Bibi, Yasmeen; Zafar, Raana; Wahab, Aneela; Mahmood, Iffat; Arshad, Nuzhat; Sherwani, Sikandar Khan

    2015-03-01

    β-sitosterol is a naturally occurring plant sterol (phytosterol) present in many fruits and vegetables. Scientific research has proven that β-sitosterol is helpful in maintaining the proper functioning of our body. Previously we described the complexation of β-sitosterol with trace metals (Mahmood et al., 2013). Trace metals after the formation of complex unable to absorb in the body and hence eliminated out from the body thus reducing metal toxicity (Marsha, 1996). The present article describes the complexation of μ-sitosterol with Palladium (Pd) metal. Palladium is a toxic metal and due to polluted and hazardous environment traces of this metal can be transferred into the body, which is harmful for human health. Our aim is to make Pd-sterol complex so that this toxic metal (Pd) does not absorb in the body and hence excreted out from the body in the complex form. In order to form this complex μ-sitosterol (Ib) is reacted with Tris (dibenzylideneacetone) dipalladium or [Pd(2) (DBA)(3)] (Ia) in 2:1 ratio in an inert atmosphere and dimethylformamid (DMF) added as a solvent. The resulting complex [Pd(2) (DBA)(3).(β-sitosterol) (Ic) was identified by various spectroscopic techniques such as IR, Mass and (1)H-NMR. This new organo metallic complex (Ic) also showed significant antibacterial and antifungal activity. The present work revealed that Pd-sterol complex does not only reduce metal toxicity but also helpful in minimizing bacterial and fungal infections present in the body. Our research also concluded that we must take plenty of fruits and vegetables in our diet so that natural plant sterol such as β-sitosterol can enhance our defense mechanism and maintain other functions of our body.

  13. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  14. Rice flakes produced from commercial wild rice: Chemical compositions, vitamin B compounds, mineral and trace element contents and their dietary intake evaluation.

    PubMed

    Sumczynski, Daniela; Koubová, Eva; Šenkárová, Lenka; Orsavová, Jana

    2018-10-30

    Non-traditional wild rice flakes were analysed for chemical composition, vitamin B compounds, α-tocopherol, mineral and trace elements. Dietary intakes of vitamins, minerals and trace elements were evaluated using FAO/WHO and Institute of Medicine regulations. Wild rice flakes proved to be significant contributors of pyridoxine, pantothenic and folic acids, niacin, thiamine, chromium, magnesium, manganese, phosphorus, zinc, copper, molybdenum and iron to essential dietary intakes values. Toxic dietary intake values for aluminium, cadmium, tin and mercury were less than 33%, which complies the limits for adults set by FAO/WHO for toxic elements intake related to the body weight of 65 kg for females and 80 kg for males taking 100 g of flakes as a portion. However, concentrations of Hg reaching between 3.67 and 12.20 µg/100 g in flakes exceeded the average Hg value of 0.27-1.90 μg/100 g in cereals consumed in the EU. It has to be respected in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Evaluation of a novel automated water analyzer for continuous monitoring of toxicity and chemical parameters in municipal water supply.

    PubMed

    Bodini, Sergio F; Malizia, Marzio; Tortelli, Annalisa; Sanfilippo, Luca; Zhou, Xingpeng; Arosio, Roberta; Bernasconi, Marzia; Di Lucia, Stefano; Manenti, Angela; Moscetta, Pompeo

    2018-08-15

    A novel tool, the DAMTA analyzer (Device for Analytical Monitoring and Toxicity Assessment), designed for fully automated toxicity measurements based on luminescent bacteria as well as for concomitant determination of chemical parameters, was developed and field-tested. The instrument is a robotic water analyzer equipped with a luminometer and a spectrophotometer, integrated on a thermostated reaction plate which contains a movable carousel with 80 cuvettes. Acute toxicity is measured on-line using a wild type Photobacterium phosphoreum strain with measurable bioluminescence and unaltered sensitivity to toxicants lasting up to ten days. The EC50 values of reference compounds tested were consistent with A. fischeri and P. phosphoreum international standards and comparable to previously published data. Concurrently, a laboratory trial demonstrated the feasibility of use of the analyzer for the determination of nutrients and metals in parallel to the toxicity measurements. In a prolonged test, the system was installed only in toxicity mode at the premises of the World Fair "Expo Milano-2015″, a high security site to ensure the quality of the supplied drinking water. The monitoring program lasted for six months during which ca. 2400 toxicity tests were carried out; the results indicated a mean non-toxic outcome of -5.5 ± 6.2%. In order to warrant the system's robustness in detecting toxic substances, Zn was measured daily with highly reproducible inhibition results, 70.8 ± 13.6%. These results assure that this novel toxicity monitor can be used as an early warning system for protection of drinking water sources from emergencies involving low probability/high impact contamination events in source water or treated water. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. 1993 Annual Report: San Francisco estuary regional monitoring program for trace substances

    USGS Publications Warehouse

    Thompson, B.; Lacy, Jessica; Hardin, Dane; Grovhaug, Tom; Taberski, K.; Jassby, Alan D.; Cloern, James E.; Caffrey, J.; Cole, B.; Schoellhamer, David H.

    1993-01-01

    Summaries of other monitoring activities pertinent to regional monitoring are also included in the Report: a description of the Regional Board’s Bay Protection Studies, the Sacramento Coordinated Monitoring Program, and a wetlands monitoring plan are included.

  17. Electric discharge for treatment of trace contaminants

    NASA Technical Reports Server (NTRS)

    Flamm, D. L.; Wydeven, T. J. (Inventor)

    1978-01-01

    A radio frequency glow discharge reactor is described for removing trace oxidizable contaminants from an oxygen bearing atmosphere. The reaction chamber is defined by an inner metal electrode facing a dielectric backed by an outer conductive electrode. In one embodiment, a conductive liquid forms the conductor of an outer electrode and cools the dielectric. A resonator coupled to a variable radio frequency source generates the high voltages for creating a glow discharge in the chamber at a predetermined pressure whereby the trace contaminants are oxidized into a few simple non-toxic products that may be easily recovered. The corresponding process for removal of trace contaminants from an oxygen-bearing atmosphere with high efficiency independent of the concentration level is also disclosed.

  18. Rule-Based Runtime Verification

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We present a rule-based framework for defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. Our logic, EAGLE, is implemented as a Java library and involves novel techniques for rule definition, manipulation and execution. Monitoring is done on a state-by-state basis, without storing the execution trace.

  19. Chemically individual armoured bioreporter bacteria used for the in vivo sensing of ultra-trace toxic metal ions.

    PubMed

    Zhang, Zhijun; Ju, Enguo; Bing, Wei; Wang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang

    2017-07-25

    A chemically engineered armour is developed for simultaneously improving bioreporter bacterial vitality and shielding infectivity. The armour can help bacteria to resist various insults and even immune phagocytosis. Meanwhile, the bacterial infectivity has proven to be greatly shielded as well. Most importantly, the original bacterial biosensing activity is well preserved, which is competent for sensing trace arsenic in water, serum, and even in vivo.

  20. Some thoughts on problems associated with various sampling media used for environmental monitoring

    USGS Publications Warehouse

    Horowitz, A.J.

    1997-01-01

    Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.

  1. Exposures to multiple air toxics in New York City.

    PubMed Central

    Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D

    2002-01-01

    Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter

  2. Exposures to multiple air toxics in New York City.

    PubMed

    Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D

    2002-08-01

    Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter

  3. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology.

    PubMed

    Sundaram, S K; Sacksteder, Colette A; Weber, Thomas J; Riley, Brian J; Addleman, R Shane; Harrer, Bruce J; Peterman, John W

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.

  4. Hepatic concentrations of copper and other metals in dogs with and without chronic hepatitis.

    PubMed

    Cedeño, Y; López-Alonso, M; Miranda, M

    2016-12-01

    Defects in copper metabolism have been described in several dog breeds, and recently, it has been suggested that changes in other essential trace elements could be involved in the pathogenesis of hepatic disease. This study measured hepatic copper accumulation and its interactions with other essential trace and toxic metals in dogs diagnosed with chronic hepatitis. Liver samples of 20 chronic hepatitis and 20 healthy dogs were collected. Samples were acid digested, and essential metals (cobalt, copper, iron, manganese, molibdenum, selenium and zinc) and toxic metals (arsenic, cadmium, mercury and lead) were analysed by inductively-coupled plasma mass spectrometry. Copper concentrations were significantly higher in dogs affected by hepatic disease than in controls. Dogs having chronic hepatitis with liver copper concentration greater than 100 mg/kg wet weight showed statistically higher cobalt, manganese and zinc concentrations than dogs having chronic hepatitis with liver copper concentrations less than 100 mg/kg wet weight and controls. Toxic metal concentrations were low - in all cases below the threshold associated with toxicity in dogs. Dogs with chronic hepatitis not only have increased concentrations of copper in the liver but also increased concentrations of cobalt, manganese and zinc; measurement of these elements may perhaps aid in diagnosis of liver disease in dogs. © 2016 British Small Animal Veterinary Association.

  5. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Bioavailability, ecotoxicity, and geological characteristics of trace lead in sediments from two sites on Negro River, Uruguay, South America.

    PubMed

    Míguez, Diana M; Huertas, Raquel; Carrara, María V; Carnikián, Agustín; Bouvier, María E; Martínez, María J; Keel, Karen; Pioda, Carolina; Darré, Elena; Pérez, Ramiro; Viera, Santiago; Massa, Enrique

    2012-04-01

    Bioassays of two sites along the Rio Negro in Uruguay indicate ecotoxicity, which could be attributable to trace concentrations of lead in river sediments. Monthly samples at two sites at Baygorria and Bonete locations were analyzed for both particle size and lead. Lead was determined by atomic spectrometry in river water and sediment and particle size by sieving and sedimentation. Data showed that Baygorria's sediments have greater percentage of clay than Bonete's (20.4 and 5.8%, respectively). Lead was measurable in Baygorria's sediments, meanwhile in Bonete's, it was always below the detection limit. In water samples, lead was below detection limit at both sites. Bioassays using sub-lethal growth and survival test with Hyalella curvispina amphipod, screening with bioluminescent bacteria Photobacterium leiognathi, and acute toxicity bioassay with Pimephales promelas fish indicated toxicity at Baygorria, with much less effect at Bonete. Even though no lethal effects could be demonstrated, higher sub-lethal toxicity was found in samples from Baygorria site, showing a possible concentration of the contaminant in the clay fraction.

  7. Dietary exposure to essential and toxic trace elements from a Total diet study in an adult Lebanese urban population.

    PubMed

    Nasreddine, L; Nashalian, O; Naja, F; Itani, L; Parent-Massin, D; Nabhani-Zeidan, M; Hwalla, N

    2010-05-01

    This study assesses, by the Total diet study approach, the adequacy of micronutrient intake (Co, Cu, Fe, Mn, Ni, Zn) and the dietary exposure of a Lebanese adult urban population to two toxic elements (Cd, Pb). The foods that made up the average 'total diet' were derived from a previous individual consumption survey. A total of 1215 individual foods were collected, prepared and cooked prior to analysis. Analytical quantification was performed using inductively coupled plasma mass spectrometry. Average daily intakes of Co (11.4 microg/day), Cu (1104.19 microg/day), Fe (13.00 mg/day), Mn (2.04 mg/day), Ni (126.27 microg/day) and Zn (10.97 mg/day) were below toxicological reference values and were found to satisfy nutritional recommendations, except for manganese in men and iron in women. Average dietary exposure to Pb and Cd represented 3.2% and 21.7% of the respective provisional tolerable weekly intakes. Estimates of dietary intakes of iron appeared to be inadequate for 63% of adult women. These findings should constitute a current measure of assessing the adequacy and safety of foods consumed in Lebanon and may be a basis for future monitoring studies. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Sublethal and Reproductive Effects of Acute and Chronic Exposure to Flowback and Produced Water from Hydraulic Fracturing on the Water Flea Daphnia magna.

    PubMed

    Blewett, Tamzin A; Delompré, Perrine L M; He, Yuhe; Folkerts, Erik J; Flynn, Shannon L; Alessi, Daniel S; Goss, Greg G

    2017-03-07

    Hydraulic fracturing is an industrial process allowing for the extraction of gas or oil. To fracture the rocks, a proprietary mix of chemicals is injected under high pressure, which later returns to the surface as flowback and produced water (FPW). FPW is a complex chemical mixture consisting of trace metals, organic compounds, and often, high levels of salts. FPW toxicity to the model freshwater crustacean Daphnia magna was characterized utilizing acute (48 h median lethal concentrations; LC 50 ) and chronic (21 day) exposures. A decrease in reproduction was observed, with a mean value of 18.5 neonates produced per replicate over a 21 day chronic exposure to 0.04% FPW, which was a significant decrease from the average of 64 neonates produced in the controls. The time to first brood was delayed in the highest FPW (0.04%) treatment. Neonates exhibited an LC 50 of 0.19% of full-strength FPW, making them more sensitive than adults, which displayed an LC 50 value of 0.75%. Quantitative PCR highlighted significant changes in expression of genes encoding xenobiotic metabolism (cyp4) and moulting (cut). This study is the first to characterize chronic FPW toxicity and will help with the development of environmental monitoring and risk assessment of FPW spills.

  9. Trace elements in groundwater used for water supply in Latvia

    NASA Astrophysics Data System (ADS)

    Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads

    2014-05-01

    Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name "GeoVipum". This study is supported by the European Social Fund project Nr.2013/0054/2DP/2.1.1.1.0/13/APIA/VIAA/007 in Latvia and European Social Fund Mobilitas grant No MJD309 in Estonia. Reference: Levins I., Gosk, E. 2007. Trace elements in groundwater as indicators of anthropogenic impact. Environmental Geology, 55, 285-290.

  10. The Automated Instrumentation and Monitoring System (AIMS) reference manual

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Hontalas, Philip; Listgarten, Sherry

    1993-01-01

    Whether a researcher is designing the 'next parallel programming paradigm,' another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software architects to uncover system behavior and to take advantage of specific application characteristics and hardware features. A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware test beds to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs written for Intel's NX operating system on the iPSC family of multi computers. A run-time performance-monitoring library for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC's CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI) supporting X-Windows (in particular, Xl IR5, Motif 1.1.3).

  11. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring.

    PubMed

    Petrie, Bruce; Barden, Ruth; Kasprzyk-Hordern, Barbara

    2015-04-01

    This review identifies understudied areas of emerging contaminant (EC) research in wastewaters and the environment, and recommends direction for future monitoring. Non-regulated trace organic ECs including pharmaceuticals, illicit drugs and personal care products are focused on due to ongoing policy initiatives and the expectant broadening of environmental legislation. These ECs are ubiquitous in the aquatic environment, mainly derived from the discharge of municipal wastewater effluents. Their presence is of concern due to the possible ecological impact (e.g., endocrine disruption) to biota within the environment. To better understand their fate in wastewaters and in the environment, a standardised approach to sampling is needed. This ensures representative data is attained and facilitates a better understanding of spatial and temporal trends of EC occurrence. During wastewater treatment, there is a lack of suspended particulate matter analysis due to further preparation requirements and a lack of good analytical approaches. This results in the under-reporting of several ECs entering wastewater treatment works (WwTWs) and the aquatic environment. Also, sludge can act as a concentrating medium for some chemicals during wastewater treatment. The majority of treated sludge is applied directly to agricultural land without analysis for ECs. As a result there is a paucity of information on the fate of ECs in soils and consequently, there has been no driver to investigate the toxicity to exposed terrestrial organisms. Therefore a more holistic approach to environmental monitoring is required, such that the fate and impact of ECs in all exposed environmental compartments are studied. The traditional analytical approach of applying targeted screening with low resolution mass spectrometry (e.g., triple quadrupoles) results in numerous chemicals such as transformation products going undetected. These can exhibit similar toxicity to the parent EC, demonstrating the necessity of using an integrated analytical approach which compliments targeted and non-targeted screening with biological assays to measure ecological impact. With respect to current toxicity testing protocols, failure to consider the enantiomeric distribution of chiral compounds found in the environment, and the possible toxicological differences between enantiomers is concerning. Such information is essential for the development of more accurate environmental risk assessment. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Temporal variability of selected air toxics in the United States

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.

    Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.

  13. On the Information Content of Program Traces

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Program traces are used for analysis of program performance, memory utilization, and communications as well as for program debugging. The trace contains records of execution events generated by monitoring units inserted into the program. The trace size limits the resolution of execution events and restricts the user's ability to analyze the program execution. We present a study of the information content of program traces and develop a coding scheme which reduces the trace size to the limit given by the trace entropy. We apply the coding to the traces of AIMS instrumented programs executed on the IBM SPA and the SCSI Power Challenge and compare it with other coding methods. Our technique shows size of the trace can be reduced by more than a factor of 5.

  14. Investigation of ecosystems impacts from geothermal development in Imperial Valley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinn, J.H.; Ireland, R.R.; Kercher, J.R.

    1979-07-13

    A summary of three years of field ecological investigation in Imperial Valley Environmental Program is presented. The potential terrestrial habitat impacts of geothermal development are discussed for shorebirds and waterfowl habitat, the endangered clapper rail, powerline corridors, noise effects, animal trace element burdens, and the desert community. Aquatic habitats are discussed in terms of Salton Sea salinity, effects of geothermal brine discharges to the Salton Sea, trace element baselines, and potential toxicity of brine spills in freshwater. Studies of impacts on agriculture involved brine movement in soil, release of trace metals, trace element baselines in soil and plants, water requirementsmore » of crops, and H{sub 2}S effects on crop production in the presence of CO{sub 2} and ozone.« less

  15. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring

    PubMed Central

    Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.

    2017-01-01

    Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065

  16. Dietary Intakes of Minerals, Essential and Toxic Trace Elements for Adults from Eragrostis tef L.: A Nutritional Assessment.

    PubMed

    Koubová, Eva; Sumczynski, Daniela; Šenkárová, Lenka; Orsavová, Jana; Fišera, Miroslav

    2018-04-12

    This study analysed the contents of thirty-six mineral and trace elements in teff ( Eragrostis tef L.) grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA) or adequate intake (AI), and provisional tolerable weekly intake (PTWI) or provisional tolerable monthly intake (PTMI) values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO) and Institute of Medicine (IOM) regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg) in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6-50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements.

  17. Dietary Intakes of Minerals, Essential and Toxic Trace Elements for Adults from Eragrostis tef L.: A Nutritional Assessment

    PubMed Central

    Koubová, Eva; Šenkárová, Lenka

    2018-01-01

    This study analysed the contents of thirty-six mineral and trace elements in teff (Eragrostis tef L.) grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA) or adequate intake (AI), and provisional tolerable weekly intake (PTWI) or provisional tolerable monthly intake (PTMI) values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO) and Institute of Medicine (IOM) regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg) in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6–50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements. PMID:29649158

  18. Trace metal concentrations in forest and lawn soils of Paris region (France) along a gradient of urban pressure

    NASA Astrophysics Data System (ADS)

    Ludovic, Foti

    2017-04-01

    Urban soils differ greatly from natural ones as they are located in areas of intense anthropogenic activity (e.g. pollution, physical disturbance, surface transformation). Urban soils are a crucial component of urban ecosystems, especially in public green spaces, and contribute to many ecosystem services from the mitigation of urban heat island to recreational services. In the last decade, the study of urban soils has emerged as an important frontier in environmental research, at least because of their impact on the quality of life of urban populations, because of the services they deliver and because they are more and more recognized as a valuable resource. One of the key issues is the pollution of urban soils because they receive a variety of deposits from local (vehicle emissions, industrial discharges, domestic heating, waste incineration and other anthropogenic activities) and from remote sources (through atmospheric transport). Typical contaminants include persistent toxic substances, such as trace metals (TMs) that have drawn wide attention due to their long persistence in the environment, their tendency to bioaccumulate in the food chain and their toxicity for humans and other organisms. Concentrations, spatial distributions, dynamics, impacts and sources of TMs (e.g. industry or fossil fuels combustion) have attracted a global interest in urban soils and are the subject of ongoing research (e.g. ecotoxicological urban ecology). Some studies have already documented soil pollution with TMs at both the town and regional scales. So far, several monitoring programs (e.g. National Network for the long term Monitoring of Forest Ecosystem, Regional Monitoring Quality of Soil in France) and studies have been carried out on a national scale to measure the ranges of TM concentrations and natural background values in French soils. These studies have focused on French agricultural and forest soils and have not tackled urban soils. No study has described TM concentrations and subsequent risks in soils of Paris and Paris region (Île-de-France). Our study aims at filling this knowledge gap, focusing on contamination and pollution by TMs in lawns and forests that constitute the main types of vegetation in urban areas of Paris region. Considering the rational described above, the aims of the present study were (i) to examine the concentration of eight selected TMs (As, Cd, Cr, Cu, Fe, Ni, Pb, Zn) in soils of two land-uses (public lawns and woods) along an urban pressure gradient in Paris region, (ii) to distinguish origins and sources of contamination or pollution, (iii) to evaluate the individual and overall TM contamination degree as well as the individual and overall TM pollution degree, (iiii) to use soil characteristics to better understand soil origins and histories along the urban pressure gradient and the relationship between these characteristics and TM concentrations. Ultimately, this study provides a baseline TM assessment for the long-term monitoring of the evolution of TM soil contents in urban area of the Paris region.

  19. WATERSHED EARLY WARNING SYSTEMS

    EPA Science Inventory

    Contaminants are of concern when they are found in concentrations that are toxic to plants and/or animals. On-line Toxicity Monitors (OTM) integrate all dissolved and bound chemicals found in water. This is important because of the limitations of chemical specific monitoring; yo...

  20. IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:

    o Contributions to EPA Regional Monit...

  1. REAL-TIME MONITORING FOR TOXICITY CAUSED BY ...

    EPA Pesticide Factsheets

    This project, sponsored by EPA's Environmental Monitoring for Public Access and Community Tracking (EMPACT) program, evaluated the ability of an automated biological monitoring system that measures fish ventilatory responses (ventilatory rate, ventilatory depth, and cough rate) to detect developing toxic conditions in water.In laboratory tests, acutely toxic levels of both brevetoxin (PbTx-2) and toxic Pfiesteria piscicida cultures caused fish responses primarily through large increases in cough rate. In the field, the automated biomonitoring system operated continuously for 3 months on the Chicamacomico River, a tributary to the Chesapeake Bay that has had a history of intermittent toxic algal blooms. Data gathered through this effort complemented chemical monitoring data collected by the Maryland Department of Natural Resources (DNR) as part of their Pfiesteria monitoring program. After evaluation by DNR personnel, the public could access the data on the DNR Internet web site at www.dnr.state.md.us/bay/pfiesteria/00results.html or receive more detailed information at www.aquaticpath.umd.edu/empact.. The field biomonitor identified five fish response events. Increased conductivity combined with a substantial decrease in water temperature was the likely cause of one event, while contaminants (probably surfactants) released from inadequately rinsed particle filters produced another response. The other three events, characterized by greatly increased cough ra

  2. Effect of spatial resolution of soil data on predictions of eggshell trace element levels in the Rook Corvus frugilegus.

    PubMed

    Orłowski, Grzegorz; Siebielec, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2016-12-01

    Although a considerable research effort has gone into studying the dietary pathways of metals to the bodies of laying female birds and their eggs in recent years, no detailed investigations have yet been carried out relating the properties of the biogeochemical environment at large spatial scales to eggshell trace element levels in typical soil-invertebrate feeding birds under natural conditions. We used data from a large-scale nationwide monitoring survey of soil quality in Poland (3724 sampling points from the 43 792 available) to predict levels of five trace elements (copper [Cu], cadmium [Cd], nickel [Ni], zinc [Zn] and lead [Pb]) in Rook Corvus frugilegus eggshells from 42 breeding colonies. Our major aim was to test whether differences exist in the explanatory power of soil data (acidity, content of elements and organic matter, and particle size) used as a correlate of concentrations of eggshell trace elements among four different distances (5, 10, 15 and 20 km) around rookeries. Over all four distances around the rookeries only the concentrations of Cu and Cd in eggshells were positively correlated with those in soil, while eggshell Pb was correlated with the soil Pb level at the two longest distances (15 and 20 km) around the rookeries. The physical properties of soil (primarily the increase in pH) adversely affected eggshell Cd and Pb concentrations. The patterns and factors governing metal bioaccumulation in soil invertebrates and eggshells appear to be coincident, which strongly suggests a general similarity in the biochemical pathways of elements at different levels of the food web. The increasing acidification of arable soil as a result of excessive fertilisation and over-nitrification can enhance the bioavailability of toxic elements to laying females and their eggs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Correlation between some selected trace metal concentrations in six species of fish from the Arabian Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashraf, M.; Jaffar, M.

    1988-07-01

    The role of trace metals in marine ecosystems has been keenly investigated during recent years. It is known that abundance of essential trace metals regulates the metal content in the organisms by homeostatic control mechanisms, which when cease to function cause essential trace metals to act in an either acutely or chronically toxic manner. Therefore, a correlation study based on essential and non-essential trace metal concentrations is imperative for extending the existing knowledge of bioaccumulation of trace metals in marine organisms. An attempt has been made in the present investigation to bring out quantitative correlations between the concentrations of iron,more » copper, lead and zinc in the edible muscle tissue of six species of marine fish: Salmon (salmon sole); tuna (thunnus thynnus); pomfret silver (pampus argenteus); Pomfret black (formioniger); long tail tuna (thynnus tonggel) and Indian oil sardine (sardinella longiceps). These fish are abundantly available in Pakistan along the coastal line of the Arabian Sea and have great commercial value. The computational analysis on the trace metal correlation was conducted using an MSTAT statistical package.« less

  4. DETECTION OF TOXICANT(S) ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK

    EPA Science Inventory

    A critical step prior to reoccupation of any facility following a chemical attack is monitoring for toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after building decontaminatio...

  5. Red Tide and Paralytic Shellfish Poisoning

    ERIC Educational Resources Information Center

    Dale, Barrie; Yentsch, Clarice M.

    1978-01-01

    Discusses the nature and cause of paralytic shellfish poisoning (PSP). Includes toxic dinoflagellate ecology, taxonomy and life history, and chemistry of the toxins. Recent work with trace metals and directions of future research are also given. (MA)

  6. Time and number of displays impact critical signal detection in fetal heart rate tracings.

    PubMed

    Anderson, Brittany L; Scerbo, Mark W; Belfore, Lee A; Abuhamad, Alfred Z

    2011-06-01

    Interest in centralized monitoring in labor and delivery units is growing because it affords the opportunity to monitor multiple patients simultaneously. However, a long history of research on sustained attention reveals these types of monitoring tasks can be problematic. The goal of the present experiment was to examine the ability of individuals to detect critical signals in fetal heart rate (FHR) tracings in one or more displays over an extended period of time. Seventy-two participants monitored one, two, or four computer-simulated FHR tracings on a computer display for the appearance of late decelerations over a 48-minute vigil. Measures of subjective stress and workload were also obtained before and after the vigil. The results showed that detection accuracy decreased over time and also declined as the number of displays increased. The subjective reports indicated that participants found the task to be stressful and mentally demanding, effortful, and frustrating. The results suggest that centralized monitoring that allows many patients to be monitored simultaneously may impose a detrimental attentional burden on the observer. Furthermore, this seemingly benign task may impose an additional source of stress and mental workload above what is commonly found in labor and delivery units. © Thieme Medical Publishers.

  7. Misidentification of maternal heart rate as fetal on cardiotocography during the second stage of labor: the role of the fetal electrocardiograph.

    PubMed

    Nurani, Raisha; Chandraharan, Edwin; Lowe, Virginia; Ugwumadu, Austin; Arulkumaran, Sabaratnam

    2012-12-01

    To identify the incidence of fetal heart rate (FHR) accelerations in the second stage of labor and the role of fetal electrocardiograph (ECG) in avoiding misidentification of maternal heart rate (MHR) as FHR. Retrospective observational study. University hospital labor ward, London, UK. Cardiotocograph (CTG) tracings of 100 fetuses monitored using external transducers and internal scalp electrodes. CTG traces that fulfilled inclusion criteria were selected from an electronic FHR monitoring database. Rate of accelerations during external and internal monitoring as well as decelerations for a period of 60 minutes prior to delivery were determined. The role of fetal ECG in differentiating between MHR and FHR trace was explored. Decelerations occurred in 89% of CTG traces during the second stage of labor. Accelerations indicating possible recording of FHR or MHR were found in 28.1 and 10.9% of cases recorded by an external ultrasound transducer as well as internal scalp electrode, respectively. Accelerations coinciding with uterine contractions occurred only in 11.7 and 4% of external and internal recording of FHR, respectively. Absence of 'p-wave' of the ECG waveform was associated with MHR trace. Decelerations were the commonest CTG feature during the second stage of labor. The incidence of accelerations coinciding with uterine contractions was less than half in fetuses monitored using a fetal scalp electrode. Analysing the ECG waveform for the absence of 'p-wave' helps in differentiating MHR from FHR. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  8. Acute toxicity and synergism of cadmium and zinc in white shrimp, Penaeus setiferus, Juveniles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanegas, C.; Espina, S.; Botello, A.V.

    1997-01-01

    Toxic effects of individual heavy metals on decapod crustaceans have been reported frequently, but little information exists concerning interactions. Among the non-essential heavy metals, cadmium is one of the most hazardous elements in the aquatic environment; on the other hand, zinc is an essential element, but toxic when present in greater than trace amounts. Biological effects of cadmium in aquatic organisms are complex due to the interactions with both environmental variables and other toxic agents. In decapod crustaceans, the toxicity of cadmium and zinc is modified by salinity, temperature, hypoxia, calcium ion concentrations and life-cycle stage. Heavy metal pollution hasmore » increased in the coastal waters of the Gulf of Mexico, particularly in shrimp habitat. This study examined the toxicity of cadmium and zinc to white shrimp juveniles and looked at the interaction of the metals. 16 refs., 2 tabs.« less

  9. Dietary toxicity of soluble and insoluble molybdenum to northern bobwhite quail (Colinus virginianus).

    PubMed

    Stafford, Jennifer M; Lambert, Charles E; Zyskowski, Justin A; Engfehr, Cheryl L; Fletcher, Oscar J; Clark, Shanna L; Tiwary, Asheesh; Gulde, Cynthia M; Sample, Bradley E

    2016-03-01

    Limited data are available on the effects of molybdenum (Mo) on avian wildlife, which impairs evaluation of ecological exposure and risk. While Mo is an essential trace nutrient in birds, little is known of its toxicity to birds exposed to molybdenum disulfide (MoS2), the predominant form found in molybdenite ore. The chemical form and bioavailability of Mo is important in determining its toxicity. Avian toxicity tests typically involve a soluble form of Mo, such as sodium molybdate dihydrate (SMD, Na2MoO4·2H2O); however MoS2 is generally insoluble, with low bioaccessibility under most environmental conditions. The current study monitored survival and general health (body weight and food consumption) of 9-day old northern bobwhite exposed to soluble Mo (SMD) and ore-related Mo (MoS2) in their diet for 30 days. Toxicity and bioavailability (e.g. tissue distribution) of the two Mo forms were compared. Histopathology evaluations and serum, kidney, liver, and bone tissue sample analyses were conducted. Copper, a nutrient integrally associated with Mo toxicity, was also measured in the diet and tissue. No treatment-related mortality occurred and no treatment-related lesions were recorded for either Mo form. Tissue analyses detected increased Mo concentrations in serum, kidney, liver, and bone tissues following exposure to SMD, with decreasing concentrations following a post-exposure period. For the soluble form, a No-Observed-Adverse-Effect Concentration (NOAEC) of 1200 mg Mo as SMD/kg feed (134 mg SMD/kg body weight/day) was identified based on body weight and food consumption. No adverse effects were observed in birds exposed to MoS2 at the maximum dose of 5000 mg MoS2/kg feed (545 mg MoS2/kg body weight/day). These results show that effects associated with MoS2, the more environmentally prevalent and less bioavailable Mo form, are much less than those observed for SMD. These data should support more realistic representations of exposure and risks to avian receptors from environmental Mo.

  10. IDENTIFYING AND MONITORING ENVIRONMENTAL TOXICITY USING CERIODAPHNIA MICROARRAYS - PHASE I

    EPA Science Inventory

    The current U.S. Environmental Protection Agency (EPA) SBIR solicitation states that “technology is needed to better identify and monitor sources of pollution and protect water quality.” Microarrays may be particularly well suited to identifying environmental toxic...

  11. A novel modality for intrapartum fetal heart rate monitoring.

    PubMed

    Ashwal, Eran; Shinar, Shiri; Aviram, Amir; Orbach, Sharon; Yogev, Yariv; Hiersch, Liran

    2017-11-02

    Intrapartum fetal heart rate (FHR) monitoring is well recommended during labor to assess fetal wellbeing. Though commonly used, the external Doppler and fetal scalp electrode monitor have significant shortcomings. Lately, non-invasive technologies were developed as possible alternatives. The objective of this study is to compare the accuracy of FHR trace using novel Electronic Uterine Monitoring (EUM) to that of external Doppler and fetal scalp electrode monitor. A comparative study conducted in a single tertiary medical center. Intrapartum FHR trace was recorded simultaneously using three different methods: internal fetal scalp electrode, external Doppler, and EUM. The latter, a multichannel electromyogram (EMG) device acquires a uterine signal and maternal and fetal electrocardiograms. FHR traces obtained from all devices during the first and second stages of labor were analyzed. Positive percent of agreement (PPA) and accuracy (by measuring root means square error between observed and predicted values) of EUM and external Doppler were both compared to internal scalp electrode monitoring. A Bland-Altman agreement plot was used to compare the differences in FHR trace between all modalities. For momentary recordings of fetal heart rate <110 bpm or >160 bpm level of agreement, sensitivity, and specificity were also evaluated. Overall, 712,800 FHR momentary recordings were obtained from 33 parturients. Although both EUM and external Doppler highly correlated with internal scalp electrode monitoring (r 2  = 0.98, p < .001 for both methods), the accuracy of EUM was significantly higher than external Doppler (99.0% versus 96.6%, p < .001). In addition, for fetal heart rate <110 bpm or >160 bpm, the PPA, sensitivity, and specificity of EUM as compared with internal fetal scalp electrode, were significantly greater than those of external Doppler (p < .001). Intrapartum FHR using EUM is both valid and accurate, yielding higher correlations with internal scalp electrode monitoring than external Doppler. As such, it may provide a good framework for non-invasive evaluation of intrapartum FHR.

  12. USE OF TOXICITY IDENTIFICATION EVALUATION METHODS TO CHARACTERIZE IDENTIFY, AND CONFIRM HEXAVALENT CHROMIUM TOXICITY IN AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...

  13. Pretreatment with intravenous lipid emulsion reduces mortality from cocaine toxicity in a rat model.

    PubMed

    Carreiro, Stephanie; Blum, Jared; Hack, Jason B

    2014-07-01

    We compare the effects of intravenous lipid emulsion and normal saline solution pretreatment on mortality and hemodynamic changes in a rat model of cocaine toxicity. We hypothesize that intravenous lipid emulsion will decrease mortality and hemodynamic changes caused by cocaine administration compared with saline solution. Twenty male Sprague-Dawley rats were sedated and randomized to receive intravenous lipid emulsion or normal saline solution, followed by a 10 mg/kg bolus of intravenous cocaine. Continuous monitoring included intra-arterial blood pressure, pulse rate and ECG tracing. Endpoints included a sustained undetectable mean arterial pressure (MAP) or return to baseline MAP for 5 minutes. The log-rank test was used to compare mortality. A mixed-effect repeated-measures ANOVA was used to estimate the effects of group (intravenous lipid emulsion versus saline solution), time, and survival on change in MAP, pulse rate, or pulse pressure. In the normal saline solution group, 7 of 10 animals died compared with 2 of 10 in the intravenous lipid emulsion group. The survival rate of 80% (95% confidence interval 55% to 100%) for the intravenous lipid emulsion rats and 30% (95% confidence interval 0.2% to 58%) for the normal saline solution group was statistically significant (P=.045). Intravenous lipid emulsion pretreatment decreased cocaine-induced cardiovascular collapse and blunted hypotensive effects compared with normal saline solution in this rat model of acute lethal cocaine intoxication. Intravenous lipid emulsion should be investigated further as a potential adjunct in the treatment of severe cocaine toxicity. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  14. [The elemental composition of teeth hard tissues depending on the state of the environment].

    PubMed

    Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K

    2014-01-01

    At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.

  15. [Proposal of new trace elements classification to be used in nutrition, oligotherapy and other therapeutics strategies].

    PubMed

    Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María

    2014-12-17

    1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Community-Scale Air Toxics Ambient Monitoring Grant - Closed Announcement FY 2015

    EPA Pesticide Factsheets

    Grant to fund projects designed to assist state, local and tribal communities in identifying air toxics sources, characterizing the degree and extent of local-scale air toxics problems, tracking progress of air toxics reduction activities, etc.

  17. Sampling and analysis techniques for monitoring serum for trace elements.

    PubMed

    Ericson, S P; McHalsky, M L; Rabinow, B E; Kronholm, K G; Arceo, C S; Weltzer, J A; Ayd, S W

    1986-07-01

    We describe techniques for controlling contamination in the sampling and analysis of human serum for trace metals. The relatively simple procedures do not require clean-room conditions. The atomic absorption and atomic emission methods used have been applied in studying zinc, copper, chromium, manganese, molybdenum, selenium, and aluminum concentrations. Values obtained for a group of 16 normal subjects agree with the most reliable values reported in the literature, obtained by much more elaborate techniques. All of these metals can be measured in 3 to 4 mL of serum. The methods may prove especially useful in monitoring concentrations of essential trace elements in blood of patients being maintained on total parenteral nutrition.

  18. Investigations of microbial degradation of polycyclic aromatic hydrocarbons based on 13C-labeled phenanthrene in a soil co-contaminated with trace elements using a plant assisted approach.

    PubMed

    Wawra, Anna; Friesl-Hanl, Wolfgang; Jäger, Anna; Puschenreiter, Markus; Soja, Gerhard; Reichenauer, Thomas; Watzinger, Andrea

    2018-03-01

    Co-contaminations of soils with organic and inorganic pollutants are a frequent environmental problem. Due to their toxicity and recalcitrance, the heterogeneous pollutants may persist in soil. The hypothesis of this study was that degradation of polycyclic aromatic hydrocarbons (PAHs) is enhanced if heavy metals in soil are immobilized and their bioavailability reduced. For metal immobilization and enhanced biodegradation, distinct mineral and organic soil amendments (iron oxides, gravel sludge, biochar) were deployed in an incubation batch experiment. The second part of the experiment consisted of a greenhouse pot experiment applying fast-growing and pollution-tolerant woody plants (willow and black locust). Soil amendments initially immobilized NH 4 NO 3 -extractable zinc, cadmium, and lead; after 100 days of incubation, soil amendments showed reductions only for cadmium and a tendency to enhance arsenic mobility. In order to monitor the remediation success, a 13 C-phenanthrene (PHE) label was applied. 13 C-phospholipid fatty acid analysis ( 13 C-PLFA) further enabled the identification of PHE-degrading soil microorganisms. Both experiments exhibited a similar PLFA profile. Gram-negative bacteria (esp. cy17:0, 16:1ω7 + 6, 18:1ω7c) were the most significant microbial group taking up 13 C-PHE. Plants effectively increased the label uptake by gram-positive bacteria and increased the biomass of the fungal biomarker, although their contribution to the degradation process was minor. Plants tended to prolong PAH dissipation in soil; at the end of the experiment, however, all treatments showed equally low total PAH concentrations in soil. While black locust plants tended not to take up potentially toxic trace elements, willows accumulated them in their leaves. The results of this study show that the chosen treatments did not enhance the remediation of the experimental soil.

  19. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper Floridan aquifer, distributed between developed and undeveloped parts of the basin. Water samples collected should be analyzed for a wide range of constituents, including physical properties, nutrients, suspended sediment, and constituents associated with increased urban development such as pesticides, other trace organic compounds associated with domestic and industrial waste, and trace elements.

  20. Development of Less Toxic Treatment Strategies for Metastatic and Drug-Resistant Breast Cancer Using Noninvasive Optical Monitoring

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0070 TITLE: Development of Less Toxic Treatment Strategies for Metastatic and Drug- Resistant Breast Cancer Using...0070 Development of Less Toxic Treatment Strategies for Metastatic and Drug- Resistant Breast Cancer Using Noninvasive Optical Monitori g 5c. PROGRAM...drug resistant breast cancer. Non-invasive Diffuse Optical Imaging technologies are able to monitor drug response and resistance through quantitative

  1. Response of Vibrio fischeri to repeated exposures over time in an Online Toxicity Monitor

    EPA Science Inventory

    Online Toxicity Monitors have been developed to provide continuous, time-relevant information regarding water quality. These systems measure a physiological or behavioral response of a sentinel organism to changes water quality. One such system, the Microlan Toxcontrol, is base...

  2. 40 CFR 469.13 - Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE CATEGORY Semiconductor Subcategory § 469.13 Monitoring. (a... with the permit limitation for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewaters has occurred since filing...

  3. APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING

    EPA Science Inventory

    The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...

  4. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  5. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  6. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  7. 40 CFR 258.55 - Assessment monitoring program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...

  8. 40 CFR 258.55 - Assessment monitoring program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...

  9. 40 CFR 258.55 - Assessment monitoring program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...

  10. Content and distribution of arsenic, bismuth, lithium and selenium in mineral and synthetic fertilizers and their contribution to soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senesi, N.; Polemio, M.; Lorusso, L.

    1979-01-01

    Concentrations of arsenic, bismuth, lithium and selenium were determined by atomic absorption spectrophotometry in 32 samples of commercial fertilizers from various manufacturers and distributors. Arsenic and lithium were detected in all investigated samples, bismuth in 50% of samples and selenium only in two samples. Arsenic content ranged from 2 to 321 ppM; lithium varied from 5 to 0.1 ppM; bismuth was always lower than 0.5 ppM; selenium was detectable at the levels of 10 and 13 ppM. Fertilizers made from rock phosphates contained trace element amounts generally higher than those derived from rock carbonates, synthetic nitrogen fertilizers and potassium sulphate.more » Additions of trace elements from fertilizers applied at common rates to cultivated soils are tabulated and discussed on the basis of the natural soil reserves and toxicity levels for plants. Whereas applications of bismuth resulted always very low to influence the usual soil content and plant uptakes and selenium was only rarely present in fertilizers, lithium and moreover arsenic additions by fertilizers could influence the trace element status in soil, overcoming occasionally the toxicity levels for more sensitive crops.« less

  11. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor (abstract)

    NASA Astrophysics Data System (ADS)

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-01

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainland (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.

  12. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-19

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainlandmore » (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.« less

  13. Modeling Trace Element Concentrations in the San Francisco Bay Estuary from Remote Measurement of Suspended Solids

    NASA Astrophysics Data System (ADS)

    Press, J.; Broughton, J.; Kudela, R. M.

    2014-12-01

    Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p < 0.001) was chosen as the proxy for SSC values. The numerical models for WCT and the distribution ratio D were applied in MATLAB with terms to account for regional and seasonal effects, and results were used to calculate WCD. The modeled results were assessed against in situ data from the San Francisco Estuary Regional Monitoring Program. Quantile regression was used to evaluate model sensitivity to the distribution of regions, and outliers displaying regional aberrations were removed before robust regression was applied. Statistically significant and highly correlated results for WCT were found for 10 elements, with goodness of fit greater than or equal to that of the original models of seven elements. WCD was successfully modeled for six elements, with goodness of fit for each exceeding that of the original models. Concentrations of Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.

  14. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-03-01

    The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  15. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  16. Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia.

    PubMed

    Al-Wabel, Mohammad I; Sallam, Abd El-Azeem S; Usman, Adel R A; Ahmad, Mahtab; El-Naggar, Ahmed Hamdy; El-Saeid, Mohammed Hamza; Al-Faraj, Abdulelah; El-Enazi, Khaled; Al-Romian, Fahad A

    2017-06-01

    The present study was conducted in one of the most densely cultivated area of Al-Qassim region in Kingdom of Saudi Arabia to (i) monitor trace metal (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contents in surface and subsurface soils, (ii) assess the pollution and potential ecological risk levels of trace metals, and (iii) identify trace metal sources using enrichment factor (EF), correlation matrix, and principal component analysis (PCA). The pollution levels of the analyzed trace metals calculated by the geoaccumulation index (I geo ) and contamination factor (C f ) suggested that the soils were highly contaminated with Cd and moderately contaminated with Pb. Based on the average values of EF, soil samples were found to present extremely high enrichment for Cd, significant enrichment for Pb, moderate enrichment for Zn, and deficient to minimal enrichment for other trace metals. Among the analyzed trace metals, a very high ecological risk was observed only in the case of Cd at some sampling sites. Meanwhile, other investigated trace metals had a low ecological risk. The results of PCA combined with correlation matrix suggested that Fe, Mn, Zn, Cu, Cr Ni, Cu, and Co represent natural abundance in soil, but Cd, Pb, and Cu are of anthropogenic inputs, mainly due to agrochemical and fertilizer applications. It could be generally concluded that the obtained results can be useful for assessing and conducting a future program for trace metal monitoring in agricultural areas of Saudi Arabia.

  17. Geochemical assessments and classification of coal mine spoils for better understanding of potential salinity issues at closure.

    PubMed

    Park, Jin Hee; Li, Xiaofang; Edraki, Mansour; Baumgartl, Thomas; Kirsch, Bernie

    2013-06-01

    Coal mining wastes in the form of spoils, rejects and tailings deposited on a mine lease can cause various environmental issues including contamination by toxic metals, acid mine drainage and salinity. Dissolution of salt from saline mine spoil, in particular, during rainfall events may result in local or regional dispersion of salts through leaching or in the accumulation of dissolved salts in soil pore water and inhibition of plant growth. The salinity in coal mine environments is from the geogenic salt accumulations and weathering of spoils upon surface exposure. The salts are mainly sulfates and chlorides of calcium, magnesium and sodium. The objective of the research is to investigate and assess the source and mobility of salts and trace elements in various spoil types, thereby predicting the leaching behavior of the salts and trace elements from spoils which have similar geochemical properties. X-ray diffraction analysis, total digestion, sequential extraction and column experiments were conducted to achieve the objectives. Sodium and chloride concentrations best represented salinity of the spoils, which might originate from halite. Electrical conductivity, sodium and chloride concentrations in the leachate decreased sharply with increasing leaching cycles. Leaching of trace elements was not significant in the studied area. Geochemical classification of spoil/waste defined for rehabilitation purposes was useful to predict potential salinity, which corresponded with the classification from cluster analysis based on leaching data of major elements. Certain spoil groups showed high potential salinity by releasing high sodium and chloride concentrations. Therefore, the leaching characteristics of sites having saline susceptible spoils require monitoring, and suitable remediation technologies have to be applied.

  18. 40 CFR 227.6 - Constituents prohibited as other than trace contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...

  19. 40 CFR 227.6 - Constituents prohibited as other than trace contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...

  20. 40 CFR 227.6 - Constituents prohibited as other than trace contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...

  1. Toxicity of 35 trace elements in coal to freshwater biota: a data base with automated retrieval capabilities. [313 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, R. M.; Hildebrand, S. G.; Strand, R. H.

    1977-06-01

    Data are tabulated on the toxicity to freshwater biota of 35 trace elements with the potential for release to the environment from coal conversion effluents. The entire data base is presented on a microfiche appended to the document, in the interest of portability and accessibility. The data were gathered from a variety of research papers, compendia, and reviews. Details of water chemistry and test conditions are presented when available from the documents consulted. The data base may be used by referring directly to the tabulated data as they appear on the microfiche, or, with appropriate computer facilities, by manipulation (sorting,more » subsetting, or merging) of the data to meet the particular needs of the investigator. The data may be used as they appear in the data base, or the data base may be used to index the cited original papers.« less

  2. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    PubMed

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Health risk evaluation associated to Planktothrix rubescens: An integrated approach to design tailored monitoring programs for human exposure to cyanotoxins.

    PubMed

    Manganelli, Maura; Scardala, Simona; Stefanelli, Mara; Vichi, Susanna; Mattei, Daniela; Bogialli, Sara; Ceccarelli, Piegiorgio; Corradetti, Ernesto; Petrucci, Ines; Gemma, Simonetta; Testai, Emanuela; Funari, Enzo

    2010-03-01

    Increasing concern for human health related to cyanotoxin exposure imposes the identification of pattern and level of exposure; however, current monitoring programs, based on cyanobacteria cell counts, could be inadequate. An integrated approach has been applied to a small lake in Italy, affected by Planktothrix rubescens blooms, to provide a scientific basis for appropriate monitoring program design. The cyanobacterium dynamic, the lake physicochemical and trophic status, expressed as nutrients concentration and recycling rates due to bacterial activity, the identification/quantification of toxic genotype and cyanotoxin concentration have been studied. Our results indicate that low levels of nutrients are not a marker for low risk of P. rubescens proliferation and confirm that cyanobacterial density solely is not a reliable parameter to assess human exposure. The ratio between toxic/non-toxic cells, and toxin concentrations, which can be better explained by toxic population dynamic, are much more diagnostic, although varying with time and environmental conditions. The toxic fraction within P. rubescens population is generally high (30-100%) and increases with water depth. The ratio toxic/non-toxic cells is lowest during the bloom, suggesting a competitive advantage for non-toxic cells. Therefore, when P. rubescens is the dominant species, it is important to analyze samples below the thermocline, and quantitatively estimate toxic genotype abundance. In addition, the identification of cyanotoxin content and congeners profile, with different toxic potential, are crucial for risk assessment. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers.

    PubMed

    Dranguet, Perrine; Flück, Rebecca; Regier, Nicole; Cosio, Claudia; Le Faucheur, Séverine; Slaveykova, Vera I

    2014-11-01

    The present article reviews current knowledge and recent progress on the bioavailability and toxicity of mercury to aquatic primary producers. Mercury is a ubiquitous toxic trace element of global concern. At the base of the food web, primary producers are central for mercury incorporation into the food web. Here, the emphasis is on key, but still poorly understood, processes governing the interactions between mercury species and phytoplankton, and macrophytes, two representatives of primary producers. Mass transfer to biota surface, adsorption to cell wall, internalization and release from cells, as well as underlying toxicity mechanisms of both inorganic mercury and methylmercury are discussed critically. In addition, the intracellular distribution and transformation processes, their importance for mercury toxicity, species-sensitivity differences and trophic transfer are presented. The mini-review is illustrated with examples of our own research.

  5. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution

    PubMed Central

    Al-Ghanim, K.A.; Mahboob, Shahid; Seemab, Sadia; Sultana, S.; Sultana, T.; Al-Misned, Fahad; Ahmed, Z.

    2015-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003–0.708; cobalt 0.002–0.768 and zinc 47.4–1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541

  6. Investigation of the impact of trace elements on anaerobic volatile fatty acid degradation using a fractional factorial experimental design.

    PubMed

    Jiang, Ying; Zhang, Yue; Banks, Charles; Heaven, Sonia; Longhurst, Philip

    2017-11-15

    The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 2 6-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution.

    PubMed

    Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z

    2016-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003-0.708; cobalt 0.002-0.768 and zinc 47.4-1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.

  8. Monitoring and Management of Toxicities of Novel B Cell Signaling Agents.

    PubMed

    Rhodes, Joanna; Mato, Anthony; Sharman, Jeff P

    2018-04-11

    B cell signaling agents, including ibrutinib, idelalisib, and the BCL-2 inhibitor venetoclax have become an integral part of therapy for patients with non-Hodgkin's lymphomas. The toxicity profiles of these medications is distinct from chemoimmunotherapy. Here, we will review the mechanism of action of these drugs, their efficacy, and toxicity management. Ibrutinib use is associated with increased risk of atrial fibrillation and bleeding which can be managed using dose interruptions and modifications. Patients on idelalisib require close clinical and frequent laboratory monitoring, particularly of liver function tests to ensure there are no serious adverse events. Monitoring for infections is important in patients on both idelalisib and ibrutinib. Venetoclax requires close clinical and laboratory monitoring to prevent significant tumor lysis. Targeted B cell receptor therapies each have unique side effect profiles which require careful clinical monitoring. As we continue to use these therapies, optimal management strategies will continue to be elucidated.

  9. Atmosphere Resource Recovery and Environmental Monitoring Trace Contaminant Control Through FY 2012

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Pruitt, M. W.; Wheeler, R. M.; Monje, O.

    2013-01-01

    Trace contaminant control has been a concern of spacecraft designers and operators from early in the progression of manned spaceflight. Significant technological advancement has occurred since the first designs were implemented in the 1960s, culminating in the trace contaminant control system currently in use aboard the International Space Station as part of the atmosphere revitalization system.

  10. Defining appropriate methods for studying toxicities of trace metals in nutrient solutions.

    PubMed

    Li, Zhigen; Wang, Peng; Menzies, Neal W; Kopittke, Peter M

    2018-01-01

    The use of inappropriate experimental conditions for examining trace metal phytotoxicity results in data of questionable value. The present study aimed to identify suitable parameters for study of phytotoxic metals in nutrient solutions. First, the literature was reviewed to determine the concentration of six metals (Cd, Cu, Hg, Ni, Pb, and Zn) from solution of contaminated soils. Next, the effects of pH, P, Cl, NO 3 , and four Fe-chelators were investigated by using thermodynamic modelling and by examining changes in root elongation rate of soybean (Glycine max cv. Bunya). The literature review identified that the solution concentrations of metals in soils were low, ranging from (µM) 0.069-11Cd, 0.19-15.8 Cu, 0.000027-0.000079 Hg, 1.0-8.7 Ni, 0.004-0.55 Pb, and 0.4-36.3 Zn. For studies in nutrient solution, pH should generally be low given its effects on solubility and speciation, as should the P concentration due to the formation of insoluble phosphate salts. The concentrations of Cl, NO 3 , and various chelators also influence metal toxicity through alteration of metal speciation. The nutrient solutions used to study metal toxicity should consider environmentally-relevant conditions especially for metal concentrations, with concentrations of other components added at levels that do not substantially alter metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Priority-pollutant trace elements in streambed sediments of the Cook Inlet basin, Alaska, 1998-2000

    USGS Publications Warehouse

    Frenzel, Steven A.

    2002-01-01

    Trace element concentrations in 48 streambed sediment samples collected at 47 sites in the Cook Inlet Basin, Alaska, were compared to concentrations from studies in the conterminous United States using identical methods and to Probable Effect Concentrations. Concentrations of arsenic, chromium, mercury, and nickel in the 0.063-mm size fraction of streambed sediments from the Cook Inlet Basin were elevated relative to reference sites in the conterminous United States. Concentrations of cadmium, lead, and zinc were highest at the most urbanized site in Anchorage and at two sites downstream from an ore body in Lake Clark National Park and Preserve. At least 35 percent of the 48 samples collected in the Cook Inlet Basin exceeded the Probable Effect Concentration for arsenic, chromium, or nickel. More than 50 percent of the samples were considered to have low potential toxicity for cadmium, lead, mercury, nickel, selenium, and zinc. A Probable Effect Concentration quotient that reflects the combined toxicity of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc was exceeded in 44 percent of the samples from the Cook Inlet Basin. The potential toxicity was high in the Denali and Lake Clark National Parks and Preserves where organic carbon concentrations in streambed sediments were low. However, potential toxicity results should be considered in context with the very small amounts of fine-grained sediment present in the streambed sediments of the Cook Inlet Basin.

  12. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  13. Toxic airborne S, PAH, and trace element legacy of the superhigh-organic-sulphur Raša coal combustion: Cytotoxicity and genotoxicity assessment of soil and ash.

    PubMed

    Medunić, Gordana; Ahel, Marijan; Mihalić, Iva Božičević; Srček, Višnja Gaurina; Kopjar, Nevenka; Fiket, Željka; Bituh, Tomislav; Mikac, Iva

    2016-10-01

    This paper presents the levels of sulphur, polycyclic aromatic hydrocarbons (PAHs), and potentially toxic trace elements in soils surrounding the Plomin coal-fired power plant (Croatia). It used domestic superhigh-organic-sulphur Raša coal from 1970 until 2000. Raša coal was characterised by exceptionally high values of S, up to 14%, making the downwind southwest (SW) area surrounding the power plant a significant hotspot. The analytical results show that the SW soil locations are severely polluted with S (up to 4%), and PAHs (up to 13,535ng/g), while moderately with Se (up to 6.8mg/kg), and Cd (up to 4.7mg/kg). The composition and distribution pattern of PAHs in the polluted soils indicate that their main source could be airborne unburnt coal particles. The atmospheric dispersion processes of SO2 and ash particles have influenced the composition and distribution patterns of sulphur and potentially toxic trace elements in studied soils, respectively. A possible adverse impact of analysed soil on the local karstic environment was evaluated by cytotoxic and genotoxic methods. The cytotoxicity effects of soil and ash water extracts on the channel catfish ovary (CCO) cell line were found to be statistically significant in the case of the most polluted soil and ash samples. However, the primary DNA-damaging potential of the most polluted soil samples on the CCO cells was found to be within acceptable boundaries. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    PubMed Central

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  15. Conference summary & recent advances: The 8th Conference on Metal Toxicity and Carcinogenesis

    PubMed Central

    Zhou, Xixi; Burchiel, Scott W.; Hudson, Laurie G.; Liu, Ke Jian

    2015-01-01

    Diseases caused by occupational and environmental exposure to metals are a public health concern. The underlying molecular mechanisms of metal toxicity and carcinogenicity remain largely unknown. Over 130 scientists attended the 8th Conference on Metal Toxicity and Carcinogenesis, presenting their various research concerns and recent findings to stimulate interactions and collaborations among scientists in the field. Several major areas were emphasized, including human & population studies, molecular & cellular mechanisms, biological targets, epigenetic effects, metabolism, and metal mixtures. Here we summarize presentations at the conference sessions and highlight the attendees’ latest work published in this special issue of Biological Trace Element Research. PMID:25975949

  16. A review on the elemental contents of Pakistani medicinal plants: Implications for folk medicines.

    PubMed

    Aziz, Muhammad Abdul; Adnan, Muhammad; Begum, Shaheen; Azizullah, Azizullah; Nazir, Ruqia; Iram, Shazia

    2016-07-21

    Substantially, plants produce chemicals such as primary and secondary metabolites, which have significant applications in modern therapy. Indigenous people mostly rely on traditional medicines derived from medicinal plants. These plants have the capacity to absorb a variety of toxic elements. The ingestion of such plants for medicinal purpose can have imperative side effects. Hence, with regard to the toxicological consideration of medicinal plants, an effort has been made to review the elemental contents of ethno medicinally important plants of Pakistan and to highlight the existing gaps in knowledge of the safety and efficacy of traditional herbal medications. Literature related to the elemental contents of ethno medicinal plants was acquired by utilizing electronic databases. We reviewed only macro-elemental and trace elemental contents of 69 medicinal plant taxa, which are traditionally used in Pakistan for the treatment of sundry ailments, including anemia, jaundice, cancer, piles, diarrhea, dysentery, headache, diabetes, asthma, blood purification, sedative and ulcer. A majority of plants showed elemental contents above the permissible levels as recommended by the World health organization (WHO). As an example, the concentrations of Cadmium (Cd) and Lead (Pb) were reportedly found higher than the WHO permissible levels in 43 and 42 medicinal plants, respectively. More specifically, the concentrations of Pb (54ppm: Silybum marianum) and Cd (5.25ppm: Artemisia herba-alba) were found highest in the Asteraceae family. The reported medicinal plants contain a higher amount of trace and toxic elements. Intake of these plants as traditional medicines may trigger the accumulation of trace and toxic elements in human bodies, which can cause different types of diseases. Thus, a clear understanding about the nature of toxic substances and factors affecting their concentrations in traditional medicines are essential prerequisites for efficacious herbal therapeutics with lesser or no side effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. GENE EXPRESSION PROFILING OF ACCESSIBLE SURROGATE TISSUES TO MONITOR MOLECULAR CHANGES IN INACCESSIBLE TARGET TISSUES FOLLOWING TOXICANT EXPOSURE

    EPA Science Inventory

    Gene Expression Profiling Of Accessible Surrogate Tissues To Monitor Molecular Changes In Inaccessible Target Tissues Following Toxicant Exposure
    John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Judith E. Schmid and David J. Dix
    Reproductive Toxicology ...

  18. Design of a New Near-Infrared Ratiometric Fluorescent Nanoprobe for Real-Time Imaging of Superoxide Anions and Hydroxyl Radicals in Live Cells and in Situ Tracing of the Inflammation Process in Vivo.

    PubMed

    Liu, Rongjun; Zhang, Liangliang; Chen, Yunyun; Huang, Zirong; Huang, Yong; Zhao, Shulin

    2018-04-03

    The superoxide anion (O 2 •- ) and hydroxyl radical ( • OH) are important reactive oxygen species (ROS) used as biomarkers in physiological and pathological processes. ROS generation is closely related to the development of a variety of inflammatory diseases. However, the changes of ROS are difficult to ascertain with in situ tracing of the inflammation process by real-time monitoring, owing to the short half-lives of ROS and high tissue autofluorescence in vivo. Here we developed a new near-infrared (NIR) ratiometric fluorescence imaging approach by using a Förster resonance energy transfer (FRET)-based ratiometric fluorescent nanoprobe for real-time monitoring of O 2 •- and • OH generation and also by using in situ tracing of the inflammation process in vivo. The proposed nanoprobe was composed of PEG functionalized GQDs as the energy donor connecting to hydroIR783, serving as both the O 2 •- / • OH recognizing ligand and the energy acceptor. The nanoprobe not only exhibited a fast response to O 2 •- and • OH but also presented good biocomapatibility as well as a high photostability and signal-to-noise ratio. We have demonstrated that the proposed NIR ratiometric fluorescent nanoprobe can monitor the changes of O 2 •- and • OH in living RAW 264.7 cells via a drug mediating inflammation model and further realized visual monitoring of the change of O 2 •- and • OH in mice for in situ tracing of the inflammation process. Our design may provide a new paradigm for long-term and real-time imaging applications for in vivo tracing of the pathological process related to the inflammatory diseases.

  19. Patterns and trends in sediment toxicity in the San Francisco Estuary

    USGS Publications Warehouse

    Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.

    2007-01-01

    Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.

  20. Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana.

    PubMed

    Arhin, Emmanuel; Boansi, Apea Ohene; Zango, M S

    2016-02-01

    Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.

  1. Sampling and analysis of natural gas trace constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attari, A.; Chao, S.

    1993-09-01

    Major and minor components of natural gas are routinely analyzed by gas chromatography (GC), using a thermal conductivity (TC). The best results obtained by these methods can report no better than 0.01 mole percent of each measured component. Even the extended method of analysis by flame ionization detector (FID) can only improve on the detection limit of hydrocarbons. The gas industry needs better information on all trace constituents of natural gas, whether native or inadvertently added during gas processing that may adversely influence the operation of equipment or the safety of the consumer. The presence of arsenic and mercury inmore » some gas deposits have now been documented in international literature as causing not only human toxicity but also damaging to the field equipment. Yet, no standard methods of sampling and analysis exist to provide this much needed information. In this paper the authors report the results of a three-year program to develop an extensive array of sampling and analysis methods for speciation and measurement of trace constituents of natural gas. A cryogenic sampler operating at near 200 K ({minus}99 F) and at pipeline pressures up to 12.4 {times} 10{sup 6}Pa (1800 psig) has been developed to preconcentrate and recover all trace constituents with boiling points above butanes. Specific analytical methods have been developed for speciating and measurement of many trace components (corresponding to US EPA air toxics) by GC-AED and GC-MS, and for determining various target compounds by other techniques. Moisture, oxygen and sulfur contents are measured on site using dedicated field instruments. Arsenic, mercury and radon are sampled by specific solid sorbents for subsequent laboratory analysis.« less

  2. Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Chen, Ruihui; Li, Jiao; Wang, Jinsheng

    2016-08-01

    Due to their toxicity and bioaccumulation, trace metals in soils can result in a wide range of toxic effects on animals, plants, microbes, and even humans. Recognizing the contamination characteristics of soil metals and especially apportioning their potential sources are the necessary preconditions for pollution prevention and control. Over the past decades, several receptor models have been developed for source apportionment. Among them, positive matrix factorization (PMF) has gained popularity and was recommended by the US Environmental Protection Agency as a general modeling tool. In this study, an extended chemometrics model, multivariate curve resolution-alternating least squares based on maximum likelihood principal component analysis (MCR-ALS/MLPCA), was proposed for source apportionment of soil metals and applied to identify the potential sources of trace metals in soils around Miyun Reservoir. Similar to PMF, the MCR-ALS/MLPCA model can incorporate measurement error information and non-negativity constraints in its calculation procedures. Model validation with synthetic dataset suggested that the MCR-ALS/MLPCA could extract acceptable recovered source profiles even considering relatively larger error levels. When applying to identify the sources of trace metals in soils around Miyun Reservoir, the MCR-ALS/MLPCA model obtained the highly similar profiles with PMF. On the other hand, the assessment results of contamination status showed that the soils around reservoir were polluted by trace metals in slightly moderate degree but potentially posed acceptable risks to the public. Mining activities, fertilizers and agrochemicals, and atmospheric deposition were identified as the potential anthropogenic sources with contributions of 24.8, 14.6, and 13.3 %, respectively. In order to protect the drinking water source of Beijing, special attention should be paid to the metal inputs to soils from mining and agricultural activities.

  3. A multiple reader scoring system for Nasal Potential Difference parameters.

    PubMed

    Solomon, George M; Liu, Bo; Sermet-Gaudelus, Isabelle; Fajac, Isabelle; Wilschanski, Michael; Vermeulen, Francois; Rowe, Steven M

    2017-09-01

    Nasal Potential Difference (NPD) is a biomarker of CFTR activity used to diagnose CF and monitor experimental therapies. Limited studies have been performed to assess agreement between expert readers of NPD interpretation using a scoring algorithm. We developed a standardized scoring algorithm for "interpretability" and "confidence" for PD (potential difference) measures, and sought to determine the degree of agreement on NPD parameters between trained readers. There was excellent agreement for interpretability between NPD readers for CF and fair agreement for normal tracings but slight agreement of interpretability in indeterminate tracings. Amongst interpretable tracings, excellent correlation of mean scores for Ringer's Baseline PD, Δ amiloride , and Δ Cl-free+Isoproterenol was observed. There was slight agreement regarding confidence of the interpretable PD tracings, resulting in divergence of the Ringers and Δ amiloride , and ΔCl -free+Isoproterenol PDs between "high" and "low" confidence CF tracings. A multi-reader process with adjudication is important for scoring NPDs for diagnosis and in monitoring of CF clinical trials. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  4. Risk assessment of trace metal-polluted coastal sediments on Hainan Island: A full-scale set of 474 geographical locations covering the entire island.

    PubMed

    Li, Feng; Lin, Ze-Feng; Wen, Jia-Sheng; Wei, Yan-Sha; Gan, Hua-Yang; He, Hai-Jun; Lin, Jin-Qin; Xia, Zhen; Chen, Bi-Shuang; Guo, Wen-Jie; Tan, Cha-Sheng; Cai, Hua-Yang

    2017-12-15

    Hainan Island is the second largest island and one of the most famous tourist destinations in China, but sediment contamination by trace metals in coastal areas is a major issue. However, full-scale risk assessments of trace metal-polluted coastal sediments are lacking. In this study, coastal surface sediments from 474 geographical locations covering almost the entire island were collected to identify risk-related variables. Controlling factors and possible sources of trace metals were identified, and the toxicity effects were carefully evaluated. Our results suggest that trace-metal pollution in coastal sediments, which was mainly caused by Pb, Zn and Cu emissions, has primarily resulted from industrial sewage and shipping activities and has threatened the offshore ecosystem of Hainan Island and warrants extensive consideration. This is the first study that has systematically investigated trace metal-polluted coastal sediments throughout the entirety of Hainan Island and provides solid evidence for sustainable marine management in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Determination of free amino acids and 18 elements in freeze-dried strawberry and blueberry fruit using an Amino Acid Analyzer and ICP-MS with micro-wave digestion.

    PubMed

    Zhang, Hua; Wang, Zhen-Yu; Yang, Xin; Zhao, Hai-Tian; Zhang, Ying-Chun; Dong, Ai-Jun; Jing, Jing; Wang, Jing

    2014-03-15

    The objective of this study was to investigate the level of 18 trace elements of two freeze-dried samples from the Blueberry (Vaccinium corymbosum) and the Strawberry (Fragaria × Ananassa). The total free amino acid composition in the blueberry and strawberry was determined by an Amino Acid Analyzer. Eleven free amino acids were found in both berries. The trace elements in each dried fruit sample were determined by ICP-MS with microwave digestion. The linearity range of the standard curves was 0-1250.0 μg L(-1) (Mg, P, K, Ca),while in all cases, except for B, Na, Al, Cr, Mn, Fe, Ni, Cu, Zn, Se, Cd, Pb, Ge and As, which was 125.0 μg mL(-1), all related coefficients were above 0.9999; recovery was in the range of 79.0-106.8%. Minor concentrations of nutritional elements were found in each freeze-dried berry. In sum, the toxic trace element analysis found the content of toxic trace elements in each freeze-dried berry sample was safe for human consumption and that the overall quality of the blueberry surpassed that of the strawberry. The results certify that the two freeze-dried berries have potential for human consumption in value-added products and have a certain theoretical and practical significance. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    EPA Science Inventory

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  7. DETECTION OF TOXICANTS ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK

    EPA Science Inventory

    A critical step prior to reoccupation of any facility following a chemical attack will be the monitoring of toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after decontamination...

  8. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    NASA Astrophysics Data System (ADS)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  9. Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects.

    PubMed

    Ou, Yanqiu; Bloom, Michael S; Nie, Zhiqiang; Han, Fengzhen; Mai, Jinzhuang; Chen, Jimei; Lin, Shao; Liu, Xiaoqing; Zhuang, Jian

    2017-09-01

    Prenatal exposure to toxic trace elements, including heavy metals, is an important public health concern. Few studies have assessed if individual and multiple trace elements simultaneously affect cardiac development. The current study evaluated the association between maternal blood lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and selenium (Se) levels and congenital heart defects (CHDs) in offspring. This hospital-based case-control study included 112 case and 107 control infants. Maternal peripheral blood draw was made during gestational weeks 17-40 and used to determine trace element levels by inductively coupled plasma mass spectrometry. Multivariable logistic regression was used to assess associations and interactions between individual and multiple trace elements and fetal CHDs, adjusted for maternal age, parity, education, newborn gender, migrant, folic acid or multivitamin intake, cigarette smoking, maternal prepregnancy body mass index, and time of sample collection. Control participants had medians of 2.61μg/dL Pb, 1.76μg/L Cd, 3.57μg/L Cr, 896.56μg/L Cu, 4.17μg/L Hg, and 186.47μg/L Se in blood. In a model including all measured trace elements and adjusted for confounders, high levels of maternal Pb (OR=12.09, 95% CI: 2.81, 51.97) and Se (OR=0.25, 95% CI: 0.08, 0.77) were harmful and protective predictors of CHDs, respectively, with positive and negative interactions suggested for Cd with Pb and Se with Pb, respectively. Similar associations were detected for subgroups of CHDs, including conotruncal defects, septal defects, and right ventricle outflow tract obstruction. Our results suggest that even under the current standard for protecting human health (10μg/dL), Pb exposure poses an important health threat. These data can be used for developing interventions and identifying high-risk pregnancies. Copyright © 2017. Published by Elsevier Ltd.

  10. Mobilisation of toxic trace elements under various beach nourishments.

    PubMed

    Pit, Iris R; Dekker, Stefan C; Kanters, Tobias J; Wassen, Martin J; Griffioen, Jasper

    2017-12-01

    To enhance protection and maintain wide beaches for recreation, beaches are replenished with sand: so-called beach nourishments. We compared four sites: two traditional beach nourishments, a mega beach nourishment and a reference without beach nourishment. Two sites contain calcareous-rich sand, whereas the other two sites have calcareous-poor sand. We aimed to understand hydrogeochemical processes to indicate factors critical for the mobility of trace elements at nourishments. We therefore analysed the chemical characteristics of sediment and pore water to ascertain the main drivers that mobilise toxic trace elements. With Dutch Quality Standards for soil and groundwater, the characteristics of sediment and pore water were compared to Target Values (the values at which there is a sustainable soil quality) and Intervention Values (the threshold above which the soil's functions are at risk). The pore water characteristics revealed that Target Values were regularly exceeded, especially for the nourishment sites and mainly for Mo (78%), Ni (24%), Cr (55%), and As (21%); Intervention Values for shallow groundwater were occasionally exceeded for As (2%), Cr (2%) and Zn (2%). The sediment characteristics did not exceed the Target Values and showed that trace elements were mainly present in the fine fraction of <150 μm. The oxidation of sulphide minerals such as pyrite resulted into the elevated concentration for all nourishment sites, especially when an unsaturated zone was present and influence of rainwater was apparent. To prevent trace metal mobility at a mega beach nourishment it is important to retain seawater influences and limit oxidation processes. In this respect, a shoreface nourishment is recommended rather than a mega beach nourishment with a thick unsaturated zone. Consequently, we conclude that whether a site is carbonate-rich or carbonate-poor is unimportant, as the influence of seawater will prevent decalcification, creating a low risk of mobilisation of trace elements. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Sediment quality assessment studies of Tampa bay, Florida

    USGS Publications Warehouse

    Carr, Scott R.; Chapman, Duane C.; Long, Edward R.; Windom, Herbert L.; Thursby, Glen; Sloane, Gail M.; Wolfe, Douglas A.

    1996-01-01

    A survey of the toxicity of sediments throughout the Tampa Bay estuary was performed as part of the National Oceanic and Atmospheric Administration's National Status and Trends Program. The objectives of the survey were to determine the spatial extent and severity of toxicity and to identify relationships between chemical contamination and toxicity. Three independent toxicity tests were performed: a 10-d amphipod survival test of the whole sediments with Ampelisca abdita, a sea urchin fertilization test of sediment pore water with Arbacia punctulata, and a 5-min Microtox® bioluminescence test with solvent extracts of the sediments. Seventy-three percent of the 165 undiluted sediment pore-water samples were significantly toxic relative to reference samples with the sea urchin fertilization test. In contrast, only 2% of the 165 samples were significantly toxic in the amphipod tests. The causes of toxicity were not determined. However, concentrations of numerous trace metals, pesticides, polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons (PAHs), and ammonia were highly correlated with pore-water toxicity. Concentrations of many substances, especially total dichlorodiphenyltrichloroethanes (DDTs), endrin, total PCBs, certain PAHs, lead, and zinc, occurred at concentrations in the toxic samples that equaled or exceeded concentrations that have been previously associated with sediment toxicity.

  12. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  13. An expert system/ion trap mass spectrometry approach for life support systems monitoring

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael

    1992-01-01

    Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.

  14. Design and Testing of Trace Contaminant Injection and Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Broerman, Craig D.; Sweterlitsch, Jeff

    2009-01-01

    In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.

  15. Jeagle: a JAVA Runtime Verification Tool

    NASA Technical Reports Server (NTRS)

    DAmorim, Marcelo; Havelund, Klaus

    2005-01-01

    We introduce the temporal logic Jeagle and its supporting tool for runtime verification of Java programs. A monitor for an Jeagle formula checks if a finite trace of program events satisfies the formula. Jeagle is a programming oriented extension of the rule-based powerful Eagle logic that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace. Jeagle extends Eagle with constructs for capturing parameterized program events such as method calls and method returns. Parameters can be the objects that methods are called upon, arguments to methods, and return values. Jeagle allows one to refer to these in formulas. The tool performs automated program instrumentation using AspectJ. We show the transformational semantics of Jeagle.

  16. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-08-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  17. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    PubMed Central

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring. PMID:23982222

  18. Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology.

    PubMed

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  19. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    PubMed

    Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md

    2011-01-01

    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  20. Electrochemical determination of inorganic mercury and arsenic--A review.

    PubMed

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Canadian Environmental Issues in Perspective.

    ERIC Educational Resources Information Center

    Jaakson, Reiner, Ed.

    1984-01-01

    Traces Canada's conservation practices and environmental concerns from settlement to the present. The relationship between Canada and the United States on several issues is discussed. Acid rain, water resources, toxic substances, natural resource management, energy consciousness, environmental impact statements, and increased public awareness are…

  2. Fabrication of Polymeric Micelles with Aggregation-Induced Emission and Forster Resonance Energy Transfer for Anticancer Drug Delivery.

    PubMed

    Hao, Na; Sun, Changzhen; Wu, Zhengfei; Xu, Long; Gao, Wenxia; Cao, Jun; Li, Li; He, Bin

    2017-07-19

    With the aim of obtaining effective cancer therapy with simultaneous cellular imaging, dynamic drug-release monitoring, and chemotherapeutic treatment, a polymeric micelle with aggregation-induced emission (AIE) imaging and a Forster resonance energy transfer (FRET) effect was fabricated as the drug carrier. An amphiphilic conjugate of 1H-pyrrole-1-propanoicacid (MAL)-poly(ethylene glycol) (PEG)-Tripp-bearing AIE molecules were synthesized and self-assembled into micelles to load the anticancer drug doxorubicin (DOX). Spherical DOX-loaded micelles with the mean size of 106 nm were obtained with good physiological stability (CMC, 12.5 μg/mL), high drug-loading capacity (10.4%), and encapsulation efficiency (86%). The cellular uptake behavior of DOX-loaded MAL-PEG-Tripp micelles was visible for high-quality intracellular imaging due to the AIE property. The delivery of DOX from the drug-loaded micelles was dynamic monitored by the FRET effect between the DOX and MAL-PEG-Tripp. Both in vitro (IC50, 2.36 μg/mL) and in vivo anticancer activity tests revealed that the DOX-loaded MAL-PEG-Tripp micelles exhibited promising therapeutic efficacy to cancer with low systematic toxicity. In summary, this micelle provided an effective way to fabricate novel nanoplatform for intracellular imaging, drug-delivery tracing, and chemotherapy.

  3. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. Published by Elsevier B.V.

  4. Monitoring trace elements generated by automobiles: air pollutants with possible health impacts.

    PubMed

    Anwar, Khaleeq; Ejaz, Sohail; Ashraf, Muhammad; Ahmad, Nisar; Javeed, Aqeel

    2013-07-01

    Major transformations in the environmental composition are principally attributable to the combustion of fuels by automobiles. Motorized gasoline-powered two-stroke auto-rickshaws (TSA) and compressed natural gas (CNG)-powered four-stroke auto-rickshaws (FSA) are potential source of air pollution in south Asia and produce toxic amount of particulate matter (PM) to the environment. In this study, we attempted to characterize elemental pollutants from the PM of TSA and FSA using proton-induced X-ray emission (PIXE) analysis. The observations of the existing investigation recognized significant increase in Al (P < 0.05), P (P < 0.01), and Zn (P < 0.01) from the PM samples of FSA. In addition, the concentrations of Cu, Fe, K, Mg, Na and S were also observed exceeding the recommended National Institute for Environmental Studies limits. On the contrary, increased concentration of Sr and V were observed in the PM samples from TSA. It is generally believed that FSA generates smaller amount of PM but data obtained from FSA are clearly describing that emissions from FSA comprised potentially more toxic substances than TSA. The current research is specific to metropolitan population and has evidently revealed an inconsistent burden of exposure to air pollutants engendered by FSA in urban communities, which could lead to the disruption of several biological activities and may cause severe damage to entire ecological system.

  5. The toxicity and decreased concentration of aflatoxin B in natural lactic acid fermented maize meal.

    PubMed

    Mokoena, M P; Chelule, P K; Gqaleni, N

    2006-04-01

    Aflatoxin B(1) (AFB(1)) is a mycotoxin which is known to frequently contaminate poorly stored food products destined for human consumption. This study was carried out to investigate the potential activity of lactic acid fermentation in reducing AFB(1) level in fermented maize meal products. Maize meal was spiked with 60 mug g(-1) AFB(1) and fermented, with or without starter culture, for 4 days at 25 degrees C. Unbound AFB(1) in solution and the pH of the media were monitored daily. A significant decrease (P < 0.05) in the level of unbound AFB(1) was observed (75% in the fourth day). Simultaneously, a progressive decrease in the pH of the media from 6.5 to 3.1 was also observed. AFB(1) was below the detection limit in commercial fermented porridge (amahewu) samples. Cytotoxicity tests on AFB(1)-spiked fermented extracts showed that those with a starter culture were comparatively less toxic (30-36%) than those with no added starter culture (24-30%). However, this difference was not significant (P > 0.05). These results indicate that lactic acid fermentation can significantly reduce the concentration of AFB(1) in maize to trace levels. However, the safety of fermented products has not been well studied, as the mechanism of AFB(1) removal is not well understood. Natural fermentation may potentially reduce exposure to natural toxins occurring in food.

  6. Trace elements in raw milk of buffaloes (Bubalus bubalis) from Campania, Italy.

    PubMed

    Esposito, Mauro; Miedico, Oto; Cavallo, Stefania; Pellicanò, Roberta; Rosato, Guido; Baldi, Loredana; Chiaravalle, A Eugenio

    2017-10-15

    The profile of 18 trace elements was traced in 68 milk samples collected from buffalo farms in the territory known as the "Land of Fires" in the Campania region (Italy). This area has been polluted by the illegal dumping in fields of industrial or domestic waste, wich is sometimes then burned spreading toxic contaminants. Milk from buffaloes raised on rural farms might be a good indicator of environmental contamination risk in the human food chain. Trace element analysis in milk was performed using mass spectrometry. One milk sample was found to be non-compliant due to high Pb concentration. In the absence of threshold values for the elements, established through legislation, the results were compared with similar studies from other countries, and in most cases the content determined in this study was in agreement with values reported elsewhere and do not represent a risk to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Monitoring and control of atmosphere in a closed environment

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Perry, J.

    1991-01-01

    Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.

  8. The GMES Sentinel-5 mission for operational atmospheric monitoring: status and developments

    NASA Astrophysics Data System (ADS)

    Sierk, Bernd; Bezy, Jean-Loup; Caron, Jerôme; Meynard, Roland; Veihelmann, Ben; Ingmann, Paul

    2017-11-01

    Sentinel-5 is an atmospheric monitoring mission planned in the frame of the joint EU/ESA initiative Global Monitoring for Environment and Security (GMES). The objective of the mission, planned to be launched in 2020, is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications.

  9. A pilot study: dose adaptation of capecitabine using mobile phone toxicity monitoring - supporting patients in their homes.

    PubMed

    Weaver, Andrew; Love, Sharon B; Larsen, Mark; Shanyinde, Milensu; Waters, Rachel; Grainger, Lisa; Shearwood, Vanessa; Brooks, Claire; Gibson, Oliver; Young, Annie M; Tarassenko, Lionel

    2014-10-01

    Real-time symptom monitoring using a mobile phone is potentially advantageous for patients receiving oral chemotherapy. We therefore conducted a pilot study of patient dose adaptation using mobile phone monitoring of specific symptoms to investigate relative dose intensity of capecitabine, level of toxicity and perceived supportive care. Patients with breast or colorectal cancer receiving capecitabine completed a symptom, temperature and dose diary twice a day using a mobile phone application. This information was encrypted and automatically transmitted in real time to a secure server, with moderate levels of toxicity automatically prompting self-care symptom management messages on the screen of the patient's mobile phone or in severe cases, a call from a specialist nurse to advise on care according to an agreed protocol. Patients (n = 26) completed the mobile phone diary on 92.6 % of occasions. Twelve patients had a maximum toxicity grade of 3 (46.2 %). The average dose intensity for all patients as a percentage of standard dose was 90 %. In eight patients, the dose of capecitabine was reduced, and in eight patients, the dose of capecitabine was increased. Patients and healthcare professionals involved felt reassured by the novel monitoring system, in particular, during out of hours. It is possible to optimise the individual dose of oral chemotherapy safely including dose increase and to manage chemotherapy side effects effectively using real-time mobile phone monitoring of toxicity parameters entered by the patient.

  10. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  11. Applicability of ambient toxicity testing to national or regional water-quality assessment

    USGS Publications Warehouse

    Elder, John F.

    1990-01-01

    Comprehensive assessment of the quality of natural waters requires a multifaceted approach. Descriptions of existing conditions may be achieved by various kinds of chemical and hydrologic analyses, whereas information about the effects of such conditions on living organisms depends on biological monitoring. Toxicity testing is one type of biological monitoring that can be used to identify possible effects of toxic contaminants. Based on experimentation designed to monitor responses of organisms to environmental stresses, toxicity testing may have diverse purposes in water-quality assessments. These purposes may include identification of areas that warrant further study because of poor water quality or unusual ecological features, verification of other types of monitoring, or assessment of contaminant effects on aquatic communities. Toxicity-test results are most effective when used as a complement to chemical analyses, hydrologic measurements, and other biological monitoring. However, all toxicity-testing procedures have certain limitations that must be considered in developing the methodology and applications of toxicity testing in any large-scale water-quality-assessment program. A wide variety of toxicity-test methods have been developed to fulfill the needs of diverse applications. The methods differ primarily in the selections made relative to four characteristics: (1) test species, (2) endpoint (acute or chronic), (3) test-enclosure type, and (4) test substance (toxicant) that functions as the environmental stress. Toxicity-test approaches vary in their capacity to meet the needs of large-scale assessments of existing water quality. Ambient testing, whereby the test organism is exposed to naturally occurring substances that contain toxicant mixtures in an organic or inorganic matrix, is more likely to meet these needs than are procedures that call for exposure of the test organisms to known concentrations of a single toxicant. However, meaningful interpretation of ambient test results depends on the existence of accompanying chemical analysis of the ambient media. The ambient test substance may be water or sediments. Sediment tests have had limited application, but they are useful because most toxicants tend to accumulate in sediments and many test species either inhabit the sediments or are in frequent contact with them. Biochemical testing methods, which have been developing rapidly in recent years, are likely to be among the most useful procedures for large-scale water-quality assessments. They are relatively rapid and simple, and more. importantly, they focus on biochemical changes that are the initial responses of virtually all organisms to environmental stimuli. Most species are sensitive to relatively few toxicants, and their sensitivities vary as conditions change. Therefore, each test method has particular uses and limitations, and no single test has universal applicability. One of the most informative approaches to toxicity testing is to combine biochemical tests with other test methods in a 'battery of tests' that is diversified enough to characterize different types of toxicants and different trophic levels. However, such an approach can be costly, and if not carefully designed, it may not yield enough additional information to warrant the additional cost. The application of toxicity tests to large-scale water-quality assessments is hampered by a number of difficulties. Toxicity tests often are not sensitive enough to enable detection of most contaminant problems in the natural environment. Furthermore, because sensitivities among different species and test conditions can be highly variable, conclusions about the toxicant problems of an ecosystem are strongly dependent on the test procedure used. In addition, the experimental systems used in toxicity tests cannot replicate the complexity or variability of natural conditions, and positive test results cannot identify the source or nature of

  12. Source water monitoring and biomonitoring systems

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  13. Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Ščančar, Janez

    2012-06-01

    Aluminum (Al) is mostly produced from bauxite ore, which contains up to 70% of Al(2)O(3) (alumina). Before alumina is refined to aluminum metal, it is purified by hot alkaline extraction. As a waste by-product red mud is formed. Due to its high alkalinity and large quantities, it represents a severe disposal problem. In Kidričevo (Slovenia), red mud was washed with water before disposal, and after drying, covered with soil. In Ajka (Hungary), the red mud slurry was collected directly in a containment structure, which burst caused a major accident in October 2010. In the present work the environmental impact of toxic elements in red mud from Kidričevo and Ajka were evaluated by applying a sequential extraction procedure and speciation analysis. The predominant red mud fraction was the insoluble residue; nevertheless, environmental concern was focused on the highly mobile water-soluble fraction of Al and Cr. Al in the water-soluble Ajka mud fraction was present exclusively in form of toxic [Al(OH)(4)](-), while Cr existed in its toxic hexavalent form. Comparative assessment to red mud from Kidričevo (Slovenia) with a lower alkalinity (pH 9) with that from Ajka demonstrated significantly lower Al solubility and the presence of only trace amounts of Cr(VI), confirming that disposal of neutralized mud is environmentally much more acceptable and carries a smaller risk of ecological accidents. Since during the Ajka accident huge amounts of biologically available Al and moderate Cr(VI) concentrations were released into the terrestrial and aquatic environments, monitoring of Al and Cr(VI) set free during remedial actions at the contaminated site is essential. Particular care should be taken to minimize the risk of release of soluble Al species and Cr(VI) into water supplies and surface waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Operational trace gas column observations from GOME-2 on MetOp

    NASA Astrophysics Data System (ADS)

    Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris

    2017-04-01

    This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.

  15. Ultra-Sensitive Elemental Analysis Using Plasmas 7.Application to Criminal Investigation

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiro

    This paper describes the application of trace elemental analysis using ICP-AES and ICP-MS to criminal investigation. The comparison of trace elements, such as Rb, Sr, Zr, and so on, is effective for the forensic discrimination of glass fragments, which can be important physical evidence for connecting a suspect to a crime scene or to a victim. This procedure can be applied also to lead shotgun pellets by the removal of matrix lead as the sulfate precipitate after the dissolution of a pellet sample. The determination of a toxic element in bio-logical samples is required to prove that a victim ingested this element. Arsenous acids produced in Japan, China, Germany and Switzerland show characteristic patterns of trace elements characteristic to each country.

  16. Trace elements in unconventional animals: A 40-year experience.

    PubMed

    Carpenè, Emilio; Andreani, Giulia; Isani, Gloria

    2017-09-01

    The role of trace elements in animal health has attracted increasing interest in recent years. The essentiality and toxicity of these elements have been extensively investigated in humans, laboratory animal models and partially in domestic animals, whereas little is known about trace element metabolism in most living organisms. Forty years ago our research started on Cd metabolism in molluscs, thereafter expanding to Zn, Cu, and Fe metabolism in many unconventional animal species of veterinary interest. This review summarizes the main results obtained over this long period of time: some of the findings are original and have not been published to date. They are discussed in more detail and compared with data obtained in conventional animals, including man. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Toxic marine microalgae and shellfish poisoning in the British isles: history, review of epidemiology, and future implications

    PubMed Central

    2011-01-01

    The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental. PMID:21645342

  18. Invited: Advances Toward Practical Detection of Trace Chemical Hazards with Solid State Microarray Devices

    NASA Astrophysics Data System (ADS)

    Raman, Barani; Meier, Douglas; Shenoy, Rupa; Benkstein, Kurt; Semancik, Steve

    2011-09-01

    We describe progress on an array-based microsensor approach employed for detecting trace levels of toxic industrial chemicals (TICs) in air-based backgrounds with varied levels of humidity, and with occasional introduction of aggressive interferents. Our MEMS microhotplate arrays are populated with multiple chemiresistive sensing materials, and all elements are programmed to go through extensive temperature cycling over repetitive cycles with lengths of approximately 20 s. Under such operation, analytically-rich data streams are produced containing the required information for target recognition.

  19. Stormwater runoff water quality evaluation and management program for hazardous chemical sites: Development issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.F.; Jones-Lee, A.

    1998-12-31

    The deficiencies in the typical stormwater runoff water quality monitoring from hazardous chemical sites and an alternative approach (Evaluation Monitoring) for monitoring that shifts the monitoring program from periodic sampling and analysis of stormwater runoff for a suite of chemical parameters to examining the receiving waters to determine what, if any, water quality use impairments are occurring due to the runoff-associated constituents is presented in this paper. Rather than measuring potentially toxic constituents such as heavy metals in runoff, the monitoring program determines whether there is aquatic life toxicity in the receiving waters associated with the stormwater runoff. If toxicitymore » is found, its cause is determined and the source of the constituents causing the toxicity is identified through forensic analysis. Based on this information, site-specific, technically valid stormwater runoff management programs can be developed that will control real water quality impacts caused by stormwater runoff-associated constituents.« less

  20. The influence of physical activity on hair toxic and essential trace element content in male and female students.

    PubMed

    Zaitseva, Irina P; Skalny, Andrey A; Tinkov, Alexey A; Berezkina, Elena S; Grabeklis, Andrei R; Skalny, Anatoly V

    2015-02-01

    The primary aim of the current study is to estimate the effect of different physical activity levels on hair trace element content in male and female students. A total of 113 students (59 women and 54 men) of P. G. Demidov Yaroslavl State University (Yaroslavl, Russia) took part in the current investigation. According to the level of the physical activity, all students were divided into three groups: high, medium, and low physical activity. Essential and toxic metal content (μg/g) in hair samples was assessed by inductively coupled plasma mass spectrometry using NexION 300D + NWR213 (Perkin-Elmer, USA). The obtained data show that hair iodine, zinc, arsenic, nickel, and tin levels are not related to physical activity in male and female students. At the same time, increased physical activity is associated with decreased hair copper, vanadium, bismuth, and mercury content in comparison to the low physical activity groups. Students with higher physical activity are also characterized by significantly higher hair cobalt, iron, manganese, selenium, cadmium, lithium, and lead concentrations. Finally, statistical analysis has revealed maximal gender differences in hair trace element content in the high physical activity groups, whereas in the low activity groups, the hair metal concentrations were nearly similar in females and males.

  1. Trace metals solubility in rainwater: evaluation of rainwater quality at a watershed area, Istanbul.

    PubMed

    Başak, Bertan; Alagha, Omar

    2010-08-01

    In this study, 79 bulk precipitation samples were collected at two sampling sites near Büyükçekmece Lake, one of the important drinking water sources of Istanbul, for the period of October 2001 to July 2002. The study comprised the determination of trace and toxic metals concentrations in rain water. The concentrations of the metals in this study were found to be higher than those reported by other researchers around the world. The solubility of toxic metals was found in the order of Cd>Cu>V>Zn>Ni>Pb>Cr. Solubility of metals under acidic conditions (pH<5.5) was approximately five times higher than those under neutral conditions with Cd as the most soluble metal (50% soluble). Statistical evaluations including seasonal variations, crustal enrichment factors, and correlation matrix were discussed to identify the possible sources of these pollutants. The study revealed that anthropogenic elements were highly enriched especially for Cd>Cu>Pb which were found to be highly enriched. Significant portion of Cu and Pb could be increased by the effect of local sources like cement industry in the area; however, the rest of the investigated trace metals could be brought to the sampling site by long-range transport to the Büyükçekmece Lake watershed area.

  2. Migration of 18 trace elements from ceramic food contact material: influence of pigment, pH, nature of acid and temperature.

    PubMed

    Demont, M; Boutakhrit, K; Fekete, V; Bolle, F; Van Loco, J

    2012-03-01

    The effect of pH, nature of acid and temperature on trace element migration from ceramic ware treated with 18 commercially available glazes was studied. Besides of the well-studied lead and cadmium, migration of other toxic and non toxic elements such as aluminum, boron, barium, cobalt, chrome, copper, iron, lithium, magnesium, manganese, nickel, antimony, tin, strontium, titanium, vanadium, zinc and zirconium was investigated in order to evaluate their potential health hazards. Trace element concentrations were determined with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This study suggests that there is indeed a health risk concerning the possible migration of other elements than lead and cadmium. At low pH (2

  3. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  4. Monitoring Programs Using Rewriting

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Lan, Sonie (Technical Monitor)

    2001-01-01

    We present a rewriting algorithm for efficiently testing future time Linear Temporal Logic (LTL) formulae on finite execution traces, The standard models of LTL are infinite traces, reflecting the behavior of reactive and concurrent systems which conceptually may be continuously alive in most past applications of LTL, theorem provers and model checkers have been used to formally prove that down-scaled models satisfy such LTL specifications. Our goal is instead to use LTL for up-scaled testing of real software applications, corresponding to analyzing the conformance of finite traces against LTL formulae. We first describe what it means for a finite trace to satisfy an LTL property end then suggest an optimized algorithm based on transforming LTL formulae. We use the Maude rewriting logic, which turns out to be a good notation and being supported by an efficient rewriting engine for performing these experiments. The work constitutes part of the Java PathExplorer (JPAX) project, the purpose of which is to develop a flexible tool for monitoring Java program executions.

  5. Monitoring of DSP toxins in small-sized plankton fraction of seawater collected in Mutsu Bay, Japan, by ELISA method: relation with toxin contamination of scallop.

    PubMed

    Imai, Ichiro; Sugioka, Hikaru; Nishitani, Goh; Mitsuya, Tadashi; Hamano, Yonekazu

    2003-01-01

    Monitorings were conducted on DSP toxins in mid-gut gland of scallop (mouse assay), cell numbers of toxic dinoflagellate species of Dinophysis, and diarrhetic shellfish poisoning (DSP) toxins in small-sized (0.7-5 microm) plankton fraction of seawater collected from surface (0 m) and 20 m depth at a station in Mutsu Bay, Aomori Prefecture, Japan, in 2000. A specific enzyme-linked immunosorbent assay (ELISA) was employed for the analysis of DSP toxins in small-sized plankton fraction using a mouse monoclonal anti-okadaic acid antibody which recognizes okadaic acid, dinophysistoxin-1, and dinophysistoxin-3. DSP toxins were detected twice in the mid-gut gland of scallops at 1.1-2.3 MU (mouse units) g(-1) on 26 June and at 0.6-1.2 MU g(-1) on 3 July, respectively. Relatively high cell densities of D. fortii were observed on 26 June and 11 September, and may only contribute to the bivalve toxicity during late June to early July. D. acuminata did not appear to be responsible for the toxicity of scallops in Mutsu Bay in 2000. ELISA monitoring of small-sized plankton fraction in seawater could detect DSP toxins two weeks before the detection of the toxin in scallops, and could do so two weeks after the loss of the bivalve toxicity by mouse assay. On 17 July, toxic D. fortii was detected at only small number, <10 cells l(-1), but DSP toxins were detected by the ELISA assay, suggesting a presence of other toxic small-sized plankton in seawater. For the purpose of reducing negative impacts of DSP occurrences, monitorings have been carried out hitherto on DSP toxins of bivalve tissues by mouse assay and on cell densities of "toxic" species of Dinophysis. Here we propose a usefulness of ELISA monitoring of plankton toxicity, especially in small-sized fraction, which are possible foods of mixotrophic Dinophysis, as a practical tool for detecting and predicting DSPs in coastal areas of fisheries grounds of bivalve aquaculture.

  6. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.

    PubMed

    Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz

    2017-07-01

    Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fertilizer usage and cadmium in soils, crops and food.

    PubMed

    Dharma-Wardana, M W C

    2018-06-23

    Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819-820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this "accepted" paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent [Formula: see text], [Formula: see text] and [Formula: see text] ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

  8. Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758).

    PubMed

    Hoo Fung, Leslie A; Antoine, Johann M R; Grant, Charles N; Buddo, Dayne St A

    2013-10-01

    Twenty-five samples of Pterois volitans caught in Jamaican waters were analyzed for 25 essential, non-essential and toxic elements using Graphite Furnace Atomic Absorption Spectrophotometry (GF-AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Instrumental Neutron Activation Analysis (INAA). The mean values for calcium (355 mg/kg), copper (107 μg/kg), iron (0.81 mg/kg), potassium (3481 mg/kg), magnesium (322 mg/kg), manganese (0.04 mg/kg), selenium (0.47 mg/kg), sodium (700 mg/kg) and zinc (4.46 mg/kg) were used to estimate dietary intake. The percentage contribution to provisional tolerable weekly intake for a 70 kg male and a 65 kg female were also estimated for the toxic elements arsenic (1.28% M, 1.38% F), cadmium (0.26% M. 0.28% F), mercury (3.85% M, 4.15% F) and lead (0.17% M, 0.18% F). To further assess the risk of mercury toxicity and the role of mitigation provided by selenium, selenium-mercury molar ratios were calculated for all samples. All samples were shown to have a molar excess of selenium. In addition the suggested selenium health benefit value was calculated, and was positive for all samples. It was concluded that P. volitans appears to contribute modestly to mineral and trace element nutrition, while not being a significant contributor to dietary exposure of toxic elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  10. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    NASA Astrophysics Data System (ADS)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  11. SURROGATE TISSUE ANALYSIS: MONITORING TOXICANT EXPOSURE AND HEALTH STATUS OF INACCESSIBLE TISSUES THROUGH THE ANALYSIS OF ACCESSIBLE TISSUES AND CELLS

    EPA Science Inventory

    Surrogate Tissue Analysis: Monitoring Toxicant Exposure And Health Status Of Inaccessible Tissues Through The Analysis Of Accessible Tissues And Cells*
    John C. Rockett1, Michael E. Burczynski 2, Albert J. Fornace, Jr.3, Paul.C. Herrmann4, Stephen A. Krawetz5, and David J. Dix1...

  12. Noninvasive monitoring of treatment response in a rabbit cyanide toxicity model reveals differences in brain and muscle metabolism

    NASA Astrophysics Data System (ADS)

    Kim, Jae G.; Lee, Jangwoen; Mahon, Sari B.; Mukai, David; Patterson, Steven E.; Boss, Gerry R.; Tromberg, Bruce J.; Brenner, Matthew

    2012-10-01

    Noninvasive near infrared spectroscopy measurements were performed to monitor cyanide (CN) poisoning and recovery in the brain region and in foreleg muscle simultaneously, and the effects of a novel CN antidote, sulfanegen sodium, on tissue hemoglobin oxygenation changes were compared using a sub-lethal rabbit model. The results demonstrated that the brain region is more susceptible to CN poisoning and slower in endogenous CN detoxification following exposure than peripheral muscles. However, sulfanegen sodium rapidly reversed CN toxicity, with brain region effects reversing more quickly than muscle. In vivo monitoring of multiple organs may provide important clinical information regarding the extent of CN toxicity and subsequent recovery, and facilitate antidote drug development.

  13. Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species.

    PubMed

    Pillard, D A; Cornell, J S; Dufresne, D L; Hernandez, M T

    2001-02-01

    Benzotriazole and its derivatives comprise an important class of corrosion inhibitors, typically used as trace additives in industrial chemical mixtures such as coolants, deicers, surface coatings, cutting fluids, and hydraulic fluids. Recent studies have shown that benzotriazole derivatives are a major component of aircraft deicing fluids (ADFs) responsible for toxicity to bacteria (Microtox). Our current research compared the toxicity of benzotriazole (BT), two methylbenzotriazole (MeBT) isomers, and butylbenzotriazole (BBT). Acute toxicity assays were used to model the response of three common test organisms: Microtox bacteria (Vibrio fischeri), fathead minnow (Pimephales promelas) and water flea (Ceriodaphnia dubia). The response of all the three organisms varied over two orders of magnitude among all compounds. Vibrio fischeri was more sensitive than either C. dubia or P. promelas to all the test materials, while C. dubia was less sensitive than P. promelas. The response of test organisms to unmethylated benzotriazole and 4-methylbenzotriazole was similar, whereas 5-methylbenzotriazole was more toxic than either of these two compounds. BBT was the most toxic benzotriazole derivative tested, inducing acute toxicity at a concentration of < or = 3.3 mg/l to all organisms.

  14. Distribution of uranium, thorium and some stable trace and toxic elements in human hair and nails in Niška Banja Town, a high natural background radiation area of Serbia (Balkan Region, South-East Europe).

    PubMed

    Sahoo, S K; Žunić, Z S; Kritsananuwat, R; Zagrodzki, P; Bossew, P; Veselinovic, N; Mishra, S; Yonehara, H; Tokonami, S

    2015-07-01

    Human hair and nails can be considered as bio-indicators of the public exposure to certain natural radionuclides and other toxic metals over a long period of months or even years. The level of elements in hair and nails usually reflect their levels in other tissues of body. Niška Banja, a spa town located in southern Serbia, with locally high natural background radiation was selected for the study. To assess public exposure to the trace elements, hair and nail samples were collected and analyzed. The concentrations of uranium, thorium and some trace and toxic elements (Mn, Ni, Cu, Sr, Cd, and Cs) were determined using inductively coupled plasma mass spectrometry (ICP-MS). U and Th concentrations in hair varied from 0.0002 to 0.0771 μg/g and from 0.0002 to 0.0276 μg/g, respectively. The concentrations in nails varied from 0.0025 to 0.0447 μg/g and from 0.0023 to 0.0564 μg/g for U and Th, respectively. We found significant correlations between some elements in hair and nails. Also indications of spatial clustering of high values could be found. However, this phenomenon as well as the large variations in concentrations of heavy metals in hair and nail could not be explained. As hypotheses, we propose possible exposure pathways which may explain the findings, but the current data does not allow testing them. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Advanced Hybrid Particulate Collector Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.J.

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less

  16. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  17. Sensitive method to monitor trace quantities of benzanthrone in workers of dyestuff industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, A.; Khanna, S.K.; Singh, G.B.

    1986-03-01

    Dyestuff workers coming in contact with benzanthrone (an intermediate used for the synthesis of a variety of dyes) develop skin lesions, gastritis, liver malfunctions, and sexual disturbances. A highly sensitive fluorometric method to monitor trace quantities of benzanthrone in urine, serum, and biological tissues for experimental studies, has been developed. Coupled with simple extraction and resolution, optimum fluorescence is obtained in an equal mixture of chloroform:methanol, detecting as low as 2 ng benzanthrone. This method is approximately 250 times more sensitive than currently available colorimetric assay.

  18. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    PubMed

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  19. Bioluminescent bioreporter pad biosensor for monitoring water toxicity.

    PubMed

    Axelrod, Tim; Eltzov, Evgeni; Marks, Robert S

    2016-01-01

    Toxicants in water sources are of concern. We developed a tool that is affordable and easy-to-use for monitoring toxicity in water. It is a biosensor composed of disposable bioreporter pads (calcium alginate matrix with immobilized bacteria) and a non-disposable CMOS photodetector. Various parameters to enhance the sensor's signal have been tested, including the effect of alginate and bacterium concentrations. The effect of various toxicants, as well as, environmental samples were tested by evaluating their effect on bacterial luminescence. This is the first step in the creation of a sensitive and simple operative tool that may be used in different environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Field monitoring of toxic organic pollution in the sediments of Pearl River estuary and its tributaries.

    PubMed

    Fu, J; Wang, Z; Mai, B; Kang, Y

    2001-01-01

    Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.

  1. Real-time trace ambient ammonia monitor for haze prevention

    NASA Astrophysics Data System (ADS)

    Nishimura, Katsumi; Sakaguchi, Yuhei; Crosson, Eric; Wahl, Edward; Rella, Chris

    2007-05-01

    In photolithography, haze prevention is of critical importance to integrated circuit chip manufacturers. Numerous studies have established that the presence of ammonia in the photolithography tool can cause haze to form on optical surfaces resulting in permanent damage to costly deep ultra-violet optics. Ammonia is emitted into wafer fab air by various semiconductor processes including coating steps in the track and CMP. The workers in the clean room also emit a significant amount of ammonia. Chemical filters are typically used to remove airborne contamination from critical locations but their lifetime and coverage cannot offer complete protection. Therefore, constant or periodic monitoring of airborne ammonia at parts-per-trillion (ppt) levels is critical to insure the integrity of the lithography process. Real time monitoring can insure that an accidental ammonia release in the clean room is detected before any optics is damaged. We have developed a transportable, highly accurate, highly specific, real-time trace gas monitor that detects ammonia using Cavity Ring-Down Spectroscopy (CRDS). The trace gas monitor requires no calibration gas standards, and can measure ammonia with 200 ppt sensitivity in five minutes with little or no baseline drift. In addition, the high spectral resolution of CRDS makes the analyzer less susceptible to interference from other gases when compared to other detection methods. In this paper we describe the monitor, focus on its performance, discuss the results of a careful comparison with ion chromatography (IC), and present field data measured inside the aligner and the reticule stocker at a semiconductor fab.

  2. TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...

  3. Factors to consider for trace element deposition biomonitoring surveys with lichen transplants

    USGS Publications Warehouse

    Ayrault, S.; Clochiatti, R.; Carrot, F.; Daudin, L.; Bennett, J.P.

    2007-01-01

    A trace element deposition biomonitoring experiment with transplants of the fruticose lichen Evernia prunastri was developed, aimed at monitoring the effects of different exposure parameters (exposure orientation and direct rain) and to the elements Ti, V, Cr, Co, Cu, Zn, Rb, Cd, Sb and Pb. Accumulations were observed for most of the elements, confirming the ability of Evernia transplants for atmospheric metal deposition monitoring. The accumulation trends were mainly affected by the exposure orientation and slightly less so by the protection from rain. The zonation of the trace elements inside the thallus was also studied. It was concluded that trace element concentrations were not homogeneous in Evernia, thus imposing some cautions on the sampling approach. A nuclear microprobe analysis of an E. prunastri transplanted thallus in thin cross-sections concluded that the trace elements were mainly concentrated on the cortex of the thallus, except Zn, Ca and K which were also present in the internal layers. The size of the particles deposited or entrapped on the cortex surface averaged 7????m. A list of key parameters to ensure the comparability of surveys aiming at observing temporal or spatial deposition variation is presented. ?? 2006 Elsevier B.V. All rights reserved.

  4. Neurotoxicity in Aquatic Systems: Evaluation of Anthropogenic Trace Substances

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity, as well as acute and developmental neurotoxicity. In this endeavor, one of our focuses is on contaminants found in drinking water. To exp...

  5. A DYNAMIC SIMULATOR OF ENVIRONMENTAL CHEMICAL PARTITIONING

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  6. PREDICTION OF DIOXIN/FURAN INCINERATOR EMISSIONS USING LOW-MOLECULAR-WEIGHT VOLATILE PRODUCTS OF INCOMPLETE COMBUSTION

    EPA Science Inventory

    Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) from incinerators and other stationary combustion sources are of environmental concern because of the toxicity of certain PCDD/PCDF congeners. Measurement of trace levels of PCDDs/PCDFs...

  7. Near-real-time trace element measurements in a rural, traffic-influenced environment with some fireworks

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Slowik, Jay G.; Cruz Minguillón, María; Hueglin, Christoph; Koch, Chris; Prévôt, André S. H.; Baltensperger, Urs

    2016-04-01

    Aerosol-bound trace elements can affect the environment in significant ways especially when they are toxic. Characterizing the trace element spatial and temporal variability is a prerequisite for human exposure studies. The requirement for high time resolution and consequently the low sample masses asked for analysis methods not easily accessible, such as synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). In recent years, instrumentation that samples and analyzes airborne particulate matter with time resolutions of less than an hour in near real time has entered the market. We present the results of a three-week campaign in a rural environment close to a freeway. The measurement period included the fireworks of the Swiss National Day. The XRF instrument was set up at the monitoring station Härkingen of the Swiss Monitoring Network for Air Pollution (NABEL). It was configured to sample and analyze ambient PM10 aerosols in 1-hour intervals. Sample analysis with XRF was performed by the instrument immediately after collection, i.e. during the next sampling interval. 24 elements were analyzed and quantified (Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sn, Sb, Ba, Pt, Hg, Pb, Bi). The element concentrations obtained by the XRF instrument were compared to those determined by ICP-AES and ICP-MS in PM10 samples collected by NABEL high volume samplers. The results demonstrate the capability of the instrument to measure over a wide range of concentrations, from a few ng m-3 to μg m-3, under ambient conditions. The time resolution allows for the characterization of diurnal variations of element concentrations, which provides information on the contribution of emission sources, such as road traffic, soil, or fireworks. Some elements (V, Co, As, Pt) were below their detection limit during most of the time, but As could be quantified during the fireworks. Transition metals Cr, Mn, Fe, Cu, Zn could be attributed to freeway traffic. K, S, Ba, and Bi were strongly linked to the fireworks. The field test provided good evidence for the applicability and ease of use of the instrument. It provided also an idea on the sensitivity of the method in realistic, ambient conditions, although the 3-week period was too short for a thorough assessment, e.g. for different weather conditions.

  8. Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

    USGS Publications Warehouse

    Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou

    2005-01-01

    Idaho has. Although erodable soils are likely a cause of elevated turbidities, suspended-sediment concentrations were not strongly correlated with turbidities. Dissolved-solids and hardness concentrations were strongly correlated. This is probably because the limestones present in some basins are more soluble than the igneous rocks that predominate in others. Low hardness in streams of northern Idaho, where watersheds are underlain by resistant igneous rocks, enhances the toxicity of some trace elements to aquatic life in these streams. Only a few measurements of dissolved-oxygen concentrations at six sites were less than 6.0 milligrams per liter, the Idaho minimum criterion for protection of aquatic organisms. High supersaturations of dissolved oxygen at four sites suggest excessive photosynthetic activity by algal communities. Nighttime monitoring would help determine whether dissolved-oxygen concentrations at these sites might fall below the Idaho criterion. Data from four sites suggest that dissolved-oxygen concentrations may have decreased over time. The pH at 15 sites sometimes fell outside the range specified (6.5-9.0) for the protection of aquatic organisms in Idaho streams. Values exceeded 9.0 at 10 sites, probably because of excessive algal photosynthetic activity in waters where carbonate rocks are present. Values were sometimes less than 6.5 at five sites in areas of mountain bedrock geology where pH is likely to be naturally low. Mining activities also may contribute to low pH at some of these sites. Inorganic nitrogen and total phosphorus concentrations commonly exceeded those considered sufficient for supporting excess algal production (0.3 and 0.1 milligrams per liter, respectively). Data from a few sites suggest that nitrogen and(or) phosphorus concentrations might be changing over time. Low concentrations of nitrogen and phosphorus at six sites, most representing forested basins, might make them good candidates as reference sites that represent naturally occurring nutrient concentrations. Trace elements examined for this report were cadmium, copper, lead, mercury, selenium, and zinc. In water, many trace-element concentrations were below the minimum analytical reporting levels. Concentrations of cadmium, copper, lead, and zinc generally were highest in mined and other mineral-rich basins in northern Idaho. Concentrations of mercury were

  9. Pathway models could aid management of contaminants

    USGS Publications Warehouse

    Luoma, S. N.

    1995-01-01

    Heavy metal and trace organic contaminants are often cited as factors that could affect the riclmess of the biological communi~ of San Francisco Bay as well as the health of resident organisms. Silver (Ag), selenium (Se), mercury (Hg), copper (Cu), nickel (Ni), chromium (Cr), and cadmium (Cd) are among the trace elements of current regulatory interest. All these elements can be toxic to estuarine organisms in minute quantities. However, understanding their toxicity in nature has proven a difficult challenge. In general, it is difficult to prove how pollutants are affecting ecosystems. The undisturbed "baseline" condition in San Francisco Bay is not always well enough understood to identify whether certain processes are affected or unaffected by contamination. Sources of disturbance (flow diversions, drought, invasion of exotic species, etc.) occur in addition to chemical contamination. Responses to contamination in individual organisms, populations, and commumties are seldom pollutant-specific, and the complex responses to moderate levels of contamination are not well known.

  10. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    PubMed

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Hair toxic and essential trace elements in children with autism spectrum disorder.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Bjørklund, Geir; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-02-01

    The objective of the study was to investigate hair trace elements content in children suffering from autism spectrum disorder (ASD). A total of 74 ASD children and 74 sex- and age-matched controls divided into two age groups (2-4 and 5-9 years) were investigated. Hair trace elements content was assessed using inductively coupled plasma mass spectrometry. A general cohort of ASD children was characterized by 29 %, 41 %, and 24 % lower hair levels of chromium (Cr), iodine (I), and vanadium (V), respectively, whereas the level of selenium (Se) exceeded the respective control values by 31 %. In ASD children aged 2-4 years hair Cr, I and V content was 68 %, 36 % and 41 % lower than in the controls. Older ASD children were characterized by 45 % increase in hair Se levels. In a general cohort of ASD children hair beryllium (Be) and tin (Sn) levels were 50 % and 34 % lower than the control values. In the first age group (2-4 years) of ASD children 34 %, 42 %, and 73 % lower levels of arsenic (As), boron (B), and Be were detected. In the second age group of ASD children only a nearly significant 25 % decrease in hair lead (Pb) was detected. Surprisingly, no significant group difference in hair mercury (Hg), zinc (Zn), and copper (Cu) content was detected. Generally, the results of the present study demonstrate that children with ASD are characterized by lower values in hair of not only essential but also toxic trace elements.

  12. Review of Copper Provision in the Parenteral Nutrition of Adults [Formula: see text].

    PubMed

    Livingstone, Callum

    2017-04-01

    The essential trace element copper (Cu) is required for a range of physiologic processes, including wound healing and functioning of the immune system. The correct amount of Cu must be provided in parenteral nutrition (PN) if deficiency and toxicity are to be avoided. While provision in line with the standard recommendations should suffice for most patients, Cu requirements may be higher in patients with increased gastrointestinal losses and severe burns and lower in those with cholestasis. The tests of Cu status that are currently available for clinical use are unreliable. Serum Cu concentration is the most commonly ordered test but is insensitive to Cu deficiency and toxicity and is misleadingly increased during the acute phase response. These limitations make it difficult for prescribers to assess Cu status and to decide how much Cu to provide. There is a need for better tests of Cu status to be developed to decrease uncertainty and improve individualization of Cu dosing. More information is needed on Cu requirements in disease and Cu contamination of PN components and other intravenous fluids. New multi-trace element products should be developed that provide Cu doses in line with the 2012 American Society for Parenteral and Enteral Nutrition recommendations. This article discusses the evaluation and treatment of Cu deficiency and toxicity in patients treated with PN.

  13. Temporal and modal characterization of DoD source air toxic ...

    EPA Pesticide Factsheets

    This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for organic air toxics, laser induced breakdown spectroscopy (LIBS) for metallic air toxics, and optical remote sensing (ORS) methods for measurement of criteria pollutants and other hazardous air pollutants (HAPs). Conventional emission measurements were used for verification of the real-time monitoring results. The REMPI-TOFMS system was demonstrated on the following: --a United States U.S. Marine Corps (USMC) diesel generator, --a U.S. Air Force auxiliary power unit (APU), --the waste combustor at the Portsmouth Naval Shipyard, during a multi-monitor environmental technology verification (ETV) test for dioxin monitoring systems, --two dynamometer-driven high mobility multi-purpose wheeled vehicles (HMMWVs), --an idling Abrams battle tank, --a Bradley infantry fighting vehicle (IFV), and --an F-15 and multiple F-22 U.S. Air Force aircraft engines. LIBS was tested and applied solely to the U.S. Marine Corps diesel generator. The high detection limits of LIBS for toxic metals limited its usefulness as a real time analyzer for most DoD sources. ORS was tested only on the APU with satisfactory results for non-condensable combustion products (carbon monoxide [CO], carbon dioxide

  14. Reconnaissance of toxic substances in the Jordan River, Salt Lake County, Utah

    USGS Publications Warehouse

    Thompson, Kendall R.

    1984-01-01

    A reconnaissance of toxic substances in the Jordan River, Salt Lake County, Utah, was made during July, 1980 to October, 1982 as part of a larger study of the river that included studies of sanitary quality, dissolved oxygen, and turbidity. Samples for toxic substances were collected at five sites on the Jordan River, at three major tributaries, and at six storm drains. The toxic substance that most frequently exceeded State standards was total mercury. About 78 percent of the 138 samples for total mercury exceeded the State standard of 0.05 microgram per liter. Other toxic substances that exceeded State standards were: Ammonia-18 percent of the samples analyzed, cadmium--9 percent, copper-9 percent, zinc--6 percent, and lead--2 percent. One sample for cyanide and one for iron also exceeded State standards. The diversity of toxic substances with concentrations large enough to cause them to be problems increased from the upstream sampling site at the Jordan Narrows to the next two downstream sites at 9000 South and 5800 South Streets. Concentrations of trace elements in stream-bottom materials also increased in a downstream direction. Substantial increases first were observed at 5800 South Street, and they were sustained throughout the downstream study area. Iron is transported in the greatest quantity of all the trace elements studied, with a mean load of 110 pounds per day. Notable loads of barium, boron, lead , and zinc also are transported by the river. DDD, DDE, DDT, dieldrin, heptachlor, methoxychlor, PCB, and 2,4-D were detected in bottom materials; and DDE, Silvex, and 2,4-D were detected in water samples. Of 112 organic compounds in the Environmental Protection Agency 's priority pollutant list, only chloroform was detected in the storm drains that empty into the Joran River. Several metals and phenol also were detected in the samples for priority pollutants. (USGS)

  15. Development of polyurethane-based passive samplers for ambient monitoring of urban-use insecticides in water.

    PubMed

    Liao, Chunyang; Richards, Jaben; Taylor, Allison R; Gan, Jay

    2017-12-01

    Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Toxicity assessment in marine sediment for the Terra Nova environmental effects monitoring program (1997-2010)

    NASA Astrophysics Data System (ADS)

    Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given the lack of association between Microtox results and discharge from Terra Nova, coupled with the confounding effects of other variables, the usefulness of Microtox toxicity tests within the context of environmental monitoring for the Terra Nova and, potentially, other offshore oil operations needs to be questioned. The amphipod toxicity tests showed that sediments in the vicinity of discharges of synthetic-based drilling mud cuttings are rarely toxic.

  17. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  18. Room airflow studies using sonic anemometry.

    PubMed

    Wasiolek, P T; Whicker, J J; Gong, H; Rodgers, J C

    1999-06-01

    To ensure prompt response by real-time air monitors to an accidental release of toxic aerosols in a workplace, safety professionals should understand airflow patterns. This understanding can be achieved with validated computational fluid dynamics (CFD) computer simulations, or with experimental techniques, such as measurements with smoke, neutrally buoyant markers, trace gases, or trace aerosol particles. As a supplementary technique to quantify airflows, the use of a state-of-the art, three-dimensional sonic anemometer was explored. This instrument allows for the precise measurements of the air-velocity vector components in the range of a few centimeters per second, which is common in many indoor work environments. Measurements of air velocities and directions at selected locations were made for the purpose of providing data for characterizing fundamental aspects of indoor air movement in two ventilated rooms and for comparison to CFD model predictions. One room was a mockup of a plutonium workroom, and the other was an actual functioning plutonium workroom. In the mockup room, air-velocity vector components were measured at 19 locations at three heights (60, 120 and 180 cm) with average velocities varying from 1.4 cm s-1 to 9.7 cm s-1. There were complex flow patterns observed with turbulence intensities from 39% up to 108%. In the plutonium workroom, measurements were made at the breathing-zone height, recording average velocities ranging from 9.9 cm s-1 to 35.5 cm s-1 with turbulence intensities from 33% to 108%.

  19. Enabling chip-scale trace gas sensing systems with silicon photonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, William

    Tunable laser trace-gas spectroscopy has been effectively used in both environmental and medical applications, for its sensitivity and specificity. We’ll describe how contemporary silicon photonics manufacturing and assembly are leveraged for a cost-effective miniaturized spectroscopic sensor platform, and outline uses in fugitive methane emissions monitoring.

  20. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  1. Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry.

    PubMed

    Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su

    2014-09-01

    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics, endocytic vesicle-mediated trafficking and the proper localization of actin regulatory proteins c-Src and annexin II in Sertoli cells were also affected. Results of statistical analysis demonstrate that these findings were not obtained by chance. LIMITATIONS, REASONS FOR CAUTION (i) This study was done in vitro and might not extrapolate to the in vivo state, (ii) conclusions are based on the use of Sertoli cell samples from three men and (iii) it is uncertain if the concentrations of toxicants used in the experiments are reached in vivo. WIDER IMPLICATIONS OF THE FINDINGS Human Sertoli cells cultured in vitro provide a robust model to monitor environmental toxicant-mediated disruption of Sertoli cell BTB function and to study the mechanism(s) of toxicant-induced testicular dysfunction. PMID:24532171

  3. Influence of carbon monoxide poisoning on the fetal heart monitor tracing: a report of 3 cases.

    PubMed

    Towers, Craig V; Corcoran, Vincent A

    2009-03-01

    The diagnosis of carbon monoxide poisoning in the third trimester of pregnancy requires an index of suspicion, and the appearance of the fetal heart monitor tracing may help in this regard. Three cases of third-trimester acute carbon monoxide poisoning occurred. In each pregnancy, the fetal heart monitor tracing on admission was correlated with the maternal carboxyhemoglobin level, and how the pattern changed following the institution of therapy was analyzed. In all 3 cases, the initial fetal heart rate pattern demonstrated decreased variability with an elevated baseline and an absence of accelerations and decelerations. Within 45-90 minutes of treatment onset, the baseline fetal heart rate dropped by 20-40 beats per minute, the variability became moderate, and accelerations occurred. Absent accelerations with minimal variability, if caused by uteroplacental insufficiency, are usually preceded by recurrent decelerations. Absent accelerations with minimal variability in the absence of recurrent decelerations may suggest another cause, of which carbon monoxide intoxication can be added to the differential, especially since this disorder often has nonspecific clinical symptoms.

  4. Checking Flight Rules with TraceContract: Application of a Scala DSL for Trace Analysis

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Havelund, Klaus; Morris, Robert A.

    2011-01-01

    Typically during the design and development of a NASA space mission, rules and constraints are identified to help reduce reasons for failure during operations. These flight rules are usually captured in a set of indexed tables, containing rule descriptions, rationales for the rules, and other information. Flight rules can be part of manual operations procedures carried out by humans. However, they can also be automated, and either implemented as on-board monitors, or as ground based monitors that are part of a ground data system. In the case of automated flight rules, one considerable expense to be addressed for any mission is the extensive process by which system engineers express flight rules in prose, software developers translate these requirements into code, and then both experts verify that the resulting application is correct. This paper explores the potential benefits of using an internal Scala DSL for general trace analysis, named TRACECONTRACT, to write executable specifications of flight rules. TRACECONTRACT can generally be applied to analysis of for example log files or for monitoring executing systems online.

  5. Real-time monitoring of trace-level VOCs by an ultrasensitive lamp-based VUV photoionization mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-11-01

    In this study, we report on the development of a lamp-based vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) in our laboratory; it is composed of a radio-frequency-powered VUV lamp, a VUV photoionizer, an ion-migration lens assembly, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, the baselines of the mass spectra decreased from 263.6 ± 15.7 counts to 4.1 ± 1.8 counts. A detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for real-time monitoring applications of samples, the developed VUV-PIMS was employed for the continuous measurement of urban air for 6 days in Beijing, China. Strong signals of trace-level volatile organic compounds, such as benzene and its alkylated derivatives, were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  6. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  7. Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas.

    PubMed

    Giordano, S; Adamo, P; Monaci, F; Pittao, E; Tretiach, M; Bargagli, R

    2009-10-01

    To define a harmonized methodology for the use of moss and lichen bags as active monitoring devices of airborne trace elements in urban areas, we evaluated the element accumulation in bags exposed in Naples in different spring weather conditions for 6- and 12-weeks. Three different pre-exposure treatments were applied to moss and lichen materials: water-washing, acid-washing and oven-drying. During the different exposure periods in the Naples urban environment the moss accumulated always higher amounts of elements (except Hg) than lichens and the element accumulation increased during wetter weather and higher PM(10) conditions. The oven pre-treatment did not substantially modify the morphology and element composition of moss and the exposure in bags of this material for 6-weeks was sufficient to detect the pattern of airborne trace elements.

  8. Trace elements and radon in groundwater across the United States, 1992-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.

    2011-01-01

    Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,

  9. JUDGING PUBLIC RISK - NOT ALL ARSENICS ARE CREATED EQUAL

    EPA Science Inventory

    Many trace elements occur in the environment in several chemical forms, called species. Each species has unique physical-chemical properties that affect how it moves in the environment, as well as how available and toxic it is to humans and other animals. Hyphenated techniques, t...

  10. DOSE-DEPENDENT TRANSITIONS IN MECHANISMS OF TOXICITY: ZINC CASE EXAMPLE

    EPA Science Inventory

    Zinc (Zn) is an essential trace element. Maternal Zn deficiency can result in complications of pregnancy and inadequate supply of Zn to the conceptus can interfere with the development of numerous organ systems. Maternal dietary Zn deficiency has been shown to be teratogenic in a...

  11. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.

    PubMed

    Jiang, Yong; Liang, Peng; Huang, Xia; Ren, Zhiyong Jason

    2018-07-01

    Toxicity monitoring is essential for the protection of public health and ecological safety. Microbial fuel cell (MFC) sensors demonstrated good potential in toxicity monitoring, but current MFC sensors can only be used for anaerobic water monitoring. In this study, a novel gas diffusion (GD)-biocathode sensing element was fabricated using a simple method. The GD-biocathode MFC sensor can directly be used for formaldehyde detection (from 0.0005% to 0.005%) in both aerobic and anaerobic water bodies. Electrochemical analysis indicated that the response by the sensor was caused by the toxic inhibition to the microbial activity for the oxygen reduction reaction (ORR). This study for the first time demonstrated that the GD-biocathode MFC sensor has a detection limit of 20 ppm for formaldehyde and can be used to monitor air pollution. Selective sensitivity to formaldehyde was not achieved as the result of using a mixed-culture, which confirms that it can serve as a generic biosensor for monitoring gaseous pollutants. This study expands the realm of knowledge for MFC sensor applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Are there Benefits to Combining Regional Probabalistic Survey and Historic Targeted Environmental Monitoring Data to Improve Our Understanding of Overall Regional Estuary Environmental Status?

    NASA Astrophysics Data System (ADS)

    Dasher, D. H.; Lomax, T. J.; Bethe, A.; Jewett, S.; Hoberg, M.

    2016-02-01

    A regional probabilistic survey of 20 randomly selected stations, where water and sediments were sampled, was conducted over an area of Simpson Lagoon and Gwydyr Bay in the Beaufort Sea adjacent Prudhoe Bay, Alaska, in 2014. Sampling parameters included water column for temperature, salinity, dissolved oxygen, chlorophyll a, nutrients and sediments for macroinvertebrates, chemistry, i.e., trace metals and hydrocarbons, and grain size. The 2014 probabilistic survey design allows for inferences to be made of environmental status, for instance the spatial or aerial distribution of sediment trace metals within the design area sampled. Historically, since the 1970's a number of monitoring studies have been conducted in this estuary area using a targeted rather than regional probabilistic design. Targeted non-random designs were utilized to assess specific points of interest and cannot be used to make inferences to distributions of environmental parameters. Due to differences in the environmental monitoring objectives between probabilistic and targeted designs there has been limited assessment see if benefits exist to combining the two approaches. This study evaluates if a combined approach using the 2014 probabilistic survey sediment trace metal and macroinvertebrate results and historical targeted monitoring data can provide a new perspective on better understanding the environmental status of these estuaries.

  13. SEDIMENT TOXICITY AS AN INDICATOR OF CONTAMINANT STRESS IN EMAP-ESTUARIES

    EPA Science Inventory

    Toxicity of sediments is widely used in EPA, ACOE, and NOAA monitoring and regulatory programs as a complement to measuring of chemical concentrations as it provides an indication of the bioavailability of sediment contaminants. Sediment toxicity was included as an abiotic condit...

  14. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  15. 40 CFR 433.12 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... toxic organic compounds used; the method of disposal used instead of dumping, such as reclamation... compliance with the permit limitation [or pretreatment standard] for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the...

  16. 40 CFR 433.12 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... toxic organic compounds used; the method of disposal used instead of dumping, such as reclamation... the permit limitation [or pretreatment standard] for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewaters...

  17. 40 CFR 433.12 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... toxic organic compounds used; the method of disposal used instead of dumping, such as reclamation... compliance with the permit limitation [or pretreatment standard] for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the...

  18. 40 CFR 433.12 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... toxic organic compounds used; the method of disposal used instead of dumping, such as reclamation... compliance with the permit limitation [or pretreatment standard] for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the...

  19. Role of (18)F-FDG PET-CT in Monitoring the Cyclophosphamide Induced Pulmonary Toxicity in Patients with Breast Cancer - 2 Case Reports.

    PubMed

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar

    2016-09-01

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of (18)F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim (18)F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on (18)F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  20. Micro-PIXE studies of Lupinus angustifolius L. after treatment of seeds with molybdenum

    NASA Astrophysics Data System (ADS)

    Przybylowicz, W. J.; Mesjasz-Przybylowicz, J.; Wouters, K.; Vlassak, K.; Combrink, N. J. J.

    1997-02-01

    An example of nuclear microprobe application in agriculture is presented. The NAC nuclear microprobe was used to determine quantitative elemental distribution of major, minor and trace elements in Lupinus angustifolius L. (Leguminosae) after treatment of seeds with molybdenum. Experiments were performed in order to establish safe concentration levels and sources of Mo in seed treatments. Elemental distributions in Mo-treated plants and in the non-treated control plants were studied in order to explain how Mo causes toxicity. Some specific regions of Mo and other main and trace elements enrichment were identified.

  1. Environmental exposures of trace elements assessed using keratinized matrices from patients with chronic kidney diseases of uncertain etiology (CKDu) in Sri Lanka.

    PubMed

    Diyabalanage, Saranga; Fonseka, Sanjeewani; Dasanayake, D M S N B; Chandrajith, Rohana

    2017-01-01

    An alarming increase in chronic kidney disease with unknown etiology (CKDu) has recently been reported in several provinces in Sri Lanka and chronic exposures to toxic trace elements were blamed for the etiology of this disease. Keratinized matrices such as hair and nails were investigated to determine the possible link between CKDu and toxic element exposures. Elements Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Hg and Pb of hair and nails of patients and age that matched healthy controls were determined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that trace element contents in the hair of patients varies in the order of Zn>Fe>Al>Mn>Cu>Ba>Sr>Ni>Pb>Cr>B>Hg>Se>Mo>Co>As>Li>Cd while Fe>Al>Zn>Ni>Cu>Mn>Cr>Ba>Sr>B>Pb>Se>Mo>Co>Hg>Li>As>Cd in nail samples. The hair As levels of 0.007-0.165μgg -1 were found in CKDu subjects. However, no significant difference was observed between cases and controls. The total Se content in hair of CKDu subjects ranged from 0.043 to 0.513μgg -1 while it was varied from 0.031 to 1.15μgg -1 in controls. Selenium in nail samples varied from 0.037μgg -1 to 4.10μgg -1 in CKDu subjects and from 0.042μgg -1 to 2.19μgg -1 in controls. This study implies that substantial proportions of Sri Lankan population are Se deficient irrespective of gender, age and occupational exposure. Although some cutaneous manifestations were observed in patient subjects, chemical analyses of hair and nails indicated that patients were not exposed to toxic levels of arsenic or the other studied toxic elements. Therefore the early suggested causative factors such as exposure to environmental As and Cd, can be ruled out. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. [In vitro toxicity of naturally occurring silica nanoparticles in C1 coal in bronchial epithelial cells].

    PubMed

    Li, Guangjian; Huang, Yunchao; Liu, Yongjun; Guo, Lv; Zhou, Yongchun; Yang, Kun; Chen, Ying; Zhao, Guangqiang; Lei, Yujie

    2012-10-01

    China's Xuan Wei County in Yunnan Province have the world's highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring), control group (silica; industrial produced and crystalline silica) was detected by assay used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, and the reactive oxygen species (ROS), lactate dehydrogenase (LDH) were determined after 24 h-72 h exposed to these particles. ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace; ②Naturally occurring silica nanoparticles have irregular morphology, surface area, and containing complex trace elements may has greater toxicity than the silica nanoparticle of industrial produced and crystalline silica.

  3. Assessment of in vivo systemic toxicity and biodistribution of iron-doped silica nanoshells.

    PubMed

    Mendez, Natalie; Liberman, Alexander; Corbeil, Jacqueline; Barback, Christopher; Viveros, Robert; Wang, James; Wang-Rodriguez, Jessica; Blair, Sarah L; Mattrey, Robert; Vera, David; Trogler, William; Kummel, Andrew C

    2017-04-01

    Silica nanoparticles are an emerging class of biomaterials which may be used as diagnostic and therapeutic tools for biomedical applications. In particular, hollow silica nanoshells are attractive due to their hollow core. Approximately 70% of a 500 nm nanoshell is hollow, therefore more particles can be administered on a mg/kg basis compared to solid nanoparticles. Additionally, their nanoporous shell permits influx/efflux of gases and small molecules. Since the size, shape, and composition of a nanoparticle can dramatically alter its toxicity and biodistribution, the toxicology of these nanomaterials was assessed. A single dose toxicity study was performed in vivo to assess the toxicity of 500 nm iron-doped silica nanoshells at clinically relevant doses of 10-20 mg/kg. This study showed that only a trace amount of silica was detected in the body 10 weeks post-administration. The hematology, biochemistry and pathological results show that the nanoshells exhibit no acute or chronic toxicity in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Leaching and toxicity behavior of coal-biomass waste cocombustion ashes.

    PubMed

    Skodras, G; Prokopidou, M; Sakellaropoulos, G P

    2006-08-01

    Land disposal of ash residues, obtained from the cocombustion of Greek lignite with biomass wastes, is known to create problems due to the harmful constituents present. In this regard, the leachability of trace elements from lignite, biomass, and blends cocombustion ashes was investigated by using the Toxicity Characteristic Leaching Procedure (TCLP) of the US Environmental Protection Agency (US EPA). In this work, the toxicity of the aqueous leachates and the concentrations of the metals obtained from the leaching procedure were measured using the Microtox test (Vibrio fischeri) and inductive coupled plasma-atomic emission spectrometer (ICP-AES), respectively. The toxic effects of most leachates on Vibrio fischeri were found to be significantly low in both 45% and 82% screening test protocols. However, the liquid sample originating from olive kernels fly ash (FA4) caused the highest toxic effect in both protocols, which can be attributed to its relatively high concentrations of As, Cd, Co, Cu, Mn, Ni, and Zn. Copyright 2006 Wiley Periodicals, Inc.

  6. Trace concentrations of imazethapyr (IM) affect floral organs development and reproduction in Arabidopsis thaliana: IM-induced inhibition of key genes regulating anther and pollen biosynthesis.

    PubMed

    Qian, Haifeng; Li, Yali; Sun, Chongchong; Lavoie, Michel; Xie, Jun; Bai, Xiaocui; Fu, Zhengwei

    2015-01-01

    Understanding how herbicides affect plant reproduction and growth is critical to develop herbicide toxicity model and refine herbicide risk assessment. Although our knowledge of herbicides toxicity mechanisms at the physiological and molecular level in plant vegetative phase has increased substantially in the last decades, few studies have addressed the herbicide toxicity problematic on plant reproduction. Here, we determined the long-term (4-8 weeks) effect of a chiral herbicide, imazethapyr (IM), which has been increasingly used in plant crops, on floral organ development and reproduction in the model plant Arabidopsis thaliana. More specifically, we followed the effect of two IM enantiomers (R- and S-IM) on floral organ structure, seed production, pollen viability and the transcription of key genes involved in anther and pollen development. The results showed that IM strongly inhibited the transcripts of genes regulating A. thaliana tapetum development (DYT1: DYSFUNCTIONAL TAPETUM 1), tapetal differentiation and function (TDF1: TAPETAL DEVELOPMENT AND FUNCTION1), and pollen wall formation and developments (AMS: ABORTED MICROSPORES, MYB103: MYB DOMAIN PROTEIN 103, MS1: MALE STERILITY 1, MS2: MALE STERILITY 2). Since DYT1 positively regulates 33 genes involved in cell-wall modification (such as, TDF1, AMS, MYB103, MS1, MS2) that can catalyze the breakdown of polysaccharides to facilitate anther dehiscence, the consistent decrease in the transcription of these genes after IM exposure should hamper anther opening as observed under scanning electron microscopy. The toxicity of IM on anther opening further lead to a decrease in pollen production and pollen viability. Furthermore, long-term IM exposure increased the number of apurinic/apyrimidinic sites (AP sites) in the DNA of A. thaliana and also altered the DNA of A. thaliana offspring grown in IM-free soils. Toxicity of IM on floral organs development and reproduction was generally higher in the presence of the R-IM enantiomer than of the S-IM enantiomer. This study unraveled several IM toxicity targets and mechanisms at the molecular and structural level linked to the toxicity of IM trace concentrations on A. thaliana reproduction.

  7. Environmental contaminants in food. Volume II-part a: working papers. I. Priority setting of toxic substances for guiding monitoring programs. II. Five case studies of environmental food contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains working papers written for Office of Technology Assessment (OTA) to assist in preparation of the report Environmental Contaminants in Food. The contents include: (1) Priority setting of toxic substances for guiding monitoring programs; and (2) Five case studies of environmental food contamination.

  8. Distribution, occurrence and biotoxin composition of the main shellfish toxin producing microalgae within European waters: A comparison of methods of analysis.

    PubMed

    McNamee, Sara E; Medlin, Linda K; Kegel, Jessica; McCoy, Gary R; Raine, Robin; Barra, Lucia; Ruggiero, Maria Valeria; Kooistra, Wiebe H C F; Montresor, Marina; Hagstrom, Johannes; Blanco, Eva Perez; Graneli, Edna; Rodríguez, Francisco; Escalera, Laura; Reguera, Beatriz; Dittami, Simon; Edvardsen, Bente; Taylor, Joe; Lewis, Jane M; Pazos, Yolanda; Elliott, Christopher T; Campbell, Katrina

    2016-05-01

    Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n=256) from European waters, collected 2009-2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2×2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Infection control in healthcare settings: perspectives for mfDNA analysis in monitoring sanitation procedures.

    PubMed

    Valeriani, Federica; Protano, Carmela; Gianfranceschi, Gianluca; Cozza, Paola; Campanella, Vincenzo; Liguori, Giorgio; Vitali, Matteo; Divizia, Maurizio; Romano Spica, Vincenzo

    2016-08-09

    Appropriate sanitation procedures and monitoring of their actual efficacy represent critical points for improving hygiene and reducing the risk of healthcare-associated infections. Presently, surveillance is based on traditional protocols and classical microbiology. Innovation in monitoring is required not only to enhance safety or speed up controls but also to prevent cross infections due to novel or uncultivable pathogens. In order to improve surveillance monitoring, we propose that biological fluid microflora (mf) on reprocessed devices is a potential indicator of sanitation failure, when tested by an mfDNA-based approach. The survey focused on oral microflora traces in dental care settings. Experimental tests (n = 48) and an "in field" trial (n = 83) were performed on dental instruments. Conventional microbiology and amplification of bacterial genes by multiple real-time PCR were applied to detect traces of salivary microflora. Six different sanitation protocols were considered. A monitoring protocol was developed and performance of the mfDNA assay was evaluated by sensitivity and specificity. Contaminated samples resulted positive for saliva traces by the proposed approach (CT < 35). In accordance with guidelines, only fully sanitized samples were considered negative (100 %). Culture-based tests confirmed disinfectant efficacy, but failed in detecting incomplete sanitation. The method provided sensitivity and specificity over 95 %. The principle of detecting biological fluids by mfDNA analysis seems promising for monitoring the effectiveness of instrument reprocessing. The molecular approach is simple, fast and can provide a valid support for surveillance in dental care or other hospital settings.

  10. Comparison of trace element concentrations in livers of diseased, emaciated and non-diseased southern sea otters from the California coast

    USGS Publications Warehouse

    Kannan, K.; Agusa, T.; Perrotta, E.; Thomas, N.J.; Tanabe, S.

    2006-01-01

    Infectious diseases have been implicated as a cause of high rates of adult mortality in southern sea otters. Exposure to environmental contaminants can compromise the immuno-competence of animals, predisposing them to infectious diseases. In addition to organic pollutants, certain trace elements can modulate the immune system in marine mammals. Nevertheless, reports of occurrence of trace elements, including toxic heavy metals, in sea otters are not available. In this study, concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of southern sea otters found dead along the central California coast (n = 80) from 1992 to 2002. Hepatic concentrations of trace elements were compared among sea otters that died from infectious diseases (n = 27), those that died from non-infectious causes (n = 26), and otters that died in emaciated condition with no evidence of another cause of death (n = 27). Concentrations of essential elements in sea otters varied within an order of magnitude, whereas concentrations of non-essential elements varied by two to five orders of magnitude. Hepatic concentrations of Cu and Cd were 10- to 100-fold higher in the sea otters in this study than concentrations reported for any other marine mammal species. Concentrations of Mn, Co, Zn, and Cd were elevated in the diseased and emaciated sea otters relative to the non-diseased sea otters. Elevated concentrations of essential elements such as Mn, Zn, and Co in the diseased/emaciated sea otters suggest that induction of synthesis of metallothionein and superoxide dismutase (SOD) enzyme is occurring in these animals, as a means of protecting the cells from oxidative stress-related injuries. Trace element profiles in diseased and emaciated sea otters suggest that oxidative stress mediates the perturbation of essential-element concentrations. Elevated concentrations of toxic metals such as Cd, in addition to several other organic pollutants, may contribute to oxidative stress-meditated effects in sea otters.

  11. Areal distribution and concentration of contaminants of concern in surficial streambed and lakebed sediments, Lake St. Clair and tributaries, Michigan, 1990-2003

    USGS Publications Warehouse

    Rachol, Cynthia M.; Button, Daniel T.

    2006-01-01

    As part of the Lake St. Clair Regional Monitoring Project, the U.S. Geological Survey evaluated data collected from surficial streambed and lakebed sediments in the Lake Erie-Lake St. Clair drainages. This study incorporates data collected from 1990 through 2003 and focuses primarily on the U.S. part of the Lake St. Clair Basin, including Lake St. Clair, the St. Clair River, and tributaries to Lake St. Clair. Comparable data from the Canadian part of the study area are included where available. The data are compiled into 4 chemical classes and consist of 21 compounds. The data are compared to effects-based sediment-quality guidelines, where the Threshold Effect Level and Lowest Effect Level represent concentrations below which adverse effects on biota are not expected and the Probable Effect Level and Severe Effect Level represent concentrations above which adverse effects on biota are expected to be frequent.Maps in the report show the spatial distribution of the sampling locations and illustrate the concentrations relative to the selected sediment-quality guidelines. These maps indicate that sediment samples from certain areas routinely had contaminant concentrations greater than the Threshold Effect Concentration or Lowest Effect Level. These locations are the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Big Beaver Creek, Red Run, and Paint Creek. Maps also indicated areas that routinely contained sediment contaminant concentrations that were greater than the Probable Effect Concentration or Severe Effect Level. These locations include the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Red Run, within direct tributaries along Lake St. Clair and in marinas within the lake, and within the Clinton River headwaters in Oakland County.Although most samples collected within Lake St. Clair were from sites adjacent to the mouths of its tributaries, samples analyzed for trace-element concentrations were collected throughout the lake. The distribution of trace-element concentrations corresponded well with the results of a two-dimensional hydrodynamic model of flow patterns from the Clinton River into Lake St. Clair. The model was developed independent from the bed sediment analysis described in this report; yet it showed a zone of deposition for outflow from the Clinton River into Lake St. Clair that corresponded well with the spatial distribution of trace-element concentrations. This zone runs along the western shoreline of Lake St. Clair from L'Anse Creuse Bay to St. Clair Shores, Michigan and is reflected in the samples analyzed for mercury and cadmium.Statistical summaries of the concentration data are presented for most contaminants, and selected statistics are compared to effects-based sediment-quality guidelines. Summaries were not computed for dieldrin, chlordane, hexachlorocyclohexane, lindane, and mirex because insufficient data are available for these contaminants. A statistical comparison showed that the median concentration for hexachlorobenzene, anthracene, benz[a]anthracene, chrysene, and pyrene are greater than the Threshold Effect Concentration or Lowest Effect Level.Probable Effect Concentration Quotients provide a mechanism for comparing the concentrations of contaminant mixtures against effects-based biota data. Probable Effect Concentration Quotients were calculated for individual samples and compared to effects-based toxicity ranges. The toxicity-range categories used in this study were nontoxic (quotients < 0.5) and toxic (quotients > 0.5). Of the 546 individual samples for which Probable Effect Concentration Quotients were calculated, 469 (86 percent) were categorized as being nontoxic and 77 (14 percent) were categorized as being toxic. Bed-sediment samples with toxic Probable Effect Concentration Quotients were collected from Paint Creek, Galloway Creek, the main stem of the Clinton River, Big Beaver Creek, Red Run, Clinton River towards the mouth, Lake St. Clair along the western shore, and the St. Clair River near Sarnia.

  12. Aflatoxin B1 Induced Systemic Toxicity in Poultry and Rescue Effects of Selenium and Zinc.

    PubMed

    Mughal, Muhammad Jameel; Peng, Xi; Kamboh, Asghar Ali; Zhou, Yi; Fang, Jing

    2017-08-01

    Among many challenges, exposure to aflatoxins, particularly aflatoxin B 1 (AFB 1 ), is one of the major concerns in poultry industry. AFB 1 intoxication results in decreased meat/egg production, hepatotoxicity, nephrotoxicity, disturbance in gastrointestinal tract (GIT) and reproduction, immune suppression, and increased disease susceptibility. Selenium (Se) and zinc (Zn), in dietary supplementation, offer easy, cost-effective, and efficient ways to neutralize the toxic effect of AFB 1 . In the current review, we discussed the impact of AFB 1 on poultry industry, its biotransformation, and organ-specific noxious effects, along with the action mechanism of AFB 1 -induced toxicity. Moreover, we explained the biological and detoxifying roles of Se and Zn in avian species as well as the protection mechanism of these two trace elements. Ultimately, we discussed the use of Se and Zn supplementation against AFB 1 -induced toxicity in poultry birds.

  13. Emissions Inventory of PM2.5 Trace Elements across the United States

    EPA Science Inventory

    This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM 2.5 emissions in ...

  14. Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...

  15. Effects of Ethanol-Gasoline Blended Fuels on Learning and Memory

    EPA Science Inventory

    The potential toxicity of ethanol-gasoline blended fuels to the developing nervous system is of concern. We previously reported an absence of effect on learning and memory as seen in a trace fear conditioning task and water maze task in offspring of dams exposed prenatally to the...

  16. USE OF REMPI-TOFMS FOR REAL-TIME MEASUREMENT OF TRACE AROMATICS DURING OPERATION OF AIRCRAFT GROUND EQUIPMENT

    EPA Science Inventory

    Emissions of aromatic air toxics from aircraft ground equipment were measured with a resonance enhanced multiphoton ionization—time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. T...

  17. REGIONAL MODELING OF THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ATRAZINE

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  18. Decreased reproductive rates in sheep fed a high selenium diet

    USDA-ARS?s Scientific Manuscript database

    High Se-containing forages grow on seleniferous soils in many parts of the United States and throughout the world. Selenium is an essential trace element that is required for many physiological processes but can also be either acutely or chronically toxic to livestock. Anecdotal reports of decrease...

  19. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.

    PubMed

    Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik

    2013-07-01

    The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.

  20. Human exposures to monomers resulting from consumer contact with polymers.

    PubMed

    Leber, A P

    2001-06-01

    Many consumer products are composed completely, or in part, of polymeric materials. Direct or indirect human contact results in potential exposures to monomers as a result of migrations of trace amounts from the polymeric matrix into foods, into the skin or other bodily surfaces. Typically, residual monomer levels in these polymers are <100 p.p.m., and represent exposures well below those observable in traditional toxicity testing. These product applications thus require alternative methods for evaluating health risks relating to monomer exposures. A typical approach includes: (a) assessment of potential human contacts for specific polymer uses; (b) utilization of data from toxicity testing of pure monomers, e.g. cancer bioassay results; and (c) mathematical risk assessment methods. Exposure potentials are measured in one of two analytical procedures: (1) migration of monomer from polymer into a simulant solvent (e.g. alcohol, acidic water, vegetable oil) appropriate for the intended use of the product (e.g. beer cans, food jars, packaging adhesive, dairy hose); or (2) total monomer content of the polymer, providing worse-case values for migratable monomer. Application of toxicity data typically involves NOEL or benchmark values for non-cancer endpoints, or tumorigenicity potencies for monomers demonstrated to be carcinogens. Risk assessments provide exposure 'safety margin' ratios between levels that: (1) are projected to be safe according to toxicity information, and (2) are potential monomer exposures posed by the intended use of the consumer product. This paper includes an example of a health risk assessment for a chewing gum polymer for which exposures to trace levels of butadiene monomer occur.

  1. FULL-SCALE TESTS OF THE MULTI-CHAMBERED TREATMENT TANK (MCTT)

    EPA Science Inventory

    The MCTT was developed to control toxicants in stormwater from critical source areas. During monitoring, the pilot-scale MCTT provided median reductions of >90% for toxicity, lead, zinc, and most organic toxicants. Suspended solids was reduced by 83% and COD was reduced by 60%. T...

  2. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.

    PubMed

    Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-10-01

    Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements.

  3. [Distribution iodine deficiency diseases in coastal areas depending on geochemical conditions].

    PubMed

    Kiku, P F; Andryukov, B G

    2014-01-01

    In the Primorsky Krai there was performed a population ecological and hygienic analysis of the relationship between the content of chemical elements in the soil and thyroid morbidity in the population of the region. The assessment of the prevalence of iodine deficiency and iodine deficiency diseases was carried out on the basis of the impact of the priority environmental toxic (strontium, nickel, cadmium, lead, arsenic, tin) and essential (nickel, iron, germanium, molybdenum, zinc, selenium) trace elements on the level of iodine deficiency diseases. The level of thyroid pathology in the territory of Primorye was established to be the highest one in areas characterized by the severe iodine deficiency (Northwest geochemical zones), where the structure of thyroid diseases is presented mainly by diffuse nontoxic goiter. Thyroid diseases associated with iodine deficiency in the population of different age groups are the result of multiple and combined imbalance of trace elements, which causes a relative (secondary) iodine deficiency. Thyroid disease in Primorye are environmentally caused diseases of technogenic origin, they are a consequence of the relative iodine deficiency, when on the background of normal iodine supply an imbalance of zinc, iron, cobalt, manganese with excess of such toxic trace elements as lead, strontium, nickel and chromium takes place. Thyroid pathology associated with iodine deficiency, along with other environmentally dependent diseases can be considered as a marker of ecological environment trouble.

  4. Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

    PubMed Central

    Jang, Jae-Kil; Shin, Jung-Ah

    2011-01-01

    Objectives This study was designed to evaluate exposure levels of various chemicals used in wafer fabrication product lines in the semiconductor industry where work-related leukemia has occurred. Methods The research focused on 9 representative wafer fabrication bays among a total of 25 bays in a semiconductor product line. We monitored the chemical substances categorized as human carcinogens with respect to leukemia as well as harmful chemicals used in the bays and substances with hematologic and reproductive toxicities to evaluate the overall health effect for semiconductor industry workers. With respect to monitoring, active and passive sampling techniques were introduced. Eight-hour long-term and 15-minute short-term sampling was conducted for the area as well as on personal samples. Results The results of the measurements for each substance showed that benzene, toluene, xylene, n-butyl acetate, 2-methoxyethanol, 2-heptanone, ethylene glycol, sulfuric acid, and phosphoric acid were non-detectable (ND) in all samples. Arsine was either "ND" or it existed only in trace form in the bay air. The maximum exposure concentration of fluorides was approximately 0.17% of the Korea occupational exposure limits, with hydrofluoric acid at about 0.2%, hydrochloric acid 0.06%, nitric acid 0.05%, isopropyl alcohol 0.4%, and phosphine at about 2%. The maximum exposure concentration of propylene glycol monomethyl ether acetate (PGMEA) was 0.0870 ppm, representing only 0.1% or less than the American Industrial Hygiene Association recommended standard (100 ppm). Conclusion Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during spills and/or maintenance tasks and by-product chemicals were not included. Supplementary studies might be required. PMID:22953186

  5. Investigation of bovine tuberculosis outbreaks by using a trace-back system and molecular typing in Korean Hanwoo beef cattle.

    PubMed

    Ku, Bok Kyung; Jeon, Bo-Young; Kim, Jae Myung; Jang, Young-Boo; Lee, Hyeyoung; Choi, Jae Young; Jung, Suk Chan; Nam, Hyang-Mi; Park, Hun; Cho, Sang-Nae

    2018-01-31

    Bovine tuberculosis is a chronic contagious disease responsible for major agricultural economic losses. Abattoir monitoring and trace-back systems are an appropriate method to control bovine tuberculosis, particularly in beef cattle. In the present study, a trace-back system was applied to bovine tuberculosis cases in Korean native Hanwoo beef cattle. Bovine tuberculosis was detected in three index beef cattle during abattoir monitoring in Jeonbuk Province, Korea, and the original herds were traced back from each index cow. All cattle in each original herd were subjected to tuberculin skin test. The positive rates in the tuberculin skin test were 64.6% (62 of 96), 4.8% (2 of 42), and 8.1% (3 of 37) at farms A, B, and C, respectively. On post-mortem examination of 56 tuberculin-positive cattle, 62% had granulomatous lesions, and Mycobacterium bovis was cultured from 40 (71.4%) of the cattle. Molecular typing by spoligotyping and the mycobacterial interspersed repetitive unit-variable-number tandem repeat assay revealed the genotype of the M. bovis strains from the index cattle were same as the M. bovis genotype in each original herd. The results suggest that tracing back from index cattle to the original herd is an effective method to control bovine tuberculosis in beef cattle.

  6. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    PubMed

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Leaching characteristics of selected South African fly ashes: Effect of pH on the release of major and trace species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitari, W.M.; Fatoba, O.O.; Petrik, L.F.

    2009-07-01

    Fly ash samples from two South African coal-fired power stations were subjected to different leaching tests under alkaline and acidic conditions in an attempt to assess the effect of pH on the leachability of species from the fly ashes and also assess the potential impact of the fly ashes disposal on groundwater and the receiving environment. To achieve this, German Standard leaching (DIN-S4) and Acid Neutralization Capacity (ANC) tests were employed. Ca, Mg, Na, K and SO{sub 4} were significantly leached into solution under the two leaching conditions with the total amounts in ANC leachates higher than that of DIN-S4.more » This indicates that a large fraction of the soluble salts in unweathered fly ash are easily leached. These species represents the fraction that can be flushed off initially from the surface of ash particles on contacting the ash with water. The amounts of toxic trace elements such as As, Se, Cd, Cr and Pb leached out of the fly ashes when in contact with de-mineralized water (DIN-S4 test) were low and below the Target Water Quality Range (TWQR) of South Africa. This is explained by their low concentrations in the fly ashes and their solubility dependence on the pH of the leaching solution. However the amounts of some minor elements such as B, Mn, Fe, As and Se leached out at lower pH ranging between 10 to 4 (ANC test) were slightly higher than the TWQR, an indication that the pH of the leaching solution plays a significant role on the leaching of species in fly ash. The high concentrations of the toxic elements released from the fly ashes at lower pH gives an indication that the disposal of the fly ash could have adverse effects on the receiving environment if the pH of the solution contacting the ashes is not properly monitored.« less

  8. Aquatic toxicity testing for aquatic life impact assessments and recent scientific advancements

    EPA Science Inventory

    The focus of this presentation is to provide an overview of the use of aquatic toxicity testing for assessing possible impacts to aquatic life and how new scientific approaches are being researched. Toxicity testing of both ambient and effluent monitoring samples will be discusse...

  9. Monitoring shipping emissions with MAX-DOAS measurements of reactive trace gases

    NASA Astrophysics Data System (ADS)

    Wittrock, Folkard; Peters, Enno; Seyler, André; Kattner, Lisa; Mathieu-Üffing, Barbara; Burrows, John P.; Chirkov, Maksym; Meier, Andreas C.; Richter, Andreas; Schönhardt, Anja; Schmolke, Stefan; Theobald, Norbert

    2014-05-01

    Air pollution from ships contributes to overall air quality problems and it has direct health effects on the population in particular in coastal regions, and in harbor cities. In order to reduce the emissions the International Maritime Organisation (IMO) have tightened the regulations for air pollution. E.g. Sulfur Emission Control Areas (SECA) have been introduced where the sulfur content of marine fuel is limited. However, up to now there is no regular monitoring system available to verify that ships are complying with the new regulations. Furthermore measurements of reactive trace gases in marine environments are in general sparse. The project MeSMarT (Measurements of shipping emissions in the marine troposphere, www.mesmart.de) has been established as a cooperation between the University of Bremen and the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) with support of the Helmholtz Research Centre Geesthacht to estimate the influence of ship emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. Here we present MAX-DOAS observations of NO2 and SO2 carried out during ship campaigns in the North and Baltic Sea and from two permanent sites close to the Elbe river (Wedel, Germany) and on the island Neuwerk close to the mouths of Elbe and Weser river. Mixing ratios of both trace gases have been retrieved using different approaches (pure geometric and taking into account the radiative transfer) and compared to in situ and air borne observations (see Kattner et al., Monitoring shipping emissions with in-situ measurements of trace gases, and Meier et al., Airborne measurements of NO2 shipping emissions using imaging DOAS) observations. Furthermore simple approaches have been used to calculate emission factors of NOx and SO2 for single ships.

  10. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis

    PubMed Central

    2017-01-01

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H2O2) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca2+ and Mg2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements. PMID:29240414

  11. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    PubMed

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  12. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. The development of sensors and techniques for in situ water quality monitoring

    NASA Technical Reports Server (NTRS)

    Liu, C. C.

    1976-01-01

    Enzyme electrodes and chloride ion electrodes were investigated for in situ monitoring of water quality. Preliminary results show that miniature chloride ion electrodes and a phenol sensor are most promising in determining trace contaminants in water.

  14. Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.

    PubMed

    Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John

    2011-01-01

    In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. LuminoTox as a tool to optimize ozone doses for the removal of contaminants and their associated toxicity.

    PubMed

    Marshall, Meghan; Yargeau, Viviane

    2018-03-01

    New treatment technologies and quality monitoring tools are needed for Contaminants of Emerging Concern (CECs) in wastewater. The purpose of this work was to assess the LuminoTox as a monitoring tool for CEC-associated toxicity in municipal wastewater during ozone treatment, and to evaluate the impact of different ozone feed concentrations at equivalent ozone doses for removing toxicity. The LuminoTox was sensitive at monitoring changes in toxicity of atrazine (ATZ) in synthetic wastewater (SWW) and in a 14 CECs mix in secondary effluent (SE) during ozone treatment. In both experiments, a decrease in toxicity was observed with increasing transferred ozone dose, which corresponded to a decrease in CEC concentration. For ATZ in SWW, a 5 ppm ozone feed showed better toxicity removal, up to 25% and 35% inhibition for LuminoTox algae biosensors SAPS I and SAPS II, respectively, for statistically equivalent ozone dose pairs of 43 mg (5 ppm ozone feed) and 36 mg (15 ppm ozone feed). The opposite was true for the 14 CECs in SE; the 15 ppm ozone feed showed better toxicity removal, up to a reduction of 37% and 40% for SAPS I and SAPS II inhibition, respectively, for statistically equivalent ozone dose pairs of 42 mg (5 ppm ozone feed) and 42 mg (15 ppm ozone feed). Different feed applications had an impact on the efficiency of toxicity removal for equivalent ozone doses; this efficiency appears to depend on the type of contaminants and/or wastewater matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. In Utero Exposure to Toxic Air Pollutants and Risk of Childhood Autism

    PubMed Central

    von Ehrenstein, Ondine S; Aralis, Hilary; Cockburn, Myles; Ritz, Beate

    2015-01-01

    Background Genetic and environmental factors are believed to contribute to the development of autism, but relatively few studies have considered potential environmental risks. Here we examine risks for autism in children related to in utero exposure to monitored ambient air toxics from urban emissions. Methods Among the cohort of children born in Los Angeles County, California 1995–2006, those whose mothers resided during pregnancy in a 5km buffer around air-toxics monitoring stations were included (n=148,722). To identify autism cases in this cohort, birth records were linked to records of children diagnosed with primary autistic disorder at the California Department of Developmental Services between 1998 and 2009 (n=768). We calculated monthly average exposures during pregnancy for 24 air toxics selected based on suspected or known neurotoxicity or neurodevelopmental toxicity. Factor analysis helped us identify the correlational structure among air toxics, and we estimated odds ratios (ORs) for autism from logistic regression analyses. Results Autism risks were increased per interquartile-range increase in average concentrations during pregnancy of several correlated toxics mostly loading on one factor, including 1,3-butadiene (OR=1.59 [95% confidence interval=1.18–2.15]), meta/para-xylene (1.51 [1.26–182]), other aromatic solvents, lead (1.49 [1.23–1.81]), perchloroethylene (1.40 [1.09–1.80]), and formaldehyde (1.34 [1.17–1.52]), adjusting for maternal age, race/ethnicity, nativity, education, insurance type, maternal birth place, parity, child sex, and birth year. Conclusions Risks for autism in children may increase following in utero exposure to ambient air toxics from urban traffic and industry emissions, as measured by community-based air -monitoring stations. PMID:25051312

  17. In utero exposure to toxic air pollutants and risk of childhood autism.

    PubMed

    von Ehrenstein, Ondine S; Aralis, Hilary; Cockburn, Myles; Ritz, Beate

    2014-11-01

    Genetic and environmental factors are believed to contribute to the development of autism, but relatively few studies have considered potential environmental risks. Here, we examine risks for autism in children related to in utero exposure to monitored ambient air toxics from urban emissions. Among the cohort of children born in Los Angeles County, California, 1995-2006, those whose mothers resided during pregnancy in a 5-km buffer around air toxics monitoring stations were included (n = 148,722). To identify autism cases in this cohort, birth records were linked to records of children diagnosed with primary autistic disorder at the California Department of Developmental Services between 1998 and 2009 (n = 768). We calculated monthly average exposures during pregnancy for 24 air toxics selected based on suspected or known neurotoxicity or neurodevelopmental toxicity. Factor analysis helped us identify the correlational structure among air toxics, and we estimated odds ratios (ORs) for autism from logistic regression analyses. Autism risks were increased per interquartile range increase in average concentrations during pregnancy of several correlated toxics mostly loading on 1 factor, including 1,3-butadiene (OR = 1.59 [95% confidence interval = 1.18-2.15]), meta/para-xylene (1.51 [1.26-1.82]), other aromatic solvents, lead (1.49 [1.23-1.81]), perchloroethylene (1.40 [1.09-1.80]), and formaldehyde (1.34 [1.17-1.52]), adjusting for maternal age, race/ethnicity, nativity, education, insurance type, parity, child sex, and birth year. Risks for autism in children may increase following in utero exposure to ambient air toxics from urban traffic and industry emissions, as measured by community-based air-monitoring stations.

  18. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R.

    2004-01-01

    The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism. ?? 2004 Published by Elsevier B.V.

  19. Are acid volatile sulfides (AVS) important trace metals sinks in semi-arid mangroves?

    PubMed

    Queiroz, Hermano Melo; Nóbrega, Gabriel Nuto; Otero, Xose L; Ferreira, Tiago Osório

    2018-01-01

    Acid-volatile sulfides (AVS) formation and its role on trace metals bioavailability were studied in semi-arid mangroves. The semi-arid climatic conditions at the studied sites, marked by low rainfall and high evapotranspiration rates, clearly limited the AVS formation (AVS contents varied from 0.10 to 2.34μmolg -1 ) by favoring oxic conditions (Eh>+350mV). The AVS contents were strongly correlated with reactive iron and organic carbon (r=0.84; r=0.83 respectively), evidencing their dominant role for AVS formation under semi-arid conditions. On the other hand, the recorded ΣSEM/AVS values remained >1 evidencing a little control of AVS over the bioavailability of trace metals and, thus, its minor role as a sink for toxic metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  1. Tolerance to cadmium in plants: the special case of hyperaccumulators.

    PubMed

    Verbruggen, Nathalie; Juraniec, Michal; Baliardini, Cecilia; Meyer, Claire-Lise

    2013-08-01

    On sols highly polluted by trace metallic elements the majority of plant species are excluders, limiting the entry and the root to shoot translocation of trace metals. However a rare class of plants called hyperaccumulators possess remarkable adaptation because those plants combine extremely high tolerance degrees and foliar accumulation of trace elements. Hyperaccumulators have recently gained considerable interest, because of their potential use in phytoremediation, phytomining and biofortification. On a more fundamental point of view hyperaccumulators of trace metals are case studies to understand metal homeostasis and detoxification mechanisms. Hyperaccumulation of trace metals usually depends on the enhancement of at least four processes, which are the absorption from the soil, the loading in the xylem in the roots and the unloading from the xylem in the leaves and the detoxification in the shoot. Cadmium is one of the most toxic trace metallic elements for living organisms and its accumulation in the environment is recognized as a worldwide concern. To date, only nine species have been recognized as Cd hyperaccumulators that is to say able to tolerate and accumulate more than 0.01 % Cd in shoot dry biomass. Among these species, four belong to the Brassicaceae family with Arabidopsis halleri and Noccaea caerulescens being considered as models. An update of our knowledge on the evolution of hyperaccumulators will be presented here.

  2. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    PubMed

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  3. Monitoring toxicity of polycyclic aromatic hydrocarbons in intertidal sediments for five years after the Hebei Spirit oil spill in Taean, Republic of Korea.

    PubMed

    Lee, Chang-Hoon; Lee, Jong-Hyeon; Sung, Chan-Gyoung; Moon, Seong-Dae; Kang, Sin-Kil; Lee, Ji-Hye; Yim, Un Hyuk; Shim, Won Joon; Ha, Sung Yong

    2013-11-15

    Ecotoxicological monitoring of intertidal sediments was performed for 5 years after the Hebei Spirit oil spill in Taean, Korea. Sediment toxicity was observed on most of the beaches 4 months after the spill and later decreased rapidly to nontoxic levels 8 months after the spill. The concentrations of total polycyclic aromatic hydrocarbons (TPAHs) in the sediments ranged from 2 to 530,000 ng/g during the monitoring. More than half of the samples exhibited significant toxicity 5 years after the Hebei Spirit oil spill. Using a logistic regression model, the median lethal concentration of TPAHs to amphipod Monocorophium uenoi was estimated to be 36,000 ng/g. From the 63 chemistry and toxicity data, the effect range-low, effect range median, threshold effect level, and probable effect level were derived to be 3190, 54,100, 2480, and 29,000 ng/g, respectively. The relative compositions of the PAH groups indicated that the weathering process is still ongoing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Digoxin therapeutic drug monitoring practices. A College of American Pathologists Q-Probes study of 666 institutions and 18,679 toxic levels.

    PubMed

    Howanitz, P J; Steindel, S J

    1993-07-01

    We investigated digoxin therapeutic drug monitoring practices in 666 institutions participating in Q-Probes, a quality improvement program of the College of American Pathologists. Participants used 13 different lower and 16 different upper limits for their therapeutic range. More than 280,000 digoxin levels were studied, and 6.7% (n = 8679) of results were in the toxic range (> 2.6 nmol/L). For the 77% of patients with toxic levels, the last digoxin dose was given orally; for 23% of patients, it was given intravenously; and for less than 1%, it was given intramuscularly. Between 22% and 31% of specimens in the toxic range were obtained before steady state had occurred, depending on the criteria used. Small institutions (less than 150 beds), outpatients, stat specimens, and laboratory policies not requiring the time of the last dose before measurement were associated with higher percentages of specimens drawn before the recommended time had elapsed. We describe digoxin monitoring practice patterns and provide suggestions for improvement.

  5. Australasian Society for Parenteral and Enteral Nutrition guidelines for supplementation of trace elements during parenteral nutrition.

    PubMed

    Osland, Emma J; Ali, Azmat; Isenring, Elizabeth; Ball, Patrick; Davis, Melvyn; Gillanders, Lyn

    2014-01-01

    This work represents the first part of a progressive review of AuSPEN's 1999 Guidelines for Provision of Micronutrient Supplementation in Adult Patients receiving Parenteral Nutrition, in recognition of the developments in the literature on this topic since that time. A systematic literature review was undertaken and recommendations were made based on the available evidence and with consideration to specific elements of the Australian and New Zealand practice environment. The strength of evidence underpinning each recommendation was assessed. External reviewers provided feedback on the guidelines using the AGREE II tool. Reduced doses of manganese, copper, chromium and molybdenum, and an increased dose of selenium are recommended when compared with the 1999 guidelines. Currently the composition of available multi-trace element formulations is recognised as an obstacle to aligning these guidelines with practice. A paucity of available literature and limitations with currently available methods of monitoring trace element status are acknowledged. The currently unknown clinical impact of changes to trace element contamination of parenteral solutions with contemporary practices highlights need for research and clinical vigilance in this area of nutrition support practice. Trace elements are essential and should be provided daily to patients receiving parenteral nutrition. Monitoring is generally only required in longer term parenteral nutrition, however should be determined on an individual basis. Industry is encouraged to modify existing multi-trace element solutions available in Australia and New Zealand to reflect changes in the literature outlined in these guidelines. Areas requiring research are highlighted.

  6. Comparison of Selected Metals Content in Cambodian Striped Snakehead Fish (Channa striata) Using Solar Drying System and Open Sun Drying

    PubMed Central

    Abu Bakar, Nur Faizah; Fudholi, Ahmad; Ruslan, Mohd Hafidz; Saroeun, Im

    2015-01-01

    The content of 12 elements in Cambodian dried striped snakehead fish was determined using inductively coupled plasma mass spectrometry. The present study compares the level of the trace toxic metals and nutritional trace elements in the fish processed using solar drying system (SDS) and open sun drying (OSD). The skin of SDS fish has lower level of As, Pb, and Cd compared to the OSD sample. As such, the flesh of the fish accumulated higher amount of toxic metals during OSD compared to SDS. However, arsenic was detected in both samples within the safe limit. The nutritional elements (Fe, Mn, Mg, Se, Mo, Cu, Ni, and Cr) were higher in the skin sample SDS fish compared to OSD fish. These beneficial metals were not accumulated in the flesh sample SDS fish demonstrating lower level compared to drying under conventional system. The reddish coloration of the SDS fish was due to the presence of high Cu content in both the skin and flesh samples which possibly account for no mold formation 5 days after packaging. As conclusion, drying of Cambodian C. striata using solar-assisted system has proven higher content of the nutritious elements compared to using the conventional system despite only slight difference in the toxic metals level between the two systems. PMID:25688274

  7. Health and Environmental Hazards of Electronic Waste in India.

    PubMed

    Borthakur, Anwesha

    2016-04-01

    Technological waste in the form of electronic waste (e-waste) is a threat to all countries. E-waste impacts health and the environment by entering the food chain in the form of chemical toxicants and exposing the population to deleterious chemicals, mainly in the form of polycyclic aromatic hydrocarbons and persistent organic pollutants. This special report tries to trace the environmental and health implications of e-waste in India. The author concludes that detrimental health and environmental consequences are associated with e-waste and the challenge lies in producing affordable electronics with minimum chemical toxicants.

  8. Duwamish Waterways Navigation Improvement Study: Review of Existing Information on Land-Use Plans and Aquatic Resources in and Adjacent to the Duwamish River and Elliott Bay, Washington

    DTIC Science & Technology

    1980-06-01

    some basiL ideas for a strategy to overcome these constraints. The proposed strategy includes prioritizing the Spokane Street Bridge and form- ing a... pesticides , PCB’s and other toxic substr.ces. The source of this pollution can be traced, in paxt, to combined and storm overflows and accidental spills...regarding toxicants in the river was reviewed. Data for PCB’s, pesticides , metals, and oil and grease are patchy. in all cases reported, the levels of

  9. Tracking pyrethroid toxicity in surface water samples: Exposure dynamics and toxicity identification tools for laboratory tests with Hyalella azteca (Amphipoda).

    PubMed

    Deanovic, Linda A; Stillway, Marie; Hammock, Bruce G; Fong, Stephanie; Werner, Inge

    2018-02-01

    Pyrethroid insecticides are commonly used in pest control and are present at toxic concentrations in surface waters of agricultural and urban areas worldwide. Monitoring is challenging as a result of their high hydrophobicity and low toxicity thresholds, which often fall below the analytical methods detection limits (MDLs). Standard daphnid bioassays used in surface water monitoring are not sensitive enough to protect more susceptible invertebrate species such as the amphipod Hyalella azteca and chemical loss during toxicity testing is of concern. In the present study, we quantified toxicity loss during storage and testing, using both natural and synthetic water, and presented a tool to enhance toxic signal strength for improved sensitivity of H. azteca toxicity tests. The average half-life during storage in low-density polyethylene (LDPE) cubitainers (Fisher Scientific) at 4 °C of 5 pyrethroids (permethrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, and esfenvalerate) and one organophosphate (chlorpyrifos; used as reference) was 1.4 d, and piperonyl butoxide (PBO) proved an effective tool to potentiate toxicity. We conclude that toxicity tests on ambient water samples containing these hydrophobic insecticides are likely to underestimate toxicity present in the field, and mimic short pulse rather than continuous exposures. Where these chemicals are of concern, the addition of PBO during testing can yield valuable information on their presence or absence. Environ Toxicol Chem 2018;37:462-472. © 2017 SETAC. © 2017 SETAC.

  10. Monitoring of Nonsteroidal Immunosuppressive Drugs in Patients With Lung Disease and Lung Transplant Recipients

    PubMed Central

    Meyer, Keith C; Nathanson, Ian; Angel, Luis; Bhorade, Sangeeta M; Chan, Kevin M; Culver, Daniel; Harrod, Christopher G; Hayney, Mary S; Highland, Kristen B; Limper, Andrew H; Patrick, Herbert; Strange, Charlie; Whelan, Timothy

    2012-01-01

    Objectives: Immunosuppressive pharmacologic agents prescribed to patients with diffuse interstitial and inflammatory lung disease and lung transplant recipients are associated with potential risks for adverse reactions. Strategies for minimizing such risks include administering these drugs according to established, safe protocols; monitoring to detect manifestations of toxicity; and patient education. Hence, an evidence-based guideline for physicians can improve safety and optimize the likelihood of a successful outcome. To maximize the likelihood that these agents will be used safely, the American College of Chest Physicians established a committee to examine the clinical evidence for the administration and monitoring of immunosuppressive drugs (with the exception of corticosteroids) to identify associated toxicities associated with each drug and appropriate protocols for monitoring these agents. Methods: Committee members developed and refined a series of questions about toxicities of immunosuppressives and current approaches to administration and monitoring. A systematic review was carried out by the American College of Chest Physicians. Committee members were supplied with this information and created this evidence-based guideline. Conclusions: It is hoped that these guidelines will improve patient safety when immunosuppressive drugs are given to lung transplant recipients and to patients with diffuse interstitial lung disease. PMID:23131960

  11. [Pollution characteristics of PCBs in electronic waste dismantling areas of Zhejiang province].

    PubMed

    Wang, Xiaofeng; Lou, Xiaoming; Han, Guangen; Shen, Haitao; Ding, Gangqiang

    2011-09-01

    To study the pollution level and distribution pattern of polychlorinated biphenyls (PCBs) in the environment media in electronic waste dismantling area of Zhejiang province. Water, soil and PM10 were sampled in electronic waste dismantling areas. The contents, distribution characteristics and toxic equivalents (TEQs) of PCBs in local environment were evaluated by ultra-trace detection methods. The PCBs contents of water, soil and PM10 in Luqiao and Zhenhai, the relatively high polluted areas, were higher than those in Longyou, the control area. The dominant PCBs detected from the environment in Luqiao were hexa-CBs (PCB138 and PCB153), while penta-CBs were dominant in Zhenhai and Longyou. TEQs in electronic waste recycling area were higher than those in control areas. The TEQs of PCBs in water and soil were the highest in Zhenhai, while the TEQs of PM10 were the highest in Luqiao. The local environment has been polluted by PCBs emitted from electronic waste recycling. PCBs pollution monitoring in electronic waste recycling area should be strengthened to prevent PCBs-induced health effects.

  12. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    PubMed

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples

    NASA Technical Reports Server (NTRS)

    Zlatkis, A. (Inventor)

    1977-01-01

    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.

  14. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, R. E.

    1987-10-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  15. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.

    1990-01-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  16. Efficacy of hair analysis for monitoring exposure to uranium: a mini-review.

    PubMed

    Joksić, Agnes Šömen; Katz, Sidney A

    2014-01-01

    In spite of the ease with which samples may be collected and the stability of the samples after collection, the use of hair mineral analysis for monitoring environmental exposures and evaluating heavy metal poisonings has remained controversial since its initial applications for these purposes in the early 1950s. Among the major arguments against using hair mineral analysis in general were the absence of biokinetic models and/or metabolic data that adequately described the incorporation of trace elements into the hair, the absence of correlations between the concentrations of trace elements in the hair and their concentrations in other tissues, the inability to distinguish between trace elements that were deposited in the hair endogenously and those that were deposited on the hair exogenously, the absence of reliable reference ranges for interpreting the results of hair mineral analysis and a lack of standard procedures for the collecting, preparing and analyzing the hair samples. The developments of the past two decades addressing these objections are reviewed here, and arguments supporting the use of hair analysis for monitoring environmental and/or occupational exposures to uranium are made on the basis of the information presented in this review.

  17. Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China.

    PubMed

    Zheng, Liu-Gen; Liu, Gui-Jian; Kang, Yu; Yang, Ren-Kang

    2010-07-01

    The Chaohu is one of the largest five freshwater lakes in China. It provides freshwater for agriculture, life, and part of industry. The quality of water becomes worst and worst due to the toxic matter. In this study, we collected the samples from the sedimentary mud in the lake. The distribution of some potential hazardous trace elements (Cu, Ni, Cr, As, Pb, Cd, and Hg) in the sediments of western Chaohu Lake, has been determined and studied, and the enrichment factors, the index of geoaccumulation, and potential ecological risk were analyzed and calculated. The results show that: the levels of selected potential hazardous trace element vary from different sampling sites and significant anthropogenic impact of Pb and Cd occur in sediments. The contamination rank of Pb and Cd are moderate, and Pb has a light potential ecological risk, but Cd is heavy. The total potential ecological risk of the selected hazardous trace elements in this study in Chaohu Lake is moderate. Cluster and correlation analysis indicate that the selected potential hazardous trace element pollutant has different source and co-contamination also occur in sediments.

  18. The Molecular Basis of Memory

    PubMed Central

    2012-01-01

    We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (NA = 6 × 1023). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson’s disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of “synaptic plasticity” affecting short-term memory, long-term memory, and forgetting. PMID:23050060

  19. Compilation Of Air Toxic and Trace Metal Summary Statistics

    EPA Pesticide Factsheets

    ... ity ity ity ity ity ity ity ity 1 "j ity i **J ity ity ity ity ity ity ity • <-j itv 1 uj ity ity ity itv > **j ity ity ity ity ity ity ity ity ity ity ity ity ity ity ity ity ity ity ity Si tes Sties Si ...

  20. In Situ Distribution And Speciation Of Toxic Copper, Nickel, And Zinc In Hydrated Roots Of Cowpea

    EPA Science Inventory

    The phytotoxicity of trace metals is of global concern due to contamination of the landscape by human activities. Using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy, the distribution and speciation of Cu, Ni, and Zn was examined in situ

  1. Investigation of the Preservation Method within Environmental Protection Agency Method 200.8

    EPA Science Inventory

    Lead (Pb) is a trace metal that is closely regulated in drinking water systems because of its harmful toxicity. The U.S. Environmental Protection Agency (USEPA) issued the Lead and Copper Rule (LCR), which defines the action level for Lead as 0.015 mg/L. Researchers and drinking ...

  2. TCDD-MEDIATED OXIDATIVE STRESS IN MALE RAT PUPS FOLLOWING PERINATAL EXPOSURE

    EPA Science Inventory

    TCDD is a highly persistent trace environmental contaminant and is one of the most potent toxicants known to man. Our laboratory has previously reported an increase in the production of reactive oxygen species (ROS) in the brain of female B6C3F1 mice following subchronic exposur...

  3. 76 FR 787 - Notice of Availability of the Recommended Toxicity Equivalence Factors (TEFs) for Human Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... manufacturing, combustion, and metal processing. There is global contamination of air, soil and water with trace... food chain, and accumulate in the tissues of animals. Human exposures to these compounds occur primarily through eating contaminated foods. The health effects from exposures to dioxins and DLCs have been...

  4. Cost Effectiveness Analysis of Clinically Driven versus Routine Laboratory Monitoring of Antiretroviral Therapy in Uganda and Zimbabwe

    PubMed Central

    Medina Lara, Antonieta; Kigozi, Jesse; Amurwon, Jovita; Muchabaiwa, Lazarus; Nyanzi Wakaholi, Barbara; Mujica Mota, Ruben E.; Walker, A. Sarah; Kasirye, Ronnie; Ssali, Francis; Reid, Andrew; Grosskurth, Heiner; Babiker, Abdel G.; Kityo, Cissy; Katabira, Elly; Munderi, Paula; Mugyenyi, Peter; Hakim, James; Darbyshire, Janet; Gibb, Diana M.; Gilks, Charles F.

    2012-01-01

    Background Despite funding constraints for treatment programmes in Africa, the costs and economic consequences of routine laboratory monitoring for efficacy and toxicity of antiretroviral therapy (ART) have rarely been evaluated. Methods Cost-effectiveness analysis was conducted in the DART trial (ISRCTN13968779). Adults in Uganda/Zimbabwe starting ART were randomised to clinically-driven monitoring (CDM) or laboratory and clinical monitoring (LCM); individual patient data on healthcare resource utilisation and outcomes were valued with primary economic costs and utilities. Total costs of first/second-line ART, routine 12-weekly CD4 and biochemistry/haematology tests, additional diagnostic investigations, clinic visits, concomitant medications and hospitalisations were considered from the public healthcare sector perspective. A Markov model was used to extrapolate costs and benefits 20 years beyond the trial. Results 3316 (1660LCM;1656CDM) symptomatic, immunosuppressed ART-naive adults (median (IQR) age 37 (32,42); CD4 86 (31,139) cells/mm3) were followed for median 4.9 years. LCM had a mean 0.112 year (41 days) survival benefit at an additional mean cost of $765 [95%CI:685,845], translating into an adjusted incremental cost of $7386 [3277,dominated] per life-year gained and $7793 [4442,39179] per quality-adjusted life year gained. Routine toxicity tests were prominent cost-drivers and had no benefit. With 12-weekly CD4 monitoring from year 2 on ART, low-cost second-line ART, but without toxicity monitoring, CD4 test costs need to fall below $3.78 to become cost-effective (<3xper-capita GDP, following WHO benchmarks). CD4 monitoring at current costs as undertaken in DART was not cost-effective in the long-term. Conclusions There is no rationale for routine toxicity monitoring, which did not affect outcomes and was costly. Even though beneficial, there is little justification for routine 12-weekly CD4 monitoring of ART at current test costs in low-income African countries. CD4 monitoring, restricted to the second year on ART onwards, could be cost-effective with lower cost second-line therapy and development of a cheaper, ideally point-of-care, CD4 test. PMID:22545079

  5. Toxic trace elements in maternal and cord blood and social determinants in a Bolivian mining city.

    PubMed

    Barbieri, Flavia L; Gardon, Jacques; Ruiz-Castell, María; Paco V, Pamela; Muckelbauer, Rebecca; Casiot, Corinne; Freydier, Rémi; Duprey, Jean-Louis; Chen, Chih-Mei; Müller-Nordhorn, Jacqueline; Keil, Thomas

    2016-01-01

    This study assessed lead, arsenic, and antimony in maternal and cord blood, and associations between maternal concentrations and social determinants in the Bolivian mining city of Oruro using the baseline assessment of the ToxBol/Mine-Niño birth cohort. We recruited 467 pregnant women, collecting venous blood and sociodemographic information as well as placental cord blood at birth. Metallic/semimetallic trace elements were measured using inductively coupled plasma mass spectrometry. Lead medians in maternal and cord blood were significantly correlated (Spearman coefficient = 0.59; p < 0.001; 19.35 and 13.50 μg/L, respectively). Arsenic concentrations were above detection limit (3.30 μg/L) in 17.9% of maternal and 34.6% of cord blood samples. They were not associated (Fischer's p = 0.72). Antimony medians in maternal and cord blood were weakly correlated (Spearman coefficient = 0.15; p < 0.03; 9.00 and 8.62 μg/L, respectively). Higher concentrations of toxic elements in maternal blood were associated with maternal smoking, low educational level, and partner involved in mining.

  6. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  7. Calcium phosphate stabilization of fly ash with chloride extraction.

    PubMed

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  8. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Protective Effect of Hydroalcoholic Extract of Zingiber officinale Roscoe (Ginger) on Ethanol-Induced Reproductive Toxicity in Male Rats.

    PubMed

    Akbari, Abolfazl; Nasiri, Khadijeh; Heydari, Mojtaba; Mosavat, Seyed Hamdollah; Iraji, Aida

    2017-10-01

    This study was conducted to evaluate the prophylactic effect of ginger extract on ethanol-induced reproductive toxicity in male rats. Twenty-eight adult male Sprague-Dawley rats were randomly divided into 4 groups and treated daily for 28 days as follows: control, control-ginger (1 g/kg of body weight [BW]/day by gavage), ethanol group (ethanol 4 g/kg of BW/day by gavage), and ginger-ethanol group. At the end of the experiment, all the rats were sacrificed and their testes were removed and used for measurement of the total homocysteine (tHcy), trace elements, antioxidant enzymes activity, and malondialdehyde (MDA). The results in the ethanol group indicate that ethanol decreased antioxidant enzymes activity and increased MDA and tHcy compared with the control groups ( P < .05). In ginger-ethanol group, ginger improved antioxidant enzymes activity and reduced tHcy and MDA compared to ethanol group ( P < .05). It can be concluded that ginger protects the ethanol-induced testicular damage and improves the hormonal levels, trace elements, antioxidant enzymes activity, and decreases tHcy and MDA.

  10. Toxicity of herbicides in highway runoff.

    PubMed

    Huang, Xinjiang; Fong, Stephanie; Deanovic, Linda; Young, Thomas M

    2005-09-01

    Previous field monitoring at two highway sites found highway-applied herbicides in storm water runoff at maximum concentrations ranging from 10 microg/L for glyphosate and diuron to as high as 200 microg/L for oryzalin. To determine whether these herbicides at these concentrations can cause any toxicity to aquatic organisms, a standard toxicity study was conducted. Storm water was collected along Highway 37, Sonoma County, California, USA, and the herbicides isoxaben, oryzalin, diuron, clopyralid, and glyphosate were spiked into the storm water at the highest concentrations observed during the five previous field-monitoring campaigns. Three different toxicity studies were conducted and the results showed the following: No significant reduction in reproduction or increase in mortality relative to the control for an 8-d Ceriodaphnia (water flea) toxicity test; no significant increase in mortality or decrease in biomass compared to the control during a 7-d Pimephales (fish) toxicity test; and, in a 96-h Selenastrum (algae) toxicity test, both the 10-microg/L diuron treatment and the combined 50-microg/L isoxaben plus 200-microg/L oryzalin treatment produced significant (p < 0.05) reductions in algal growth compared to the controls, although the 30-microg/L clopyralid or 10-microg/L glyphosate treatments did not exhibit any toxic effects.

  11. Latest approaches on green chemistry preconcentration methods for trace metal determination in seawater--a review.

    PubMed

    La Colla, Noelia Soledad; Domini, Claudia Elizabeth; Marcovecchio, Jorge Eduardo; Botté, Sandra Elizabeth

    2015-03-15

    Evaluation of trace metal levels in seawater samples is undertaken regularly by research groups all over the world, leading to a growing demand for techniques involving fewer toxic reagents, less time-consuming protocols and lower limits of detection. This review focuses on providing a brief but concise description of the latest methodologies developed to this end, outlining the advantages and disadvantages of the various protocols, chelating and dispersive agents and instruments used. Conclusions are drawn on the basis of the articles reviewed, highlighting improvements introduced in order to enhance the performance of the protocols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media

    NASA Astrophysics Data System (ADS)

    Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.

    2015-06-01

    Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.

  13. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes

    2015-07-21

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.

  14. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Normandeau, Charles-O.; Viens, Jeff; Lamhamedi, Mohammed S.; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322

  15. On-Orbit Measurements of the ISS Atmosphere by the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Darrach, M. R.; Chutjian, A.; Bornstein, B. J.; Croonquist, A. P.; Garkanian, V.; Haemmerle, V. R.; Hofman, J.; Heinrichs, W. M.; Karmon, D.; Kenny, J.; hide

    2011-01-01

    We report on trace gas and major atmospheric constituents results obtained by the Vehicle Cabin Atmosphere Monitor (VCAM) during operations aboard the International Space Station (ISS). VCAM is an autonomous environmental monitor based on a miniature gas chromatograph/mass spectrometer. It was flown to the ISS on shuttle mission STS-131 and commenced operations on 6/10/10. VCAM provides measurements of ppb-to-ppm levels of volatile trace-gas constituents, and of the atmospheric major constituents (nitrogen, oxygen, argon, and carbon dioxide) in a space vehicle or station. It is designed to operate autonomously and maintenance-free, approximately once per day, with a self-contained gas supply sufficient for a one-year lifetime. VCAM is designed to detect and identify 90% of the target compounds at their 180-day Spacecraft Maximum Allowable Concentration levels.

  16. Interactions between CO2, minerals, and toxic ions: Implications for CO2 leakage from deep geological storage (Invited)

    NASA Astrophysics Data System (ADS)

    Renard, F.; Montes-Hernandez, G.

    2013-12-01

    The long-term injection of carbon dioxide into geological underground reservoirs may lead to leakage events that will enhance fluid-rock interactions and question the safety of these repositories. If injection of carbon dioxide into natural reservoirs has been shown to mobilize some species into the pore fluid, including heavy metals and other toxic ions, the detailed interactions remain still debated because two main processes could interact and modify fluid composition: on the one hand dissolution/precipitation reactions may release/incorporate trace elements, and on the other hand adsorption/desorption reactions on existing mineral surfaces may also mobilize or trap these elements. We analyze here, through laboratory experiments, a scenario of a carbon dioxide reservoir that leaks into a fresh water aquifer through a localized leakage zone such as a permeable fault zone localized in the caprock and enhance toxic ions mobilization. Our main goal is to evaluate the potential risks on potable water quality. In a series of experiments, we have injected carbon dioxide into a fresh water aquifer-like medium that contained carbonate and/or iron oxide particles, pure water, and various concentrations of trace elements (copper, arsenic, cadmium, and selenium, in various states of oxidation). This analogue and simplified medium has been chosen because it contains two minerals (calcite, goethite) widespread found in freshwater aquifers. The surface charge of these minerals may vary with pH and therefore control how trace elements are adsorbed or desorbed, depending on fluid composition. Our experiments show that these minerals could successfully prevent the remobilization of adsorbed Cu(II), Cd(II), Se(IV), and As(V) if carbon dioxide is intruded into a drinking water aquifer. Furthermore, a decrease in pH resulting from carbon dioxide intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite and calcite are sufficiently available in the aquifer. Our results also suggest that adsorption of cadmium and copper could be promoted by calcite dissolution. These ions adsorbed on calcite are not remobilized when carbon dioxide is intruded into the system, even if calcite dissolution is intensified. On the other hand, arsenite As(III), significantly adsorbed on goethite, is partially remobilized by carbon dioxide intrusion. These results show that carbon dioxide may, in some case remobilize some toxic ions in the pore fluid, but the pH effect may also enhance adsorption of other toxic ione on calcite and goethite particles.

  17. Application of recombinant fluorescent mammalian cells as a toxicity biosensor.

    PubMed

    Kim, E J; Lee, Y; Lee, J E; Gu, M B

    2002-01-01

    With respect to developing a more sensitive biosensor, a recombinant fluorescent Chinese Hamster Ovary cell line was used for the monitoring of various toxicants. Both cell lines, EFC-500 and KFC-A10, were able to detect toxicants sensitively. They were characterized with mitomycin C and gamma-ray as genotoxicants and bisphenol A, nonylphenol, ziram and methyl bromide as possible and known EDCs. When compared to each other, the response of KFC-A10 was generally more informative and sensitive. Compared to typical bacterial biosensor systems, these cell lines offered a sensitivity of 2- to 50-fold greater for the tested chemicals. Based on these results, the use of mammalian cells offers a sensitive biosensor system that is not only fast, cheap and reproducible but also capable of monitoring the endocrine-like characteristics of environmental toxicants.

  18. Toxicity of agricultural subsurface drainwater from the San Joaquin Valley, California to juvenile chinook salmon and striped bass

    USGS Publications Warehouse

    Saiki, Michael K.; Jennings, Mark R.; Wiedmeyer, Raymond H.

    1992-01-01

    Juvenile chinook salmon Oncorhynchus tshawytscha (40-50 mm total length, TL) and striped bass Morone saxatilis (30-40 mm TL) were exposed to serial dilutions (100, 50, 25, and 12.5%) of agricultural subsurface drainwater (WWD), reconstituted drainwater (RWWD), and reconstituted seawater (IO). Agricultural subsurface drainwater contained naturally elevated concentrations of major ions (such as sodium and sulfate) and trace elements (especially boron and selenium), RWWD contained concentrations of major ions that mimicked those in WWD but trace elements were not elevated, and IO contained concentrations of total dissolved salt that were similar to those in WWD and RWWD but chloride replaced sulfate as the dominant anion. After 28 d of static exposure, over 75% of the chinook salmon in 100% WWD had died, whereas none had died in other dilutions and water types. Growth of chinook salmon in WWD and RWWD, but not in IO, exhibited dilution responses. All striped bass died in 100% WWD within 23 d, whereas 19 of 20 striped bass had died in 100% RWWD after 28 d. In contrast, none died in 100% IO. Growth of striped bass was impaired only in WWD. Fish in WWD accumulated as much as 200 μg/g (dry-weight basis) of boron, whereas fish in control water accumulated less than 3.1 μg/g. Although potentially toxic concentrations of selenium occurred in WWD (geometric means, 158-218 μg/L), chinook salmon and striped bass exposed to this water type accumulated 5.7 μg Se/g or less. These findings indicate that WWD was toxic to chinook salmon and striped bass. Judging from available data, the toxicity of WWD was due primarily to high concentrations of major ions present in atypical ratios, to high concentrations of sulfate, or to both. High concentrations of boron and selenium also may have contributed to the toxicity of WWD, but their effects were not clearly delineated.

  19. Selected streambed sediment compounds and water toxicity results for Westside Creeks, San Antonio, Texas, 2014

    USGS Publications Warehouse

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.

    2016-12-01

    IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and possibly bioavailability of contaminants in disturbed streambed sediments), the toxicity of water samples to the indicator species Pimephales promelas (fathead minnow) was evaluated by using standard 7-day water-toxicity testing.

  20. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China.

    PubMed

    Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing

    2013-05-01

    The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.

  1. Toxic and trace metal concentrations in liver and kidney of dogs: influence of diet, sex, age, and pathological lesions.

    PubMed

    Löpez-Alonso, Marta; Miranda, Marta; García-Partida, Paulino; Mendez, Adriana; Castillo, Cristina; Benedito, José Luis

    2007-05-01

    The aim of this study was to provide data on the main toxic and trace metals in the liver and kidney of domestic dogs in Galicia, NW Spain and to evaluate the influence of diet, sex, age, and pathological lesions on metal accumulation. Samples of the liver and kidney from 77 male and female dogs, aged between 6 mo and 18 yr, were collected during ordinary necropsy. Samples were acid-digested and metal concentrations determined by inductively coupled plasma (ICP)-mass spectrometry and ICP-atomic emission spectrometry. Mean toxic metal concentrations (geometric means for liver and kidney respectively) were 11.5 and 15.8 microg/kg wet weight for As, 56.3 and 166 microg/kg for Cd, 32.7 and 51.9 microg/kg for Hg, and 60.1 and 23.6 microg/kg for Pb. For the trace metals, these concentrations were respectively 16.3 and 21.0 microg/kg for Co, 57.6 and 43.9 microg/kg for Cr, 42.1 and 5.95 mg/kg for Cu, 394 mg/kg and 95.7 mg/kg for Fe, 2.39 and 0.956 mg/kg for Mn, 0.522 and 0.357 mg/kg for Mo, 23.8 and 26.8 microg/kg for Ni, 0.686 and 1.39 mg/kg for Se, and 46.7 and 26.0 mg/kg for Zn. Cd concentrations in the kidney significantly increased with age, and Co concentrations in the liver and kidney significantly decreased with age. Hepatic Pb concentrations were significantly higher in growing (<1 yr) and old (>10 yr) dogs. Animals with pathological lesions showed significantly higher Co and lower Mn and Zn concentrations in liver than animals without macroscopic abnormalities. Dogs that received commercial diets in general showed low variability in hepatic mineral status compared to animals that receive homemade feeds or a mixture of commercial and homemade feeds.

  2. Facilitating the afforestation of Mediterranean polluted soils by nurse shrubs.

    PubMed

    Domínguez, María T; Pérez-Ramos, Ignacio M; Murillo, José M; Marañón, Teodoro

    2015-09-15

    The revegetation of polluted sites and abandoned agricultural soils is critical to reduce soil losses and to control the spread of soil pollution in the Mediterranean region, which is currently exposed to the greatest soil erosion risk in Europe. However, events of massive plant mortality usually occur during the first years after planting, mainly due to the adverse conditions of high irradiance and drought stress. Here, we evaluated the usefulness of considering the positive plant-plant interactions (facilitation effect) in the afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in southwestern Spain, and monitored seedling growth, survival, and chemical composition during three consecutive years. Seedling survival greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs increased along the gradient of soil pollution, in agreement with the stress gradient hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic stress. Although the accumulation of trace elements in seedling leaves was higher underneath shrub, the shading conditions provided by the shrub canopy allowed seedlings to cope with the toxicity provoked by the concurrence of low pH and high trace element concentrations in the most polluted sites. Our results show that the use of shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted lands under Mediterranean conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sweet little Gabonese palm wine: a neglected alcohol.

    PubMed

    Mavioga, E M; Mullot, J U; Frederic, C; Huart, B; Burnat, P

    2009-01-01

    During the last ten years, consumption of palm wine, a popular traditional alcoholic beverage, seriously increases in Gabon. This sweet beverage seems to be the main alcohol and the most drunken in low socioeconomic population. To have an idea of its composition and toxicity, 21 samples of palm wine were collected in the country and analysed. Twenty-one palm wine samples were randomly selected from all over Gabon. Methanol and ethanol concentrations in the samples were measured by gas chromatography. Aromatic hydrocarbons were measured by selected ion monitoring mode in mass spectrometry. Delection of heavy metals was by standard techniques. Gabonese palm wine contained ethanol at a mean concentration of about 60 g*L-1, i.e. 7.5 degrees (volume %), volatile components such as alcohols, aldehydes, carboxylic acids and esters and trace metals. Trace metals were present at low concentrations below internationally recognized maximal limits for alcoholic beverages with less than 2 microg*L-1 for cadmium, less than 10 microg*L-1 for arsenic and for lead 15 samples with concentrations under 10 microg*L-1 and the last six samples with concentrations between 11 and 61 microg*L-1. None of the searched aromatic or chlorinated solvents, indicative of refined fuel or industrial contamination, was detected. For the parameters analyzed here, there seems to be no significant difference in constitution between Gabonese wine palm and others kind of palm wine produced in West Africa. This alcohol needs to be more considered by public health authorities and medical teams because of its health and economic consequences.

  4. Planning studies for measurement of chemical emissions in stack gases of coal-fired power plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, W.J.; Gooch, J.P.; Dahlin, R.S.

    1983-03-01

    Airborne emissions from coal-fired power plants consist of sulfur, nitrogen, and carbon oxides, as well as traces of certain metals or elements, radionuclides, and organic compounds that have the potential of producing adverse health effects if inhaled. To assess this potential toxicity, samples must be obtained and characterized on the basis of quantity, their chemistry, and toxicity. Sample representativeness and use of proper chemical-biological procedures are the critical for providing input into current research directed toward source apportionment and inhalation toxicology. Obtaining a valid stack sample (gases and particles) from each of more than 1500 US coal-fired power plant ismore » not practical; consequently 33 plants have been selected, taking into account plant design and operating parameters that can affect the characteristics of stack chemical emissions. Since such a program has an estimated cost of $20 million over many years, it is recommended that the initial program consists of sampling only six of the 33 units, selected with EPRI guidance, at an estimated cost of $3.5 million over a 30 month period. The plan is directed at in-stack sampling, plume and atmospheric transformations being beyond the project scope. Various stack sampling methods are considered. For particles, a modified SASS train seems best, and for gases, either resin traps or impingers are probably best. Artifact formation must be minimized. Chemical analysis procedures are to be guided by the known toxicity of species present. Procedures are outlined for organics (volatile and nonvolatile), trace elements, inorganics, and gases. Bioassay methods are restricted to in vitro, subdivided into those assays that detect genetic and direct cellular toxicity.« less

  5. Large Aquatic Ecosystem Restoration Monitoring for Decision Makers: Monitoring to Target and Evaluate Success of Ecosystem Restoration

    EPA Science Inventory

    Monitoring ecosystem restoration at various scales in LAEs can be challenging, frustrating and rewarding. Some of the major ecosystem restoration monitoring occurring in LAEs include: seagrass expansion/contraction; dead zone sizes; oyster reefs; sea turtle nesting; toxic and nu...

  6. Behavioral tracing demonstrates dietary nutrient discrimination in two-spotted crickets Gryllus bimaculatus.

    PubMed

    Fukumura, Keisuke; Nagata, Shinji

    2017-10-01

    Animals select appropriate diets to meet their nutritional requirements. Here, we demonstrate the availability for analysis of feeding preference using an orthopteran, the two-spotted cricket Gryllus bimaculatus. A time-course study of these insects, involving continuous recording and tracing behavior for 9 h, allowed us to monitor discrimination of diet that contained various nutrients.

  7. Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.

  8. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice.

    PubMed

    Zhang, Jinsong; Wang, Xufang; Xu, Tongwen

    2008-01-01

    Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.

  9. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  10. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits.

    PubMed

    Madejón, P; Ciadamidaro, L; Marañón, T; Murillo, J M

    2013-01-01

    Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  11. Leaching characteristics of copper flotation waste before and after vitrification.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri

    2006-12-01

    Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.

  12. Application of dispersive solid phase extraction for trace analysis of toxic chemicals in foods.

    PubMed

    Neely, Sarah; Martin, Jordan; da Cruz, Natalia Ferreira; Piester, Gavin; Robinson, Morgan; Okoniewski, Richard; Tran, Buu N

    2018-05-29

    The objectives of this study were to develop and validate a method for the identification of toxic organic chemicals, including groups of controlled substances, alkaloids and pesticides that are highly toxic and considered threats to public health. This project aims to ensure our laboratory's readiness to respond to emergencies involving our food supply in cooperation with the Food Emergency Response Network (FERN) program. The food matrices were homogenized in a blender or food processor prior to extraction with an acetonitrile-water mixture using a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) procedure. The extracts were then analyzed by either gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-electrospray tandem mass spectrometry (LC-ESI/MS/MS). Method validation was performed on a variety of food matrices including lettuce, grapes, milk, chicken, pork and beef. MDLs for the toxic compounds ranged from 0.01 to 0.66 mg/kg (ppm). The findings in this study will provide a valuable resource for the determination of toxic chemicals in food matrices for emergency response situations. Copyright © 2018. Published by Elsevier B.V.

  13. Novel approaches to improving the chemical safety of the meat chain towards toxicants.

    PubMed

    Engel, E; Ratel, J; Bouhlel, J; Planche, C; Meurillon, M

    2015-11-01

    In addition to microbiological issues, meat chemical safety is a growing concern for the public authorities, chain stakeholders and consumers. Meat may be contaminated by various chemical toxicants originating from the environment, treatments of agricultural production or food processing. Generally found at trace levels in meat, these toxicants may harm human health during chronic exposure. This paper overviews the key issues to be considered to ensure better control of their occurrence in meat and assessment of the related health risk. We first describe potential contaminants of meat products. Strategies to move towards a more efficient and systematic control of meat chemical safety are then presented in a second part, with a focus on emerging approaches based on toxicogenomics. The third part presents mitigation strategies to limit the impact of process-induced toxicants in meat. Finally, the last part introduces methodological advances to refine chemical risk assessment related to the occurrence of toxicants in meat by quantifying the influence of digestion on the fraction of food contaminants that may be assimilated by the human body. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Soluble Nutrient and Trace Metal Fluxes from Aerosol Dry Deposition to Elkhorn Slough, CA

    NASA Astrophysics Data System (ADS)

    Gray, E. T.; Paytan, A.; Haskins, J.

    2009-12-01

    Atmospheric deposition has been widely recognized as a source of pollutants and nutrients to coastal ecosystems. Specifically, deposition includes nitrogen compounds, sulfur compounds, mercury, pesticides, phosphate, trace metals and other toxic compounds that can travel great distances in aerosols. These components can come from both natural (volcanoes, mineral dust, forest fires) and anthropogenic (fossil fuels, chemical byproducts, incineration of waste) sources. These pollutants may affect ecosystem health and water quality with environmental impacts such as eutrophication, contaminated fish and harmful algal blooms. In this study we focus on dry deposition to Elkhorn Slough, California. Size fractionated aerosol samples (PM 2.5 and PM 10) collected continuously over a seven day period using a cascade impactor are used along with a deposition model to determine the soluble nutrient and trace metal fluxes on the Elkhorn Slough ecosystem. Atmospheric deposition inputs will be compared to other sources and their potential impact evaluated.

  15. Concentrations of trace elements in tissues of red fox (Vulpes vulpes) and stone marten (Martes foina) from suburban and rural areas in Croatia.

    PubMed

    Bilandžić, Nina; Dežđek, Danko; Sedak, Marija; Dokić, Maja; Solomun, Božica; Varenina, Ivana; Knežević, Zorka; Slavica, Alen

    2010-11-01

    Trace elements concentrations (As, Cd, Cu, Pb and Hg) were determined in the liver, kidney and muscle of 28 red fox (Vulpes vulpes) and 16 stone marten (Martes foina) from suburban and rural habitats from Croatia. Rural and suburban habitats affected Cd and Hg levels in the muscle, liver and kidney of red fox. Significant differences in metal concentrations in the muscle, liver and kidney were detected among species. Suburban stone marten accumulated the highest levels of trace elements (mg/kg w.w.): in muscle 0.019 for Hg; in liver 0.161 for Cd, 36.1 for Cu and 0.349 for Pb; in kidney 1.34 for Cd and 0.318 for Pb. Values observed were higher than those found in suburban red fox and therefore, may represent an important bioindicator for the accumulation of toxic metals in urbanized habitats.

  16. Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant.

    PubMed

    Starvin, A M; Rao, T Prasada

    2004-09-10

    As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.

  17. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  18. Tires, Worms and Weathering: Investigating the Role of Earthworm Processes in Urban Soils Receiving Roadway Derived Contaminants

    NASA Astrophysics Data System (ADS)

    Carroll, W.; Lev, S. M.; Szlavecz, K.; Landa, E. R.; Casey, R.; Snodgrass, J. W.

    2006-05-01

    Increased development around urban centers has altered the biogeochemistry of near surface systems. One major impact of development has been an increase in the availability of potentially toxic trace metals in soils and surface waters. A primary source of trace metals to near surface environments in urban systems is roadway runoff and dust. The potential hazard that roadway runoff and dust pose to biota is not well understood and is an area of extensive investigation in the multi-disciplinary field of environmental biogeochemistry. Because earthworms ingest, transport, process and excrete large amounts of soil on a daily basis, earthworms can have a profound impact on soil chemistry and the bioavailability of potentially toxic trace metals. Therefore, it is important to investigate how earthworms are affecting the distribution and bioavailability of potentially toxic metals in the soils that they re-work. Results from a set of mesocosm experiments using the native endogeic earthworm species Eisenoides loennbergi and soils from the Red Run watershed in Baltimore County, MD, exhibit evidence of the physical and chemical earthworm weathering processes over time periods as short as 3 week. The target element for this experiment was Zn which is highly enriched in roadway dust. In this study, 200 g of soil was amended with roadway dust. The total mass of Zn introduced was 20 mg making the target concentration 159 ppm. Six replicates were prepared with leaf litter added as a food source. Ten earthworms were then introduced into the soils. Two duplicate batches were then held at constant moisture (70%) and temperature (16 degrees C) for three weeks. An additional four were let run for six weeks. Control samples for both time periods show no change in either total Zn or extractable (1 M MgCl2) Zn concentration. The amended samples however, display evidence of extensive mixing and an increase in the extractable Zn that can be attributed to earthworm weathering processes. The results from this initial experimental work suggest that there is an important physical component to trace metal fate and transport in urban soils that is earthworm dominated and that earthworm processing can alter the extractable fraction of roadway dust.

  19. Reconnaissance of chemical and physical characteristics of selected bottom sediments of the Caloosahatchee River and estuary, tributaries, and contiguous bays, Lee County, Florida, July 20-30, 1998

    USGS Publications Warehouse

    Fernandez, Mario; Marot, M.E.; Holmes, C.W.

    1999-01-01

    This report summarizes a reconnaissance study, conducted July 20-30, 1998, of chemical and physical characteristics of recently deposited bottom sediments in the Caloosahatchee River and Estuary. Recently deposited sediments were identified using an isotopic chronometer, Beryllium-7 (7Be), a short-lived radioisotope. Fifty-nine sites were sampled in an area that encompasses the Caloosahatchee River (River) about three miles upstream from the Franklin Lock (S-79), the entire tidally affected length of the river (estuary), and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound in Lee County, Florida. Bottom sediments were sampled for 7Be at 59 sites. From the results of the 7Be analysis, 30 sites were selected for physical and chemical analysis. Sediments were analyzed for particle size, total organic carbon (TOC), trace elements, and toxic organic compounds, using semiquantitative methods for trace elements and organic compounds. The semiquantitative scans of trace elements indicated that cadmium, copper, lead, and zinc concentrations, when normalized to aluminum, were above the natural background range at 24 of 30 sites. Particle size and TOC were used to characterize sediment deposition patterns and organic content. Pesticides, polychlorinated biphenyls (PCBs), and carcinogenic polycyclic aromatic hydrocarbons (CaPAHs) were determined at 30 sites using immunoassay analysis. The semiquantitative immunoassay analyses of toxic organic compounds indicated that all of the samples contained DDT, cyclodienes as chlordane (pesticides), and CaPAHs. PCBs were not detected. Based on analyses of the 30 sites, sediments at 10 of these sites were analyzed for selected trace elements and toxic organic compounds, including pesticides, PCBs, and PAHs, using quantitative laboratory procedures. No arsenic or cadmium was detected. Zinc was detected at two sites with concentrations greater than the lower limit of the range of sediment contaminant concentrations that are usually or always associated with adverse effects (Florida Department of Environmental Protection's Sediment Quality Assessment Guidelines). Organochlorine pesticides were detected at four sites at concentrations below the reporting limits; there were no organophosphorus pesticides or PCBs detected. PAHs were detected at eight sites; however, only four sites had concentrations above the reporting limit.

  20. [Ion mobility spectrometer (IMS): a novel online monitor of trace volatile organic compounds].

    PubMed

    Li, Fang; Xie, Zhi-yong; Schmidt, H; Sielemann, S; Baumbach, J I

    2002-12-01

    The principle, character and developments of the instrument of ion mobility spectrometry are introduced, the applications of IMS to chemical warfare agents, explosives, drugs, environments monitoring and on-site industrial sensing are discussed, and some work on IMS in ISAS is represented.

  1. SEASONAL MONITORING OF ELEMENTS AT THREE CONSTRUCTED TREATMENT WETLANDS: 1999-2001

    EPA Science Inventory

    A suite of major, minor, and trace elements in sediment, pore water, and overlying water were monitored during winter and summer over a three year period at three different types of constructed treatment wetlands to evaluate their efficacy with season. Acid-volatile sulfide (AVS)...

  2. Trace Gas Monitoring

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space technology is contributing to air pollution control primarily through improved detectors and analysis methods. Miniaturized mass spectrometer is under development to monitor vinyl chloride and other hydrocarbon contaminants in an airborne laboratory. Miniaturized mass spectrometer can be used to protect personnel in naval and medical operations as well as aboard aircraft.

  3. SNRB{trademark} air toxics monitoring. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process asmore » well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.« less

  4. Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy.

    PubMed

    Turconi, Giovanna; Minoia, Claudio; Ronchi, Anna; Roggi, Carla

    2009-04-01

    The significant role of trace elements in human health is well documented. Trace elements are those compounds that need to be present in the human diet to maintain normal physiological functions. However, some microelements may become harmful at high levels of exposure, or, on the other hand, may give rise to malnutrition, when their exposure is too low. The aim of the present study was to provide a reliable estimate of the dietary exposure of twenty-one trace elements in a Northern Italian area. For this purpose, trace element analyses were undertaken on total diet samples collected from a university cafeteria in Pavia, Northern Italy. The average daily exposure for the adult people was calculated on the basis of food consumption frequency, portion size and trace element levels in foodstuffs. The mean exposure values satisfy the Italian RDA for all the essential trace elements, except for Fe exposure in females, and are well below the Provisional Tolerable Daily Intake for all the toxic compounds, showing that the probability of dietary exposure to health risks is overall small. As far as Fe exposure is concerned, a potential risk of anaemia in the female adult population should be considered, then studies aimed at evaluating the Fe nutritional status of adult Italian women should be addressed. In conclusion, while not excluding the possibility that the daily exposure determined in the present study may not be representative of the population as a whole, this study provides a good estimate of the Italian adult consumer exposure to twenty-one trace elements.

  5. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill.

    PubMed

    Madejón, P; Murillo, J M; Marañón, T; Cabrera, F; Soriano, M A

    2003-05-20

    The failure of a tailing pond dam at the Aznalcóllar pyrite mine (SW Spain) in April 1998 released a toxic spill affecting approximately 4300 ha along the Agrio and Guadiamar valleys. Two years later, we have studied yield and concentration of mineral nutrients and trace elements in sunflower plants grown in the spill-affected soil, and in an adjacent unaffected soil as comparison. The study has been carried out in plants at seedling (V4) and mature (R8) stages. Shoot and root biomass of sunflower seedlings was significantly smaller in the affected soil than in the unaffected soil, but there was no significant difference at the mature stage. Oil production was greater in the spill-affected plants. We have not detected any 'fertilising' effect caused by the acid waters of the spill on the main nutrient (N, P and Ca) acquisition, as documented in 1998 for sunflower plants flooded by the spill. Sunflower plants growing in the spill-affected soil reached adequate levels of nutrients. None of the trace elements measured-As, Cd, Cu, Pb and Tl-reached levels either phytotoxic or toxic for humans or animals in seeds and the above-ground part of the spill-affected plants. We evaluate the potential use of sunflower plants for phytoremediation. The potential for phytoextraction is very low; however, it may be used for soil conservation. The production of oil (usable for industrial purposes) may add some value to this crop.

  6. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys.

    PubMed

    Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun

    2017-04-01

    The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.

  7. Total reflection X-ray fluorescence analysis of trace-elements in candies marketed in Mexico

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2010-06-01

    Trace metals concentrations in food are significant for nutrition, due either to their nature or toxicity. Sweets, including chewing gum and candies, are not exactly a food, but they usually are unwearied consumed by children, the most vulnerable age-group to any kind of metal contamination in the food chain. The presence of relatively high concentrations of heavy metals such as Lead elicits concern since children are highly susceptible to heavy metals poisoning. Trace-metals concentrations were determined for six different flavors of a Mexican candy by means of Total X-ray Fluorescence Spectrometry. Triplicate samples of the various candy's flavours (strawberry, pineapple, lemon, blackberry, orange and chilli) were digested in 8 mL of a mix of supra-pure HNO 3 and H 2O 2 (6 mL: 2 mL) in a microwave oven MARS-X. Results show the presence of essential and toxic elements such as Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. All metal concentrations were higher and significantly different ( α = 0.05) in chilli candy, compared to other candy flavours. Lead concentration fluctuated in the range of 0.102 to 0.342 μg g - 1 . A discussion about risk consumption and concentration allowed by Mexican and International Norms is made. As a part of the Quality Control Program, a NIST standard of "Citrus Leaves" and a blank were treated in the same way.

  8. Optically powered remote gas monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubaniewicz, T.H. Jr.; Chilton, J.E.

    1995-12-31

    Many mines rely on toxic gas sensors to help maintain a safe and healthy work environment. This report describes a prototype monitoring system developed by the US Bureau of Mines (USBM) that uses light to power and communicate with several remote toxic gas sensors. The design is based on state-of-art optical-to-electrical power converters, solid-state diode lasers, and fiber optics. This design overcomes several problems associated with conventional wire-based systems by providing complete electrical isolation between the remote sensors and the central monitor. The prototype performed well during a 2-week field trial in the USBM Pittsburgh Research Center Safety Research Coalmore » Mine.« less

  9. THE APPLICATION OF JET REMPI/TOFMS TO REAL-TIME MONITORING OF DIOXINS

    EPA Science Inventory

    An advanced rapid monitoring technology, Jet Resonance Enhanced Multi-Photon Ionization, (Jet REMPI) is being applied to the measurement of air toxics, including chlorinated dibenzodioxins and dibenzofurans (CDD/CDF), for mechanistic understanding, process monitoring, and regulat...

  10. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  11. Contact tracing the first Middle East respiratory syndrome case in the Philippines, February 2015.

    PubMed

    Racelis, Sheryl; de los Reyes, Vikki Carr; Sucaldito, Ma Nemia; Deveraturda, Imelda; Roca, John Bobbie; Tayag, Enrique

    2015-01-01

    Middle East respiratory syndrome (MERS) is an illness caused by a coronavirus in which infected persons develop severe acute respiratory illness. A person can be infected through close contacts. This is an outbreak investigation report of the first confirmed MERS case in the Philippines and the subsequent contact tracing activities. Review of patient records and interviews with health-care personnel were done. Patient and close contacts were tested for MERS-coronavirus (CoV) by real time-polymerase chain reaction. Close contacts were identified and categorized. All traced contacts were monitored daily for appearance of illness for 14 days starting from the date of last known exposure to the confirmed case. A standard log sheet was used for symptom monitoring. The case was a 31-year-old female who was a health-care worker in Saudi Arabia. She had mild acute respiratory illness five days before travelling to the Philippines. On 1 February, she travelled with her husband to the Philippines while she had a fever. On 2 February, she attended a health facility in the Philippines. On 8 February, respiratory samples were tested for MERS-CoV and yielded positive results. A total of 449 close contacts were identified, and 297 (66%) were traced. Of those traced, 15 developed respiratory symptoms. All of them tested negative for MERS. In this outbreak investigation, the participation of health-care personnel in conducting vigorous contact tracing may have reduced the risk of transmission. However, being overly cautious to include more contacts for the outbreak response should be further reconsidered.

  12. Trace elements as paradigms of developmental neurotoxicants: lead, methylmercury and arsenic

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2014-01-01

    Trace elements have contributed unique insights into developmental neurotoxicity and serve as paradigms for such adverse effects. Many trace elements are retained in the body for long periods and can be easily measured to assess exposure by inexpensive analytical methods that became available several decades ago so that past and cumulated exposures could be easily characterized through analysis of biological samples, e.g. blood and urine. The first compelling evidence resulted from unfortunate poisoning events that allowed scrutiny of long-term outcomes of acute exposures that occurred during early development. Pursuant to this documentation, prospective studies of children's cohorts that applied sensitive neurobehavioral methods supported the notion that the brain is uniquely vulnerable to toxic damage during early development. Lead, methylmercury, and arsenic thereby serve as paradigm neurotoxicants that provide a reference for other substances that may have similar adverse effects. Less evidence is available on manganese, fluoride, and cadmium, but experience from the former trace elements suggest that, with time, adverse effects are likely to be documented at exposures previously thought to be low and safe. PMID:25175507

  13. Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic.

    PubMed

    Grandjean, Philippe; Herz, Katherine T

    2015-01-01

    Trace elements have contributed unique insights into developmental neurotoxicity and serve as paradigms for such adverse effects. Many trace elements are retained in the body for long periods and can be easily measured to assess exposure by inexpensive analytical methods that became available several decades ago so that past and cumulated exposures could be easily characterized through analysis of biological samples, e.g. blood and urine. The first compelling evidence resulted from unfortunate poisoning events that allowed scrutiny of long-term outcomes of acute exposures that occurred during early development. Pursuant to this documentation, prospective studies of children's cohorts that applied sensitive neurobehavioral methods supported the notion that the brain is uniquely vulnerable to toxic damage during early development. Lead, methylmercury, and arsenic thereby serve as paradigm neurotoxicants that provide a reference for other substances that may have similar adverse effects. Less evidence is available on manganese, fluoride, and cadmium, but experience from the former trace elements suggest that, with time, adverse effects are likely to be documented at exposures previously thought to be low and safe. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea, Turkey.

    PubMed

    Mendil, Durali; Demirci, Zafer; Tuzen, Mustafa; Soylak, Mustafa

    2010-03-01

    Fish species (Sarda sarda, Mulus barbatus ponticus, Trachurus trachurus and Merlangius merlangus) were collected from the Black sea, Turkey between 2008 and 2009 (spring, summer, autumn and winter). The samples were analyzed using flame and graphite furnace atomic absorption spectrometry after microwave digestion. The maximum metal concentrations were found to be as 25.5-41.4 microg/g (Fe), 17.8-25.7 microg/g (Zn), 0.28-0.64 microg/g (Pb), 0.64-0.99 microg/g (Cr), 1.3-3.6 microg/g (Mn), 1.4-1.9 microg/g (Cu), 0.18-0.35 microg/g (Cd) and 0.25-0.42 microg/g (Co) for fish species. The concentration of trace metals in samples is depended on fish species. Some species is accumulated trace metals at high ratio. Trace element levels in analyzed fish species were acceptable to human consumption at nutritional and toxic levels. The levels of lead and cadmium in fish samples were higher than the recommended legal limits. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  16. A biosensor for cadmium based on bioconvective patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.

    1990-01-01

    An 'in vitro' method for monitoring cadmium, one of the most lethal bivalent heavy metals, can detect biologically active levels. The effects of cadmium tend to concentrate in protozoa far above natural levels and therein begin transferring through freshwater food chains to animals and humans. In a small sample volume (approximately 5 ml) the method uses the toxic response to the protozoa, Tetrahymena pyriformis, to cadmium. The assay relies on macroscopic bioconvective patterns to measure the toxic response, giving a sensitivity better than 1 micro-g/1 and a toxicity threshold to 7 micro-g/1 for Cd(2+). Cadmium hinders pattern formation in a dose-dependent manner. Arrested organism growth arises from slowed division and mutation to non-dividing classes. Unlike previous efforts, this method can be performed in a shallow flow device and does not require electronic or chemical analyses to monitor toxicity.

  17. Physiological responses of coastal phytoplankton (Visakhapatnam, SW Bay of Bengal, India) to experimental copper addition.

    PubMed

    Biswas, Haimanti; Bandyopadhyay, Debasmita

    2017-10-01

    Trace amount of copper (Cu) is essential for many physiological processes; however, it can be potentially toxic at elevated levels. The impact of variable Cu concentrations on a coastal phytoplankton community was investigated along a coastal transect in SW Bay of Bengal. A small increase in Cu supply enhanced the concentrations of particulate organic carbon, particulate organic nitrogen, biogenic silica, total pigment, phytoplankton cell and total bacterial count. At elevated Cu levels all these parameters were adversely affected. δ 13 C POM and δ 15 N POC reflected a visible signature of both beneficial and toxic impacts of Cu supply. Skeletonema costatum, the dominant diatom species, showed higher tolerance to increasing Cu levels relative to Chaetoceros sp. Cyanobacteria showed greater sensitivity to copper than diatoms. The magnitude of Cu toxicity on the phytoplankton communities was inversely related to the distance from the coast. Co-enrichment of iron alleviated Cu toxicity to phytoplankton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A new sum parameter to estimate the bioconcentration and baseline-toxicity of hydrophobic compounds in river water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loon, W.M.G.M. van; Hermens, J.L.M.

    1994-12-31

    A large part of all aquatic pollutants can be classified as narcosis-type (baseline toxicity) chemicals. Many chemicals contribute to a joint baseline aquatic toxicity even at trace concentrations. A novel surrogate parameter, which simulated bioconcentration of hydrophobic substances from water and estimates internal molar concentrations, has been explored by Verhaar et al.. These estimated biological concentrations can be used to predict narcosis-type toxic effects, using the Lethal Body Burden (LBB) concept. The authors applied this toxicological-analytical concept to river water, and some recent technological developments and field results are pointed out. The simulation of bioconcentration is performed by extracting watermore » samples with empore{trademark} disks. The authors developed two extraction procedures; i.e., laboratory extraction and field extraction. Molar concentrations measurements are performed using vapor pressure osmometry, GC-FID and GC-MS. Results on the molar concentrations of hydrophobic compounds which can be bioaccumulated from several Dutch river systems will be presented.« less

  19. Assessment of the individual and mixture toxicity of cadmium, copper and oxytetracycline, on the embryo-larval development of the sea urchin Paracentrotus lividus.

    PubMed

    Gharred, Tahar; Jebali, Jamel; Belgacem, Mariem; Mannai, Rabeb; Achour, Sami

    2016-09-01

    Multiple pollutions by trace metals and pharmaceuticals have become one of the most important problems in marine coastal areas because of its excessive toxicity on organisms living in this area. This study aimed to assess the individual and mixture toxicity of Cu, Cd, and oxytetracycline frequently existing in the contaminated marine areas and the embryo-larval development of the sea urchin Paracentrotus lividus. The individual contamination of the spermatozoid for 1 h with the increasing concentrations of Cd, Cu, and OTC decreases the fertility rate and increases larvae anomalies in the order Cu > Cd > OTC. Moreover, the normal larva frequency and the length of spicules were more sensitive than the fertilization rate and normal gastrula frequency endpoints. The mixture toxicity assessed by multiple experimental designs showed clearly that concentrations of Cd, Cu, and OTC superior to 338 μg/L, 0.56 μg/L, and 0.83 mg/L, respectively, cause significant larva malformations.

  20. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface

    USDA-ARS?s Scientific Manuscript database

    Cations, such as Ca and Mg, are generally thought to alleviate toxicities of trace metals through site-specific competition (as incorporated in the biotic ligand model, BLM). Short term (48 h) experiments were conducted using cowpea (Vigna unguiculata L. Walp.) seedlings in simple nutrient solution...

Top